Sample records for multi-attribute decision model

  1. Linguistic Multi-Attribute Group Decision Making with Risk Preferences and Its Use in Low-Carbon Tourism Destination Selection.

    PubMed

    Lin, Hui; Wang, Zhou-Jing

    2017-09-17

    Low-carbon tourism plays an important role in carbon emission reduction and environmental protection. Low-carbon tourism destination selection often involves multiple conflicting and incommensurate attributes or criteria and can be modelled as a multi-attribute decision-making problem. This paper develops a framework to solve multi-attribute group decision-making problems, where attribute evaluation values are provided as linguistic terms and the attribute weight information is incomplete. In order to obtain a group risk preference captured by a linguistic term set with triangular fuzzy semantic information, a nonlinear programming model is established on the basis of individual risk preferences. We first convert individual linguistic-term-based decision matrices to their respective triangular fuzzy decision matrices, which are then aggregated into a group triangular fuzzy decision matrix. Based on this group decision matrix and the incomplete attribute weight information, a linear program is developed to find an optimal attribute weight vector. A detailed procedure is devised for tackling linguistic multi-attribute group decision making problems. A low-carbon tourism destination selection case study is offered to illustrate how to use the developed group decision-making model in practice.

  2. Linguistic Multi-Attribute Group Decision Making with Risk Preferences and Its Use in Low-Carbon Tourism Destination Selection

    PubMed Central

    Lin, Hui; Wang, Zhou-Jing

    2017-01-01

    Low-carbon tourism plays an important role in carbon emission reduction and environmental protection. Low-carbon tourism destination selection often involves multiple conflicting and incommensurate attributes or criteria and can be modelled as a multi-attribute decision-making problem. This paper develops a framework to solve multi-attribute group decision-making problems, where attribute evaluation values are provided as linguistic terms and the attribute weight information is incomplete. In order to obtain a group risk preference captured by a linguistic term set with triangular fuzzy semantic information, a nonlinear programming model is established on the basis of individual risk preferences. We first convert individual linguistic-term-based decision matrices to their respective triangular fuzzy decision matrices, which are then aggregated into a group triangular fuzzy decision matrix. Based on this group decision matrix and the incomplete attribute weight information, a linear program is developed to find an optimal attribute weight vector. A detailed procedure is devised for tackling linguistic multi-attribute group decision making problems. A low-carbon tourism destination selection case study is offered to illustrate how to use the developed group decision-making model in practice. PMID:28926985

  3. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making.

    PubMed

    Li, Yan

    2017-05-25

    The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.

  4. Model for multi-stand management based on structural attributes of individual stands

    Treesearch

    G.W. Miller; J. Sullivan

    1997-01-01

    A growing interest in managing forest ecosystems calls for decision models that take into account attribute goals for large forest areas while continuing to recognize the individual stand as a basic unit of forest management. A dynamic, nonlinear forest management model is described that schedules silvicultural treatments for individual stands that are linked by multi-...

  5. A Decision-Making Method with Grey Multi-Source Heterogeneous Data and Its Application in Green Supplier Selection

    PubMed Central

    Dang, Yaoguo; Mao, Wenxin

    2018-01-01

    In view of the multi-attribute decision-making problem that the attribute values are grey multi-source heterogeneous data, a decision-making method based on kernel and greyness degree is proposed. The definitions of kernel and greyness degree of an extended grey number in a grey multi-source heterogeneous data sequence are given. On this basis, we construct the kernel vector and greyness degree vector of the sequence to whiten the multi-source heterogeneous information, then a grey relational bi-directional projection ranking method is presented. Considering the multi-attribute multi-level decision structure and the causalities between attributes in decision-making problem, the HG-DEMATEL method is proposed to determine the hierarchical attribute weights. A green supplier selection example is provided to demonstrate the rationality and validity of the proposed method. PMID:29510521

  6. A Decision-Making Method with Grey Multi-Source Heterogeneous Data and Its Application in Green Supplier Selection.

    PubMed

    Sun, Huifang; Dang, Yaoguo; Mao, Wenxin

    2018-03-03

    In view of the multi-attribute decision-making problem that the attribute values are grey multi-source heterogeneous data, a decision-making method based on kernel and greyness degree is proposed. The definitions of kernel and greyness degree of an extended grey number in a grey multi-source heterogeneous data sequence are given. On this basis, we construct the kernel vector and greyness degree vector of the sequence to whiten the multi-source heterogeneous information, then a grey relational bi-directional projection ranking method is presented. Considering the multi-attribute multi-level decision structure and the causalities between attributes in decision-making problem, the HG-DEMATEL method is proposed to determine the hierarchical attribute weights. A green supplier selection example is provided to demonstrate the rationality and validity of the proposed method.

  7. [A multi-measure analysis of the similarity, attraction, and compromise effects in multi-attribute decision making].

    PubMed

    Tsuzuki, Takashi; Matsui, Hiroshi; Kikuchi, Manabu

    2012-12-01

    In multi-attribute decision making, the similarity, attraction, and compromise effects warrant specific investigation as they cause violations of principles in rational choice. In order to investigate these three effects simultaneously, we assigned 145 undergraduates to three context effect conditions. We requested them to solve the same 20 hypothetical purchase problems, each of which had three alternatives described along two attributes. We measured their choices, confidence ratings, and response times. We found that manipulating the third alternative had significant context effects for choice proportions and confidence ratings in all three conditions. Furthermore, the attraction effect was the most prominent with regard to choice proportions. In the compromise effect condition, although the choice proportion of the third alternative was high, the confidence rating was low and the response time was long. These results indicate that the relationship between choice proportions and confidence ratings requires further theoretical investigation. They also suggest that a combination of experimental and modeling studies is imperative to reveal the mechanisms underlying the context effects in multi-attribute, multi-alternative decision making.

  8. An interval-valued 2-tuple linguistic group decision-making model based on the Choquet integral operator

    NASA Astrophysics Data System (ADS)

    Liu, Bingsheng; Fu, Meiqing; Zhang, Shuibo; Xue, Bin; Zhou, Qi; Zhang, Shiruo

    2018-01-01

    The Choquet integral (IL) operator is an effective approach for handling interdependence among decision attributes in complex decision-making problems. However, the fuzzy measures of attributes and attribute sets required by IL are difficult to achieve directly, which limits the application of IL. This paper proposes a new method for determining fuzzy measures of attributes by extending Marichal's concept of entropy for fuzzy measure. To well represent the assessment information, interval-valued 2-tuple linguistic context is utilised to represent information. Then, we propose a Choquet integral operator in an interval-valued 2-tuple linguistic environment, which can effectively handle the correlation between attributes. In addition, we apply these methods to solve multi-attribute group decision-making problems. The feasibility and validity of the proposed operator is demonstrated by comparisons with other models in illustrative example part.

  9. Using Consumer Behavior and Decision Models to Aid Students in Choosing a Major.

    ERIC Educational Resources Information Center

    Kaynama, Shohreh A.; Smith, Louise W.

    1996-01-01

    A study found that using consumer behavior and decision models to guide students to a major can be useful and enjoyable for students. Students consider many of the basic parameters through multi-attribute and decision-analysis models, so time with professors, who were found to be the most influential group, can be used for more individual and…

  10. Prospect Theory and Interval-Valued Hesitant Set for Safety Evacuation Model

    NASA Astrophysics Data System (ADS)

    Kou, Meng; Lu, Na

    2018-01-01

    The study applies the research results of prospect theory and multi attribute decision making theory, combined with the complexity, uncertainty and multifactor influence of the underground mine fire system and takes the decision makers’ psychological behavior of emotion and intuition into full account to establish the intuitionistic fuzzy multiple attribute decision making method that is based on the prospect theory. The model established by this method can explain the decision maker’s safety evacuation decision behavior in the complex system of underground mine fire due to the uncertainty of the environment, imperfection of the information and human psychological behavior and other factors.

  11. Hierarchical competitions subserving multi-attribute choice

    PubMed Central

    Hunt, Laurence T; Dolan, Raymond J; Behrens, Timothy EJ

    2015-01-01

    Valuation is a key tenet of decision neuroscience, where it is generally assumed that different attributes of competing options are assimilated into unitary values. Such values are central to current neural models of choice. By contrast, psychological studies emphasize complex interactions between choice and valuation. Principles of neuronal selection also suggest competitive inhibition may occur in early valuation stages, before option selection. Here, we show behavior in multi-attribute choice is best explained by a model involving competition at multiple levels of representation. This hierarchical model also explains neural signals in human brain regions previously linked to valuation, including striatum, parietal and prefrontal cortex, where activity represents competition within-attribute, competition between attributes, and option selection. This multi-layered inhibition framework challenges the assumption that option values are computed before choice. Instead our results indicate a canonical competition mechanism throughout all stages of a processing hierarchy, not simply at a final choice stage. PMID:25306549

  12. A decision aid for intensity-modulated radiation-therapy plan selection in prostate cancer based on a prognostic Bayesian network and a Markov model.

    PubMed

    Smith, Wade P; Doctor, Jason; Meyer, Jürgen; Kalet, Ira J; Phillips, Mark H

    2009-06-01

    The prognosis of cancer patients treated with intensity-modulated radiation-therapy (IMRT) is inherently uncertain, depends on many decision variables, and requires that a physician balance competing objectives: maximum tumor control with minimal treatment complications. In order to better deal with the complex and multiple objective nature of the problem we have combined a prognostic probabilistic model with multi-attribute decision theory which incorporates patient preferences for outcomes. The response to IMRT for prostate cancer was modeled. A Bayesian network was used for prognosis for each treatment plan. Prognoses included predicting local tumor control, regional spread, distant metastases, and normal tissue complications resulting from treatment. A Markov model was constructed and used to calculate a quality-adjusted life-expectancy which aids in the multi-attribute decision process. Our method makes explicit the tradeoffs patients face between quality and quantity of life. This approach has advantages over current approaches because with our approach risks of health outcomes and patient preferences determine treatment decisions.

  13. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    NASA Astrophysics Data System (ADS)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.

  14. Coding Theory Information Theory and Radar

    DTIC Science & Technology

    2005-01-01

    the design and synthesis of artificial multiagent systems and for the understanding of human decision-making processes. This... altruism that may exist in a complex society. SGT derives its ability to account simultaneously for both group and individual interests from the structure of ...satisficing decision theory as a model of human decision mak- ing. 2 Multi-Attribute Decision Making Many decision problems involve the consideration of

  15. A cloud model based multi-attribute decision making approach for selection and evaluation of groundwater management schemes

    NASA Astrophysics Data System (ADS)

    Lu, Hongwei; Ren, Lixia; Chen, Yizhong; Tian, Peipei; Liu, Jia

    2017-12-01

    Due to the uncertainty (i.e., fuzziness, stochasticity and imprecision) existed simultaneously during the process for groundwater remediation, the accuracy of ranking results obtained by the traditional methods has been limited. This paper proposes a cloud model based multi-attribute decision making framework (CM-MADM) with Monte Carlo for the contaminated-groundwater remediation strategies selection. The cloud model is used to handle imprecise numerical quantities, which can describe the fuzziness and stochasticity of the information fully and precisely. In the proposed approach, the contaminated concentrations are aggregated via the backward cloud generator and the weights of attributes are calculated by employing the weight cloud module. A case study on the remedial alternative selection for a contaminated site suffering from a 1,1,1-trichloroethylene leakage problem in Shanghai, China is conducted to illustrate the efficiency and applicability of the developed approach. Totally, an attribute system which consists of ten attributes were used for evaluating each alternative through the developed method under uncertainty, including daily total pumping rate, total cost and cloud model based health risk. Results indicated that A14 was evaluated to be the most preferred alternative for the 5-year, A5 for the 10-year, A4 for the 15-year and A6 for the 20-year remediation.

  16. A Structured Decision Approach for Integrating and Analyzing Community Perspectives in Re-Use Planning of Vacant Properties in Cleveland, Ohio

    EPA Science Inventory

    An integrated GIS-based, multi-attribute decision model deployed in a web-based platform is presented enabling an iterative, spatially explicit and collaborative analysis of relevant and available information for repurposing vacant land. The process incorporated traditional and ...

  17. Decision Making for Pap Testing among Pacific Islander Women

    ERIC Educational Resources Information Center

    Weiss, Jie W.; Mouttapa, Michele; Sablan-Santos, Lola; DeGuzman Lacsamana, Jasmine; Quitugua, Lourdes; Park Tanjasiri, Sora

    2016-01-01

    This study employed a Multi-Attribute Utility (MAU) model to examine the Pap test decision-making process among Pacific Islanders (PI) residing in Southern California. A total of 585 PI women were recruited through social networks from Samoan and Tongan churches, and Chamorro family clans. A questionnaire assessed Pap test knowledge, beliefs and…

  18. Production Task Queue Optimization Based on Multi-Attribute Evaluation for Complex Product Assembly Workshop.

    PubMed

    Li, Lian-Hui; Mo, Rong

    2015-01-01

    The production task queue has a great significance for manufacturing resource allocation and scheduling decision. Man-made qualitative queue optimization method has a poor effect and makes the application difficult. A production task queue optimization method is proposed based on multi-attribute evaluation. According to the task attributes, the hierarchical multi-attribute model is established and the indicator quantization methods are given. To calculate the objective indicator weight, criteria importance through intercriteria correlation (CRITIC) is selected from three usual methods. To calculate the subjective indicator weight, BP neural network is used to determine the judge importance degree, and then the trapezoid fuzzy scale-rough AHP considering the judge importance degree is put forward. The balanced weight, which integrates the objective weight and the subjective weight, is calculated base on multi-weight contribution balance model. The technique for order preference by similarity to an ideal solution (TOPSIS) improved by replacing Euclidean distance with relative entropy distance is used to sequence the tasks and optimize the queue by the weighted indicator value. A case study is given to illustrate its correctness and feasibility.

  19. Production Task Queue Optimization Based on Multi-Attribute Evaluation for Complex Product Assembly Workshop

    PubMed Central

    Li, Lian-hui; Mo, Rong

    2015-01-01

    The production task queue has a great significance for manufacturing resource allocation and scheduling decision. Man-made qualitative queue optimization method has a poor effect and makes the application difficult. A production task queue optimization method is proposed based on multi-attribute evaluation. According to the task attributes, the hierarchical multi-attribute model is established and the indicator quantization methods are given. To calculate the objective indicator weight, criteria importance through intercriteria correlation (CRITIC) is selected from three usual methods. To calculate the subjective indicator weight, BP neural network is used to determine the judge importance degree, and then the trapezoid fuzzy scale-rough AHP considering the judge importance degree is put forward. The balanced weight, which integrates the objective weight and the subjective weight, is calculated base on multi-weight contribution balance model. The technique for order preference by similarity to an ideal solution (TOPSIS) improved by replacing Euclidean distance with relative entropy distance is used to sequence the tasks and optimize the queue by the weighted indicator value. A case study is given to illustrate its correctness and feasibility. PMID:26414758

  20. Robust Sensitivity Analysis for Multi-Attribute Deterministic Hierarchical Value Models

    DTIC Science & Technology

    2002-03-01

    such as weighted sum method, weighted 5 product method, and the Analytic Hierarchy Process ( AHP ). This research focuses on only weighted sum...different groups. They can be termed as deterministic, stochastic, or fuzzy multi-objective decision methods if they are classified according to the...weighted product model (WPM), and analytic hierarchy process ( AHP ). His method attempts to identify the most important criteria weight and the most

  1. Podium: Ranking Data Using Mixed-Initiative Visual Analytics.

    PubMed

    Wall, Emily; Das, Subhajit; Chawla, Ravish; Kalidindi, Bharath; Brown, Eli T; Endert, Alex

    2018-01-01

    People often rank and order data points as a vital part of making decisions. Multi-attribute ranking systems are a common tool used to make these data-driven decisions. Such systems often take the form of a table-based visualization in which users assign weights to the attributes representing the quantifiable importance of each attribute to a decision, which the system then uses to compute a ranking of the data. However, these systems assume that users are able to quantify their conceptual understanding of how important particular attributes are to a decision. This is not always easy or even possible for users to do. Rather, people often have a more holistic understanding of the data. They form opinions that data point A is better than data point B but do not necessarily know which attributes are important. To address these challenges, we present a visual analytic application to help people rank multi-variate data points. We developed a prototype system, Podium, that allows users to drag rows in the table to rank order data points based on their perception of the relative value of the data. Podium then infers a weighting model using Ranking SVM that satisfies the user's data preferences as closely as possible. Whereas past systems help users understand the relationships between data points based on changes to attribute weights, our approach helps users to understand the attributes that might inform their understanding of the data. We present two usage scenarios to describe some of the potential uses of our proposed technique: (1) understanding which attributes contribute to a user's subjective preferences for data, and (2) deconstructing attributes of importance for existing rankings. Our proposed approach makes powerful machine learning techniques more usable to those who may not have expertise in these areas.

  2. Temporal Drivers of Liking Based on Functional Data Analysis and Non-Additive Models for Multi-Attribute Time-Intensity Data of Fruit Chews.

    PubMed

    Kuesten, Carla; Bi, Jian

    2018-06-03

    Conventional drivers of liking analysis was extended with a time dimension into temporal drivers of liking (TDOL) based on functional data analysis methodology and non-additive models for multiple-attribute time-intensity (MATI) data. The non-additive models, which consider both direct effects and interaction effects of attributes to consumer overall liking, include Choquet integral and fuzzy measure in the multi-criteria decision-making, and linear regression based on variance decomposition. Dynamics of TDOL, i.e., the derivatives of the relative importance functional curves were also explored. Well-established R packages 'fda', 'kappalab' and 'relaimpo' were used in the paper for developing TDOL. Applied use of these methods shows that the relative importance of MATI curves offers insights for understanding the temporal aspects of consumer liking for fruit chews.

  3. Adaptive management in the U.S. National Wildlife Refuge System: Science-management partnerships for conservation delivery

    USGS Publications Warehouse

    Moore, C.T.; Lonsdorf, E.V.; Knutson, M.G.; Laskowski, H.P.; Lor, S.K.

    2011-01-01

    Adaptive management is an approach to recurrent decision making in which uncertainty about the decision is reduced over time through comparison of outcomes predicted by competing models against observed values of those outcomes. The National Wildlife Refuge System (NWRS) of the U.S. Fish and Wildlife Service is a large land management program charged with making natural resource management decisions, which often are made under considerable uncertainty, severe operational constraints, and conditions that limit ability to precisely carry out actions as intended. The NWRS presents outstanding opportunities for the application of adaptive management, but also difficult challenges. We describe two cooperative programs between the Fish and Wildlife Service and the U.S. Geological Survey to implement adaptive management at scales ranging from small, single refuge applications to large, multi-refuge, multi-region projects. Our experience to date suggests three important attributes common to successful implementation: a vigorous multi-partner collaboration, practical and informative decision framework components, and a sustained commitment to the process. Administrators in both agencies should consider these attributes when developing programs to promote the use and acceptance of adaptive management in the NWRS. ?? 2010 .

  4. Close Combat Missile Methodology Study

    DTIC Science & Technology

    2010-10-14

    Modeling: Industrial Applications of DEX.” Informatica 23 (1999): 487-491. Bohanec, Marko, Blaz Zupan, and Vladislav Rajkovic. “Applications of...Lisec. “Multi-attribute Decision Analysis in GIS: Weighted Linear Combination and Ordered Weighted Averaging.” Informatica 33, (1999): 459- 474

  5. Operation Exodus: The Massacre of 44 Philippine Police Commandos In Mamasapano Clash

    DTIC Science & Technology

    2016-09-01

    strategic thinking, utilizing Game Theory and Multi-Attribute Decision Making; the combination of these two dynamic tools is used to evaluate their...thinking, utilizing Game Theory and Multi-Attribute Decision Making; the combination of these two dynamic tools is used to evaluate their potential...35 A. GAME THEORETIC APPROACH ......................................................36 B. APPLYING GAME THEORY TO OPLAN: EXODUS

  6. A consensus reaching model for 2-tuple linguistic multiple attribute group decision making with incomplete weight information

    NASA Astrophysics Data System (ADS)

    Zhang, Wancheng; Xu, Yejun; Wang, Huimin

    2016-01-01

    The aim of this paper is to put forward a consensus reaching method for multi-attribute group decision-making (MAGDM) problems with linguistic information, in which the weight information of experts and attributes is unknown. First, some basic concepts and operational laws of 2-tuple linguistic label are introduced. Then, a grey relational analysis method and a maximising deviation method are proposed to calculate the incomplete weight information of experts and attributes respectively. To eliminate the conflict in the group, a weight-updating model is employed to derive the weights of experts based on their contribution to the consensus reaching process. After conflict elimination, the final group preference can be obtained which will give the ranking of the alternatives. The model can effectively avoid information distortion which is occurred regularly in the linguistic information processing. Finally, an illustrative example is given to illustrate the application of the proposed method and comparative analysis with the existing methods are offered to show the advantages of the proposed method.

  7. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation.

    PubMed

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith

    2015-01-01

    Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.

  8. Trusted Advisors, Decision Models and Other Keys to Communicating Science to Decision Makers

    NASA Astrophysics Data System (ADS)

    Webb, E.

    2006-12-01

    Water resource management decisions often involve multiple parties engaged in contentious negotiations that try to navigate through complex combinations of legal, social, hydrologic, financial, and engineering considerations. The standard approach for resolving these issues is some form of multi-party negotiation, a formal court decision, or a combination of the two. In all these cases, the role of the decision maker(s) is to choose and implement the best option that fits the needs and wants of the community. However, each path to a decision carries the risk of technical and/or financial infeasibility as well as the possibility of unintended consequences. To help reduce this risk, decision makers often rely on some type of predictive analysis from which they can evaluate the projected consequences of their decisions. Typically, decision makers are supported in the analysis process by trusted advisors who engage in the analysis as well as the day to day tasks associated with multi-party negotiations. In the case of water resource management, the analysis is frequently a numerical model or set of models that can simulate various management decisions across multiple systems and output results that illustrate the impact on areas of concern. Thus, in order to communicate scientific knowledge to the decision makers, the quality of the communication between the analysts, the trusted advisor, and the decision maker must be clear and direct. To illustrate this concept, a multi-attribute decision analysis matrix will be used to outline the value of computer model-based collaborative negotiation approaches to guide water resources decision making and communication with decision makers. In addition, the critical role of the trusted advisor and other secondary participants in the decision process will be discussed using examples from recent water negotiations.

  9. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare.

    PubMed

    Dolan, James G

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers.Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine "hard data" with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings.The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP).

  10. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare

    PubMed Central

    Dolan, James G.

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers. Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine “hard data” with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings. The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP) PMID:21394218

  11. Selecting the Best Thermal Building Insulation Using a Multi-Attribute Decision Model

    DTIC Science & Technology

    2008-03-01

    materials which come in various forms. Rock wool, also called mineral wool , is made from natural minerals and was developed in the mid-1800s (NAIMA...2008). Fiberglass is a form of mineral wool and accounts for approximately 85% of the market for residential insulation. Synthetic insulating

  12. Modeling recreation participants' willingness to substitute using multi-attribute indicators

    Treesearch

    Yung-Ping (Emilio) Tseng; Robert B. Ditton

    2008-01-01

    A logistic regression was used to predict anglers' resource-substitution decisions based on three dimensions of recreation specialization (behavior, skill and knowledge, and commitment), two dimensions of place attachment (place identity and place dependence), and three demographic indicators. Results indicated that place dependence was the most effective...

  13. Multiattribute selection of acute stroke imaging software platform for Extending the Time for Thrombolysis in Emergency Neurological Deficits (EXTEND) clinical trial.

    PubMed

    Churilov, Leonid; Liu, Daniel; Ma, Henry; Christensen, Soren; Nagakane, Yoshinari; Campbell, Bruce; Parsons, Mark W; Levi, Christopher R; Davis, Stephen M; Donnan, Geoffrey A

    2013-04-01

    The appropriateness of a software platform for rapid MRI assessment of the amount of salvageable brain tissue after stroke is critical for both the validity of the Extending the Time for Thrombolysis in Emergency Neurological Deficits (EXTEND) Clinical Trial of stroke thrombolysis beyond 4.5 hours and for stroke patient care outcomes. The objective of this research is to develop and implement a methodology for selecting the acute stroke imaging software platform most appropriate for the setting of a multi-centre clinical trial. A multi-disciplinary decision making panel formulated the set of preferentially independent evaluation attributes. Alternative Multi-Attribute Value Measurement methods were used to identify the best imaging software platform followed by sensitivity analysis to ensure the validity and robustness of the proposed solution. Four alternative imaging software platforms were identified. RApid processing of PerfusIon and Diffusion (RAPID) software was selected as the most appropriate for the needs of the EXTEND trial. A theoretically grounded generic multi-attribute selection methodology for imaging software was developed and implemented. The developed methodology assured both a high quality decision outcome and a rational and transparent decision process. This development contributes to stroke literature in the area of comprehensive evaluation of MRI clinical software. At the time of evaluation, RAPID software presented the most appropriate imaging software platform for use in the EXTEND clinical trial. The proposed multi-attribute imaging software evaluation methodology is based on sound theoretical foundations of multiple criteria decision analysis and can be successfully used for choosing the most appropriate imaging software while ensuring both robust decision process and outcomes. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.

  14. Visual Attention Allocation Between Robotic Arm and Environmental Process Control: Validating the STOM Task Switching Model

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher; Vieanne, Alex; Clegg, Benjamin; Sebok, Angelia; Janes, Jessica

    2015-01-01

    Fifty six participants time shared a spacecraft environmental control system task with a realistic space robotic arm control task in either a manual or highly automated version. The former could suffer minor failures, whose diagnosis and repair were supported by a decision aid. At the end of the experiment this decision aid unexpectedly failed. We measured visual attention allocation and switching between the two tasks, in each of the eight conditions formed by manual-automated arm X expected-unexpected failure X monitoring- failure management. We also used our multi-attribute task switching model, based on task attributes of priority interest, difficulty and salience that were self-rated by participants, to predict allocation. An un-weighted model based on attributes of difficulty, interest and salience accounted for 96 percent of the task allocation variance across the 8 different conditions. Task difficulty served as an attractor, with more difficult tasks increasing the tendency to stay on task.

  15. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation

    PubMed Central

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith

    2015-01-01

    Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment. PMID:26368541

  16. The Multi-Attribute Group Decision-Making Method Based on Interval Grey Trapezoid Fuzzy Linguistic Variables.

    PubMed

    Yin, Kedong; Wang, Pengyu; Li, Xuemei

    2017-12-13

    With respect to multi-attribute group decision-making (MAGDM) problems, where attribute values take the form of interval grey trapezoid fuzzy linguistic variables (IGTFLVs) and the weights (including expert and attribute weight) are unknown, improved grey relational MAGDM methods are proposed. First, the concept of IGTFLV, the operational rules, the distance between IGTFLVs, and the projection formula between the two IGTFLV vectors are defined. Second, the expert weights are determined by using the maximum proximity method based on the projection values between the IGTFLV vectors. The attribute weights are determined by the maximum deviation method and the priorities of alternatives are determined by improved grey relational analysis. Finally, an example is given to prove the effectiveness of the proposed method and the flexibility of IGTFLV.

  17. Some induced intuitionistic fuzzy aggregation operators applied to multi-attribute group decision making

    NASA Astrophysics Data System (ADS)

    Su, Zhi-xin; Xia, Guo-ping; Chen, Ming-yuan

    2011-11-01

    In this paper, we define various induced intuitionistic fuzzy aggregation operators, including induced intuitionistic fuzzy ordered weighted averaging (OWA) operator, induced intuitionistic fuzzy hybrid averaging (I-IFHA) operator, induced interval-valued intuitionistic fuzzy OWA operator, and induced interval-valued intuitionistic fuzzy hybrid averaging (I-IIFHA) operator. We also establish various properties of these operators. And then, an approach based on I-IFHA operator and intuitionistic fuzzy weighted averaging (WA) operator is developed to solve multi-attribute group decision-making (MAGDM) problems. In such problems, attribute weights and the decision makers' (DMs') weights are real numbers and attribute values provided by the DMs are intuitionistic fuzzy numbers (IFNs), and an approach based on I-IIFHA operator and interval-valued intuitionistic fuzzy WA operator is developed to solve MAGDM problems where the attribute values provided by the DMs are interval-valued IFNs. Furthermore, induced intuitionistic fuzzy hybrid geometric operator and induced interval-valued intuitionistic fuzzy hybrid geometric operator are proposed. Finally, a numerical example is presented to illustrate the developed approaches.

  18. Multi-Attribute Consensus Building Tool

    ERIC Educational Resources Information Center

    Shyyan, Vitaliy; Christensen, Laurene; Thurlow, Martha; Lazarus, Sheryl

    2013-01-01

    The Multi-Attribute Consensus Building (MACB) method is a quantitative approach for determining a group's opinion about the importance of each item (strategy, decision, recommendation, policy, priority, etc.) on a list (Vanderwood, & Erickson, 1994). This process enables a small or large group of participants to generate and discuss a set…

  19. Exploring the impact of different multi-level measures of physician communities in patient-centric care networks on healthcare outcomes: A multi-level regression approach.

    PubMed

    Uddin, Shahadat

    2016-02-04

    A patient-centric care network can be defined as a network among a group of healthcare professionals who provide treatments to common patients. Various multi-level attributes of the members of this network have substantial influence to its perceived level of performance. In order to assess the impact different multi-level attributes of patient-centric care networks on healthcare outcomes, this study first captured patient-centric care networks for 85 hospitals using health insurance claim dataset. From these networks, this study then constructed physician collaboration networks based on the concept of patient-sharing network among physicians. A multi-level regression model was then developed to explore the impact of different attributes that are organised at two levels on hospitalisation cost and hospital length of stay. For Level-1 model, the average visit per physician significantly predicted both hospitalisation cost and hospital length of stay. The number of different physicians significantly predicted only the hospitalisation cost, which has significantly been moderated by age, gender and Comorbidity score of patients. All Level-1 findings showed significance variance across physician collaboration networks having different community structure and density. These findings could be utilised as a reflective measure by healthcare decision makers. Moreover, healthcare managers could consider them in developing effective healthcare environments.

  20. Zoning of an agricultural field using a fuzzy indicator model in combination with tool for multi-attributed decision-making

    USDA-ARS?s Scientific Manuscript database

    Zoning of agricultural fields is an important task for utilization of precision farming technology. This paper extends previously published work entitled “Zoning of an agricultural field using a fuzzy indicator model” to a general case where there is disagreement between groups of managers or expert...

  1. Experimental analysis of multi-attribute decision-making based on Atanassov intuitionistic fuzzy sets: a discussion of anchor dependency and accuracy functions

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Yu

    2012-06-01

    This article presents a useful method for relating anchor dependency and accuracy functions to multiple attribute decision-making (MADM) problems in the context of Atanassov intuitionistic fuzzy sets (A-IFSs). Considering anchored judgement with displaced ideals and solution precision with minimal hesitation, several auxiliary optimisation models have proposed to obtain the optimal weights of the attributes and to acquire the corresponding TOPSIS (the technique for order preference by similarity to the ideal solution) index for alternative rankings. Aside from the TOPSIS index, as a decision-maker's personal characteristics and own perception of self may also influence the direction in the axiom of choice, the evaluation of alternatives is conducted based on distances of each alternative from the positive and negative ideal alternatives, respectively. This article originates from Li's [Li, D.-F. (2005), 'Multiattribute Decision Making Models and Methods Using Intuitionistic Fuzzy Sets', Journal of Computer and System Sciences, 70, 73-85] work, which is a seminal study of intuitionistic fuzzy decision analysis using deduced auxiliary programming models, and deems it a benchmark method for comparative studies on anchor dependency and accuracy functions. The feasibility and effectiveness of the proposed methods are illustrated by a numerical example. Finally, a comparative analysis is illustrated with computational experiments on averaging accuracy functions, TOPSIS indices, separation measures from positive and negative ideal alternatives, consistency rates of ranking orders, contradiction rates of the top alternative and average Spearman correlation coefficients.

  2. Distributed Cooperation Solution Method of Complex System Based on MAS

    NASA Astrophysics Data System (ADS)

    Weijin, Jiang; Yuhui, Xu

    To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.

  3. Decision Support for Personalized Cloud Service Selection through Multi-Attribute Trustworthiness Evaluation

    PubMed Central

    Ding, Shuai; Xia, Chen-Yi; Zhou, Kai-Le; Yang, Shan-Lin; Shang, Jennifer S.

    2014-01-01

    Facing a customer market with rising demands for cloud service dependability and security, trustworthiness evaluation techniques are becoming essential to cloud service selection. But these methods are out of the reach to most customers as they require considerable expertise. Additionally, since the cloud service evaluation is often a costly and time-consuming process, it is not practical to measure trustworthy attributes of all candidates for each customer. Many existing models cannot easily deal with cloud services which have very few historical records. In this paper, we propose a novel service selection approach in which the missing value prediction and the multi-attribute trustworthiness evaluation are commonly taken into account. By simply collecting limited historical records, the current approach is able to support the personalized trustworthy service selection. The experimental results also show that our approach performs much better than other competing ones with respect to the customer preference and expectation in trustworthiness assessment. PMID:24972237

  4. Decision support for personalized cloud service selection through multi-attribute trustworthiness evaluation.

    PubMed

    Ding, Shuai; Xia, Cheng-Yi; Xia, Chen-Yi; Zhou, Kai-Le; Yang, Shan-Lin; Shang, Jennifer S

    2014-01-01

    Facing a customer market with rising demands for cloud service dependability and security, trustworthiness evaluation techniques are becoming essential to cloud service selection. But these methods are out of the reach to most customers as they require considerable expertise. Additionally, since the cloud service evaluation is often a costly and time-consuming process, it is not practical to measure trustworthy attributes of all candidates for each customer. Many existing models cannot easily deal with cloud services which have very few historical records. In this paper, we propose a novel service selection approach in which the missing value prediction and the multi-attribute trustworthiness evaluation are commonly taken into account. By simply collecting limited historical records, the current approach is able to support the personalized trustworthy service selection. The experimental results also show that our approach performs much better than other competing ones with respect to the customer preference and expectation in trustworthiness assessment.

  5. Research of Simple Multi-Attribute Rating Technique for Decision Support

    NASA Astrophysics Data System (ADS)

    Siregar, Dodi; Arisandi, Diki; Usman, Ari; Irwan, Dedy; Rahim, Robbi

    2017-12-01

    One of the roles of decision support system is that it can assist the decision maker in obtaining the appropriate alternative with the desired criteria, one of the methods that could apply for the decision maker is SMART method with multicriteria decision making. This multi-criteria decision-making theory has meaning where every alternative has criteria and has value and weight, and the author uses this approach to facilitate decision making with a compelling case. The problems discussed in this paper are classified into problems of a variety Multiobjective (multiple goals to be accomplished) and multicriteria (many of the decisive criteria in reaching such decisions).

  6. Selecting essential information for biosurveillance--a multi-criteria decision analysis.

    PubMed

    Generous, Nicholas; Margevicius, Kristen J; Taylor-McCabe, Kirsten J; Brown, Mac; Daniel, W Brent; Castro, Lauren; Hengartner, Andrea; Deshpande, Alina

    2014-01-01

    The National Strategy for Biosurveillance defines biosurveillance as "the process of gathering, integrating, interpreting, and communicating essential information related to all-hazards threats or disease activity affecting human, animal, or plant health to achieve early detection and warning, contribute to overall situational awareness of the health aspects of an incident, and to enable better decision-making at all levels." However, the strategy does not specify how "essential information" is to be identified and integrated into the current biosurveillance enterprise, or what the metrics qualify information as being "essential". The question of data stream identification and selection requires a structured methodology that can systematically evaluate the tradeoffs between the many criteria that need to be taken in account. Multi-Attribute Utility Theory, a type of multi-criteria decision analysis, can provide a well-defined, structured approach that can offer solutions to this problem. While the use of Multi-Attribute Utility Theoryas a practical method to apply formal scientific decision theoretical approaches to complex, multi-criteria problems has been demonstrated in a variety of fields, this method has never been applied to decision support in biosurveillance.We have developed a formalized decision support analytic framework that can facilitate identification of "essential information" for use in biosurveillance systems or processes and we offer this framework to the global BSV community as a tool for optimizing the BSV enterprise. To demonstrate utility, we applied the framework to the problem of evaluating data streams for use in an integrated global infectious disease surveillance system.

  7. Multiple Criteria Decision Analysis (MCDA) for evaluating new medicines in Health Technology Assessment and beyond: The Advance Value Framework.

    PubMed

    Angelis, Aris; Kanavos, Panos

    2017-09-01

    Escalating drug prices have catalysed the generation of numerous "value frameworks" with the aim of informing payers, clinicians and patients on the assessment and appraisal process of new medicines for the purpose of coverage and treatment selection decisions. Although this is an important step towards a more inclusive Value Based Assessment (VBA) approach, aspects of these frameworks are based on weak methodologies and could potentially result in misleading recommendations or decisions. In this paper, a Multiple Criteria Decision Analysis (MCDA) methodological process, based on Multi Attribute Value Theory (MAVT), is adopted for building a multi-criteria evaluation model. A five-stage model-building process is followed, using a top-down "value-focused thinking" approach, involving literature reviews and expert consultations. A generic value tree is structured capturing decision-makers' concerns for assessing the value of new medicines in the context of Health Technology Assessment (HTA) and in alignment with decision theory. The resulting value tree (Advance Value Tree) consists of three levels of criteria (top level criteria clusters, mid-level criteria, bottom level sub-criteria or attributes) relating to five key domains that can be explicitly measured and assessed: (a) burden of disease, (b) therapeutic impact, (c) safety profile (d) innovation level and (e) socioeconomic impact. A number of MAVT modelling techniques are introduced for operationalising (i.e. estimating) the model, for scoring the alternative treatment options, assigning relative weights of importance to the criteria, and combining scores and weights. Overall, the combination of these MCDA modelling techniques for the elicitation and construction of value preferences across the generic value tree provides a new value framework (Advance Value Framework) enabling the comprehensive measurement of value in a structured and transparent way. Given its flexibility to meet diverse requirements and become readily adaptable across different settings, the Advance Value Framework could be offered as a decision-support tool for evaluators and payers to aid coverage and reimbursement of new medicines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Temporary site selection and decision-making methods: a case study of Tehran, Iran.

    PubMed

    Omidvar, Babak; Baradaran-Shoraka, Mohammad; Nojavan, Mehdi

    2013-07-01

    Decisions on selecting an appropriate site for temporary shelter used to be taken in a limited amount of time after a disaster. The need for a systematic method in this area inspired the MADM (multi-attribute decision making) for complex disaster management decisions. This research proposes a model for appropriate and systematic site selection for temporary shelters, before an earthquake, using a geographical information system and MADM based on an earthquake damage assessment. After the effective criteria for site selection of temporary shelters are determined, the geographical layers of these criteria are prepared for Municipal District No.1 of Greater Tehran, the capital of Iran. Given these attributes and the required shelter area (415-610 hectares), 14 zones are proposed initially. Various MADM methods are used for the final selection. The mean of the aggregated ranking results are determined, and 10 of the 14 initial zones are ranked. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.

  9. Decision-making in irrigation networks: Selecting appropriate canal structures using multi-attribute decision analysis.

    PubMed

    Hosseinzade, Zeinab; Pagsuyoin, Sheree A; Ponnambalam, Kumaraswamy; Monem, Mohammad J

    2017-12-01

    The stiff competition for water between agriculture and non-agricultural production sectors makes it necessary to have effective management of irrigation networks in farms. However, the process of selecting flow control structures in irrigation networks is highly complex and involves different levels of decision makers. In this paper, we apply multi-attribute decision making (MADM) methodology to develop a decision analysis (DA) framework for evaluating, ranking and selecting check and intake structures for irrigation canals. The DA framework consists of identifying relevant attributes for canal structures, developing a robust scoring system for alternatives, identifying a procedure for data quality control, and identifying a MADM model for the decision analysis. An application is illustrated through an analysis for automation purposes of the Qazvin irrigation network, one of the oldest and most complex irrigation networks in Iran. A survey questionnaire designed based on the decision framework was distributed to experts, managers, and operators of the Qazvin network and to experts from the Ministry of Power in Iran. Five check structures and four intake structures were evaluated. A decision matrix was generated from the average scores collected from the survey, and was subsequently solved using TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method. To identify the most critical structure attributes for the selection process, optimal attribute weights were calculated using Entropy method. For check structures, results show that the duckbill weir is the preferred structure while the pivot weir is the least preferred. Use of the duckbill weir can potentially address the problem with existing Amil gates where manual intervention is required to regulate water levels during periods of flow extremes. For intake structures, the Neyrpic® gate and constant head orifice are the most and least preferred alternatives, respectively. Some advantages of the Neyrpic® gate are ease of operation and capacity to measure discharge flows. Overall, the application to the Qazvin irrigation network demonstrates the utility of the proposed DA framework in selecting appropriate structures for regulating water flows in irrigation canals. This framework systematically aids the decision process by capturing decisions made at various levels (individual farmers to high-level management). It can be applied to other cases where a new irrigation network is being designed, or where changes in irrigation structures need to be identified to improve flow control in existing networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Schizophrenia: multi-attribute utility theory approach to selection of atypical antipsychotics.

    PubMed

    Bettinger, Tawny L; Shuler, Garyn; Jones, Donnamaria R; Wilson, James P

    2007-02-01

    Current guidelines/algorithms recommend atypical antipsychotics as first-line agents for the treatment of schizophrenia. Because there are extensive healthcare costs associated with the treatment of schizophrenia, many institutions and health systems are faced with making restrictive formulary decisions regarding the use of atypical antipsychotics. Often, medication acquisition costs are the driving force behind formulary decisions, while other treatment factors are not considered. To apply a multi-attribute utility theory (MAUT) analysis to aid in the selection of a preferred agent among the atypical antipsychotics for the treatment of schizophrenia. Five atypical antipsychotics (risperidone, olanzapine, quetiapine, ziprasidone, aripiprazole) were selected as the alternative agents to be included in the MAUT analysis. The attributes identified for inclusion in the analysis were efficacy, adverse effects, cost, and adherence, with relative weights of 35%, 35%, 20%, and 10%, respectively. For each agent, attribute scores were calculated, weighted, and then summed to generate a total utility score. The agent with the highest total utility score was considered the preferred agent. Aripiprazole, with a total utility score of 75.8, was the alternative agent with the highest total utility score in this model. This was followed by ziprasidone, risperidone, and quetiapine, with total utility scores of 71.8, 69.0, and 65.9, respectively. Olanzapine received the lowest total utility score. A sensitivity analysis was performed and failed to displace aripiprazole as the agent with the highest total utility score. This model suggests that aripiprazole should be considered a preferred agent for the treatment of schizophrenia unless found to be otherwise inappropriate.

  11. Comparing multi-criteria decision analysis and integrated assessment to support long-term water supply planning

    PubMed Central

    Maurer, Max; Lienert, Judit

    2017-01-01

    We compare the use of multi-criteria decision analysis (MCDA)–or more precisely, models used in multi-attribute value theory (MAVT)–to integrated assessment (IA) models for supporting long-term water supply planning in a small town case study in Switzerland. They are used to evaluate thirteen system scale water supply alternatives in four future scenarios regarding forty-four objectives, covering technical, social, environmental, and economic aspects. The alternatives encompass both conventional and unconventional solutions and differ regarding technical, spatial and organizational characteristics. This paper focuses on the impact assessment and final evaluation step of the structured MCDA decision support process. We analyze the performance of the alternatives for ten stakeholders. We demonstrate the implications of model assumptions by comparing two IA and three MAVT evaluation model layouts of different complexity. For this comparison, we focus on the validity (ranking stability), desirability (value), and distinguishability (value range) of the alternatives given the five model layouts. These layouts exclude or include stakeholder preferences and uncertainties. Even though all five led us to identify the same best alternatives, they did not produce identical rankings. We found that the MAVT-type models provide higher distinguishability and a more robust basis for discussion than the IA-type models. The needed complexity of the model, however, should be determined based on the intended use of the model within the decision support process. The best-performing alternatives had consistently strong performance for all stakeholders and future scenarios, whereas the current water supply system was outperformed in all evaluation layouts. The best-performing alternatives comprise proactive pipe rehabilitation, adapted firefighting provisions, and decentralized water storage and/or treatment. We present recommendations for possible ways of improving water supply planning in the case study and beyond. PMID:28481881

  12. Selecting Essential Information for Biosurveillance—A Multi-Criteria Decision Analysis

    PubMed Central

    Generous, Nicholas; Margevicius, Kristen J.; Taylor-McCabe, Kirsten J.; Brown, Mac; Daniel, W. Brent; Castro, Lauren; Hengartner, Andrea; Deshpande, Alina

    2014-01-01

    The National Strategy for Biosurveillancedefines biosurveillance as “the process of gathering, integrating, interpreting, and communicating essential information related to all-hazards threats or disease activity affecting human, animal, or plant health to achieve early detection and warning, contribute to overall situational awareness of the health aspects of an incident, and to enable better decision-making at all levels.” However, the strategy does not specify how “essential information” is to be identified and integrated into the current biosurveillance enterprise, or what the metrics qualify information as being “essential”. Thequestion of data stream identification and selection requires a structured methodology that can systematically evaluate the tradeoffs between the many criteria that need to be taken in account. Multi-Attribute Utility Theory, a type of multi-criteria decision analysis, can provide a well-defined, structured approach that can offer solutions to this problem. While the use of Multi-Attribute Utility Theoryas a practical method to apply formal scientific decision theoretical approaches to complex, multi-criteria problems has been demonstrated in a variety of fields, this method has never been applied to decision support in biosurveillance.We have developed a formalized decision support analytic framework that can facilitate identification of “essential information” for use in biosurveillance systems or processes and we offer this framework to the global BSV community as a tool for optimizing the BSV enterprise. To demonstrate utility, we applied the framework to the problem of evaluating data streams for use in an integrated global infectious disease surveillance system. PMID:24489748

  13. Evaluation of infectious diseases and clinical microbiology specialists' preferences for hand hygiene: analysis using the multi-attribute utility theory and the analytic hierarchy process methods.

    PubMed

    Suner, Aslı; Oruc, Ozlem Ege; Buke, Cagri; Ozkaya, Hacer Deniz; Kitapcioglu, Gul

    2017-08-31

    Hand hygiene is one of the most effective attempts to control nosocomial infections, and it is an important measure to avoid the transmission of pathogens. However, the compliance of healthcare workers (HCWs) with hand washing is still poor worldwide. Herein, we aimed to determine the best hand hygiene preference of the infectious diseases and clinical microbiology (IDCM) specialists to prevent transmission of microorganisms from one patient to another. Expert opinions regarding the criteria that influence the best hand hygiene preference were collected through a questionnaire via face-to-face interviews. Afterwards, these opinions were examined with two widely used multi-criteria decision analysis (MCDA) methods, the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP). A total of 15 IDCM specialist opinions were collected from diverse private and public hospitals located in İzmir, Turkey. The mean age of the participants was 49.73 ± 8.46, and the mean experience year of the participants in their fields was 17.67 ± 11.98. The findings that we obtained through two distinct decision making methods, the MAUT and the AHP, suggest that alcohol-based antiseptic solution (ABAS) has the highest utility (0.86) and priority (0.69) among the experts' choices. In conclusion, the MAUT and the AHP, decision models developed here indicate that rubbing the hands with ABAS is the most favorable choice for IDCM specialists to prevent nosocomial infection.

  14. Multi-Attribute Tradespace Exploration in Space System Design

    NASA Astrophysics Data System (ADS)

    Ross, A. M.; Hastings, D. E.

    2002-01-01

    The complexity inherent in space systems necessarily requires intense expenditures of resources both human and monetary. The high level of ambiguity present in the early design phases of these systems causes long, highly iterative, and costly design cycles. This paper looks at incorporating decision theory methods into the early design processes to streamline communication of wants and needs among stakeholders and between levels of design. Communication channeled through formal utility interviews and analysis enables engineers to better understand the key drivers for the system and allows a more thorough exploration of the design tradespace. Multi-Attribute Tradespace Exploration (MATE), an evolving process incorporating decision theory into model and simulation- based design, has been applied to several space system case studies at MIT. Preliminary results indicate that this process can improve the quality of communication to more quickly resolve project ambiguity, and enable the engineer to discover better value designs for multiple stakeholders. MATE is also being integrated into a concurrent design environment to facilitate the transfer knowledge of important drivers into higher fidelity design phases. Formal utility theory provides a mechanism to bridge the language barrier between experts of different backgrounds and differing needs (e.g. scientists, engineers, managers, etc). MATE with concurrent design couples decision makers more closely to the design, and most importantly, maintains their presence between formal reviews.

  15. Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling.

    PubMed

    Arenas-Castro, Salvador; Gonçalves, João; Alves, Paulo; Alcaraz-Segura, Domingo; Honrado, João P

    2018-01-01

    Global environmental changes are rapidly affecting species' distributions and habitat suitability worldwide, requiring a continuous update of biodiversity status to support effective decisions on conservation policy and management. In this regard, satellite-derived Ecosystem Functional Attributes (EFAs) offer a more integrative and quicker evaluation of ecosystem responses to environmental drivers and changes than climate and structural or compositional landscape attributes. Thus, EFAs may hold advantages as predictors in Species Distribution Models (SDMs) and for implementing multi-scale species monitoring programs. Here we describe a modelling framework to assess the predictive ability of EFAs as Essential Biodiversity Variables (EBVs) against traditional datasets (climate, land-cover) at several scales. We test the framework with a multi-scale assessment of habitat suitability for two plant species of conservation concern, both protected under the EU Habitats Directive, differing in terms of life history, range and distribution pattern (Iris boissieri and Taxus baccata). We fitted four sets of SDMs for the two test species, calibrated with: interpolated climate variables; landscape variables; EFAs; and a combination of climate and landscape variables. EFA-based models performed very well at the several scales (AUCmedian from 0.881±0.072 to 0.983±0.125), and similarly to traditional climate-based models, individually or in combination with land-cover predictors (AUCmedian from 0.882±0.059 to 0.995±0.083). Moreover, EFA-based models identified additional suitable areas and provided valuable information on functional features of habitat suitability for both test species (narrowly vs. widely distributed), for both coarse and fine scales. Our results suggest a relatively small scale-dependence of the predictive ability of satellite-derived EFAs, supporting their use as meaningful EBVs in SDMs from regional and broader scales to more local and finer scales. Since the evaluation of species' conservation status and habitat quality should as far as possible be performed based on scalable indicators linking to meaningful processes, our framework may guide conservation managers in decision-making related to biodiversity monitoring and reporting schemes.

  16. Comparison of two multi-criteria decision techniques for eliciting treatment preferences in people with neurological disorders.

    PubMed

    Ijzerman, Maarten J; van Til, Janine A; Snoek, Govert J

    2008-12-01

    To present and compare two multi-criteria decision techniques (analytic hierarchy process [AHP] and conjoint analysis [CA]) for eliciting preferences in patients with cervical spinal cord injury (SCI) who are eligible for surgical augmentation of hand function, either with or without implantation of a neuroprosthesis. The methods were compared in respect to attribute weights, overall preference, and practical experiences. Two previously designed and administered multi-criteria decision surveys in patients with SCI were compared and further analysed. Attributes and their weights in the AHP experiment were determined by an expert panel, followed by determination of the weights in the patient group. Attributes for the CA were selected and validated using an expert panel, piloted in six patients with SCI and subsequently administered to the same group of patients as participated in the AHP experiment. Both experiments showed the importance of non-outcome-related factors such as inpatient stay and number of surgical procedures. In particular, patients were less concerned with clinical outcomes in actual decision making. Overall preference in both the AHP and CA was in favor of tendon reconstruction (0.6 vs 0.4 for neuroprosthetic implantation). Both methods were easy to apply, but AHP was less easily explained and understood. Both the AHP and CA methods produced similar outcomes, which may have been caused by the obvious preferences of patients. CA may be preferred because of the holistic approach of considering all treatment attributes simultaneously and, hence, its power in simulating real market decisions. On the other hand, the AHP method is preferred as a hands-on, easy-to-implement task with immediate feedback to the respondent. This flexibility allows AHP to be used in shared decision making. However, the way the technique is composed results in many inconsistencies. Patients preferred CA but complained about the number of choice tasks.

  17. Multiple attribute decision making model and application to food safety risk evaluation.

    PubMed

    Ma, Lihua; Chen, Hong; Yan, Huizhe; Yang, Lifeng; Wu, Lifeng

    2017-01-01

    Decision making for supermarket food purchase decisions are characterized by network relationships. This paper analyzed factors that influence supermarket food selection and proposes a supplier evaluation index system based on the whole process of food production. The author established the intuitive interval value fuzzy set evaluation model based on characteristics of the network relationship among decision makers, and validated for a multiple attribute decision making case study. Thus, the proposed model provides a reliable, accurate method for multiple attribute decision making.

  18. Modelling innovation performance of European regions using multi-output neural networks

    PubMed Central

    Henriques, Roberto

    2017-01-01

    Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes. PMID:28968449

  19. Modelling innovation performance of European regions using multi-output neural networks.

    PubMed

    Hajek, Petr; Henriques, Roberto

    2017-01-01

    Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes.

  20. Decision Making In Assignment Problem With Multiple Attributes Under Intuitionistic Fuzzy Environment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sathi; Basu, Kajla

    2010-10-01

    In this paper we develop a methodology to solve the multiple attribute assignment problems where the attributes are considered to be Intuitionistic Fuzzy Sets (IFS). We apply the concept of similarity measures of IFS to solve the Intuitionistic Fuzzy Multi-Attribute Assignment Problem (IFMAAP). The weights of the attributes are determined from expert opinion. An illustrative example is solved to verify the developed approach and to demonstrate its practicality.

  1. Single-process versus multiple-strategy models of decision making: evidence from an information intrusion paradigm.

    PubMed

    Söllner, Anke; Bröder, Arndt; Glöckner, Andreas; Betsch, Tilmann

    2014-02-01

    When decision makers are confronted with different problems and situations, do they use a uniform mechanism as assumed by single-process models (SPMs) or do they choose adaptively from a set of available decision strategies as multiple-strategy models (MSMs) imply? Both frameworks of decision making have gathered a lot of support, but only rarely have they been contrasted with each other. Employing an information intrusion paradigm for multi-attribute decisions from givens, SPM and MSM predictions on information search, decision outcomes, attention, and confidence judgments were derived and tested against each other in two experiments. The results consistently support the SPM view: Participants seemingly using a "take-the-best" (TTB) strategy do not ignore TTB-irrelevant information as MSMs would predict, but adapt the amount of information searched, choose alternative choice options, and show varying confidence judgments contingent on the quality of the "irrelevant" information. The uniformity of these findings underlines the adequacy of the novel information intrusion paradigm and comprehensively promotes the notion of a uniform decision making mechanism as assumed by single-process models. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Multiple-attribute group decision making with different formats of preference information on attributes.

    PubMed

    Xu, Zeshui

    2007-12-01

    Interval utility values, interval fuzzy preference relations, and interval multiplicative preference relations are three common uncertain-preference formats used by decision-makers to provide their preference information in the process of decision making under fuzziness. This paper is devoted in investigating multiple-attribute group-decision-making problems where the attribute values are not precisely known but the value ranges can be obtained, and the decision-makers provide their preference information over attributes by three different uncertain-preference formats i.e., 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first utilize some functions to normalize the uncertain decision matrix and then transform it into an expected decision matrix. We establish a goal-programming model to integrate the expected decision matrix and all three different uncertain-preference formats from which the attribute weights and the overall attribute values of alternatives can be obtained. Then, we use the derived overall attribute values to get the ranking of the given alternatives and to select the best one(s). The model not only can reflect both the subjective considerations of all decision-makers and the objective information but also can avoid losing and distorting the given objective and subjective decision information in the process of information integration. Furthermore, we establish some models to solve the multiple-attribute group-decision-making problems with three different preference formats: 1) utility values; 2) fuzzy preference relations; and 3) multiplicative preference relations. Finally, we illustrate the applicability and effectiveness of the developed models with two practical examples.

  3. Texas Urban Triangle : pilot study to implement a spatial decision support system (SDSS) for sustainable mobility.

    DOT National Transportation Integrated Search

    2011-03-01

    This project addressed sustainable transportation in the Texas Urban Triangle (TUT) by conducting a pilot : project at the county scale. The project tested and developed the multi-attribute Spatial Decision Support : System (SDSS) developed in 2009 u...

  4. Application of Grey Relational Analysis to Decision-Making during Product Development

    ERIC Educational Resources Information Center

    Hsiao, Shih-Wen; Lin, Hsin-Hung; Ko, Ya-Chuan

    2017-01-01

    A multi-attribute decision-making (MADM) approach was proposed in this study as a prediction method that differs from the conventional production and design methods for a product. When a client has different dimensional requirements, this approach can quickly provide a company with design decisions for each product. The production factors of a…

  5. Application of the fuzzy topsis multi-attribute decision making method to determine scholarship recipients

    NASA Astrophysics Data System (ADS)

    Irvanizam, I.

    2018-03-01

    Some scholarships have been routinely offered by Ministry of Research, Technology and Higher Education of the Republic of Indonesia for students at Syiah Kuala University. In reality, the scholarship selection process is becoming subjective and highly complex problem. Multi-Attribute Decision Making (MADM) techniques can be a solution in order to solve scholarship selection problem. In this study, we demonstrated the application of a fuzzy TOPSIS as an MADM technique by using a numerical example in order to calculate a triangular fuzzy number for the fuzzy data onto a normalized weight. We then use this normalized value to construct the normalized fuzzy decision matrix. We finally use the fuzzy TOPSIS to rank alternatives in descending order based on the relative closeness to the ideal solution. The result in terms of final ranking shows slightly different from the previous work.

  6. Impact of Decision Criteria on Federal Aviation Administration Certification of Military Commercial Derivative Aircraft

    DTIC Science & Technology

    2012-03-01

    Capt Low was a member of the Sigma Iota Epsilon professional management fraternity. He has performed as an on-equipment and off-equipment...FAA Certification, Military Commercial Derivative Aircraft, Multi-Attribute Decision Making 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  7. A statistic-thermodynamic model for the DOM degradation in the estuary

    NASA Astrophysics Data System (ADS)

    Zheng, Quanan; Chen, Qin; Zhao, Haihong; Shi, Jiuxin; Cao, Yong; Wang, Dan

    2008-03-01

    This study aims to clarify the role of dissolved salts playing in the degradation process of terrestrial dissolved organic matter (DOM) at a scale of molecular movement. The molecular thermal movement is perpetual motion. In a multi-molecular system, this random motion also causes collision between the molecules. Seawater is a multi-molecular system consisting from water, salt, and terrestrial DOM molecules. This study attributes the DOM degradation in the estuary to the inelastic collision of DOM molecule with charged salt ions. From statistic-thermodynamic theories of molecular collision, the DOM degradation model and the DOM distribution model are derived. The models are validated by the field observations and satellite data. Thus, we conclude that the inelastic collision between the terrestrial DOM molecules and dissolved salt ions in seawater is a decisive dynamic mechanism for rapid loss of terrestrial DOM.

  8. Deciding how to decide: ventromedial frontal lobe damage affects information acquisition in multi-attribute decision making.

    PubMed

    Fellows, Lesley K

    2006-04-01

    Ventromedial frontal lobe (VMF) damage is associated with impaired decision making. Recent efforts to understand the functions of this brain region have focused on its role in tracking reward, punishment and risk. However, decision making is complex, and frontal lobe damage might be expected to affect it at other levels. This study used process-tracing techniques to explore the effect of VMF damage on multi-attribute decision making under certainty. Thirteen subjects with focal VMF damage were compared with 11 subjects with frontal damage that spared the VMF and 21 demographically matched healthy control subjects. Participants chose rental apartments in a standard information board task drawn from the literature on normal decision making. VMF subjects performed the decision making task in a way that differed markedly from all other groups, favouring an 'alternative-based' information acquisition strategy (i.e. they organized their information search around individual apartments). In contrast, both healthy control subjects and subjects with damage predominantly involving dorsal and/or lateral prefrontal cortex pursued primarily 'attribute-based' search strategies (in which information was acquired about categories such as rent and noise level across several apartments). This difference in the pattern of information acquisition argues for systematic differences in the underlying decision heuristics and strategies employed by subjects with VMF damage, which in turn may affect the quality of their choices. These findings suggest that the processes supported by ventral and medial prefrontal cortex need to be conceptualized more broadly, to account for changes in decision making under conditions of certainty, as well as uncertainty, following damage to these areas.

  9. Informing vaccine decision-making: A strategic multi-attribute ranking tool for vaccines-SMART Vaccines 2.0.

    PubMed

    Knobler, Stacey; Bok, Karin; Gellin, Bruce

    2017-01-20

    SMART Vaccines 2.0 software is being developed to support decision-making among multiple stakeholders in the process of prioritizing investments to optimize the outcomes of vaccine development and deployment. Vaccines and associated vaccination programs are one of the most successful and effective public health interventions to prevent communicable diseases and vaccine researchers are continually working towards expanding targets for communicable and non-communicable diseases through preventive and therapeutic modes. A growing body of evidence on emerging vaccine technologies, trends in disease burden, costs associated with vaccine development and deployment, and benefits derived from disease prevention through vaccination and a range of other factors can inform decision-making and investment in new and improved vaccines and targeted utilization of already existing vaccines. Recognizing that an array of inputs influences these decisions, the strategic multi-attribute ranking method for vaccines (SMART Vaccines 2.0) is in development as a web-based tool-modified from a U.S. Institute of Medicine Committee effort (IOM, 2015)-to highlight data needs and create transparency to facilitate dialogue and information-sharing among decision-makers and to optimize the investment of resources leading to improved health outcomes. Current development efforts of the SMART Vaccines 2.0 framework seek to generate a weighted recommendation on vaccine development or vaccination priorities based on population, disease, economic, and vaccine-specific data in combination with individual preference and weights of user-selected attributes incorporating valuations of health, economics, demographics, public concern, scientific and business, programmatic, and political considerations. Further development of the design and utility of the tool is being carried out by the National Vaccine Program Office of the Department of Health and Human Services and the Fogarty International Center of the National Institutes of Health. We aim to demonstrate the utility of SMART Vaccines 2.0 through the engagement of a community of relevant stakeholders and to identify a limited number of pilot projects to determine explicitly defined attribute preferences and the related data and model requirements that are responsive to user needs and able to improve the use of evidence for vaccine-related decision-making and consequential priorities of vaccination options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Perceptual grouping does not affect multi-attribute decision making if no processing costs are involved.

