Science.gov

Sample records for multi-attribute decision model

  1. Supporting Nurses’ Decisions with a Multi-Attribute Model for Patient Health Evaluation

    PubMed Central

    Rajkovič, Uroš; Dinevski, Dejan; Šušteršič, Olga; Prijatelj, Vesna; Rajkovič, Vladislav

    2012-01-01

    Nurses are required to make many important decisions, for instance on determining the level of the nursing problem, setting nursing diagnoses and interventions. The model presented in this paper is a tool for better and easier decision making is such situations. Multi-attribute modeling of patients’ basic living activities is used for evaluation and explanation of their health status. It offers also visualization and quantification of the data which facilitate decision making in the framework of the process work method. The model can be viewed as an active check-list as it helps us reduce the possibility of “overlooking the queen on the chess board”. The model was critically evaluated in practice. PMID:24199115

  2. A multi-attribute-utility-theory model that minimizes interview-data requirements: A consolidation of space launch decisions

    NASA Astrophysics Data System (ADS)

    Staats, Raymond W.

    1994-12-01

    This research uses multi-attribute utility theory (MAUT) to define a mathematical representation of a decision maker's utility associated with a satellite system. While developing the survey instrument, we focused on making it simpler to administer, primarily by eliminating the use of lottery questions. These simplifications enabled us to shorten our interview with the decision maker to under two hours for a rather complex model. The MAUT model gives National Air Intelligence Center (NAIC) analysts the ability to rank order satellite systems using the common measurement scale of 'utiles.' This tool allows a meaningful comparison of vastly different satellites. Properly prioritized launch of space assets will be key to maintaining our capabilities in the long term. The ordering methodology of this model was extended to a multi-criterion optimization (MCO) problem to demonstrate its potential use in prioritizing and scheduling limited launch resources. The results of these two case studies and the MCO application are combined to develop some characterizations of a theoretical group utility function. Most complex decisions are made by groups rather than by an individual. This research concludes with some insights on the impact of an individual's preferences on a decision that is ultimately made by the group.

  3. Detecting Hotspot Information Using Multi-Attribute Based Topic Model.

    PubMed

    Wang, Jing; Li, Li; Tan, Feng; Zhu, Ying; Feng, Weisi

    2015-01-01

    Microblogging as a kind of social network has become more and more important in our daily lives. Enormous amounts of information are produced and shared on a daily basis. Detecting hot topics in the mountains of information can help people get to the essential information more quickly. However, due to short and sparse features, a large number of meaningless tweets and other characteristics of microblogs, traditional topic detection methods are often ineffective in detecting hot topics. In this paper, we propose a new topic model named multi-attribute latent dirichlet allocation (MA-LDA), in which the time and hashtag attributes of microblogs are incorporated into LDA model. By introducing time attribute, MA-LDA model can decide whether a word should appear in hot topics or not. Meanwhile, compared with the traditional LDA model, applying hashtag attribute in MA-LDA model gives the core words an artificially high ranking in results meaning the expressiveness of outcomes can be improved. Empirical evaluations on real data sets demonstrate that our method is able to detect hot topics more accurately and efficiently compared with several baselines. Our method provides strong evidence of the importance of the temporal factor in extracting hot topics.

  4. Detecting Hotspot Information Using Multi-Attribute Based Topic Model.

    PubMed

    Wang, Jing; Li, Li; Tan, Feng; Zhu, Ying; Feng, Weisi

    2015-01-01

    Microblogging as a kind of social network has become more and more important in our daily lives. Enormous amounts of information are produced and shared on a daily basis. Detecting hot topics in the mountains of information can help people get to the essential information more quickly. However, due to short and sparse features, a large number of meaningless tweets and other characteristics of microblogs, traditional topic detection methods are often ineffective in detecting hot topics. In this paper, we propose a new topic model named multi-attribute latent dirichlet allocation (MA-LDA), in which the time and hashtag attributes of microblogs are incorporated into LDA model. By introducing time attribute, MA-LDA model can decide whether a word should appear in hot topics or not. Meanwhile, compared with the traditional LDA model, applying hashtag attribute in MA-LDA model gives the core words an artificially high ranking in results meaning the expressiveness of outcomes can be improved. Empirical evaluations on real data sets demonstrate that our method is able to detect hot topics more accurately and efficiently compared with several baselines. Our method provides strong evidence of the importance of the temporal factor in extracting hot topics. PMID:26496635

  5. Detecting Hotspot Information Using Multi-Attribute Based Topic Model

    PubMed Central

    Wang, Jing; Li, Li; Tan, Feng; Zhu, Ying; Feng, Weisi

    2015-01-01

    Microblogging as a kind of social network has become more and more important in our daily lives. Enormous amounts of information are produced and shared on a daily basis. Detecting hot topics in the mountains of information can help people get to the essential information more quickly. However, due to short and sparse features, a large number of meaningless tweets and other characteristics of microblogs, traditional topic detection methods are often ineffective in detecting hot topics. In this paper, we propose a new topic model named multi-attribute latent dirichlet allocation (MA-LDA), in which the time and hashtag attributes of microblogs are incorporated into LDA model. By introducing time attribute, MA-LDA model can decide whether a word should appear in hot topics or not. Meanwhile, compared with the traditional LDA model, applying hashtag attribute in MA-LDA model gives the core words an artificially high ranking in results meaning the expressiveness of outcomes can be improved. Empirical evaluations on real data sets demonstrate that our method is able to detect hot topics more accurately and efficiently compared with several baselines. Our method provides strong evidence of the importance of the temporal factor in extracting hot topics. PMID:26496635

  6. Green Cutting Fluid Selection using Multi-attribute Decision Making Approach

    NASA Astrophysics Data System (ADS)

    Jagadish; Ray, A.

    2015-01-01

    Optimal cutting fluid selection for Green Manufacturing (GM) alleviates environmental burdens. In the traditional manufacturing system, the selection of cutting fluid is based on economic and technical factors. But the environmental factors play a vital role in green manufacturing process. Therefore, the selection of green cutting fluid depends on various attributes and it is a multi-attribute decision making process. In this work, a combined method of Analytical Hierarchical Process (AHP) with multi objective optimization on the basis of ratio analysis has been developed for optimum selection of cutting fluid for green manufacturing that minimizes the environmental impact, cost and maximizes the quality. AHP method has been used to extract the precise value of each of the criterion which influences the assessment values for finding the optimal cutting fluid in this work. A case study of cutting fluid selection in the gear hobbing process has been presented to validate the proposed model. The research result shows that, Syntilo 9930c is the optimal cutting fluid.