    PubMed

    Ettlin, Florence; Bröder, Arndt

    2015-05-01

    Adaptive strategy selection implies that a decision strategy is chosen based on its fit to the task and situation. However, other aspects, such as the way information is presented, can determine information search behavior; especially when the application of certain strategies over others is facilitated. But are such display effects on multi-attribute decisions also at work when the manipulation does not entail differential costs for different decision strategies? Three Mouselab experiments with hidden information and one eye tracking experiment with an open information board revealed that decision behavior is unaffected by purely perceptual manipulations of the display based on Gestalt principles; that is, based on manipulations that induce no noteworthy processing costs for different information search patterns. We discuss our results in the context of previous findings on display effects; specifically, how the combination of these findings and our results reveal the crucial role of differential processing costs for different strategies for the emergence of display effects. This finding describes a boundary condition of the commonly acknowledged influence of information displays and is in line with the ideas of adaptive strategy selection and cost-benefit tradeoffs. Copyright © 2015. Published by Elsevier B.V.

  11. Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model.

    PubMed

    Wichary, Szymon; Smolen, Tomasz

    2016-01-01

    In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals.

  12. Bayesian outcome-based strategy classification.

    PubMed

    Lee, Michael D

    2016-03-01

    Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014) recently developed a method for making inferences about the decision processes people use in multi-attribute forced choice tasks. Their paper makes a number of worthwhile theoretical and methodological contributions. Theoretically, they provide an insightful psychological motivation for a probabilistic extension of the widely-used "weighted additive" (WADD) model, and show how this model, as well as other important models like "take-the-best" (TTB), can and should be expressed in terms of meaningful priors. Methodologically, they develop an inference approach based on the Minimum Description Length (MDL) principles that balances both the goodness-of-fit and complexity of the decision models they consider. This paper aims to preserve these useful contributions, but provide a complementary Bayesian approach with some theoretical and methodological advantages. We develop a simple graphical model, implemented in JAGS, that allows for fully Bayesian inferences about which models people use to make decisions. To demonstrate the Bayesian approach, we apply it to the models and data considered by Hilbig and Moshagen (Psychonomic Bulletin & Review, 21, 1431-1443, 2014), showing how a prior predictive analysis of the models, and posterior inferences about which models people use and the parameter settings at which they use them, can contribute to our understanding of human decision making.

  13. Time Sharing Between Robotics and Process Control: Validating a Model of Attention Switching.

    PubMed

    Wickens, Christopher Dow; Gutzwiller, Robert S; Vieane, Alex; Clegg, Benjamin A; Sebok, Angelia; Janes, Jess

    2016-03-01

    The aim of this study was to validate the strategic task overload management (STOM) model that predicts task switching when concurrence is impossible. The STOM model predicts that in overload, tasks will be switched to, to the extent that they are attractive on task attributes of high priority, interest, and salience and low difficulty. But more-difficult tasks are less likely to be switched away from once they are being performed. In Experiment 1, participants performed four tasks of the Multi-Attribute Task Battery and provided task-switching data to inform the role of difficulty and priority. In Experiment 2, participants concurrently performed an environmental control task and a robotic arm simulation. Workload was varied by automation of arm movement and both the phases of environmental control and existence of decision support for fault management. Attention to the two tasks was measured using a head tracker. Experiment 1 revealed the lack of influence of task priority and confirmed the differing roles of task difficulty. In Experiment 2, the percentage attention allocation across the eight conditions was predicted by the STOM model when participants rated the four attributes. Model predictions were compared against empirical data and accounted for over 95% of variance in task allocation. More-difficult tasks were performed longer than easier tasks. Task priority does not influence allocation. The multiattribute decision model provided a good fit to the data. The STOM model is useful for predicting cognitive tunneling given that human-in-the-loop simulation is time-consuming and expensive. © 2016, Human Factors and Ergonomics Society.

  14. Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: a case study using ordered weighted average.

    PubMed

    Gorsevski, Pece V; Donevska, Katerina R; Mitrovski, Cvetko D; Frizado, Joseph P

    2012-02-01

    This paper presents a GIS-based multi-criteria decision analysis approach for evaluating the suitability for landfill site selection in the Polog Region, Macedonia. The multi-criteria decision framework considers environmental and economic factors which are standardized by fuzzy membership functions and combined by integration of analytical hierarchy process (AHP) and ordered weighted average (OWA) techniques. The AHP is used for the elicitation of attribute weights while the OWA operator function is used to generate a wide range of decision alternatives for addressing uncertainty associated with interaction between multiple criteria. The usefulness of the approach is illustrated by different OWA scenarios that report landfill suitability on a scale between 0 and 1. The OWA scenarios are intended to quantify the level of risk taking (i.e., optimistic, pessimistic, and neutral) and to facilitate a better understanding of patterns that emerge from decision alternatives involved in the decision making process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Strategic Technology Investment Analysis: An Integrated System Approach

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Weisbin, C. R.

    2010-01-01

    Complex technology investment decisions within NASA are increasingly difficult to make such that the end results are satisfying the technical objectives and all the organizational constraints. Due to a restricted science budget environment and numerous required technology developments, the investment decisions need to take into account not only the functional impact on the program goals, but also development uncertainties and cost variations along with maintaining a healthy workforce. This paper describes an approach for optimizing and qualifying technology investment portfolios from the perspective of an integrated system model. The methodology encompasses multi-attribute decision theory elements and sensitivity analysis. The evaluation of the degree of robustness of the recommended portfolio provides the decision-maker with an array of viable selection alternatives, which take into account input uncertainties and possibly satisfy nontechnical constraints. The methodology is presented in the context of assessing capability development portfolios for NASA technology programs.

  16. Decision Making Methods in Space Economics and Systems Engineering

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2006-01-01

    This viewgraph presentation reviews various methods of decision making and the impact that they have on space economics and systems engineering. Some of the methods discussed are: Present Value and Internal Rate of Return (IRR); Cost-Benefit Analysis; Real Options; Cost-Effectiveness Analysis; Cost-Utility Analysis; Multi-Attribute Utility Theory (MAUT); and Analytic Hierarchy Process (AHP).

  17. Postoptimality analysis in the selection of technology portfolios

    NASA Technical Reports Server (NTRS)

    Adumitroaie, Virgil; Shelton, Kacie; Elfes, Alberto; Weisbin, Charles R.

    2006-01-01

    This paper describes an approach for qualifying optimal technology portfolios obtained with a multi-attribute decision support system. The goal is twofold: to gauge the degree of confidence in the optimal solution and to provide the decision-maker with an array of viable selection alternatives, which take into account input uncertainties and possibly satisfy non-technical constraints.

  18. Qualitatively Coherent Representation Makes Decision-Making Easier with Binary-Colored Multi-Attribute Tables: An Eye-Tracking Study

    PubMed Central

    Morii, Masahiro; Ideno, Takashi; Takemura, Kazuhisa; Okada, Mitsuhiro

    2017-01-01

    We aimed to identify the ways in which coloring cells affected decision-making in the context of binary-colored multi-attribute tables, using eye movement data. In our black-white attribute tables, the value of attributes was limited to two (with a certain threshold for each attribute) and each cell of the table was colored either black or white on the white background. We compared the two natural ways of systematic color assignment: “quantitatively coherent” ways and “qualitatively coherent” ways (namely, the ways in which the black-white distinction represented the quantitative amount distinction, and the ways in which the black-white distinction represented the quality distinction). The former consists of the following two types: (Type 1) “larger is black,” where the larger value-level was represented by black, and “smaller is white,” and (Type 2) “smaller is black.” The latter consisted of the following two types: (Type 3) “better is black,” and (Type 4) “worse is black.” We obtained the following two findings. [Result 1] The qualitatively coherent black-white tables (Types 3 and 4) made decision-making easier than the quantitatively coherent ones (Types 1 and 2). [Result 2] Among the two qualitatively coherent types, the “black is better” tables (Type 3) made decision making easier; in fact, the participants focused on the more important (black) cells in the case of “black is better” tables (Type 3) while they did not focus enough on the more important (white) ones in the case of the “white is better” tables (Type 4). We also examined some measures of eye movement patterns and showed that these measures supported our hypotheses. The data showed differences in the eye movement patterns between the first and second halves of each trial, which indicated the phased or combined decision strategies taken by the participants. PMID:28861020

  19. Implementing interactive decision support: A case for combining cyberinfrastructure, data fusion, and social process to mobilize scientific knowledge in sustainability problems

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2014-12-01

    Geosciences are becoming increasingly data intensive, particularly in relation to sustainability problems, which are multi-dimensional, weakly structured and characterized by high levels of uncertainty. In the case of complex resource management problems, the challenge is to extract meaningful information from data and make sense of it. Simultaneously, scientific knowledge alone is insufficient to change practice. Creating tools, and group decision support processes for end users to interact with data are key challenges to transforming science-based information into actionable knowledge. The ENCOMPASS project began as a multi-year case study in the Atacama Desert of Chile to design and implement a knowledge transfer model for energy-water-mining conflicts in the region. ENCOMPASS combines the use of cyberinfrastructure (CI), automated data collection, interactive interfaces for dynamic decision support, and participatory modelling to support social learning. A pilot version of the ENCOMPASS CI uses open source systems and serves as a structure to integrate and store multiple forms of data and knowledge, such as DEM, meteorological, water quality, geomicrobiological, energy demand, and groundwater models. In the case study, informatics and data fusion needs related to scientific uncertainty around deep groundwater flowpaths and energy-water connections. Users may upload data from field sites with handheld devices or desktops. Once uploaded, data assets are accessible for a variety of uses. To address multi-attributed decision problems in the Atacama region a standalone application with touch-enabled interfaces was created to improve real-time interactions with datasets by groups. The tool was used to merge datasets from the ENCOMPASS CI to support exploration among alternatives and build shared understanding among stakeholders. To date, the project has increased technical capacity among stakeholders, resulted in the creation of both for-profit and non-profit entities, enabled cross-sector collaboration with mining-indigenous stakeholders, and produced an interactive application for group decision support. ENCOMPASS leverages advances in computational tools to deliver data and models for group decision support applied to sustainability science problems.

  20. The eyes have it: Using eye tracking to inform information processing strategies in multi-attributes choices.

    PubMed

    Ryan, Mandy; Krucien, Nicolas; Hermens, Frouke

    2018-04-01

    Although choice experiments (CEs) are widely applied in economics to study choice behaviour, understanding of how individuals process attribute information remains limited. We show how eye-tracking methods can provide insight into how decisions are made. Participants completed a CE, while their eye movements were recorded. Results show that although the information presented guided participants' decisions, there were also several processing biases at work. Evidence was found of (a) top-to-bottom, (b) left-to-right, and (c) first-to-last order biases. Experimental factors-whether attributes are defined as "best" or "worst," choice task complexity, and attribute ordering-also influence information processing. How individuals visually process attribute information was shown to be related to their choices. Implications for the design and analysis of CEs and future research are discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Application fuzzy multi-attribute decision analysis method to prioritize project success criteria

    NASA Astrophysics Data System (ADS)

    Phong, Nguyen Thanh; Quyen, Nguyen Le Hoang Thuy To

    2017-11-01

    Project success is a foundation for project owner to manage and control not only for the current project but also for future potential projects in construction companies. However, identifying the key success criteria for evaluating a particular project in real practice is a challenging task. Normally, it depends on a lot of factors, such as the expectation of the project owner and stakeholders, triple constraints of the project (cost, time, quality), and company's mission, vision, and objectives. Traditional decision-making methods for measuring the project success are usually based on subjective opinions of panel experts, resulting in irrational and inappropriate decisions. Therefore, this paper introduces a multi-attribute decision analysis method (MADAM) for weighting project success criteria by using fuzzy Analytical Hierarchy Process approach. It is found that this method is useful when dealing with imprecise and uncertain human judgments in evaluating project success criteria. Moreover, this research also suggests that although cost, time, and quality are three project success criteria projects, the satisfaction of project owner and acceptance of project stakeholders with the completed project criteria is the most important criteria for project success evaluation in Vietnam.

  2. Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model

    PubMed Central

    Wichary, Szymon; Smolen, Tomasz

    2016-01-01

    In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals. PMID:27877103

  3. A Moral (Normative) Framework for the Judgment of Actions and Decisions in the Construction Industry and Engineering: Part II.

    PubMed

    Alkhatib, Omar J

    2017-12-01

    The construction industry is typically characterized as a fragmented, multi-organizational setting in which members from different technical backgrounds and moral values join together to develop a particular business or project. The most challenging obstacle in the construction process is to achieve a successful practice and to identify and apply an ethical framework to manage the behavior of involved specialists and contractors and to ensure the quality of all completed construction activities. The framework should reflect a common moral ground for myriad people involved in this process to survive and compete ethically in today's turbulent construction market. This study establishes a framework for moral judgment of behavior and actions conducted in the construction process. The moral framework provides the basis of judging actions as "moral" or "immoral" based on three levels of moral accountability: personal, professional, and social. The social aspect of the proposed framework is developed primarily from the essential attributes of normative business decision-making models identified in the literature review and subsequently incorporates additional attributes related to professional and personal moral values. The normative decision-making models reviewed are based primarily on social attributes as related to moral theories (e.g., utilitarianism, duty, rights, virtue, etc.). The professional and moral attributes are established by identifying a set of common moral values recognized by professionals in the construction industry and required to prevent common construction breaches. The moral framework presented here is the complementary part of the ethical framework developed in Part I of this article and is based primarily on the personal behavior or the moral aspect of professional responsibility. The framework can be implemented as a form of preventive personal ethics, which would help avoid ethical dilemmas and moral implications in the first place. Furthermore, the moral framework can be considered as a decision-making model to guide actions and improve the moral reasoning process, which would help individuals think through possible implications and the consequences of ethical and moral issues in the construction industry.

  4. Processing Technology Selection for Municipal Sewage Treatment Based on a Multi-Objective Decision Model under Uncertainty.

    PubMed

    Chen, Xudong; Xu, Zhongwen; Yao, Liming; Ma, Ning

    2018-03-05

    This study considers the two factors of environmental protection and economic benefits to address municipal sewage treatment. Based on considerations regarding the sewage treatment plant construction site, processing technology, capital investment, operation costs, water pollutant emissions, water quality and other indicators, we establish a general multi-objective decision model for optimizing municipal sewage treatment plant construction. Using the construction of a sewage treatment plant in a suburb of Chengdu as an example, this paper tests the general model of multi-objective decision-making for the sewage treatment plant construction by implementing a genetic algorithm. The results show the applicability and effectiveness of the multi-objective decision model for the sewage treatment plant. This paper provides decision and technical support for the optimization of municipal sewage treatment.

  5. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter

    NASA Astrophysics Data System (ADS)

    Gorsevski, Pece V.; Jankowski, Piotr

    2010-08-01

    The Kalman recursive algorithm has been very widely used for integrating navigation sensor data to achieve optimal system performances. This paper explores the use of the Kalman filter to extend the aggregation of spatial multi-criteria evaluation (MCE) and to find optimal solutions with respect to a decision strategy space where a possible decision rule falls. The approach was tested in a case study in the Clearwater National Forest in central Idaho, using existing landslide datasets from roaded and roadless areas and terrain attributes. In this approach, fuzzy membership functions were used to standardize terrain attributes and develop criteria, while the aggregation of the criteria was achieved by the use of a Kalman filter. The approach presented here offers advantages over the classical MCE theory because the final solution includes both the aggregated solution and the areas of uncertainty expressed in terms of standard deviation. A comparison of this methodology with similar approaches suggested that this approach is promising for predicting landslide susceptibility and further application as a spatial decision support system.

  6. Interpersonal reactivity and the attribution of emotional reactions.

    PubMed

    Haas, Brian W; Anderson, Ian W; Filkowski, Megan M

    2015-06-01

    The ability to identify the cause of another person's emotional reaction is an important component associated with improved success of social relationships and survival. Although many studies have investigated the mechanisms involved in emotion recognition, very little is currently known regarding the processes involved during emotion attribution decisions. Research on complementary "emotion understanding" mechanisms, including empathy and theory of mind, has demonstrated that emotion understanding decisions are often made through relatively emotion- or cognitive-based processing streams. The current study was designed to investigate the behavioral and brain mechanisms involved in emotion attribution decisions. We predicted that dual processes, emotional and cognitive, are engaged during emotion attribution decisions. Sixteen healthy adults completed the Interpersonal Reactivity Index to characterize individual differences in tendency to make emotion- versus cognitive-based interpersonal decisions. Participants then underwent functional MRI while making emotion attribution decisions. We found neuroimaging evidence that emotion attribution decisions engage a similar brain network as other forms of emotion understanding. Further, we found evidence in support of a dual processes model involved during emotion attribution decisions. Higher scores of personal distress were associated with quicker emotion attribution decisions and increased anterior insula activity. Conversely, higher scores in perspective taking were associated with delayed emotion attribution decisions and increased prefrontal cortex and premotor activity. These findings indicate that the making of emotion attribution decisions relies on dissociable emotional and cognitive processing streams within the brain. (c) 2015 APA, all rights reserved).

  7. A Multi-layer Dynamic Model for Coordination Based Group Decision Making in Water Resource Allocation and Scheduling

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Xingnan; Li, Chenming; Wang, Jianying

    Management of group decision-making is an important issue in water source management development. In order to overcome the defects in lacking of effective communication and cooperation in the existing decision-making models, this paper proposes a multi-layer dynamic model for coordination in water resource allocation and scheduling based group decision making. By introducing the scheme-recognized cooperative satisfaction index and scheme-adjusted rationality index, the proposed model can solve the problem of poor convergence of multi-round decision-making process in water resource allocation and scheduling. Furthermore, the problem about coordination of limited resources-based group decision-making process can be solved based on the effectiveness of distance-based group of conflict resolution. The simulation results show that the proposed model has better convergence than the existing models.

  8. A Stochastic Multi-Attribute Assessment of Energy Options for Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Read, L.; Madani, K.; Mokhtari, S.; Hanks, C. L.; Sheets, B.

    2012-12-01

    Many competing projects have been proposed to address Interior Alaska's high cost of energy—both for electricity production and for heating. Public and private stakeholders are considering the costs associated with these competing projects which vary in fuel source, subsidy requirements, proximity, and other factors. As a result, the current projects under consideration involve a complex cost structure of potential subsidies and reliance on present and future market prices, introducing a significant amount of uncertainty associated with each selection. Multi-criteria multi-decision making (MCMDM) problems of this nature can benefit from game theory and systems engineering methods, which account for behavior and preferences of stakeholders in the analysis to produce feasible and relevant solutions. This work uses a stochastic MCMDM framework to evaluate the trade-offs of each proposed project based on a complete cost analysis, environmental impact, and long-term sustainability. Uncertainty in the model is quantified via a Monte Carlo analysis, which helps characterize the sensitivity and risk associated with each project. Based on performance measures and criteria outlined by the stakeholders, a decision matrix will inform policy on selecting a project that is both efficient and preferred by the constituents.

  9. Urban photogrammetric data base for multi-purpose cadastral-based information systems: the Riyadh city case

    NASA Astrophysics Data System (ADS)

    Al-garni, Abdullah M.

    Urban information systems are economic resources that can benefit decision makers in the planning, development, and management of urban projects and resources. In this research, a conceptual model-based prototype Urban Geographic Information System (UGIS) is developed. The base maps used in developing the system and acquiring visual attributes are obtained from aerial photographs. The system is a multi-purpose parcel-based one that can serve many urban applications such as public utilities, health centres, schools, population estimation, road engineering and maintenance, and many others. A modern region in the capital city of Saudi Arabia is used for the study. The developed model is operational for one urban application (population estimation) and is tested for that particular application. The results showed that the system has a satisfactory accuracy and that it may well be promising for other similar urban applications in countries with similar demographic and social characteristics.

  10. Single-step affinity purification of enzyme biotherapeutics: a platform methodology for accelerated process development.

    PubMed

    Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean

    2014-01-01

    Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers.

  11. A queueing model of pilot decision making in a multi-task flight management situation

    NASA Technical Reports Server (NTRS)

    Walden, R. S.; Rouse, W. B.

    1977-01-01

    Allocation of decision making responsibility between pilot and computer is considered and a flight management task, designed for the study of pilot-computer interaction, is discussed. A queueing theory model of pilot decision making in this multi-task, control and monitoring situation is presented. An experimental investigation of pilot decision making and the resulting model parameters are discussed.

  12. Decision-making Strategies and Performance among Seniors1

    PubMed Central

    Besedeš, Tibor; Deck, Cary; Sarangi, Sudipta; Shor, Mikhael

    2011-01-01

    Using paper and pencil experiments administered in senior centers, we examine decision-making performance in multi-attribute decision problems. We differentiate the effects of declining cognitive performance and changing cognitive process on decision-making performance of seniors as they age. We find a significant decline in performance with age due to reduced reliance on common heuristics and increased decision-making randomness among our oldest subjects. However, we find that increasing the number of options in a decision problem increases the number of heuristics brought to the task. This challenges the choice overload view that people give up when confronted with too much choice. PMID:22408282

  13. Screening and Evaluation Tool (SET) Users Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pincock, Layne

    This document is the users guide to using the Screening and Evaluation Tool (SET). SET is a tool for comparing multiple fuel cycle options against a common set of criteria and metrics. It does this using standard multi-attribute utility decision analysis methods.

  14. A case for multi-model and multi-approach based event attribution: The 2015 European drought

    NASA Astrophysics Data System (ADS)

    Hauser, Mathias; Gudmundsson, Lukas; Orth, René; Jézéquel, Aglaé; Haustein, Karsten; Seneviratne, Sonia Isabelle

    2017-04-01

    Science on the role of anthropogenic influence on extreme weather events such as heat waves or droughts has evolved rapidly over the past years. The approach of "event attribution" compares the occurrence probability of an event in the present, factual world with the probability of the same event in a hypothetical, counterfactual world without human-induced climate change. Every such analysis necessarily faces multiple methodological choices including, but not limited to: the event definition, climate model configuration, and the design of the counterfactual world. Here, we explore the role of such choices for an attribution analysis of the 2015 European summer drought (Hauser et al., in preparation). While some GCMs suggest that anthropogenic forcing made the 2015 drought more likely, others suggest no impact, or even a decrease in the event probability. These results additionally differ for single GCMs, depending on the reference used for the counterfactual world. Observational results do not suggest a historical tendency towards more drying, but the record may be too short to provide robust assessments because of the large interannual variability of drought occurrence. These results highlight the need for a multi-model and multi-approach framework in event attribution research. This is especially important for events with low signal to noise ratio and high model dependency such as regional droughts. Hauser, M., L. Gudmundsson, R. Orth, A. Jézéquel, K. Haustein, S.I. Seneviratne, in preparation. A case for multi-model and multi-approach based event attribution: The 2015 European drought.

  15. Enriching the national map database for multi-scale use: Introducing the visibilityfilter attribution

    USGS Publications Warehouse

    Stauffer, Andrew J.; Webinger, Seth; Roche, Brittany

    2016-01-01

    The US Geological Survey’s (USGS) National Geospatial Technical Operations Center is prototyping and evaluating the ability to filter data through a range of scales using 1:24,000-scale The National Map (TNM) datasets as the source. A “VisibilityFilter” attribute is under evaluation that can be added to all TNM vector data themes and will permit filtering of data to eight target scales between 1:24,000 and 1:5,000,000, thus defining each feature’s smallest applicable scale-of-use. For a prototype implementation, map specifications for 1:100,000- and 1:250,000-scale USGS Topographic Map Series are being utilized to define feature content appropriate at fixed mapping scales to guide generalization decisions that are documented in a ScaleMaster diagram. This paper defines the VisibilityFilter attribute, the generalization decisions made for each TNM data theme, and how these decisions are embedded into the data to support efficient data filtering.

  16. Towards the ecotourism: a decision support model for the assessment of sustainability of mountain huts in the Alps.

    PubMed

    Stubelj Ars, Mojca; Bohanec, Marko

    2010-12-01

    This paper studies mountain hut infrastructure in the Alps as an important element of ecotourism in the Alpine region. To improve the decision-making process regarding the implementation of future infrastructure and improvement of existing infrastructure in the vulnerable natural environment of mountain ecosystems, a new decision support model has been developed. The methodology is based on qualitative multi-attribute modelling supported by the DEXi software. The integrated rule-based model is hierarchical and consists of two submodels that cover the infrastructure of the mountain huts and that of the huts' surroundings. The final goal for the designed tool is to help minimize the ecological footprint of tourists in environmentally sensitive and undeveloped mountain areas and contribute to mountain ecotourism. The model has been tested in the case study of four mountain huts in Triglav National Park in Slovenia. Study findings provide a new empirical approach to evaluating existing mountain infrastructure and predicting improvements for the future. The assessment results are of particular interest for decision makers in protected areas, such as Alpine national parks managers and administrators. In a way, this model proposes an approach to the management assessment of mountain huts with the main aim of increasing the quality of life of mountain environment visitors as well as the satisfaction of tourists who may eventually become ecotourists. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. A Multi Criteria Group Decision-Making Model for Teacher Evaluation in Higher Education Based on Cloud Model and Decision Tree

    ERIC Educational Resources Information Center

    Chang, Ting-Cheng; Wang, Hui

    2016-01-01

    This paper proposes a cloud multi-criteria group decision-making model for teacher evaluation in higher education which is involving subjectivity, imprecision and fuzziness. First, selecting the appropriate evaluation index depending on the evaluation objectives, indicating a clear structural relationship between the evaluation index and…

  18. Economics of human performance and systems total ownership cost.

    PubMed

    Onkham, Wilawan; Karwowski, Waldemar; Ahram, Tareq Z

    2012-01-01

    Financial costs of investing in people is associated with training, acquisition, recruiting, and resolving human errors have a significant impact on increased total ownership costs. These costs can also affect the exaggerate budgets and delayed schedules. The study of human performance economical assessment in the system acquisition process enhances the visibility of hidden cost drivers which support program management informed decisions. This paper presents the literature review of human total ownership cost (HTOC) and cost impacts on overall system performance. Economic value assessment models such as cost benefit analysis, risk-cost tradeoff analysis, expected value of utility function analysis (EV), growth readiness matrix, multi-attribute utility technique, and multi-regressions model were introduced to reflect the HTOC and human performance-technology tradeoffs in terms of the dollar value. The human total ownership regression model introduces to address the influencing human performance cost component measurement. Results from this study will increase understanding of relevant cost drivers in the system acquisition process over the long term.

  19. 'spup' - an R package for uncertainty propagation in spatial environmental modelling

    NASA Astrophysics Data System (ADS)

    Sawicka, Kasia; Heuvelink, Gerard

    2016-04-01

    Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Currently, advances in uncertainty propagation and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability, including case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the 'spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques, as well as several uncertainty visualization functions. Uncertain environmental variables are represented in the package as objects whose attribute values may be uncertain and described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is also accommodated for. For uncertainty propagation the package has implemented the MC approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design includes facilitation of parallel computing to speed up MC computation. The MC realizations may be used as an input to the environmental models called from R, or externally. Selected static and interactive visualization methods that are understandable by non-experts with limited background in statistics can be used to summarize and visualize uncertainty about the measured input, model parameters and output of the uncertainty propagation. We demonstrate that the 'spup' package is an effective and easy tool to apply and can be used in multi-disciplinary research and model-based decision support.

  20. 'spup' - an R package for uncertainty propagation analysis in spatial environmental modelling

    NASA Astrophysics Data System (ADS)

    Sawicka, Kasia; Heuvelink, Gerard

    2017-04-01

    Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Currently, advances in uncertainty propagation and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability and being able to deal with case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the 'spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques, as well as several uncertainty visualization functions. Uncertain environmental variables are represented in the package as objects whose attribute values may be uncertain and described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is also accommodated for. For uncertainty propagation the package has implemented the MC approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design includes facilitation of parallel computing to speed up MC computation. The MC realizations may be used as an input to the environmental models called from R, or externally. Selected visualization methods that are understandable by non-experts with limited background in statistics can be used to summarize and visualize uncertainty about the measured input, model parameters and output of the uncertainty propagation. We demonstrate that the 'spup' package is an effective and easy tool to apply and can be used in multi-disciplinary research and model-based decision support.

  1. A Response-Time Approach to Comparing Generalized Rational and Take-the-Best Models of Decision Making

    ERIC Educational Resources Information Center

    Bergert, F. Bryan; Nosofsky, Robert M.

    2007-01-01

    The authors develop and test generalized versions of take-the-best (TTB) and rational (RAT) models of multiattribute paired-comparison inference. The generalized models make allowances for subjective attribute weighting, probabilistic orders of attribute inspection, and noisy decision making. A key new test involves a response-time (RT)…

  2. Prioritization of highway maintenance functions using multi-attribute decision making with fuzzy pairwise comparison.

    DOT National Transportation Integrated Search

    2011-09-01

    "As is the case for most of the Departments of Transportation in the U.S., the Texas Department of : Transportation has been experiencing fluctuations of budget for maintaining and preserving its highway : infrastructure over the recent years. If the...

  3. Evaluate the use of tanning agent in leather industry using material flow analysis, life cycle assessment and fuzzy multi-attribute decision making (FMADM)

    NASA Astrophysics Data System (ADS)

    Alfarisi, Salman; Sutono, Sugoro Bhakti; Sutopo, Wahyudi

    2017-11-01

    Tanning industry is one of the companies that produce many pollutants and cause the negative impact on the environment. In the production process of tanning leather, the use of input material need to be evaluated. The problem of waste, not only have a negative impact on the environment, but also human health. In this study, the impact of mimosa as vegetable tanning agent evaluated. This study will provide alternative solutions for improvements to the use of vegetable tanning agent. The alternative solution is change mimosa with indusol, gambier, and dulcotan. This study evaluate the vegetable tanning of some aspects using material flow analysis and life cycle assessment approach. Life cycle assessment (LCA) is used to evaluate the environmental impact of vegetable tanning agent. Alternative solution selection using fuzzy multi-attribute decision making (FMADM) approach. Results obtained by considering the environment, human toxicity, climate change, and marine aquatic ecotoxicity, is to use dulcotan.

  4. A Multi-Attribute-Utility-Theory Model that Minimizes Interview-Data Requirements: A Consolidation of Space Launch Decisions.

    DTIC Science & Technology

    1994-12-01

    satel~ lites on th" .gruunu" U, .U,- orbit affects the priority given to a new launch. Table 3.9 Launch Priorities Level Level Title Description 0.00 No...value of a satellite’s mission(s) relative to the misston(s) of other sate• lites As such the rating given may reflect an endre class of satellites for...Expected Remaining Lifetime 0 Years Assign a number between 0 and I that best describes the utility of a sate; lite ’,th Vh,,V- ,ta .=.... ,. A at these

  5. Based on a multi-agent system for multi-scale simulation and application of household's LUCC: a case study for Mengcha village, Mizhi county, Shaanxi province.

    PubMed

    Chen, Hai; Liang, Xiaoying; Li, Rui

    2013-01-01

    Multi-Agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. Through the simulation based on the MAS, this paper tries to show the application of MAS in the micro scale LUCC, and reveal the transformation mechanism of difference scale. This paper starts with a description of the context of MAS research. Then, it adopts the Nested Spatial Choice (NSC) method to construct the multi-scale LUCC decision-making model. And a case study for Mengcha village, Mizhi County, Shaanxi Province is reported. Finally, the potentials and drawbacks of the following approach is discussed and concluded. From our design and implementation of the MAS in multi-scale model, a number of observations and conclusions can be drawn on the implementation and future research directions. (1) The use of the LUCC decision-making and multi-scale transformation framework provides, according to us, a more realistic modeling of multi-scale decision making process. (2) By using continuous function, rather than discrete function, to construct the decision-making of the households is more realistic to reflect the effect. (3) In this paper, attempts have been made to give a quantitative analysis to research the household interaction. And it provides the premise and foundation for researching the communication and learning among the households. (4) The scale transformation architecture constructed in this paper helps to accumulate theory and experience for the interaction research between the micro land use decision-making and the macro land use landscape pattern. Our future research work will focus on: (1) how to rational use risk aversion principle, and put the rule on rotation between household parcels into model. (2) Exploring the methods aiming at researching the household decision-making over a long period, it allows us to find the bridge between the long-term LUCC data and the short-term household decision-making. (3) Researching the quantitative method and model, especially the scenario analysis model which may reflect the interaction among different household types.

  6. Propulsion Airframe Aeroacoustics Technology Evaluation and Selection Using a Multi-Attribute Decision Making Process and Non-Deterministic Design

    NASA Technical Reports Server (NTRS)

    Burg, Cecile M.; Hill, Geoffrey A.; Brown, Sherilyn A.; Geiselhart, Karl A.

    2004-01-01

    The Systems Analysis Branch at NASA Langley Research Center has investigated revolutionary Propulsion Airframe Aeroacoustics (PAA) technologies and configurations for a Blended-Wing-Body (BWB) type aircraft as part of its research for NASA s Quiet Aircraft Technology (QAT) Project. Within the context of the long-term NASA goal of reducing the perceived aircraft noise level by a factor of 4 relative to 1997 state of the art, major configuration changes in the propulsion airframe integration system were explored with noise as a primary design consideration. An initial down-select and assessment of candidate PAA technologies for the BWB was performed using a Multi-Attribute Decision Making (MADM) process consisting of organized brainstorming and decision-making tools. The assessments focused on what effect the PAA technologies had on both the overall noise level of the BWB and what effect they had on other major design considerations such as weight, performance and cost. A probabilistic systems analysis of the PAA configurations that presented the best noise reductions with the least negative impact on the system was then performed. Detailed results from the MADM study and the probabilistic systems analysis will be published in the near future.

  7. Protein attributes contribute to halo-stability, bioinformatics approach

    PubMed Central

    2011-01-01

    Halophile proteins can tolerate high salt concentrations. Understanding halophilicity features is the first step toward engineering halostable crops. To this end, we examined protein features contributing to the halo-toleration of halophilic organisms. We compared more than 850 features for halophilic and non-halophilic proteins with various screening, clustering, decision tree, and generalized rule induction models to search for patterns that code for halo-toleration. Up to 251 protein attributes selected by various attribute weighting algorithms as important features contribute to halo-stability; from them 14 attributes selected by 90% of models and the count of hydrogen gained the highest value (1.0) in 70% of attribute weighting models, showing the importance of this attribute in feature selection modeling. The other attributes mostly were the frequencies of di-peptides. No changes were found in the numbers of groups when K-Means and TwoStep clustering modeling were performed on datasets with or without feature selection filtering. Although the depths of induced trees were not high, the accuracies of trees were higher than 94% and the frequency of hydrophobic residues pointed as the most important feature to build trees. The performance evaluation of decision tree models had the same values and the best correctness percentage recorded with the Exhaustive CHAID and CHAID models. We did not find any significant difference in the percent of correctness, performance evaluation, and mean correctness of various decision tree models with or without feature selection. For the first time, we analyzed the performance of different screening, clustering, and decision tree algorithms for discriminating halophilic and non-halophilic proteins and the results showed that amino acid composition can be used to discriminate between halo-tolerant and halo-sensitive proteins. PMID:21592393

  8. Four Common Simplifications of Multi-Criteria Decision Analysis do not hold for River Rehabilitation

    PubMed Central

    2016-01-01

    River rehabilitation aims at alleviating negative effects of human impacts such as loss of biodiversity and reduction of ecosystem services. Such interventions entail difficult trade-offs between different ecological and often socio-economic objectives. Multi-Criteria Decision Analysis (MCDA) is a very suitable approach that helps assessing the current ecological state and prioritizing river rehabilitation measures in a standardized way, based on stakeholder or expert preferences. Applications of MCDA in river rehabilitation projects are often simplified, i.e. using a limited number of objectives and indicators, assuming linear value functions, aggregating individual indicator assessments additively, and/or assuming risk neutrality of experts. Here, we demonstrate an implementation of MCDA expert preference assessments to river rehabilitation and provide ample material for other applications. To test whether the above simplifications reflect common expert opinion, we carried out very detailed interviews with five river ecologists and a hydraulic engineer. We defined essential objectives and measurable quality indicators (attributes), elicited the experts´ preferences for objectives on a standardized scale (value functions) and their risk attitude, and identified suitable aggregation methods. The experts recommended an extensive objectives hierarchy including between 54 and 93 essential objectives and between 37 to 61 essential attributes. For 81% of these, they defined non-linear value functions and in 76% recommended multiplicative aggregation. The experts were risk averse or risk prone (but never risk neutral), depending on the current ecological state of the river, and the experts´ personal importance of objectives. We conclude that the four commonly applied simplifications clearly do not reflect the opinion of river rehabilitation experts. The optimal level of model complexity, however, remains highly case-study specific depending on data and resource availability, the context, and the complexity of the decision problem. PMID:26954353

  9. Multi-criteria decision analysis in environmental sciences: ten years of applications and trends.

    PubMed

    Huang, Ivy B; Keisler, Jeffrey; Linkov, Igor

    2011-09-01

    Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Multi-criteria decision analysis (MCDA) emerged as a formal methodology to face available technical information and stakeholder values to support decisions in many fields and can be especially valuable in environmental decision making. This study reviews environmental applications of MCDA. Over 300 papers published between 2000 and 2009 reporting MCDA applications in the environmental field were identified through a series of queries in the Web of Science database. The papers were classified by their environmental application area, decision or intervention type. In addition, the papers were also classified by the MCDA methods used in the analysis (analytic hierarchy process, multi-attribute utility theory, and outranking). The results suggest that there is a significant growth in environmental applications of MCDA over the last decade across all environmental application areas. Multiple MCDA tools have been successfully used for environmental applications. Even though the use of the specific methods and tools varies in different application areas and geographic regions, our review of a few papers where several methods were used in parallel with the same problem indicates that recommended course of action does not vary significantly with the method applied. Published by Elsevier B.V.

  10. Collaborative human-machine analysis to disambiguate entities in unstructured text and structured datasets

    NASA Astrophysics Data System (ADS)

    Davenport, Jack H.

    2016-05-01

    Intelligence analysts demand rapid information fusion capabilities to develop and maintain accurate situational awareness and understanding of dynamic enemy threats in asymmetric military operations. The ability to extract relationships between people, groups, and locations from a variety of text datasets is critical to proactive decision making. The derived network of entities must be automatically created and presented to analysts to assist in decision making. DECISIVE ANALYTICS Corporation (DAC) provides capabilities to automatically extract entities, relationships between entities, semantic concepts about entities, and network models of entities from text and multi-source datasets. DAC's Natural Language Processing (NLP) Entity Analytics model entities as complex systems of attributes and interrelationships which are extracted from unstructured text via NLP algorithms. The extracted entities are automatically disambiguated via machine learning algorithms, and resolution recommendations are presented to the analyst for validation; the analyst's expertise is leveraged in this hybrid human/computer collaborative model. Military capability is enhanced by these NLP Entity Analytics because analysts can now create/update an entity profile with intelligence automatically extracted from unstructured text, thereby fusing entity knowledge from structured and unstructured data sources. Operational and sustainment costs are reduced since analysts do not have to manually tag and resolve entities.

  11. Decision technology.

    PubMed

    Edwards, W; Fasolo, B

    2001-01-01

    This review is about decision technology-the rules and tools that help us make wiser decisions. First, we review the three rules that are at the heart of most traditional decision technology-multi-attribute utility, Bayes' theorem, and subjective expected utility maximization. Since the inception of decision research, these rules have prescribed how we should infer values and probabilities and how we should combine them to make better decisions. We suggest how to make best use of all three rules in a comprehensive 19-step model. The remainder of the review explores recently developed tools of decision technology. It examines the characteristics and problems of decision-facilitating sites on the World Wide Web. Such sites now provide anyone who can use a personal computer with access to very sophisticated decision-aiding tools structured mainly to facilitate consumer decision making. It seems likely that the Web will be the mode by means of which decision tools will be distributed to lay users. But methods for doing such apparently simple things as winnowing 3000 options down to a more reasonable number, like 10, contain traps for unwary decision technologists. The review briefly examines Bayes nets and influence diagrams-judgment and decision-making tools that are available as computer programs. It very briefly summarizes the state of the art of eliciting probabilities from experts. It concludes that decision tools will be as important in the 21st century as spreadsheets were in the 20th.

  12. The Valuation of Scientific and Technical Experiments

    NASA Technical Reports Server (NTRS)

    Williams, F. E.

    1972-01-01

    Rational selection of scientific and technical experiments for space missions is studied. Particular emphasis is placed on the assessment of value or worth of an experiment. A specification procedure is outlined and discussed for the case of one decision maker. Experiments are viewed as multi-attributed entities, and a relevant set of attributes is proposed. Alternative methods of describing levels of the attributes are proposed and discussed. The reasonableness of certain simplifying assumptions such as preferential and utility independence is explored, and it is tentatively concluded that preferential independence applies and utility independence appears to be appropriate.

  13. Multi-objective decision-making model based on CBM for an aircraft fleet

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Lin, Lin

    2018-04-01

    Modern production management patterns, in which multi-unit (e.g., a fleet of aircrafts) are managed in a holistic manner, have brought new challenges for multi-unit maintenance decision making. To schedule a good maintenance plan, not only does the individual machine maintenance have to be considered, but also the maintenance of the other individuals have to be taken into account. Since most condition-based maintenance researches for aircraft focused on solely reducing maintenance cost or maximizing the availability of single aircraft, as well as considering that seldom researches concentrated on both the two objectives: minimizing cost and maximizing the availability of a fleet (total number of available aircraft in fleet), a multi-objective decision-making model based on condition-based maintenance concentrated both on the above two objectives is established. Furthermore, in consideration of the decision maker may prefer providing the final optimal result in the form of discrete intervals instead of a set of points (non-dominated solutions) in real decision-making problem, a novel multi-objective optimization method based on support vector regression is proposed to solve the above multi-objective decision-making model. Finally, a case study regarding a fleet is conducted, with the results proving that the approach efficiently generates outcomes that meet the schedule requirements.

  14. Decision-Aiding and Optimization for Vertical Navigation of Long-Haul Aircraft

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.; Sheridan, Thomas B.

    1996-01-01

    Most decisions made in the cockpit are related to safety, and have therefore been proceduralized in order to reduce risk. There are very few which are made on the basis of a value metric such as economic cost. One which can be shown to be value based, however, is the selection of a flight profile. Fuel consumption and flight time both have a substantial effect on aircraft operating cost, but they cannot be minimized simultaneously. In addition, winds, turbulence, and performance x,ary widely with altitude and time. These factors make it important and difficult for pilots to (a) evaluate the outcomes associated with a particular trajectory before it is flown and (b) decide among possible trajectories. The two elements of this problem considered here are (1) determining, what constitutes optimality, and (2) finding optimal trajectories. Pilots and dispatchers from major U.S. airlines were surveyed to determine which attributes of the outcome of a flight they considered the most important. Avoiding turbulence-for passenger comfort topped the list of items which were not safety related. Pilots' decision making about the selection of flight profile on the basis of flight time, fuel burn, and exposure to turbulence was then observed. Of the several behavioral and prescriptive decision models invoked to explain the pilots' choices, utility maximization is shown to best reproduce the pilots' decisions. After considering more traditional methods for optimizing trajectories, a novel method is developed using a genetic algorithm (GA) operating on a discrete representation of the trajectory search space. The representation is a sequence of command altitudes, and was chosen to be compatible with the constraints imposed by Air Traffic Control, and with the training given to pilots. Since trajectory evaluation for the GA is performed holistically, a wide class of objective functions can be optimized easily. Also, using the GA it is possible to compare the costs associated with different airspace design and air traffic management policies. A decision aid is proposed which would combine the pilot's notion of optimility with the GA-based optimization, provide the pilot with a number of alternative pareto-optimal trajectories, and allow him to consider un-modelled attributes and constraints in choosing among them. A solution to the problem of displaying alternatives in a multi-attribute decision space is also presented.

  15. Assessment of Trading Partners for China's Rare Earth Exports Using a Decision Analytic Approach

    PubMed Central

    He, Chunyan; Lei, Yalin; Ge, Jianping

    2014-01-01

    Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies. PMID:25051534

  16. Assessment of trading partners for China's rare earth exports using a decision analytic approach.

    PubMed

    He, Chunyan; Lei, Yalin; Ge, Jianping

    2014-01-01

    Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies.

  17. Integrated Risk-Informed Decision-Making for an ALMR PRISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhlheim, Michael David; Belles, Randy; Denning, Richard S.

    Decision-making is the process of identifying decision alternatives, assessing those alternatives based on predefined metrics, selecting an alternative (i.e., making a decision), and then implementing that alternative. The generation of decisions requires a structured, coherent process, or a decision-making process. The overall objective for this work is that the generalized framework is adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or no human intervention. The overriding goal of automation is to replace ormore » supplement human decision makers with reconfigurable decision-making modules that can perform a given set of tasks rationally, consistently, and reliably. Risk-informed decision-making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The probabilistic portion of the decision-making engine of the supervisory control system is based on the control actions associated with an ALMR PRISM. Newly incorporated into the probabilistic models are the prognostic/diagnostic models developed by Pacific Northwest National Laboratory. These allow decisions to incorporate the health of components into the decision–making process. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic portion of the decision-making engine uses thermal-hydraulic modeling and components for an advanced liquid-metal reactor Power Reactor Inherently Safe Module. The deterministic multi-attribute decision-making framework uses various sensor data (e.g., reactor outlet temperature, steam generator drum level) and calculates its position within the challenge state, its trajectory, and its margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. The metrics that are evaluated are based on reactor trip set points. The integration of the deterministic calculations using multi-physics analyses and probabilistic safety calculations allows for the examination and quantification of margin recovery strategies. This also provides validation of the control options identified from the probabilistic assessment. Thus, the thermalhydraulics analyses are used to validate the control options identified from the probabilistic assessment. Future work includes evaluating other possible metrics and computational efficiencies, and developing a user interface to mimic display panels at a modern nuclear power plant.« less

  18. Allometric constraints to inversion of canopy structure from remote sensing

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Berry, J. A.; Asner, G. P.

    2008-12-01

    Canopy radiative transfer models employ a large number of vegetation architectural and leaf biochemical attributes. Studies of leaf biochemistry show a wide array of chemical and spectral diversity that suggests that several leaf biochemical constituents can be independently retrieved from multi-spectral remotely sensed imagery. In contrast, attempts to exploit multi-angle imagery to retrieve canopy structure only succeed in finding two or three of the many unknown canopy arhitectural attributes. We examine a database of over 5000 destructive tree harvests from Eurasia to show that allometry - the covariation of plant form across a broad range of plant size and canopy density - restricts the architectural diversity of plant canopies into a single composite variable ranging from young canopies with many short trees with small crowns to older canopies with fewer trees and larger crowns. Moreover, these architectural attributes are closely linked to biomass via allometric constraints such as the "self-thinning law". We use the measured variance and covariance of plant canopy architecture in these stands to drive the radiative transfer model DISORD, which employs the Li-Strahler geometric optics model. This correlations introduced in the Monte Carlo study are used to determine which attributes of canopy architecture lead to important variation that can be observed by multi-angle or multi-spectral satellite observations, using the sun-view geometry characteristic of MODIS observations in different biomes located at different latitude bands. We conclude that although multi-angle/multi-spectral remote sensing is only sensitive to some of the many unknown canopy attributes that ecologists would wish to know, the strong allometric covariation between these attributes and others permits a large number of inferrences, such as forest biomass, that will be meaningful next-generation vegetation products useful for data assimilation.

  19. Building a maintenance policy through a multi-criterion decision-making model

    NASA Astrophysics Data System (ADS)

    Faghihinia, Elahe; Mollaverdi, Naser

    2012-08-01

    A major competitive advantage of production and service systems is establishing a proper maintenance policy. Therefore, maintenance managers should make maintenance decisions that best fit their systems. Multi-criterion decision-making methods can take into account a number of aspects associated with the competitiveness factors of a system. This paper presents a multi-criterion decision-aided maintenance model with three criteria that have more influence on decision making: reliability, maintenance cost, and maintenance downtime. The Bayesian approach has been applied to confront maintenance failure data shortage. Therefore, the model seeks to make the best compromise between these three criteria and establish replacement intervals using Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE II), integrating the Bayesian approach with regard to the preference of the decision maker to the problem. Finally, using a numerical application, the model has been illustrated, and for a visual realization and an illustrative sensitivity analysis, PROMETHEE GAIA (the visual interactive module) has been used. Use of PROMETHEE II and PROMETHEE GAIA has been made with Decision Lab software. A sensitivity analysis has been made to verify the robustness of certain parameters of the model.

  20. Efficiently Multi-User Searchable Encryption Scheme with Attribute Revocation and Grant for Cloud Storage

    PubMed Central

    Wang, Shangping; Zhang, Xiaoxue; Zhang, Yaling

    2016-01-01

    Cipher-policy attribute-based encryption (CP-ABE) focus on the problem of access control, and keyword-based searchable encryption scheme focus on the problem of finding the files that the user interested in the cloud storage quickly. To design a searchable and attribute-based encryption scheme is a new challenge. In this paper, we propose an efficiently multi-user searchable attribute-based encryption scheme with attribute revocation and grant for cloud storage. In the new scheme the attribute revocation and grant processes of users are delegated to proxy server. Our scheme supports multi attribute are revoked and granted simultaneously. Moreover, the keyword searchable function is achieved in our proposed scheme. The security of our proposed scheme is reduced to the bilinear Diffie-Hellman (BDH) assumption. Furthermore, the scheme is proven to be secure under the security model of indistinguishability against selective ciphertext-policy and chosen plaintext attack (IND-sCP-CPA). And our scheme is also of semantic security under indistinguishability against chosen keyword attack (IND-CKA) in the random oracle model. PMID:27898703

  1. Efficiently Multi-User Searchable Encryption Scheme with Attribute Revocation and Grant for Cloud Storage.

    PubMed

    Wang, Shangping; Zhang, Xiaoxue; Zhang, Yaling

    2016-01-01

    Cipher-policy attribute-based encryption (CP-ABE) focus on the problem of access control, and keyword-based searchable encryption scheme focus on the problem of finding the files that the user interested in the cloud storage quickly. To design a searchable and attribute-based encryption scheme is a new challenge. In this paper, we propose an efficiently multi-user searchable attribute-based encryption scheme with attribute revocation and grant for cloud storage. In the new scheme the attribute revocation and grant processes of users are delegated to proxy server. Our scheme supports multi attribute are revoked and granted simultaneously. Moreover, the keyword searchable function is achieved in our proposed scheme. The security of our proposed scheme is reduced to the bilinear Diffie-Hellman (BDH) assumption. Furthermore, the scheme is proven to be secure under the security model of indistinguishability against selective ciphertext-policy and chosen plaintext attack (IND-sCP-CPA). And our scheme is also of semantic security under indistinguishability against chosen keyword attack (IND-CKA) in the random oracle model.

  2. An attentional drift diffusion model over binary-attribute choice.

    PubMed

    Fisher, Geoffrey

    2017-11-01

    In order to make good decisions, individuals need to identify and properly integrate information about various attributes associated with a choice. Since choices are often complex and made rapidly, they are typically affected by contextual variables that are thought to influence how much attention is paid to different attributes. I propose a modification of the attentional drift-diffusion model, the binary-attribute attentional drift diffusion model (baDDM), which describes the choice process over simple binary-attribute choices and how it is affected by fluctuations in visual attention. Using an eye-tracking experiment, I find the baDDM makes accurate quantitative predictions about several key variables including choices, reaction times, and how these variables are correlated with attention to two attributes in an accept-reject decision. Furthermore, I estimate an attribute-based fixation bias that suggests attention to an attribute increases its subjective weight by 5%, while the unattended attribute's weight is decreased by 10%. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Modeling of geoelectric parameters for assessing groundwater potentiality in a multifaceted geologic terrain, Ipinsa Southwest, Nigeria - A GIS-based GODT approach

    NASA Astrophysics Data System (ADS)

    Mogaji, Kehinde Anthony; Omobude, Osayande Bright

    2017-12-01

    Modeling of groundwater potentiality zones is a vital scheme for effective management of groundwater resources. This study developed a new multi-criteria decision making algorithm for groundwater potentiality modeling through modifying the standard GOD model. The developed model christened as GODT model was applied to assess groundwater potential in a multi-faceted crystalline geologic terrain, southwestern, Nigeria using the derived four unify groundwater potential conditioning factors namely: Groundwater hydraulic confinement (G), aquifer Overlying strata resistivity (O), Depth to water table (D) and Thickness of aquifer (T) from the interpreted geophysical data acquired in the area. With the developed model algorithm, the GIS-based produced G, O, D and T maps were synthesized to estimate groundwater potential index (GWPI) values for the area. The estimated GWPI values were processed in GIS environment to produce groundwater potential prediction index (GPPI) map which demarcate the area into four potential zones. The produced GODT model-based GPPI map was validated through application of both correlation technique and spatial attribute comparative scheme (SACS). The performance of the GODT model was compared with that of the standard analytic hierarchy process (AHP) model. The correlation technique results established 89% regression coefficients for the GODT modeling algorithm compared with 84% for the AHP model. On the other hand, the SACS validation results for the GODT and AHP models are 72.5% and 65%, respectively. The overall results indicate that both models have good capability for predicting groundwater potential zones with the GIS-based GODT model as a good alternative. The GPPI maps produced in this study can form part of decision making model for environmental planning and groundwater management in the area.

  4. How to use multi-criteria decision analysis methods for reimbursement decision-making in healthcare: a step-by-step guide.

    PubMed

    Diaby, Vakaramoko; Goeree, Ron

    2014-02-01

    In recent years, the quest for more comprehensiveness, structure and transparency in reimbursement decision-making in healthcare has prompted the research into alternative decision-making frameworks. In this environment, multi-criteria decision analysis (MCDA) is arising as a valuable tool to support healthcare decision-making. In this paper, we present the main MCDA decision support methods (elementary methods, value-based measurement models, goal programming models and outranking models) using a case study approach. For each family of methods, an example of how an MCDA model would operate in a real decision-making context is presented from a critical perspective, highlighting the parameters setting, the selection of the appropriate evaluation model as well as the role of sensitivity and robustness analyses. This study aims to provide a step-by-step guide on how to use MCDA methods for reimbursement decision-making in healthcare.

  5. Measurements of Rationality: Individual Differences in Information Processing, the Transitivity of Preferences and Decision Strategies

    PubMed Central

    Sleboda, Patrycja; Sokolowska, Joanna

    2017-01-01

    The first goal of this study was to validate the Rational-Experiential Inventory (REI) and the Cognitive Reflection Test (CRT) through checking their relation to the transitivity axiom. The second goal was to test the relation between decision strategies and cognitive style as well as the relation between decision strategies and the transitivity of preferences. The following characteristics of strategies were investigated: requirements for trade-offs, maximization vs. satisficing and option-wise vs. attribute-wise information processing. Respondents were given choices between two multi-attribute options. The options were designed so that the choice indicated which strategy was applied. Both the REI-R and the CRT were found to be good predictors of the transitivity of preferences. Respondents who applied compensatory strategies and the maximization criterion scored highly on the REI-R and in the CRT, whereas those who applied the satisficing rule scored highly on the REI-R but not in the CRT. Attribute-wise information processing was related to low scores in both measurements. Option-wise information processing led to a high transitivity of preferences. PMID:29093695

  6. Measurements of Rationality: Individual Differences in Information Processing, the Transitivity of Preferences and Decision Strategies.

    PubMed

    Sleboda, Patrycja; Sokolowska, Joanna

    2017-01-01

    The first goal of this study was to validate the Rational-Experiential Inventory ( REI ) and the Cognitive Reflection Test ( CRT ) through checking their relation to the transitivity axiom. The second goal was to test the relation between decision strategies and cognitive style as well as the relation between decision strategies and the transitivity of preferences. The following characteristics of strategies were investigated: requirements for trade-offs, maximization vs. satisficing and option-wise vs. attribute-wise information processing. Respondents were given choices between two multi-attribute options. The options were designed so that the choice indicated which strategy was applied. Both the REI-R and the CRT were found to be good predictors of the transitivity of preferences. Respondents who applied compensatory strategies and the maximization criterion scored highly on the REI-R and in the CRT , whereas those who applied the satisficing rule scored highly on the REI-R but not in the CRT . Attribute-wise information processing was related to low scores in both measurements. Option-wise information processing led to a high transitivity of preferences.

  7. Neural Signatures of Controlled and Automatic Retrieval Processes in Memory-based Decision-making.

    PubMed

    Khader, Patrick H; Pachur, Thorsten; Weber, Lilian A E; Jost, Kerstin

    2016-01-01

    Decision-making often requires retrieval from memory. Drawing on the neural ACT-R theory [Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A. A central circuit of the mind. Trends in Cognitive Sciences, 12, 136-143, 2008] and other neural models of memory, we delineated the neural signatures of two fundamental retrieval aspects during decision-making: automatic and controlled activation of memory representations. To disentangle these processes, we combined a paradigm developed to examine neural correlates of selective and sequential memory retrieval in decision-making with a manipulation of associative fan (i.e., the decision options were associated with one, two, or three attributes). The results show that both the automatic activation of all attributes associated with a decision option and the controlled sequential retrieval of specific attributes can be traced in material-specific brain areas. Moreover, the two facets of memory retrieval were associated with distinct activation patterns within the frontoparietal network: The dorsolateral prefrontal cortex was found to reflect increasing retrieval effort during both automatic and controlled activation of attributes. In contrast, the superior parietal cortex only responded to controlled retrieval, arguably reflecting the sequential updating of attribute information in working memory. This dissociation in activation pattern is consistent with ACT-R and constitutes an important step toward a neural model of the retrieval dynamics involved in memory-based decision-making.

  8. Publically accessible decision support system of the spatially referenced regressions on watershed attributes (SPARROW) model and model enhancements in South Carolina

    Treesearch

    Celeste Journey; Anne B. Hoos; David E. Ladd; John W. brakebill; Richard A. Smith

    2016-01-01

    The U.S. Geological Survey (USGS) National Water Quality Assessment program has developed a web-based decision support system (DSS) to provide free public access to the steady-stateSPAtially Referenced Regressions On Watershed attributes (SPARROW) model simulation results on nutrient conditions in streams and rivers and to offer scenario testing capabilities for...

  9. Multi-disciplinary decision making in general practice.

    PubMed

    Kirby, Ann; Murphy, Aileen; Bradley, Colin

    2018-04-09

    Purpose Internationally, healthcare systems are moving towards delivering care in an integrated manner which advocates a multi-disciplinary approach to decision making. Such an approach is formally encouraged in the management of Atrial Fibrillation patients through the European Society of Cardiology guidelines. Since the emergence of new oral anticoagulants switching between oral anticoagulants (OACs) has become prevalent. This case study considers the role of multi-disciplinary decision making, given the complex nature of the agents. The purpose of this paper is to explore Irish General Practitioners' (GPs) experience of switching between all OACs for Arial Fibrillation (AF) patients; prevalence of multi-disciplinary decision making in OAC switching decisions and seeks to determine the GP characteristics that appear to influence the likelihood of multi-disciplinary decision making. Design/methodology/approach A probit model is used to determine the factors influencing multi-disciplinary decision making and a multinomial logit is used to examine the factors influencing who is involved in the multi-disciplinary decisions. Findings Results reveal that while some multi-disciplinary decision-making is occurring (64 per cent), it is not standard practice despite international guidelines on integrated care. Moreover, there is a lack of patient participation in the decision-making process. Female GPs and GPs who have initiated prescriptions for OACs are more likely to engage in multi-disciplinary decision-making surrounding switching OACs amongst AF patients. GPs with training practices were less likely to engage with cardiac consultants and those in urban areas were more likely to engage with other (non-cardiac) consultants. Originality/value For optimal decision making under uncertainty multi-disciplinary decision-making is needed to make a more informed judgement and to improve treatment decisions and reduce the opportunity cost of making the wrong decision.

  10. A non-linear optimization programming model for air quality planning including co-benefits for GHG emissions.

    PubMed

    Turrini, Enrico; Carnevale, Claudio; Finzi, Giovanna; Volta, Marialuisa

    2018-04-15

    This paper introduces the MAQ (Multi-dimensional Air Quality) model aimed at defining cost-effective air quality plans at different scales (urban to national) and assessing the co-benefits for GHG emissions. The model implements and solves a non-linear multi-objective, multi-pollutant decision problem where the decision variables are the application levels of emission abatement measures allowing the reduction of energy consumption, end-of pipe technologies and fuel switch options. The objectives of the decision problem are the minimization of tropospheric secondary pollution exposure and of internal costs. The model assesses CO 2 equivalent emissions in order to support decision makers in the selection of win-win policies. The methodology is tested on Lombardy region, a heavily polluted area in northern Italy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Methods and Model Dependency of Extreme Event Attribution: The 2015 European Drought

    NASA Astrophysics Data System (ADS)

    Hauser, Mathias; Gudmundsson, Lukas; Orth, René; Jézéquel, Aglaé; Haustein, Karsten; Vautard, Robert; van Oldenborgh, Geert J.; Wilcox, Laura; Seneviratne, Sonia I.

    2017-10-01

    Science on the role of anthropogenic influence on extreme weather events, such as heatwaves or droughts, has evolved rapidly in the past years. The approach of "event attribution" compares the occurrence-probability of an event in the present, factual climate with its probability in a hypothetical, counterfactual climate without human-induced climate change. Several methods can be used for event attribution, based on climate model simulations and observations, and usually researchers only assess a subset of methods and data sources. Here, we explore the role of methodological choices for the attribution of the 2015 meteorological summer drought in Europe. We present contradicting conclusions on the relevance of human influence as a function of the chosen data source and event attribution methodology. Assessments using the maximum number of models and counterfactual climates with pre-industrial greenhouse gas concentrations point to an enhanced drought risk in Europe. However, other evaluations show contradictory evidence. These results highlight the need for a multi-model and multi-method framework in event attribution research, especially for events with a low signal-to-noise ratio and high model dependency such as regional droughts.