  7. Effects on Decision Quality of Supporting Multi-attribute Evaluation in Groups

    PubMed

    Timmermans; Vlek

    1996-11-01

    In this study the effectiveness of multi-attribute utility (MAU) decision support in groups is evaluated for personnel selection problems differing in complexity. Subjects were asked to make an initial individual decision with or without MAU decision support. Next individuals formed small groups and were asked to reach a decision about the same problem. Groups received either MAU support or no support. Results show that for relatively simple problems the most effective method is to provide subjects with both individual and group decision support. Here, decision support had a clear impact on subjects' preferences and the level of agreement between group members. In addition, satisfaction with the decision and the decision procedure was relatively high. Overall, decision support improved communication; subjects reported to find the problem easier, to have more influence on the group decision, and to find it easier to express their opinions. For more complex problems, however, decision making without group support (whether preceded by individual support or not) was evaluated most favorably. Individual decision support in this condition was sometimes better than no support; i.e., there was a lower reported problem difficulty, a higher satisfaction with the group decision, and a higher reported influence on the group decision. The effectiveness of group MAU decision support for complex problems was evaluated less favorably.

  8. Quantifying ecosystem quality by modeling multi-attribute expert opinion.

    PubMed

    Sinclair, Steve J; Griffioen, Peter; Duncan, David H; Millett-Riley, Jessica E; Whitei, Matthew D

    2015-09-01

    The evaluation of ecosystem quality is inherently subjective, requiring decisions about which variables to notice or measure, and how these variables are integrated into a coherent evaluation. Despite the central role of human judgment, few evaluation methods address the subjectivity that is inherent in their design. There are, however, advantages to directly using opinion to create an expert system where the metric is constructed around opinion data. These advantages include stakeholder inclusion and the encouragement of a dialogue of data-driven criticism rather than subjective counter-opinion. We create an expert system to express the quality of a grassland ecosystem in Australia. We use an ensemble of bagged regression trees trained on calibrated expert preference data, to model the perceived quality of this grassland using a set of eight site variables as inputs. The model provides useful predictions of grassland quality, producing predictions similar to real expert evaluations of independent synthetic test sites not used to train the model. We apply the model to real grassland sites ranging from pristine to highly degraded, and confirm that our model orders the sites according to their degree of modification. We demonstrate that the use of too few experts produces relatively poor results, and show that for our problem the use of data from over twenty experts is appropriate. The scaling approach we used to calibrate between-expert data is shown to be an appropriate mechanism for aggregating the opinions of multiple experts. The resultant model will be useful in many contexts, and can be used by managers as a tool to evaluate real sites. It can also be integrated into ecological models of change as a means of evaluating predicted changes, for example, as a measure of utility when combined with cost estimates. The basic approach demonstrated here is applicable to any ecosystem, and we discuss the opportunities and limitations of its wider use.

  9. Perceptual grouping does not affect multi-attribute decision making if no processing costs are involved.

    PubMed

    Ettlin, Florence; Bröder, Arndt

    2015-05-01

    Adaptive strategy selection implies that a decision strategy is chosen based on its fit to the task and situation. However, other aspects, such as the way information is presented, can determine information search behavior; especially when the application of certain strategies over others is facilitated. But are such display effects on multi-attribute decisions also at work when the manipulation does not entail differential costs for different decision strategies? Three Mouselab experiments with hidden information and one eye tracking experiment with an open information board revealed that decision behavior is unaffected by purely perceptual manipulations of the display based on Gestalt principles; that is, based on manipulations that induce no noteworthy processing costs for different information search patterns. We discuss our results in the context of previous findings on display effects; specifically, how the combination of these findings and our results reveal the crucial role of differential processing costs for different strategies for the emergence of display effects. This finding describes a boundary condition of the commonly acknowledged influence of information displays and is in line with the ideas of adaptive strategy selection and cost-benefit tradeoffs.

  10. Decision Support for Personalized Cloud Service Selection through Multi-Attribute Trustworthiness Evaluation

    PubMed Central

    Ding, Shuai; Xia, Chen-Yi; Zhou, Kai-Le; Yang, Shan-Lin; Shang, Jennifer S.

    2014-01-01

    Facing a customer market with rising demands for cloud service dependability and security, trustworthiness evaluation techniques are becoming essential to cloud service selection. But these methods are out of the reach to most customers as they require considerable expertise. Additionally, since the cloud service evaluation is often a costly and time-consuming process, it is not practical to measure trustworthy attributes of all candidates for each customer. Many existing models cannot easily deal with cloud services which have very few historical records. In this paper, we propose a novel service selection approach in which the missing value prediction and the multi-attribute trustworthiness evaluation are commonly taken into account. By simply collecting limited historical records, the current approach is able to support the personalized trustworthy service selection. The experimental results also show that our approach performs much better than other competing ones with respect to the customer preference and expectation in trustworthiness assessment. PMID:24972237

  11. A Generalized Measurement Model to Quantify Health: The Multi-Attribute Preference Response Model

    PubMed Central

    Krabbe, Paul F. M.

    2013-01-01

    After 40 years of deriving metric values for health status or health-related quality of life, the effective quantification of subjective health outcomes is still a challenge. Here, two of the best measurement tools, the discrete choice and the Rasch model, are combined to create a new model for deriving health values. First, existing techniques to value health states are briefly discussed followed by a reflection on the recent revival of interest in patients’ experience with regard to their possible role in health measurement. Subsequently, three basic principles for valid health measurement are reviewed, namely unidimensionality, interval level, and invariance. In the main section, the basic operation of measurement is then discussed in the framework of probabilistic discrete choice analysis (random utility model) and the psychometric Rasch model. It is then shown how combining the main features of these two models yields an integrated measurement model, called the multi-attribute preference response (MAPR) model, which is introduced here. This new model transforms subjective individual rank data into a metric scale using responses from patients who have experienced certain health states. Its measurement mechanism largely prevents biases such as adaptation and coping. Several extensions of the MAPR model are presented. The MAPR model can be applied to a wide range of research problems. If extended with the self-selection of relevant health domains for the individual patient, this model will be more valid than existing valuation techniques. PMID:24278141