  12. Multi-criteria decision models for forestry and natural resources management: an annotated bibliography

    Treesearch

    Joseph E. de Steiguer; Leslie Liberti; Albert Schuler; Bruce Hansen

    2003-01-01

    Foresters and natural resource managers must balance conflicting objectives when developing land-management plans. Conflicts may encompass economic, environmental, social, cultural, technical, and aesthetic objectives. Selecting the best combination of management uses from numerous objectives is difficult and challenging. Multi-Criteria Decision Models (MCDM) provide a...

  13. A decision support for an integrated multi-scale analysis of irrigation: DSIRR.

    PubMed

    Bazzani, Guido M

    2005-12-01

    The paper presents a decision support designed to conduct an economic-environmental assessment of the agricultural activity focusing on irrigation called 'Decision Support for IRRigated Agriculture' (DSIRR). The program describes the effect at catchment scale of choices taken at micro scale by independent actors, the farmers, by simulating their decision process. The decision support (DS) has been thought of as a support tool for participatory water policies as requested by the Water Framework Directive and it aims at analyzing alternatives in production and technology, according to different market, policy and climate conditions. The tool uses data and models, provides a graphical user interface and can incorporate the decision makers' own insights. Heterogeneity in preferences is admitted since it is assumed that irrigators try to optimize personal multi-attribute utility functions, subject to a set of constraints. Consideration of agronomic and engineering aspects allows an accurate description of irrigation. Mathematical programming techniques are applied to find solutions. The program has been applied in the river Po basin (northern Italy) to analyze the impact of a pricing policy in a context of irrigation technology innovation. Water demand functions and elasticity to water price have been estimated. Results demonstrate how different areas and systems react to the same policy in quite a different way. While in the annual cropping system pricing seems effective to save the resource at the cost of impeding Water Agencies cost recovery, the same policy has an opposite effect in the perennial fruit system which shows an inelastic response to water price. The multidimensional assessment conducted clarified the trades-off among conflicting economic-social-environmental objectives, thus generating valuable information to design a more tailored mix of measures.

  14. A response-time approach to comparing generalized rational and take-the-best models of decision making.

    PubMed

    Bergert, F Bryan; Nosofsky, Robert M

    2007-01-01

    The authors develop and test generalized versions of take-the-best (TTB) and rational (RAT) models of multiattribute paired-comparison inference. The generalized models make allowances for subjective attribute weighting, probabilistic orders of attribute inspection, and noisy decision making. A key new test involves a response-time (RT) approach. TTB predicts that RT is determined solely by the expected time required to locate the 1st discriminating attribute, whereas RAT predicts that RT is determined by the difference in summed evidence between the 2 alternatives. Critical test pairs are used that partially decouple these 2 factors. Under conditions in which ideal observer TTB and RAT strategies yield equivalent decisions, both the RT results and the estimated attribute weights suggest that the vast majority of subjects adopted the generalized TTB strategy. The RT approach is also validated in an experimental condition in which use of a RAT strategy is essentially forced upon subjects. (c) 2007 APA, all rights reserved.

  15. Is it the time to rethink clinical decision-making strategies? From a single clinical outcome evaluation to a Clinical Multi-criteria Decision Assessment (CMDA).

    PubMed

    Migliore, Alberto; Integlia, Davide; Bizzi, Emanuele; Piaggio, Tomaso

    2015-10-01

    There are plenty of different clinical, organizational and economic parameters to consider in order having a complete assessment of the total impact of a pharmaceutical treatment. In the attempt to follow, a holistic approach aimed to provide an evaluation embracing all clinical parameters in order to choose the best treatments, it is necessary to compare and weight multiple criteria. Therefore, a change is required: we need to move from a decision-making context based on the assessment of one single criteria towards a transparent and systematic framework enabling decision makers to assess all relevant parameters simultaneously in order to choose the best treatment to use. In order to apply the MCDA methodology to clinical decision making the best pharmaceutical treatment (or medical devices) to use to treat a specific pathology, we suggest a specific application of the Multiple Criteria Decision Analysis for the purpose, like a Clinical Multi-criteria Decision Assessment CMDA. In CMDA, results from both meta-analysis and observational studies are used by a clinical consensus after attributing weights to specific domains and related parameters. The decision will result from a related comparison of all consequences (i.e., efficacy, safety, adherence, administration route) existing behind the choice to use a specific pharmacological treatment. The match will yield a score (in absolute value) that link each parameter with a specific intervention, and then a final score for each treatment. The higher is the final score; the most appropriate is the intervention to treat disease considering all criteria (domain an parameters). The results will allow the physician to evaluate the best clinical treatment for his patients considering at the same time all relevant criteria such as clinical effectiveness for all parameters and administration route. The use of CMDA model will yield a clear and complete indication of the best pharmaceutical treatment to use for patients, helping physicians to choose drugs with a complete set of information, imputed in the model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Watermark: An Application and Methodology and Application for Interactive and intelligent Decision Support for Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.; Wagner, K.; Schwartz, S.; Gentle, J. N., Jr.

    2016-12-01

    Critical water resources face the effects of historic drought, increased demand, and potential contamination, the need has never been greater to develop resources to effectively communicate conservation and protection across a broad audience and geographical area. The Watermark application and macro-analysis methodology merges topical analysis of context rich corpus from policy texts with multi-attributed solution sets from integrated models of water resource and other subsystems, such as mineral, food, energy, or environmental systems to construct a scalable, robust, and reproducible approach for identifying links between policy and science knowledge bases. The Watermark application is an open-source, interactive workspace to support science-based visualization and decision making. Designed with generalization in mind, Watermark is a flexible platform that allows for data analysis and inclusion of large datasets with an interactive front-end capable of connecting with other applications as well as advanced computing resources. In addition, the Watermark analysis methodology offers functionality that streamlines communication with non-technical users for policy, education, or engagement with groups around scientific topics of societal relevance. The technology stack for Watermark was selected with the goal of creating a robust and dynamic modular codebase that can be adjusted to fit many use cases and scale to support usage loads that range between simple data display to complex scientific simulation-based modelling and analytics. The methodology uses to topical analysis and simulation-optimization to systematically analyze the policy and management realities of resource systems and explicitly connect the social and problem contexts with science-based and engineering knowledge from models. A case example demonstrates use in a complex groundwater resources management study highlighting multi-criteria spatial decision making and uncertainty comparisons.

  17. Responding to Vaccine Safety Signals during Pandemic Influenza: A Modeling Study

    PubMed Central

    Maro, Judith C.; Fryback, Dennis G.; Lieu, Tracy A.; Lee, Grace M.; Martin, David B.

    2014-01-01

    Background Managing emerging vaccine safety signals during an influenza pandemic is challenging. Federal regulators must balance vaccine risks against benefits while maintaining public confidence in the public health system. Methods We developed a multi-criteria decision analysis model to explore regulatory decision-making in the context of emerging vaccine safety signals during a pandemic. We simulated vaccine safety surveillance system capabilities and used an age-structured compartmental model to develop potential pandemic scenarios. We used an expert-derived multi-attribute utility function to evaluate potential regulatory responses by combining four outcome measures into a single measure of interest: 1) expected vaccination benefit from averted influenza; 2) expected vaccination risk from vaccine-associated febrile seizures; 3) expected vaccination risk from vaccine-associated Guillain-Barre Syndrome; and 4) expected change in vaccine-seeking behavior in future influenza seasons. Results Over multiple scenarios, risk communication, with or without suspension of vaccination of high-risk persons, were the consistently preferred regulatory responses over no action or general suspension when safety signals were detected during a pandemic influenza. On average, the expert panel valued near-term vaccine-related outcomes relative to long-term projected outcomes by 3∶1. However, when decision-makers had minimal ability to influence near-term outcomes, the response was selected primarily by projected impacts on future vaccine-seeking behavior. Conclusions The selected regulatory response depends on how quickly a vaccine safety signal is identified relative to the peak of the pandemic and the initiation of vaccination. Our analysis suggested two areas for future investment: efforts to improve the size and timeliness of the surveillance system and behavioral research to understand changes in vaccine-seeking behavior. PMID:25536228

  18. Diffusion theory of decision making in continuous report.

    PubMed

    Smith, Philip L

    2016-07-01

    I present a diffusion model for decision making in continuous report tasks, in which a continuous, circularly distributed, stimulus attribute in working memory is matched to a representation of the attribute in the stimulus display. Memory retrieval is modeled as a 2-dimensional diffusion process with vector-valued drift on a disk, whose bounding circle represents the decision criterion. The direction and magnitude of the drift vector describe the identity of the stimulus and the quality of its representation in memory, respectively. The point at which the diffusion exits the disk determines the reported value of the attribute and the time to exit the disk determines the decision time. Expressions for the joint distribution of decision times and report outcomes are obtained by means of the Girsanov change-of-measure theorem, which allows the properties of the nonzero-drift diffusion process to be characterized as a function of a Euclidian-distance Bessel process. Predicted report precision is equal to the product of the decision criterion and the drift magnitude and follows a von Mises distribution, in agreement with the treatment of precision in the working memory literature. Trial-to-trial variability in criterion and drift rate leads, respectively, to direct and inverse relationships between report accuracy and decision times, in agreement with, and generalizing, the standard diffusion model of 2-choice decisions. The 2-dimensional model provides a process account of working memory precision and its relationship with the diffusion model, and a new way to investigate the properties of working memory, via the distributions of decision times. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Decision Making and Priority Setting: The Evolving Path Towards Universal Health Coverage.

    PubMed

    Paolucci, Francesco; Redekop, Ken; Fouda, Ayman; Fiorentini, Gianluca

    2017-12-01

    Health technology assessment (HTA) is widely viewed as an essential component in good universal health coverage (UHC) decision-making in any country. Various HTA tools and metrics have been developed and refined over the years, including systematic literature reviews (Cochrane), economic modelling, and cost-effectiveness ratios and acceptability curves. However, while the cost-effectiveness ratio is faithfully reported in most full economic evaluations, it is viewed by many as an insufficient basis for reimbursement decisions. Emotional debates about the reimbursement of cancer drugs, orphan drugs, and end-of-life treatments have revealed fundamental disagreements about what should and should not be considered in reimbursement decisions. Part of this disagreement seems related to the equity-efficiency tradeoff, which reflects fundamental differences in priorities. All in all, it is clear that countries aiming to improve UHC policies will have to go beyond the capacity building needed to utilize the available HTA toolbox. Multi-criteria decision analysis (MCDA) offers a more comprehensive tool for reimbursement decisions where different weights of different factors/attributes can give policymakers important insights to consider. Sooner or later, every country will have to develop their own way to carefully combine the results of those tools with their own priorities. In the end, all policymaking is based on a mix of facts and values.

  20. Information networks in the stock market based on the distance of the multi-attribute dimensions between listed companies

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Li, Huajiao; Liu, Xueyong; Jiang, Meihui

    2018-04-01

    In the stock market, there are widespread information connections between economic agents. Listed companies can obtain mutual information about investment decisions from common shareholders, and the extent of sharing information often determines the relationships between listed companies. Because different shareholder compositions and investment shares lead to different formations of the company's governance mechanisms, we map the investment relationships between shareholders to the multi-attribute dimensional spaces of the listed companies (each shareholder investment in a company is a company dimension). Then, we construct the listed company's information network based on co-shareholder relationships. The weights for the edges in the information network are measured with the Euclidean distance between the listed companies in the multi-attribute dimension space. We define two indices to analyze the information network's features. We conduct an empirical study that analyzes Chinese listed companies' information networks. The results from the analysis show that with the diversification and decentralization of shareholder investments, almost all Chinese listed companies exchanged information through common shareholder relationships, and there is a gradual reduction in information sharing capacity between listed companies that have common shareholders. This network analysis has benefits for risk management and portfolio investments.

  1. An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories

    NASA Astrophysics Data System (ADS)

    Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril

    2018-01-01

    In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.

  2. Maclaurin symmetric mean operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision-making

    NASA Astrophysics Data System (ADS)

    Liu, Peide; Qin, Xiyou

    2017-11-01

    Linguistic intuitionistic fuzzy number (LIFN) is a special intuitionistic fuzzy number which can more easily describe the vagueness existing in the real decision-making. Maclaurin symmetric mean (MSM) operator has the characteristic of considering the interrelationships among any number of input parameters. In this paper, we extended the MSM operator to the LIFNs and some extended MSM operators for LIFNs were proposed, some new decision-making methods were developed. Firstly, we introduced the definition, score function, properties and operational rules of the LIFNs. Then, we proposed some linguistic intuitionistic fuzzy MSM operators, such as linguistic intuitionistic fuzzy Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy Maclaurin symmetric mean (WLIFMSM) operator, linguistic intuitionistic fuzzy dual Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy dual Maclaurin symmetric mean (WLIFDMSM) operator. In the meantime, we studied some important properties of these operators, and developed some methods based on WLIFMSM operator and WLIFDMSM operator for multi-attribute decision-making. Finally, we use an example to demonstrate the effectiveness of the proposed methods.

  3. Decision support for risk prioritisation of environmental health hazards in a UK city.

    PubMed

    Woods, Mae; Crabbe, Helen; Close, Rebecca; Studden, Mike; Milojevic, Ai; Leonardi, Giovanni; Fletcher, Tony; Chalabi, Zaid

    2016-03-08

    There is increasing appreciation of the proportion of the health burden that is attributed to modifiable population exposure to environmental health hazards. To manage this avoidable burden in the United Kingdom (UK), government policies and interventions are implemented. In practice, this procedure is interdisciplinary in action and multi-dimensional in context. Here, we demonstrate how Multi Criteria Decision Analysis (MCDA) can be used as a decision support tool to facilitate priority setting for environmental public health interventions within local authorities. We combine modelling and expert elicitation to gather evidence on the impacts and ranking of interventions. To present the methodology, we consider a hypothetical scenario in a UK city. We use MCDA to evaluate and compare the impact of interventions to reduce the health burden associated with four environmental health hazards and rank them in terms of their overall performance across several criteria. For illustrative purposes, we focus on heavy goods vehicle controls to reduce outdoor air pollution, remediation to control levels of indoor radon, carbon monoxide and fitting alarms, and encouraging cycling to target the obesogenic environment. Regional data was included as model evidence to construct a ratings matrix for the city. When MCDA is performed with uniform weights, the intervention of heavy goods vehicle controls to reduce outdoor air pollution is ranked the highest. Cycling and the obesogenic environment is ranked second. We argue that a MCDA based approach provides a framework to guide environmental public health decision makers. This is demonstrated through an online interactive MCDA tool. We conclude that MCDA is a transparent tool that can be used to compare the impact of alternative interventions on a set of pre-defined criteria. In our illustrative example, we ranked the best intervention across the equally weighted selected criteria out of the four alternatives. Further work is needed to test the tool with decision makers and stakeholders.

  4. Adaptive Allocation of Decision Making Responsibility Between Human and Computer in Multi-Task Situations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chu, Y. Y.

    1978-01-01

    A unified formulation of computer-aided, multi-task, decision making is presented. Strategy for the allocation of decision making responsibility between human and computer is developed. The plans of a flight management systems are studied. A model based on the queueing theory was implemented.

  5. Technology selection for ballast water treatment by multi-stakeholders: A multi-attribute decision analysis approach based on the combined weights and extension theory.

    PubMed

    Ren, Jingzheng

    2018-01-01

    This objective of this study is to develop a generic multi-attribute decision analysis framework for ranking the technologies for ballast water treatment and determine their grades. An evaluation criteria system consisting of eight criteria in four categories was used to evaluate the technologies for ballast water treatment. The Best-Worst method, which is a subjective weighting method and Criteria importance through inter-criteria correlation method, which is an objective weighting method, were combined to determine the weights of the evaluation criteria. The extension theory was employed to prioritize the technologies for ballast water treatment and determine their grades. An illustrative case including four technologies for ballast water treatment, i.e. Alfa Laval (T 1 ), Hyde (T 2 ), Unitor (T 3 ), and NaOH (T 4 ), were studied by the proposed method, and the Hyde (T 2 ) was recognized as the best technology. Sensitivity analysis was also carried to investigate the effects of the combined coefficients and the weights of the evaluation criteria on the final priority order of the four technologies for ballast water treatment. The sum weighted method and the TOPSIS was also employed to rank the four technologies, and the results determined by these two methods are consistent to that determined by the proposed method in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A decision support tool to prioritize risk management options for contaminated sites.

    PubMed

    Sorvari, Jaana; Seppälä, Jyri

    2010-03-15

    The decisions on risk management (RM) of contaminated sites in Finland have typically been driven by practical factors such as time and money. However, RM is a multifaceted task that generally involves several additional determinants, e.g. performance and environmental effects of remediation methods, psychological and social factors. Therefore, we adopted a multi-criteria decision analysis approach and developed a decision support tool (DST) that is viable in decision-making in such a complex situation. The basic components of the DST are based on the Dutch REC system. However, our DST is more case-specific and allows the consideration of the type, magnitude and scale of contamination, land use, environmental conditions and socio-cultural aspects (e.g. loss of cultural heritage, image aspects). The construction of the DST was started by structuring the decision problem using a value tree. Based on this work we adopted the Multi-Attribute Value Theory (MAVT) for data aggregation. The final DST was demonstrated by two model sites for which the RM alternatives and site-specific data were created on the basis of factual remediation projects and by interviewing experts. The demonstration of the DST was carried out in a workshop where representatives of different stakeholders were requested to rank and weight the decision criteria involved. To get information on the consistency of the ranking of the RM alternatives, we used different weighting techniques (ratio estimation and pair-wise weighting) and alternative ways to treat individual respondents' weights in calculating the preference scores for each RM alternative. These dissimilar approaches resulted in some differences in the preference order of the RM alternatives. The demonstration showed that attention has to be paid to the proper description of the site, the principles of the procedure and the decision criteria. Nevertheless, the procedure proved to enable efficient communication between different stakeholders and the identification of the preferred RM option.

  7. Decision by Sampling

    ERIC Educational Resources Information Center

    Stewart, Neil; Chater, Nick; Brown, Gordon D. A.

    2006-01-01

    We present a theory of decision by sampling (DbS) in which, in contrast with traditional models, there are no underlying psychoeconomic scales. Instead, we assume that an attribute's subjective value is constructed from a series of binary, ordinal comparisons to a sample of attribute values drawn from memory and is its rank within the sample. We…

  8. Network-centric decision architecture for financial or 1/f data models

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Massey, Stoney; Case, Carl T.; Songy, Claude G.

    2002-12-01

    This paper presents a decision architecture algorithm for training neural equation based networks to make autonomous multi-goal oriented, multi-class decisions. These architectures make decisions based on their individual goals and draw from the same network centric feature set. Traditionally, these architectures are comprised of neural networks that offer marginal performance due to lack of convergence of the training set. We present an approach for autonomously extracting sample points as I/O exemplars for generation of multi-branch, multi-node decision architectures populated by adaptively derived neural equations. To test the robustness of this architecture, open source data sets in the form of financial time series were used, requiring a three-class decision space analogous to the lethal, non-lethal, and clutter discrimination problem. This algorithm and the results of its application are presented here.

  9. Using multi-attribute decision-making approaches in the selection of a hospital management system.

    PubMed

    Arasteh, Mohammad Ali; Shamshirband, Shahaboddin; Yee, Por Lip

    2018-01-01

    The most appropriate organizational software is always a real challenge for managers, especially, the IT directors. The illustration of the term "enterprise software selection", is to purchase, create, or order a software that; first, is best adapted to require of the organization; and second, has suitable price and technical support. Specifying selection criteria and ranking them, is the primary prerequisite for this action. This article provides a method to evaluate, rank, and compare the available enterprise software for choosing the apt one. The prior mentioned method is constituted of three-stage processes. First, the method identifies the organizational requires and assesses them. Second, it selects the best method throughout three possibilities; indoor-production, buying software, and ordering special software for the native use. Third, the method evaluates, compares and ranks the alternative software. The third process uses different methods of multi attribute decision making (MADM), and compares the consequent results. Based on different characteristics of the problem; several methods had been tested, namely, Analytic Hierarchy Process (AHP), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Elimination and Choice Expressing Reality (ELECTURE), and easy weight method. After all, we propose the most practical method for same problems.

  10. Visualization-based decision support for value-driven system design

    NASA Astrophysics Data System (ADS)

    Tibor, Elliott

    In the past 50 years, the military, communication, and transportation systems that permeate our world, have grown exponentially in size and complexity. The development and production of these systems has seen ballooning costs and increased risk. This is particularly critical for the aerospace industry. The inability to deal with growing system complexity is a crippling force in the advancement of engineered systems. Value-Driven Design represents a paradigm shift in the field of design engineering that has potential to help counteract this trend. The philosophy of Value-Driven Design places the desires of the stakeholder at the forefront of the design process to capture true preferences and reveal system alternatives that were never previously thought possible. Modern aerospace engineering design problems are large, complex, and involve multiple levels of decision-making. To find the best design, the decision-maker is often required to analyze hundreds or thousands of combinations of design variables and attributes. Visualization can be used to support these decisions, by communicating large amounts of data in a meaningful way. Understanding the design space, the subsystem relationships, and the design uncertainties is vital to the advancement of Value-Driven Design as an accepted process for the development of more effective, efficient, robust, and elegant aerospace systems. This research investigates the use of multi-dimensional data visualization tools to support decision-making under uncertainty during the Value-Driven Design process. A satellite design system comprising a satellite, ground station, and launch vehicle is used to demonstrate effectiveness of new visualization methods to aid in decision support during complex aerospace system design. These methods are used to facilitate the exploration of the feasible design space by representing the value impact of system attribute changes and comparing the results of multi-objective optimization formulations with a Value-Driven Design formulation. The visualization methods are also used to assist in the decomposition of a value function, by representing attribute sensitivities to aid with trade-off studies. Lastly, visualization is used to enable greater understanding of the subsystem relationships, by displaying derivative-based couplings, and the design uncertainties, through implementation of utility theory. The use of these visualization methods is shown to enhance the decision-making capabilities of the designer by granting them a more holistic view of the complex design space.

  11. Combining the Generic Entity-Attribute-Value Model and Terminological Models into a Common Ontology to Enable Data Integration and Decision Support.

    PubMed

    Bouaud, Jacques; Guézennec, Gilles; Séroussi, Brigitte

    2018-01-01

    The integration of clinical information models and termino-ontological models into a unique ontological framework is highly desirable for it facilitates data integration and management using the same formal mechanisms for both data concepts and information model components. This is particularly true for knowledge-based decision support tools that aim to take advantage of all facets of semantic web technologies in merging ontological reasoning, concept classification, and rule-based inferences. We present an ontology template that combines generic data model components with (parts of) existing termino-ontological resources. The approach is developed for the guideline-based decision support module on breast cancer management within the DESIREE European project. The approach is based on the entity attribute value model and could be extended to other domains.

  12. A lexicographic weighted Tchebycheff approach for multi-constrained multi-objective optimization of the surface grinding process

    NASA Astrophysics Data System (ADS)

    Khalilpourazari, Soheyl; Khalilpourazary, Saman

    2017-05-01

    In this article a multi-objective mathematical model is developed to minimize total time and cost while maximizing the production rate and surface finish quality in the grinding process. The model aims to determine optimal values of the decision variables considering process constraints. A lexicographic weighted Tchebycheff approach is developed to obtain efficient Pareto-optimal solutions of the problem in both rough and finished conditions. Utilizing a polyhedral branch-and-cut algorithm, the lexicographic weighted Tchebycheff model of the proposed multi-objective model is solved using GAMS software. The Pareto-optimal solutions provide a proper trade-off between conflicting objective functions which helps the decision maker to select the best values for the decision variables. Sensitivity analyses are performed to determine the effect of change in the grain size, grinding ratio, feed rate, labour cost per hour, length of workpiece, wheel diameter and downfeed of grinding parameters on each value of the objective function.

  13. Assessment of combating-desertification strategies using the linear assignment method

    NASA Astrophysics Data System (ADS)

    Hassan Sadeghravesh, Mohammad; Khosravi, Hassan; Ghasemian, Soudeh

    2016-04-01

    Nowadays desertification, as a global problem, affects many countries in the world, especially developing countries like Iran. With respect to increasing importance of desertification and its complexity, the necessity of attention to the optimal combating-desertification alternatives is essential. Selecting appropriate strategies according to all effective criteria to combat the desertification process can be useful in rehabilitating degraded lands and avoiding degradation in vulnerable fields. This study provides systematic and optimal strategies of combating desertification by use of a group decision-making model. To this end, the preferences of indexes were obtained through using the Delphi model, within the framework of multi-attribute decision making (MADM). Then, priorities of strategies were evaluated by using linear assignment (LA) method. According to the results, the strategies to prevent improper change of land use (A18), development and reclamation of plant cover (A23), and control overcharging of groundwater resources (A31) were identified as the most important strategies for combating desertification in this study area. Therefore, it is suggested that the aforementioned ranking results be considered in projects which control and reduce the effects of desertification and rehabilitate degraded lands.

  14. Detecting Hotspot Information Using Multi-Attribute Based Topic Model

    PubMed Central

    Wang, Jing; Li, Li; Tan, Feng; Zhu, Ying; Feng, Weisi

    2015-01-01

    Microblogging as a kind of social network has become more and more important in our daily lives. Enormous amounts of information are produced and shared on a daily basis. Detecting hot topics in the mountains of information can help people get to the essential information more quickly. However, due to short and sparse features, a large number of meaningless tweets and other characteristics of microblogs, traditional topic detection methods are often ineffective in detecting hot topics. In this paper, we propose a new topic model named multi-attribute latent dirichlet allocation (MA-LDA), in which the time and hashtag attributes of microblogs are incorporated into LDA model. By introducing time attribute, MA-LDA model can decide whether a word should appear in hot topics or not. Meanwhile, compared with the traditional LDA model, applying hashtag attribute in MA-LDA model gives the core words an artificially high ranking in results meaning the expressiveness of outcomes can be improved. Empirical evaluations on real data sets demonstrate that our method is able to detect hot topics more accurately and efficiently compared with several baselines. Our method provides strong evidence of the importance of the temporal factor in extracting hot topics. PMID:26496635

  15. Selection for inpatient rehabilitation after severe stroke: what factors influence rehabilitation assessor decision-making?

    PubMed

    Hakkennes, Sharon; Hill, Keith D; Brock, Kim; Bernhardt, Julie; Churilov, Leonid

    2013-01-01

    This study aimed to identify factors that assessors considered important in decision-making regarding suitability for inpatient rehabilitation after acute severe stroke. Multi-site prospective observational cohort study. Consecutive acute, severe stroke patients and their assessors for inpatient rehabilitation. Rehabilitation assessors completed a questionnaire, rating the importance (10 point visual analogue scale) and direction (positive, negative or neutral) of 15 patient related and 2 organisational items potentially affecting their decision regarding patients' acceptance to rehabilitation. Of the 75 patients referred to rehabilitation and included in this study 61 (81.3%) were accepted for inpatient rehabilitation. The items considered to be most important in the decision to accept the patient for rehabilitation were pre-morbid cognition, pre-morbid mobility and pre-morbid communication. For those not accepted the most important items were current mobility, social support and current cognition. Factor analysis revealed 3 underlying factors, interpreted as post-stroke status, pre-morbid status, and social attributes, accounting for 61.8% of the total variance. All were independently associated with acceptance for rehabilitation (p < 0.05). This study highlights the importance of pre-morbid function and social factors in addition to post-stroke function in the decision making process for acceptance to rehabilitation following severe stroke. Future models for selection for rehabilitation should consider inclusion of these factors.

  16. Theory of the decision/problem state

    NASA Technical Reports Server (NTRS)

    Dieterly, D. L.

    1980-01-01

    A theory of the decision-problem state was introduced and elaborated. Starting with the basic model of a decision-problem condition, an attempt was made to explain how a major decision-problem may consist of subsets of decision-problem conditions composing different condition sequences. In addition, the basic classical decision-tree model was modified to allow for the introduction of a series of characteristics that may be encountered in an analysis of a decision-problem state. The resulting hierarchical model reflects the unique attributes of the decision-problem state. The basic model of a decision-problem condition was used as a base to evolve a more complex model that is more representative of the decision-problem state and may be used to initiate research on decision-problem states.

  17. Multi-agent simulation of generation expansion in electricity markets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botterud, A; Mahalik, M. R.; Veselka, T. D.

    2007-06-01

    We present a new multi-agent model of generation expansion in electricity markets. The model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitors actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We test the model using real data for the Korea power system under different assumptions about market design, market concentration, and GenCo'smore » assumed expectations about their competitors investment decisions.« less

  18. Decision-Aiding and Optimization for Vertical Navigation of Long-Haul Aircraft

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.; Sheridan, Thomas B.

    1996-01-01

    Most decisions made in the cockpit are related to safety, and have therefore been proceduralized in order to reduce risk. There are very few which are made on the basis of a value metric such as economic cost. One which can be shown to be value based, however, is the selection of a flight profile. Fuel consumption and flight time both have a substantial effect on aircraft operating cost, but they cannot be minimized simultaneously. In addition, winds, turbulence, and performance vary widely with altitude and time. These factors make it important and difficult for pilots to (a) evaluate the outcomes associated with a particular trajectory before it is flown and (b) decide among possible trajectories. The two elements of this problem considered here are: (1) determining what constitutes optimality, and (2) finding optimal trajectories. Pilots and dispatchers from major u.s. airlines were surveyed to determine which attributes of the outcome of a flight they considered the most important. Avoiding turbulence-for passenger comfort-topped the list of items which were not safety related. Pilots' decision making about the selection of flight profile on the basis of flight time, fuel burn, and exposure to turbulence was then observed. Of the several behavioral and prescriptive decision models invoked to explain the pilots' choices, utility maximization is shown to best reproduce the pilots' decisions. After considering more traditional methods for optimizing trajectories, a novel method is developed using a genetic algorithm (GA) operating on a discrete representation of the trajectory search space. The representation is a sequence of command altitudes, and was chosen to be compatible with the constraints imposed by Air Traffic Control, and with the training given to pilots. Since trajectory evaluation for the GA is performed holistically, a wide class of objective functions can be optimized easily. Also, using the GA it is possible to compare the costs associated with different airspace design and air traffic management policies. A decision aid is proposed which would combine the pilot's notion of optimality with the GA-based optimization, provide the pilot with a number of alternative pareto-optimal trajectories, and allow him to consider unmodelled attributes and constraints in choosing among them. A solution to the problem of displaying alternatives in a multi-attribute decision space is also presented.

  19. 76 FR 50204 - Decision and Order Granting a Waiver to Fujitsu General Limited From the Department of Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... Refrigerant Flow (VRF) multi-split commercial heat pump models specified in Fujitsu's petition for waiver. As... to test and rate these AIRSTAGE V-II VRF multi-split commercial heat pumps. DATES: This Decision and...) Standard 1230-2010, ``Performance Rating of VRF Multi-Split Air-Conditioning and Heat Pump Equipment'' to...

  20. Meta-modelling, visualization and emulation of multi-dimensional data for virtual production intelligence

    NASA Astrophysics Data System (ADS)

    Schulz, Wolfgang; Hermanns, Torsten; Al Khawli, Toufik

    2017-07-01

    Decision making for competitive production in high-wage countries is a daily challenge where rational and irrational methods are used. The design of decision making processes is an intriguing, discipline spanning science. However, there are gaps in understanding the impact of the known mathematical and procedural methods on the usage of rational choice theory. Following Benjamin Franklin's rule for decision making formulated in London 1772, he called "Prudential Algebra" with the meaning of prudential reasons, one of the major ingredients of Meta-Modelling can be identified finally leading to one algebraic value labelling the results (criteria settings) of alternative decisions (parameter settings). This work describes the advances in Meta-Modelling techniques applied to multi-dimensional and multi-criterial optimization by identifying the persistence level of the corresponding Morse-Smale Complex. Implementations for laser cutting and laser drilling are presented, including the generation of fast and frugal Meta-Models with controlled error based on mathematical model reduction Reduced Models are derived to avoid any unnecessary complexity. Both, model reduction and analysis of multi-dimensional parameter space are used to enable interactive communication between Discovery Finders and Invention Makers. Emulators and visualizations of a metamodel are introduced as components of Virtual Production Intelligence making applicable the methods of Scientific Design Thinking and getting the developer as well as the operator more skilled.

  1. Linguistic multi-criteria decision-making with representing semantics by programming

    NASA Astrophysics Data System (ADS)

    Yang, Wu-E.; Ma, Chao-Qun; Han, Zhi-Qiu

    2017-01-01

    A linguistic multi-criteria decision-making method is introduced. In this method, a maximising discrimination programming assigns the semanteme values to linguistic variables to represent their semantics. Incomplete preferences from using linguistic information are expressed by the constraints of the model. Such assignment can amplify the difference between alternatives. Thus, the discrimination of the decision model is increased, which facilitates the decision-maker to rank or order the alternatives for making a decision. We also discuss the parameter setting and its influence, and use an application example to illustrate the proposed method. Further, the results with three types of semantic structure highlight the ability of the method in handling different semantic structures.

  2. Three essays on multi-level optimization models and applications

    NASA Astrophysics Data System (ADS)

    Rahdar, Mohammad

    The general form of a multi-level mathematical programming problem is a set of nested optimization problems, in which each level controls a series of decision variables independently. However, the value of decision variables may also impact the objective function of other levels. A two-level model is called a bilevel model and can be considered as a Stackelberg game with a leader and a follower. The leader anticipates the response of the follower and optimizes its objective function, and then the follower reacts to the leader's action. The multi-level decision-making model has many real-world applications such as government decisions, energy policies, market economy, network design, etc. However, there is a lack of capable algorithms to solve medium and large scale these types of problems. The dissertation is devoted to both theoretical research and applications of multi-level mathematical programming models, which consists of three parts, each in a paper format. The first part studies the renewable energy portfolio under two major renewable energy policies. The potential competition for biomass for the growth of the renewable energy portfolio in the United States and other interactions between two policies over the next twenty years are investigated. This problem mainly has two levels of decision makers: the government/policy makers and biofuel producers/electricity generators/farmers. We focus on the lower-level problem to predict the amount of capacity expansions, fuel production, and power generation. In the second part, we address uncertainty over demand and lead time in a multi-stage mathematical programming problem. We propose a two-stage tri-level optimization model in the concept of rolling horizon approach to reducing the dimensionality of the multi-stage problem. In the third part of the dissertation, we introduce a new branch and bound algorithm to solve bilevel linear programming problems. The total time is reduced by solving a smaller relaxation problem in each node and decreasing the number of iterations. Computational experiments show that the proposed algorithm is faster than the existing ones.

  3. Take-the-best and the influence of decision-inconsistent attributes on decision confidence and choices in memory-based decisions.

    PubMed

    Dummel, Sebastian; Rummel, Jan

    2016-11-01

    Take-the-best (TTB) is a decision strategy according to which attributes about choice options are sequentially processed in descending order of validity, and attribute processing is stopped once an attribute discriminates between options. Consequently, TTB-decisions rely on only one, the best discriminating, attribute, and lower-valid attributes need not be processed because they are TTB-irrelevant. Recent research suggests, however, that when attribute information is visually present during decision-making, TTB-irrelevant attributes are processed and integrated into decisions nonetheless. To examine whether TTB-irrelevant attributes are retrieved and integrated when decisions are made memory-based, we tested whether the consistency of a TTB-irrelevant attribute affects TTB-users' decision behaviour in a memory-based decision task. Participants first learned attribute configurations of several options. Afterwards, they made several decisions between two of the options, and we manipulated conflict between the second-best attribute and the TTB-decision. We assessed participants' decision confidence and the proportion of TTB-inconsistent choices. According to TTB, TTB-irrelevant attributes should not affect confidence and choices, because these attributes should not be retrieved. Results showed, however, that TTB-users were less confident and made more TTB-inconsistent choices when TTB-irrelevant information was in conflict with the TTB-decision than when it was not, suggesting that TTB-users retrieved and integrated TTB-irrelevant information.

  4. Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale

    PubMed Central

    Diao, Yuzhu; Hu, Aqin

    2018-01-01

    Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation. PMID:29498699

  5. Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale.

    PubMed

    Li, Qingsheng; Diao, Yuzhu; Gong, Zaiwu; Hu, Aqin

    2018-03-02

    Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation.

  6. Architecture Design of Healthcare Software-as-a-Service Platform for Cloud-Based Clinical Decision Support Service.

    PubMed

    Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee; Yoo, Sooyoung

    2015-04-01

    To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs.

  7. Visual analytics techniques for large multi-attribute time series data

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.

    2008-01-01

    Time series data commonly occur when variables are monitored over time. Many real-world applications involve the comparison of long time series across multiple variables (multi-attributes). Often business people want to compare this year's monthly sales with last year's sales to make decisions. Data warehouse administrators (DBAs) want to know their daily data loading job performance. DBAs need to detect the outliers early enough to act upon them. In this paper, two new visual analytic techniques are introduced: The color cell-based Visual Time Series Line Charts and Maps highlight significant changes over time in a long time series data and the new Visual Content Query facilitates finding the contents and histories of interesting patterns and anomalies, which leads to root cause identification. We have applied both methods to two real-world applications to mine enterprise data warehouse and customer credit card fraud data to illustrate the wide applicability and usefulness of these techniques.

  8. Multi-criteria decision making to support waste management: A critical review of current practices and methods.

    PubMed

    Goulart Coelho, Lineker M; Lange, Liséte C; Coelho, Hosmanny Mg

    2017-01-01

    Solid waste management is a complex domain involving the interaction of several dimensions; thus, its analysis and control impose continuous challenges for decision makers. In this context, multi-criteria decision-making models have become important and convenient supporting tools for solid waste management because they can handle problems involving multiple dimensions and conflicting criteria. However, the selection of the multi-criteria decision-making method is a hard task since there are several multi-criteria decision-making approaches, each one with a large number of variants whose applicability depends on information availability and the aim of the study. Therefore, to support researchers and decision makers, the objectives of this article are to present a literature review of multi-criteria decision-making applications used in solid waste management, offer a critical assessment of the current practices, and provide suggestions for future works. A brief review of fundamental concepts on this topic is first provided, followed by the analysis of 260 articles related to the application of multi-criteria decision making in solid waste management. These studies were investigated in terms of the methodology, including specific steps such as normalisation, weighting, and sensitivity analysis. In addition, information related to waste type, the study objective, and aspects considered was recorded. From the articles analysed it is noted that studies using multi-criteria decision making in solid waste management are predominantly addressed to problems related to municipal solid waste involving facility location or management strategy.

  9. A stochastic multicriteria model for evidence-based decision making in drug benefit-risk analysis.

    PubMed

    Tervonen, Tommi; van Valkenhoef, Gert; Buskens, Erik; Hillege, Hans L; Postmus, Douwe

    2011-05-30

    Drug benefit-risk (BR) analysis is based on firm clinical evidence regarding various safety and efficacy outcomes. In this paper, we propose a new and more formal approach for constructing a supporting multi-criteria model that fully takes into account the evidence on efficacy and adverse drug reactions. Our approach is based on the stochastic multi-criteria acceptability analysis methodology, which allows us to compute the typical value judgments that support a decision, to quantify decision uncertainty, and to compute a comprehensive BR profile. We construct a multi-criteria model for the therapeutic group of second-generation antidepressants. We assess fluoxetine and venlafaxine together with placebo according to incidence of treatment response and three common adverse drug reactions by using data from a published study. Our model shows that there are clear trade-offs among the treatment alternatives. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Decision aids for multiple-decision disease management as affected by weather input errors.

    PubMed

    Pfender, W F; Gent, D H; Mahaffee, W F; Coop, L B; Fox, A D

    2011-06-01

    Many disease management decision support systems (DSSs) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation, or estimation from off-site sources, may affect model calculations and management decision recommendations. The extent to which errors in weather inputs affect the quality of the final management outcome depends on a number of aspects of the disease management context, including whether management consists of a single dichotomous decision, or of a multi-decision process extending over the cropping season(s). Decision aids for multi-decision disease management typically are based on simple or complex algorithms of weather data which may be accumulated over several days or weeks. It is difficult to quantify accuracy of multi-decision DSSs due to temporally overlapping disease events, existence of more than one solution to optimizing the outcome, opportunities to take later recourse to modify earlier decisions, and the ongoing, complex decision process in which the DSS is only one component. One approach to assessing importance of weather input errors is to conduct an error analysis in which the DSS outcome from high-quality weather data is compared with that from weather data with various levels of bias and/or variance from the original data. We illustrate this analytical approach for two types of DSS, an infection risk index for hop powdery mildew and a simulation model for grass stem rust. Further exploration of analysis methods is needed to address problems associated with assessing uncertainty in multi-decision DSSs.

  11. A fuzzy model for achieving lean attributes for competitive advantages development using AHP-QFD-PROMETHEE

    NASA Astrophysics Data System (ADS)

    Roghanian, E.; Alipour, Mohammad

    2014-06-01

    Lean production has become an integral part of the manufacturing landscape as its link with superior performance and its ability to provide competitive advantage is well accepted among academics and practitioners. Lean production helps producers in overcoming the challenges organizations face through using powerful tools and enablers. However, most companies are faced with restricted resources such as financial and human resources, time, etc., in using these enablers, and are not capable of implementing all these techniques. Therefore, identifying and selecting the most appropriate and efficient tool can be a significant challenge for many companies. Hence, this literature seeks to combine competitive advantages, lean attributes, and lean enablers to determine the most appropriate enablers for improvement of lean attributes. Quality function deployment in fuzzy environment and house of quality matrix are implemented. Throughout the methodology, fuzzy logic is the basis for translating linguistic judgments required for the relationships and correlation matrix to numerical values. Moreover, for final ranking of lean enablers, a multi-criteria decision-making method (PROMETHEE) is adopted. Finally, a case study in automotive industry is presented to illustrate the implementation of the proposed methodology.

  12. Integrated optimisation technique based on computer-aided capacity and safety evaluation for managing downstream lane-drop merging area of signalised junctions

    NASA Astrophysics Data System (ADS)

    Chen, CHAI; Yiik Diew, WONG

    2017-02-01

    This study provides an integrated strategy, encompassing microscopic simulation, safety assessment, and multi-attribute decision-making, to optimize traffic performance at downstream merging area of signalized intersections. A Fuzzy Cellular Automata (FCA) model is developed to replicate microscopic movement and merging behavior. Based on simulation experiment, the proposed FCA approach is able to provide capacity and safety evaluation of different traffic scenarios. The results are then evaluated through data envelopment analysis (DEA) and analytic hierarchy process (AHP). Optimized geometric layout and control strategies are then suggested for various traffic conditions. An optimal lane-drop distance that is dependent on traffic volume and speed limit can thus be established at the downstream merging area.

  13. An export coefficient based inexact fuzzy bi-level multi-objective programming model for the management of agricultural nonpoint source pollution under uncertainty

    NASA Astrophysics Data System (ADS)

    Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Yue, Wencong; Tan, Qian

    2018-02-01

    In this research, an export coefficient based inexact fuzzy bi-level multi-objective programming (EC-IFBLMOP) model was developed through integrating export coefficient model (ECM), interval parameter programming (IPP) and fuzzy parameter programming (FPP) within a bi-level multi-objective programming framework. The proposed EC-IFBLMOP model can effectively deal with the multiple uncertainties expressed as discrete intervals and fuzzy membership functions. Also, the complexities in agricultural systems, such as the cooperation and gaming relationship between the decision makers at different levels, can be fully considered in the model. The developed model was then applied to identify the optimal land use patterns and BMP implementing levels for agricultural nonpoint source (NPS) pollution management in a subcatchment in the upper stream watershed of the Miyun Reservoir in north China. The results of the model showed that the desired optimal land use patterns and implementing levels of best management of practices (BMPs) would be obtained. It is the gaming result between the upper- and lower-level decision makers, when the allowable discharge amounts of NPS pollutants were limited. Moreover, results corresponding to different decision scenarios could provide a set of decision alternatives for the upper- and lower-level decision makers to identify the most appropriate management strategy. The model has a good applicability and can be effectively utilized for agricultural NPS pollution management.

  14. Delineating chalk sand distribution of Ekofisk formation using probabilistic neural network (PNN) and stepwise regression (SWR): Case study Danish North Sea field

    NASA Astrophysics Data System (ADS)

    Haris, A.; Nafian, M.; Riyanto, A.

    2017-07-01

    Danish North Sea Fields consist of several formations (Ekofisk, Tor, and Cromer Knoll) that was started from the age of Paleocene to Miocene. In this study, the integration of seismic and well log data set is carried out to determine the chalk sand distribution in the Danish North Sea field. The integration of seismic and well log data set is performed by using the seismic inversion analysis and seismic multi-attribute. The seismic inversion algorithm, which is used to derive acoustic impedance (AI), is model-based technique. The derived AI is then used as external attributes for the input of multi-attribute analysis. Moreover, the multi-attribute analysis is used to generate the linear and non-linear transformation of among well log properties. In the case of the linear model, selected transformation is conducted by weighting step-wise linear regression (SWR), while for the non-linear model is performed by using probabilistic neural networks (PNN). The estimated porosity, which is resulted by PNN shows better suited to the well log data compared with the results of SWR. This result can be understood since PNN perform non-linear regression so that the relationship between the attribute data and predicted log data can be optimized. The distribution of chalk sand has been successfully identified and characterized by porosity value ranging from 23% up to 30%.

  15. Integrated multi-choice goal programming and multi-segment goal programming for supplier selection considering imperfect-quality and price-quantity discounts in a multiple sourcing environment

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Ter; Chen, Huang-Mu; Zhuang, Zheng-Yun

    2014-05-01

    Supplier selection (SS) is a multi-criteria and multi-objective problem, in which multi-segment (e.g. imperfect-quality discount (IQD) and price-quantity discount (PQD)) and multi-aspiration level problems may be significantly important; however, little attention had been given to dealing with both of them simultaneously in the past. This study proposes a model for integrating multi-choice goal programming and multi-segment goal programming to solve the above-mentioned problems by providing the following main contributions: (1) it allows decision-makers to set multiple aspiration levels on the right-hand side of each goal to suit real-world situations, (2) the PQD and IQD conditions are considered in the proposed model simultaneously and (3) the proposed model can solve a SS problem with n suppliers where each supplier offers m IQD with r PQD intervals, where only ? extra binary variables are required. The usefulness of the proposed model is explained using a real case. The results indicate that the proposed model not only can deal with a SS problem with multi-segment and multi-aspiration levels, but also can help the decision-maker to find the appropriate order quantities for each supplier by considering cost, quality and delivery.

  16. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options.

  17. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes

    PubMed Central

    Curtis, Janelle M.R.

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options. PMID:27547529

  18. Integrating macro and micro scale approaches in the agent-based modeling of residential dynamics

    NASA Astrophysics Data System (ADS)

    Saeedi, Sara

    2018-06-01

    With the advancement of computational modeling and simulation (M&S) methods as well as data collection technologies, urban dynamics modeling substantially improved over the last several decades. The complex urban dynamics processes are most effectively modeled not at the macro-scale, but following a bottom-up approach, by simulating the decisions of individual entities, or residents. Agent-based modeling (ABM) provides the key to a dynamic M&S framework that is able to integrate socioeconomic with environmental models, and to operate at both micro and macro geographical scales. In this study, a multi-agent system is proposed to simulate residential dynamics by considering spatiotemporal land use changes. In the proposed ABM, macro-scale land use change prediction is modeled by Artificial Neural Network (ANN) and deployed as the agent environment and micro-scale residential dynamics behaviors autonomously implemented by household agents. These two levels of simulation interacted and jointly promoted urbanization process in an urban area of Tehran city in Iran. The model simulates the behavior of individual households in finding ideal locations to dwell. The household agents are divided into three main groups based on their income rank and they are further classified into different categories based on a number of attributes. These attributes determine the households' preferences for finding new dwellings and change with time. The ABM environment is represented by a land-use map in which the properties of the land parcels change dynamically over the simulation time. The outputs of this model are a set of maps showing the pattern of different groups of households in the city. These patterns can be used by city planners to find optimum locations for building new residential units or adding new services to the city. The simulation results show that combining macro- and micro-level simulation can give full play to the potential of the ABM to understand the driving mechanism of urbanization and provide decision-making support for urban management.

  19. A formulation of multidimensional growth models for the assessment and forecast of technology attributes

    NASA Astrophysics Data System (ADS)

    Danner, Travis W.

    Developing technology systems requires all manner of investment---engineering talent, prototypes, test facilities, and more. Even for simple design problems the investment can be substantial; for complex technology systems, the development costs can be staggering. The profitability of a corporation in a technology-driven industry is crucially dependent on maximizing the effectiveness of research and development investment. Decision-makers charged with allocation of this investment are forced to choose between the further evolution of existing technologies and the pursuit of revolutionary technologies. At risk on the one hand is excessive investment in an evolutionary technology which has only limited availability for further improvement. On the other hand, the pursuit of a revolutionary technology may mean abandoning momentum and the potential for substantial evolutionary improvement resulting from the years of accumulated knowledge. The informed answer to this question, evolutionary or revolutionary, requires knowledge of the expected rate of improvement and the potential a technology offers for further improvement. This research is dedicated to formulating the assessment and forecasting tools necessary to acquire this knowledge. The same physical laws and principles that enable the development and improvement of specific technologies also limit the ultimate capability of those technologies. Researchers have long used this concept as the foundation for modeling technological advancement through extrapolation by analogy to biological growth models. These models are employed to depict technology development as it asymptotically approaches limits established by the fundamental principles on which the technological approach is based. This has proven an effective and accurate approach to modeling and forecasting simple single-attribute technologies. With increased system complexity and the introduction of multiple system objectives, however, the usefulness of this modeling technique begins to diminish. With the introduction of multiple objectives, researchers often abandon technology growth models for scoring models and technology frontiers. While both approaches possess advantages over current growth models for the assessment of multi-objective technologies, each lacks a necessary dimension for comprehensive technology assessment. By collapsing multiple system metrics into a single, non-intuitive technology measure, scoring models provide a succinct framework for multi-objective technology assessment and forecasting. Yet, with no consideration of physical limits, scoring models provide no insight as to the feasibility of a particular combination of system capabilities. They only indicate that a given combination of system capabilities yields a particular score. Conversely, technology frontiers are constructed with the distinct objective of providing insight into the feasibility of system capability combinations. Yet again, upper limits to overall system performance are ignored. Furthermore, the data required to forecast subsequent technology frontiers is often inhibitive. In an attempt to reincorporate the fundamental nature of technology advancement as bound by physical principles, researchers have sought to normalize multi-objective systems whereby the variability of a single system objective is eliminated as a result of changes in the remaining objectives. This drastically limits the applicability of the resulting technology model because it is only applicable for a single setting of all other system attributes. Attempts to maintain the interaction between the growth curves of each technical objective of a complex system have thus far been limited to qualitative and subjective consideration. This research proposes the formulation of multidimensional growth models as an approach to simulating the advancement of multi-objective technologies towards their upper limits. Multidimensional growth models were formulated by noticing and exploiting the correlation between technology growth models and technology frontiers. Both are frontiers in actuality. The technology growth curve is a frontier between capability levels of a single attribute and time, while a technology frontier is a frontier between the capability levels of two or more attributes. Multidimensional growth models are formulated by exploiting the mathematical significance of this correlation. The result is a model that can capture both the interaction between multiple system attributes and their expected rates of improvement over time. The fundamental nature of technology development is maintained, and interdependent growth curves are generated for each system metric with minimal data requirements. Being founded on the basic nature of technology advancement, relative to physical limits, the availability for further improvement can be determined for a single metric relative to other system measures of merit. A by-product of this modeling approach is a single n-dimensional technology frontier linking all n system attributes with time. This provides an environment capable of forecasting future system capability in the form of advancing technology frontiers. The ability of a multidimensional growth model to capture the expected improvement of a specific technological approach is dependent on accurately identifying the physical limitations to each pertinent attribute. This research investigates two potential approaches to identifying those physical limits, a physics-based approach and a regression-based approach. The regression-based approach has found limited acceptance among forecasters, although it does show potential for estimating upper limits with a specified degree of uncertainty. Forecasters have long favored physics-based approaches for establishing the upper limit to unidimensional growth models. The task of accurately identifying upper limits has become increasingly difficult with the extension of growth models into multiple dimensions. A lone researcher may be able to identify the physical limitation to a single attribute of a simple system; however, as system complexity and the number of attributes increases, the attention of researchers from multiple fields of study is required. Thus, limit identification is itself an area of research and development requiring some level of investment. Whether estimated by physics or regression-based approaches, predicted limits will always have some degree of uncertainty. This research takes the approach of quantifying the impact of that uncertainty on model forecasts rather than heavily endorsing a single technique to limit identification. In addition to formulating the multidimensional growth model, this research provides a systematic procedure for applying that model to specific technology architectures. Researchers and decision-makers are able to investigate the potential for additional improvement within that technology architecture and to estimate the expected cost of each incremental improvement relative to the cost of past improvements. In this manner, multidimensional growth models provide the necessary information to set reasonable program goals for the further evolution of a particular technological approach or to establish the need for revolutionary approaches in light of the constraining limits of conventional approaches.

  20. Stakeholder engagement in dredged material management decisions.

    PubMed

    Collier, Zachary A; Bates, Matthew E; Wood, Matthew D; Linkov, Igor

    2014-10-15

    Dredging and disposal issues often become controversial with local stakeholders because of their competing interests. These interests tend to manifest themselves in stakeholders holding onto entrenched positions, and deadlock can result without a methodology to move the stakeholder group past the status quo. However, these situations can be represented as multi-stakeholder, multi-criteria decision problems. In this paper, we describe a case study in which multi-criteria decision analysis was implemented in a multi-stakeholder setting in order to generate recommendations on dredged material placement for Long Island Sound's Dredged Material Management Plan. A working-group of representatives from various stakeholder organizations was formed and consulted to help prioritize sediment placement sites for each dredging center in the region by collaboratively building a multi-criteria decision model. The resulting model framed the problem as several alternatives, criteria, sub-criteria, and metrics relevant to stakeholder interests in the Long Island Sound region. An elicitation of values, represented as criteria weights, was then conducted. Results show that in general, stakeholders tended to agree that all criteria were at least somewhat important, and on average there was strong agreement on the order of preferences among the diverse groups of stakeholders. By developing the decision model iteratively with stakeholders as a group and soliciting their preferences, the process sought to increase stakeholder involvement at the front-end of the prioritization process and lead to increased knowledge and consensus regarding the importance of site-specific criteria. Published by Elsevier B.V.

  1. A Monte-Carlo game theoretic approach for Multi-Criteria Decision Making under uncertainty

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh; Lund, Jay R.

    2011-05-01

    Game theory provides a useful framework for studying Multi-Criteria Decision Making problems. This paper suggests modeling Multi-Criteria Decision Making problems as strategic games and solving them using non-cooperative game theory concepts. The suggested method can be used to prescribe non-dominated solutions and also can be used as a method to predict the outcome of a decision making problem. Non-cooperative stability definitions for solving the games allow consideration of non-cooperative behaviors, often neglected by other methods which assume perfect cooperation among decision makers. To deal with the uncertainty in input variables a Monte-Carlo Game Theory (MCGT) approach is suggested which maps the stochastic problem into many deterministic strategic games. The games are solved using non-cooperative stability definitions and the results include possible effects of uncertainty in input variables on outcomes. The method can handle multi-criteria multi-decision-maker problems with uncertainty. The suggested method does not require criteria weighting, developing a compound decision objective, and accurate quantitative (cardinal) information as it simplifies the decision analysis by solving problems based on qualitative (ordinal) information, reducing the computational burden substantially. The MCGT method is applied to analyze California's Sacramento-San Joaquin Delta problem. The suggested method provides insights, identifies non-dominated alternatives, and predicts likely decision outcomes.

  2. The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull

    PubMed Central

    Gröning, Flora; Jones, Marc E. H.; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.

    2013-01-01

    Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944

  3. Value-Based Assessment of New Medical Technologies: Towards a Robust Methodological Framework for the Application of Multiple Criteria Decision Analysis in the Context of Health Technology Assessment.

    PubMed

    Angelis, Aris; Kanavos, Panos

    2016-05-01

    In recent years, multiple criteria decision analysis (MCDA) has emerged as a likely alternative to address shortcomings in health technology assessment (HTA) by offering a more holistic perspective to value assessment and acting as an alternative priority setting tool. In this paper, we argue that MCDA needs to subscribe to robust methodological processes related to the selection of objectives, criteria and attributes in order to be meaningful in the context of healthcare decision making and fulfil its role in value-based assessment (VBA). We propose a methodological process, based on multi-attribute value theory (MAVT) methods comprising five distinct phases, outline the stages involved in each phase and discuss their relevance in the HTA process. Importantly, criteria and attributes need to satisfy a set of desired properties, otherwise the outcome of the analysis can produce spurious results and misleading recommendations. Assuming the methodological process we propose is adhered to, the application of MCDA presents three very distinct advantages to decision makers in the context of HTA and VBA: first, it acts as an instrument for eliciting preferences on the performance of alternative options across a wider set of explicit criteria, leading to a more complete assessment of value; second, it allows the elicitation of preferences across the criteria themselves to reflect differences in their relative importance; and, third, the entire process of preference elicitation can be informed by direct stakeholder engagement, and can therefore reflect their own preferences. All features are fully transparent and facilitate decision making.

  4. Multi Criteria Evaluation Module for RiskChanges Spatial Decision Support System

    NASA Astrophysics Data System (ADS)

    Olyazadeh, Roya; Jaboyedoff, Michel; van Westen, Cees; Bakker, Wim

    2015-04-01

    Multi-Criteria Evaluation (MCE) module is one of the five modules of RiskChanges spatial decision support system. RiskChanges web-based platform aims to analyze changes in hydro-meteorological risk and provides tools for selecting the best risk reduction alternative. It is developed under CHANGES framework (changes-itn.eu) and INCREO project (increo-fp7.eu). MCE tool helps decision makers and spatial planners to evaluate, sort and rank the decision alternatives. The users can choose among different indicators that are defined within the system using Risk and Cost Benefit analysis results besides they can add their own indicators. Subsequently the system standardizes and prioritizes them. Finally, the best decision alternative is selected by using the weighted sum model (WSM). The Application of this work is to facilitate the effect of MCE for analyzing changing risk over the time under different scenarios and future years by adopting a group decision making into practice and comparing the results by numeric and graphical view within the system. We believe that this study helps decision-makers to achieve the best solution by expressing their preferences for strategies under future scenarios. Keywords: Multi-Criteria Evaluation, Spatial Decision Support System, Weighted Sum Model, Natural Hazard Risk Management

  5. Measuring sustainable development using a multi-criteria model: a case study.

    PubMed

    Boggia, Antonio; Cortina, Carla

    2010-11-01

    This paper shows how Multi-criteria Decision Analysis (MCDA) can help in a complex process such as the assessment of the level of sustainability of a certain area. The paper presents the results of a study in which a model for measuring sustainability was implemented to better aid public policy decisions regarding sustainability. In order to assess sustainability in specific areas, a methodological approach based on multi-criteria analysis has been developed. The aim is to rank areas in order to understand the specific technical and/or financial support that they need to develop sustainable growth. The case study presented is an assessment of the level of sustainability in different areas of an Italian Region using the MCDA approach. Our results show that MCDA is a proper approach for sustainability assessment. The results are easy to understand and the evaluation path is clear and transparent. This is what decision makers need for having support to their decisions. The multi-criteria model for evaluation has been developed respecting the sustainable development economic theory, so that final results can have a clear meaning in terms of sustainability. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Delivering Value In A Global Aerospace Manufacturer Through The Effective Use Of Numerical Process Simulation

    NASA Astrophysics Data System (ADS)

    Ward, M. J.; Walløe, S. J.

    2004-06-01

    Numerical models are used extensively in the aerospace sector to identify appropriate manufacturing parameters, and to minimize the risk associated with new product introduction and manufacturing change. This usage is equally prevalent in original equipment manufacturers (OEMs), and in their supply chains. The wide range of manufacturing processes and production environments involved, coupled with the varying degrees of technology maturity associated with numerical models of different processes leads to a situation of significant complexity from the OEM perspective. In addition, the intended use of simulation technology can vary considerably between applications, from simple geometric assessment of die shape at one extreme, to full process design or development at the other. Consequently there is an increasing trend towards multi-scale modelling, i.e. the use of several different model types, with differing attributes in terms of accuracy and speed to support a range of different new product introduction decisions. This makes the allocation of appropriate levels of activity to the research and implementation of new capabilities a difficult problem. This paper uses a number of industrial cases studies to illustrate a framework for making such allocation decisions such that value to the OEM is maximized, and investigates how such a framework is likely to shift over the next few years based on technological developments.

  7. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    PubMed

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Multi-objective game-theory models for conflict analysis in reservoir watershed management.

    PubMed

    Lee, Chih-Sheng

    2012-05-01

    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Sustainability assessment of tertiary wastewater treatment technologies: a multi-criteria analysis.

    PubMed

    Plakas, K V; Georgiadis, A A; Karabelas, A J

    2016-01-01

    The multi-criteria analysis gives the opportunity to researchers, designers and decision-makers to examine decision options in a multi-dimensional fashion. On this basis, four tertiary wastewater treatment (WWT) technologies were assessed regarding their sustainability performance in producing recycled wastewater, considering a 'triple bottom line' approach (i.e. economic, environmental, and social). These are powdered activated carbon adsorption coupled with ultrafiltration membrane separation (PAC-UF), reverse osmosis, ozone/ultraviolet-light oxidation and heterogeneous photo-catalysis coupled with low-pressure membrane separation (photocatalytic membrane reactor, PMR). The participatory method called simple multi-attribute rating technique exploiting ranks was employed for assigning weights to selected sustainability indicators. This sustainability assessment approach resulted in the development of a composite index as a final metric, for each WWT technology evaluated. The PAC-UF technology appears to be the most appropriate technology, attaining the highest composite value regarding the sustainability performance. A scenario analysis confirmed the results of the original scenario in five out of seven cases. In parallel, the PMR was highlighted as the technology with the least variability in its performance. Nevertheless, additional actions and approaches are proposed to strengthen the objectivity of the final results.

  10. District Heating Systems Performance Analyses. Heat Energy Tariff

    NASA Astrophysics Data System (ADS)

    Ziemele, Jelena; Vigants, Girts; Vitolins, Valdis; Blumberga, Dagnija; Veidenbergs, Ivars

    2014-12-01

    The paper addresses an important element of the European energy sector: the evaluation of district heating (DH) system operations from the standpoint of increasing energy efficiency and increasing the use of renewable energy resources. This has been done by developing a new methodology for the evaluation of the heat tariff. The paper presents an algorithm of this methodology, which includes not only a data base and calculation equation systems, but also an integrated multi-criteria analysis module using MADM/MCDM (Multi-Attribute Decision Making / Multi-Criteria Decision Making) based on TOPSIS (Technique for Order Performance by Similarity to Ideal Solution). The results of the multi-criteria analysis are used to set the tariff benchmarks. The evaluation methodology has been tested for Latvian heat tariffs, and the obtained results show that only half of heating companies reach a benchmark value equal to 0.5 for the efficiency closeness to the ideal solution indicator. This means that the proposed evaluation methodology would not only allow companies to determine how they perform with regard to the proposed benchmark, but also to identify their need to restructure so that they may reach the level of a low-carbon business.

  11. Judgement heuristics and bias in evidence interpretation: The effects of computer generated exhibits.

    PubMed

    Norris, Gareth

    2015-01-01

    The increasing use of multi-media applications, trial presentation software and computer generated exhibits (CGE) has raised questions as to the potential impact of the use of presentation technology on juror decision making. A significant amount of the commentary on the manner in which CGE exerts legal influence is largely anecdotal; empirical examinations too are often devoid of established theoretical rationalisations. This paper will examine a range of established judgement heuristics (for example, the attribution error, representativeness, simulation), in order to establish their appropriate application for comprehending legal decisions. Analysis of both past cases and empirical studies will highlight the potential for heuristics and biases to be restricted or confounded by the use of CGE. The paper will conclude with some wider discussion on admissibility, access to justice, and emerging issues in the use of multi-media in court. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Developing Access Control Model of Web OLAP over Trusted and Collaborative Data Warehouses

    NASA Astrophysics Data System (ADS)

    Fugkeaw, Somchart; Mitrpanont, Jarernsri L.; Manpanpanich, Piyawit; Juntapremjitt, Sekpon

    This paper proposes the design and development of Role- based Access Control (RBAC) model for the Single Sign-On (SSO) Web-OLAP query spanning over multiple data warehouses (DWs). The model is based on PKI Authentication and Privilege Management Infrastructure (PMI); it presents a binding model of RBAC authorization based on dimension privilege specified in attribute certificate (AC) and user identification. Particularly, the way of attribute mapping between DW user authentication and privilege of dimensional access is illustrated. In our approach, we apply the multi-agent system to automate flexible and effective management of user authentication, role delegation as well as system accountability. Finally, the paper culminates in the prototype system A-COLD (Access Control of web-OLAP over multiple DWs) that incorporates the OLAP features and authentication and authorization enforcement in the multi-user and multi-data warehouse environment.

  13. A Probabilistic, Dynamic, and Attribute-wise Model of Intertemporal Choice

    PubMed Central

    Dai, Junyi; Busemeyer, Jerome R.

    2014-01-01

    Most theoretical and empirical research on intertemporal choice assumes a deterministic and static perspective, leading to the widely adopted delay discounting models. As a form of preferential choice, however, intertemporal choice may be generated by a stochastic process that requires some deliberation time to reach a decision. We conducted three experiments to investigate how choice and decision time varied as a function of manipulations designed to examine the delay duration effect, the common difference effect, and the magnitude effect in intertemporal choice. The results, especially those associated with the delay duration effect, challenged the traditional deterministic and static view and called for alternative approaches. Consequently, various static or dynamic stochastic choice models were explored and fit to the choice data, including alternative-wise models derived from the traditional exponential or hyperbolic discount function and attribute-wise models built upon comparisons of direct or relative differences in money and delay. Furthermore, for the first time, dynamic diffusion models, such as those based on decision field theory, were also fit to the choice and response time data simultaneously. The results revealed that the attribute-wise diffusion model with direct differences, power transformations of objective value and time, and varied diffusion parameter performed the best and could account for all three intertemporal effects. In addition, the empirical relationship between choice proportions and response times was consistent with the prediction of diffusion models and thus favored a stochastic choice process for intertemporal choice that requires some deliberation time to make a decision. PMID:24635188

  14. A Three Stage Multi-attribute Procurement Auction: A Proposal for Department of Defense (DoD) Vendor Selection Decisions.

    DTIC Science & Technology

    2010-04-30

    regarding production capabilities and costs, but must somehow form beliefs about the likelihood of a bid being accepted. We facilitate formulation...which both vendors believe the buyer places equal weight on the two attributes, but the vendors differ in their capabilities of producing those...exchange—the future of B2B . Harvard Business Review, 78(6), 86-96. = ^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 444= k^s^i

  15. Smart Grid as Multi-layer Interacting System for Complex Decision Makings

    NASA Astrophysics Data System (ADS)

    Bompard, Ettore; Han, Bei; Masera, Marcelo; Pons, Enrico

    This chapter presents an approach to the analysis of Smart Grids based on a multi-layer representation of their technical, cyber, social and decision-making aspects, as well as the related environmental constraints. In the Smart Grid paradigm, self-interested active customers (prosumers), system operators and market players interact among themselves making use of an extensive cyber infrastructure. In addition, policy decision makers define regulations, incentives and constraints to drive the behavior of the competing operators and prosumers, with the objective of ensuring the global desired performance (e.g. system stability, fair prices). For these reasons, the policy decision making is more complicated than in traditional power systems, and needs proper modeling and simulation tools for assessing "in vitro" and ex-ante the possible impacts of the decisions assumed. In this chapter, we consider the smart grids as multi-layered interacting complex systems. The intricacy of the framework, characterized by several interacting layers, cannot be captured by closed-form mathematical models. Therefore, a new approach using Multi Agent Simulation is described. With case studies we provide some indications about how to develop agent-based simulation tools presenting some preliminary examples.

  16. Multi-disciplinary team meetings in stroke rehabilitation: an observation study and conceptual framework.

    PubMed

    Tyson, S F; Burton, L; McGovern, A

    2014-12-01

    To explore how multi-disciplinary team meetings operate in stroke rehabilitation. Non-participant observation of multi-disciplinary team meetings and semi-structured interviews with attending staff. Twelve meetings were observed (at least one at each site) and 18 staff (one psychologist, one social worker; four nurses; four physiotherapists four occupational therapists, two speech and language therapists, one stroke co-ordinator and one stroke ward manager) were interviewed in eight in-patient stroke rehabilitation units. Multi-disciplinary team meetings in stroke rehabilitation were complex, demanding and highly varied. A model emerged which identified the main inputs to influence conduct of the meetings were personal contributions of the members and structure and format of the meetings. These were mediated by the team climate and leadership skills of the chair. The desired outputs; clinical decisions and the attributes of apparently effective meetings were identified by the staff. A notable difference between the meetings that staff considered effective and those that were not, was their structure and format. Successful meetings tended to feature a set agenda, structured documentation; formal use of measurement tools; pre-meeting preparation and skilled chairing. These features were often absent in meetings perceived to be ineffective. The main features of operation of multi-disciplinary team meetings have been identified which will enable assessment tools and interventions to improve effectiveness to be developed. © The Author(s) 2014.

  17. Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer.

    PubMed

    Smith, Wade P; Kim, Minsun; Holdsworth, Clay; Liao, Jay; Phillips, Mark H

    2016-03-11

    To build a new treatment planning approach that extends beyond radiation transport and IMRT optimization by modeling the radiation therapy process and prognostic indicators for more outcome-focused decision making. An in-house treatment planning system was modified to include multiobjective inverse planning, a probabilistic outcome model, and a multi-attribute decision aid. A genetic algorithm generated a set of plans embodying trade-offs between the separate objectives. An influence diagram network modeled the radiation therapy process of prostate cancer using expert opinion, results of clinical trials, and published research. A Markov model calculated a quality adjusted life expectancy (QALE), which was the endpoint for ranking plans. The Multiobjective Evolutionary Algorithm (MOEA) was designed to produce an approximation of the Pareto Front representing optimal tradeoffs for IMRT plans. Prognostic information from the dosimetrics of the plans, and from patient-specific clinical variables were combined by the influence diagram. QALEs were calculated for each plan for each set of patient characteristics. Sensitivity analyses were conducted to explore changes in outcomes for variations in patient characteristics and dosimetric variables. The model calculated life expectancies that were in agreement with an independent clinical study. The radiation therapy model proposed has integrated a number of different physical, biological and clinical models into a more comprehensive model. It illustrates a number of the critical aspects of treatment planning that can be improved and represents a more detailed description of the therapy process. A Markov model was implemented to provide a stronger connection between dosimetric variables and clinical outcomes and could provide a practical, quantitative method for making difficult clinical decisions.

  18. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China

    PubMed Central

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-01-01

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution. PMID:26308032

  19. Identification of Major Risk Sources for Surface Water Pollution by Risk Indexes (RI) in the Multi-Provincial Boundary Region of the Taihu Basin, China.

    PubMed

    Yao, Hong; Li, Weixin; Qian, Xin

    2015-08-21

    Environmental safety in multi-district boundary regions has been one of the focuses in China and is mentioned many times in the Environmental Protection Act of 2014. Five types were categorized concerning the risk sources for surface water pollution in the multi-provincial boundary region of the Taihu basin: production enterprises, waste disposal sites, chemical storage sites, agricultural non-point sources and waterway transportations. Considering the hazard of risk sources, the purification property of environmental medium and the vulnerability of risk receptors, 52 specific attributes on the risk levels of each type of risk source were screened out. Continuous piecewise linear function model, expert consultation method and fuzzy integral model were used to calculate the integrated risk indexes (RI) to characterize the risk levels of pollution sources. In the studied area, 2716 pollution sources were characterized by RI values. There were 56 high-risk sources screened out as major risk sources, accounting for about 2% of the total. The numbers of sources with high-moderate, moderate, moderate-low and low pollution risk were 376, 1059, 101 and 1124, respectively, accounting for 14%, 38%, 5% and 41% of the total. The procedure proposed could be included in the integrated risk management systems of the multi-district boundary region of the Taihu basin. It could help decision makers to identify major risk sources in the risk prevention and reduction of surface water pollution.

  20. Geographic Profiling: Knowledge Through Prediction

    DTIC Science & Technology

    2014-06-01

    FTO Foreign Terrorist Organization GIS geographic information systems LE lawless elements MADM multi-attribute decision making MILF Moro Islamic...or her life. Anchor points can include the offender’s home , his or her workplace, a home of a friend of the offender, or even a bar or restaurant...more generally for the improvement of police patrols. In Memphis, TN, city officials have seen a decrease in crime with the help of operation Blue

  1. Accurate prediction of personalized olfactory perception from large-scale chemoinformatic features.

    PubMed

    Li, Hongyang; Panwar, Bharat; Omenn, Gilbert S; Guan, Yuanfang

    2018-02-01

    The olfactory stimulus-percept problem has been studied for more than a century, yet it is still hard to precisely predict the odor given the large-scale chemoinformatic features of an odorant molecule. A major challenge is that the perceived qualities vary greatly among individuals due to different genetic and cultural backgrounds. Moreover, the combinatorial interactions between multiple odorant receptors and diverse molecules significantly complicate the olfaction prediction. Many attempts have been made to establish structure-odor relationships for intensity and pleasantness, but no models are available to predict the personalized multi-odor attributes of molecules. In this study, we describe our winning algorithm for predicting individual and population perceptual responses to various odorants in the DREAM Olfaction Prediction Challenge. We find that random forest model consisting of multiple decision trees is well suited to this prediction problem, given the large feature spaces and high variability of perceptual ratings among individuals. Integrating both population and individual perceptions into our model effectively reduces the influence of noise and outliers. By analyzing the importance of each chemical feature, we find that a small set of low- and nondegenerative features is sufficient for accurate prediction. Our random forest model successfully predicts personalized odor attributes of structurally diverse molecules. This model together with the top discriminative features has the potential to extend our understanding of olfactory perception mechanisms and provide an alternative for rational odorant design.

  2. ANFIS multi criteria decision making for overseas construction projects: a methodology

    NASA Astrophysics Data System (ADS)

    Utama, W. P.; Chan, A. P. C.; Zulherman; Zahoor, H.; Gao, R.; Jumas, D. Y.

    2018-02-01

    A critical part when a company targeting a foreign market is how to make a better decision in connection with potential project selection. Since different attributes of information are often incomplete, imprecise and ill-defined in overseas projects selection, the process of decision making by relying on the experiences and intuition is a risky attitude. This paper aims to demonstrate a decision support method in deciding overseas construction projects (OCPs). An Adaptive Neuro-Fuzzy Inference System (ANFIS), the amalgamation of Neural Network and Fuzzy Theory, was used as decision support tool to decide to go or not go on OCPs. Root mean square error (RMSE) and coefficient of correlation (R) were employed to identify the ANFIS system indicating an optimum and efficient result. The optimum result was obtained from ANFIS network with two input membership functions, Gaussian membership function (gaussmf) and hybrid optimization method. The result shows that ANFIS may help the decision-making process for go/not go decision in OCPs.

  3. [Treatment Decision-Making Process of Cancer Patients].

    PubMed

    Lee, Shiu-Yu C Katie

    2016-10-01

    The decision-making process that is used by cancer patients to determine their treatment has become more multi-foci, difficult and complicated in recent years. This has in part been attributed to the increasing incidence rate of cancer in Taiwan and the rapid development of medical technologies and treatment modalities. Oncology nurses must assist patients and family to make informed and value-based treatment decisions. Decision-making is an information process that involves appraising one's own expectation and values based on his/her knowledge on cancer and treatment options. Because cancer treatment involves risks and uncertainties, and impacts quality of life, the treatment decision-making for cancer is often stressful, or even conflicting. This paper discusses the decision-making behaviors of cancer patients and the decisional conflict, participation, and informational needs that are involved in cancer treatment. The trend toward shared decision-making and decisional support will be also explored in order to facilitate the future development of appropriate clinical interventions and research.

  4. Supporting multi-stakeholder environmental decisions.

    PubMed

    Hajkowicz, Stefan A

    2008-09-01

    This paper examines how multiple criteria analysis (MCA) can be used to support multi-stakeholder environmental management decisions. It presents a study through which 48 stakeholders from environmental, primary production and community interest groups used MCA to prioritise 30 environmental management problems in the Mackay-Whitsunday region of Queensland, Australia. The MCA model, with procedures for aggregating multi-stakeholder output, was used to inform a final decision on the priority of the region's environmental management problems. The result was used in the region's environmental management plan as required under Australia's Natural Heritage Trust programme. The study shows how relatively simple MCA methods can help stakeholders make group decisions, even when they hold strongly conflicting preferences.

  5. Investigating the multi-causal and complex nature of the accident causal influence of construction project features.

    PubMed

    Manu, Patrick A; Ankrah, Nii A; Proverbs, David G; Suresh, Subashini

    2012-09-01

    Construction project features (CPFs) are organisational, physical and operational attributes that characterise construction projects. Although previous studies have examined the accident causal influence of CPFs, the multi-causal attribute of this causal phenomenon still remain elusive and thus requires further investigation. Aiming to shed light on this facet of the accident causal phenomenon of CPFs, this study examines relevant literature and crystallises the attained insight of the multi-causal attribute by a graphical model which is subsequently operationalised by a derived mathematical risk expression that offers a systematic approach for evaluating the potential of CPFs to cause harm and consequently their health and safety (H&S) risk implications. The graphical model and the risk expression put forth by the study thus advance current understanding of the accident causal phenomenon of CPFs and they present an opportunity for project participants to manage the H&S risk associated with CPFs from the early stages of project procurement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Decision making for Pap testing among Pacific Islander women.

    PubMed

    Weiss, Jie W; Mouttapa, Michele; Sablan-Santos, Lola; DeGuzman Lacsamana, Jasmine; Quitugua, Lourdes; Park Tanjasiri, Sora

    2016-12-01

    This study employed a Multi-Attribute Utility (MAU) model to examine the Pap test decision-making process among Pacific Islanders (PI) residing in Southern California. A total of 585 PI women were recruited through social networks from Samoan and Tongan churches, and Chamorro family clans. A questionnaire assessed Pap test knowledge, beliefs and past behaviour. The three MAU parameters of subjective value, subjective probability and momentary salience were measured for eight anticipated consequences of having a Pap test (e.g., feeling embarrassed, spending money). Logistic regression indicated that women who had a Pap test (Pap women) had higher total MAU utility scores compared to women who had not had a Pap test within the past three years (No Pap women) (adjusted Odds Ratio = 1.10). In particular, Pap women had higher utilities for the positive consequences 'Detecting cervical cancer early, Peace of mind, and Protecting my family', compared to No Pap women. It is concluded that the connection between utility and behaviour offers a promising pathway toward a better understanding of the decision to undergo Pap testing. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Estimation of Survival Probabilities for Use in Cost-effectiveness Analyses: A Comparison of a Multi-state Modeling Survival Analysis Approach with Partitioned Survival and Markov Decision-Analytic Modeling

    PubMed Central

    Williams, Claire; Lewsey, James D.; Mackay, Daniel F.; Briggs, Andrew H.

    2016-01-01

    Modeling of clinical-effectiveness in a cost-effectiveness analysis typically involves some form of partitioned survival or Markov decision-analytic modeling. The health states progression-free, progression and death and the transitions between them are frequently of interest. With partitioned survival, progression is not modeled directly as a state; instead, time in that state is derived from the difference in area between the overall survival and the progression-free survival curves. With Markov decision-analytic modeling, a priori assumptions are often made with regard to the transitions rather than using the individual patient data directly to model them. This article compares a multi-state modeling survival regression approach to these two common methods. As a case study, we use a trial comparing rituximab in combination with fludarabine and cyclophosphamide v. fludarabine and cyclophosphamide alone for the first-line treatment of chronic lymphocytic leukemia. We calculated mean Life Years and QALYs that involved extrapolation of survival outcomes in the trial. We adapted an existing multi-state modeling approach to incorporate parametric distributions for transition hazards, to allow extrapolation. The comparison showed that, due to the different assumptions used in the different approaches, a discrepancy in results was evident. The partitioned survival and Markov decision-analytic modeling deemed the treatment cost-effective with ICERs of just over £16,000 and £13,000, respectively. However, the results with the multi-state modeling were less conclusive, with an ICER of just over £29,000. This work has illustrated that it is imperative to check whether assumptions are realistic, as different model choices can influence clinical and cost-effectiveness results. PMID:27698003

  8. Estimation of Survival Probabilities for Use in Cost-effectiveness Analyses: A Comparison of a Multi-state Modeling Survival Analysis Approach with Partitioned Survival and Markov Decision-Analytic Modeling.

    PubMed

    Williams, Claire; Lewsey, James D; Mackay, Daniel F; Briggs, Andrew H

    2017-05-01

    Modeling of clinical-effectiveness in a cost-effectiveness analysis typically involves some form of partitioned survival or Markov decision-analytic modeling. The health states progression-free, progression and death and the transitions between them are frequently of interest. With partitioned survival, progression is not modeled directly as a state; instead, time in that state is derived from the difference in area between the overall survival and the progression-free survival curves. With Markov decision-analytic modeling, a priori assumptions are often made with regard to the transitions rather than using the individual patient data directly to model them. This article compares a multi-state modeling survival regression approach to these two common methods. As a case study, we use a trial comparing rituximab in combination with fludarabine and cyclophosphamide v. fludarabine and cyclophosphamide alone for the first-line treatment of chronic lymphocytic leukemia. We calculated mean Life Years and QALYs that involved extrapolation of survival outcomes in the trial. We adapted an existing multi-state modeling approach to incorporate parametric distributions for transition hazards, to allow extrapolation. The comparison showed that, due to the different assumptions used in the different approaches, a discrepancy in results was evident. The partitioned survival and Markov decision-analytic modeling deemed the treatment cost-effective with ICERs of just over £16,000 and £13,000, respectively. However, the results with the multi-state modeling were less conclusive, with an ICER of just over £29,000. This work has illustrated that it is imperative to check whether assumptions are realistic, as different model choices can influence clinical and cost-effectiveness results.

  9. Parameter Estimation of Computationally Expensive Watershed Models Through Efficient Multi-objective Optimization and Interactive Decision Analytics

    NASA Astrophysics Data System (ADS)

    Akhtar, Taimoor; Shoemaker, Christine

    2016-04-01

    Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual analytics framework for decision support in selection of one parameter combination from the alternatives identified in Stage 2. HAMS is applied for calibration of flow parameters of a SWAT model, (Soil and Water Assessment Tool) designed to simulate flow in the Cannonsville watershed in upstate New York. Results from the application of HAMS to Cannonsville indicate that efficient multi-objective optimization and interactive visual and metric based analytics can bridge the gap between the effective use of both automatic and manual strategies for parameter estimation of computationally expensive watershed models.

  10. Discussion about decision support systems using continuous multi-criteria methods for planning in areas with hydro-basins, agriculture and forests, from examples in Argentine.

    NASA Astrophysics Data System (ADS)

    Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Andina, D.; Cisneros, J. M.; Sanchez, E.

    2012-04-01

    The authors were involved last years in projects considering diverse decision problems on the use of some regions in Argentine, and also related to rivers or rural services in them. They used sets of multi-criteria decision methods, first discrete when the problem included few distinct alternatives, such as e.g. forestry, traditional or intensive agriculture. For attributes they were different effects, classified then in environmental, economic and social criteria. Extending to other gentler areas, such as at South of the Province of Córdoba, Arg., they have balanced more delicately effects of continuous levels of actions, with a combination of Goal Programming linked methods, and they adopted compromises to have precise solutions. That has shown, and in part open, a line of research, as the setting of such models require various kinds of definitions and valuations, including optimizations, goals with penalties in deviations and restrictions. That can be in diverse detail level and horizon, in presence of various technical and human horizons, and that can influence politics of use of terrain and production that will require public and private agents. The research will consider consideration of use and conservation of soils, human systems and agro productions, and hence models for optimization, preferably in such Goal Programming ways. That will require considering various systems of models, first in theory to be reliable, and then in different areas to evaluate the quality of conclusions, and maybe that successively if results are found advantageous. The Bayesian ways will be considered, but they would require a prospective of sets of precise future states of nature or markets with elicited probabilities, which are neither evident nor decisive for the moment, as changes may occur in years but will be very unexpected or uncertain. The results will be lines of models to aid to establish policies of use of territories, by public agencies setting frames for private agents of different size and kinds, with different horizons of climatic and human changes. The usable models will depend somehow on the type of areas, which have different climates and soils, population, markets and maybe civilizations, starting with Argentine examples, if possible compared in cases with Spain.

  11. Selection of adequate site location during early stages of construction project management: A multi-criteria decision analysis approach

    NASA Astrophysics Data System (ADS)

    Marović, Ivan; Hanak, Tomaš

    2017-10-01

    In the management of construction projects special attention should be given to the planning as the most important phase of decision-making process. Quality decision-making based on adequate and comprehensive collaboration of all involved stakeholders is crucial in project’s early stages. Fundamental reasons for existence of this problem arise from: specific conditions of construction industry (final products are inseparable from the location i.e. location has a strong influence of building design and its structural characteristics as well as technology which will be used during construction), investors’ desires and attitudes, and influence of socioeconomic and environment aspects. Considering all mentioned reasons one can conclude that selection of adequate construction site location for future investment is complex, low structured and multi-criteria problem. To take into account all the dimensions, the proposed model for selection of adequate site location is devised. The model is based on AHP (for designing the decision-making hierarchy) and PROMETHEE (for pairwise comparison of investment locations) methods. As a result of mixing basis feature of both methods, operational synergies can be achieved in multi-criteria decision analysis. Such gives the decision-maker a sense of assurance, knowing that if the procedure proposed by the presented model has been followed, it will lead to a rational decision, carefully and systematically thought out.

  12. The cognitive based approach of capacity assessment in psychiatry: a philosophical critique of the MacCAT-T.

    PubMed

    Breden, Torsten Marcus; Vollmann, Jochen

    2004-12-01

    This article gives a brief introduction to the MacArthur Competence Assessment Tool-Treatment (MacCAT-T) and critically examines its theoretical presuppositions. On the basis of empirical, methodological and ethical critique it is emphasised that the cognitive bias that underlies the MacCAT-T assessment needs to be modified. On the one hand it has to be admitted that the operationalisation of competence in terms of value-free categories, e.g. rational decision abilities, guarantees objectivity to a great extent; but on the other hand it bears severe problems. Firstly, the cognitive focus is in itself a normative convention in the process of anthropological value-attribution. Secondly, it misses the complexity of the decision process in real life. It is therefore suggested that values, emotions and other biographic and context specific aspects should be considered when interpreting the cognitive standards according to the MacArthur model. To fill the gap between cognitive and non-cognitive approaches the phenomenological theory of personal constructs is briefly introduced. In conclusion some main demands for further research to develop a multi-step model of competence assessment are outlined.

  13. Development of a multi-criteria evaluation system to assess growing pig welfare.

    PubMed

    Martín, P; Traulsen, I; Buxadé, C; Krieter, J

    2017-03-01

    The aim of this paper was to present an alternative multi-criteria evaluation model to assess animal welfare on farms based on the Welfare Quality® (WQ) project, using an example of welfare assessment of growing pigs. The WQ assessment protocol follows a three-step aggregation process. Measures are aggregated into criteria, criteria into principles and principles into an overall assessment. This study focussed on the first step of the aggregation. Multi-attribute utility theory (MAUT) was used to produce a value of welfare for each criterion. The utility functions and the aggregation function were constructed in two separated steps. The Measuring Attractiveness by a Categorical Based Evaluation Technique (MACBETH) method was used for utility function determination and the Choquet Integral (CI) was used as an aggregation operator. The WQ decision-makers' preferences were fitted in order to construct the utility functions and to determine the CI parameters. The methods were tested with generated data sets for farms of growing pigs. Using the MAUT, similar results were obtained to the ones obtained applying the WQ protocol aggregation methods. It can be concluded that due to the use of an interactive approach such as MACBETH, this alternative methodology is more transparent and more flexible than the methodology proposed by WQ, which allows the possibility to modify the model according, for instance, to new scientific knowledge.

  14. Solving multi-objective optimization problems in conservation with the reference point method

    PubMed Central

    Dujardin, Yann; Chadès, Iadine

    2018-01-01

    Managing the biodiversity extinction crisis requires wise decision-making processes able to account for the limited resources available. In most decision problems in conservation biology, several conflicting objectives have to be taken into account. Most methods used in conservation either provide suboptimal solutions or use strong assumptions about the decision-maker’s preferences. Our paper reviews some of the existing approaches to solve multi-objective decision problems and presents new multi-objective linear programming formulations of two multi-objective optimization problems in conservation, allowing the use of a reference point approach. Reference point approaches solve multi-objective optimization problems by interactively representing the preferences of the decision-maker with a point in the criteria (objectives) space, called the reference point. We modelled and solved the following two problems in conservation: a dynamic multi-species management problem under uncertainty and a spatial allocation resource management problem. Results show that the reference point method outperforms classic methods while illustrating the use of an interactive methodology for solving combinatorial problems with multiple objectives. The method is general and can be adapted to a wide range of ecological combinatorial problems. PMID:29293650

  15. Testing Multi-Alternative Decision Models with Non-Stationary Evidence

    PubMed Central

    Tsetsos, Konstantinos; Usher, Marius; McClelland, James L.

    2011-01-01

    Recent research has investigated the process of integrating perceptual evidence toward a decision, converging on a number of sequential sampling choice models, such as variants of race and diffusion models and the non-linear leaky competing accumulator (LCA) model. Here we study extensions of these models to multi-alternative choice, considering how well they can account for data from a psychophysical experiment in which the evidence supporting each of the alternatives changes dynamically during the trial, in a way that creates temporal correlations. We find that participants exhibit a tendency to choose an alternative whose evidence profile is temporally anti-correlated with (or dissimilar from) that of other alternatives. This advantage of the anti-correlated alternative is well accounted for in the LCA, and provides constraints that challenge several other models of multi-alternative choice. PMID:21603227

  16. Testing multi-alternative decision models with non-stationary evidence.

    PubMed

    Tsetsos, Konstantinos; Usher, Marius; McClelland, James L

    2011-01-01

    Recent research has investigated the process of integrating perceptual evidence toward a decision, converging on a number of sequential sampling choice models, such as variants of race and diffusion models and the non-linear leaky competing accumulator (LCA) model. Here we study extensions of these models to multi-alternative choice, considering how well they can account for data from a psychophysical experiment in which the evidence supporting each of the alternatives changes dynamically during the trial, in a way that creates temporal correlations. We find that participants exhibit a tendency to choose an alternative whose evidence profile is temporally anti-correlated with (or dissimilar from) that of other alternatives. This advantage of the anti-correlated alternative is well accounted for in the LCA, and provides constraints that challenge several other models of multi-alternative choice.

  17. Quality Assurance Decisions with Air Models: A Case Study of ImputatIon of Missing Input Data Using EPA's Multi-Layer Model

    EPA Science Inventory

    Abstract Environmental models are frequently used within regulatory and policy frameworks to estimate environmental metrics that are difficult or impossible to physically measure. As important decision tools, the uncertainty associated with the model outputs should impact their ...

  18. Advanced GPR imaging of sedimentary features: integrated attribute analysis applied to sand dunes

    NASA Astrophysics Data System (ADS)

    Zhao, Wenke; Forte, Emanuele; Fontolan, Giorgio; Pipan, Michele

    2018-04-01

    We evaluate the applicability and the effectiveness of integrated GPR attribute analysis to image the internal sedimentary features of the Piscinas Dunes, SW Sardinia, Italy. The main objective is to explore the limits of GPR techniques to study sediment-bodies geometry and to provide a non-invasive high-resolution characterization of the different subsurface domains of dune architecture. On such purpose, we exploit the high-quality Piscinas data-set to extract and test different attributes of the GPR trace. Composite displays of multi-attributes related to amplitude, frequency, similarity and textural features are displayed with overlays and RGB mixed models. A multi-attribute comparative analysis is used to characterize different radar facies to better understand the characteristics of internal reflection patterns. The results demonstrate that the proposed integrated GPR attribute analysis can provide enhanced information about the spatial distribution of sediment bodies, allowing an enhanced and more constrained data interpretation.

  19. Considering Decision Variable Diversity in Multi-Objective Optimization: Application in Hydrologic Model Calibration

    NASA Astrophysics Data System (ADS)

    Sahraei, S.; Asadzadeh, M.

    2017-12-01

    Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.

  20. Survival or Mortality: Does Risk Attribute Framing Influence Decision-Making Behavior in a Discrete Choice Experiment?

    PubMed

    Veldwijk, Jorien; Essers, Brigitte A B; Lambooij, Mattijs S; Dirksen, Carmen D; Smit, Henriette A; de Wit, G Ardine

    2016-01-01

    To test how attribute framing in a discrete choice experiment (DCE) affects respondents' decision-making behavior and their preferences. Two versions of a DCE questionnaire containing nine choice tasks were distributed among a representative sample of the Dutch population aged 55 to 65 years. The DCE consisted of four attributes related to the decision regarding participation in genetic screening for colorectal cancer (CRC). The risk attribute included was framed positively as the probability of surviving CRC and negatively as the probability of dying from CRC. Panel mixed-logit models were used to estimate the relative importance of the attributes. The data of the positively and negatively framed DCE were compared on the basis of direct attribute ranking, dominant decision-making behavior, preferences, and importance scores. The majority (56%) of the respondents ranked survival as the most important attribute in the positively framed DCE, whereas only a minority (8%) of the respondents ranked mortality as the most important attribute in the negatively framed DCE. Respondents made dominant choices based on survival significantly more often than based on mortality. The framing of the risk attribute significantly influenced all attribute-level estimates and resulted in different preference structures among respondents in the positively and negatively framed data set. Risk framing affects how respondents value the presented risk. Positive risk framing led to increased dominant decision-making behavior, whereas negative risk framing led to risk-seeking behavior. Attribute framing should have a prominent part in the expert and focus group interviews, and different types of framing should be used in the pilot version of DCEs as well as in actual DCEs to estimate the magnitude of the effect of choosing different types of framing. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  1. A Generalized Decision Framework Using Multi-objective Optimization for Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Basdekas, L.; Stewart, N.; Triana, E.

    2013-12-01

    Colorado Springs Utilities (CSU) is currently engaged in an Integrated Water Resource Plan (IWRP) to address the complex planning scenarios, across multiple time scales, currently faced by CSU. The modeling framework developed for the IWRP uses a flexible data-centered Decision Support System (DSS) with a MODSIM-based modeling system to represent the operation of the current CSU raw water system coupled with a state-of-the-art multi-objective optimization algorithm. Three basic components are required for the framework, which can be implemented for planning horizons ranging from seasonal to interdecadal. First, a water resources system model is required that is capable of reasonable system simulation to resolve performance metrics at the appropriate temporal and spatial scales of interest. The system model should be an existing simulation model, or one developed during the planning process with stakeholders, so that 'buy-in' has already been achieved. Second, a hydrologic scenario tool(s) capable of generating a range of plausible inflows for the planning period of interest is required. This may include paleo informed or climate change informed sequences. Third, a multi-objective optimization model that can be wrapped around the system simulation model is required. The new generation of multi-objective optimization models do not require parameterization which greatly reduces problem complexity. Bridging the gap between research and practice will be evident as we use a case study from CSU's planning process to demonstrate this framework with specific competing water management objectives. Careful formulation of objective functions, choice of decision variables, and system constraints will be discussed. Rather than treating results as theoretically Pareto optimal in a planning process, we use the powerful multi-objective optimization models as tools to more efficiently and effectively move out of the inferior decision space. The use of this framework will help CSU evaluate tradeoffs in a continually changing world.

  2. Qualitative analysis of patient-centered decision attributes associated with initiating hepatitis C treatment.

    PubMed

    Zuchowski, Jessica L; Hamilton, Alison B; Pyne, Jeffrey M; Clark, Jack A; Naik, Aanand D; Smith, Donna L; Kanwal, Fasiha

    2015-10-01

    In this era of a constantly changing landscape of antiviral treatment options for chronic viral hepatitis C (CHC), shared clinical decision-making addresses the need to engage patients in complex treatment decisions. However, little is known about the decision attributes that CHC patients consider when making treatment decisions. We identify key patient-centered decision attributes, and explore relationships among these attributes, to help inform the development of a future CHC shared decision-making aid. Semi-structured qualitative interviews with CHC patients at four Veterans Health Administration (VHA) hospitals, in three comparison groups: contemplating CHC treatment at the time of data collection (Group 1), recently declined CHC treatment (Group 2), or recently started CHC treatment (Group 3). Participant descriptions of decision attributes were analyzed for the entire sample as well as by patient group and by gender. Twenty-nine Veteran patients participated (21 males, eight females): 12 were contemplating treatment, nine had recently declined treatment, and eight had recently started treatment. Patients on average described eight (range 5-13) decision attributes. The attributes most frequently reported overall were: physical side effects (83%); treatment efficacy (79%), new treatment drugs in development (55%); psychological side effects (55%); and condition of the liver (52%), with some variation based on group and gender. Personal life circumstance attributes (such as availability of family support and the burden of financial responsibilities) influencing treatment decisions were also noted by all participants. Multiple decision attributes were interrelated in highly complex ways. Participants considered numerous attributes in their CHC treatment decisions. A better understanding of these attributes that influence patient decision-making is crucial in order to inform patient-centered clinical approaches to care (such as shared decision-making augmented with relevant decision-making aids) that respond to patients' needs, preferences, and circumstances.

  3. Game Relativity: How Context Influences Strategic Decision Making

    ERIC Educational Resources Information Center

    Vlaev, Ivo; Chater, Nick

    2006-01-01

    Existing models of strategic decision making typically assume that only the attributes of the currently played game need be considered when reaching a decision. The results presented in this article demonstrate that the so-called "cooperativeness" of the previously played prisoner's dilemma games influence choices and predictions in the current…

  4. Architecture Design of Healthcare Software-as-a-Service Platform for Cloud-Based Clinical Decision Support Service

    PubMed Central

    Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee

    2015-01-01

    Objectives To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. Methods We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. Results The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. Conclusions We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs. PMID:25995962

  5. A Literature Review and Compilation of Nuclear Waste Management System Attributes for Use in Multi-Objective System Evaluations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena Arkadievna; Samsa, Michael

    The purpose of this work was to compile a comprehensive initial set of potential nuclear waste management system attributes. This initial set of attributes is intended to serve as a starting point for additional consideration by system analysts and planners to facilitate the development of a waste management system multi-objective evaluation framework based on the principles and methodology of multi-attribute utility analysis. The compilation is primarily based on a review of reports issued by the Canadian Nuclear Waste Management Organization (NWMO) and the Blue Ribbon Commission on America's Nuclear Future (BRC), but also an extensive review of the available literaturemore » for similar and past efforts as well. Numerous system attributes found in different sources were combined into a single objectives-oriented hierarchical structure. This study provides a discussion of the data sources and the descriptions of the hierarchical structure. A particular focus of this study was on collecting and compiling inputs from past studies that involved the participation of various external stakeholders. However, while the important role of stakeholder input in a country's waste management decision process is recognized in the referenced sources, there are only a limited number of in-depth studies of the stakeholders' differing perspectives. Compiling a comprehensive hierarchical listing of attributes is a complex task since stakeholders have multiple and often conflicting interests. The BRC worked for two years (January 2010 to January 2012) to "ensure it has heard from as many points of view as possible." The Canadian NWMO study took four years and ample resources, involving national and regional stakeholders' dialogs, internet-based dialogs, information and discussion sessions, open houses, workshops, round tables, public attitude research, website, and topic reports. The current compilation effort benefited from the distillation of these many varied inputs conducted by the previous studies.« less

  6. History matching through dynamic decision-making

    PubMed Central

    Maschio, Célio; Santos, Antonio Alberto; Schiozer, Denis; Rocha, Anderson

    2017-01-01

    History matching is the process of modifying the uncertain attributes of a reservoir model to reproduce the real reservoir performance. It is a classical reservoir engineering problem and plays an important role in reservoir management since the resulting models are used to support decisions in other tasks such as economic analysis and production strategy. This work introduces a dynamic decision-making optimization framework for history matching problems in which new models are generated based on, and guided by, the dynamic analysis of the data of available solutions. The optimization framework follows a ‘learning-from-data’ approach, and includes two optimizer components that use machine learning techniques, such as unsupervised learning and statistical analysis, to uncover patterns of input attributes that lead to good output responses. These patterns are used to support the decision-making process while generating new, and better, history matched solutions. The proposed framework is applied to a benchmark model (UNISIM-I-H) based on the Namorado field in Brazil. Results show the potential the dynamic decision-making optimization framework has for improving the quality of history matching solutions using a substantial smaller number of simulations when compared with a previous work on the same benchmark. PMID:28582413

  7. Comprehensive decision tree models in bioinformatics.

    PubMed

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.

  8. Comprehensive Decision Tree Models in Bioinformatics

    PubMed Central

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics. PMID:22479449

  9. A stochastic multi-agent optimization model for energy infrastructure planning under uncertainty and competition.

    DOT National Transportation Integrated Search

    2017-07-04

    This paper presents a stochastic multi-agent optimization model that supports energy infrastruc- : ture planning under uncertainty. The interdependence between dierent decision entities in the : system is captured in an energy supply chain network, w...

  10. A decision support model for improving a multi-family housing complex based on CO2 emission from electricity consumption.

    PubMed

    Hong, Taehoon; Koo, Choongwan; Kim, Hyunjoong

    2012-12-15

    The number of deteriorated multi-family housing complexes in South Korea continues to rise, and consequently their electricity consumption is also increasing. This needs to be addressed as part of the nation's efforts to reduce energy consumption. The objective of this research was to develop a decision support model for determining the need to improve multi-family housing complexes. In this research, 1664 cases located in Seoul were selected for model development. The research team collected the characteristics and electricity energy consumption data of these projects in 2009-2010. The following were carried out in this research: (i) using the Decision Tree, multi-family housing complexes were clustered based on their electricity energy consumption; (ii) using Case-Based Reasoning, similar cases were retrieved from the same cluster; and (iii) using a combination of Multiple Regression Analysis, Artificial Neural Network, and Genetic Algorithm, the prediction performance of the developed model was improved. The results of this research can be used as follows: (i) as basic research data for continuously managing several energy consumption data of multi-family housing complexes; (ii) as advanced research data for predicting energy consumption based on the project characteristics; (iii) as practical research data for selecting the most optimal multi-family housing complex with the most potential in terms of energy savings; and (iv) as consistent and objective criteria for incentives and penalties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Cloud E-Learning Service Strategies for Improving E-Learning Innovation Performance in a Fuzzy Environment by Using a New Hybrid Fuzzy Multiple Attribute Decision-Making Model

    ERIC Educational Resources Information Center

    Su, Chiu Hung; Tzeng, Gwo-Hshiung; Hu, Shu-Kung

    2016-01-01

    The purpose of this study was to address this problem by applying a new hybrid fuzzy multiple criteria decision-making model including (a) using the fuzzy decision-making trial and evaluation laboratory (DEMATEL) technique to construct the fuzzy scope influential network relationship map (FSINRM) and determine the fuzzy influential weights of the…

  12. Intelligent data management for real-time spacecraft monitoring

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  13. The Usefulness of the Bock Model for Scoring with Information from Incorrect Responses.

    ERIC Educational Resources Information Center

    Huynh, Huynh; Casteel, Jim

    1987-01-01

    In the context of pass/fail decisions, using the Bock multi-nominal latent trait model for moderate-length tests does not produce decisions that differ substantially from those based on the raw scores. The Bock decisions appear to relate less strongly to outside criteria than those based on the raw scores. (Author/JAZ)

  14. Multiattribute evaluation in formulary decision making as applied to calcium-channel blockers.

    PubMed

    Schumacher, G E

    1991-02-01

    The use of multiattribute utility theory (MAUT) to make a formulary decision involving calcium-channel blockers (CCBs) is described. The MAUT method is a procedure for identifying, characterizing, and comparing the many variables that may affect a decision. Although applications in pharmacy have been infrequent, MAUT should be particularly appealing to formulary committees. The steps of the MAUT method are (1) determine the viewpoint of the decision makers, (2) identify the decision alternatives, (3) identify the attributes to be evaluated, (4) identify the factors to be used in evaluating the attributes, (5) establish a utility scale for scoring each factor, (6) transform the values for each factor to its utility scale, (7) determine weights for each attribute and factor, (8) calculate the total utility score for each decision alternative, (9) determine which decision alternative has the greatest total score, and (10) perform a sensitivity analysis. The viewpoint of a formulary committee in a health maintenance organization was simulated to develop a model for using the MAUT method to compare CCBs for single-agent therapy of chronic stable angina in ambulatory patients for one year. The attributes chosen were effectiveness, safety, patient acceptance, and cost and weighted 36%, 29%, 21%, and 14%, respectively, as contributions to the evaluation. The rank order of the decision alternatives was (1) generic verapamil, (2) brand-name verapamil, (3) diltiazem, (4) nicardipine, and (5) nifedipine. The MAUT method provides a standardized yet flexible format for comparing and selecting among formulary alternatives.

  15. Rooftop greenhouses in educational centers: A sustainability assessment of urban agriculture in compact cities.

    PubMed

    Nadal, Ana; Pons, Oriol; Cuerva, Eva; Rieradevall, Joan; Josa, Alejandro

    2018-06-01

    Today, urban agriculture is one of the most widely used sustainability strategies to improve the metabolism of a city. Schools can play an important role in the implementation of sustainability master plans, due their socio-educational activities and their cohesive links with families; all key elements in the development of urban agriculture. Thus, the main objective of this research is to develop a procedure, in compact cities, to assess the potential installation of rooftop greenhouses (RTGs) in schools. The generation of a dynamic assessment tool capable of identifying and prioritizing schools with a high potential for RTGs and their eventual implementation would also represent a significant factor in the environmental, social, and nutritional education of younger generations. The methodology has four-stages (Pre-selection criteria; Selection of necessities; Sustainability analysis; and Sensitivity analysis and selection of the best alternative) in which economic, environmental, social and governance aspects all are considered. It makes use of Multi-Attribute Utility Theory and Multi-Criteria Decision Making, through the Integrated Value Model for Sustainability Assessments and the participation of two panels of multidisciplinary specialists, for the preparation of a unified sustainability index that guarantees the objectivity of the selection process. This methodology has been applied and validated in a case study of 11 schools in Barcelona (Spain). The social perspective of the proposed methodology favored the school in the case-study with the most staff and the largest parent-teacher association (social and governance indicators) that obtained the highest sustainability index (S11); at a considerable distance (45%) from the worst case (S3) with fewer school staff and parental support. Finally, objective decisions may be taken with the assistance of this appropriate, adaptable, and reliable Multi-Criteria Decision-Making tool on the vertical integration and implementation of urban agriculture in schools, in support of the goals of sustainable development and the circular economy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Underground Mining Method Selection Using WPM and PROMETHEE

    NASA Astrophysics Data System (ADS)

    Balusa, Bhanu Chander; Singam, Jayanthu

    2018-04-01

    The aim of this paper is to represent the solution to the problem of selecting suitable underground mining method for the mining industry. It is achieved by using two multi-attribute decision making techniques. These two techniques are weighted product method (WPM) and preference ranking organization method for enrichment evaluation (PROMETHEE). In this paper, analytic hierarchy process is used for weight's calculation of the attributes (i.e. parameters which are used in this paper). Mining method selection depends on physical parameters, mechanical parameters, economical parameters and technical parameters. WPM and PROMETHEE techniques have the ability to consider the relationship between the parameters and mining methods. The proposed techniques give higher accuracy and faster computation capability when compared with other decision making techniques. The proposed techniques are presented to determine the effective mining method for bauxite mine. The results of these techniques are compared with methods used in the earlier research works. The results show, conventional cut and fill method is the most suitable mining method.

  17. Putting It All Together: A Unified Account of Word Recognition and Reaction-Time Distributions

    ERIC Educational Resources Information Center

    Norris, Dennis

    2009-01-01

    R. Ratcliff, P. Gomez, and G. McKoon (2004) suggested much of what goes on in lexical decision is attributable to decision processes and may not be particularly informative about word recognition. They proposed that lexical decision should be characterized by a decision process, taking the form of a drift-diffusion model (R. Ratcliff, 1978), that…

  18. An improved hybrid multi-criteria/multidimensional model for strategic industrial location selection: Casablanca industrial zones as a case study.

    PubMed

    Boutkhoum, Omar; Hanine, Mohamed; Agouti, Tarik; Tikniouine, Abdessadek

    2015-01-01

    In this paper, we examine the issue of strategic industrial location selection in uncertain decision making environments for implanting new industrial corporation. In fact, the industrial location issue is typically considered as a crucial factor in business research field which is related to many calculations about natural resources, distributors, suppliers, customers, and most other things. Based on the integration of environmental, economic and social decisive elements of sustainable development, this paper presents a hybrid decision making model combining fuzzy multi-criteria analysis with analytical capabilities that OLAP systems can provide for successful and optimal industrial location selection. The proposed model mainly consists in three stages. In the first stage, a decision-making committee has been established to identify the evaluation criteria impacting the location selection process. In the second stage, we develop fuzzy AHP software based on the extent analysis method to assign the importance weights to the selected criteria, which allows us to model the linguistic vagueness, ambiguity, and incomplete knowledge. In the last stage, OLAP analysis integrated with multi-criteria analysis employs these weighted criteria as inputs to evaluate, rank and select the strategic industrial location for implanting new business corporation in the region of Casablanca, Morocco. Finally, a sensitivity analysis is performed to evaluate the impact of criteria weights and the preferences given by decision makers on the final rankings of strategic industrial locations.

  19. Using multi-criteria decision making for selection of the optimal strategy for municipal solid waste management.

    PubMed

    Jovanovic, Sasa; Savic, Slobodan; Jovicic, Nebojsa; Boskovic, Goran; Djordjevic, Zorica

    2016-09-01

    Multi-criteria decision making (MCDM) is a relatively new tool for decision makers who deal with numerous and often contradictory factors during their decision making process. This paper presents a procedure to choose the optimal municipal solid waste (MSW) management system for the area of the city of Kragujevac (Republic of Serbia) based on the MCDM method. Two methods of multiple attribute decision making, i.e. SAW (simple additive weighting method) and TOPSIS (technique for order preference by similarity to ideal solution), respectively, were used to compare the proposed waste management strategies (WMS). Each of the created strategies was simulated using the software package IWM2. Total values for eight chosen parameters were calculated for all the strategies. Contribution of each of the six waste treatment options was valorized. The SAW analysis was used to obtain the sum characteristics for all the waste management treatment strategies and they were ranked accordingly. The TOPSIS method was used to calculate the relative closeness factors to the ideal solution for all the alternatives. Then, the proposed strategies were ranked in form of tables and diagrams obtained based on both MCDM methods. As shown in this paper, the results were in good agreement, which additionally confirmed and facilitated the choice of the optimal MSW management strategy. © The Author(s) 2016.

  20. MAGDM linear-programming models with distinct uncertain preference structures.

    PubMed

    Xu, Zeshui S; Chen, Jian

    2008-10-01

    Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.

  1. Choice Rules and Accumulator Networks

    PubMed Central

    2015-01-01

    This article presents a preference accumulation model that can be used to implement a number of different multi-attribute heuristic choice rules, including the lexicographic rule, the majority of confirming dimensions (tallying) rule and the equal weights rule. The proposed model differs from existing accumulators in terms of attribute representation: Leakage and competition, typically applied only to preference accumulation, are also assumed to be involved in processing attribute values. This allows the model to perform a range of sophisticated attribute-wise comparisons, including comparisons that compute relative rank. The ability of a preference accumulation model composed of leaky competitive networks to mimic symbolic models of heuristic choice suggests that these 2 approaches are not incompatible, and that a unitary cognitive model of preferential choice, based on insights from both these approaches, may be feasible. PMID:28670592

  2. Multi-Agent simulation of generation capacity expansion decisions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botterud, A.; Mahalik, M.; Conzelmann, G.

    2008-01-01

    In this paper, we use a multi-agent simulation model, EMCAS, to analyze generation expansion in the Iberian electricity market. The expansion model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitorspsila actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We run the model using detailed data for the Iberian market. In a scenariomore » analysis, we look at the impact of market design variables, such as the energy price cap and carbon emission prices. We also analyze how market concentration and GenCospsila risk preferences influence the timing and choice of new generating capacity.« less

  3. Multi Attribute Decision Analysis in Public Health - Analyzing Effectiveness of Alternate Modes of Dispensing

    DTIC Science & Technology

    2007-09-01

    curve (Smith, 2007). This curve shows the relative performance of an option based on the selected factors (Chan & Mauborgne, 2007). Value cures ...that they and their families are safe; anything less will result in staffing shortages and absenteeism . d. POD Staff Training POD volunteers would...can expect high rates of absenteeism . Local law enforcement in LAC has therefore not guaranteed one- on-one protection for the 3,750 postal carriers

  4. Response time modeling reveals multiple contextual cuing mechanisms.

    PubMed

    Sewell, David K; Colagiuri, Ben; Livesey, Evan J

    2017-08-24

    Contextual cuing refers to a response time (RT) benefit that occurs when observers search through displays that have been repeated over the course of an experiment. Although it is generally agreed that contextual cuing arises via an associative learning mechanism, there is uncertainty about the type(s) of process(es) that allow learning to influence RT. We contrast two leading accounts of the contextual cuing effect that differ in terms of the general process that is credited with producing the effect. The first, the expedited search account, attributes the cuing effect to an increase in the speed with which the target is acquired. The second, the decision threshold account, attributes the cuing effect to a reduction in the response threshold used by observers when making a subsequent decision about the target (e.g., judging its orientation). We use the diffusion model to contrast the quantitative predictions of these two accounts at the level of individual observers. Our use of the diffusion model allows us to also explore a novel decision-level locus of the cuing effect based on perceptual learning. This novel account attributes the RT benefit to a perceptual learning process that increases the quality of information used to drive the decision process. Our results reveal both individual differences in the process(es) involved in contextual cuing but also identify several striking regularities across observers. We find strong support for both the decision threshold account as well as the novel perceptual learning account. We find relatively weak support for the expedited search account.

  5. A qualitative evaluation of the crucial attributes of contextual information necessary in EHR design to support patient-centered medical home care.

    PubMed

    Weir, Charlene R; Staggers, Nancy; Gibson, Bryan; Doing-Harris, Kristina; Barrus, Robyn; Dunlea, Robert

    2015-04-16

    Effective implementation of a Primary Care Medical Home model of care (PCMH) requires integration of patients' contextual information (physical, mental, social and financial status) into an easily retrievable information source for the healthcare team and clinical decision-making. This project explored clinicians' perceptions about important attributes of contextual information for clinical decision-making, how contextual information is expressed in CPRS clinical documentation as well as how clinicians in a highly computerized environment manage information flow related to these areas. A qualitative design using Cognitive Task Analyses and a modified Critical Incident Technique were used. The study was conducted in a large VA with a fully implemented EHR located in the western United States. Seventeen providers working in a PCMH model of care in Primary Care, Home Based Care and Geriatrics reported on a recent difficult transition requiring contextual information for decision-making. The transcribed interviews were qualitatively analyzed for thematic development related to contextual information using an iterative process and multiple reviewers with ATLAS@ti software. Six overarching themes emerged as attributes of contextual information: Informativeness, goal language, temporality, source attribution, retrieval effort, and information quality. These results indicate that specific attributes are needed to in order for contextual information to fully support clinical decision-making in a Medical Home care delivery environment. Improved EHR designs are needed for ease of contextual information access, displaying linkages across time and settings, and explicit linkages to both clinician and patient goals. Implications relevant to providers' information needs, team functioning and EHR design are discussed.

  6. Use of the AHP methodology in system dynamics: Modelling and simulation for health technology assessments to determine the correct prosthesis choice for hernia diseases.

    PubMed

    Improta, Giovanni; Russo, Mario Alessandro; Triassi, Maria; Converso, Giuseppe; Murino, Teresa; Santillo, Liberatina Carmela

    2018-05-01

    Health technology assessments (HTAs) are often difficult to conduct because of the decisive procedures of the HTA algorithm, which are often complex and not easy to apply. Thus, their use is not always convenient or possible for the assessment of technical requests requiring a multidisciplinary approach. This paper aims to address this issue through a multi-criteria analysis focusing on the analytic hierarchy process (AHP). This methodology allows the decision maker to analyse and evaluate different alternatives and monitor their impact on different actors during the decision-making process. However, the multi-criteria analysis is implemented through a simulation model to overcome the limitations of the AHP methodology. Simulations help decision-makers to make an appropriate decision and avoid unnecessary and costly attempts. Finally, a decision problem regarding the evaluation of two health technologies, namely, the evaluation of two biological prostheses for incisional infected hernias, will be analysed to assess the effectiveness of the model. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis

    PubMed Central

    2018-01-01

    Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization. PMID:29377956

  8. An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis.

    PubMed

    Zu, Xianghuan; Yang, Chuanlei; Wang, Hechun; Wang, Yinyan

    2018-01-01

    Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization.

  9. Priority Determination of Underwater Tourism Site Development in Gorontalo Province using Analytical Hierarchy Process (AHP)

    NASA Astrophysics Data System (ADS)

    Rohandi, M.; Tuloli, M. Y.; Jassin, R. T.

    2018-02-01

    This research aims to determine the development of priority of underwater tourism in Gorontalo province using the Analytical Hierarchy Process (AHP) method which is one of DSS methods applying Multi-Attribute Decision Making (MADM). This method used 5 criteria and 28 alternatives to determine the best priority of underwater tourism site development in Gorontalo province. Based on the AHP calculation it appeared that the best priority development of underwater tourism site is Pulau Cinta whose total AHP score is 0.489 or 48.9%. This DSS produced a reliable result, faster solution, time-saving, and low cost for the decision makers to obtain the best underwater tourism site to be developed.

  10. Young adults' decision making surrounding heavy drinking: a multi-staged model of planned behaviour.

    PubMed

    Northcote, Jeremy

    2011-06-01

    This paper examines the real life contexts in which decisions surrounding heavy drinking are made by young adults (that is, on occasions when five or more alcoholic drinks are consumed within a few hours). It presents a conceptual model that views such decision making as a multi-faceted and multi-staged process. The mixed method study draws on purposive data gathered through direct observation of eight social networks consisting of 81 young adults aged between 18 and 25 years in Perth, Western Australia, including in-depth interviews with 31 participants. Qualitative and some basic quantitative data were gathered using participant observation and in-depth interviews undertaken over an eighteen month period. Participants explained their decision to engage in heavy drinking as based on a variety of factors. These elements relate to socio-cultural norms and expectancies that are best explained by the theory of planned behaviour. A framework is proposed that characterises heavy drinking as taking place in a multi-staged manner, with young adults having: 1. A generalised orientation to the value of heavy drinking shaped by wider influences and norms; 2. A short-term orientation shaped by situational factors that determines drinking intentions for specific events; and 3. An evaluative orientation shaped by moderating factors. The value of qualitative studies of decision making in real life contexts is advanced to complement the mostly quantitative research that dominates research on alcohol decision making. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Dynamic Educational e-Content Selection Using Multiple Criteria in Web-Based Personalized Learning Environments.

    ERIC Educational Resources Information Center

    Manouselis, Nikos; Sampson, Demetrios

    This paper focuses on the way a multi-criteria decision making methodology is applied in the case of agent-based selection of offered learning objects. The problem of selection is modeled as a decision making one, with the decision variables being the learner model and the learning objects' educational description. In this way, selection of…

  12. Multi-criteria analysis for PM10 planning

    NASA Astrophysics Data System (ADS)

    Pisoni, Enrico; Carnevale, Claudio; Volta, Marialuisa

    To implement sound air quality policies, Regulatory Agencies require tools to evaluate outcomes and costs associated to different emission reduction strategies. These tools are even more useful when considering atmospheric PM10 concentrations due to the complex nonlinear processes that affect production and accumulation of the secondary fraction of this pollutant. The approaches presented in the literature (Integrated Assessment Modeling) are mainly cost-benefit and cost-effective analysis. In this work, the formulation of a multi-objective problem to control particulate matter is proposed. The methodology defines: (a) the control objectives (the air quality indicator and the emission reduction cost functions); (b) the decision variables (precursor emission reductions); (c) the problem constraints (maximum feasible technology reductions). The cause-effect relations between air quality indicators and decision variables are identified tuning nonlinear source-receptor models. The multi-objective problem solution provides to the decision maker a set of not-dominated scenarios representing the efficient trade-off between the air quality benefit and the internal costs (emission reduction technology costs). The methodology has been implemented for Northern Italy, often affected by high long-term exposure to PM10. The source-receptor models used in the multi-objective analysis are identified processing long-term simulations of GAMES multiphase modeling system, performed in the framework of CAFE-Citydelta project.

  13. Multi-criteria, personalized route planning using quantifier-guided ordered weighted averaging operators

    NASA Astrophysics Data System (ADS)

    Nadi, S.; Delavar, M. R.

    2011-06-01

    This paper presents a generic model for using different decision strategies in multi-criteria, personalized route planning. Some researchers have considered user preferences in navigation systems. However, these prior studies typically employed a high tradeoff decision strategy, which used a weighted linear aggregation rule, and neglected other decision strategies. The proposed model integrates a pairwise comparison method and quantifier-guided ordered weighted averaging (OWA) aggregation operators to form a personalized route planning method that incorporates different decision strategies. The model can be used to calculate the impedance of each link regarding user preferences in terms of the route criteria, criteria importance and the selected decision strategy. Regarding the decision strategy, the calculated impedance lies between aggregations that use a logical "and" (which requires all the criteria to be satisfied) and a logical "or" (which requires at least one criterion to be satisfied). The calculated impedance also includes taking the average of the criteria scores. The model results in multiple alternative routes, which apply different decision strategies and provide users with the flexibility to select one of them en-route based on the real world situation. The model also defines the robust personalized route under different decision strategies. The influence of different decision strategies on the results are investigated in an illustrative example. This model is implemented in a web-based geographical information system (GIS) for Isfahan in Iran and verified in a tourist routing scenario. The results demonstrated, in real world situations, the validity of the route planning carried out in the model.

  14. Multi-model Effort Highlights Progress, Future Needs in Renewable Energy

    Science.gov Websites

    January 9, 2018 Models of the U.S. electricity sector are relied upon by sector stakeholders and decision of VRE technologies. The report also documents differences in modeling methodologies and shows how long-term planning and decision-making, both for the respective agencies and for other electricity

  15. A Multi-criterial Decision Support System for Forest Management

    Treesearch

    Donald Nute; Geneho Kim; Walter D. Potter; Mark J. Twery; H. Michael Rauscher; Scott Thomasma; Deborah Bennett; Peter Kollasch

    1999-01-01

    We describe a research project that has as its goal development of a full-featured decision support system for managing forested land to satisfy multiple criteria represented as timber, wildlife, water, ecological, and wildlife objectives. The decision process proposed for what was originally conceived of as a Northeast Decision Model (NED) includes data acquisition,...

  16. Fuzzy sets, rough sets, and modeling evidence: Theory and Application. A Dempster-Shafer based approach to compromise decision making with multiattributes applied to product selection

    NASA Technical Reports Server (NTRS)

    Dekorvin, Andre

    1992-01-01

    The Dempster-Shafer theory of evidence is applied to a multiattribute decision making problem whereby the decision maker (DM) must compromise with available alternatives, none of which exactly satisfies his ideal. The decision mechanism is constrained by the uncertainty inherent in the determination of the relative importance of each attribute element and the classification of existing alternatives. The classification of alternatives is addressed through expert evaluation of the degree to which each element is contained in each available alternative. The relative importance of each attribute element is determined through pairwise comparisons of the elements by the decision maker and implementation of a ratio scale quantification method. Then the 'belief' and 'plausibility' that an alternative will satisfy the decision maker's ideal are calculated and combined to rank order the available alternatives. Application to the problem of selecting computer software is given.