  12. A multi-attribute decision analysis for decommissioning offshore oil and gas platforms.

    PubMed

    Henrion, Max; Bernstein, Brock; Swamy, Surya

    2015-10-01

    The 27 oil and gas platforms off the coast of southern California are reaching the end of their economic lives. Because their decommissioning involves large costs and potential environmental impacts, this became an issue of public controversy. As part of a larger policy analysis conducted for the State of California, we implemented a decision analysis as a software tool (PLATFORM) to clarify and evaluate decision strategies against a comprehensive set of objectives. Key options selected for in-depth analysis are complete platform removal and partial removal to 85 feet below the water line, with the remaining structure converted in place to an artificial reef to preserve the rich ecosystems supported by the platform's support structure. PLATFORM was instrumental in structuring and performing key analyses of the impacts of each option (e.g., on costs, fishery production, air emissions) and dramatically improved the team's productivity. Sensitivity analysis found that disagreement about preferences, especially about the relative importance of strict compliance with lease agreements, has much greater effects on the preferred option than does uncertainty about specific outcomes, such as decommissioning costs. It found a near-consensus of stakeholders in support of partial removal and "rigs-to-reefs" program. The project's results played a role in the decision to pass legislation enabling an expanded California "rigs-to-reefs" program that includes a mechanism for sharing cost savings between operators and the state. PMID:26415010

  13. Propulsion Airframe Aeroacoustics Technology Evaluation and Selection Using a Multi-Attribute Decision Making Process and Non-Deterministic Design

    NASA Technical Reports Server (NTRS)

    Burg, Cecile M.; Hill, Geoffrey A.; Brown, Sherilyn A.; Geiselhart, Karl A.

    2004-01-01

    The Systems Analysis Branch at NASA Langley Research Center has investigated revolutionary Propulsion Airframe Aeroacoustics (PAA) technologies and configurations for a Blended-Wing-Body (BWB) type aircraft as part of its research for NASA s Quiet Aircraft Technology (QAT) Project. Within the context of the long-term NASA goal of reducing the perceived aircraft noise level by a factor of 4 relative to 1997 state of the art, major configuration changes in the propulsion airframe integration system were explored with noise as a primary design consideration. An initial down-select and assessment of candidate PAA technologies for the BWB was performed using a Multi-Attribute Decision Making (MADM) process consisting of organized brainstorming and decision-making tools. The assessments focused on what effect the PAA technologies had on both the overall noise level of the BWB and what effect they had on other major design considerations such as weight, performance and cost. A probabilistic systems analysis of the PAA configurations that presented the best noise reductions with the least negative impact on the system was then performed. Detailed results from the MADM study and the probabilistic systems analysis will be published in the near future.

  14. Multi-attribute mate choice decisions and uncertainty in the decision process: a generalized sequential search strategy.

    PubMed

    Wiegmann, Daniel D; Weinersmith, Kelly L; Seubert, Steven M

    2010-04-01

    The behavior of females in search of a mate determines the likelihood that high quality males are encountered and adaptive search strategies rely on the effective use of available information on the quality of prospective mates. The sequential search strategy was formulated, like most models of search behavior, on the assumption that females obtain perfect information on the quality of encountered males. In this paper, we modify the strategy to allow for uncertainty of male quality and we determine how the magnitude of this uncertainty and the ability of females to inspect multiple male attributes to reduce uncertainty influence mate choice decisions. In general, searchers are sensitive to search costs and higher costs lower acceptance criteria under all versions of the model. The choosiness of searchers increases with the variability of the quality of prospective mates under conditions of the original model, but under conditions of uncertainty the choosiness of searchers may increase or decrease with the variability of inspected male attributes. The behavioral response depends on the functional relationship between observed male attributes and the fitness return to searchers and on costs associated with the search process. Higher uncertainty often induces searchers to pay more for information and under conditions of uncertainty the fitness return to searchers is never higher than under conditions of the original model. Further studies of the performance of alternative search strategies under conditions of uncertainty may consequently be necessary to identify search strategies likely to be used under natural conditions.

  15. A hierarchical Bayesian modeling approach to searching and stopping in multi-attribute judgment.

    PubMed

    van Ravenzwaaij, Don; Moore, Chris P; Lee, Michael D; Newell, Ben R

    2014-01-01

    In most decision-making situations, there is a plethora of information potentially available to people. Deciding what information to gather and what to ignore is no small feat. How do decision makers determine in what sequence to collect information and when to stop? In two experiments, we administered a version of the German cities task developed by Gigerenzer and Goldstein (1996), in which participants had to decide which of two cities had the larger population. Decision makers were not provided with the names of the cities, but they were able to collect different kinds of cues for both response alternatives (e.g., "Does this city have a university?") before making a decision. Our experiments differed in whether participants were free to determine the number of cues they examined. We demonstrate that a novel model, using hierarchical latent mixtures and Bayesian inference (Lee & Newell, ) provides a more complete description of the data from both experiments than simple conventional strategies, such as the take-the-best or the Weighted Additive heuristics. PMID:24646326

  16. A multi-attribute utility decision analysis for treatment alternatives for the DOE/SR aluminum-based spent nuclear fuel

    SciTech Connect

    DAVIS,FREDDIE J.; WEINER,RUTH FLEISCHMAN; WHEELER,TIMOTHY A.; SORENSON,KEN B.; KUZIO,KENNETH A.

    2000-05-24

    A multi-attribute utility analysis is applied to a decision process to select a treatment method for the management of aluminum-based spent nuclear fuel (Al-SNF) owned by the US Department of Energy (DOE). DOE will receive, treat, and temporarily store Al-SNF, most of which is composed of highly enriched uranium, at its Savannah River Site in South Carolina. DOE intends ultimately to send the treated Al-SNF to a geologic repository for permanent disposal. DOE initially considered ten treatment alternatives for the management of Al-SNF, and has narrowed the choice to two of these: the direct disposal and melt and dilute alternatives. The decision analysis presented in this document focuses on a formal decision process used to evaluate these two remaining alternatives.