  17. A decision support system using analytical hierarchy process (AHP) for the optimal environmental reclamation of an open-pit mine

    NASA Astrophysics Data System (ADS)

    Bascetin, A.

    2007-04-01

    The selection of an optimal reclamation method is one of the most important factors in open-pit design and production planning. It also affects economic considerations in open-pit design as a function of plan location and depth. Furthermore, the selection is a complex multi-person, multi-criteria decision problem. The group decision-making process can be improved by applying a systematic and logical approach to assess the priorities based on the inputs of several specialists from different functional areas within the mine company. The analytical hierarchy process (AHP) can be very useful in involving several decision makers with different conflicting objectives to arrive at a consensus decision. In this paper, the selection of an optimal reclamation method using an AHP-based model was evaluated for coal production in an open-pit coal mine located at Seyitomer region in Turkey. The use of the proposed model indicates that it can be applied to improve the group decision making in selecting a reclamation method that satisfies optimal specifications. Also, it is found that the decision process is systematic and using the proposed model can reduce the time taken to select a optimal method.

  18. Assessing the burden of paediatric influenza in Europe: the European Paediatric Influenza Analysis (EPIA) project.

    PubMed

    Paget, W John; Balderston, Catherine; Casas, Inmaculada; Donker, Gé; Edelman, Laurel; Fleming, Douglas; Larrauri, Amparo; Meijer, Adam; Puzelli, Simona; Rizzo, Caterina; Simonsen, Lone

    2010-08-01

    The European Paediatric Influenza Analysis (EPIA) project is a multi-country project that was created to collect, analyse and present data regarding the paediatric influenza burden in European countries, with the purpose of providing the necessary information to make evidence-based decisions regarding influenza immunisation recommendations for children. The initial approach taken is based on existing weekly virological and age-specific influenza-like illness (ILI) data from surveillance networks across Europe. We use a multiple regression model guided by longitudinal weekly patterns of influenza virus to attribute the weekly ILI consultation incidence pattern to each influenza (sub)type, while controlling for the effect of respiratory syncytial virus (RSV) epidemics. Modelling the ILI consultation incidence during 2002/2003-2008 revealed that influenza infections that presented for medical attention as ILI affected between 0.3% and 9.8% of children aged 0-4 and 5-14 years in England, Italy, the Netherlands and Spain in an average season. With the exception of Spain, these rates were always higher in children aged 0-4 years. Across the six seasons analysed (five seasons were analysed from the Italian data), the model attributed 47-83% of the ILI burden in primary care to influenza virus infection in the various countries, with the A(H3N2) virus playing the most important role, followed by influenza viruses B and A(H1N1). National season averages from the four countries studied indicated that between 0.4% and 18% of children consulted a physician for ILI, with the percentage depending on the country and health care system. Influenza virus infections explained the majority of paediatric ILI consultations in all countries. The next step will be to apply the EPIA modelling approach to severe outcomes indicators (i.e. hospitalisations and mortality data) to generate a complete range of mild and severe influenza burden estimates needed for decision making concerning paediatric influenza vaccination.

  19. Using multi-objective robust decision making to support seasonal water management in the Chao Phraya River basin, Thailand

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Jessen, Oluf; Madsen, Henrik

    2016-04-01

    A multi-objective robust decision making approach is demonstrated that supports seasonal water management in the Chao Phraya River basin in Thailand. The approach uses multi-objective optimization to identify a Pareto-optimal set of management alternatives. Ensemble simulation is used to evaluate how each member of the Pareto set performs under a range of uncertain future conditions, and a robustness criterion is used to select a preferred alternative. Data mining tools are then used to identify ranges of uncertain factor values that lead to unacceptable performance for the preferred alternative. The approach is compared to a multi-criteria scenario analysis approach to estimate whether the introduction of additional complexity has the potential to improve decision making. Dry season irrigation in Thailand is managed through non-binding recommendations about the maximum extent of rice cultivation along with incentives for less water-intensive crops. Management authorities lack authority to prevent river withdrawals for irrigation when rice cultivation exceeds recommendations. In practice, this means that water must be provided to irrigate the actual planted area because of downstream municipal water supply requirements and water quality constraints. This results in dry season reservoir withdrawals that exceed planned withdrawals, reducing carryover storage to hedge against insufficient wet season runoff. The dry season planning problem in Thailand can therefore be framed in terms of decisions, objectives, constraints, and uncertainties. Decisions include recommendations about the maximum extent of rice cultivation and incentives for growing less water-intensive crops. Objectives are to maximize benefits to farmers, minimize the risk of inadequate carryover storage, and minimize incentives. Constraints include downstream municipal demands and water quality requirements. Uncertainties include the actual extent of rice cultivation, dry season precipitation, and precipitation in the following wet season. The multi-objective robust decision making approach is implemented as follows. First, three baseline simulation models are developed, including a crop water demand model, a river basin simulation model, and model of the impact of incentives on cropping patterns. The crop water demand model estimates irrigation water demands; the river basin simulation model estimates reservoir drawdown required to meet demands given forecasts of precipitation, evaporation, and runoff; the model of incentive impacts estimates the cost of incentives as function of marginal changes in rice yields. Optimization is used to find a set of non-dominated alternatives as a function of rice area and incentive decisions. An ensemble of uncertain model inputs is generated to represent uncertain hydrological and crop area forecasts. An ensemble of indicator values is then generated for each of the decision objectives: farmer benefits, end-of-wet-season reservoir storage, and the cost of incentives. A single alternative is selected from the Pareto set using a robustness criterion. Threshold values are defined for each of the objectives to identify ensemble members for which objective values are unacceptable, and the PRIM data mining algorithm is then used to identify input values associated with unacceptable model outcomes.

  20. Multi-Objective Programming for Lot-Sizing with Quantity Discount

    NASA Astrophysics Data System (ADS)

    Kang, He-Yau; Lee, Amy H. I.; Lai, Chun-Mei; Kang, Mei-Sung

    2011-11-01

    Multi-objective programming (MOP) is one of the popular methods for decision making in a complex environment. In a MOP, decision makers try to optimize two or more objectives simultaneously under various constraints. A complete optimal solution seldom exists, and a Pareto-optimal solution is usually used. Some methods, such as the weighting method which assigns priorities to the objectives and sets aspiration levels for the objectives, are used to derive a compromise solution. The ɛ-constraint method is a modified weight method. One of the objective functions is optimized while the other objective functions are treated as constraints and are incorporated in the constraint part of the model. This research considers a stochastic lot-sizing problem with multi-suppliers and quantity discounts. The model is transformed into a mixed integer programming (MIP) model next based on the ɛ-constraint method. An illustrative example is used to illustrate the practicality of the proposed model. The results demonstrate that the model is an effective and accurate tool for determining the replenishment of a manufacturer from multiple suppliers for multi-periods.

  1. The multi temporal/multi-model approach to predictive uncertainty assessment in real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Brocca, Luca; Todini, Ezio

    2017-08-01

    This work extends the multi-temporal approach of the Model Conditional Processor (MCP-MT) to the multi-model case and to the four Truncated Normal Distributions (TNDs) approach, demonstrating the improvement on the single-temporal one. The study is framed in the context of probabilistic Bayesian decision-making that is appropriate to take rational decisions on uncertain future outcomes. As opposed to the direct use of deterministic forecasts, the probabilistic forecast identifies a predictive probability density function that represents a fundamental knowledge on future occurrences. The added value of MCP-MT is the identification of the probability that a critical situation will happen within the forecast lead-time and when, more likely, it will occur. MCP-MT is thoroughly tested for both single-model and multi-model configurations at a gauged site on the Tiber River, central Italy. The stages forecasted by two operative deterministic models, STAFOM-RCM and MISDc, are considered for the study. The dataset used for the analysis consists of hourly data from 34 flood events selected on a time series of six years. MCP-MT improves over the original models' forecasts: the peak overestimation and the rising limb delayed forecast, characterizing MISDc and STAFOM-RCM respectively, are significantly mitigated, with a reduced mean error on peak stage from 45 to 5 cm and an increased coefficient of persistence from 0.53 up to 0.75. The results show that MCP-MT outperforms the single-temporal approach and is potentially useful for supporting decision-making because the exceedance probability of hydrometric thresholds within a forecast horizon and the most probable flooding time can be estimated.

  2. Energy Decision Science and Informatics | Integrated Energy Solutions |

    Science.gov Websites

    Science Advanced decision science methods include multi-objective and multi-criteria decision support. Our decision science methods, including multi-objective and multi-criteria decision support. For example, we

  3. Design of a multi-agent hydroeconomic model to simulate a complex human-water system: Early insights from the Jordan Water Project

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.

    2015-12-01

    Our work focuses on development of a multi-agent, hydroeconomic model for purposes of water policy evaluation in Jordan. The model adopts a modular approach, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the groundwater model, we adopt a response matrix method approach in which a 3-dimensional MODFLOW model of a complex regional groundwater system is converted into a linear simulator of groundwater response by pre-processing drawdown results from several hundred numerical simulation runs. Surface water models for each major surface water basin in the country are developed in SWAT and similarly translated into simple rainfall-runoff functions for integration with the multi-agent model. The approach balances physically-based, spatially-explicit representation of hydrologic systems with the efficiency required for integration into a complex multi-agent model that is computationally amenable to robust scenario analysis. For the multi-agent model, we explicitly represent human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. The agents' decision making models incorporate both rule-based heuristics as well as economic optimization. The model is programmed in Python using Pynsim, a generalizable, open-source object-oriented code framework for modeling network-based water resource systems. The Jordan model is one of the first applications of Pynsim to a real-world water management case study. Preliminary results from a tanker market scenario run through year 2050 are presented in which several salient features of the water system are investigated: competition between urban and private farmer agents, the emergence of a private tanker market, disparities in economic wellbeing to different user groups caused by unique supply conditions, and response of the complex system to various policy interventions.

  4. Multilevel Evaluation Systems Project. Final Report.

    ERIC Educational Resources Information Center

    Herman, Joan L.

    Several studies were conducted in 1987 by the Multilevel Evaluation Systems Project, which focuses on developing a model for a multi-purpose, multi-user evaluation system to facilitate educational decision making and evaluation. The project model emphasizes on-going integrated assessment of individuals, classes, and programs using a variety of…

  5. BagMOOV: A novel ensemble for heart disease prediction bootstrap aggregation with multi-objective optimized voting.

    PubMed

    Bashir, Saba; Qamar, Usman; Khan, Farhan Hassan

    2015-06-01

    Conventional clinical decision support systems are based on individual classifiers or simple combination of these classifiers which tend to show moderate performance. This research paper presents a novel classifier ensemble framework based on enhanced bagging approach with multi-objective weighted voting scheme for prediction and analysis of heart disease. The proposed model overcomes the limitations of conventional performance by utilizing an ensemble of five heterogeneous classifiers: Naïve Bayes, linear regression, quadratic discriminant analysis, instance based learner and support vector machines. Five different datasets are used for experimentation, evaluation and validation. The datasets are obtained from publicly available data repositories. Effectiveness of the proposed ensemble is investigated by comparison of results with several classifiers. Prediction results of the proposed ensemble model are assessed by ten fold cross validation and ANOVA statistics. The experimental evaluation shows that the proposed framework deals with all type of attributes and achieved high diagnosis accuracy of 84.16 %, 93.29 % sensitivity, 96.70 % specificity, and 82.15 % f-measure. The f-ratio higher than f-critical and p value less than 0.05 for 95 % confidence interval indicate that the results are extremely statistically significant for most of the datasets.

  6. Formulating a stand-growth model for mathematical programming problems in Appalachian forests

    Treesearch

    Gary W. Miller; Jay Sullivan

    1993-01-01

    Some growth and yield simulators applicable to central hardwood forests can be formulated for use in mathematical programming models that are designed to optimize multi-stand, multi-resource management problems. Once in the required format, growth equations serve as model constraints, defining the dynamics of stand development brought about by harvesting decisions. In...

  7. Multi-objective optimization of solid waste flows: environmentally sustainable strategies for municipalities.

    PubMed

    Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto

    2008-11-01

    An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).

  8. Risk Decision Making Model for Reservoir Floodwater resources Utilization

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2017-12-01

    Floodwater resources utilization(FRU) can alleviate the shortage of water resources, but there are risks. In order to safely and efficiently utilize the floodwater resources, it is necessary to study the risk of reservoir FRU. In this paper, the risk rate of exceeding the design flood water level and the risk rate of exceeding safety discharge are estimated. Based on the principle of the minimum risk and the maximum benefit of FRU, a multi-objective risk decision making model for FRU is constructed. Probability theory and mathematical statistics method is selected to calculate the risk rate; C-D production function method and emergy analysis method is selected to calculate the risk benefit; the risk loss is related to flood inundation area and unit area loss; the multi-objective decision making problem of the model is solved by the constraint method. Taking the Shilianghe reservoir in Jiangsu Province as an example, the optimal equilibrium solution of FRU of the Shilianghe reservoir is found by using the risk decision making model, and the validity and applicability of the model are verified.

  9. Applying Recursive Sensitivity Analysis to Multi-Criteria Decision Models to Reduce Bias in Defense Cyber Engineering Analysis

    DTIC Science & Technology

    2015-10-28

    techniques such as regression analysis, correlation, and multicollinearity assessment to identify the change and error on the input to the model...between many of the independent or predictor variables, the issue of multicollinearity may arise [18]. VII. SUMMARY Accurate decisions concerning

  10. Critical multi-level governance issues of integrated modelling: An example of low-water management in the Adour-Garonne basin (France)

    NASA Astrophysics Data System (ADS)

    Mazzega, Pierre; Therond, Olivier; Debril, Thomas; March, Hug; Sibertin-Blanc, Christophe; Lardy, Romain; Sant'ana, Daniel

    2014-11-01

    This paper presents the experience gained related to the development of an integrated simulation model of water policy. Within this context, we analyze particular difficulties raised by the inclusion of multi-level governance that assigns the responsibility of individual or collective decision-making to a variety of actors, regarding measures of which the implementation has significant effects toward the sustainability of socio-hydrosystems. Multi-level governance procedures are compared with the potential of model-based impact assessment. Our discussion is illustrated on the basis of the exploitation of the multi-agent platform MAELIA dedicated to the simulation of social, economic and environmental impacts of low-water management in a context of climate and regulatory changes. We focus on three major decision-making processes occurring in the Adour-Garonne basin, France: (i) the participatory development of the Master Scheme for Water Planning and Management (SDAGE) under the auspices of the Water Agency; (ii) the publication of water use restrictions in situations of water scarcity; and (iii) the determination of the abstraction volumes for irrigation and their allocation. The MAELIA platform explicitly takes into account the mode of decision-making when it is framed by a procedure set beforehand, focusing on the actors' participation and on the nature and parameters of the measures to be implemented. It is observed that in some water organizations decision-making follows patterns that can be represented as rule-based actions triggered by thresholds of resource states. When decisions are resulting from individual choice, endowing virtual agents with bounded rationality allows us to reproduce (in silico) their behavior and decisions in a reliable way. However, the negotiation processes taking place during the period of time simulated by the models in arenas of collective choices are not all reproducible. Outcomes of some collective decisions are very little or not at all predictable. The development and simulation of a priori policy scenarios capturing the most plausible or interesting outcomes of such collective decisions on measures for low-water management allows these difficulties to be overcome. The building of these kind of scenarios requires close collaboration between researchers and stakeholders involved in arenas of collective choice, and implies the integration of the production of model and the analysis of scenarios as one component of the polycentric political process of water management.

  11. Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection

    NASA Astrophysics Data System (ADS)

    Hafezalkotob, Arian; Hafezalkotob, Ashkan

    2017-06-01

    A target-based MADM method covers beneficial and non-beneficial attributes besides target values for some attributes. Such techniques are considered as the comprehensive forms of MADM approaches. Target-based MADM methods can also be used in traditional decision-making problems in which beneficial and non-beneficial attributes only exist. In many practical selection problems, some attributes have given target values. The values of decision matrix and target-based attributes can be provided as intervals in some of such problems. Some target-based decision-making methods have recently been developed; however, a research gap exists in the area of MADM techniques with target-based attributes under uncertainty of information. We extend the MULTIMOORA method for solving practical material selection problems in which material properties and their target values are given as interval numbers. We employ various concepts of interval computations to reduce degeneration of uncertain data. In this regard, we use interval arithmetic and introduce innovative formula for interval distance of interval numbers to create interval target-based normalization technique. Furthermore, we use a pairwise preference matrix based on the concept of degree of preference of interval numbers to calculate the maximum, minimum, and ranking of these numbers. Two decision-making problems regarding biomaterials selection of hip and knee prostheses are discussed. Preference degree-based ranking lists for subordinate parts of the extended MULTIMOORA method are generated by calculating the relative degrees of preference for the arranged assessment values of the biomaterials. The resultant rankings for the problem are compared with the outcomes of other target-based models in the literature.

  12. Building a picture: Prioritisation of exotic diseases for the pig industry in Australia using multi-criteria decision analysis.

    PubMed

    Brookes, V J; Hernández-Jover, M; Cowled, B; Holyoake, P K; Ward, M P

    2014-01-01

    Diseases that are exotic to the pig industry in Australia were prioritised using a multi-criteria decision analysis framework that incorporated weights of importance for a range of criteria important to industry stakeholders. Measurements were collected for each disease for nine criteria that described potential disease impacts. A total score was calculated for each disease using a weighted sum value function that aggregated the nine disease criterion measurements and weights of importance for the criteria that were previously elicited from two groups of industry stakeholders. One stakeholder group placed most value on the impacts of disease on livestock, and one group placed more value on the zoonotic impacts of diseases. Prioritisation lists ordered by disease score were produced for both of these groups. Vesicular diseases were found to have the highest priority for the group valuing disease impacts on livestock, followed by acute forms of African and classical swine fever, then highly pathogenic porcine reproductive and respiratory syndrome. The group who valued zoonotic disease impacts prioritised rabies, followed by Japanese encephalitis, Eastern equine encephalitis and Nipah virus, interspersed with vesicular diseases. The multi-criteria framework used in this study systematically prioritised diseases using a multi-attribute theory based technique that provided transparency and repeatability in the process. Flexibility of the framework was demonstrated by aggregating the criterion weights from more than one stakeholder group with the disease measurements for the criteria. This technique allowed industry stakeholders to be active in resource allocation for their industry without the need to be disease experts. We believe it is the first prioritisation of livestock diseases using values provided by industry stakeholders. The prioritisation lists will be used by industry stakeholders to identify diseases for further risk analysis and disease spread modelling to understand biosecurity risks to this industry. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention.

    PubMed

    Zhang, Yanhang; Barocas, Victor H; Berceli, Scott A; Clancy, Colleen E; Eckmann, David M; Garbey, Marc; Kassab, Ghassan S; Lochner, Donna R; McCulloch, Andrew D; Tran-Son-Tay, Roger; Trayanova, Natalia A

    2016-09-01

    Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications.

  14. Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention

    PubMed Central

    Zhang, Yanhang; Barocas, Victor H.; Berceli, Scott A.; Clancy, Colleen E.; Eckmann, David M.; Garbey, Marc; Kassab, Ghassan S.; Lochner, Donna R.; McCulloch, Andrew D.; Tran-Son-Tay, Roger; Trayanova, Natalia A.

    2016-01-01

    Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications. PMID:27138523

  15. Uncertainty analysis for effluent trading planning using a Bayesian estimation-based simulation-optimization modeling approach.

    PubMed

    Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J

    2017-06-01

    In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision alternatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Integrated Decision Tools for Sustainable Watershed/Ground Water and Crop Health using Predictive Weather, Remote Sensing, and Irrigation Decision Tools

    NASA Astrophysics Data System (ADS)

    Jones, A. S.; Andales, A.; McGovern, C.; Smith, G. E. B.; David, O.; Fletcher, S. J.

    2017-12-01

    US agricultural and Govt. lands have a unique co-dependent relationship, particularly in the Western US. More than 30% of all irrigated US agricultural output comes from lands sustained by the Ogallala Aquifer in the western Great Plains. Six US Forest Service National Grasslands reside within the aquifer region, consisting of over 375,000 ha (3,759 km2) of USFS managed lands. Likewise, National Forest lands are the headwaters to many intensive agricultural regions. Our Ogallala Aquifer team is enhancing crop irrigation decision tools with predictive weather and remote sensing data to better manage water for irrigated crops within these regions. An integrated multi-model software framework is used to link irrigation decision tools, resulting in positive management benefits on natural water resources. Teams and teams-of-teams can build upon these multi-disciplinary multi-faceted modeling capabilities. For example, the CSU Catalyst for Innovative Partnerships program has formed a new multidisciplinary team that will address "Rural Wealth Creation" focusing on the many integrated links between economic, agricultural production and management, natural resource availabilities, and key social aspects of govt. policy recommendations. By enhancing tools like these with predictive weather and other related data (like in situ measurements, hydrologic models, remotely sensed data sets, and (in the near future) linking to agro-economic and life cycle assessment models) this work demonstrates an integrated data-driven future vision of inter-meshed dynamic systems that can address challenging multi-system problems. We will present the present state of the work and opportunities for future involvement.

  17. Multisensor satellite data for water quality analysis and water pollution risk assessment: decision making under deep uncertainty with fuzzy algorithm in framework of multimodel approach

    NASA Astrophysics Data System (ADS)

    Kostyuchenko, Yuriy V.; Sztoyka, Yulia; Kopachevsky, Ivan; Artemenko, Igor; Yuschenko, Maxim

    2017-10-01

    Multi-model approach for remote sensing data processing and interpretation is described. The problem of satellite data utilization in multi-modeling approach for socio-ecological risks assessment is formally defined. Observation, measurement and modeling data utilization method in the framework of multi-model approach is described. Methodology and models of risk assessment in framework of decision support approach are defined and described. Method of water quality assessment using satellite observation data is described. Method is based on analysis of spectral reflectance of aquifers. Spectral signatures of freshwater bodies and offshores are analyzed. Correlations between spectral reflectance, pollutions and selected water quality parameters are analyzed and quantified. Data of MODIS, MISR, AIRS and Landsat sensors received in 2002-2014 have been utilized verified by in-field spectrometry and lab measurements. Fuzzy logic based approach for decision support in field of water quality degradation risk is discussed. Decision on water quality category is making based on fuzzy algorithm using limited set of uncertain parameters. Data from satellite observations, field measurements and modeling is utilizing in the framework of the approach proposed. It is shown that this algorithm allows estimate water quality degradation rate and pollution risks. Problems of construction of spatial and temporal distribution of calculated parameters, as well as a problem of data regularization are discussed. Using proposed approach, maps of surface water pollution risk from point and diffuse sources are calculated and discussed.

  18. Improved multi-objective ant colony optimization algorithm and its application in complex reasoning

    NASA Astrophysics Data System (ADS)

    Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing

    2013-09-01

    The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.

  19. On multi-site damage identification using single-site training data

    NASA Astrophysics Data System (ADS)

    Barthorpe, R. J.; Manson, G.; Worden, K.

    2017-11-01

    This paper proposes a methodology for developing multi-site damage location systems for engineering structures that can be trained using single-site damaged state data only. The methodology involves training a sequence of binary classifiers based upon single-site damage data and combining the developed classifiers into a robust multi-class damage locator. In this way, the multi-site damage identification problem may be decomposed into a sequence of binary decisions. In this paper Support Vector Classifiers are adopted as the means of making these binary decisions. The proposed methodology represents an advancement on the state of the art in the field of multi-site damage identification which require either: (1) full damaged state data from single- and multi-site damage cases or (2) the development of a physics-based model to make multi-site model predictions. The potential benefit of the proposed methodology is that a significantly reduced number of recorded damage states may be required in order to train a multi-site damage locator without recourse to physics-based model predictions. In this paper it is first demonstrated that Support Vector Classification represents an appropriate approach to the multi-site damage location problem, with methods for combining binary classifiers discussed. Next, the proposed methodology is demonstrated and evaluated through application to a real engineering structure - a Piper Tomahawk trainer aircraft wing - with its performance compared to classifiers trained using the full damaged-state dataset.

  20. A Multi-Period Optimization Model for Service Providers Using Online Reservation Systems: An Application to Hotels.

    PubMed

    Xu, Ming; Jiao, Yan; Li, Xiaoming; Cao, Qingfeng; Wang, Xiaoyang

    2015-01-01

    This paper presents a multi-period optimization model for high margin and zero salvage products in online distribution channels with classifying customers based on number of products required. Taking hotel customers as an example, one is regular customers who reserve rooms for one day, and the other is long term stay (LTS) customers who reserve rooms for a number of days. LTS may guarantee a specific amount of demand and generate opportunity income for a certain number of periods, meanwhile with risk of punishment incurred by overselling. By developing an operational optimization model and exploring the effects of parameters on optimal decisions, we suggest that service providers should make decisions based on the types of customers, number of products required, and duration of multi-period to reduce the loss of reputation and obtain more profit; at the same time, multi-period buying customers should buy products early. Finally, the paper conducts a numerical experiment, and the results are consistent with prevailing situations.

  1. A Multi-Period Optimization Model for Service Providers Using Online Reservation Systems: An Application to Hotels

    PubMed Central

    Xu, Ming; Jiao, Yan; Li, Xiaoming; Cao, Qingfeng; Wang, Xiaoyang

    2015-01-01

    This paper presents a multi-period optimization model for high margin and zero salvage products in online distribution channels with classifying customers based on number of products required. Taking hotel customers as an example, one is regular customers who reserve rooms for one day, and the other is long term stay (LTS) customers who reserve rooms for a number of days. LTS may guarantee a specific amount of demand and generate opportunity income for a certain number of periods, meanwhile with risk of punishment incurred by overselling. By developing an operational optimization model and exploring the effects of parameters on optimal decisions, we suggest that service providers should make decisions based on the types of customers, number of products required, and duration of multi-period to reduce the loss of reputation and obtain more profit; at the same time, multi-period buying customers should buy products early. Finally, the paper conducts a numerical experiment, and the results are consistent with prevailing situations. PMID:26147663

  2. Learning of Rule Ensembles for Multiple Attribute Ranking Problems

    NASA Astrophysics Data System (ADS)

    Dembczyński, Krzysztof; Kotłowski, Wojciech; Słowiński, Roman; Szeląg, Marcin

    In this paper, we consider the multiple attribute ranking problem from a Machine Learning perspective. We propose two approaches to statistical learning of an ensemble of decision rules from decision examples provided by the Decision Maker in terms of pairwise comparisons of some objects. The first approach consists in learning a preference function defining a binary preference relation for a pair of objects. The result of application of this function on all pairs of objects to be ranked is then exploited using the Net Flow Score procedure, giving a linear ranking of objects. The second approach consists in learning a utility function for single objects. The utility function also gives a linear ranking of objects. In both approaches, the learning is based on the boosting technique. The presented approaches to Preference Learning share good properties of the decision rule preference model and have good performance in the massive-data learning problems. As Preference Learning and Multiple Attribute Decision Aiding share many concepts and methodological issues, in the introduction, we review some aspects bridging these two fields. To illustrate the two approaches proposed in this paper, we solve with them a toy example concerning the ranking of a set of cars evaluated by multiple attributes. Then, we perform a large data experiment on real data sets. The first data set concerns credit rating. Since recent research in the field of Preference Learning is motivated by the increasing role of modeling preferences in recommender systems and information retrieval, we chose two other massive data sets from this area - one comes from movie recommender system MovieLens, and the other concerns ranking of text documents from 20 Newsgroups data set.

  3. Multi-criteria decision making--an approach to setting priorities in health care.

    PubMed

    Nobre, F F; Trotta, L T; Gomes, L F

    1999-12-15

    The objective of this paper is to present a multi-criteria decision making (MCDM) approach to support public health decision making that takes into consideration the fuzziness of the decision goals and the behavioural aspect of the decision maker. The approach is used to analyse the process of health technology procurement in a University Hospital in Rio de Janeiro, Brazil. The method, known as TODIM, relies on evaluating alternatives with a set of decision criteria assessed using an ordinal scale. Fuzziness in generating criteria scores and weights or conflicts caused by dealing with different viewpoints of a group of decision makers (DMs) are solved using fuzzy set aggregation rules. The results suggested that MCDM models, incorporating fuzzy set approaches, should form a set of tools for public health decision making analysis, particularly when there are polarized opinions and conflicting objectives from the DM group. Copyright 1999 John Wiley & Sons, Ltd.

  4. Drug-related webpages classification based on multi-modal local decision fusion

    NASA Astrophysics Data System (ADS)

    Hu, Ruiguang; Su, Xiaojing; Liu, Yanxin

    2018-03-01

    In this paper, multi-modal local decision fusion is used for drug-related webpages classification. First, meaningful text are extracted through HTML parsing, and effective images are chosen by the FOCARSS algorithm. Second, six SVM classifiers are trained for six kinds of drug-taking instruments, which are represented by PHOG. One SVM classifier is trained for the cannabis, which is represented by the mid-feature of BOW model. For each instance in a webpage, seven SVMs give seven labels for its image, and other seven labels are given by searching the names of drug-taking instruments and cannabis in its related text. Concatenating seven labels of image and seven labels of text, the representation of those instances in webpages are generated. Last, Multi-Instance Learning is used to classify those drugrelated webpages. Experimental results demonstrate that the classification accuracy of multi-instance learning with multi-modal local decision fusion is much higher than those of single-modal classification.

  5. Use of structured decision making to identify monitoring variables and management priorities for salt marsh ecosystems

    USGS Publications Warehouse

    Neckles, Hilary A.; Lyons, James E.; Guntenspergen, Glenn R.; Shriver, W. Gregory; Adamowicz, Susan C.

    2015-01-01

    Most salt marshes in the USA have been degraded by human activities, and coastal managers are faced with complex choices among possible actions to restore or enhance ecosystem integrity. We applied structured decision making (SDM) to guide selection of monitoring variables and management priorities for salt marshes within the National Wildlife Refuge System in the northeastern USA. In general, SDM is a systematic process for decomposing a decision into its essential elements. We first engaged stakeholders in clarifying regional salt marsh decision problems, defining objectives and attributes to evaluate whether objectives are achieved, and developing a pool of alternative management actions for achieving objectives. Through this process, we identified salt marsh attributes that were applicable to monitoring National Wildlife Refuges on a regional scale and that targeted management needs. We then analyzed management decisions within three salt marsh units at Prime Hook National Wildlife Refuge, coastal Delaware, as a case example of prioritizing management alternatives. Values for salt marsh attributes were estimated from 2 years of baseline monitoring data and expert opinion. We used linear value modeling to aggregate multiple attributes into a single performance score for each alternative, constrained optimization to identify alternatives that maximized total management benefits subject to refuge-wide cost constraints, and used graphical analysis to identify the optimal set of alternatives for the refuge. SDM offers an efficient, transparent approach for integrating monitoring into management practice and improving the quality of management decisions.

  6. DLA Systems Modernization Methodology: Logical Analysis and Design Procedures

    DTIC Science & Technology

    1990-07-01

    Information Requirement would have little meaning and thus would lose its value . 3 I3 I 1.1.3 INPUT PRODUCTS 3 1.1.3.1 Enterprise Model Objective List 1.1.3.2...at the same time, the attribute is said to be multi- valued . i For example, an E-R model may contain information on the languages an employee speaks...Relationship model is examined in detail to ensure that each data group contains attributes whose values are absolutely determined by their respective

  7. a Novel Approach to Support Majority Voting in Spatial Group Mcdm Using Density Induced Owa Operator for Seismic Vulnerability Assessment

    NASA Astrophysics Data System (ADS)

    Moradi, M.; Delavar, M. R.; Moshiri, B.; Khamespanah, F.

    2014-10-01

    Being one of the most frightening disasters, earthquakes frequently cause huge damages to buildings, facilities and human beings. Although the prediction of characteristics of an earthquake seems to be impossible, its loss and damage is predictable in advance. Seismic loss estimation models tend to evaluate the extent to which the urban areas are vulnerable to earthquakes. Many factors contribute to the vulnerability of urban areas against earthquakes including age and height of buildings, the quality of the materials, the density of population and the location of flammable facilities. Therefore, seismic vulnerability assessment is a multi-criteria problem. A number of multi criteria decision making models have been proposed based on a single expert. The main objective of this paper is to propose a model which facilitates group multi criteria decision making based on the concept of majority voting. The main idea of majority voting is providing a computational tool to measure the degree to which different experts support each other's opinions and make a decision regarding this measure. The applicability of this model is examined in Tehran metropolitan area which is located in a seismically active region. The results indicate that neglecting the experts which get lower degrees of support from others enables the decision makers to avoid the extreme strategies. Moreover, a computational method is proposed to calculate the degree of optimism in the experts' opinions.

  8. Use of multiattribute utility theory for formulary management in a health system.

    PubMed

    Chung, Seonyoung; Kim, Sooyon; Kim, Jeongmee; Sohn, Kieho

    2010-01-15

    The application, utility, and flexibility of the multiattribute utility theory (MAUT) when used as a formulary decision methodology in a Korean medical center were evaluated. A drug analysis model using MAUT consisting of 10 steps was designed for two drug classes of dihydropyridine calcium channel blockers (CCBs) and angiotensin II receptor blockers (ARBs). These two drug classes contain the most diverse agents among cardiovascular drugs on Samsung Medical Center's drug formulary. The attributes identified for inclusion in the drug analysis model were effectiveness, safety, patient convenience, and cost, with relative weights of 50%, 30%, 10%, and 10%, respectively. The factors were incorporated into the model to quantify the contribution of each attribute. For each factor, a utility scale of 0-100 was established, and the total utility score for each alternative was calculated. An attempt was made to make the model adaptable to changing health care and regulatory circumstances. The analysis revealed amlodipine besylate to be an alternative agent, with the highest total utility score among the dihydropyridine CCBs, while barnidipine hydrochloride had the lowest score. For ARBs, losartan potassium had the greatest total utility score, while olmesartan medoxomil had the lowest. A drug analysis model based on the MAUT was successfully developed and used in making formulary decisions for dihydropyridine CCBs and ARBs for a Korean health system. The model incorporates sufficient utility and flexibility of a drug's attributes and can be used as an alternative decision-making tool for formulary management in health systems.

  9. Comparing AMSR-E soil moisture estimates to the extended record of the U.S. Climate Reference Network (USCRN)

    USDA-ARS?s Scientific Manuscript database

    Soil moisture plays an integral role in various aspects ranging from multi-scale hydrologic modeling to agricultural decision analysis to multi-scale hydrologic modeling, from climate change assessments to drought prediction and prevention. The broad availability of soil moisture estimates has only...

  10. Addressing multi-use issues in sustainable forest management with signal-transfer modeling

    Treesearch

    Robert J. Luxmoore; William W. Hargrove; M. Lynn Tharp; W. Mac Post; Michael W. Berry; Karen S. Minser; Wendell P. Cropper; Dale W. Johnson; Boris Zeide; Ralph L. Amateis; Harold E. Burkhart; V. Clark Baldwin; Kelly D. Peterson

    2002-01-01

    Management decisions concerning impacts of projected changes in environmental and social conditions on multi-use forest products and services, such as productivity, water supply or carbon sequestration, may be facilitated with signal-transfer modeling. This simulation method utilizes a hierarchy of simulators in which the integrated responses (signals) from smaller-...

  11. Robust allocation of a defensive budget considering an attacker's private information.

    PubMed

    Nikoofal, Mohammad E; Zhuang, Jun

    2012-05-01

    Attackers' private information is one of the main issues in defensive resource allocation games in homeland security. The outcome of a defense resource allocation decision critically depends on the accuracy of estimations about the attacker's attributes. However, terrorists' goals may be unknown to the defender, necessitating robust decisions by the defender. This article develops a robust-optimization game-theoretical model for identifying optimal defense resource allocation strategies for a rational defender facing a strategic attacker while the attacker's valuation of targets, being the most critical attribute of the attacker, is unknown but belongs to bounded distribution-free intervals. To our best knowledge, no previous research has applied robust optimization in homeland security resource allocation when uncertainty is defined in bounded distribution-free intervals. The key features of our model include (1) modeling uncertainty in attackers' attributes, where uncertainty is characterized by bounded intervals; (2) finding the robust-optimization equilibrium for the defender using concepts dealing with budget of uncertainty and price of robustness; and (3) applying the proposed model to real data. © 2011 Society for Risk Analysis.

  12. Research on the influence of parking charging strategy based on multi-level extension theory of group decision making

    NASA Astrophysics Data System (ADS)

    Cheng, Fen; Hu, Wanxin

    2017-05-01

    Based on analysis of the impact of the experience of parking policy at home and abroad, design the impact analysis process of parking strategy. First, using group decision theory to create a parking strategy index system and calculate its weight. Index system includes government, parking operators and travelers. Then, use a multi-level extension theory to analyze the CBD parking strategy. Assess the parking strategy by calculating the correlation of each indicator. Finally, assess the strategy of parking charges through a case. Provide a scientific and reasonable basis for assessing parking strategy. The results showed that the model can effectively analyze multi-target, multi-property parking policy evaluation.

  13. An interval-parameter mixed integer multi-objective programming for environment-oriented evacuation management

    NASA Astrophysics Data System (ADS)

    Wu, C. Z.; Huang, G. H.; Yan, X. P.; Cai, Y. P.; Li, Y. P.

    2010-05-01

    Large crowds are increasingly common at political, social, economic, cultural and sports events in urban areas. This has led to attention on the management of evacuations under such situations. In this study, we optimise an approximation method for vehicle allocation and route planning in case of an evacuation. This method, based on an interval-parameter multi-objective optimisation model, has potential for use in a flexible decision support system for evacuation management. The modeling solutions are obtained by sequentially solving two sub-models corresponding to lower- and upper-bounds for the desired objective function value. The interval solutions are feasible and stable in the given decision space, and this may reduce the negative effects of uncertainty, thereby improving decision makers' estimates under different conditions. The resulting model can be used for a systematic analysis of the complex relationships among evacuation time, cost and environmental considerations. The results of a case study used to validate the proposed model show that the model does generate useful solutions for planning evacuation management and practices. Furthermore, these results are useful for evacuation planners, not only in making vehicle allocation decisions but also for providing insight into the tradeoffs among evacuation time, environmental considerations and economic objectives.

  14. Applying air pollution modelling within a multi-criteria decision analysis framework to evaluate UK air quality policies

    NASA Astrophysics Data System (ADS)

    Chalabi, Zaid; Milojevic, Ai; Doherty, Ruth M.; Stevenson, David S.; MacKenzie, Ian A.; Milner, James; Vieno, Massimo; Williams, Martin; Wilkinson, Paul

    2017-10-01

    A decision support system for evaluating UK air quality policies is presented. It combines the output from a chemistry transport model, a health impact model and other impact models within a multi-criteria decision analysis (MCDA) framework. As a proof-of-concept, the MCDA framework is used to evaluate and compare idealized emission reduction policies in four sectors (combustion in energy and transformation industries, non-industrial combustion plants, road transport and agriculture) and across six outcomes or criteria (mortality, health inequality, greenhouse gas emissions, biodiversity, crop yield and air quality legal compliance). To illustrate a realistic use of the MCDA framework, the relative importance of the criteria were elicited from a number of stakeholders acting as proxy policy makers. In the prototype decision problem, we show that reducing emissions from industrial combustion (followed very closely by road transport and agriculture) is more advantageous than equivalent reductions from the other sectors when all the criteria are taken into account. Extensions of the MCDA framework to support policy makers in practice are discussed.

  15. A Fuzzy Rule Based Decision Support System for Identifying Location of Water Harvesting Technologies in Rainfed Agricultural Regions

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Vema, V. K.; Sudheer, K.

    2016-12-01

    Site suitability evaluation of water conservation structures in water scarce rainfed agricultural areas consist of assessment of various landscape characteristics and various criterion. Many of these landscape characteristic attributes are conveyed through linguistic terms rather than precise numeric values. Fuzzy rule based system are capable of incorporating uncertainty and vagueness, when various decision making criteria expressed in linguistic terms are expressed as fuzzy rules. In this study a fuzzy rule based decision support system is developed, for optimal site selection of water harvesting technologies. Water conservation technologies like farm ponds, Check dams, Rock filled dams and percolation ponds aid in conserving water for irrigation and recharging aquifers and development of such a system will aid in improving the efficiency of the structures. Attributes and criteria involved in decision making are classified into different groups to estimate the suitability of the particular technology. The developed model is applied and tested on an Indian watershed. The input attributes are prepared in raster format in ArcGIS software and suitability of each raster cell is calculated and output is generated in the form of a thematic map showing the suitability of the cells pertaining to different technologies. The output of the developed model is compared against the already existing structures and results are satisfactory. This developed model will aid in improving the sustainability and efficiency of the watershed management programs aimed at enhancing in situ moisture content.

  16. A multi-objective programming model for assessment the GHG emissions in MSW management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr; Skoulaxinou, Sotiria; Gakis, Nikos

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty yearsmore » they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application of the model in a Greek region.« less

  17. The Role of Epistemic Motivation in Individuals' Response to Decision Complexity

    ERIC Educational Resources Information Center

    Amit, Adi; Sagiv, Lilach

    2013-01-01

    Integrating findings on the effects of more alternatives with findings on the effects of more attributes, we offer a motivational decision-making model, suggesting that epistemic motivation moderates individuals' responses to complex information. Study 1 empirically investigated the shared essence of four conceptualizations of epistemic…

  18. Emergent collective decision-making: Control, model and behavior

    NASA Astrophysics Data System (ADS)

    Shen, Tian

    In this dissertation we study emergent collective decision-making in social groups with time-varying interactions and heterogeneously informed individuals. First we analyze a nonlinear dynamical systems model motivated by animal collective motion with heterogeneously informed subpopulations, to examine the role of uninformed individuals. We find through formal analysis that adding uninformed individuals in a group increases the likelihood of a collective decision. Secondly, we propose a model for human shared decision-making with continuous-time feedback and where individuals have little information about the true preferences of other group members. We study model equilibria using bifurcation analysis to understand how the model predicts decisions based on the critical threshold parameters that represent an individual's tradeoff between social and environmental influences. Thirdly, we analyze continuous-time data of pairs of human subjects performing an experimental shared tracking task using our second proposed model in order to understand transient behavior and the decision-making process. We fit the model to data and show that it reproduces a wide range of human behaviors surprisingly well, suggesting that the model may have captured the mechanisms of observed behaviors. Finally, we study human behavior from a game-theoretic perspective by modeling the aforementioned tracking task as a repeated game with incomplete information. We show that the majority of the players are able to converge to playing Nash equilibrium strategies. We then suggest with simulations that the mean field evolution of strategies in the population resemble replicator dynamics, indicating that the individual strategies may be myopic. Decisions form the basis of control and problems involving deciding collectively between alternatives are ubiquitous in nature and in engineering. Understanding how multi-agent systems make decisions among alternatives also provides insight for designing decentralized control laws for engineering applications from mobile sensor networks for environmental monitoring to collective construction robots. With this dissertation we hope to provide additional methodology and mathematical models for understanding the behavior and control of collective decision-making in multi-agent systems.

  19. PCA based feature reduction to improve the accuracy of decision tree c4.5 classification

    NASA Astrophysics Data System (ADS)

    Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.

    2018-03-01

    Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.

  20. Study on generation investment decision-making considering multi-agent benefit for global energy internet

    NASA Astrophysics Data System (ADS)

    Li, Pai; Huang, Yuehui; Jia, Yanbing; Liu, Jichun; Niu, Yi

    2018-02-01

    Abstract . This article has studies on the generation investment decision in the background of global energy interconnection. Generation investment decision model considering the multiagent benefit is proposed. Under the back-ground of global energy Interconnection, generation investors in different clean energy base not only compete with other investors, but also facing being chosen by the power of the central area, therefor, constructing generation investment decision model considering multiagent benefit can be close to meet the interests demands. Using game theory, the complete information game model is adopted to solve the strategies of different subjects in equilibrium state.

  1. Harnessing ecosystem models and multi-criteria decision analysis for the support of forest management.

    PubMed

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  2. Harnessing Ecosystem Models and Multi-Criteria Decision Analysis for the Support of Forest Management

    NASA Astrophysics Data System (ADS)

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  3. Predictors of relationship power among drug-involved women.

    PubMed

    Campbell, Aimee N C; Tross, Susan; Hu, Mei-chen; Pavlicova, Martina; Nunes, Edward V

    2012-08-01

    Gender-based relationship power is frequently linked to women's capacity to reduce sexual risk behaviors. This study offers an exploration of predictors of relationship power, as measured by the multidimensional and theoretically grounded sexual relationship power scale, among women in outpatient substance abuse treatment. Linear models were used to test nine predictors (age, race/ethnicity, education, time in treatment, economic dependence, substance use, sexual concurrency, partner abuse, and sex role orientation) of relationship power among 513 women participating in a multi-site HIV risk reduction intervention study. Significant predictors of relationship control included having a non-abusive male partner, only one male partner, and endorsing traditional masculine (or both masculine and feminine) sex role attributes. Predictors of decision-making dominance were interrelated, with substance use × partner abuse and age × sex role orientation interactions. Results contribute to the understanding of factors which may influence relationship power and to their potential role in HIV sexual risk reduction interventions.

  4. Multi-alternative decision-making with non-stationary inputs.

    PubMed

    Nunes, Luana F; Gurney, Kevin

    2016-08-01

    One of the most widely implemented models for multi-alternative decision-making is the multihypothesis sequential probability ratio test (MSPRT). It is asymptotically optimal, straightforward to implement, and has found application in modelling biological decision-making. However, the MSPRT is limited in application to discrete ('trial-based'), non-time-varying scenarios. By contrast, real world situations will be continuous and entail stimulus non-stationarity. In these circumstances, decision-making mechanisms (like the MSPRT) which work by accumulating evidence, must be able to discard outdated evidence which becomes progressively irrelevant. To address this issue, we introduce a new decision mechanism by augmenting the MSPRT with a rectangular integration window and a transparent decision boundary. This allows selection and de-selection of options as their evidence changes dynamically. Performance was enhanced by adapting the window size to problem difficulty. Further, we present an alternative windowing method which exponentially decays evidence and does not significantly degrade performance, while greatly reducing the memory resources necessary. The methods presented have proven successful at allowing for the MSPRT algorithm to function in a non-stationary environment.

  5. [Real-time detection of quality of Chinese materia medica: strategy of NIR model evaluation].

    PubMed

    Wu, Zhi-sheng; Shi, Xin-yuan; Xu, Bing; Dai, Xing-xing; Qiao, Yan-jiang

    2015-07-01

    The definition of critical quality attributes of Chinese materia medica ( CMM) was put forward based on the top-level design concept. Nowadays, coupled with the development of rapid analytical science, rapid assessment of critical quality attributes of CMM was firstly carried out, which was the secondary discipline branch of CMM. Taking near infrared (NIR) spectroscopy as an example, which is a rapid analytical technology in pharmaceutical process over the past decade, systematic review is the chemometric parameters in NIR model evaluation. According to the characteristics of complexity of CMM and trace components analysis, a multi-source information fusion strategy of NIR model was developed for assessment of critical quality attributes of CMM. The strategy has provided guideline for NIR reliable analysis in critical quality attributes of CMM.

  6. Development of an evidence-based decision pathway for vestibular schwannoma treatment options.

    PubMed

    Linkov, Faina; Valappil, Benita; McAfee, Jacob; Goughnour, Sharon L; Hildrew, Douglas M; McCall, Andrew A; Linkov, Igor; Hirsch, Barry; Snyderman, Carl

    To integrate multiple sources of clinical information with patient feedback to build evidence-based decision support model to facilitate treatment selection for patients suffering from vestibular schwannomas (VS). This was a mixed methods study utilizing focus group and survey methodology to solicit feedback on factors important for making treatment decisions among patients. Two 90-minute focus groups were conducted by an experienced facilitator. Previously diagnosed VS patients were recruited by clinical investigators at the University of Pittsburgh Medical Center (UPMC). Classical content analysis was used for focus group data analysis. Providers were recruited from practices within the UPMC system and were surveyed using Delphi methods. This information can provide a basis for multi-criteria decision analysis (MCDA) framework to develop a treatment decision support system for patients with VS. Eight themes were derived from these data (focus group + surveys): doctor/health care system, side effects, effectiveness of treatment, anxiety, mortality, family/other people, quality of life, and post-operative symptoms. These data, as well as feedback from physicians were utilized in building a multi-criteria decision model. The study illustrated steps involved in the development of a decision support model that integrates evidence-based data and patient values to select treatment alternatives. Studies focusing on the actual development of the decision support technology for this group of patients are needed, as decisions are highly multifactorial. Such tools have the potential to improve decision making for complex medical problems with alternate treatment pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Multi-test decision tree and its application to microarray data classification.

    PubMed

    Czajkowski, Marcin; Grześ, Marek; Kretowski, Marek

    2014-05-01

    The desirable property of tools used to investigate biological data is easy to understand models and predictive decisions. Decision trees are particularly promising in this regard due to their comprehensible nature that resembles the hierarchical process of human decision making. However, existing algorithms for learning decision trees have tendency to underfit gene expression data. The main aim of this work is to improve the performance and stability of decision trees with only a small increase in their complexity. We propose a multi-test decision tree (MTDT); our main contribution is the application of several univariate tests in each non-terminal node of the decision tree. We also search for alternative, lower-ranked features in order to obtain more stable and reliable predictions. Experimental validation was performed on several real-life gene expression datasets. Comparison results with eight classifiers show that MTDT has a statistically significantly higher accuracy than popular decision tree classifiers, and it was highly competitive with ensemble learning algorithms. The proposed solution managed to outperform its baseline algorithm on 14 datasets by an average 6%. A study performed on one of the datasets showed that the discovered genes used in the MTDT classification model are supported by biological evidence in the literature. This paper introduces a new type of decision tree which is more suitable for solving biological problems. MTDTs are relatively easy to analyze and much more powerful in modeling high dimensional microarray data than their popular counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Capacity planning for electronic waste management facilities under uncertainty: multi-objective multi-time-step model development.

    PubMed

    Poonam Khanijo Ahluwalia; Nema, Arvind K

    2011-07-01

    Selection of optimum locations for locating new facilities and decision regarding capacities at the proposed facilities is a major concern for municipal authorities/managers. The decision as to whether a single facility is preferred over multiple facilities of smaller capacities would vary with varying priorities to cost and associated risks such as environmental or health risk or risk perceived by the society. Currently management of waste streams such as that of computer waste is being done using rudimentary practices and is flourishing as an unorganized sector, mainly as backyard workshops in many cities of developing nations such as India. Uncertainty in the quantification of computer waste generation is another major concern due to the informal setup of present computer waste management scenario. Hence, there is a need to simultaneously address uncertainty in waste generation quantities while analyzing the tradeoffs between cost and associated risks. The present study aimed to address the above-mentioned issues in a multi-time-step, multi-objective decision-support model, which can address multiple objectives of cost, environmental risk, socially perceived risk and health risk, while selecting the optimum configuration of existing and proposed facilities (location and capacities).

  9. Real-Time Analysis of a Sensor's Data for Automated Decision Making in an IoT-Based Smart Home.

    PubMed

    Khan, Nida Saddaf; Ghani, Sayeed; Haider, Sajjad

    2018-05-25

    IoT devices frequently generate large volumes of streaming data and in order to take advantage of this data, their temporal patterns must be learned and identified. Streaming data analysis has become popular after being successfully used in many applications including forecasting electricity load, stock market prices, weather conditions, etc. Artificial Neural Networks (ANNs) have been successfully utilized in understanding the embedded interesting patterns/behaviors in the data and forecasting the future values based on it. One such pattern is modelled and learned in the present study to identify the occurrence of a specific pattern in a Water Management System (WMS). This prediction aids in making an automatic decision support system, to switch OFF a hydraulic suction pump at the appropriate time. Three types of ANN, namely Multi-Input Multi-Output (MIMO), Multi-Input Single-Output (MISO), and Recurrent Neural Network (RNN) have been compared, for multi-step-ahead forecasting, on a sensor's streaming data. Experiments have shown that RNN has the best performance among three models and based on its prediction, a system can be implemented to make the best decision with 86% accuracy.

  10. Predicting introductory programming performance: A multi-institutional multivariate study

    NASA Astrophysics Data System (ADS)

    Bergin, Susan; Reilly, Ronan

    2006-12-01

    A model for predicting student performance on introductory programming modules is presented. The model uses attributes identified in a study carried out at four third-level institutions in the Republic of Ireland. Four instruments were used to collect the data and over 25 attributes were examined. A data reduction technique was applied and a logistic regression model using 10-fold stratified cross validation was developed. The model used three attributes: Leaving Certificate Mathematics result (final mathematics examination at second level), number of hours playing computer games while taking the module and programming self-esteem. Prediction success was significant with 80% of students correctly classified. The model also works well on a per-institution level. A discussion on the implications of the model is provided and future work is outlined.

  11. Issues in Developing a Normative Descriptive Model for Dyadic Decision Making

    NASA Technical Reports Server (NTRS)

    Serfaty, D.; Kleinman, D. L.

    1984-01-01

    Most research in modelling human information processing and decision making has been devoted to the case of the single human operator. In the present effort, concepts from the fields of organizational behavior, engineering psychology, team theory and mathematical modelling are merged in an attempt to consider first the case of two cooperating decisionmakers (the Dyad) in a multi-task environment. Rooted in the well-known Dynamic Decision Model (DDM), the normative descriptive approach brings basic cognitive and psychophysical characteristics inherent to human behavior into a team theoretic analytic framework. An experimental paradigm, involving teams in dynamic decision making tasks, is designed to produce the data with which to build the theoretical model.

  12. Determination of Network Attributes from a High Resolution Terrain Data Base

    DTIC Science & Technology

    1987-09-01

    and existing models is in the method used to make decisions. All of ,he models- reviewed when developing the ALARM strategy depended either on threshold...problems with the methods currently accepted and used to *model the decision process. These methods are recognized because they have their uses...observation, detection, and lines of sight along a narrow strip of terrain relative to the overall size of the sectors of the two forces. Existing methods of

  13. Deriving preference order of post-mining land-uses through MLSA framework: application of an outranking technique

    NASA Astrophysics Data System (ADS)

    Soltanmohammadi, Hossein; Osanloo, Morteza; Aghajani Bazzazi, Abbas

    2009-08-01

    This study intends to take advantage of a previously developed framework for mined land suitability analysis (MLSA) consisted of economical, social, technical and mine site factors to achieve a partial and also a complete pre-order of feasible post-mining land-uses. Analysis by an outranking multi-attribute decision-making (MADM) technique, called PROMETHEE (preference ranking organization method for enrichment evaluation), was taken into consideration because of its clear advantages on the field of MLSA as compared with MADM ranking techniques. Application of the proposed approach on a mined land can be completed through some successive steps. First, performance of the MLSA attributes is scored locally by each individual decision maker (DM). Then the assigned performance scores are normalized and the deviation amplitudes of non-dominated alternatives are calculated. Weights of the attributes are calculated by another MADM technique namely, analytical hierarchy process (AHP) in a separate procedure. Using the Gaussian preference function beside the weights, the preference indexes of the land-use alternatives are obtained. Calculation of the outgoing and entering flows of the alternatives and one by one comparison of these values will lead to partial pre-order of them and calculation of the net flows, will lead to a ranked preference for each land-use. At the final step, utilizing the PROMETHEE group decision support system which incorporates judgments of all the DMs, a consensual ranking can be derived. In this paper, preference order of post-mining land-uses for a hypothetical mined land has been derived according to judgments of one DM to reveal applicability of the proposed approach.

  14. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race.

    PubMed

    Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M

    2017-10-01

    Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.

  15. Multi-Attribute Sequential Search

    ERIC Educational Resources Information Center

    Bearden, J. Neil; Connolly, Terry

    2007-01-01

    This article describes empirical and theoretical results from two multi-attribute sequential search tasks. In both tasks, the DM sequentially encounters options described by two attributes and must pay to learn the values of the attributes. In the "continuous" version of the task the DM learns the precise numerical value of an attribute when she…

  16. Land Use Zoning at the County Level Based on a Multi-Objective Particle Swarm Optimization Algorithm: A Case Study from Yicheng, China

    PubMed Central

    Liu, Yaolin; Wang, Hua; Ji, Yingli; Liu, Zhongqiu; Zhao, Xiang

    2012-01-01

    Comprehensive land-use planning (CLUP) at the county level in China must include land-use zoning. This is specifically stipulated by the China Land Management Law and aims to achieve strict control on the usages of land. The land-use zoning problem is treated as a multi-objective optimization problem (MOOP) in this article, which is different from the traditional treatment. A particle swarm optimization (PSO) based model is applied to the problem and is developed to maximize the attribute differences between land-use zones, the spatial compactness, the degree of spatial harmony and the ecological benefits of the land-use zones. This is subject to some constraints such as: the quantity limitations for varying land-use zones, regulations assigning land units to a certain land-use zone, and the stipulation of a minimum parcel area in a land-use zoning map. In addition, a crossover and mutation operator from a genetic algorithm is adopted to avoid the prematurity of PSO. The results obtained for Yicheng, a county in central China, using different objective weighting schemes, are compared and suggest that: (1) the fundamental demand for attribute difference between land-use zones leads to a mass of fragmentary land-use zones; (2) the spatial pattern of land-use zones is remarkably optimized when a weight is given to the sub-objectives of spatial compactness and the degree of spatial harmony, simultaneously, with a reduction of attribute difference between land-use zones; (3) when a weight is given to the sub-objective of ecological benefits of the land-use zones, the ecological benefits get a slight increase also at the expense of a reduction in attribute difference between land-use zones; (4) the pursuit of spatial harmony or spatial compactness may have a negative effect on each other; (5) an increase in the ecological benefits may improve the spatial compactness and spatial harmony of the land-use zones; (6) adjusting the weights assigned to each sub-objective can generate a corresponding optimal solution, with a different quantity structure and spatial pattern to satisfy the preference of the different decision makers; (7) the model proposed in this paper is capable of handling the land-use zoning problem, and the crossover and mutation operator can improve the performance of the model, but, nevertheless, leads to increased time consumption. PMID:23066398

  17. The conceptual foundation of environmental decision support.

    PubMed

    Reichert, Peter; Langhans, Simone D; Lienert, Judit; Schuwirth, Nele

    2015-05-01

    Environmental decision support intends to use the best available scientific knowledge to help decision makers find and evaluate management alternatives. The goal of this process is to achieve the best fulfillment of societal objectives. This requires a careful analysis of (i) how scientific knowledge can be represented and quantified, (ii) how societal preferences can be described and elicited, and (iii) how these concepts can best be used to support communication with authorities, politicians, and the public in environmental management. The goal of this paper is to discuss key requirements for a conceptual framework to address these issues and to suggest how these can best be met. We argue that a combination of probability theory and scenario planning with multi-attribute utility theory fulfills these requirements, and discuss adaptations and extensions of these theories to improve their application for supporting environmental decision making. With respect to (i) we suggest the use of intersubjective probabilities, if required extended to imprecise probabilities, to describe the current state of scientific knowledge. To address (ii), we emphasize the importance of value functions, in addition to utilities, to support decisions under risk. We discuss the need for testing "non-standard" value aggregation techniques, the usefulness of flexibility of value functions regarding attribute data availability, the elicitation of value functions for sub-objectives from experts, and the consideration of uncertainty in value and utility elicitation. With respect to (iii), we outline a well-structured procedure for transparent environmental decision support that is based on a clear separation of scientific prediction and societal valuation. We illustrate aspects of the suggested methodology by its application to river management in general and with a small, didactical case study on spatial river rehabilitation prioritization. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Valuating Privacy with Option Pricing Theory

    NASA Astrophysics Data System (ADS)

    Berthold, Stefan; Böhme, Rainer

    One of the key challenges in the information society is responsible handling of personal data. An often-cited reason why people fail to make rational decisions regarding their own informational privacy is the high uncertainty about future consequences of information disclosures today. This chapter builds an analogy to financial options and draws on principles of option pricing to account for this uncertainty in the valuation of privacy. For this purpose, the development of a data subject's personal attributes over time and the development of the attribute distribution in the population are modeled as two stochastic processes, which fit into the Binomial Option Pricing Model (BOPM). Possible applications of such valuation methods to guide decision support in future privacy-enhancing technologies (PETs) are sketched.

  19. Multi-Task Learning with Low Rank Attribute Embedding for Multi-Camera Person Re-Identification.

    PubMed

    Su, Chi; Yang, Fan; Zhang, Shiliang; Tian, Qi; Davis, Larry Steven; Gao, Wen

    2018-05-01

    We propose Multi-Task Learning with Low Rank Attribute Embedding (MTL-LORAE) to address the problem of person re-identification on multi-cameras. Re-identifications on different cameras are considered as related tasks, which allows the shared information among different tasks to be explored to improve the re-identification accuracy. The MTL-LORAE framework integrates low-level features with mid-level attributes as the descriptions for persons. To improve the accuracy of such description, we introduce the low-rank attribute embedding, which maps original binary attributes into a continuous space utilizing the correlative relationship between each pair of attributes. In this way, inaccurate attributes are rectified and missing attributes are recovered. The resulting objective function is constructed with an attribute embedding error and a quadratic loss concerning class labels. It is solved by an alternating optimization strategy. The proposed MTL-LORAE is tested on four datasets and is validated to outperform the existing methods with significant margins.

  20. Evaluation of water security in Jordan using a multi-agent, hydroeconomic model: Initial model results from the Jordan Water Project

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Medellin-Azuara, J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.; Zhang, H.

    2016-12-01

    Our work focuses on development of a multi-agent, hydroeconomic model for water policy evaluation in Jordan. Jordan ranks among the most water-scarce countries in the world, a situation exacerbated due to a recent influx of refugees escaping the ongoing civil war in neighboring Syria. The modular, multi-agent model is used to evaluate interventions for enhancing Jordan's water security, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the multi-agent model, we explicitly account for human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. Human agents are implemented as autonomous entities in the model that make decisions in relation to one another and in response to hydrologic and socioeconomic conditions. The integrated model is programmed in Python using Pynsim, a generalizable, open-source object-oriented software framework for modeling network-based water resource systems. The modeling time periods include historical (2006-2014) and future (present-2050) time spans. For the historical runs, the model performance is validated against historical data for several observations that reflect the interacting dynamics of both the hydrologic and human components of the system. A historical counterfactual scenario is also constructed to isolate and identify the impacts of the recent Syrian civil war and refugee crisis on Jordan's water system. For the future period, model runs are conducted to evaluate potential supply, demand, and institutional interventions over a wide range of plausible climate and socioeconomic scenarios. In addition, model sensitivity analysis is conducted revealing the hydrologic and human aspects of the system that most strongly influence water security outcomes, providing insight into coupled human-water system dynamics as well as priority areas of focus for continued model improvement.

  1. Construction of social value or utility-based health indices: the usefulness of factorial experimental design plans.

    PubMed

    Cadman, D; Goldsmith, C

    1986-01-01

    Global indices, which aggregate multiple health or function attributes into a single summary indicator, are useful measures in health research. Two key issues must be addressed in the initial stages of index construction from the universe of possible health and function attributes, which ones should be included in a new index? and how simple can the statistical model be to combine attributes into a single numeric index value? Factorial experimental designs were used in the initial stages of developing a function index for evaluating a program for the care of young handicapped children. Beginning with eight attributes judged important to the goals of the program by clinicians, social preference values for different function states were obtained from 32 parents of handicapped children and 32 members of the community. Using category rating methods each rater scored 16 written multi-attribute case descriptions which contained information about a child's status for all eight attributes. Either a good or poor level of each function attribute and age 3 or 5 years were described in each case. Thus, 2(8) = 256 different cases were rated. Two factorial design plans were selected and used to allocate case descriptions to raters. Analysis of variance determined that seven of the eight clinician selected attributes were required in a social value based index for handicapped children. Most importantly, the subsequent steps of index construction could be greatly simplified by the finding that a simple additive statistical model without complex attribute interaction terms was adequate for the index. We conclude that factorial experimental designs are an efficient, feasible and powerful tool for the initial stages of constructing a multi-attribute health index.

  2. Sustainable Urban Forestry Potential Based Quantitative And Qualitative Measurement Using Geospatial Technique

    NASA Astrophysics Data System (ADS)

    Rosli, A. Z.; Reba, M. N. M.; Roslan, N.; Room, M. H. M.

    2014-02-01

    In order to maintain the stability of natural ecosystems around urban areas, urban forestry will be the best initiative to maintain and control green space in our country. Integration between remote sensing (RS) and geospatial information system (GIS) serves as an effective tool for monitoring environmental changes and planning, managing and developing a sustainable urbanization. This paper aims to assess capability of the integration of RS and GIS to provide information for urban forest potential sites based on qualitative and quantitative by using priority parameter ranking in the new township of Nusajaya. SPOT image was used to provide high spatial accuracy while map of topography, landuse, soils group, hydrology, Digital Elevation Model (DEM) and soil series data were applied to enhance the satellite image in detecting and locating present attributes and features on the ground. Multi-Criteria Decision Making (MCDM) technique provides structural and pair wise quantification and comparison elements and criteria for priority ranking for urban forestry purpose. Slope, soil texture, drainage, spatial area, availability of natural resource, and vicinity of urban area are criteria considered in this study. This study highlighted the priority ranking MCDM is cost effective tool for decision-making in urban forestry planning and landscaping.

  3. Model-based system-of-systems engineering for space-based command, control, communication, and information architecture design

    NASA Astrophysics Data System (ADS)

    Sindiy, Oleg V.

    This dissertation presents a model-based system-of-systems engineering (SoSE) approach as a design philosophy for architecting in system-of-systems (SoS) problems. SoS refers to a special class of systems in which numerous systems with operational and managerial independence interact to generate new capabilities that satisfy societal needs. Design decisions are more complicated in a SoS setting. A revised Process Model for SoSE is presented to support three phases in SoS architecting: defining the scope of the design problem, abstracting key descriptors and their interrelations in a conceptual model, and implementing computer-based simulations for architectural analyses. The Process Model enables improved decision support considering multiple SoS features and develops computational models capable of highlighting configurations of organizational, policy, financial, operational, and/or technical features. Further, processes for verification and validation of SoS models and simulations are also important due to potential impact on critical decision-making and, thus, are addressed. Two research questions frame the research efforts described in this dissertation. The first concerns how the four key sources of SoS complexity---heterogeneity of systems, connectivity structure, multi-layer interactions, and the evolutionary nature---influence the formulation of SoS models and simulations, trade space, and solution performance and structure evaluation metrics. The second question pertains to the implementation of SoSE architecting processes to inform decision-making for a subset of SoS problems concerning the design of information exchange services in space-based operations domain. These questions motivate and guide the dissertation's contributions. A formal methodology for drawing relationships within a multi-dimensional trade space, forming simulation case studies from applications of candidate architecture solutions to a campaign of notional mission use cases, and executing multi-purpose analysis studies is presented. These efforts are coupled to the generation of aggregate and time-dependent solution performance metrics via the hierarchical decomposition of objectives and the analytical recomposition of multi-attribute qualitative program drivers from quantifiable measures. This methodology was also applied to generate problem-specific solution structure evaluation metrics that facilitate the comparison of alternate solutions at a high level of aggregation, at lower levels of abstraction, and to relate options for design variables with associated performance values. For proof-of-capability demonstration, the selected application problem concerns the design of command, control, communication, and information (C3I) architecture services for a notional campaign of crewed and robotic lunar surface missions. The impetus for the work was the demonstration of using model-based SoSE for design of sustainable interoperability capabilities between all data and communication assets in extended lunar campaigns. A comprehensive Lunar C3I simulation tool was developed by a team of researchers at Purdue University in support of NASA's Constellation Program; the author of this dissertation was a key contributor to the creation of this tool and made modifications and extensions to key components relevant to the methodological concepts presented in this dissertation. The dissertation concludes with a presentation of example results based on the interrogation of the constructed Lunar C3I computational model. The results are based on a family of studies, structured around a trade-tree of architecture options, which were conducted to test the hypothesis that the SoSE approach is efficacious in the information-exchange architecture design in space exploration domain. Included in the family of proof-of-capability studies is a simulation of the Apollo 17 mission, which allows not only for partial verification and validation of the model, but also provides insights for prioritizing future model design iterations to make it more realistic representation of the "real world." A caveat within the results presented is that they serve within the capacity of a proof-of-capability demonstration, and as such, they are a product of models and analyses that need further development before the tool's results can be employed for decision-making. Additional discussion is provided for how to further develop and validate the Lunar C3I tool and also to make it extensible to other SoS design problems of similar nature in space exploration and other problem application domains.

  4. Blame attribution as a moderator of perceptions of sexual orientation-based hate crimes.

    PubMed

    Cramer, Robert J; Chandler, Joseph F; Wakeman, Emily E

    2010-05-01

    Blame attribution is a valuable mechanism explaining decision making. However, present literature mainly employs blame attribution as a dependent variable. The shortcoming of this fact is that blame attribution offers a potentially valuable explanatory mechanism for decision making. The authors designed two studies to investigate blame attribution as a moderator of sentencing decisions in sexual orientation-based hate crimes. Study 1 showed that mock jurors punished perpetrators of hate crimes more severely than a control condition. Also, degree of victim blame influenced punitive decision making. In Study 2, mock jurors extended findings that perpetrators of hate crimes are more harshly punished than those of other types of crimes. Victim and perpetrator blame failed to moderate decision making in this more complex scenario. Results are discussed in relation to hate crimes definitions and attribution theory.

  5. Essays on Industrial Organization and Political Economy

    ERIC Educational Resources Information Center

    Camara, Odilon Roberto VG de a

    2009-01-01

    This thesis presents three essays on industrial organization and political economy. In the first essay, I show how the attributes of a managerial workforce affect firms' placement decisions and wage offers, and managers' quit decisions. My OLG model features two division managers and a CEO, where each executive may be at a different point in his…

  6. Multi-criteria decision analysis tools for prioritising emerging or re-emerging infectious diseases associated with climate change in Canada.

    PubMed

    Cox, Ruth; Sanchez, Javier; Revie, Crawford W

    2013-01-01

    Global climate change is known to result in the emergence or re-emergence of some infectious diseases. Reliable methods to identify the infectious diseases of humans and animals and that are most likely to be influenced by climate are therefore required. Since different priorities will affect the decision to address a particular pathogen threat, decision makers need a standardised method of prioritisation. Ranking methods and Multi-Criteria Decision approaches provide such a standardised method and were employed here to design two different pathogen prioritisation tools. The opinion of 64 experts was elicited to assess the importance of 40 criteria that could be used to prioritise emerging infectious diseases of humans and animals in Canada. A weight was calculated for each criterion according to the expert opinion. Attributes were defined for each criterion as a transparent and repeatable method of measurement. Two different Multi-Criteria Decision Analysis tools were tested, both of which used an additive aggregation approach. These were an Excel spreadsheet tool and a tool developed in software 'M-MACBETH'. The tools were trialed on nine 'test' pathogens. Two different methods of criteria weighting were compared, one using fixed weighting values, the other using probability distributions to account for uncertainty and variation in expert opinion. The ranking of the nine pathogens varied according to the weighting method that was used. In both tools, using both weighting methods, the diseases that tended to rank the highest were West Nile virus, Giardiasis and Chagas, while Coccidioidomycosis tended to rank the lowest. Both tools are a simple and user friendly approach to prioritising pathogens according to climate change by including explicit scoring of 40 criteria and incorporating weighting methods based on expert opinion. They provide a dynamic interactive method that can help to identify pathogens for which a full risk assessment should be pursued.

  7. Multi-Criteria Decision Analysis Tools for Prioritising Emerging or Re-Emerging Infectious Diseases Associated with Climate Change in Canada

    PubMed Central

    Cox, Ruth; Sanchez, Javier; Revie, Crawford W.

    2013-01-01

    Global climate change is known to result in the emergence or re-emergence of some infectious diseases. Reliable methods to identify the infectious diseases of humans and animals and that are most likely to be influenced by climate are therefore required. Since different priorities will affect the decision to address a particular pathogen threat, decision makers need a standardised method of prioritisation. Ranking methods and Multi-Criteria Decision approaches provide such a standardised method and were employed here to design two different pathogen prioritisation tools. The opinion of 64 experts was elicited to assess the importance of 40 criteria that could be used to prioritise emerging infectious diseases of humans and animals in Canada. A weight was calculated for each criterion according to the expert opinion. Attributes were defined for each criterion as a transparent and repeatable method of measurement. Two different Multi-Criteria Decision Analysis tools were tested, both of which used an additive aggregation approach. These were an Excel spreadsheet tool and a tool developed in software ‘M-MACBETH’. The tools were trialed on nine ‘test’ pathogens. Two different methods of criteria weighting were compared, one using fixed weighting values, the other using probability distributions to account for uncertainty and variation in expert opinion. The ranking of the nine pathogens varied according to the weighting method that was used. In both tools, using both weighting methods, the diseases that tended to rank the highest were West Nile virus, Giardiasis and Chagas, while Coccidioidomycosis tended to rank the lowest. Both tools are a simple and user friendly approach to prioritising pathogens according to climate change by including explicit scoring of 40 criteria and incorporating weighting methods based on expert opinion. They provide a dynamic interactive method that can help to identify pathogens for which a full risk assessment should be pursued. PMID:23950868

  8. Eating and drinking interventions for people at risk of lacking decision-making capacity: who decides and how?

    PubMed

    Clarke, Gemma; Galbraith, Sarah; Woodward, Jeremy; Holland, Anthony; Barclay, Stephen

    2015-06-11

    Some people with progressive neurological diseases find they need additional support with eating and drinking at mealtimes, and may require artificial nutrition and hydration. Decisions concerning artificial nutrition and hydration at the end of life are ethically complex, particularly if the individual lacks decision-making capacity. Decisions may concern issues of life and death: weighing the potential for increasing morbidity and prolonging suffering, with potentially shortening life. When individuals lack decision-making capacity, the standard processes of obtaining informed consent for medical interventions are disrupted. Increasingly multi-professional groups are being utilised to make difficult ethical decisions within healthcare. This paper reports upon a service evaluation which examined decision-making within a UK hospital Feeding Issues Multi-Professional Team. A three month observation of a hospital-based multi-professional team concerning feeding issues, and a one year examination of their records. The key research questions are: a) How are decisions made concerning artificial nutrition for individuals at risk of lacking decision-making capacity? b) What are the key decision-making factors that are balanced? c) Who is involved in the decision-making process? Decision-making was not a singular decision, but rather involved many different steps. Discussions involving relatives and other clinicians, often took place outside of meetings. Topics of discussion varied but the outcome relied upon balancing the information along four interdependent axes: (1) Risks, burdens and benefits; (2) Treatment goals; (3) Normative ethical values; (4) Interested parties. Decision-making was a dynamic ongoing process with many people involved. The multiple points of decision-making, and the number of people involved with the decision-making process, mean the question of 'who decides' cannot be fully answered. There is a potential for anonymity of multiple decision-makers to arise. Decisions in real world clinical practice may not fit precisely into a model of decision-making. The findings from this service evaluation illustrate that within multi-professional team decision-making; decisions may contain elements of both substituted and supported decision-making, and may be better represented as existing upon a continuum.

  9. Robotic intelligence kernel

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  10. How consumers choose health insurance.

    PubMed

    Chakraborty, G; Ettenson, R; Gaeth, G

    1994-01-01

    The authors used choice-based conjoint analysis to model consumers' decision processes when evaluating and selecting health insurance in a multiplan environment. Results indicate that consumer choice is affected by as many as 19 attributes, some of which have received little attention in previous studies. Moreover, the importance of the attributes varies across different demographic segments, giving marketers several targeting opportunities.

  11. New paradigms for Salmonella source attribution based on microbial subtyping.

    PubMed

    Mughini-Gras, Lapo; Franz, Eelco; van Pelt, Wilfrid

    2018-05-01

    Microbial subtyping is the most common approach for Salmonella source attribution. Typically, attributions are computed using frequency-matching models like the Dutch and Danish models based on phenotyping data (serotyping, phage-typing, and antimicrobial resistance profiling). Herewith, we critically review three major paradigms facing Salmonella source attribution today: (i) the use of genotyping data, particularly Multi-Locus Variable Number of Tandem Repeats Analysis (MLVA), which is replacing traditional Salmonella phenotyping beyond serotyping; (ii) the integration of case-control data into source attribution to improve risk factor identification/characterization; (iii) the investigation of non-food sources, as attributions tend to focus on foods of animal origin only. Population genetics models or simplified MLVA schemes may provide feasible options for source attribution, although there is a strong need to explore novel modelling options as we move towards whole-genome sequencing as the standard. Classical case-control studies are enhanced by incorporating source attribution results, as individuals acquiring salmonellosis from different sources have different associated risk factors. Thus, the more such analyses are performed the better Salmonella epidemiology will be understood. Reparametrizing current models allows for inclusion of sources like reptiles, the study of which improves our understanding of Salmonella epidemiology beyond food to tackle the pathogen in a more holistic way. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content.

    PubMed

    McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja

    2014-05-01

    Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.

  13. Multi-Sector Sustainability Browser (MSSB) User Manual: A ...

    EPA Pesticide Factsheets

    EPA’s Sustainable and Healthy Communities (SHC) Research Program is developing methodologies, resources, and tools to assist community members and local decision makers in implementing policy choices that facilitate sustainable approaches in managing their resources affecting the built environment, natural environment, and human health. In order to assist communities and decision makers in implementing sustainable practices, EPA is developing computer-based systems including models, databases, web tools, and web browsers to help communities decide upon approaches that support their desired outcomes. Communities need access to resources that will allow them to achieve their sustainability objectives through intelligent decisions in four key sustainability areas: • Land Use • Buildings and Infrastructure • Transportation • Materials Management (i.e., Municipal Solid Waste [MSW] processing and disposal) The Multi-Sector Sustainability Browser (MSSB) is designed to support sustainable decision-making for communities, local and regional planners, and policy and decision makers. Document is an EPA Technical Report, which is the user manual for the Multi-Sector Sustainability Browser (MSSB) tool. The purpose of the document is to provide basic guidance on use of the tool for users

  14. Averaging Models: Parameters Estimation with the R-Average Procedure

    ERIC Educational Resources Information Center

    Vidotto, G.; Massidda, D.; Noventa, S.

    2010-01-01

    The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982), can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto &…

  15. Hybrid algorithms for fuzzy reverse supply chain network design.

    PubMed

    Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.

  16. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  17. Patients' Non-Medical Characteristics Contribute to Collective Medical Decision-Making at Multidisciplinary Oncological Team Meetings.

    PubMed

    Restivo, Léa; Apostolidis, Thémis; Bouhnik, Anne-Déborah; Garciaz, Sylvain; Aurran, Thérèse; Julian-Reynier, Claire

    2016-01-01

    The contribution of patients' non-medical characteristics to individual physicians' decision-making has attracted considerable attention, but little information is available on this topic in the context of collective decision-making. Medical decision-making at cancer centres is currently carried out using a collective approach, at MultiDisciplinary Team (MDT) meetings. The aim of this study was to determine how patients' non-medical characteristics are presented at MDT meetings and how this information may affect the team's final medical decisions. Observations were conducted at a French Cancer Centre during MDT meetings at which non-standard cases involving some uncertainty were discussed from March to May 2014. Physicians' verbal statements and predefined contextual parameters were collected with a non-participant observational approach. Non numerical data collected in the form of open notes were then coded for quantitative analysis. Univariate and multivariate statistical analyses were performed. In the final sample of patients' records included and discussed (N = 290), non-medical characteristics were mentioned in 32.8% (n = 95) of the cases. These characteristics corresponded to demographics in 22.8% (n = 66) of the cases, psychological data in 11.7% (n = 34), and relational data in 6.2% (n = 18). The patient's age and his/her "likeability" were the most frequently mentioned characteristics. In 17.9% of the cases discussed, the final decision was deferred: this outcome was positively associated with the patients' non-medical characteristics and with uncertainty about the outcome of the therapeutic options available. The design of the study made it difficult to draw definite cause-and-effect conclusions. The Social Representations approach suggests that patients' non-medical characteristics constitute a kind of tacit professional knowledge that may be frequently mobilised in physicians' everyday professional practice. The links observed between patients' attributes and the medical decisions made at these meetings show that these attributes should be taken into account in order to understand how medical decisions are reached in difficult situations of this kind.

  18. Consensus oriented fuzzified decision support for oil spill contingency management.

    PubMed

    Liu, Xin; Wirtz, Kai W

    2006-06-30

    Studies on multi-group multi-criteria decision-making problems for oil spill contingency management are in their infancy. This paper presents a second-order fuzzy comprehensive evaluation (FCE) model to resolve decision-making problems in the area of contingency management after environmental disasters such as oil spills. To assess the performance of different oil combat strategies, second-order FCE allows for the utilization of lexical information, the consideration of ecological and socio-economic criteria and the involvement of a variety of stakeholders. On the other hand, the new approach can be validated by using internal and external checks, which refer to sensitivity tests regarding its internal setups and comparisons with other methods, respectively. Through a case study, the Pallas oil spill in the German Bight in 1998, it is demonstrated that this approach can help decision makers who search for an optimal strategy in multi-thread contingency problems and has a wider application potential in the field of integrated coastal zone management.

  19. Multi-criteria decision analysis as an innovative approach to managing zoonoses: results from a study on Lyme disease in Canada

    PubMed Central

    2013-01-01

    Background Zoonoses are a growing international threat interacting at the human-animal-environment interface and call for transdisciplinary and multi-sectoral approaches in order to achieve effective disease management. The recent emergence of Lyme disease in Quebec, Canada is a good example of a complex health issue for which the public health sector must find protective interventions. Traditional preventive and control interventions can have important environmental, social and economic impacts and as a result, decision-making requires a systems approach capable of integrating these multiple aspects of interventions. This paper presents the results from a study of a multi-criteria decision analysis (MCDA) approach for the management of Lyme disease in Quebec, Canada. MCDA methods allow a comparison of interventions or alternatives based on multiple criteria. Methods MCDA models were developed to assess various prevention and control decision criteria pertinent to a comprehensive management of Lyme disease: a first model was developed for surveillance interventions and a second was developed for control interventions. Multi-criteria analyses were conducted under two epidemiological scenarios: a disease emergence scenario and an epidemic scenario. Results In general, we observed a good level of agreement between stakeholders. For the surveillance model, the three preferred interventions were: active surveillance of vectors by flagging or dragging, active surveillance of vectors by trapping of small rodents and passive surveillance of vectors of human origin. For the control interventions model, basic preventive communications, human vaccination and small scale landscaping were the three preferred interventions. Scenarios were found to only have a small effect on the group ranking of interventions in the control model. Conclusions MCDA was used to structure key decision criteria and capture the complexity of Lyme disease management. This facilitated the identification of gaps in the scientific literature and enabled a clear identification of complementary interventions that could be used to improve the relevance and acceptability of proposed prevention and control strategy. Overall, MCDA presents itself as an interesting systematic approach for public health planning and zoonoses management with a “One Health” perspective. PMID:24079303

  20. Multi-criteria decision analysis as an innovative approach to managing zoonoses: results from a study on Lyme disease in Canada.

    PubMed

    Aenishaenslin, Cécile; Hongoh, Valérie; Cissé, Hassane Djibrilla; Hoen, Anne Gatewood; Samoura, Karim; Michel, Pascal; Waaub, Jean-Philippe; Bélanger, Denise

    2013-09-30

    Zoonoses are a growing international threat interacting at the human-animal-environment interface and call for transdisciplinary and multi-sectoral approaches in order to achieve effective disease management. The recent emergence of Lyme disease in Quebec, Canada is a good example of a complex health issue for which the public health sector must find protective interventions. Traditional preventive and control interventions can have important environmental, social and economic impacts and as a result, decision-making requires a systems approach capable of integrating these multiple aspects of interventions. This paper presents the results from a study of a multi-criteria decision analysis (MCDA) approach for the management of Lyme disease in Quebec, Canada. MCDA methods allow a comparison of interventions or alternatives based on multiple criteria. MCDA models were developed to assess various prevention and control decision criteria pertinent to a comprehensive management of Lyme disease: a first model was developed for surveillance interventions and a second was developed for control interventions. Multi-criteria analyses were conducted under two epidemiological scenarios: a disease emergence scenario and an epidemic scenario. In general, we observed a good level of agreement between stakeholders. For the surveillance model, the three preferred interventions were: active surveillance of vectors by flagging or dragging, active surveillance of vectors by trapping of small rodents and passive surveillance of vectors of human origin. For the control interventions model, basic preventive communications, human vaccination and small scale landscaping were the three preferred interventions. Scenarios were found to only have a small effect on the group ranking of interventions in the control model. MCDA was used to structure key decision criteria and capture the complexity of Lyme disease management. This facilitated the identification of gaps in the scientific literature and enabled a clear identification of complementary interventions that could be used to improve the relevance and acceptability of proposed prevention and control strategy. Overall, MCDA presents itself as an interesting systematic approach for public health planning and zoonoses management with a "One Health" perspective.

  1. Knowledge based system and decision making methodologies in materials selection for aircraft cabin metallic structures

    NASA Astrophysics Data System (ADS)

    Adhikari, Pashupati Raj

    Materials selection processes have been the most important aspects in product design and development. Knowledge-based system (KBS) and some of the methodologies used in the materials selection for the design of aircraft cabin metallic structures are discussed. Overall aircraft weight reduction means substantially less fuel consumption. Part of the solution to this problem is to find a way to reduce overall weight of metallic structures inside the cabin. Among various methodologies of materials selection using Multi Criterion Decision Making (MCDM) techniques, a few of them are demonstrated with examples and the results are compared with those obtained using Ashby's approach in materials selection. Pre-defined constraint values, mainly mechanical properties, are employed as relevant attributes in the process. Aluminum alloys with high strength-to-weight ratio have been second-to-none in most of the aircraft parts manufacturing. Magnesium alloys that are much lighter in weight as alternatives to the Al-alloys currently in use in the structures are tested using the methodologies and ranked results are compared. Each material attribute considered in the design are categorized as benefit and non-benefit attribute. Using Ashby's approach, material indices that are required to be maximized for an optimum performance are determined, and materials are ranked based on the average of consolidated indices ranking. Ranking results are compared for any disparity among the methodologies.

  2. Choices Behind Numbers: a Review of the Major Air Pollution Health Impact Assessments in Europe.

    PubMed

    Malmqvist, E; Oudin, A; Pascal, M; Medina, S

    2018-03-01

    The aim of this review is to identify the key contextual and methodological differences in health impact assessments (HIA) of ambient air pollution performed for Europe. We limited our review to multi-country reviews. An additional aim is to quantify some of these differences by applying them in a HIA template in three European cities. Several HIAs of ambient air pollution have been performed for Europe, and their key results have been largely disseminated. Different studies have, however, come up with substantial differences in attributed health effects. It is of importance to review the background contributing to these differences and to quantify their importance for decision makers who will use them. We identified several methodological differences that could explain the discrepancy behind the number of attributable deaths or years of life lost. The main differences are due to the exposure-response functions chosen, the ways of assessing air pollution levels, the air pollution scenarios and the study population. In the quantification part, we found that using risk estimates from the European Study of Cohorts for Air Pollution Effects (ESCAPE) instead of the American Cancer Society (ACS) study could nearly double the attributable burden of ambient air pollution. This study provides some insights into the differential results in previously published HIAs on air pollution in Europe. These results are important for stakeholders in order to make informed decisions.

  3. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis.

    PubMed

    Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas

    2014-03-01

    GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster-Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty-sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights.

  4. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis☆

    PubMed Central

    Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas

    2014-01-01

    GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster–Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty–sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights. PMID:25843987

  5. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis

    NASA Astrophysics Data System (ADS)

    Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas

    2014-03-01

    GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster-Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty-sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights.

  6. Thermal power systems small power systems applications project. Decision analysis for evaluating and ranking small solar thermal power system technologies. Volume 1: A brief introduction to multiattribute decision analysis. [explanation of multiattribute decision analysis methods used in evaluating alternatives for small powered systems

    NASA Technical Reports Server (NTRS)

    Feinberg, A.; Miles, R. F., Jr.

    1978-01-01

    The principal concepts of the Keeney and Raiffa approach to multiattribute decision analysis are described. Topics discussed include the concepts of decision alternatives, outcomes, objectives, attributes and their states, attribute utility functions, and the necessary independence properties for the attribute states to be aggregated into a numerical representation of the preferences of the decision maker for the outcomes and decision alternatives.

  7. D-Side: A Facility and Workforce Planning Group Multi-criteria Decision Support System for Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid

    2005-01-01

    "To understand and protect our home planet, to explore the universe and search for life, and to inspire the next generation of explorers" is NASA's mission. The Systems Management Office at Johnson Space Center (JSC) is searching for methods to effectively manage the Center's resources to meet NASA's mission. D-Side is a group multi-criteria decision support system (GMDSS) developed to support facility decisions at JSC. D-Side uses a series of sequential and structured processes to plot facilities in a three-dimensional (3-D) graph on the basis of each facility alignment with NASA's mission and goals, the extent to which other facilities are dependent on the facility, and the dollar value of capital investments that have been postponed at the facility relative to the facility replacement value. A similarity factor rank orders facilities based on their Euclidean distance from Ideal and Nadir points. These similarity factors are then used to allocate capital improvement resources across facilities. We also present a parallel model that can be used to support decisions concerning allocation of human resources investments across workforce units. Finally, we present results from a pilot study where 12 experienced facility managers from NASA used D-Side and the organization's current approach to rank order and allocate funds for capital improvement across 20 facilities. Users evaluated D-Side favorably in terms of ease of use, the quality of the decision-making process, decision quality, and overall value-added. Their evaluations of D-Side were significantly more favorable than their evaluations of the current approach. Keywords: NASA, Multi-Criteria Decision Making, Decision Support System, AHP, Euclidean Distance, 3-D Modeling, Facility Planning, Workforce Planning.

  8. Can Carbon Nanomaterials Improve CZTS Photovoltaic Devices? Evaluation of Performance and Impacts Using Integrated Life-Cycle Assessment and Decision Analysis.

    PubMed

    Scott, Ryan P; Cullen, Alison C; Fox-Lent, Cate; Linkov, Igor

    2016-10-01

    In emergent photovoltaics, nanoscale materials hold promise for optimizing device characteristics; however, the related impacts remain uncertain, resulting in challenges to decisions on strategic investment in technology innovation. We integrate multi-criteria decision analysis (MCDA) and life-cycle assessment (LCA) results (LCA-MCDA) as a method of incorporating values of a hypothetical federal acquisition manager into the assessment of risks and benefits of emerging photovoltaic materials. Specifically, we compare adoption of copper zinc tin sulfide (CZTS) devices with molybdenum back contacts to alternative devices employing graphite or graphene instead of molybdenum. LCA impact results are interpreted alongside benefits of substitution including cost reductions and performance improvements through application of multi-attribute utility theory. To assess the role of uncertainty we apply Monte Carlo simulation and sensitivity analysis. We find that graphene or graphite back contacts outperform molybdenum under most scenarios and assumptions. The use of decision analysis clarifies potential advantages of adopting graphite as a back contact while emphasizing the importance of mitigating conventional impacts of graphene production processes if graphene is used in emerging CZTS devices. Our research further demonstrates that a combination of LCA and MCDA increases the usability of LCA in assessing product sustainability. In particular, this approach identifies the most influential assumptions and data gaps in the analysis and the areas in which either engineering controls or further data collection may be necessary. © 2016 Society for Risk Analysis.

  9. Ranking of pharmaceuticals detected in the environment: aggregation and weighting procedures.

    PubMed

    Voigt, Kristina; Brüggemann, Rainer

    2008-12-01

    Pharmaceuticals are omnipresent in waste-water world-wide. Research has shown that many pharmaceuticals are not completely removed during wastewater treatment, and as a result, this has led to their occurrence being reported in waste water treatment plant effluents, rivers and lakes, and more rarely in groundwater and in drinking water. Hence, it is only logical that pharmaceutical residues in the environment and their potential toxic effects have been recognized as one of the emerging research areas in environmental chemistry. A lack of data, especially ecotoxicological and fate data on pharmaceuticals, is evident. The extent to which data are missing should therefore be looked upon in more detail in order to trigger further political steps in performing studies concerning the risk assessment of pharmaceuticals in the environment. In this investigation, we evaluate the data-availability of 16 pharmaceuticals in 17 Internet databases which means we examine a 16 (objects) x 17 (attributes) data-matrix. The consideration of the chosen pharmaceutical in databases is coded 0 = not available, or 1 = available. For the evaluation of the data-matrix, we apply the multi-criteria decision method named METEOR (Method of Evaluation by Order Theory). In contrast to conventional multi-criteria decision aids, like the well-known PROMETHEE, AHP, SMART, ORESTE as well as different versions of ELECTRE, we support the basic consideration of environmetrics: let first the data speak and let us then include subjective preferences in order to get a unique decision. The basis of METEOR is a data-matrix in which the objects are characterized by a set of attributes (indicators). By means of the attributes, a partial order is derived. In the subsequent steps, attributes are aggregated by a weighting procedure, allowing a high degree of involvement of experts, stakeholders and other participants. All conducted approaches show that the data-situation on the chosen test-set of 16 well-known and highly produced pharmaceuticals is far from being satisfactory. For the two well-known pharmaceuticals roxithomycin (antibiotic) and diatrizoate (contrast media), the data-situation is extremely bad, independent of how the weighting is performed. The data-availability for diatrizoate is a little better. The best data coverage is detected for the chemicals carbamazepine, diazepam, ethinyl estradiol, 5-fluorouracil, and phenazone. The issue of pharmaceuticals in the environment and the unavailability of data necessitate much closer communication between science and medical healthcare and politicians in the future.

  10. Multi-issue Agent Negotiation Based on Fairness

    NASA Astrophysics Data System (ADS)

    Zuo, Baohe; Zheng, Sue; Wu, Hong

    Agent-based e-commerce service has become a hotspot now. How to make the agent negotiation process quickly and high-efficiently is the main research direction of this area. In the multi-issue model, MAUT(Multi-attribute Utility Theory) or its derived theory usually consider little about the fairness of both negotiators. This work presents a general model of agent negotiation which considered the satisfaction of both negotiators via autonomous learning. The model can evaluate offers from the opponent agent based on the satisfaction degree, learn online to get the opponent's knowledge from interactive instances of history and negotiation of this time, make concessions dynamically based on fair object. Through building the optimal negotiation model, the bilateral negotiation achieved a higher efficiency and fairer deal.

  11. Contribution of the Multi Attribute Value Theory to conflict resolution in groundwater management. Application to the Mancha Oriental groundwater system, Spain

    NASA Astrophysics Data System (ADS)

    Apperl, B.; Andreu, J.; Karjalainen, T. P.; Pulido-Velazquez, M.

    2014-09-01

    The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have been often identified as an impediment to the realization and success of water regulations and policies. The management of complex groundwater systems requires clarifying stakeholders' positions (identifying stakeholders preferences and values), improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards definition of fundamental objectives (value-thinking approach), what facilitates negotiation. The aims of the study are to analyse the potential of the multi attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation in the different stages of the planning process to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain), subject to an intensive use of groundwater for irrigation. A complex set of objectives and attributes were defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resources availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes of preferences to the alternative ranking. Results show that the acceptation of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties of the results were notable but did not influence heavily on the alternative ranking. The expected reduction of future groundwater resources by climate change increases the conflict potential. The implementation of the method to a very complex case study, with many conflicting objectives and alternatives and uncertain outcomes, including future scenarios under water limiting conditions, illustrate the potential of the method for supporting management decisions.

  12. Contribution of the multi-attribute value theory to conflict resolution in groundwater management - application to the Mancha Oriental groundwater system, Spain

    NASA Astrophysics Data System (ADS)

    Apperl, B.; Pulido-Velazquez, M.; Andreu, J.; Karjalainen, T. P.

    2015-03-01

    The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have often been identified as an impediment to the realisation and success of water regulations and policies. The management of complex groundwater systems requires the clarification of stakeholders' positions (identifying stakeholder preferences and values), improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards the definition of fundamental objectives (value-thinking approach), which facilitates negotiation. The aims of the study are to analyse the potential of the multi-attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation into the different stages of the planning process, to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain), subject to intensive use of groundwater for irrigation. A complex set of objectives and attributes was defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resource availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes in preferences to the alternative ranking. Results show that the approval of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties in the results were notable, but did not influence the alternative ranking heavily. The expected reduction in future groundwater resources by climate change increases the conflict potential. The implementation of the method in a very complex case study, with many conflicting objectives and alternatives and uncertain outcomes, including future scenarios under water limiting conditions, illustrates the potential of the method for supporting management decisions.

  13. What is adaptive about adaptive decision making? A parallel constraint satisfaction account.

    PubMed

    Glöckner, Andreas; Hilbig, Benjamin E; Jekel, Marc

    2014-12-01

    There is broad consensus that human cognition is adaptive. However, the vital question of how exactly this adaptivity is achieved has remained largely open. Herein, we contrast two frameworks which account for adaptive decision making, namely broad and general single-mechanism accounts vs. multi-strategy accounts. We propose and fully specify a single-mechanism model for decision making based on parallel constraint satisfaction processes (PCS-DM) and contrast it theoretically and empirically against a multi-strategy account. To achieve sufficiently sensitive tests, we rely on a multiple-measure methodology including choice, reaction time, and confidence data as well as eye-tracking. Results show that manipulating the environmental structure produces clear adaptive shifts in choice patterns - as both frameworks would predict. However, results on the process level (reaction time, confidence), in information acquisition (eye-tracking), and from cross-predicting choice consistently corroborate single-mechanisms accounts in general, and the proposed parallel constraint satisfaction model for decision making in particular. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Visualization of Spatio-Temporal Relations in Movement Event Using Multi-View

    NASA Astrophysics Data System (ADS)

    Zheng, K.; Gu, D.; Fang, F.; Wang, Y.; Liu, H.; Zhao, W.; Zhang, M.; Li, Q.

    2017-09-01

    Spatio-temporal relations among movement events extracted from temporally varying trajectory data can provide useful information about the evolution of individual or collective movers, as well as their interactions with their spatial and temporal contexts. However, the pure statistical tools commonly used by analysts pose many difficulties, due to the large number of attributes embedded in multi-scale and multi-semantic trajectory data. The need for models that operate at multiple scales to search for relations at different locations within time and space, as well as intuitively interpret what these relations mean, also presents challenges. Since analysts do not know where or when these relevant spatio-temporal relations might emerge, these models must compute statistical summaries of multiple attributes at different granularities. In this paper, we propose a multi-view approach to visualize the spatio-temporal relations among movement events. We describe a method for visualizing movement events and spatio-temporal relations that uses multiple displays. A visual interface is presented, and the user can interactively select or filter spatial and temporal extents to guide the knowledge discovery process. We also demonstrate how this approach can help analysts to derive and explain the spatio-temporal relations of movement events from taxi trajectory data.

  15. Attributions of responsibility and affective reactions to decision outcomes.

    PubMed

    Zeelenberg, M; van der Pligt, J; de Vries, N K

    2000-06-01

    Immediate affective reactions to outcomes are more intense following decisions to act than following decisions not to act. This finding holds for both positive and negative outcomes. We relate this "actor-effect" to attribution theory and argue that decision makers are seen as more responsible for outcomes when these are the result of a decision to act as compared to a decision not to act. Experiment 1 (N = 80) tests the main assumption underlying our reasoning and shows that affective reactions to decision outcomes are indeed more intense when the decision maker is seen as more responsible. Experiment 2 (N = 40) tests whether the actor effect can be predicted on the basis of differential attributions following action and inaction. Participants read vignettes in which active and passive actors obtained a positive or negative outcome. Action resulted in more intense affect than inaction, and positive outcomes resulted in more intense affect than negative outcomes. Experiment 2 further shows that responsibility attributions and affective reactions to outcomes are highly correlated; that is, more extreme affective reactions are associated with more internal attributions. We discuss the implications for research on post-decisional reactions.

  16. Adaptation and Evaluation of a Multi-Criteria Decision Analysis Model for Lyme Disease Prevention

    PubMed Central

    Aenishaenslin, Cécile; Gern, Lise; Michel, Pascal; Ravel, André; Hongoh, Valérie; Waaub, Jean-Philippe; Milord, François; Bélanger, Denise

    2015-01-01

    Designing preventive programs relevant to vector-borne diseases such as Lyme disease (LD) can be complex given the need to include multiple issues and perspectives into prioritizing public health actions. A multi-criteria decision aid (MCDA) model was previously used to rank interventions for LD prevention in Quebec, Canada, where the disease is emerging. The aim of the current study was to adapt and evaluate the decision model constructed in Quebec under a different epidemiological context, in Switzerland, where LD has been endemic for the last thirty years. The model adaptation was undertaken with a group of Swiss stakeholders using a participatory approach. The PROMETHEE method was used for multi-criteria analysis. Key elements and results of the MCDA model are described and contrasted with the Quebec model. All criteria and most interventions of the MCDA model developed for LD prevention in Quebec were directly transferable to the Swiss context. Four new decision criteria were added, and the list of proposed interventions was modified. Based on the overall group ranking, interventions targeting human populations were prioritized in the Swiss model, with the top ranked action being the implementation of a large communication campaign. The addition of criteria did not significantly alter the intervention rankings, but increased the capacity of the model to discriminate between highest and lowest ranked interventions. The current study suggests that beyond the specificity of the MCDA models developed for Quebec and Switzerland, their general structure captures the fundamental and common issues that characterize the complexity of vector-borne disease prevention. These results should encourage public health organizations to adapt, use and share MCDA models as an effective and functional approach to enable the integration of multiple perspectives and considerations in the prevention and control of complex public health issues such as Lyme disease or other vector-borne and zoonotic diseases. PMID:26295344

  17. Adaptation and Evaluation of a Multi-Criteria Decision Analysis Model for Lyme Disease Prevention.

    PubMed

    Aenishaenslin, Cécile; Gern, Lise; Michel, Pascal; Ravel, André; Hongoh, Valérie; Waaub, Jean-Philippe; Milord, François; Bélanger, Denise

    2015-01-01

    Designing preventive programs relevant to vector-borne diseases such as Lyme disease (LD) can be complex given the need to include multiple issues and perspectives into prioritizing public health actions. A multi-criteria decision aid (MCDA) model was previously used to rank interventions for LD prevention in Quebec, Canada, where the disease is emerging. The aim of the current study was to adapt and evaluate the decision model constructed in Quebec under a different epidemiological context, in Switzerland, where LD has been endemic for the last thirty years. The model adaptation was undertaken with a group of Swiss stakeholders using a participatory approach. The PROMETHEE method was used for multi-criteria analysis. Key elements and results of the MCDA model are described and contrasted with the Quebec model. All criteria and most interventions of the MCDA model developed for LD prevention in Quebec were directly transferable to the Swiss context. Four new decision criteria were added, and the list of proposed interventions was modified. Based on the overall group ranking, interventions targeting human populations were prioritized in the Swiss model, with the top ranked action being the implementation of a large communication campaign. The addition of criteria did not significantly alter the intervention rankings, but increased the capacity of the model to discriminate between highest and lowest ranked interventions. The current study suggests that beyond the specificity of the MCDA models developed for Quebec and Switzerland, their general structure captures the fundamental and common issues that characterize the complexity of vector-borne disease prevention. These results should encourage public health organizations to adapt, use and share MCDA models as an effective and functional approach to enable the integration of multiple perspectives and considerations in the prevention and control of complex public health issues such as Lyme disease or other vector-borne and zoonotic diseases.

  18. Identifying high-cost patients using data mining techniques and a small set of non-trivial attributes.

    PubMed

    Izad Shenas, Seyed Abdolmotalleb; Raahemi, Bijan; Hossein Tekieh, Mohammad; Kuziemsky, Craig

    2014-10-01

    In this paper, we use data mining techniques, namely neural networks and decision trees, to build predictive models to identify very high-cost patients in the top 5 percentile among the general population. A large empirical dataset from the Medical Expenditure Panel Survey with 98,175 records was used in our study. After pre-processing, partitioning and balancing the data, the refined dataset of 31,704 records was modeled by Decision Trees (including C5.0 and CHAID), and Neural Networks. The performances of the models are analyzed using various measures including accuracy, G-mean, and Area under ROC curve. We concluded that the CHAID classifier returns the best G-mean and AUC measures for top performing predictive models ranging from 76% to 85%, and 0.812 to 0.942 units, respectively. We also identify a small set of 5 non-trivial attributes among a primary set of 66 attributes to identify the top 5% of the high cost population. The attributes are the individual׳s overall health perception, age, history of blood cholesterol check, history of physical/sensory/mental limitations, and history of colonic prevention measures. The small set of attributes are what we call non-trivial and does not include visits to care providers, doctors or hospitals, which are highly correlated with expenditures and does not offer new insight to the data. The results of this study can be used by healthcare data analysts, policy makers, insurer, and healthcare planners to improve the delivery of health services. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Mapping clinical outcomes expectations to treatment decisions: an application to vestibular schwannoma management.

    PubMed

    Cheung, Steven W; Aranda, Derick; Driscoll, Colin L W; Parsa, Andrew T

    2010-02-01

    Complex medical decision making obligates tradeoff assessments among treatment outcomes expectations, but an accessible tool to perform the necessary analysis is conspicuously absent. We aimed to demonstrate methodology and feasibility of adapting conjoint analysis for mapping clinical outcomes expectations to treatment decisions in vestibular schwannoma (VS) management. Prospective. Tertiary medical center and US-based otologists/neurotologists. Treatment preference profiles among VS stakeholders-61 younger and 74 older prospective patients, 61 observation patients, and 60 surgeons-were assessed for the synthetic VS case scenario of a 10-mm tumor in association with useful hearing and normal facial function. Treatment attribute utility. Conjoint analysis attribute levels were set in accordance to the results of a meta-analysis. Forty-five case series were disaggregated to formulate microsurgery facial nerve and hearing preservation outcomes expectations models. Attribute utilities were computed and mapped to the realistic treatment choices of translabyrinthine craniotomy, middle fossa craniotomy, and gamma knife radiosurgery. Among the treatment attributes of likelihoods of causing deafness, temporary facial weakness for 2 months, and incurable cancer within 20 years, and recovery time, permanent deafness was less important to tumor surgeons, and temporary facial weakness was more important to tumor surgeons and observation patients (Wilcoxon rank-sum, p < 0.001). Inverse mapping of preference profiles to realistic treatment choices showed all study cohorts were inclined to choose gamma knife radiosurgery. Mapping clinical outcomes expectations to treatment decisions for a synthetic clinical scenario revealed inhomogeneous drivers of choice selection among study cohorts. Medical decision engines that analyze personal preferences of outcomes expectations for VS and many other diseases may be developed to promote shared decision making among health care stakeholders and transparency in the informed consent process.

  20. Optimized production planning model for a multi-plant cultivation system under uncertainty

    NASA Astrophysics Data System (ADS)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  1. Large-scale optimization-based classification models in medicine and biology.

    PubMed

    Lee, Eva K

    2007-06-01

    We present novel optimization-based classification models that are general purpose and suitable for developing predictive rules for large heterogeneous biological and medical data sets. Our predictive model simultaneously incorporates (1) the ability to classify any number of distinct groups; (2) the ability to incorporate heterogeneous types of attributes as input; (3) a high-dimensional data transformation that eliminates noise and errors in biological data; (4) the ability to incorporate constraints to limit the rate of misclassification, and a reserved-judgment region that provides a safeguard against over-training (which tends to lead to high misclassification rates from the resulting predictive rule); and (5) successive multi-stage classification capability to handle data points placed in the reserved-judgment region. To illustrate the power and flexibility of the classification model and solution engine, and its multi-group prediction capability, application of the predictive model to a broad class of biological and medical problems is described. Applications include: the differential diagnosis of the type of erythemato-squamous diseases; predicting presence/absence of heart disease; genomic analysis and prediction of aberrant CpG island meythlation in human cancer; discriminant analysis of motility and morphology data in human lung carcinoma; prediction of ultrasonic cell disruption for drug delivery; identification of tumor shape and volume in treatment of sarcoma; discriminant analysis of biomarkers for prediction of early atherosclerois; fingerprinting of native and angiogenic microvascular networks for early diagnosis of diabetes, aging, macular degeneracy and tumor metastasis; prediction of protein localization sites; and pattern recognition of satellite images in classification of soil types. In all these applications, the predictive model yields correct classification rates ranging from 80 to 100%. This provides motivation for pursuing its use as a medical diagnostic, monitoring and decision-making tool.

  2. Analysis respons to the implementation of nuclear installations safety culture using AHP-TOPSIS

    NASA Astrophysics Data System (ADS)

    Situmorang, J.; Kuntoro, I.; Santoso, S.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    An analysis of responses to the implementation of nuclear installations safety culture has been done using AHP (Analitic Hierarchy Process) - TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). Safety culture is considered as collective commitments of the decision-making level, management level, and individual level. Thus each level will provide a subjective perspective as an alternative approach to implementation. Furthermore safety culture is considered by the statement of five characteristics which in more detail form consist of 37 attributes, and therefore can be expressed as multi-attribute state. Those characteristics and or attributes will be a criterion and its value is difficult to determine. Those criteria of course, will determine and strongly influence the implementation of the corresponding safety culture. To determine the pattern and magnitude of the influence is done by using a TOPSIS that is based on decision matrix approach and is composed of alternatives and criteria. The weight of each criterion is determined by AHP technique. The data used are data collected through questionnaires at the workshop on safety and health in 2015. .Reliability test of data gives Cronbah Alpha value of 95.5% which according to the criteria is stated reliable. Validity test using bivariate correlation analysis technique between each attribute give Pearson correlation for all attribute is significant at level 0,01. Using confirmatory factor analysis gives Kaise-Meyer-Olkin of sampling Adequacy (KMO) is 0.719 and it is greater than the acceptance criterion 0.5 as well as the 0.000 significance level much smaller than 0.05 and stated that further analysis could be performed. As a result of the analysis it is found that responses from the level of decision maker (second echelon) dominate the best order preference rank to be the best solution in strengthening the nuclear installation safety culture, except for the first characteristics, safety is a clearly recognized value. The rank of preference order is obtained sequentially according to the level of policy maker, management and individual or staff.

  3. Multi-agent framework for negotiation in a closed environment

    NASA Astrophysics Data System (ADS)

    Cretan, Adina; Coutinho, Carlos; Bratu, Ben; Jardim-Goncalves, Ricardo

    2013-10-01

    The goal of this paper is to offer support for small and medium enterprises which cannot or do not want to fulfill a big contract alone. Each organization has limited resources and in order to better accomplish a higher external demand, the managers are forced to outsource parts of their contracts even to concurrent organizations. In this concurrent environment each enterprise wants to preserve its decision autonomy and to disclose as little as possible from its business information. To describe this interaction, our approach is to define a framework for managing parallel and concurrent negotiations among independent organizations acting in the same industrial market. The complexity of our negotiation framework is done by the dynamic environment in which multi-attribute and multi-participant negotiations are racing over the same set of resources. Moreover, the proposed framework helps the organizations within the collaborative networked environment to augment their efficiency and ability to react to unforeseen situations, thus improving their market competitiveness.

  4. [Analyzing consumer preference by using the latest semantic model for verbal protocol].

    PubMed

    Tamari, Yuki; Takemura, Kazuhisa

    2012-02-01

    This paper examines consumers' preferences for competing brands by using a preference model of verbal protocols. Participants were 150 university students, who reported their opinions and feelings about McDonalds and Mos Burger (competing hamburger restaurants in Japan). Their verbal protocols were analyzed by using the singular value decomposition method, and the latent decision frames were estimated. The verbal protocols having a large value in the decision frames could be interpreted as showing attributes that consumers emphasize. Based on the estimated decision frames, we predicted consumers' preferences using the logistic regression analysis method. The results indicate that the decision frames projected from the verbal protocol data explained consumers' preferences effectively.

  5. Assessing Multi-year Changes in Modeled and Observed Urban NOx Concentrations from a Dynamic Model Evaluation Perspective

    EPA Science Inventory

    An investigation of the concentrations of nitrogen oxides (NOx) from an air quality model and observations at monitoring sites was performed to assess the changes in NOx levels attributable to changes in mobile emissions. This evaluation effort focused on weekday morning rush hou...

  6. Development of a decision support system for monitoring, reporting and forecasting ecological conditions of the Appalachian Trail

    USGS Publications Warehouse

    Wang, Yeqiao; Nemani, Ramakrishna; Dieffenbach, Fred; Stolte, Kenneth; Holcomb, Glenn B.; Robinson, Matt; Reese, Casey C.; McNiff, Marcia; Duhaime, Roland; Tierney, Geri; Mitchell, Brian; August, Peter; Paton, Peter; LaBash, Charles

    2010-01-01

    This paper introduces a collaborative multi-agency effort to develop an Appalachian Trail (A.T.) MEGA-Transect Decision Support System (DSS) for monitoring, reporting and forecasting ecological conditions of the A.T. and the surrounding lands. The project is to improve decisionmaking on management of the A.T. by providing a coherent framework for data integration, status reporting and trend analysis. The A.T. MEGA-Transect DSS is to integrate NASA multi-platform sensor data and modeling through the Terrestrial Observation and Prediction System (TOPS) and in situ measurements from A.T. MEGA-Transect partners to address identified natural resource priorities and improve resource management decisions.

  7. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    NASA Astrophysics Data System (ADS)

    Raposo, João; Rodrigues, Ana; Silva, Carlos; Dentinho, Tomaz

    2015-05-01

    This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city's urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE's characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  8. Attaining insight into interactions between hydrologic model parameters and geophysical attributes for national-scale model parameter estimation

    NASA Astrophysics Data System (ADS)

    Mizukami, N.; Clark, M. P.; Newman, A. J.; Wood, A.; Gutmann, E. D.

    2017-12-01

    Estimating spatially distributed model parameters is a grand challenge for large domain hydrologic modeling, especially in the context of hydrologic model applications such as streamflow forecasting. Multi-scale Parameter Regionalization (MPR) is a promising technique that accounts for the effects of fine-scale geophysical attributes (e.g., soil texture, land cover, topography, climate) on model parameters and nonlinear scaling effects on model parameters. MPR computes model parameters with transfer functions (TFs) that relate geophysical attributes to model parameters at the native input data resolution and then scales them using scaling functions to the spatial resolution of the model implementation. One of the biggest challenges in the use of MPR is identification of TFs for each model parameter: both functional forms and geophysical predictors. TFs used to estimate the parameters of hydrologic models typically rely on previous studies or were derived in an ad-hoc, heuristic manner, potentially not utilizing maximum information content contained in the geophysical attributes for optimal parameter identification. Thus, it is necessary to first uncover relationships among geophysical attributes, model parameters, and hydrologic processes (i.e., hydrologic signatures) to obtain insight into which and to what extent geophysical attributes are related to model parameters. We perform multivariate statistical analysis on a large-sample catchment data set including various geophysical attributes as well as constrained VIC model parameters at 671 unimpaired basins over the CONUS. We first calibrate VIC model at each catchment to obtain constrained parameter sets. Additionally, parameter sets sampled during the calibration process are used for sensitivity analysis using various hydrologic signatures as objectives to understand the relationships among geophysical attributes, parameters, and hydrologic processes.

  9. A Generic Authentication LoA Derivation Model

    NASA Astrophysics Data System (ADS)

    Yao, Li; Zhang, Ning

    One way of achieving a more fine-grained access control is to link an authentication level of assurance (LoA) derived from a requester’s authentication instance to the authorisation decision made to the requester. To realise this vision, there is a need for designing a LoA derivation model that supports the use and quantification of multiple LoA-effecting attributes, and analyse their composite effect on a given authentication instance. This paper reports the design of such a model, namely a generic LoA derivation model (GEA- LoADM). GEA-LoADM takes into account of multiple authentication attributes along with their relationships, abstracts the composite effect by the multiple attributes into a generic value, authentication LoA, and provides algorithms for the run-time derivation of LoA. The algorithms are tailored to reflect the relationships among the attributes involved in an authentication instance. The model has a number of valuable properties, including flexibility and extensibility; it can be applied to different application contexts and support easy addition of new attributes and removal of obsolete ones.

  10. What Do Patients Want from Otolaryngologists? A Discrete Choice Experiment.

    PubMed

    Naunheim, Matthew R; Rathi, Vinay K; Naunheim, Margaret L; Alkire, Blake C; Lam, Allen C; Song, Phillip C; Shrime, Mark G

    2017-10-01

    Objectives Patient preferences are crucial for the delivery of patient-centered care. Discrete choice experiments (DCEs) are an emerging quantitative methodology used for understanding these preferences. In this study, we employed DCE techniques to understand the preferences of patients presenting for an ear, nose, and throat clinic visit. Study Design DCE. Setting Decision science laboratory. Methods A DCE survey of 5 attributes-wait time, physician experience, physician personality, utilization of visit time, and cost/copayment-was constructed with structured qualitative interviews with patients. The DCE was administered to participants from the general population, who chose among hypothetical scenarios that varied across these attributes. A conditional logit model was used to determine relative attribute importance, with a separate logit model for determining subject effects. Results A total of 161 participants were included. Cost/copayment had the greatest impact on decision making (importance, 32.2%), followed by wait time and physician experience (26.5% and 24.7%, respectively). Physician personality mattered least (4.7%), although all attributes were significantly correlated to decision making. Participants preferred doctors who spent more time performing physical examination than listening or explaining. Participants were willing to pay $52 extra to avoid a 4-week delay in appointment time; $87 extra for a physician with 10 years of experience (vs 0 years); and $9 extra for a caring, friendly, and compassionate doctor (vs formal, efficient, and business-like). Conclusion DCEs allow for powerful economic analyses that may help physicians understand patient preferences. Our model showed that cost is an important factor to patients and that patients are willing to pay extra for timely appointments, experience, and thorough physical examination.

  11. Identifying Important Attributes for Prognostic Prediction in Traumatic Brain Injury Patients. A Hybrid Method of Decision Tree and Neural Network.

    PubMed

    Pourahmad, Saeedeh; Hafizi-Rastani, Iman; Khalili, Hosseinali; Paydar, Shahram

    2016-10-17

    Generally, traumatic brain injury (TBI) patients do not have a stable condition, particularly after the first week of TBI. Hence, indicating the attributes in prognosis through a prediction model is of utmost importance since it helps caregivers with treatment-decision options, or prepares the relatives for the most-likely outcome. This study attempted to determine and order the attributes in prognostic prediction in TBI patients, based on early clinical findings. A hybrid method was employed, which combines a decision tree (DT) and an artificial neural network (ANN) in order to improve the modeling process. The DT approach was applied as the initial analysis of the network architecture to increase accuracy in prediction. Afterwards, the ANN structure was mapped from the initial DT based on a part of the data. Subsequently, the designed network was trained and validated by the remaining data. 5-fold cross-validation method was applied to train the network. The area under the receiver operating characteristic (ROC) curve, sensitivity, specificity, and accuracy rate were utilized as performance measures. The important attributes were then determined from the trained network using two methods: change of mean squared error (MSE), and sensitivity analysis (SA). The hybrid method offered better results compared to the DT method. The accuracy rate of 86.3 % vs. 82.2 %, sensitivity value of 55.1 % vs. 47.6 %, specificity value of 93.6 % vs. 91.1 %, and the area under the ROC curve of 0.705 vs. 0.695 were achieved for the hybrid method and DT, respectively. However, the attributes' order by DT method was more consistent with the clinical literature. The combination of different modeling methods can enhance their performance. However, it may create some complexities in computations and interpretations. The outcome of the present study could deliver some useful hints in prognostic prediction on the basis of early clinical findings for TBI patients.

  12. Empirical Evaluation of a Decision-Analytic Aid.

    DTIC Science & Technology

    1980-05-01

    scenarios may be attributable to the use of the Baye- sian revision model by the latter group . In the A scenarios, as well as in the NA scenarios, aided...inten- tions and to make a decision by recommending one of four prespecified courses of action. The use of the aiding package significantly increased...courses of action. The use of the aiding package significantly in- I creased the number of correct decisions under the attack version of the scenarios

  13. Probabilistic, meso-scale flood loss modelling

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  14. Pursuing the method of multiple working hypotheses to understand differences in process-based snow models

    NASA Astrophysics Data System (ADS)

    Clark, Martyn; Essery, Richard

    2017-04-01

    When faced with the complex and interdisciplinary challenge of building process-based land models, different modelers make different decisions at different points in the model development process. These modeling decisions are generally based on several considerations, including fidelity (e.g., what approaches faithfully simulate observed processes), complexity (e.g., which processes should be represented explicitly), practicality (e.g., what is the computational cost of the model simulations; are there sufficient resources to implement the desired modeling concepts), and data availability (e.g., is there sufficient data to force and evaluate models). Consequently the research community, comprising modelers of diverse background, experience, and modeling philosophy, has amassed a wide range of models, which differ in almost every aspect of their conceptualization and implementation. Model comparison studies have been undertaken to explore model differences, but have not been able to meaningfully attribute inter-model differences in predictive ability to individual model components because there are often too many structural and implementation differences among the different models considered. As a consequence, model comparison studies to date have provided limited insight into the causes of differences in model behavior, and model development has often relied on the inspiration and experience of individual modelers rather than on a systematic analysis of model shortcomings. This presentation will summarize the use of "multiple-hypothesis" modeling frameworks to understand differences in process-based snow models. Multiple-hypothesis frameworks define a master modeling template, and include a a wide variety of process parameterizations and spatial configurations that are used in existing models. Such frameworks provide the capability to decompose complex models into the individual decisions that are made as part of model development, and evaluate each decision in isolation. It is hence possible to attribute differences in system-scale model predictions to individual modeling decisions, providing scope to mimic the behavior of existing models, understand why models differ, characterize model uncertainty, and identify productive pathways to model improvement. Results will be presented applying multiple hypothesis frameworks to snow model comparison projects, including PILPS, SnowMIP, and the upcoming ESM-SnowMIP project.

  15. Identifying attributes of food literacy: a scoping review.

    PubMed

    Azevedo Perry, Elsie; Thomas, Heather; Samra, H Ruby; Edmonstone, Shannon; Davidson, Lyndsay; Faulkner, Amy; Petermann, Lisa; Manafò, Elizabeth; Kirkpatrick, Sharon I

    2017-09-01

    An absence of food literacy measurement tools makes it challenging for nutrition practitioners to assess the impact of food literacy on healthy diets and to evaluate the outcomes of food literacy interventions. The objective of the present scoping review was to identify the attributes of food literacy. A scoping review of peer-reviewed and grey literature was conducted and attributes of food literacy identified. Subjects included in the search were high-risk groups. Eligible articles were limited to research from Canada, USA, the UK, Australia and New Zealand. The search identified nineteen peer-reviewed and thirty grey literature sources. Fifteen identified food literacy attributes were organized into five categories. Food and Nutrition Knowledge informs decisions about intake and distinguishing between 'healthy' and 'unhealthy' foods. Food Skills focuses on techniques of food purchasing, preparation, handling and storage. Self-Efficacy and Confidence represent one's capacity to perform successfully in specific situations. Ecologic refers to beyond self and the interaction of macro- and microsystems with food decisions and behaviours. Food Decisions reflects the application of knowledge, information and skills to make food choices. These interdependent attributes are depicted in a proposed conceptual model. The lack of evaluated tools inhibits the ability to assess and monitor food literacy; tailor, target and evaluate programmes; identify gaps in programming; engage in advocacy; and allocate resources. The present scoping review provides the foundation for the development of a food literacy measurement tool to address these gaps.