  17. Assessment of distance-based multi-attribute group decision-making methods from a maintenance strategy perspective

    NASA Astrophysics Data System (ADS)

    Ding, Siew-Hong; Kamaruddin, Shahrul

    2015-07-01

    Maintenance has been acknowledged by industrial management as a significant influencing factor of plant performance. Effective plant maintenance can be realized by developing a proper maintenance strategy. However, selecting an appropriate maintenance strategy is difficult because maintenance is a non-repetitive task such as production activity. Maintenance also does not leave a consistent traceable record that can be referred to during the decision-making process. The involvement of tangible and intangible factors in the assessment process further increases the complexity of the decision-making process. The technique of preference order by similarity to ideal solution (TOPSIS) is one of the most well-known decision-making methods and has been widely used by organizations to conduct effective decisions regarding maintenance issues. TOPSIS has also evolved by integrating different approaches such as the fuzzy concept. Although numerous TOPSIS applications for maintenance decision making have been published, the effectiveness of crisp TOPSIS and fuzzy TOPSIS needs to be investigated further. This paper attempts to present a comparison between conventional crisp TOPSIS and fuzzy TOPSIS from a group maintenance decision-making perspective by an empirical illustration. Sensitivity analysis is conducted to demonstrate further the resilience of crisp TOPSIS and fuzzy TOPSIS.

  18. Multi-Attribute Consensus Building Tool

    ERIC Educational Resources Information Center

    Shyyan, Vitaliy; Christensen, Laurene; Thurlow, Martha; Lazarus, Sheryl

    2013-01-01

    The Multi-Attribute Consensus Building (MACB) method is a quantitative approach for determining a group's opinion about the importance of each item (strategy, decision, recommendation, policy, priority, etc.) on a list (Vanderwood, & Erickson, 1994). This process enables a small or large group of participants to generate and discuss a set…

  19. Multi-Attribute Sequential Search

    ERIC Educational Resources Information Center

    Bearden, J. Neil; Connolly, Terry

    2007-01-01

    This article describes empirical and theoretical results from two multi-attribute sequential search tasks. In both tasks, the DM sequentially encounters options described by two attributes and must pay to learn the values of the attributes. In the "continuous" version of the task the DM learns the precise numerical value of an attribute when she…

  20. Production Task Queue Optimization Based on Multi-Attribute Evaluation for Complex Product Assembly Workshop.

    PubMed

    Li, Lian-Hui; Mo, Rong

    2015-01-01

    The production task queue has a great significance for manufacturing resource allocation and scheduling decision. Man-made qualitative queue optimization method has a poor effect and makes the application difficult. A production task queue optimization method is proposed based on multi-attribute evaluation. According to the task attributes, the hierarchical multi-attribute model is established and the indicator quantization methods are given. To calculate the objective indicator weight, criteria importance through intercriteria correlation (CRITIC) is selected from three usual methods. To calculate the subjective indicator weight, BP neural network is used to determine the judge importance degree, and then the trapezoid fuzzy scale-rough AHP considering the judge importance degree is put forward. The balanced weight, which integrates the objective weight and the subjective weight, is calculated base on multi-weight contribution balance model. The technique for order preference by similarity to an ideal solution (TOPSIS) improved by replacing Euclidean distance with relative entropy distance is used to sequence the tasks and optimize the queue by the weighted indicator value. A case study is given to illustrate its correctness and feasibility.

  1. Production Task Queue Optimization Based on Multi-Attribute Evaluation for Complex Product Assembly Workshop

    PubMed Central

    Li, Lian-hui; Mo, Rong

    2015-01-01

    The production task queue has a great significance for manufacturing resource allocation and scheduling decision. Man-made qualitative queue optimization method has a poor effect and makes the application difficult. A production task queue optimization method is proposed based on multi-attribute evaluation. According to the task attributes, the hierarchical multi-attribute model is established and the indicator quantization methods are given. To calculate the objective indicator weight, criteria importance through intercriteria correlation (CRITIC) is selected from three usual methods. To calculate the subjective indicator weight, BP neural network is used to determine the judge importance degree, and then the trapezoid fuzzy scale-rough AHP considering the judge importance degree is put forward. The balanced weight, which integrates the objective weight and the subjective weight, is calculated base on multi-weight contribution balance model. The technique for order preference by similarity to an ideal solution (TOPSIS) improved by replacing Euclidean distance with relative entropy distance is used to sequence the tasks and optimize the queue by the weighted indicator value. A case study is given to illustrate its correctness and feasibility. PMID:26414758

  2. Decision Impact Assessment Model

    1991-08-01

    DIAMOND represents the decision-making environment that utility planners and executives face. Users interact with the model after every year or two of simulation, which provides an opportunity to modify past decisions as well as to make new decisions. For example, construction of a power plant can be started one year, and if circumstances change, the plant can be accelerated, mothballed, cancelled, or continued as originally planned. Similarly, the marketing and financial incentives for demand-side managementmore » programs can be changed from year to year. This frequent user interaction with the model, an operational game, should build greater understanding and insights among utility planners about the risks associated with different types of resources.« less

  3. A Checklist for Reporting Valuation Studies of Multi-Attribute Utility-Based Instruments (CREATE).

    PubMed

    Xie, Feng; Pickard, A Simon; Krabbe, Paul F M; Revicki, Dennis; Viney, Rosalie; Devlin, Nancy; Feeny, David

    2015-08-01

    Multi-attribute utility-based instruments (MAUIs) assess health status and provide an index score on the full health-dead scale, and are widely used to support reimbursement decisions for new healthcare interventions worldwide. A valuation study is a key part of the development of MAUIs, with the primary goal of developing a scoring algorithm through eliciting societal preferences. We developed the 21-item Checklist for REporting VAluaTion StudiEs (CREATE) by following a modified two-round Delphi panel approach plus an email survey. CREATE is intended to promote good reporting practice as well as guiding developers to thoroughly and carefully think through key methodological elements in designing valuation studies.

  4. Visual analytics techniques for large multi-attribute time series data

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.

    2008-01-01

    Time series data commonly occur when variables are monitored over time. Many real-world applications involve the comparison of long time series across multiple variables (multi-attributes). Often business people want to compare this year's monthly sales with last year's sales to make decisions. Data warehouse administrators (DBAs) want to know their daily data loading job performance. DBAs need to detect the outliers early enough to act upon them. In this paper, two new visual analytic techniques are introduced: The color cell-based Visual Time Series Line Charts and Maps highlight significant changes over time in a long time series data and the new Visual Content Query facilitates finding the contents and histories of interesting patterns and anomalies, which leads to root cause identification. We have applied both methods to two real-world applications to mine enterprise data warehouse and customer credit card fraud data to illustrate the wide applicability and usefulness of these techniques.