  16. Rough Evaluation Structure: Application of Rough Set Theory to Generate Simple Rules for Inconsistent Preference Relation

    NASA Astrophysics Data System (ADS)

    Gehrmann, Andreas; Nagai, Yoshimitsu; Yoshida, Osamu; Ishizu, Syohei

    Since management decision-making becomes complex and preferences of the decision-maker frequently becomes inconsistent, multi-attribute decision-making problems were studied. To represent inconsistent preference relation, the concept of evaluation structure was introduced. We can generate simple rules to represent inconsistent preference relation by the evaluation structures. Further rough set theory for the preference relation was studied and the concept of approximation was introduced. One of our main aims of this paper is to introduce a concept of rough evaluation structure for representing inconsistent preference relation. We apply rough set theory to the evaluation structure, and develop a method for generating simple rules for inconsistent preference relations. In this paper, we introduce concepts of totally ordered information system, similarity class of preference relation, upper and lower approximation of preference relations. We also show the properties of rough evaluation structure and provide a simple example. As an application of rough evaluation structure, we analyze questionnaire survey of customer preferences about audio players.

  17. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features

    PubMed Central

    Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-01-01

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization. PMID:28599282

  18. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.

    PubMed

    Zhang, Xin; Yan, Lin-Feng; Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin

    2017-07-18

    Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization.

  19. Application of Multi-Criteria Decision Making (MCDM) Technique for Gradation of Jute Fibres

    NASA Astrophysics Data System (ADS)

    Choudhuri, P. K.

    2014-12-01

    Multi-Criteria Decision Making is a branch of Operation Research (OR) having a comparatively short history of about 40 years. It is being popularly used in the field of engineering, banking, fixing policy matters etc. It can also be applied for taking decisions in daily life like selecting a car to purchase, selecting bride or groom and many others. Various MCDM methods namely Weighted Sum Model (WSM), Weighted Product Model (WPM), Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS) and Elimination and Choice Translating Reality (ELECTRE) are there to solve many decision making problems, each having its own limitations. However it is very difficult to decide which MCDM method is the best. MCDM methods are prospective quantitative approaches for solving decision problems involving finite number of alternatives and criteria. Very few research works in textiles have been carried out with the help of this technique particularly where decision taking among several alternatives becomes the major problem based on some criteria which are conflicting in nature. Gradation of jute fibres on the basis of the criteria like strength, root content, defects, colour, density, fineness etc. is an important task to perform. The MCDM technique provides enough scope to be applied for the gradation of jute fibres or ranking among several varieties keeping in view a particular object and on the basis of some selection criteria and their relative weightage. The present paper is an attempt to explore the scope of applying the multiplicative AHP method of multi-criteria decision making technique to determine the quality values of selected jute fibres on the basis of some above stated important criteria and ranking them accordingly. A good agreement in ranking is observed between the existing Bureau of Indian Standards (BIS) grading and proposed method.

  20. A decision model for cost effective design of biomass based green energy supply chains.

    PubMed

    Yılmaz Balaman, Şebnem; Selim, Hasan

    2015-09-01

    The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. MULTI-SCALED VULNERABILITY ANALYSES: IMPROVING DECISION-MAKING AT REGIONAL TO LOCAL LEVELS THROUGH PARTNERSHIP

    EPA Science Inventory

    Decision-makers at all scales are faced with setting priorities for both use of limited resources and for risk management. While there are all kinds of monitoring data and models to project conditions at different spatial and temporal scales, synthesized information to establish ...

  2. Advanced 3D Geological Modelling Using Multi Geophysical Data in the Yamagawa Geothermal Field, Japan

    NASA Astrophysics Data System (ADS)

    Mochinaga, H.; Aoki, N.; Mouri, T.

    2017-12-01

    We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (< 1 cycle/km) models separately by means of different types of attribute volumes. These attributes are mathematically generated from P-impedance and density volumes derived from seismic inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.

  3. Rejecting a bad option feels like choosing a good one.

    PubMed

    Perfecto, Hannah; Galak, Jeff; Simmons, Joseph P; Nelson, Leif D

    2017-11-01

    Across 4,151 participants, the authors demonstrate a novel framing effect, attribute matching, whereby matching a salient attribute of a decision frame with that of a decision's options facilitates decision-making. This attribute matching is shown to increase decision confidence and, ultimately, consensus estimates by increasing feelings of metacognitive ease. In Study 1, participants choosing the more attractive of two faces or rejecting the less attractive face reported greater confidence in and perceived consensus around their decision. Using positive and negative words, Study 2 showed that the attribute's extremity moderates the size of the effect. Study 3 found decision ease mediates these changes in confidence and consensus estimates. Consistent with a misattribution account, when participants were warned about this external source of ease in Study 4, the effect disappeared. Study 5 extended attribute matching beyond valence to objective judgments. The authors conclude by discussing related psychological constructs as well as downstream consequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Decision Making Under Uncertainty and Complexity: A Model-Based Scenario Approach to Supporting Integrated Water Resources Management

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gupta, H.; Wagener, T.; Stewart, S.; Mahmoud, M.; Hartmann, H.; Springer, E.

    2007-12-01

    Some of the most challenging issues facing contemporary water resources management are those typified by complex coupled human-environmental systems with poorly characterized uncertainties. In other words, major decisions regarding water resources have to be made in the face of substantial uncertainty and complexity. It has been suggested that integrated models can be used to coherently assemble information from a broad set of domains, and can therefore serve as an effective means for tackling the complexity of environmental systems. Further, well-conceived scenarios can effectively inform decision making, particularly when high complexity and poorly characterized uncertainties make the problem intractable via traditional uncertainty analysis methods. This presentation discusses the integrated modeling framework adopted by SAHRA, an NSF Science & Technology Center, to investigate stakeholder-driven water sustainability issues within the semi-arid southwestern US. The multi-disciplinary, multi-resolution modeling framework incorporates a formal scenario approach to analyze the impacts of plausible (albeit uncertain) alternative futures to support adaptive management of water resources systems. Some of the major challenges involved in, and lessons learned from, this effort will be discussed.

  5. Analysis of student attitudes towards e-learning using Fishbein Multiattribute approach

    NASA Astrophysics Data System (ADS)

    Jasuli

    2018-01-01

    This research aimed to know students’ attitudes toward e-learning and to determine what attributes were considered to be dominant by students toward the use of e-learning. The research population was all postgraduate students in the 2016 academic year at Universitas Negeri Surabaya. The sampling technique is using nonprobability sampling and purposive sampling with the sample totaled 100 respondents. The research instrument is using questionnaire with semantic differential scale. The models used to analyze is multi-attribute Fishbein model. The findings indicated that student attitudes toward e-learning are positive and easy accessibility which is considered as the most important attribute by students toward the use of e-learning.

  6. Multi-Agent Market Modeling of Foreign Exchange Rates

    NASA Astrophysics Data System (ADS)

    Zimmermann, Georg; Neuneier, Ralph; Grothmann, Ralph

    A market mechanism is basically driven by a superposition of decisions of many agents optimizing their profit. The oeconomic price dynamic is a consequence of the cumulated excess demand/supply created on this micro level. The behavior analysis of a small number of agents is well understood through the game theory. In case of a large number of agents one may use the limiting case that an individual agent does not have an influence on the market, which allows the aggregation of agents by statistic methods. In contrast to this restriction, we can omit the assumption of an atomic market structure, if we model the market through a multi-agent approach. The contribution of the mathematical theory of neural networks to the market price formation is mostly seen on the econometric side: neural networks allow the fitting of high dimensional nonlinear dynamic models. Furthermore, in our opinion, there is a close relationship between economics and the modeling ability of neural networks because a neuron can be interpreted as a simple model of decision making. With this in mind, a neural network models the interaction of many decisions and, hence, can be interpreted as the price formation mechanism of a market.

  7. Eye Movements in Risky Choice

    PubMed Central

    Hermens, Frouke; Matthews, William J.

    2015-01-01

    Abstract We asked participants to make simple risky choices while we recorded their eye movements. We built a complete statistical model of the eye movements and found very little systematic variation in eye movements over the time course of a choice or across the different choices. The only exceptions were finding more (of the same) eye movements when choice options were similar, and an emerging gaze bias in which people looked more at the gamble they ultimately chose. These findings are inconsistent with prospect theory, the priority heuristic, or decision field theory. However, the eye movements made during a choice have a large relationship with the final choice, and this is mostly independent from the contribution of the actual attribute values in the choice options. That is, eye movements tell us not just about the processing of attribute values but also are independently associated with choice. The pattern is simple—people choose the gamble they look at more often, independently of the actual numbers they see—and this pattern is simpler than predicted by decision field theory, decision by sampling, and the parallel constraint satisfaction model. © 2015 The Authors. Journal of Behavioral Decision Making published by John Wiley & Sons Ltd. PMID:27522985

  8. Comparative SWOT analysis of strategic environmental assessment systems in the Middle East and North Africa region.

    PubMed

    Rachid, G; El Fadel, M

    2013-08-15

    This paper presents a SWOT analysis of SEA systems in the Middle East North Africa region through a comparative examination of the status, application and structure of existing systems based on country-specific legal, institutional and procedural frameworks. The analysis is coupled with the multi-attribute decision making method (MADM) within an analytical framework that involves both performance analysis based on predefined evaluation criteria and countries' self-assessment of their SEA system through open-ended surveys. The results show heterogenous status with a general delayed progress characterized by varied levels of weaknesses embedded in the legal and administrative frameworks and poor integration with the decision making process. Capitalizing on available opportunities, the paper highlights measures to enhance the development and enactment of SEA in the region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Automatic Scoring of Multiple Semantic Attributes With Multi-Task Feature Leverage: A Study on Pulmonary Nodules in CT Images.

    PubMed

    Sihong Chen; Jing Qin; Xing Ji; Baiying Lei; Tianfu Wang; Dong Ni; Jie-Zhi Cheng

    2017-03-01

    The gap between the computational and semantic features is the one of major factors that bottlenecks the computer-aided diagnosis (CAD) performance from clinical usage. To bridge this gap, we exploit three multi-task learning (MTL) schemes to leverage heterogeneous computational features derived from deep learning models of stacked denoising autoencoder (SDAE) and convolutional neural network (CNN), as well as hand-crafted Haar-like and HoG features, for the description of 9 semantic features for lung nodules in CT images. We regard that there may exist relations among the semantic features of "spiculation", "texture", "margin", etc., that can be explored with the MTL. The Lung Image Database Consortium (LIDC) data is adopted in this study for the rich annotation resources. The LIDC nodules were quantitatively scored w.r.t. 9 semantic features from 12 radiologists of several institutes in U.S.A. By treating each semantic feature as an individual task, the MTL schemes select and map the heterogeneous computational features toward the radiologists' ratings with cross validation evaluation schemes on the randomly selected 2400 nodules from the LIDC dataset. The experimental results suggest that the predicted semantic scores from the three MTL schemes are closer to the radiologists' ratings than the scores from single-task LASSO and elastic net regression methods. The proposed semantic attribute scoring scheme may provide richer quantitative assessments of nodules for better support of diagnostic decision and management. Meanwhile, the capability of the automatic association of medical image contents with the clinical semantic terms by our method may also assist the development of medical search engine.

  10. Empirical study of seven data mining algorithms on different characteristics of datasets for biomedical classification applications.

    PubMed

    Zhang, Yiyan; Xin, Yi; Li, Qin; Ma, Jianshe; Li, Shuai; Lv, Xiaodan; Lv, Weiqi

    2017-11-02

    Various kinds of data mining algorithms are continuously raised with the development of related disciplines. The applicable scopes and their performances of these algorithms are different. Hence, finding a suitable algorithm for a dataset is becoming an important emphasis for biomedical researchers to solve practical problems promptly. In this paper, seven kinds of sophisticated active algorithms, namely, C4.5, support vector machine, AdaBoost, k-nearest neighbor, naïve Bayes, random forest, and logistic regression, were selected as the research objects. The seven algorithms were applied to the 12 top-click UCI public datasets with the task of classification, and their performances were compared through induction and analysis. The sample size, number of attributes, number of missing values, and the sample size of each class, correlation coefficients between variables, class entropy of task variable, and the ratio of the sample size of the largest class to the least class were calculated to character the 12 research datasets. The two ensemble algorithms reach high accuracy of classification on most datasets. Moreover, random forest performs better than AdaBoost on the unbalanced dataset of the multi-class task. Simple algorithms, such as the naïve Bayes and logistic regression model are suitable for a small dataset with high correlation between the task and other non-task attribute variables. K-nearest neighbor and C4.5 decision tree algorithms perform well on binary- and multi-class task datasets. Support vector machine is more adept on the balanced small dataset of the binary-class task. No algorithm can maintain the best performance in all datasets. The applicability of the seven data mining algorithms on the datasets with different characteristics was summarized to provide a reference for biomedical researchers or beginners in different fields.

  11. Enhanced Decision Analysis Support System.

    DTIC Science & Technology

    1981-03-01

    autorrares "i., the method for determining preferences when multiple and competing attributes are involved. Worth assessment is used as the model which...1967 as a method for determining preferenoe when multiple and competing attributes are involved (Rf 10). The tern worth can be - equated to other... competing objectives. After some discussion, the group decided that the problem could best be decided using the worth assessment procedure. They

  12. Nutritional Attributes, Substitutability, Scalability, and Environmental Intensity of an Illustrative Subset of Current and Future Protein Sources for Aquaculture Feeds: Joint Consideration of Potential Synergies and Trade-offs.

    PubMed

    Pelletier, Nathan; Klinger, Dane H; Sims, Neil A; Yoshioka, Janice-Renee; Kittinger, John N

    2018-05-15

    Aquaculture is anticipated to play an increasingly important role in global food security because it may represent one of the best opportunities to increase the availability of healthy animal protein in the context of resource and environmental constraints. However, the growth and sustainability of the aquaculture industry faces important bottlenecks with respect to feed resources, which may be derived from diverse sources. Here, using a small but representative subset of potential aquafeed inputs (which we selected to highlight a range of relevant attributes), we review a core suite of considerations that need to be accommodated in concert in order to overcome key bottlenecks to the continued development and expansion of the aquaculture industry. Specifically, we evaluate the nutritional attributes, substitutability, scalability, and resource and environmental intensity of each input. On this basis, we illustrate a range of potential synergies and trade-offs within and across attributes that are characteristic of ingredient types. We posit that the recognition and management of such synergies and trade-offs is imperative to satisfying the multi-objective decision-making associated with sustainable increases in future aquaculture production.

  13. Qualitative and quantitative comparison of geostatistical techniques of porosity prediction from the seismic and logging data: a case study from the Blackfoot Field, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Maurya, S. P.; Singh, K. H.; Singh, N. P.

    2018-05-01

    In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.

  14. Applying multi-criteria decision-making to improve the waste reduction policy in Taiwan.

    PubMed

    Su, Jun-Pin; Hung, Ming-Lung; Chao, Chia-Wei; Ma, Hwong-wen

    2010-01-01

    Over the past two decades, the waste reduction problem has been a major issue in environmental protection. Both recycling and waste reduction policies have become increasingly important. As the complexity of decision-making has increased, it has become evident that more factors must be considered in the development and implementation of policies aimed at resource recycling and waste reduction. There are many studies focused on waste management excluding waste reduction. This study paid more attention to waste reduction. Social, economic, and management aspects of waste treatment policies were considered in this study. Further, a life-cycle assessment model was applied as an evaluation system for the environmental aspect. Results of both quantitative and qualitative analyses on the social, economic, and management aspects were integrated via the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method into the comprehensive decision-making support system of multi-criteria decision-making (MCDM). A case study evaluating the waste reduction policy in Taoyuan County is presented to demonstrate the feasibility of this model. In the case study, reinforcement of MSW sorting was shown to be the best practice. The model in this study can be applied to other cities faced with the waste reduction problems.

  15. Attention and attribute overlap in preferential choice.

    PubMed

    Bhatia, Sudeep

    2017-07-01

    Attributes that are common, or overlapping, across alternatives in two-alternative forced preferential choice tasks are often non-diagnostic. In many settings, attending to and evaluating these attributes does not help the decision maker determine which of the available alternatives is the most desirable. For this reason, many existing behavioural theories propose that decision makers ignore common attributes while deliberating. Across six experiments, we find that decision makers do direct their attention selectively and ignore attributes that are not present in or associated with either of the available alternatives. However, they are as likely to attend to common attributes as they are to attend to attributes that are unique to a single alternative. These results suggest the need for novel theories of attention in preferential choice.

  16. Fault Modeling of Extreme Scale Applications Using Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishnu, Abhinav; Dam, Hubertus van; Tallent, Nathan R.

    Faults are commonplace in large scale systems. These systems experience a variety of faults such as transient, permanent and intermittent. Multi-bit faults are typically not corrected by the hardware resulting in an error. Here, this paper attempts to answer an important question: Given a multi-bit fault in main memory, will it result in an application error — and hence a recovery algorithm should be invoked — or can it be safely ignored? We propose an application fault modeling methodology to answer this question. Given a fault signature (a set of attributes comprising of system and application state), we use machinemore » learning to create a model which predicts whether a multibit permanent/transient main memory fault will likely result in error. We present the design elements such as the fault injection methodology for covering important data structures, the application and system attributes which should be used for learning the model, the supervised learning algorithms (and potentially ensembles), and important metrics. Lastly, we use three applications — NWChem, LULESH and SVM — as examples for demonstrating the effectiveness of the proposed fault modeling methodology.« less

  17. Fault Modeling of Extreme Scale Applications Using Machine Learning

    DOE PAGES

    Vishnu, Abhinav; Dam, Hubertus van; Tallent, Nathan R.; ...

    2016-05-01

    Faults are commonplace in large scale systems. These systems experience a variety of faults such as transient, permanent and intermittent. Multi-bit faults are typically not corrected by the hardware resulting in an error. Here, this paper attempts to answer an important question: Given a multi-bit fault in main memory, will it result in an application error — and hence a recovery algorithm should be invoked — or can it be safely ignored? We propose an application fault modeling methodology to answer this question. Given a fault signature (a set of attributes comprising of system and application state), we use machinemore » learning to create a model which predicts whether a multibit permanent/transient main memory fault will likely result in error. We present the design elements such as the fault injection methodology for covering important data structures, the application and system attributes which should be used for learning the model, the supervised learning algorithms (and potentially ensembles), and important metrics. Lastly, we use three applications — NWChem, LULESH and SVM — as examples for demonstrating the effectiveness of the proposed fault modeling methodology.« less

  18. Modeling pedestrian shopping behavior using principles of bounded rationality: model comparison and validation

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Timmermans, Harry

    2011-06-01

    Models of geographical choice behavior have been dominantly based on rational choice models, which assume that decision makers are utility-maximizers. Rational choice models may be less appropriate as behavioral models when modeling decisions in complex environments in which decision makers may simplify the decision problem using heuristics. Pedestrian behavior in shopping streets is an example. We therefore propose a modeling framework for pedestrian shopping behavior incorporating principles of bounded rationality. We extend three classical heuristic rules (conjunctive, disjunctive and lexicographic rule) by introducing threshold heterogeneity. The proposed models are implemented using data on pedestrian behavior in Wang Fujing Street, the city center of Beijing, China. The models are estimated and compared with multinomial logit models and mixed logit models. Results show that the heuristic models are the best for all the decisions that are modeled. Validation tests are carried out through multi-agent simulation by comparing simulated spatio-temporal agent behavior with the observed pedestrian behavior. The predictions of heuristic models are slightly better than those of the multinomial logit models.

  19. A decision support system for delivering optimal quality peach and tomato

    NASA Technical Reports Server (NTRS)

    Thai, C. N.; Pease, J. N.; Shewfelt, R. L.

    1990-01-01

    Several studies have indicated that color and firmness are the two quality attributes most important to consumers in making purchasing decisions of fresh peaches and tomatoes. However, at present, retail produce managers do not have the proper information for handling fresh produce so it has the most appealing color and firmness when it reaches the consumer. This information should help them predict the consumer color and firmness perception and preference for produce from various storage conditions. Since 1987, for 'Redglobe' peach and 'Sunny' tomato, we have been generating information about their physical quality attributes (firmness and color) and their corresponding consumer sensory scores. This article reports on our current progress toward the goal of integrating such information into a model-based decision support system for retail level managers in handling fresh peaches and tomatoes.

  20. Decision analysis for a data collection system of patient-controlled analgesia with a multi-attribute utility model.

    PubMed

    Lee, I-Jung; Huang, Shih-Yu; Tsou, Mei-Yung; Chan, Kwok-Hon; Chang, Kuang-Yi

    2010-10-01

    Data collection systems are very important for the practice of patient-controlled analgesia (PCA). This study aimed to evaluate 3 PCA data collection systems and selected the most favorable system with the aid of multiattribute utility (MAU) theory. We developed a questionnaire with 10 items to evaluate the PCA data collection system and 1 item for overall satisfaction based on MAU theory. Three systems were compared in the questionnaire, including a paper record, optic card reader and personal digital assistant (PDA). A pilot study demonstrated a good internal and test-retest reliability of the questionnaire. A weighted utility score combining the relative importance of individual items assigned by each participant and their responses to each question was calculated for each system. Sensitivity analyses with distinct weighting protocols were conducted to evaluate the stability of the final results. Thirty potential users of a PCA data collection system were recruited in the study. The item "easy to use" had the highest median rank and received the heaviest mean weight among all items. MAU analysis showed that the PDA system had a higher utility score than that in the other 2 systems. Sensitivity analyses revealed that both inverse and reciprocal weighting processes favored the PDA system. High correlations between overall satisfaction and MAU scores from miscellaneous weighting protocols suggested a good predictive validity of our MAU-based questionnaire. The PDA system was selected as the most favorable PCA data collection system by the MAU analysis. The item "easy to use" was the most important attribute of the PCA data collection system. MAU theory can evaluate alternatives by taking into account individual preferences of stakeholders and aid in better decision-making. Copyright © 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  1. Relative importance of attributes of drug benefit plans: Thai civil servants' perspective.

    PubMed

    Ngorsuraches, Surachat; Wanishayakorn, Tanatape; Tanvejsilp, Pimwara; Udomaksorn, Siripa

    2013-01-01

    The drug benefit plan of Thailand's Civil Servant Medical Benefit Scheme (CSMBS) must be amended to control increasing costs; to that end, it is important to gather the views of beneficiaries before making changes to the benefit plan. To examine the relative importance of attributes of drug benefit plans from the perspective of CSMBS beneficiaries. Attributes and levels adopted from focus group discussions and a preliminary survey were used to develop a questionnaire concerning hypothetical drug benefit plans. A convenience sample of 650 CSMBS beneficiaries in Songkhla province was asked to rate the drug benefit plans. To determine the beneficiaries' decision models, judgment analysis was used. Policy-capturing analysis was used to examine the beneficiaries' preferences, and cluster analysis was conducted to explore the variability among judgment plans. Judgment policy insight was also examined. The results of the study showed that the beneficiaries weighed on cost-sharing as their most important attribute. The results remained unchanged, although only data from the beneficiaries who used the compensatory model were analyzed. The results of the cluster analysis showed that the largest cluster of beneficiaries weighed mostly on the cost-sharing attribute. The judgment policy insight results not only supported the finding that most beneficiaries focused on the cost-sharing attribute but also revealed that they might have the least understanding of how the formulary attribute affected beneficiaries' decision making. Cost-sharing was the most important attribute for the CSMBS beneficiaries. This study indicated that a possible preferred drug benefit plan should have no cost-sharing, permit access only to drugs listed in a closed formulary, allow beneficiaries to obtain 3 months of drugs, and allow them to obtain drugs from either a community pharmacy or a government hospital. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Pricing and location decisions in multi-objective facility location problem with M/M/m/k queuing systems

    NASA Astrophysics Data System (ADS)

    Tavakkoli-Moghaddam, Reza; Vazifeh-Noshafagh, Samira; Taleizadeh, Ata Allah; Hajipour, Vahid; Mahmoudi, Amin

    2017-01-01

    This article presents a new multi-objective model for a facility location problem with congestion and pricing policies. This model considers situations in which immobile service facilities are congested by a stochastic demand following M/M/m/k queues. The presented model belongs to the class of mixed-integer nonlinear programming models and NP-hard problems. To solve such a hard model, a new multi-objective optimization algorithm based on a vibration theory, namely multi-objective vibration damping optimization (MOVDO), is developed. In order to tune the algorithms parameters, the Taguchi approach using a response metric is implemented. The computational results are compared with those of the non-dominated ranking genetic algorithm and non-dominated sorting genetic algorithm. The outputs demonstrate the robustness of the proposed MOVDO in large-sized problems.

  3. Reserch on Urban Spatial Expansion Model Based on Multi-Object Gray Decision-Making and Ca: a Case Study of Pidu District, Chengdu City

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Li, Y.

    2018-04-01

    This paper from the perspective of the Neighbor cellular space, Proposed a new urban space expansion model based on a new multi-objective gray decision and CA. The model solved the traditional cellular automata conversion rules is difficult to meet the needs of the inner space-time analysis of urban changes and to overcome the problem of uncertainty in the combination of urban drivers and urban cellular automata. At the same time, the study takes Pidu District as a research area and carries out urban spatial simulation prediction and analysis, and draws the following conclusions: (1) The design idea of the urban spatial expansion model proposed in this paper is that the urban driving factor and the neighborhood function are tightly coupled by the multi-objective grey decision method based on geographical conditions. The simulation results show that the simulation error of urban spatial expansion is less than 5.27 %. The Kappa coefficient is 0.84. It shows that the model can better capture the inner transformation mechanism of the city. (2) We made a simulation prediction for Pidu District of Chengdu by discussing Pidu District of Chengdu as a system instance.In this way, we analyzed the urban growth tendency of this area.presenting a contiguous increasing mode, which is called "urban intensive development". This expansion mode accorded with sustainable development theory and the ecological urbanization design theory.

  4. Attributes Affecting Computer-Aided Decision Making--A Literature Survey.

    ERIC Educational Resources Information Center

    Moldafsky, Neil I; Kwon, Ik-Whan

    1994-01-01

    Reviews current literature about personal, demographic, situational, and cognitive attributes that affect computer-aided decision making. The effectiveness of computer-aided decision making is explored in relation to decision quality, effectiveness, and confidence. Studies of the effects of age, anxiety, cognitive type, attitude, gender, and prior…

  5. Integrating evidence and individual preferences using a web-based multi-criteria decision analytic tool: an application to prostate cancer screening.

    PubMed

    Cunich, Michelle; Salkeld, Glenn; Dowie, Jack; Henderson, Joan; Bayram, Clare; Britt, Helena; Howard, Kirsten

    2011-01-01

    Annalisa© (AL) is a web-based decision-support template grounded in multi-criteria decision analysis (MCDA). It uses a simple expected value algorithm to calculate a score for each option by taking into account the individual's preferences for different criteria (as importance weights) and the evidence of the performance of each option on each criterion. Given the uncertainty surrounding the trade offs between benefits and harms for prostate cancer screening, this topic was chosen as the vehicle to introduce this new decision-support template. The aim of the study was to introduce a new decision-support template, AL, and to develop and pilot a decision-support tool for prostate cancer screening using it. A decision-support tool for prostate cancer screening (ALProst) was implemented in the AL template. ALProst incorporated evidence on both the benefits and the potential harms of prostate cancer screening (the 'attributes') from published randomized controlled trials (RCTs). Individual weights for each attribute were elicited during interviews. By combining the individual's preferences and the evidence, the best option for the user was identified on the basis of quantified scores. A convenience sample of computer-proficient primary-care physicians (general practitioners [GPs] in Australia) from the Sydney Metropolitan area (Australia) were invited to complete a face-to-face interview involving the decision-support tool. Preference for undergoing prostate-specific antigen testing for prostate cancer, both personally and for their patients, was sought prior to seeing the tool. After gaining hands-on experience with using the tool, GPs were asked to comment on the merits of the template and the tool. Preference for presenting the benefits of prostate cancer screening as the relative or absolute risk reduction in prostate cancer-specific mortality was also sought. Of 60 GPs approached, ten (six men and four women) completed an interview (16.7% response rate). Most GPs agreed/strongly agreed with positive statements about the ease with which they could use AL (seven GPs), and understand the information in, and format of, AL (nine and eight, respectively). Eight agreed/strongly agreed that ALProst would be a useful tool for discussing prostate cancer screening with their patients. GPs were also asked to nominate difficult clinical decisions that they, and their patients, have had to make; responses included cancer screening (including prostate cancer); treating patients with multiple illnesses/diseases; managing multiple cardiovascular disease risk factors; and managing patients who are receiving multiple medications. The common element was the need to consider multiple factors in making these complex decisions. AL is distinguishable from most other decision-support templates available today by its underlying conceptual framework, MCDA, and its power to combine individual preferences with evidence to derive the best option for the user quantitatively. It therefore becomes potentially useful for all decisions at all levels in the healthcare system. Moreover, it will provide a universal graphic 'language' that can overcome the burden to patients of encountering a plethora of widely varying decision aids for different conditions during their lifetime.

  6. The Agricultural Model Intercomparison and Improvement Project (AgMIP) Town Hall

    NASA Technical Reports Server (NTRS)

    Ruane, Alex; Rosenzweig, Cynthia; Kyle, Page; Basso, Bruno; Winter, Jonathan; Asseng, Senthold

    2015-01-01

    AgMIP (www.agmip.org) is an international community of climate, crop, livestock, economics, and IT experts working to further the development and application of multi-model, multi-scale, multi-disciplinary agricultural models that can inform policy and decision makers around the world. This meeting will engage the AGU community by providing a brief overview of AgMIP, in particular its new plans for a Coordinated Global and Regional Assessment of climate change impacts on agriculture and food security for AR6. This Town Hall will help identify opportunities for participants to become involved in AgMIP and its 30+ activities.

  7. A robust multi-objective global supplier selection model under currency fluctuation and price discount

    NASA Astrophysics Data System (ADS)

    Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman

    2017-06-01

    Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.

  8. Selection of Most Proper Blasting Pattern in Mines Using Linear Assignment Method: Sungun Copper Mine / Wybór Najodpowiedniejszego Schematu Prowadzenia Prac Strzałowych W Kopalni Miedzi Sungun Z Użyciem Metody Przyporządkowania Liniowego

    NASA Astrophysics Data System (ADS)

    Yari, Mojtaba; Bagherpour, Raheb; Jamali, Saeed; Asadi, Fatemeh

    2015-03-01

    One of the most important operations in mining is blasting. Improper design of blasting pattern will cause technical and safety problems. Considering impact of results of blasting on next steps of mining, correct pattern selection needs a great cautiousness. In selecting of blasting pattern, technical, economical and safety aspects should be considered. Thus, most appropriate pattern selection can be defined as a Multi Attribute Decision Making (MADM) problem. Linear assignment method is one of the very applicable methods in decision making problems. In this paper, this method was used for the first time to evaluate blasting patterns in mine. In this ranking, safety and technical parameters have been considered to evaluate blasting patterns. Finally, blasting pattern with burden of 3.5 m, spacing of 4.5 m, stemming of 3.8 m and hole length of 12.1 m has been presented as the most suitable pattern obtained from linear assignment model for Sungun Copper Mine. Jedną z najpoważniejszych operacji wykonywanych w ramach prac wydobywczych są prace strzałowe. Niewłaściwe rozplanowanie prac powoduje problemy techniczne i stanowi zagrożenie dla bezpieczeństwa. Z uwagi na potencjalne skutki prac strzałowych i ich wpływ na kolejne etapy procesu wydobycia, właściwe rozplanowanie tych prac wymaga wielkiej uwagi i uwzględnienia kwestii technicznych, ekonomicznych a także bezpieczeństwa pracy. Dlatego też wybór najodpowiedniejszego schematu prowadzenia prac strzałowych zdefiniować można jako wieloatrybutowy problem decyzyjny (MADM - Multi Attribute Decision Making). Metoda przyporządkowania liniowego jest jedną z metod mających zastosowanie w rozwiązywaniu problemów decyzyjnych. W obecnej pracy metoda ta wykorzystana została po raz pierwszy do oceny schematów prowadzenia prac strzałowych w kopalni, w procedurze uwzględniono parametry techniczne oraz parametry związane z bezpieczeństwem. Zaprezentowano wybrany przy pomocy metody najkorzystniejszy schemat prowadzenia prac strzałowych w kopalni miedzi Sungun: nadkład 3.5m, odległości pomiędzy otworami 4.5 m, zastosowana przybitka 3.8 m, długość otworu strzałowego 12.1 m.

  9. Multi-model attribution of upper-ocean temperature changes using an isothermal approach.

    PubMed

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  10. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    NASA Astrophysics Data System (ADS)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  11. Reliable design of a closed loop supply chain network under uncertainty: An interval fuzzy possibilistic chance-constrained model

    NASA Astrophysics Data System (ADS)

    Vahdani, Behnam; Tavakkoli-Moghaddam, Reza; Jolai, Fariborz; Baboli, Arman

    2013-06-01

    This article seeks to offer a systematic approach to establishing a reliable network of facilities in closed loop supply chains (CLSCs) under uncertainties. Facilities that are located in this article concurrently satisfy both traditional objective functions and reliability considerations in CLSC network designs. To attack this problem, a novel mathematical model is developed that integrates the network design decisions in both forward and reverse supply chain networks. The model also utilizes an effective reliability approach to find a robust network design. In order to make the results of this article more realistic, a CLSC for a case study in the iron and steel industry has been explored. The considered CLSC is multi-echelon, multi-facility, multi-product and multi-supplier. Furthermore, multiple facilities exist in the reverse logistics network leading to high complexities. Since the collection centres play an important role in this network, the reliability concept of these facilities is taken into consideration. To solve the proposed model, a novel interactive hybrid solution methodology is developed by combining a number of efficient solution approaches from the recent literature. The proposed solution methodology is a bi-objective interval fuzzy possibilistic chance-constraint mixed integer linear programming (BOIFPCCMILP). Finally, computational experiments are provided to demonstrate the applicability and suitability of the proposed model in a supply chain environment and to help decision makers facilitate their analyses.

  12. Blame Attribution as a Moderator of Perceptions of Sexual Orientation-Based Hate Crimes

    ERIC Educational Resources Information Center

    Cramer, Robert J.; Chandler, Joseph F.; Wakeman, Emily E.

    2010-01-01

    Blame attribution is a valuable mechanism explaining decision making. However, present literature mainly employs blame attribution as a dependent variable. The shortcoming of this fact is that blame attribution offers a potentially valuable explanatory mechanism for decision making. The authors designed two studies to investigate blame attribution…

  13. Memory-based decision-making with heuristics: evidence for a controlled activation of memory representations.

    PubMed

    Khader, Patrick H; Pachur, Thorsten; Meier, Stefanie; Bien, Siegfried; Jost, Kerstin; Rösler, Frank

    2011-11-01

    Many of our daily decisions are memory based, that is, the attribute information about the decision alternatives has to be recalled. Behavioral studies suggest that for such decisions we often use simple strategies (heuristics) that rely on controlled and limited information search. It is assumed that these heuristics simplify decision-making by activating long-term memory representations of only those attributes that are necessary for the decision. However, from behavioral studies alone, it is unclear whether using heuristics is indeed associated with limited memory search. The present study tested this assumption by monitoring the activation of specific long-term-memory representations with fMRI while participants made memory-based decisions using the "take-the-best" heuristic. For different decision trials, different numbers and types of information had to be retrieved and processed. The attributes consisted of visual information known to be represented in different parts of the posterior cortex. We found that the amount of information required for a decision was mirrored by a parametric activation of the dorsolateral PFC. Such a parametric pattern was also observed in all posterior areas, suggesting that activation was not limited to those attributes required for a decision. However, the posterior increases were systematically modulated by the relative importance of the information for making a decision. These findings suggest that memory-based decision-making is mediated by the dorsolateral PFC, which selectively controls posterior storage areas. In addition, the systematic modulations of the posterior activations indicate a selective boosting of activation of decision-relevant attributes.

  14. Controlling for endogeneity in attributable costs of vancomycin-resistant enterococci from a Canadian hospital.

    PubMed

    Lloyd-Smith, Patrick

    2017-12-01

    Decisions regarding the optimal provision of infection prevention and control resources depend on accurate estimates of the attributable costs of health care-associated infections. This is challenging given the skewed nature of health care cost data and the endogeneity of health care-associated infections. The objective of this study is to determine the hospital costs attributable to vancomycin-resistant enterococci (VRE) while accounting for endogeneity. This study builds on an attributable cost model conducted by a retrospective cohort study including 1,292 patients admitted to an urban hospital in Vancouver, Canada. Attributable hospital costs were estimated with multivariate generalized linear models (GLMs). To account for endogeneity, a control function approach was used. The analysis sample included 217 patients with health care-associated VRE. In the standard GLM, the costs attributable to VRE are $17,949 (SEM, $2,993). However, accounting for endogeneity, the attributable costs were estimated to range from $14,706 (SEM, $7,612) to $42,101 (SEM, $15,533). Across all model specifications, attributable costs are 76% higher on average when controlling for endogeneity. VRE was independently associated with increased hospital costs, and controlling for endogeneity lead to higher attributable cost estimates. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  15. Spatial multi-criteria decision analysis for modelling suitable habitats of Ornithodoros soft ticks in the Western Palearctic region.

    PubMed

    Vial, L; Ducheyne, E; Filatov, S; Gerilovych, A; McVey, D S; Sindryakova, I; Morgunov, S; Pérez de León, A A; Kolbasov, D; De Clercq, E M

    2018-01-15

    Ticks are economically and medically important ectoparasites due to the injuries inflicted through their bite, and their ability to transmit pathogens to humans, livestock, and wildlife. Whereas hard ticks have been intensively studied, little is known about soft ticks, even though they can also transmit pathogens, including African Swine Fever Virus (ASFV) affecting domestic and wild suids or Borrelia bacteria causing tick-borne relapsing fever (TBRF) in humans. We thus developed a regional model to identify suitable spatial areas for a community of nine Ornithodoros tick species (O. erraticus, O. sonrai, O. alactagalis, O. nereensis, O. tholozani, O. papillipes, O. tartakovskyi, O. asperus, O. verrucosus), which may be of medical and veterinary importance in the Western Palearctic region. Multi-Criteria Decision Analysis was used due to the relative scarcity of high-quality occurrence data. After an in-depth literature review on the ecological requirements of the selected tick community, five climate-related factors appeared critical for feeding activity and tick development: (i) a spring temperature exceeding 10°C to induce the end of winter soft tick quiescent period, (ii) a three-months summer temperature above 20°C to allow tick physiological activities, (iii) annual precipitation ranging from 60mm to 750mm and, in very arid areas, (iv) dry seasons interrupted by small rain showers to maintain minimum moisture inside their habitat along the year or (v) residual water provided by perennial rivers near habitats. We deliberately chose not to include biological factors such as host availability or vegetation patterns. A sensitivity analysis was done by performing multiple runs of the model altering the environmental variables, their suitability function, and their attributed weights. To validate the models, we used 355 occurrence data points, complemented by random points within sampled ecoregions. All models indicated suitable areas in the Mediterranean Basin and semi-desert areas in South-West and Central Asia. Most variability between models was observed along northern and southern edges of highly suitable areas. The predictions featured a relatively good accuracy with an average Area Under Curve (AUC) of 0.779. These first models provide a useful tool for estimating the global distribution of Ornithodoros ticks and targeting their surveillance in the Western Palearctic region. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Earthquake Vulnerability Assessment for Hospital Buildings Using a Gis-Based Group Multi Criteria Decision Making Approach: a Case Study of Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Delavar, M. R.; Moradi, M.; Moshiri, B.

    2015-12-01

    Nowadays, urban areas are threatened by a number of natural hazards such as flood, landslide and earthquake. They can cause huge damages to buildings and human beings which necessitates disaster mitigation and preparation. One of the most important steps in disaster management is to understand all impacts and effects of disaster on urban facilities. Given that hospitals take care of vulnerable people reaction of hospital buildings against earthquake is vital. In this research, the vulnerability of hospital buildings against earthquake is analysed. The vulnerability of buildings is related to a number of criteria including age of building, number of floors, the quality of materials and intensity of the earthquake. Therefore, the problem of seismic vulnerability assessment is a multi-criteria assessment problem and multi criteria decision making methods can be used to address the problem. In this paper a group multi criteria decision making model is applied because using only one expert's judgments can cause biased vulnerability maps. Sugeno integral which is able to take into account the interaction among criteria is employed to assess the vulnerability degree of buildings. Fuzzy capacities which are similar to layer weights in weighted linear averaging operator are calculated using particle swarm optimization. Then, calculated fuzzy capacities are included into the model to compute a vulnerability degree for each hospital.

  17. Probabilistic flood damage modelling at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  18. Models of expert assessments and their study in problems of choice and decision-making in management of motor transport processes

    NASA Astrophysics Data System (ADS)

    Belokurov, V. P.; Belokurov, S. V.; Korablev, R. A.; Shtepa, A. A.

    2018-05-01

    The article deals with decision making concerning transport tasks on search iterations in the management of motor transport processes. An optimal selection of the best option for specific situations is suggested in the management of complex multi-criteria transport processes.

  19. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations.

    PubMed

    Tučník, Petr; Bureš, Vladimír

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the-server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models.

  20. Individual Decision-Making in Uncertain and Large-Scale Multi-Agent Environments

    DTIC Science & Technology

    2009-02-18

    first method, labeled as MC, limits and holds constant the number of models, 0 < KMC < M, where M is the possibly large number of candidate models of...equivalent and hence may be replaced by a subset of representative models without a significant loss in the optimality of the decision maker. KMC ...for different horizons. KMC and M are equal to 50 and 100 respectively for both approximate and exact approaches (Pentium 4, 3.0GHz, 1GB RAM, WinXP

  1. Application of Bayesian techniques to model the burden of human salmonellosis attributable to U.S. food commodities at the point of processing: adaptation of a Danish model.

    PubMed

    Guo, Chuanfa; Hoekstra, Robert M; Schroeder, Carl M; Pires, Sara Monteiro; Ong, Kanyin Liane; Hartnett, Emma; Naugle, Alecia; Harman, Jane; Bennett, Patricia; Cieslak, Paul; Scallan, Elaine; Rose, Bonnie; Holt, Kristin G; Kissler, Bonnie; Mbandi, Evelyne; Roodsari, Reza; Angulo, Frederick J; Cole, Dana

    2011-04-01

    Mathematical models that estimate the proportion of foodborne illnesses attributable to food commodities at specific points in the food chain may be useful to risk managers and policy makers to formulate public health goals, prioritize interventions, and document the effectiveness of mitigations aimed at reducing illness. Using human surveillance data on laboratory-confirmed Salmonella infections from the Centers for Disease Control and Prevention and Salmonella testing data from U.S. Department of Agriculture Food Safety and Inspection Service's regulatory programs, we developed a point-of-processing foodborne illness attribution model by adapting the Hald Salmonella Bayesian source attribution model. Key model outputs include estimates of the relative proportions of domestically acquired sporadic human Salmonella infections resulting from contamination of raw meat, poultry, and egg products processed in the United States from 1998 through 2003. The current model estimates the relative contribution of chicken (48%), ground beef (28%), turkey (17%), egg products (6%), intact beef (1%), and pork (<1%) across 109 Salmonella serotypes found in food commodities at point of processing. While interpretation of the attribution estimates is constrained by data inputs, the adapted model shows promise and may serve as a basis for a common approach to attribution of human salmonellosis and food safety decision-making in more than one country. © Mary Ann Liebert, Inc.

  2. Application of Bayesian Techniques to Model the Burden of Human Salmonellosis Attributable to U.S. Food Commodities at the Point of Processing: Adaptation of a Danish Model

    PubMed Central

    Guo, Chuanfa; Hoekstra, Robert M.; Schroeder, Carl M.; Pires, Sara Monteiro; Ong, Kanyin Liane; Hartnett, Emma; Naugle, Alecia; Harman, Jane; Bennett, Patricia; Cieslak, Paul; Scallan, Elaine; Rose, Bonnie; Holt, Kristin G.; Kissler, Bonnie; Mbandi, Evelyne; Roodsari, Reza; Angulo, Frederick J.

    2011-01-01

    Abstract Mathematical models that estimate the proportion of foodborne illnesses attributable to food commodities at specific points in the food chain may be useful to risk managers and policy makers to formulate public health goals, prioritize interventions, and document the effectiveness of mitigations aimed at reducing illness. Using human surveillance data on laboratory-confirmed Salmonella infections from the Centers for Disease Control and Prevention and Salmonella testing data from U.S. Department of Agriculture Food Safety and Inspection Service's regulatory programs, we developed a point-of-processing foodborne illness attribution model by adapting the Hald Salmonella Bayesian source attribution model. Key model outputs include estimates of the relative proportions of domestically acquired sporadic human Salmonella infections resulting from contamination of raw meat, poultry, and egg products processed in the United States from 1998 through 2003. The current model estimates the relative contribution of chicken (48%), ground beef (28%), turkey (17%), egg products (6%), intact beef (1%), and pork (<1%) across 109 Salmonella serotypes found in food commodities at point of processing. While interpretation of the attribution estimates is constrained by data inputs, the adapted model shows promise and may serve as a basis for a common approach to attribution of human salmonellosis and food safety decision-making in more than one country. PMID:21235394

  3. A Fuzzy-Based Decision Support Model for Selecting the Best Dialyser Flux in Haemodialysis.

    PubMed

    Oztürk, Necla; Tozan, Hakan

    2015-01-01

    Decision making is an important procedure for every organization. The procedure is particularly challenging for complicated multi-criteria problems. Selection of dialyser flux is one of the decisions routinely made for haemodialysis treatment provided for chronic kidney failure patients. This study provides a decision support model for selecting the best dialyser flux between high-flux and low-flux dialyser alternatives. The preferences of decision makers were collected via a questionnaire. A total of 45 questionnaires filled by dialysis physicians and nephrologists were assessed. A hybrid fuzzy-based decision support software that enables the use of Analytic Hierarchy Process (AHP), Fuzzy Analytic Hierarchy Process (FAHP), Analytic Network Process (ANP), and Fuzzy Analytic Network Process (FANP) was used to evaluate the flux selection model. In conclusion, the results showed that a high-flux dialyser is the best. option for haemodialysis treatment.

  4. A Grey Fuzzy Logic Approach for Cotton Fibre Selection

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shankar; Das, Partha Protim; Kumar, Vidyapati

    2017-06-01

    It is a well known fact that the quality of ring spun yarn predominantly depends on various physical properties of cotton fibre. Any variation in these fibre properties may affect the strength and unevenness of the final yarn. Thus, so as to achieve the desired yarn quality and characteristics, it becomes imperative for the spinning industry personnel to identify the most suitable cotton fibre from a set of feasible alternatives in presence of several conflicting properties/attributes. This cotton fibre selection process can be modelled as a Multi-Criteria Decision Making (MCDM) problem. In this paper, a grey fuzzy logic-based approach is proposed for selection of the most apposite cotton fibre from 17 alternatives evaluated based on six important fibre properties. It is observed that the preference order of the top-ranked cotton fibres derived using the grey fuzzy logic approach closely matches with that attained by the past researchers which proves the application potentiality of this method in solving varying MCDM problems in textile industries.

  5. A prototype software methodology for the rapid evaluation of biomanufacturing process options.

    PubMed

    Chhatre, Sunil; Francis, Richard; O'Donovan, Kieran; Titchener-Hooker, Nigel J; Newcombe, Anthony R; Keshavarz-Moore, Eli

    2007-10-01

    A three-layered simulation methodology is described that rapidly evaluates biomanufacturing process options. In each layer, inferior options are screened out, while more promising candidates are evaluated further in the subsequent, more refined layer, which uses more rigorous models that require more data from time-consuming experimentation. Screening ensures laboratory studies are focused only on options showing the greatest potential. To simplify the screening, outputs of production level, cost and time are combined into a single value using multi-attribute-decision-making techniques. The methodology was illustrated by evaluating alternatives to an FDA (U.S. Food and Drug Administration)-approved process manufacturing rattlesnake antivenom. Currently, antivenom antibodies are recovered from ovine serum by precipitation/centrifugation and proteolyzed before chromatographic purification. Alternatives included increasing the feed volume, replacing centrifugation with microfiltration and replacing precipitation/centrifugation with a Protein G column. The best alternative used a higher feed volume and a Protein G step. By rapidly evaluating the attractiveness of options, the methodology facilitates efficient and cost-effective process development.

  6. Predictors of Relationship Power among Drug-involved Women

    PubMed Central

    Campbell, Aimee N. C.; Tross, Susan; Hu, Mei-chen; Pavlicova, Martina; Nunes, Edward V.

    2012-01-01

    Gender-based relationship power is frequently linked to women’s capacity to reduce sexual risk behaviors. This study offers an exploration of predictors of relationship power, as measured by the multidimensional and theoretically grounded Sexual Relationship Power Scale (SRPS), among women in outpatient substance abuse treatment. Linear models were used to test nine predictors (age, race/ethnicity, education, time in treatment, economic dependence, substance use, sexual concurrency, partner abuse, sex role orientation) of relationship power among 513 women participating in a multi-site HIV risk reduction intervention study. Significant predictors of relationship control included having a non-abusive male partner, only one male partner, and endorsing traditional masculine (or both masculine and feminine) sex role attributes. Predictors of decision-making dominance were interrelated, with substance use x partner abuse and age x sex role orientation interactions. Results contribute to the understanding of factors which may influence relationship power and to their potential role in HIV sexual risk reduction interventions. PMID:22614746

  7. Stochastic Multi-Commodity Facility Location Based on a New Scenario Generation Technique

    NASA Astrophysics Data System (ADS)

    Mahootchi, M.; Fattahi, M.; Khakbazan, E.

    2011-11-01

    This paper extends two models for stochastic multi-commodity facility location problem. The problem is formulated as two-stage stochastic programming. As a main point of this study, a new algorithm is applied to efficiently generate scenarios for uncertain correlated customers' demands. This algorithm uses Latin Hypercube Sampling (LHS) and a scenario reduction approach. The relation between customer satisfaction level and cost are considered in model I. The risk measure using Conditional Value-at-Risk (CVaR) is embedded into the optimization model II. Here, the structure of the network contains three facility layers including plants, distribution centers, and retailers. The first stage decisions are the number, locations, and the capacity of distribution centers. In the second stage, the decisions are the amount of productions, the volume of transportation between plants and customers.

  8. Multi-view Decision Making (MVDM) Workshop

    DTIC Science & Technology

    2009-02-01

    reflect the realities of system-of-systems development, acquisition, fielding and support: multi-view decision making (MVDM). MVDM addresses the...including mission risk, interoperable acquisition, and operational security and survivability. Hence, a multi-view approach to decision making is

  9. PAM: Particle automata model in simulation of Fusarium graminearum pathogen expansion.

    PubMed

    Wcisło, Rafał; Miller, S Shea; Dzwinel, Witold

    2016-01-21

    The multi-scale nature and inherent complexity of biological systems are a great challenge for computer modeling and classical modeling paradigms. We present a novel particle automata modeling metaphor in the context of developing a 3D model of Fusarium graminearum infection in wheat. The system consisting of the host plant and Fusarium pathogen cells can be represented by an ensemble of discrete particles defined by a set of attributes. The cells-particles can interact with each other mimicking mechanical resistance of the cell walls and cell coalescence. The particles can move, while some of their attributes can be changed according to prescribed rules. The rules can represent cellular scales of a complex system, while the integrated particle automata model (PAM) simulates its overall multi-scale behavior. We show that due to the ability of mimicking mechanical interactions of Fusarium tip cells with the host tissue, the model is able to simulate realistic penetration properties of the colonization process reproducing both vertical and lateral Fusarium invasion scenarios. The comparison of simulation results with micrographs from laboratory experiments shows encouraging qualitative agreement between the two. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The role of contraceptive attributes in women's contraceptive decision making.

    PubMed

    Madden, Tessa; Secura, Gina M; Nease, Robert F; Politi, Mary C; Peipert, Jeffrey F

    2015-07-01

    Contraceptive methods have differing attributes. Women's preferences for these attributes may influence contraceptive decision making. Our objective was to identify women's contraceptive preferences among women initiating a new contraceptive method. We conducted a cross-sectional, self-administered survey of women's contraceptive preferences at the time of enrollment into the Contraceptive CHOICE Project. Participants were asked to rank the importance of 15 contraceptive attributes on a 3-point scale (1 = not at all important, 2 = somewhat important, and 3 = very important) and then to rank the 3 attributes that were the most important when choosing a contraceptive method. The survey also contained questions about prior contraceptive experience and barriers to contraceptive use. Information about demographic and reproductive characteristics was collected through the CHOICE Project baseline survey. There were 2590 women who completed the survey. Our sample was racially and socioeconomically diverse. Method attributes with the highest importance score (mean score [SD]) were effectiveness (2.97 [0.18]), safety (2.96 [0.22]), affordability (2.61 [0.61]), whether the method is long lasting (2.58 [0.61]), and whether the method is "forgettable" (2.54 [0.66]). The attributes most likely to be ranked by respondents among the top 3 attributes included effectiveness (84.2%), safety (67.8%), and side effects of the method (44.6%). Multiple contraceptive attributes influence decision making and no single attribute drives most women's decisions. Tailoring communication and helping women make complex tradeoffs between attributes can better support their contraceptive decisions and may assist them in making value-consistent choices. This process could improve continuation and satisfaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Comparative analysis of decision maker preferences for equity/efficiency attributes in reimbursement decisions in three European countries.

    PubMed

    Baji, Petra; García-Goñi, Manuel; Gulácsi, László; Mentzakis, Emmanouil; Paolucci, Francesco

    2016-09-01

    In addition to cost-effectiveness, national guidelines often include other factors in reimbursement decisions. However, weights attached to these are rarely quantified, thus decisions can depend strongly on decision-maker preferences. To explore the preferences of policymakers and healthcare professionals involved in the decision-making process for different efficiency and equity attributes of interventions and to analyse cross-country differences. Discrete choice experiments (DCEs) were carried out in Austria, Hungary, and Norway with policymakers and other professionals working in the health industry (N = 153 respondents). Interventions were described in terms of different efficiency and equity attributes (severity of disease, target age of the population and willingness to subsidise others, potential number of beneficiaries, individual health benefit, and cost-effectiveness). Parameter estimates from the DCE were used to calculate the probability of choosing a healthcare intervention with different characteristics, and to rank different equity and efficiency attributes according to their importance. In all three countries, cost-effectiveness, individual health benefit and severity of the disease were significant and equally important determinants of decisions. All countries show preferences for interventions targeting young and middle aged populations compared to those targeting populations over 60. However, decision-makers in Austria and Hungary show preferences more oriented to efficiency than equity, while those in Norway show equal preferences for equity and efficiency attributes. We find that factors other than cost-effectiveness seem to play an equally important role in decision-making. We also find evidence of cross-country differences in the weight of efficiency and equity attributes.

  12. A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad

    2010-01-01

    Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.

  13. Assessing Multi-Person and Person-Machine Distributed Decision Making Using an Extended Psychological Distancing Model

    DTIC Science & Technology

    1990-02-01

    human-to- human communication patterns during situation assessment and cooperative problem solving tasks. The research proposed for the second URRP year...Hardware development. In order to create an environment within which to study multi-channeled human-to- human communication , a multi-media observation...that machine-to- human communication can be used to increase cohesion between humans and intelligent machines and to promote human-machine team

  14. Dual conception of risk in the Iowa Gambling Task: effects of sleep deprivation and test-retest gap.

    PubMed

    Singh, Varsha

    2013-01-01

    Risk in the Iowa Gambling Task (IGT) is often understood in terms of intertemporal choices, i.e., preference for immediate outcomes in favor of delayed outcomes is considered risky decision making. According to behavioral economics, healthy decision makers are expected to refrain from choosing the short-sighted immediate gain because, over time (10 trials of the IGT), the immediate gains result in a long term loss (net loss). Instead decision makers are expected to maximize their gains by choosing options that, over time (10 trials), result in delayed or long term gains (net gain). However, task choices are sometimes made on the basis of the frequency of reward and punishment such that frequent rewards/infrequent punishments are favored over infrequent rewards/frequent punishments. The presence of these two attributes (intertemporality and frequency of reward) in IGT decision making may correspond to the emotion-cognition dichotomy and reflect a dual conception of risk. Decision making on the basis of the two attributes was tested under two conditions: delay in retest and sleep deprivation. An interaction between sleep deprivation and time delay was expected to attenuate the difference between the two attributes. Participants were 40 male university students. Analysis of the effects of IGT attribute type (intertemporal vs. frequency of reinforcement), sleep deprivation (sleep deprivation vs. no sleep deprivation), and test-retest gap (short vs. long delay) showed a significant within-subjects effect of IGT attribute type thus confirming the difference between the two attributes. Sleep deprivation had no effect on the attributes, but test-retest gap and the three-way interaction between attribute type, test-retest gap, and sleep deprivation were significantly different. Post-hoc tests revealed that sleep deprivation and short test-retest gap attenuated the difference between the two attributes. Furthermore, the results showed an expected trend of increase in intertemporal decision making at retest suggesting that intertemporal decision making benefited from repeated task exposure. The present findings add to understanding of the emotion-cognition dichotomy. Further, they show an important time-dependent effect of a universally experienced constraint (sleep deprivation) on decision making. It is concluded that risky decision making in the IGT is contingent on the attribute under consideration and is affected by factors such as time elapsed and constraint experienced before the retest.

  15. Development of a First-of-a-Kind Deterministic Decision-Making Tool for Supervisory Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Sacit M; Kisner, Roger A; Muhlheim, Michael David

    2015-07-01

    Decision-making is the process of identifying and choosing alternatives where each alternative offers a different approach or path to move from a given state or condition to a desired state or condition. The generation of consistent decisions requires that a structured, coherent process be defined, immediately leading to a decision-making framework. The overall objective of the generalized framework is for it to be adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or nomore » human intervention. The overriding goal of automation is to replace or supplement human decision makers with reconfigurable decision- making modules that can perform a given set of tasks reliably. Risk-informed decision making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The implementation of the probabilistic portion of the decision-making engine of the proposed supervisory control system was detailed in previous milestone reports. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic multi-attribute decision-making framework uses variable sensor data (e.g., outlet temperature) and calculates where it is within the challenge state, its trajectory, and margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. Metrics to be evaluated include stability, cost, time to complete (action), power level, etc. The integration of deterministic calculations using multi-physics analyses (i.e., neutronics, thermal, and thermal-hydraulics) and probabilistic safety calculations allows for the examination and quantification of margin recovery strategies. This also provides validation of the control options identified from the probabilistic assessment. Thus, the thermal-hydraulics analyses are used to validate the control options identified from the probabilistic assessment. Future work includes evaluating other possible metrics and computational efficiencies.« less

  16. A colored petri nets based workload evaluation model and its validation through Multi-Attribute Task Battery-II.

    PubMed

    Wang, Peng; Fang, Weining; Guo, Beiyuan

    2017-04-01

    This paper proposed a colored petri nets based workload evaluation model. A formal interpretation of workload was firstly introduced based on the process that reflection of petri nets components to task. A petri net based description of Multiple Resources theory was given by comprehending it from a new angle. A new application of VACP rating scales named V/A-C-P unit, and the definition of colored transitions were proposed to build a model of task process. The calculation of workload mainly has the following four steps: determine token's initial position and values; calculate the weight of directed arcs on the basis of the rules proposed; calculate workload from different transitions, and correct the influence of repetitive behaviors. Verify experiments were carried out based on Multi-Attribute Task Battery-II software. Our results show that there is a strong correlation between the model values and NASA -Task Load Index scores (r=0.9513). In addition, this method can also distinguish behavior characteristics between different people. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Using multi-species occupancy models in structured decision making on managed lands

    USGS Publications Warehouse

    Sauer, John R.; Blank, Peter J.; Zipkin, Elise F.; Fallon, Jane E.; Fallon, Frederick W.

    2013-01-01

    Land managers must balance the needs of a variety of species when manipulating habitats. Structured decision making provides a systematic means of defining choices and choosing among alternative management options; implementation of a structured decision requires quantitative approaches to predicting consequences of management on the relevant species. Multi-species occupancy models provide a convenient framework for making structured decisions when the management objective is focused on a collection of species. These models use replicate survey data that are often collected on managed lands. Occupancy can be modeled for each species as a function of habitat and other environmental features, and Bayesian methods allow for estimation and prediction of collective responses of groups of species to alternative scenarios of habitat management. We provide an example of this approach using data from breeding bird surveys conducted in 2008 at the Patuxent Research Refuge in Laurel, Maryland, evaluating the effects of eliminating meadow and wetland habitats on scrub-successional and woodland-breeding bird species using summed total occupancy of species as an objective function. Removal of meadows and wetlands decreased value of an objective function based on scrub-successional species by 23.3% (95% CI: 20.3–26.5), but caused only a 2% (0.5, 3.5) increase in value of an objective function based on woodland species, documenting differential effects of elimination of meadows and wetlands on these groups of breeding birds. This approach provides a useful quantitative tool for managers interested in structured decision making.

  18. Evaluating the Role of Attention in the Context of Unconscious Thought Theory: Differential Impact of Attentional Scope and Load on Preference and Memory

    PubMed Central

    Srinivasan, Narayanan; Mukherjee, Sumitava; Mishra, Maruti V.; Kesarwani, Smriti

    2013-01-01

    Attention is a key process used to conceptualize and define modes of thought, but we lack information about the role of specific attentional processes on preferential choice and memory in multi-attribute decision making. In this study, we examine the role of attention based on two dimensions, attentional scope and load on choice preference strength and memory using a paradigm that arguably elicits unconscious thought. Scope of attention was manipulated by using global or local processing during distraction (Experiment 1) and before the information-encoding stage (Experiment 2). Load was manipulated by using the n-back task in Experiment 1. Results from Experiment 1 show that global processing or distributed attention during distraction results in stronger preference irrespective of load but better memory only at low cognitive load. Task difficulty or load did not have any effect on preference or memory. In Experiment 2, distributed attention before attribute encoding facilitated only memory but did not influence preference. Results show that attentional processes at different stages of processing like distraction and information-encoding influence decision making processes. Scope of attention not only influences preference and memory but the manner in which attentional scope influences them depends on both load and stage of information processing. The results indicate the important role of attention in processes critical for decision making and calls for a re-evaluation of the unconscious thought theory (UTT) and the need for reconceptualizing the role of attention. PMID:23382726

  19. Evaluating the role of attention in the context of unconscious thought theory: differential impact of attentional scope and load on preference and memory.