  5. A multi-attribute based methodology for vehicle detection and identification

    NASA Astrophysics Data System (ADS)

    Elangovan, Vinayak; Alsaidi, Bashir; Shirkhodaie, Amir

    2013-05-01

    Robust vehicle detection and identification is required for the intelligent persistent surveillance systems. In this paper, we present a Multi-attribute Vehicle Detection and Identification technique (MVDI) for detection and classification of stationary vehicles. The proposed model uses a supervised Hamming Neural Network (HNN) for taxonomy of shape of the vehicle. Vehicles silhouette features are employed for the training of the HNN from a large array of training vehicle samples in different type, scale, and color variation. Invariant vehicle silhouette attributes are used as features for training of the HNN which is based on an internal Hamming Distance and shape features to determine degree of similarity of a test vehicle against those it's selectively trained with. Upon detection of class of the vehicle, the other vehicle attributes such as: color and orientation are determined. For vehicle color detection, provincial regions of the vehicle body are used for matching color of the vehicle. For the vehicle orientation detection, the key structural features of the vehicle are extracted and subjected to classification based on color tune, geometrical shape, and tire region detection. The experimental results show the technique is promising and has robustness for detection and identification of vehicle based on their multi-attribute features. Furthermore this paper demonstrates the importance of the vehicle attributes detection towards the identification of Human-Vehicle Interaction events.

  6. Measurement of patient-derived utility values for periodontal health using a multi-attribute scale.

    PubMed

    Bellamy, C A; Brickley, M R; McAndrew, R

    1996-09-01

    Periodontal health states are difficult to quantify and no formal scale quantifying patients' utilities for periodontal health states exits. Multi-attribute utility (MAU) techniques were used to develop such a scale. The MAU scale may be used to quantify patients' assessment of their current periodontal health and that of possible treatment outcomes. Such data, combined with probability values in formal decision analysis techniques would result in improved rationality of treatment planning for periodontal disease. 20 patients attending for routine undergraduate care were interviewed. Data from these interviews were sorted into groups of common interest (domains). Intra-domain health statements were complied from the interview content. 21 patients ranked the intra-domain statements on a scale of 0-100. This same group of patients also performed an inter-domain weighting. Mean results showed that patients were 2X as concerned with how they felt and with the prognosis of possible outcomes, than with how they looked and what facts they knew about their oral health. However, the real value of utilities research lies in application of individual results to treatment planning as there is a wide range of opinion regarding outcome health states. PMID:8891929

  7. Models of Affective Decision Making

    PubMed Central

    Charpentier, Caroline J.; De Neve, Jan-Emmanuel; Li, Xinyi; Roiser, Jonathan P.; Sharot, Tali

    2016-01-01

    Intuitively, how you feel about potential outcomes will determine your decisions. Indeed, an implicit assumption in one of the most influential theories in psychology, prospect theory, is that feelings govern choice. Surprisingly, however, very little is known about the rules by which feelings are transformed into decisions. Here, we specified a computational model that used feelings to predict choices. We found that this model predicted choice better than existing value-based models, showing a unique contribution of feelings to decisions, over and above value. Similar to the value function in prospect theory, our feeling function showed diminished sensitivity to outcomes as value increased. However, loss aversion in choice was explained by an asymmetry in how feelings about losses and gains were weighted when making a decision, not by an asymmetry in the feelings themselves. The results provide new insights into how feelings are utilized to reach a decision. PMID:27071751

  8. Multi-attribute analysis of trophic state and waterfowl management in Ringkøbing Fjord, Denmark.

    PubMed

    Bryhn, Andreas C; Jiménez, Antonio; Mateos, Alfonso; Ríos-Insua, Sixto

    2009-06-01

    A multi-attribute analysis by means of the general multi-attribute analysis (GMAA) decision support system was performed in order to rank different strategies for good water quality with respect to trophic state, and good conditions for waterfowl, in the lagoon Ringkøbing Fjord, Denmark. The remedial strategies included nutrient abatement and the construction of facilities to increase the water exchange between the lagoon and the sea. The analysis showed that it is essential to keep the mean annual salinity level constant, since a drastic change in salinity may cause massive destruction of the macrophyte belt with large effects on the water quality and waterfowl abundance. It may be cost-effective to build and maintain a saltwater pumping station or a second sluice to increase the seawater inflow. Further nutrient abatement may not be cost-effective, at least not on time-scales shorter than 20 years, but the utility from nutrient abatement increases if a second sluice is built additionally. However, all of the remedial strategies, except decreasing the salinity, were projected to cause rather small changes in the effect variables compared to the no action alternative.

  9. A depression network of functionally connected regions discovered via multi-attribute canonical correlation graphs.

    PubMed

    Kang, Jian; Bowman, F DuBois; Mayberg, Helen; Liu, Han

    2016-11-01

    To establish brain network properties associated with major depressive disorder (MDD) using resting-state functional magnetic resonance imaging (Rs-fMRI) data, we develop a multi-attribute graph model to construct a region-level functional connectivity network that uses all voxel level information. For each region pair, we define the strength of the connectivity as the kernel canonical correlation coefficient between voxels in the two regions; and we develop a permutation test to assess the statistical significance. We also construct a network based classifier for making predictions on the risk of MDD. We apply our method to Rs-fMRI data from 20 MDD patients and 20 healthy control subjects in the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) study. Using this method, MDD patients can be distinguished from healthy control subjects based on significant differences in the strength of regional connectivity. We also demonstrate the performance of the proposed method using simulationstudies. PMID:27474522

  10. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    SciTech Connect

    Gary Mavko

    2000-10-01

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  11. The Application of a Multi-Attribute Decision-Making Algorithm to Learning Management Systems Evaluation

    ERIC Educational Resources Information Center

    Cavus, Nadire

    2011-01-01

    Recently, because of the rapid increase in the popularity of the Internet, the delivery of learning programmes has gradually shifted from local desktop to online-based applications. As more and more technological tools become available for online education, there is an increasing interest among educators and other professionals in the application…

  12. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building. PMID:27570769

  13. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  14. Decision tree modeling using R

    PubMed Central

    2016-01-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building. PMID:27570769

  15. MAT - MULTI-ATTRIBUTE TASK BATTERY FOR HUMAN OPERATOR WORKLOAD AND STRATEGIC BEHAVIOR RESEARCH

    NASA Technical Reports Server (NTRS)

    Comstock, J. R.