    PubMed

    Srinivasan, Narayanan; Mukherjee, Sumitava; Mishra, Maruti V; Kesarwani, Smriti

    2013-01-01

    Attention is a key process used to conceptualize and define modes of thought, but we lack information about the role of specific attentional processes on preferential choice and memory in multi-attribute decision making. In this study, we examine the role of attention based on two dimensions, attentional scope and load on choice preference strength and memory using a paradigm that arguably elicits unconscious thought. Scope of attention was manipulated by using global or local processing during distraction (Experiment 1) and before the information-encoding stage (Experiment 2). Load was manipulated by using the n-back task in Experiment 1. Results from Experiment 1 show that global processing or distributed attention during distraction results in stronger preference irrespective of load but better memory only at low cognitive load. Task difficulty or load did not have any effect on preference or memory. In Experiment 2, distributed attention before attribute encoding facilitated only memory but did not influence preference. Results show that attentional processes at different stages of processing like distraction and information-encoding influence decision making processes. Scope of attention not only influences preference and memory but the manner in which attentional scope influences them depends on both load and stage of information processing. The results indicate the important role of attention in processes critical for decision making and calls for a re-evaluation of the unconscious thought theory (UTT) and the need for reconceptualizing the role of attention.

  20. The Rational Adolescent: Strategic Information Processing during Decision Making Revealed by Eye Tracking.

    PubMed

    Kwak, Youngbin; Payne, John W; Cohen, Andrew L; Huettel, Scott A

    2015-01-01

    Adolescence is often viewed as a time of irrational, risky decision-making - despite adolescents' competence in other cognitive domains. In this study, we examined the strategies used by adolescents (N=30) and young adults (N=47) to resolve complex, multi-outcome economic gambles. Compared to adults, adolescents were more likely to make conservative, loss-minimizing choices consistent with economic models. Eye-tracking data showed that prior to decisions, adolescents acquired more information in a more thorough manner; that is, they engaged in a more analytic processing strategy indicative of trade-offs between decision variables. In contrast, young adults' decisions were more consistent with heuristics that simplified the decision problem, at the expense of analytic precision. Collectively, these results demonstrate a counter-intuitive developmental transition in economic decision making: adolescents' decisions are more consistent with rational-choice models, while young adults more readily engage task-appropriate heuristics.

  1. The Rational Adolescent: Strategic Information Processing during Decision Making Revealed by Eye Tracking

    PubMed Central

    Kwak, Youngbin; Payne, John W.; Cohen, Andrew L.; Huettel, Scott A.

    2015-01-01

    Adolescence is often viewed as a time of irrational, risky decision-making – despite adolescents' competence in other cognitive domains. In this study, we examined the strategies used by adolescents (N=30) and young adults (N=47) to resolve complex, multi-outcome economic gambles. Compared to adults, adolescents were more likely to make conservative, loss-minimizing choices consistent with economic models. Eye-tracking data showed that prior to decisions, adolescents acquired more information in a more thorough manner; that is, they engaged in a more analytic processing strategy indicative of trade-offs between decision variables. In contrast, young adults' decisions were more consistent with heuristics that simplified the decision problem, at the expense of analytic precision. Collectively, these results demonstrate a counter-intuitive developmental transition in economic decision making: adolescents' decisions are more consistent with rational-choice models, while young adults more readily engage task-appropriate heuristics. PMID:26388664

  2. Bayesian Bigot? Statistical Discrimination, Stereotypes, and Employer Decision Making

    PubMed Central

    Pager, Devah; Karafin, Diana

    2010-01-01

    Much of the debate over the underlying causes of discrimination centers on the rationality of employer decision making. Economic models of statistical discrimination emphasize the cognitive utility of group estimates as a means of dealing with the problems of uncertainty. Sociological and social-psychological models, by contrast, question the accuracy of group-level attributions. Although mean differences may exist between groups on productivity-related characteristics, these differences are often inflated in their application, leading to much larger differences in individual evaluations than would be warranted by actual group-level trait distributions. In this study, the authors examine the nature of employer attitudes about black and white workers and the extent to which these views are calibrated against their direct experiences with workers from each group. They use data from fifty-five in-depth interviews with hiring managers to explore employers’ group-level attributions and their direct observations to develop a model of attitude formation and employer learning. PMID:20686633

  3. Understanding the undelaying mechanism of HA-subtyping in the level of physic-chemical characteristics of protein.

    PubMed

    Ebrahimi, Mansour; Aghagolzadeh, Parisa; Shamabadi, Narges; Tahmasebi, Ahmad; Alsharifi, Mohammed; Adelson, David L; Hemmatzadeh, Farhid; Ebrahimie, Esmaeil

    2014-01-01

    The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and predicting possible future structure of influenza pandemics.

  4. Understanding the Underlying Mechanism of HA-Subtyping in the Level of Physic-Chemical Characteristics of Protein

    PubMed Central

    Ebrahimi, Mansour; Aghagolzadeh, Parisa; Shamabadi, Narges; Tahmasebi, Ahmad; Alsharifi, Mohammed; Adelson, David L.

    2014-01-01

    The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and predicting possible future structure of influenza pandemics. PMID:24809455

  5. Absolute order-of-magnitude reasoning applied to a social multi-criteria evaluation framework

    NASA Astrophysics Data System (ADS)

    Afsordegan, A.; Sánchez, M.; Agell, N.; Aguado, J. C.; Gamboa, G.

    2016-03-01

    A social multi-criteria evaluation framework for solving a real-case problem of selecting a wind farm location in the regions of Urgell and Conca de Barberá in Catalonia (northeast of Spain) is studied. This paper applies a qualitative multi-criteria decision analysis approach based on linguistic labels assessment able to address uncertainty and deal with different levels of precision. This method is based on qualitative reasoning as an artificial intelligence technique for assessing and ranking multi-attribute alternatives with linguistic labels in order to handle uncertainty. This method is suitable for problems in the social framework such as energy planning which require the construction of a dialogue process among many social actors with high level of complexity and uncertainty. The method is compared with an existing approach, which has been applied previously in the wind farm location problem. This approach, consisting of an outranking method, is based on Condorcet's original method. The results obtained by both approaches are analysed and their performance in the selection of the wind farm location is compared in aggregation procedures. Although results show that both methods conduct to similar alternatives rankings, the study highlights both their advantages and drawbacks.

  6. Patients’ Non-Medical Characteristics Contribute to Collective Medical Decision-Making at Multidisciplinary Oncological Team Meetings

    PubMed Central

    Restivo, Léa; Apostolidis, Thémis; Bouhnik, Anne-Déborah; Garciaz, Sylvain; Aurran, Thérèse; Julian-Reynier, Claire

    2016-01-01

    Background The contribution of patients’ non-medical characteristics to individual physicians’ decision-making has attracted considerable attention, but little information is available on this topic in the context of collective decision-making. Medical decision-making at cancer centres is currently carried out using a collective approach, at MultiDisciplinary Team (MDT) meetings. The aim of this study was to determine how patients’ non-medical characteristics are presented at MDT meetings and how this information may affect the team’s final medical decisions. Design Observations were conducted at a French Cancer Centre during MDT meetings at which non-standard cases involving some uncertainty were discussed from March to May 2014. Physicians’ verbal statements and predefined contextual parameters were collected with a non-participant observational approach. Non numerical data collected in the form of open notes were then coded for quantitative analysis. Univariate and multivariate statistical analyses were performed. Results In the final sample of patients’ records included and discussed (N = 290), non-medical characteristics were mentioned in 32.8% (n = 95) of the cases. These characteristics corresponded to demographics in 22.8% (n = 66) of the cases, psychological data in 11.7% (n = 34), and relational data in 6.2% (n = 18). The patient’s age and his/her “likeability” were the most frequently mentioned characteristics. In 17.9% of the cases discussed, the final decision was deferred: this outcome was positively associated with the patients’ non-medical characteristics and with uncertainty about the outcome of the therapeutic options available. Limitations The design of the study made it difficult to draw definite cause-and-effect conclusions. Conclusion The Social Representations approach suggests that patients’ non-medical characteristics constitute a kind of tacit professional knowledge that may be frequently mobilised in physicians’ everyday professional practice. The links observed between patients’ attributes and the medical decisions made at these meetings show that these attributes should be taken into account in order to understand how medical decisions are reached in difficult situations of this kind. PMID:27167521

  7. A neuroimaging investigation of attribute framing and individual differences

    PubMed Central

    Murch, Kevin B.

    2014-01-01

    Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. PMID:23988759

  8. The use of multi-criteria decision making models in evaluating anesthesia method options in circumcision surgery.

    PubMed

    Hancerliogullari, Gulsah; Hancerliogullari, Kadir Oymen; Koksalmis, Emrah

    2017-01-23

    Determining the most suitable anesthesia method for circumcision surgery plays a fundamental role in pediatric surgery. This study is aimed to present pediatric surgeons' perspective on the relative importance of the criteria for selecting anesthesia method for circumcision surgery by utilizing the multi-criteria decision making methods. Fuzzy set theory offers a useful tool for transforming linguistic terms into numerical assessments. Since the evaluation of anesthesia methods requires linguistic terms, we utilize the fuzzy Analytic Hierarchy Process (AHP) and fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Both mathematical decision-making methods are originated from individual judgements for qualitative factors utilizing the pair-wise comparison matrix. Our model uses four main criteria, eight sub-criteria as well as three alternatives. To assess the relative priorities, an online questionnaire was completed by three experts, pediatric surgeons, who had experience with circumcision surgery. Discussion of the results with the experts indicates that time-related factors are the most important criteria, followed by psychology, convenience and duration. Moreover, general anesthesia with penile block for circumcision surgery is the preferred choice of anesthesia compared to general anesthesia without penile block, which has a greater priority compared to local anesthesia under the discussed main-criteria and sub-criteria. The results presented in this study highlight the need to integrate surgeons' criteria into the decision making process for selecting anesthesia methods. This is the first study in which multi-criteria decision making tools, specifically fuzzy AHP and fuzzy TOPSIS, are used to evaluate anesthesia methods for a pediatric surgical procedure.

  9. Decision Making Under Objective Risk Conditions-a Review of Cognitive and Emotional Correlates, Strategies, Feedback Processing, and External Influences.

    PubMed

    Schiebener, Johannes; Brand, Matthias

    2015-06-01

    While making decisions under objective risk conditions, the probabilities of the consequences of the available options are either provided or calculable. Brand et al. (Neural Networks 19:1266-1276, 2006) introduced a model describing the neuro-cognitive processes involved in such decisions. In this model, executive functions associated with activity in the fronto-striatal loop are important for developing and applying decision-making strategies, and for verifying, adapting, or revising strategies according to feedback. Emotional rewards and punishments learned from such feedback accompany these processes. In this literature review, we found support for the role of executive functions, but also found evidence for the importance of further cognitive abilities in decision making. Moreover, in addition to reflective processing (driven by cognition), decisions can be guided by impulsive processing (driven by anticipation of emotional reward and punishment). Reflective and impulsive processing may interact during decision making, affecting the evaluation of available options, as both processes are affected by feedback. Decision-making processes are furthermore modulated by individual attributes (e.g., age), and external influences (e.g., stressors). Accordingly, we suggest a revised model of decision making under objective risk conditions.

  10. Multi-criteria decision model for retrofitting existing buildings

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, M. D.

    2004-08-01

    Decision is an element in the risk management process. In this paper the way how science can help in decision making and implementation for retrofitting buildings in earthquake prone urban areas is investigated. In such interventions actors from various spheres are involved. Their interests range among minimising the intervention for maximal preservation or increasing it for seismic safety. Research was conducted to see how to facilitate collaboration between these actors. A particular attention was given to the role of time in actors' preferences. For this reason, on decision level, both the processural and the personal dimension of risk management, the later seen as a task, were considered. A systematic approach was employed to determine the functional structure of a participative decision model. Three layers on which actors implied in this multi-criteria decision problem interact were identified: town, building and element. So-called 'retrofit elements' are characteristic bearers in the architectural survey, engineering simulations, costs estimation and define the realms perceived by the inhabitants. This way they represent an interaction basis for the interest groups considered in a deeper study. Such orientation means for actors' interaction were designed on other levels of intervention as well. Finally, an 'experiment' for the implementation of the decision model is presented: a strategic plan for an urban intervention towards reduction of earthquake hazard impact through retrofitting. A systematic approach proves thus to be a very good communication basis among the participants in the seismic risk management process. Nevertheless, it can only be applied in later phases (decision, implementation, control) only, since it serves verifying and improving solution and not developing the concept. The 'retrofit elements' are a typical example of the detailing degree reached in the retrofit design plans in these phases.

  11. Multi-model comparison on the effects of climate change on tree species in the eastern U.S.: results from an enhanced niche model and process-based ecosystem and landscape models

    Treesearch

    Louis R. Iverson; Frank R. Thompson; Stephen Matthews; Matthew Peters; Anantha Prasad; William D. Dijak; Jacob Fraser; Wen J. Wang; Brice Hanberry; Hong He; Maria Janowiak; Patricia Butler; Leslie Brandt; Chris Swanston

    2016-01-01

    Context. Species distribution models (SDM) establish statistical relationships between the current distribution of species and key attributes whereas process-based models simulate ecosystem and tree species dynamics based on representations of physical and biological processes. TreeAtlas, which uses DISTRIB SDM, and Linkages and LANDIS PRO, process...

  12. Parental Health Attributions of Childhood Health and Illness: Development of the Pediatric Cultural Health Attributions Questionnaire (Pedi-CHAQ).

    PubMed

    Vaughn, Lisa M; McLinden, Daniel J; Shellmer, Diana; Baker, Raymond C

    2011-01-01

    The causes attributed to childhood health and illness across cultures (cultural health attributions) are key factors that are now more frequently identified as affecting the health outcomes of children. Research suggests that the causes attributed to an event such as illness are thought to affect subsequent motivation, emotional response, decision making, and behavior. To date, there is no measure of health attributions appropriate for use with parents of pediatric patients. Using the Many-Facets approach to Rasch analysis, this study assesses the psychometrics of a newly developed instrument, the Pediatric Health Attributions Questionnaire (Pedi-CHAQ), a measure designed to assess the cultural health attributions of parents in diverse communities. Results suggest acceptable Rasch model statistics of fit and reliability for the Pedi-CHAQ. A shortened version of the questionnaire was developed as a result of this study and next steps are discussed.

  13. I know why you voted for Trump: (Over)inferring motives based on choice.

    PubMed

    Barasz, Kate; Kim, Tami; Evangelidis, Ioannis

    2018-05-10

    People often speculate about why others make the choices they do. This paper investigates how such inferences are formed as a function of what is chosen. Specifically, when observers encounter someone else's choice (e.g., of political candidate), they use the chosen option's attribute values (e.g., a candidate's specific stance on a policy issue) to infer the importance of that attribute (e.g., the policy issue) to the decision-maker. Consequently, when a chosen option has an attribute whose value is extreme (e.g., an extreme policy stance), observers infer-sometimes incorrectly-that this attribute disproportionately motivated the decision-maker's choice. Seven studies demonstrate how observers use an attribute's value to infer its weight-the value-weight heuristic-and identify the role of perceived diagnosticity: more extreme attribute values give observers the subjective sense that they know more about a decision-maker's preferences, and in turn, increase the attribute's perceived importance. The paper explores how this heuristic can produce erroneous inferences and influence broader beliefs about decision-makers. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Outcome based state budget allocation for diabetes prevention programs using multi-criteria optimization with robust weights.

    PubMed

    Mehrotra, Sanjay; Kim, Kibaek

    2011-12-01

    We consider the problem of outcomes based budget allocations to chronic disease prevention programs across the United States (US) to achieve greater geographical healthcare equity. We use Diabetes Prevention and Control Programs (DPCP) by the Center for Disease Control and Prevention (CDC) as an example. We present a multi-criteria robust weighted sum model for such multi-criteria decision making in a group decision setting. The principal component analysis and an inverse linear programming techniques are presented and used to study the actual 2009 budget allocation by CDC. Our results show that the CDC budget allocation process for the DPCPs is not likely model based. In our empirical study, the relative weights for different prevalence and comorbidity factors and the corresponding budgets obtained under different weight regions are discussed. Parametric analysis suggests that money should be allocated to states to promote diabetes education and to increase patient-healthcare provider interactions to reduce disparity across the US.

  15. Cloud/web mapping and geoprocessing services - Intelligently linking geoinformation

    NASA Astrophysics Data System (ADS)

    Veenendaal, Bert; Brovelli, Maria Antonia; Wu, Lixin

    2016-04-01

    We live in a world that is alive with information and geographies. "Everything happens somewhere" (Tosta, 2001). This reality is being exposed in the digital earth technologies providing a multi-dimensional, multi-temporal and multi-resolution model of the planet, based on the needs of diverse actors: from scientists to decision makers, communities and citizens (Brovelli et al., 2015). We are building up a geospatial information infrastructure updated in real time thanks to mobile, positioning and sensor observations. Users can navigate, not only through space but also through time, to access historical data and future predictions based on social and/or environmental models. But how do we find the information about certain geographic locations or localities when it is scattered in the cloud and across the web of data behind a diversity of databases, web services and hyperlinked pages? We need to be able to link geoinformation together in order to integrate it, make sense of it, and use it appropriately for managing the world and making decisions.

  16. A Multi-Objective Decision Making Approach for Solving the Image Segmentation Fusion Problem.

    PubMed

    Khelifi, Lazhar; Mignotte, Max

    2017-08-01

    Image segmentation fusion is defined as the set of methods which aim at merging several image segmentations, in a manner that takes full advantage of the complementarity of each one. Previous relevant researches in this field have been impeded by the difficulty in identifying an appropriate single segmentation fusion criterion, providing the best possible, i.e., the more informative, result of fusion. In this paper, we propose a new model of image segmentation fusion based on multi-objective optimization which can mitigate this problem, to obtain a final improved result of segmentation. Our fusion framework incorporates the dominance concept in order to efficiently combine and optimize two complementary segmentation criteria, namely, the global consistency error and the F-measure (precision-recall) criterion. To this end, we present a hierarchical and efficient way to optimize the multi-objective consensus energy function related to this fusion model, which exploits a simple and deterministic iterative relaxation strategy combining the different image segments. This step is followed by a decision making task based on the so-called "technique for order performance by similarity to ideal solution". Results obtained on two publicly available databases with manual ground truth segmentations clearly show that our multi-objective energy-based model gives better results than the classical mono-objective one.

  17. A SMALL FISH MULTI-ENDPOINT BIOASSAY FOR ASSESSING THE EFFECTS OF WATER CONTAMINANTS PRESENT IN LOW CONCENTRATIONS: MEDAKA AND DICHLOROACETIC ACID

    EPA Science Inventory

    In regulating the safety of water under SDWA and the CWA, the EPA makes decisions on what chemical contaminants to regulate and at what levels. To make these decisions the EPA needs hazard identification and dose-response information. Current methods that rely on rodent models fo...

  18. Context Effects in Multi-Alternative Decision Making: Empirical Data and a Bayesian Model

    ERIC Educational Resources Information Center

    Hawkins, Guy; Brown, Scott D.; Steyvers, Mark; Wagenmakers, Eric-Jan

    2012-01-01

    For decisions between many alternatives, the benchmark result is Hick's Law: that response time increases log-linearly with the number of choice alternatives. Even when Hick's Law is observed for response times, divergent results have been observed for error rates--sometimes error rates increase with the number of choice alternatives, and…

  19. Graduate Attribute Attainment in a Multi-Level Undergraduate Geography Course

    ERIC Educational Resources Information Center

    Mager, Sarah; Spronken-Smith, Rachel

    2014-01-01

    We investigated students' perceptions of graduate attributes in a multi-level (second and third year) geography course. A case study with mixed methodology was employed, with data collected through focus groups and a survey. We found that undergraduate geography students can identify the skills, knowledge and attributes that are developed through…

  20. The C20C+ Detection and Attribution Project

    NASA Astrophysics Data System (ADS)

    Stone, D. A.; Angélil, O. M.; Cholia, S.; Christidis, N.; Dittus, A. J.; Folland, C. K.; King, A.; Kinter, J. L.; Krishnan, H.; Min, S. K.; Shiogama, H.; Wehner, M. F.; Wolski, P.

    2015-12-01

    Over the past decade there has been a remarkable growth in interest concerning the effects of anthropogenic emissions on extreme weather. However, research has been constrained by the lack of a public climate-model-based data product optimised for investigation of extreme weather in the context of climate change, relying instead on products designed for other purposes or on bespoke simulations designed for the particular study and not generally applicable to other extremes. The international Climate of the 20th Century Plus (C20C+) Detection and Attribution Project is filling this gap by producing the first large ensemble, multi-model, multi-year, and multi-scenario historical climate data product, specifically designed for resolving variations in the occurrence and characteristics of extreme weather from year to year and their differences from what might have been in the absence of anthropogenic emissions. Updates on project status and tens of terabytes of simulation output are available at http://portal.nersc.gov/c20c.Here we describe the experimental design of the first phase of the project, conducted with six atmospheric climate models, and discuss its various strengths and weaknesses with respect to various types of extreme weather. We also present analyses of the relative importance of climate model, estimate of anthropogenic ocean warming, spatial and temporal scale, and aspects of experimental design on estimates of how much emissions have affected extreme weather.

  1. Multi-Criteria Decision Making For Determining A Simple Model of Supplier Selection

    NASA Astrophysics Data System (ADS)

    Harwati

    2017-06-01

    Supplier selection is a decision with many criteria. Supplier selection model usually involves more than five main criteria and more than 10 sub-criteria. In fact many model includes more than 20 criteria. Too many criteria involved in supplier selection models sometimes make it difficult to apply in many companies. This research focuses on designing supplier selection that easy and simple to be applied in the company. Analytical Hierarchy Process (AHP) is used to weighting criteria. The analysis results there are four criteria that are easy and simple can be used to select suppliers: Price (weight 0.4) shipment (weight 0.3), quality (weight 0.2) and services (weight 0.1). A real case simulation shows that simple model provides the same decision with a more complex model.

  2. A review of clinical decision making: models and current research.

    PubMed

    Banning, Maggi

    2008-01-01

    The aim of this paper was to review the current literature clinical decision-making models and the educational application of models to clinical practice. This was achieved by exploring the function and related research of the three available models of clinical decision making: information-processing model, the intuitive-humanist model and the clinical decision-making model. Clinical decision making is a unique process that involves the interplay between knowledge of pre-existing pathological conditions, explicit patient information, nursing care and experiential learning. Historically, two models of clinical decision making are recognized from the literature; the information-processing model and the intuitive-humanist model. The usefulness and application of both models has been examined in relation the provision of nursing care and care related outcomes. More recently a third model of clinical decision making has been proposed. This new multidimensional model contains elements of the information-processing model but also examines patient specific elements that are necessary for cue and pattern recognition. Literature review. Evaluation of the literature generated from MEDLINE, CINAHL, OVID, PUBMED and EBESCO systems and the Internet from 1980 to November 2005. The characteristics of the three models of decision making were identified and the related research discussed. Three approaches to clinical decision making were identified, each having its own attributes and uses. The most recent addition to the clinical decision making is a theoretical, multidimensional model which was developed through an evaluation of current literature and the assessment of a limited number of research studies that focused on the clinical decision-making skills of inexperienced nurses in pseudoclinical settings. The components of this model and the relative merits to clinical practice are discussed. It is proposed that clinical decision making improves as the nurse gains experience of nursing patients within a specific speciality and with experience, nurses gain a sense of saliency in relation to decision making. Experienced nurses may use all three forms of clinical decision making both independently and concurrently to solve nursing-related problems. It is suggested that O'Neill's clinical decision-making model could be tested by educators and experienced nurses to assess the efficacy of this hybrid approach to decision making.

  3. Patient‐focussed decision‐making in early‐stage prostate cancer: insights from a cognitively based decision aid

    PubMed Central

    Feldman‐Stewart, Deb; Brundage, Michael D; Manen, Lori Van; Svenson, Ola

    2004-01-01

    Abstract Purpose  To study the cognitive processes of early‐stage prostate cancer patients as they determined which treatment they preferred, using our cognitively based decision aid. Method  The aid was a one‐to‐one interview that included the structured presentation of information, listing exercises in which the patient identified attributes important to his decision, and trade‐off exercises to help him weigh and integrate those attributes together. At various points of the interview, patients identified the attributes they felt were important to their decision, rated their treatment options and completed standardized assessments relating to their decision. In addition, patients participated in a follow‐up interview at the time they made their actual treatment decision and again 3 months later. Results  Sixty of 70 (86%) of the invited patients participated in the study. Participating patients identified a median of four important attributes (range 1–10); 36 different attributes were identified at some point in the interview by the group. During the interview, 78% of patients changed which attributes they considered important, and 72% changed their treatment ratings. Stability of treatment choice after the interview and lack of regret after the decision were each positively associated with increasing differentiation between treatment options over time. Conclusions  The decision process appears to be dynamic for the patients with great variability across patients in what is important to the decision. Increasing stability of choice and lack of regret appear to be related positively to increasing difference over time in how attractive the preferred option is over its closest competitor, rather than to the size of the difference at any one point in time. PMID:15117387

  4. Multi-criteria multi-stakeholder decision analysis using a fuzzy-stochastic approach for hydrosystem management

    NASA Astrophysics Data System (ADS)

    Subagadis, Y. H.; Schütze, N.; Grundmann, J.

    2014-09-01

    The conventional methods used to solve multi-criteria multi-stakeholder problems are less strongly formulated, as they normally incorporate only homogeneous information at a time and suggest aggregating objectives of different decision-makers avoiding water-society interactions. In this contribution, Multi-Criteria Group Decision Analysis (MCGDA) using a fuzzy-stochastic approach has been proposed to rank a set of alternatives in water management decisions incorporating heterogeneous information under uncertainty. The decision making framework takes hydrologically, environmentally, and socio-economically motivated conflicting objectives into consideration. The criteria related to the performance of the physical system are optimized using multi-criteria simulation-based optimization, and fuzzy linguistic quantifiers have been used to evaluate subjective criteria and to assess stakeholders' degree of optimism. The proposed methodology is applied to find effective and robust intervention strategies for the management of a coastal hydrosystem affected by saltwater intrusion due to excessive groundwater extraction for irrigated agriculture and municipal use. Preliminary results show that the MCGDA based on a fuzzy-stochastic approach gives useful support for robust decision-making and is sensitive to the decision makers' degree of optimism.

  5. A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties

    NASA Astrophysics Data System (ADS)

    Frieler, K.; Levermann, A.; Elliott, J.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Döll, P.; Falloon, P.; Fekete, B.; Folberth, C.; Friend, A. D.; Gellhorn, C.; Gosling, S. N.; Haddeland, I.; Khabarov, N.; Lomas, M.; Masaki, Y.; Nishina, K.; Neumann, K.; Oki, T.; Pavlick, R.; Ruane, A. C.; Schmid, E.; Schmitz, C.; Stacke, T.; Stehfest, E.; Tang, Q.; Wisser, D.; Huber, V.; Piontek, F.; Warszawski, L.; Schewe, J.; Lotze-Campen, H.; Schellnhuber, H. J.

    2015-07-01

    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.

  6. Value Focused Thinking in Developing Aerobatic Aircraft Selection Model for Turkish Air Force

    DTIC Science & Technology

    2012-03-22

    many reasons . Most problems in decision- making involve multiple objectives and uncertainties. The number of alternatives can be significant and make ...and Republic of Turkey all around the world”. This is a clear and concise statement of the most basic reason for decision. After making interview...Hwang, C.-L. (1995). Multiple Attribute Decison Making : An Introduction. California: Sage Publications. 90 Vita First Lieutenant

  7. Merging information from multi-model flood projections in a hierarchical Bayesian framework

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya

    2016-04-01

    Multi-model ensembles are becoming widely accepted for flood frequency change analysis. The use of multiple models results in large uncertainty around estimates of flood magnitudes, due to both uncertainty in model selection and natural variability of river flow. The challenge is therefore to extract the most meaningful signal from the multi-model predictions, accounting for both model quality and uncertainties in individual model estimates. The study demonstrates the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach facilitates explicit treatment of shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, by treating the available models as a sample from a hypothetical complete (but unobserved) set of models. The advantages of the approach are: 1) to insure an adequate 'baseline' conditions with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to adjust multi-model consistency criteria when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.

  8. An environmental decision framework applied to marine engine control technologies.

    PubMed

    Corbett, James J; Chapman, David

    2006-06-01

    This paper develops a decision framework for considering emission control technologies on marine engines, informed by standard decision theory, with an open structure that may be adapted by operators with specific vessel and technology attributes different from those provided here. Attributes relate objectives important to choosing control technologies with specific alternatives that may meet several of the objectives differently. The transparent framework enables multiple stakeholders to understand how different subjective judgments and varying attribute properties may result in different technology choices. Standard scoring techniques ensure that attributes are not biased by subjective scoring and that weights are the primary quantitative input where subjective preferences are exercised. An expected value decision structure is adopted that considers probabilities (likelihood) that a given alternative can meet its claims; alternative decision criteria are discussed. Capital and annual costs are combined using a net present value approach. An iterative approach is advocated that allows for screening and disqualifying alternatives that do not meet minimum conditions for acceptance, such as engine warranty or U.S. Coast Guard requirements. This decision framework assists vessel operators in considering explicitly important attributes and in representing choices clearly to other stakeholders concerned about reducing air pollution from vessels. This general decision structure may also be applied similarly to other environmental controls in marine applications.

  9. The Relationship of Decision-Making Styles and Attributional Styles in Addicted and Non-addicted Men.

    PubMed

    Shaghaghy, Farhad; Saffarinia, Majid; Iranpoor, Mohadeseh; Soltanynejad, Ali

    2011-01-01

    One of social problems which has affected our society and resulted in problems for different groups of people is drug abuse. This issue indicates a serious psychological, physical and social problem in community. Social skills have positive and successful influences in prevention of substance abuse. This includes the ability to explain events correctly and then appropriate decision making. This study compares decision making styles and attributional styles between addicted and non addicted men to recognize their role in addiction. In this study, 200 addicted and non addicted men were randomly selected. Decision-making style and attributional style questionnaires were used. Data analysis was performed by independent Student's t and Pearson correlation tests. The study population included 81 addicted and 90 non-addicted men. Addicted and non addicted men were significantly different in rational decision-making style (P < 0.05). Negative relationship was found between rational decision making and optimistic attribution style (r = -0.305, P < 0.01) and direct relationship was found between rational decision making and learned helplessness (r = 0.309, P < 0.01). Our study showed that addicts are less rational in decision making and addicts that developed learned helplessness were less rational and did not have optimistic attribution style. These issues show that addiction institutions and therapists have to pay attention to cognitive factors for addiction prevention.

  10. Rigorously testing multialternative decision field theory against random utility models.

    PubMed

    Berkowitsch, Nicolas A J; Scheibehenne, Benjamin; Rieskamp, Jörg

    2014-06-01

    Cognitive models of decision making aim to explain the process underlying observed choices. Here, we test a sequential sampling model of decision making, multialternative decision field theory (MDFT; Roe, Busemeyer, & Townsend, 2001), on empirical grounds and compare it against 2 established random utility models of choice: the probit and the logit model. Using a within-subject experimental design, participants in 2 studies repeatedly choose among sets of options (consumer products) described on several attributes. The results of Study 1 showed that all models predicted participants' choices equally well. In Study 2, in which the choice sets were explicitly designed to distinguish the models, MDFT had an advantage in predicting the observed choices. Study 2 further revealed the occurrence of multiple context effects within single participants, indicating an interdependent evaluation of choice options and correlations between different context effects. In sum, the results indicate that sequential sampling models can provide relevant insights into the cognitive process underlying preferential choices and thus can lead to better choice predictions. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  11. A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making.

    PubMed

    van der Lee, J H; Svrcek, W Y; Young, B R

    2008-01-01

    Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.

  12. Don't Discount Societal Value in Cost-Effectiveness Comment on "Priority Setting for Universal Health Coverage: We Need Evidence-Informed Deliberative Processes, Not Just More Evidence on Cost-Effectiveness".

    PubMed

    Hall, William

    2017-01-14

    As healthcare resources become increasingly scarce due to growing demand and stagnating budgets, the need for effective priority setting and resource allocation will become ever more critical to providing sustainable care to patients. While societal values should certainly play a part in guiding these processes, the methodology used to capture these values need not necessarily be limited to multi-criterion decision analysis (MCDA)-based processes including 'evidence-informed deliberative processes.' However, if decision-makers intend to not only incorporates the values of the public they serve into decisions but have the decisions enacted as well, consideration should be given to more direct involvement of stakeholders. Based on the examples provided by Baltussen et al, MCDA-based processes like 'evidence-informed deliberative processes' could be one way of achieving this laudable goal. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  13. Land Resources Allocation Strategies in an Urban Area Involving Uncertainty: A Case Study of Suzhou, in the Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Lu, Shasha; Guan, Xingliang; Zhou, Min; Wang, Yang

    2014-05-01

    A large number of mathematical models have been developed to support land resource allocation decisions and land management needs; however, few of them can address various uncertainties that exist in relation to many factors presented in such decisions (e.g., land resource availabilities, land demands, land-use patterns, and social demands, as well as ecological requirements). In this study, a multi-objective interval-stochastic land resource allocation model (MOISLAM) was developed for tackling uncertainty that presents as discrete intervals and/or probability distributions. The developed model improves upon the existing multi-objective programming and inexact optimization approaches. The MOISLAM not only considers economic factors, but also involves food security and eco-environmental constraints; it can, therefore, effectively reflect various interrelations among different aspects in a land resource management system. Moreover, the model can also help examine the reliability of satisfying (or the risk of violating) system constraints under uncertainty. In this study, the MOISLAM was applied to a real case of long-term urban land resource allocation planning in Suzhou, in the Yangtze River Delta of China. Interval solutions associated with different risk levels of constraint violation were obtained. The results are considered useful for generating a range of decision alternatives under various system conditions, and thus helping decision makers to identify a desirable land resource allocation strategy under uncertainty.

  14. Autogenerator-based modelling framework for development of strategic games simulations: rational pigs game extended.

    PubMed

    Fabac, Robert; Radošević, Danijel; Magdalenić, Ivan

    2014-01-01

    When considering strategic games from the conceptual perspective that focuses on the questions of participants' decision-making rationality, the very issues of modelling and simulation are rarely discussed. The well-known Rational Pigs matrix game has been relatively intensively analyzed in terms of reassessment of the logic of two players involved in asymmetric situations as gluttons that differ significantly by their attributes. This paper presents a successful attempt of using autogenerator for creating the framework of the game, including the predefined scenarios and corresponding payoffs. Autogenerator offers flexibility concerning the specification of game parameters, which consist of variations in the number of simultaneous players and their features and game objects and their attributes as well as some general game characteristics. In the proposed approach the model of autogenerator was upgraded so as to enable program specification updates. For the purpose of treatment of more complex strategic scenarios, we created the Rational Pigs Game Extended (RPGE), in which the introduction of a third glutton entails significant structural changes. In addition, due to the existence of particular attributes of the new player, "the tramp," one equilibrium point from the original game is destabilized which has an influence on the decision-making of rational players.

  15. Autogenerator-Based Modelling Framework for Development of Strategic Games Simulations: Rational Pigs Game Extended

    PubMed Central

    Magdalenić, Ivan

    2014-01-01

    When considering strategic games from the conceptual perspective that focuses on the questions of participants' decision-making rationality, the very issues of modelling and simulation are rarely discussed. The well-known Rational Pigs matrix game has been relatively intensively analyzed in terms of reassessment of the logic of two players involved in asymmetric situations as gluttons that differ significantly by their attributes. This paper presents a successful attempt of using autogenerator for creating the framework of the game, including the predefined scenarios and corresponding payoffs. Autogenerator offers flexibility concerning the specification of game parameters, which consist of variations in the number of simultaneous players and their features and game objects and their attributes as well as some general game characteristics. In the proposed approach the model of autogenerator was upgraded so as to enable program specification updates. For the purpose of treatment of more complex strategic scenarios, we created the Rational Pigs Game Extended (RPGE), in which the introduction of a third glutton entails significant structural changes. In addition, due to the existence of particular attributes of the new player, “the tramp,” one equilibrium point from the original game is destabilized which has an influence on the decision-making of rational players. PMID:25254228

  16. A Temporal Mining Framework for Classifying Un-Evenly Spaced Clinical Data: An Approach for Building Effective Clinical Decision-Making System.

    PubMed

    Jane, Nancy Yesudhas; Nehemiah, Khanna Harichandran; Arputharaj, Kannan

    2016-01-01

    Clinical time-series data acquired from electronic health records (EHR) are liable to temporal complexities such as irregular observations, missing values and time constrained attributes that make the knowledge discovery process challenging. This paper presents a temporal rough set induced neuro-fuzzy (TRiNF) mining framework that handles these complexities and builds an effective clinical decision-making system. TRiNF provides two functionalities namely temporal data acquisition (TDA) and temporal classification. In TDA, a time-series forecasting model is constructed by adopting an improved double exponential smoothing method. The forecasting model is used in missing value imputation and temporal pattern extraction. The relevant attributes are selected using a temporal pattern based rough set approach. In temporal classification, a classification model is built with the selected attributes using a temporal pattern induced neuro-fuzzy classifier. For experimentation, this work uses two clinical time series dataset of hepatitis and thrombosis patients. The experimental result shows that with the proposed TRiNF framework, there is a significant reduction in the error rate, thereby obtaining the classification accuracy on an average of 92.59% for hepatitis and 91.69% for thrombosis dataset. The obtained classification results prove the efficiency of the proposed framework in terms of its improved classification accuracy.

  17. EXPERIMENTING WITH MULTI-ATTRIBUTE UTILITY SURVEY METHODS IN A MULTI-DIMENSIONAL VALUATION PROBLEM. (R824699)

    EPA Science Inventory

    Abstract

    The use of willingness-to-pay (WTP) survey techniques based on multi-attribute utility (MAU) approaches has been recommended by some authors as a way to deal simultaneously with two difficulties that increasingly plague environmental valuation. The first of th...

  18. The effect of subjective awareness measures on performance in artificial grammar learning task.

    PubMed

    Ivanchei, Ivan I; Moroshkina, Nadezhda V

    2018-01-01

    Systematic research into implicit learning requires well-developed awareness-measurement techniques. Recently, trial-by-trial measures have been widely used. However, they can increase complexity of a study because they are an additional experimental variable. We tested the effects of these measures on performance in artificial grammar learning study. Four groups of participants were assigned to different awareness measures conditions: confidence ratings, post-decision wagering, decision strategy attribution or none. Decision-strategy-attribution participants demonstrated better grammar learning and longer response times compared to controls. They also exhibited a conservative bias. Grammaticality by itself was a stronger predictor of strings endorsement in decision-strategy-attribution group compared to other groups. Confidence ratings and post-decision wagering only affected the response times. These results were supported by an additional experiment that used a balanced chunk strength design. We conclude that a decision-strategy-attribution procedure may force participants to adopt an analytical decision-making strategy and rely mostly on conscious knowledge of artificial grammar. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Modeling the Bullying Prevention Program Preferences of Educators: A Discrete Choice Conjoint Experiment

    ERIC Educational Resources Information Center

    Cunningham, Charles E.; Vaillancourt, Tracy; Rimas, Heather; Deal, Ken; Cunningham, Lesley; Short, Kathy; Chen, Yvonne

    2009-01-01

    We used discrete choice conjoint analysis to model the bullying prevention program preferences of educators. Using themes from computerized decision support lab focus groups (n = 45 educators), we composed 20 three-level bullying prevention program design attributes. Each of 1,176 educators completed 25 choice tasks presenting experimentally…

  20. Two Validated Ways of Improving the Ability of Decision-Making in Emergencies; Results from a Literature Review

    PubMed Central

    Khorram-Manesh, Amir; Berlin, Johan; Carlström, Eric

    2016-01-01

    The aim of the current review wasto study the existing knowledge about decision-making and to identify and describe validated training tools.A comprehensive literature review was conducted by using the following keywords: decision-making, emergencies, disasters, crisis management, training, exercises, simulation, validated, real-time, command and control, communication, collaboration, and multi-disciplinary in combination or as an isolated word. Two validated training systems developed in Sweden, 3 level collaboration (3LC) and MacSim, were identified and studied in light of the literature review in order to identify how decision-making can be trained. The training models fulfilled six of the eight identified characteristics of training for decision-making.Based on the results, these training models contained methods suitable to train for decision-making. PMID:27878123

  1. Clarifying values: an updated review

    PubMed Central

    2013-01-01

    Background Consensus guidelines have recommended that decision aids include a process for helping patients clarify their values. We sought to examine the theoretical and empirical evidence related to the use of values clarification methods in patient decision aids. Methods Building on the International Patient Decision Aid Standards (IPDAS) Collaboration’s 2005 review of values clarification methods in decision aids, we convened a multi-disciplinary expert group to examine key definitions, decision-making process theories, and empirical evidence about the effects of values clarification methods in decision aids. To summarize the current state of theory and evidence about the role of values clarification methods in decision aids, we undertook a process of evidence review and summary. Results Values clarification methods (VCMs) are best defined as methods to help patients think about the desirability of options or attributes of options within a specific decision context, in order to identify which option he/she prefers. Several decision making process theories were identified that can inform the design of values clarification methods, but no single “best” practice for how such methods should be constructed was determined. Our evidence review found that existing VCMs were used for a variety of different decisions, rarely referenced underlying theory for their design, but generally were well described in regard to their development process. Listing the pros and cons of a decision was the most common method used. The 13 trials that compared decision support with or without VCMs reached mixed results: some found that VCMs improved some decision-making processes, while others found no effect. Conclusions Values clarification methods may improve decision-making processes and potentially more distal outcomes. However, the small number of evaluations of VCMs and, where evaluations exist, the heterogeneity in outcome measures makes it difficult to determine their overall effectiveness or the specific characteristics that increase effectiveness. PMID:24625261

  2. Model Checking with Edge-Valued Decision Diagrams

    NASA Technical Reports Server (NTRS)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster

  3. A Framework for the Cross-Sectoral Integration of Multi-Model Impact Projections: Land Use Decisions Under Climate Impacts Uncertainties

    NASA Technical Reports Server (NTRS)

    Frieler, K.; Elliott, Joshua; Levermann, A.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Doll, P.; hide

    2015-01-01

    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impactmodel setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making

  4. Moving towards ecosystem-based fisheries management: Options for parameterizing multi-species biological reference points

    NASA Astrophysics Data System (ADS)

    Moffitt, Elizabeth A.; Punt, André E.; Holsman, Kirstin; Aydin, Kerim Y.; Ianelli, James N.; Ortiz, Ivonne

    2016-12-01

    Multi-species models can improve our understanding of the effects of fishing so that it is possible to make informed and transparent decisions regarding fishery impacts. Broad application of multi-species assessment models to support ecosystem-based fisheries management (EBFM) requires the development and testing of multi-species biological reference points (MBRPs) for use in harvest-control rules. We outline and contrast several possible MBRPs that range from those that can be readily used in current frameworks to those belonging to a broader EBFM context. We demonstrate each of the possible MBRPs using a simple two species model, motivated by walleye pollock (Gadus chalcogrammus) and Pacific cod (Gadus macrocephalus) in the eastern Bering Sea, to illustrate differences among methods. The MBRPs we outline each differ in how they approach the multiple, potentially conflicting management objectives and trade-offs of EBFM. These options for MBRPs allow multi-species models to be readily adapted for EBFM across a diversity of management mandates and approaches.

  5. Critical care nurses' decision making: sedation assessment and management in intensive care.

    PubMed

    Aitken, Leanne M; Marshall, Andrea P; Elliott, Rosalind; McKinley, Sharon

    2009-01-01

    This study was designed to examine the decision making processes that nurses use when assessing and managing sedation for a critically ill patient, specifically the attributes and concepts used to determine sedation needs and the influence of a sedation guideline on the decision making processes. Sedation management forms an integral component of the care of critical care patients. Despite this, there is little understanding of how nurses make decisions regarding assessment and management of intensive care patients' sedation requirements. Appropriate nursing assessment and management of sedation therapy is essential to quality patient care. Observational study. Nurses providing sedation management for a critically ill patient were observed and asked to think aloud during two separate occasions for two hours of care. Follow-up interviews were conducted to collect data from five expert critical care nurses pre- and postimplementation of a sedation guideline. Data from all sources were integrated, with data analysis identifying the type and number of attributes and concepts used to form decisions. Attributes and concepts most frequently used related to sedation and sedatives, anxiety and agitation, pain and comfort and neurological status. On average each participant raised 48 attributes related to sedation assessment and management in the preintervention phase and 57 attributes postintervention. These attributes related to assessment (pre, 58%; post, 65%), physiology (pre, 10%; post, 9%) and treatment (pre, 31%; post, 26%) aspects of care. Decision making in this setting is highly complex, incorporating a wide range of attributes that concentrate primarily on assessment aspects of care. Clinical guidelines should provide support for strategies known to positively influence practice. Further, the education of nurses to use such guidelines optimally must take into account the highly complex iterative process and wide range of data sources used to make decisions.

  6. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review

    NASA Astrophysics Data System (ADS)

    Uhde, Britta; Andreas Hahn, W.; Griess, Verena C.; Knoke, Thomas

    2015-08-01

    Multi-criteria decision analysis (MCDA) is a decision aid frequently used in the field of forest management planning. It includes the evaluation of multiple criteria such as the production of timber and non-timber forest products and tangible as well as intangible values of ecosystem services (ES). Hence, it is beneficial compared to those methods that take a purely financial perspective. Accordingly, MCDA methods are increasingly popular in the wide field of sustainability assessment. Hybrid approaches allow aggregating MCDA and, potentially, other decision-making techniques to make use of their individual benefits and leading to a more holistic view of the actual consequences that come with certain decisions. This review is providing a comprehensive overview of hybrid approaches that are used in forest management planning. Today, the scientific world is facing increasing challenges regarding the evaluation of ES and the trade-offs between them, for example between provisioning and regulating services. As the preferences of multiple stakeholders are essential to improve the decision process in multi-purpose forestry, participatory and hybrid approaches turn out to be of particular importance. Accordingly, hybrid methods show great potential for becoming most relevant in future decision making. Based on the review presented here, the development of models for the use in planning processes should focus on participatory modeling and the consideration of uncertainty regarding available information.

  7. Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review.

    PubMed

    Uhde, Britta; Hahn, W Andreas; Griess, Verena C; Knoke, Thomas

    2015-08-01

    Multi-criteria decision analysis (MCDA) is a decision aid frequently used in the field of forest management planning. It includes the evaluation of multiple criteria such as the production of timber and non-timber forest products and tangible as well as intangible values of ecosystem services (ES). Hence, it is beneficial compared to those methods that take a purely financial perspective. Accordingly, MCDA methods are increasingly popular in the wide field of sustainability assessment. Hybrid approaches allow aggregating MCDA and, potentially, other decision-making techniques to make use of their individual benefits and leading to a more holistic view of the actual consequences that come with certain decisions. This review is providing a comprehensive overview of hybrid approaches that are used in forest management planning. Today, the scientific world is facing increasing challenges regarding the evaluation of ES and the trade-offs between them, for example between provisioning and regulating services. As the preferences of multiple stakeholders are essential to improve the decision process in multi-purpose forestry, participatory and hybrid approaches turn out to be of particular importance. Accordingly, hybrid methods show great potential for becoming most relevant in future decision making. Based on the review presented here, the development of models for the use in planning processes should focus on participatory modeling and the consideration of uncertainty regarding available information.

  8. Ventromedial Frontal Lobe Damage Alters how Specific Attributes are Weighed in Subjective Valuation.

    PubMed

    Vaidya, Avinash R; Sefranek, Marcus; Fellows, Lesley K

    2017-10-23

    The concept of subjective value is central to current neurobiological views of economic decision-making. Much of this work has focused on signals in the ventromedial frontal lobe (VMF) that correlate with the subjective value of a variety of stimuli (e.g., food, monetary gambles), and are thought to support decision-making. However, the neural processes involved in assessing and integrating value information from the attributes of such complex options remain to be defined. Here, we tested the necessary role of VMF in weighting attributes of naturalistic stimuli during value judgments. We asked how distinct attributes of visual artworks influenced the subjective value ratings of subjects with VMF damage, compared to healthy participants and a frontal lobe damaged control group. Subjects with VMF damage were less influenced by the energy (emotion, complexity) and color radiance (warmth, saturation) of the artwork, while they were similar to control groups in considering saliency, balance and concreteness. These dissociations argue that VMF is critical for allowing certain affective content to influence subjective value, while sparing the influence of perceptual or representational information. These distinctions are important for better defining the often-underspecified concept of subjective value and developing more detailed models of the brain mechanisms underlying decision behavior. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model

    PubMed Central

    Bitzer, Sebastian; Park, Hame; Blankenburg, Felix; Kiebel, Stefan J.

    2014-01-01

    Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses. PMID:24616689

  10. Combined Economic and Hydrologic Modeling to Support Collaborative Decision Making Processes

    NASA Astrophysics Data System (ADS)

    Sheer, D. P.

    2008-12-01

    For more than a decade, the core concept of the author's efforts in support of collaborative decision making has been a combination of hydrologic simulation and multi-objective optimization. The modeling has generally been used to support collaborative decision making processes. The OASIS model developed by HydroLogics Inc. solves a multi-objective optimization at each time step using a mixed integer linear program (MILP). The MILP can be configured to include any user defined objective, including but not limited too economic objectives. For example, an estimated marginal value for water for crops and M&I use were included in the objective function to drive trades in a model of the lower Rio Grande. The formulation of the MILP, constraints and objectives, in any time step is conditional: it changes based on the value of state variables and dynamic external forcing functions, such as rainfall, hydrology, market prices, arrival of migratory fish, water temperature, etc. It therefore acts as a dynamic short term multi-objective economic optimization for each time step. MILP is capable of solving a general problem that includes a very realistic representation of the physical system characteristics in addition to the normal multi-objective optimization objectives and constraints included in economic models. In all of these models, the short term objective function is a surrogate for achieving long term multi-objective results. The long term performance for any alternative (especially including operating strategies) is evaluated by simulation. An operating rule is the combination of conditions, parameters, constraints and objectives used to determine the formulation of the short term optimization in each time step. Heuristic wrappers for the simulation program have been developed improve the parameters of an operating rule, and are initiating research on a wrapper that will allow us to employ a genetic algorithm to improve the form of the rule (conditions, constraints, and short term objectives) as well. In the models operating rules represent different models of human behavior, and the objective of the modeling is to find rules for human behavior that perform well in terms of long term human objectives. The conceptual model used to represent human behavior incorporates economic multi-objective optimization for surrogate objectives, and rules that set those objectives based on current conditions and accounting for uncertainty, at least implicitly. The author asserts that real world operating rules follow this form and have evolved because they have been perceived as successful in the past. Thus, the modeling efforts focus on human behavior in much the same way that economic models focus on human behavior. This paper illustrates the above concepts with real world examples.

  11. Improving IT Portfolio Management Decision Confidence Using Multi-Criteria Decision Making and Hypervariate Display Techniques

    ERIC Educational Resources Information Center

    Landmesser, John Andrew

    2014-01-01

    Information technology (IT) investment decision makers are required to process large volumes of complex data. An existing body of knowledge relevant to IT portfolio management (PfM), decision analysis, visual comprehension of large volumes of information, and IT investment decision making suggest Multi-Criteria Decision Making (MCDM) and…

  12. Weighing Clinical Evidence Using Patient Preferences: An Application of Probabilistic Multi-Criteria Decision Analysis.

    PubMed

    Broekhuizen, Henk; IJzerman, Maarten J; Hauber, A Brett; Groothuis-Oudshoorn, Catharina G M

    2017-03-01

    The need for patient engagement has been recognized by regulatory agencies, but there is no consensus about how to operationalize this. One approach is the formal elicitation and use of patient preferences for weighing clinical outcomes. The aim of this study was to demonstrate how patient preferences can be used to weigh clinical outcomes when both preferences and clinical outcomes are uncertain by applying a probabilistic value-based multi-criteria decision analysis (MCDA) method. Probability distributions were used to model random variation and parameter uncertainty in preferences, and parameter uncertainty in clinical outcomes. The posterior value distributions and rank probabilities for each treatment were obtained using Monte-Carlo simulations. The probability of achieving the first rank is the probability that a treatment represents the highest value to patients. We illustrated our methodology for a simplified case on six HIV treatments. Preferences were modeled with normal distributions and clinical outcomes were modeled with beta distributions. The treatment value distributions showed the rank order of treatments according to patients and illustrate the remaining decision uncertainty. This study demonstrated how patient preference data can be used to weigh clinical evidence using MCDA. The model takes into account uncertainty in preferences and clinical outcomes. The model can support decision makers during the aggregation step of the MCDA process and provides a first step toward preference-based personalized medicine, yet requires further testing regarding its appropriate use in real-world settings.

  13. Placement decisions and disparities among aboriginal groups: an application of the decision making ecology through multi-level analysis.

    PubMed

    Fluke, John D; Chabot, Martin; Fallon, Barbara; MacLaurin, Bruce; Blackstock, Cindy

    2010-01-01

    This paper examined the relative influence of clinical and organizational characteristics on the decision to place a child in out-of-home care at the conclusion of a child maltreatment investigation. It tested the hypothesis that extraneous factors, specifically, organizational characteristics, impact the decision to place a child in out-of-home care. A secondary aim was to identify possible decision making influences related to disparities in placement decisions tied to Aboriginal children. Research suggests that the Aboriginal status of the child and structural risk factors affecting the family, such as poverty and poor housing, substantially account for this overrepresentation. The decision to place a child in out-of-home care was examined using data from the Canadian Incidence Study of Reported Child Abuse and Neglect. This child welfare dataset collected information about the results of nearly 5,000 child maltreatment investigations as well as a description of the characteristics of the workers and organization responsible for conducting those investigations. Multi-level statistical models were developed using MPlus software, which can accommodate dichotomous outcome variables, which are more reflective of decision making in child welfare. MPlus allows the specific case of the logistic link function for binary outcome variables under maximum likelihood estimation. Final models revealed the importance of the number of Aboriginal reports to an organization as a key second level predictor of the placement decision. It is the only second level factor that remains in the final model. This finding was very stable when tested over several different levels of proportionate caseload representation ranging from greater than 50% to 20% of the caseload. Disparities among Aboriginal children in child welfare decision making were identified at the agency level. The study provides additional evidence supporting the possibility that one source of overrepresentation of Aboriginal children in the Canadian foster care system is a lack of appropriate resources at the agency or community level. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. A multi-criteria decision making approach to identify a vaccine formulation.

    PubMed

    Dewé, Walthère; Durand, Christelle; Marion, Sandie; Oostvogels, Lidia; Devaster, Jeanne-Marie; Fourneau, Marc

    2016-01-01

    This article illustrates the use of a multi-criteria decision making approach, based on desirability functions, to identify an appropriate adjuvant composition for an influenza vaccine to be used in elderly. The proposed adjuvant system contained two main elements: monophosphoryl lipid and α-tocopherol with squalene in an oil/water emulsion. The objective was to elicit a stronger immune response while maintaining an acceptable reactogenicity and safety profile. The study design, the statistical models, the choice of the desirability functions, the computation of the overall desirability index, and the assessment of the robustness of the ranking are all detailed in this manuscript.

  15. Family involvement in medical decision-making: Perceptions of nursing and psychology students.

    PubMed

    Itzhaki, Michal; Hildesheimer, Galya; Barnoy, Sivia; Katz, Michael

    2016-05-01

    Family members often rely on health care professionals to guide and support them through the decision-making process. Although family involvement in medical decisions should be included in the preservice curriculum for the health care professions, perceptions of students in caring professions on family involvement in medical decision-making have not yet been examined. To examine the perceptions of nursing and psychology students on family involvement in medical decision-making for seriously ill patients. A descriptive cross-sectional design was used. First year undergraduate nursing and psychology students studying for their Bachelor of Arts degree were recruited. Perceptions were assessed with a questionnaire constructed based on the Multi-Attribute Utility Theory (MAUT), which examines decision-maker preferences. The questionnaire consisted of two parts referring to the respondent once as the patient and then as the family caregiver. Questionnaires were completed by 116 nursing students and 156 psychology students. Most were of the opinion that family involvement in decision-making is appropriate, especially when the patient is incapable of making decisions. Nursing students were more inclined than psychology students to think that financial, emotional, and value-based considerations should be part of the family's involvement in decision-making. Both groups of students perceived the emotional consideration as most acceptable, whereas the financial consideration was considered the least acceptable. Nursing and psychology students perceive family involvement in medical decision-making as appropriate. In order to train students to support families in the process of decision-making, further research should examine Shared Decision-Making (SDM) programs, which involve patient and clinician collaboration in health care decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A multiobjective modeling approach to locate multi-compartment containers for urban-sorted waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tralhao, Lino, E-mail: lmlrt@inescc.p; Coutinho-Rodrigues, Joao, E-mail: coutinho@dec.uc.p; Alcada-Almeida, Luis, E-mail: alcada@inescc.p

    2010-12-15

    The location of multi-compartment sorted waste containers for recycling purposes in cities is an important problem in the context of urban waste management. The costs associated with those facilities and the impacts placed on populations are important concerns. This paper introduces a mixed-integer, multiobjective programming approach to identify the locations and capacities of such facilities. The approach incorporates an optimization model in a Geographical Information System (GIS)-based interactive decision support system that includes four objectives. The first objective minimizes the total investment cost; the second one minimizes the average distance from dwellings to the respective multi-compartment container; the last twomore » objectives address the 'pull' and 'push' characteristics of the decision problem, one by minimizing the number of individuals too close to any container, and the other by minimizing the number of dwellings too far from the respective multi-compartment container. The model determines the number of facilities to be opened, the respective container capacities, their locations, their respective shares of the total waste of each type to be collected, and the dwellings assigned to each facility. The approach proposed was tested with a case study for the historical center of Coimbra city, Portugal, where a large urban renovation project, addressing about 800 buildings, is being undertaken. This paper demonstrates that the models and techniques incorporated in the interactive decision support system (IDSS) can be used to assist a decision maker (DM) in analyzing this complex problem in a realistically sized urban application. Ten solutions consisting of different combinations of underground containers for the disposal of four types of sorted waste in 12 candidate sites, were generated. These solutions and tradeoffs among the objectives are presented to the DM via tables, graphs, color-coded maps and other graphics. The DM can then use this information to 'guide' the IDSS in identifying additional solutions of potential interest. Nevertheless, this research showed that a particular solution with a better objective balance can be identified. The actual sequence of additional solutions generated will depend upon the objectives and preferences of the DM in a specific application.« less

  17. A Conditional Curie-Weiss Model for Stylized Multi-group Binary Choice with Social Interaction

    NASA Astrophysics Data System (ADS)

    Opoku, Alex Akwasi; Edusei, Kwame Owusu; Ansah, Richard Kwame

    2018-04-01

    This paper proposes a conditional Curie-Weiss model as a model for decision making in a stylized society made up of binary decision makers that face a particular dichotomous choice between two options. Following Brock and Durlauf (Discrete choice with social interaction I: theory, 1955), we set-up both socio-economic and statistical mechanical models for the choice problem. We point out when both the socio-economic and statistical mechanical models give rise to the same self-consistent equilibrium mean choice level(s). Phase diagram of the associated statistical mechanical model and its socio-economic implications are discussed.

  18. Preferences of processing companies for attributes of Swiss milk: a conjoint analysis in a business-to-business market.

    PubMed

    Boesch, I

    2013-04-01

    This study aimed to determine key attributes of milk that drive a processor's supply decisions and possibilities for differentiation based on these product attributes. Feedback-driven exploration was applied to derive product attributes relevant to the buying decision. Conjoint analysis with hierarchical Bayes estimation methods was used to determine the relative importance of attributes. Results show that the technical aspects of milk, as well as the price and country of origin, dominate the buying decision. Potential for differentiation was found for environmental and societal attributes as well as freedom from genetically modified products. Product and supplier criteria also provide the potential to segment the market if the price premium is held within limits. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Microsimulation of household and firm behaviors: anticipation of greenhouse gas emissions for Austin, Texas.

    DOT National Transportation Integrated Search

    2009-05-01

    Anthropogenic greenhouse gas (GHG) emissions can be attributed to household and firm travel and : building decisions. This study demonstrates the development and application of a microsimulation model : for household and firm evolution and location c...

  20. An Evidence Framework for Off-Patent Pharmaceutical Review (EFOR) for Health Technology Assessment in Emerging Markets.

    PubMed

    Brixner, Diana; Kaló, Zoltán; Maniadakis, Nikos; Kim, Kyoo; Wijaya, Kalman

    2018-03-29

    This article introduces an Evidence Framework for Off-Patent Pharmaceutical Review (EFOR), which establishes value-based criteria in a template that manufacturers use to provide evidence showing how their products meet those criteria. Health authorities in emerging markets can then use the evidence presented in the EFOR to evaluate off-patent pharmaceuticals (OPPs) in a consistent, transparent, and evidence-based manner to support policy decisions, including pricing, reimbursement, formulary listing, and drug procurement. A literature search found no multi-criteria evidence framework for evaluating OPPs in emerging markets. An International Outcomes Research Board (IORB) of academia and industry experts conducted extensive research, meetings, and workshops to define high-priority criteria to incorporate into an evidence-based health technology assessment (HTA) tool using the multi-criteria decision analysis (MCDA) technique. The resulting framework was further tailored for country-specific needs in workshops in three emerging countries (Kazakhstan, Vietnam, and Indonesia). The IORB defined nine criteria four categories (Product, Manufacturing, Service, and Value Assessment), which OPP manufacturers can use to provide evidence for reimbursement and health policy decision making. Then the IORB developed the EFOR as a base case document, which can be adapted and used as a template by health authorities in emerging countries. Emerging countries have a significant need for an HTA tool that balances affordability with accurate evidence showing the value differentiation of OPPs. The value attributes in this setting often are different from those in developed markets, which emphasize new products and have high regulation and manufacturing standards. The EFOR is an easy-to-use, adaptable framework that emerging countries can use to increase the consistency, transparency, and effectiveness of drug decision making. The open source EFOR is available as Supplemental Materials. Copyright © 2018. Published by Elsevier Inc.

Top