    1994-01-01

    MAT, a Multi-Attribute Task battery, gives the researcher the capability of performing multi-task workload and performance experiments. The battery provides a benchmark set of tasks for use in a wide range of laboratory studies of operator performance and workload. MAT incorporates tasks analogous to activities that aircraft crew members perform in flight, while providing a high degree of experiment control, performance data on each subtask, and freedom to use non-pilot test subjects. The MAT battery primary display is composed of four separate task windows which are as follows: a monitoring task window which includes gauges and warning lights, a tracking task window for the demands of manual control, a communication task window to simulate air traffic control communications, and a resource management task window which permits maintaining target levels on a fuel management task. In addition, a scheduling task window gives the researcher information about future task demands. The battery also provides the option of manual or automated control of tasks. The task generates performance data for each subtask. The task battery may be paused and onscreen workload rating scales presented to the subject. The MAT battery was designed to use a serially linked second computer to generate the voice messages for the Communications task. The MATREMX program and support files, which are included in the MAT package, were designed to work with the Heath Voice Card (Model HV-2000, available through the Heath Company, Benton Harbor, Michigan 49022); however, the MATREMX program and support files may easily be modified to work with other voice synthesizer or digitizer cards. The MAT battery task computer may also be used independent of the voice computer if no computer synthesized voice messages are desired or if some other method of presenting auditory messages is devised. MAT is written in QuickBasic and assembly language for IBM PC series and compatible computers running MS-DOS. The

  16. The KONVERGENCE Model for Sustainable Decisions

    SciTech Connect

    Kerr, Thomas A; Dakins, Maxine; Gibson, Patrick Lavern; Joe, Jeffrey Clark; Nitschke, Robert Leon; Piet, Steven James

    2002-08-01

    The KONVERGENCE Model for Sustainable Decisions is a new way of viewing, developing, organizing, and evaluating alternatives for decisions that may affect a wide range of interests and that must factor in long timeframes, enduring hazards, and/or continuing responsibilities. It differs from other models in that it addresses the need for decisions to continue to "work" over long time periods in an ever-changing decision environment. The authors show that the model contains three major universes - knowledge, values, and resources (the K, V, and R in KONVERGENCE)- that interact and overlap throughout the effective lifetime of a decision. They discuss how decision-makers and decision participants can use the model to craft and analyze decisions and decision processes that stand the test of time. The authors use the U.S. moon-landing program as an example of a major decision process that was sustained over time. They use the model to explain why events unfolded in the way that they did - and why we are where we are today in that program. The authors believe that this model will be especially useful in long-term decision processes such as those that address contamination cleanup programs, long-term environmental stewardship, and the initial siting of facilities with long-term objectives. Companion papers describe the KONVERGENCE Model process steps and implications for intractable cleanup decisions.

  17. Single-process versus multiple-strategy models of decision making: evidence from an information intrusion paradigm.

    PubMed

    Söllner, Anke; Bröder, Arndt; Glöckner, Andreas; Betsch, Tilmann

    2014-02-01

    When decision makers are confronted with different problems and situations, do they use a uniform mechanism as assumed by single-process models (SPMs) or do they choose adaptively from a set of available decision strategies as multiple-strategy models (MSMs) imply? Both frameworks of decision making have gathered a lot of support, but only rarely have they been contrasted with each other. Employing an information intrusion paradigm for multi-attribute decisions from givens, SPM and MSM predictions on information search, decision outcomes, attention, and confidence judgments were derived and tested against each other in two experiments. The results consistently support the SPM view: Participants seemingly using a "take-the-best" (TTB) strategy do not ignore TTB-irrelevant information as MSMs would predict, but adapt the amount of information searched, choose alternative choice options, and show varying confidence judgments contingent on the quality of the "irrelevant" information. The uniformity of these findings underlines the adequacy of the novel information intrusion paradigm and comprehensively promotes the notion of a uniform decision making mechanism as assumed by single-process models.

  18. Shared Problem Models and Crew Decision Making

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The importance of crew decision making to aviation safety has been well established through NTSB accident analyses: Crew judgment and decision making have been cited as causes or contributing factors in over half of all accidents in commercial air transport, general aviation, and military aviation. Yet the bulk of research on decision making has not proven helpful in improving the quality of decisions in the cockpit. One reason is that traditional analytic decision models are inappropriate to the dynamic complex nature of cockpit decision making and do not accurately describe what expert human decision makers do when they make decisions. A new model of dynamic naturalistic decision making is offered that may prove more useful for training or aiding cockpit decision making. Based on analyses of crew performance in full-mission simulation and National Transportation Safety Board accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation and reflect the crew's metacognitive skill. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relation between communication that serves to build performance. Implications of these findings for crew training will be discussed.

  19. Disentangling Decision Models: From Independence to Competition

    ERIC Educational Resources Information Center

    Teodorescu, Andrei R.; Usher, Marius

    2013-01-01

    A multitude of models have been proposed to account for the neural mechanism of value integration and decision making in speeded decision tasks. While most of these models account for existing data, they largely disagree on a fundamental characteristic of the choice mechanism: independent versus different types of competitive processing. Five…

  20. System Dynamics Models and Institutional Pricing Decisions.

    ERIC Educational Resources Information Center

    Chen, Fiona

    1986-01-01

    A system dynamics model for the pricing of tuition is presented, illustrating how such models enable decision-makers to anticipate cause-and-effect relationships and test alternative courses of action. (Author)

  1. Recognition of human-vehicle interactions in group activities via multi-attributed semantic message generation

    NASA Astrophysics Data System (ADS)

    Elangovan, Vinayak; Shirkhodaie, Amir

    2015-05-01

    Improved Situational awareness is a vital ongoing research effort for the U.S. Homeland Security for the past recent years. Many outdoor anomalous activities involve vehicles as their primary source of transportation to and from the scene where a plot is executed. Analysis of dynamics of Human-Vehicle Interaction (HVI) helps to identify correlated patterns of activities representing potential threats. The objective of this paper is bi-folded. Primarily, we discuss a method for temporal HVI events detection and verification for generation of HVI hypotheses. To effectively recognize HVI events, a Multi-attribute Vehicle Detection and Identification technique (MVDI) for detection and classification of stationary vehicles is presented. Secondly, we describe a method for identification of pertinent anomalous behaviors through analysis of state transitions between two successively detected events. Finally, we present a technique for generation of HVI semantic messages and present our experimental results to demonstrate the effectiveness of semantic messages for discovery of HVI in group activities.

  2. Research on the Comparability of Multi-attribute Evaluation Methods for Academic Journals

    NASA Astrophysics Data System (ADS)

    Liping, Yu

    This paper first constructs a classification framework for multi-attribute evaluation methods oriented to academic journals, and then discusses the comparability of the vast majority of non-linear evaluation methods and the majority of linear evaluation methods theoretically, taking the TOPSIS method as an example and the evaluation data on agricultural journals as an exercise of validation. The analysis result shows that we should attach enough importance to the comparability of evaluation methods for academic journals; the evaluation objectives are closely related to the choice of evaluation methods, and also relevant to the comparability of evaluation methods; the specialized organizations for journal evaluation had better release the evaluation data, evaluation methods and evaluation results to the best of their abilities; only purely subjective evaluation method is of broad comparability.

  3. A Structured Decision Approach for Integrating and Analyzing Community Perspectives in Re-Use Planning of Vacant Properties in Cleveland, Ohio

    EPA Science Inventory

    An integrated GIS-based, multi-attribute decision model deployed in a web-based platform is presented enabling an iterative, spatially explicit and collaborative analysis of relevant and available information for repurposing vacant land. The process incorporated traditional and ...

  4. Towards the ecotourism: a decision support model for the assessment of sustainability of mountain huts in the Alps.

    PubMed

    Stubelj Ars, Mojca; Bohanec, Marko

    2010-12-01

    This paper studies mountain hut infrastructure in the Alps as an important element of ecotourism in the Alpine region. To improve the decision-making process regarding the implementation of future infrastructure and improvement of existing infrastructure in the vulnerable natural environment of mountain ecosystems, a new decision support model has been developed. The methodology is based on qualitative multi-attribute modelling supported by the DEXi software. The integrated rule-based model is hierarchical and consists of two submodels that cover the infrastructure of the mountain huts and that of the huts' surroundings. The final goal for the designed tool is to help minimize the ecological footprint of tourists in environmentally sensitive and undeveloped mountain areas and contribute to mountain ecotourism. The model has been tested in the case study of four mountain huts in Triglav National Park in Slovenia. Study findings provide a new empirical approach to evaluating existing mountain infrastructure and predicting improvements for the future. The assessment results are of particular interest for decision makers in protected areas, such as Alpine national parks managers and administrators. In a way, this model proposes an approach to the management assessment of mountain huts with the main aim of increasing the quality of life of mountain environment visitors as well as the satisfaction of tourists who may eventually become ecotourists.

  5. Optimal Decision Making in Neural Inhibition Models

    ERIC Educational Resources Information Center

    van Ravenzwaaij, Don; van der Maas, Han L. J.; Wagenmakers, Eric-Jan

    2012-01-01

    In their influential "Psychological Review" article, Bogacz, Brown, Moehlis, Holmes, and Cohen (2006) discussed optimal decision making as accomplished by the drift diffusion model (DDM). The authors showed that neural inhibition models, such as the leaky competing accumulator model (LCA) and the feedforward inhibition model (FFI), can mimic the…

  6. Computer modeling of human decision making

    NASA Technical Reports Server (NTRS)

    Gevarter, William B.

    1991-01-01

    Models of human decision making are reviewed. Models which treat just the cognitive aspects of human behavior are included as well as models which include motivation. Both models which have associated computer programs, and those that do not, are considered. Since flow diagrams, that assist in constructing computer simulation of such models, were not generally available, such diagrams were constructed and are presented. The result provides a rich source of information, which can aid in construction of more realistic future simulations of human decision making.

  7. The multi-attribute task battery for human operator workload and strategic behavior research

    NASA Technical Reports Server (NTRS)

    Comstock, J. Raymond, Jr.; Arnegard, Ruth J.

    1992-01-01

    The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to use nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.

  8. EXPERIMENTING WITH MULTI-ATTRIBUTE UTILITY SURVEY METHODS IN A MULTI-DIMENSIONAL VALUATION PROBLEM. (R824699)

    EPA Science Inventory

    Abstract

    The use of willingness-to-pay (WTP) survey techniques based on multi-attribute utility (MAU) approaches has been recommended by some authors as a way to deal simultaneously with two difficulties that increasingly plague environmental valuation. The first of th...

  9. Informing Decisions with Earth System Models

    NASA Astrophysics Data System (ADS)

    Lempert, R. J.

    2012-12-01

    The emerging generation of earth system models offers the potential for significant improvements in region planning in the face of interlinked environmental and socio-economic changes. But these models also raise important questions about how to best use the information they contain to support decision-making, particularly in the face of the considerable uncertainty in many model projections. The decision support literature provides general guidance on this challenge, with its emphasize on the importance of grounding information provision in user needs, the importance of focusing on decision-making processes, and need to design for learning. This talk will build on this guidance to suggest an approach for using Earth System Models to inform regional planning decisions. In brief, this robust decision making approach suggests beginning with one or more specific plans (for instance, a specific regional plan and its supporting policies and investments), running the model many times to explore the performance of the plan in many potential future conditions, uses cluster analysis on the resulting database of model results to identify those conditions where a plan may fail to meet its goals, and then use this information to help decision-makers to consider and chose among potential modifications to their plans. This approach provides an effective means to characterize uncertainty and link to policy-makers' decision processes. In particular, it can support the development of adaptive policies designed to evolve over time in response to new information. This talk will demonstrate these approaches using examples from regional water management and discuss how one can use them to evaluate the value of different types of model-supplied information.

  10. Climate modeling with decision makers in mind

    DOE PAGESBeta

    Jones, Andrew; Calvin, Katherine; Lamarque, Jean -Francois

    2016-04-27

    The need for regional- and local-scale climate information is increasing rapidly as decision makers seek to anticipate and manage a variety of context-specific climate risks over the next several decades. Furthermore, global climate models are not developed with these user needs in mind, and they typically operate at resolutions that are too coarse to provide information that could be used to support regional and local decisions.

  11. From hydrological modelling to decision support

    NASA Astrophysics Data System (ADS)

    Haberlandt, U.

    2010-08-01

    Decision support for planning and management of water resources needs to consider many target criteria simultaneously like water availability, water quality, flood protection, agriculture, ecology, etc. Hydrologic models provide information about the water balance components and are fundamental for the simulation of ecological processes. Objective of this contribution is to discuss the suitability of classical hydrologic models on one hand and of complex eco-hydrologic models on the other hand to be used as part of decision support systems. The discussion is based on results from two model comparison studies. It becomes clear that none of the hydrologic models tested fulfils all requirements in an optimal sense. Regarding the simulation of water quality parameters like nitrogen leaching a high uncertainty needs to be considered. Recommended for decision support is a hybrid metamodel approach, which comprises a hydrologic model, empirical relationships for the less dynamic processes and makes use of simulation results from complex eco-hydrologic models through second-order modelling at a generalized level.

  12. Research on Instructional Decision Models. Final Report.

    ERIC Educational Resources Information Center

    Seidel, Robert J.

    Optimization procedures for a computer-assisted instruction (CAI) system were developed using iterative development and tests of a series of instructional decision models (IDM). The result was a total systems effort in which the instruction was carried on by a dialogue between a computerized tutor and the student. A profile of the student, student…

  13. Neurally Constrained Modeling of Perceptual Decision Making

    ERIC Educational Resources Information Center

    Purcell, Braden A.; Heitz, Richard P.; Cohen, Jeremiah Y.; Schall, Jeffrey D.; Logan, Gordon D.; Palmeri, Thomas J.

    2010-01-01

    Stochastic accumulator models account for response time in perceptual decision-making tasks by assuming that perceptual evidence accumulates to a threshold. The present investigation mapped the firing rate of frontal eye field (FEF) visual neurons onto perceptual evidence and the firing rate of FEF movement neurons onto evidence accumulation to…

  14. Disentangling decision models: from independence to competition.

    PubMed

    Teodorescu, Andrei R; Usher, Marius

    2013-01-01

    A multitude of models have been proposed to account for the neural mechanism of value integration and decision making in speeded decision tasks. While most of these models account for existing data, they largely disagree on a fundamental characteristic of the choice mechanism: independent versus different types of competitive processing. Five models, an independent race model, 2 types of input competition models (normalized race and feed-forward inhibition [FFI]) and 2 types of response competition models (max-minus-next [MMN] diffusion and leaky competing accumulators [LCA]) were compared in 3 combined computational and experimental studies. In each study, difficulty was manipulated in a way that produced qualitatively distinct predictions from the different classes of models. When parameters were constrained by the experimental conditions to avoid mimicking, simulations demonstrated that independent models predict speedups in response time with increased difficulty, while response competition models predict the opposite. Predictions of input-competition models vary between specific models and experimental conditions. Taken together, the combined computational and empirical findings provide support for the notion that decisional processes are intrinsically competitive and that this competition is likely to kick in at a late (response), rather than early (input), processing stage.

  15. Decision models for capital investment and financing decisions in hospitals.

    PubMed Central

    Vraciu, R A

    1980-01-01

    The literature on capital investment and financing decisions for hospitals has suggested several approaches to analyzing sets of options. In this paper, I present a taxonomy of the different approaches; analyze and compare the different elements of the taxonomy; and illustrate and discuss the information that can be gained by using each approach. I view these different analytic methods as complementary rather than competing methods of providing information to decision makers, and argue that the complex nature of hospital objectives demands the use of more than one approach. Failure to do this may lead to biased evaluations and poor decision making. PMID:6768699

  16. An EEG-based mental workload estimator trained on working memory task can work well under simulated multi-attribute task

    PubMed Central

    Ke, Yufeng; Qi, Hongzhi; He, Feng; Liu, Shuang; Zhao, Xin; Zhou, Peng; Zhang, Lixin; Ming, Dong

    2014-01-01

    Mental workload (MW)-based adaptive system has been found to be an effective approach to enhance the performance of human-machine interaction and to avoid human error caused by overload. However, MW estimated from the spontaneously generated electroencephalogram (EEG) was found to be task-specific. In existing studies, EEG-based MW classifier can work well under the task used to train the classifier (within-task) but crash completely when used to classify MW of a task that is similar to but not included in the training data (cross-task). The possible causes have been considered to be the task-specific EEG patterns, the mismatched workload across tasks and the temporal effects. In this study, cross-task performance-based feature selection (FS) and regression model were tried to cope with these challenges, in order to make EEG-based MW estimator trained on working memory tasks work well under a complex simulated multi-attribute task (MAT). The results show that the performance of regression model trained on working memory task and tested on multi-attribute task with the feature subset picked-out were significantly improved (correlation coefficient (COR): 0.740 ± 0.147 and 0.598 ± 0.161 for FS data and validation data respectively) when compared to the performance in the same condition with all features (chance level). It can be inferred that there do exist some MW-related EEG features can be picked out and there are something in common between MW of a relatively simple task and a complex task. This study provides a promising approach to measure MW across tasks. PMID:25249967

  17. Modeling choice and valuation in decision experiments.

    PubMed

    Loomes, Graham

    2010-07-01

    This article develops a parsimonious descriptive model of individual choice and valuation in the kinds of experiments that constitute a substantial part of the literature relating to decision making under risk and uncertainty. It suggests that many of the best known "regularities" observed in those experiments may arise from a tendency for participants to perceive probabilities and payoffs in a particular way. This model organizes more of the data than any other extant model and generates a number of novel testable implications which are examined with new data.

  18. A clinical model for decision-making

    PubMed Central

    Martin, Richard M

    1978-01-01

    Richard Martin's aim in this paper is to present a critical method of making ethical decisions in a medical context. He feels that such a reflective method provides the best means of making the appropriate decisions in given situations. It is based on Dr Martin's experience in applying ethical theory while collaborating with physicians in the daily course of clinical practice. Through his giving of a functional definition of medical ethics, his descriptions of an analytical model, the significance of values for clinical decision-making and the advocacy role of medical ethicists and their relationships with clinicians, Richard Martin sets out his own value-intention as regards an ideal decision process. He stresses that his argument is of particular importance to his fellow ethicists who should continuously and vigorously examine the creative interaction of faith and fact in their own inquiry and action. Dr Martin concludes by stating that physicians and ethicists can work together to accomplish their common aim, which is, of course, the health and well-being of the patient. PMID:739517

  19. Modeling Risky Decision Making in Rodents

    PubMed Central

    Simon, Nicholas W.; Setlow, Barry

    2012-01-01

    Excessive risk taking is a hallmark of various psychopathological disorders. We have developed a task that models such risky decision making in rats. In this task, rats are given choices between small, safe rewards and large rewards accompanied by a risk of punishment (footshock). The risk of punishment increases throughout the test session, which allows the quantification of risky decision making at different degrees of risk for each subject. Importantly, this task yields a consistently wide degree of reliable individual variability, allowing the characterization of rats as “risk taking” or “risk averse.” This task has been demonstrated to be effective for testing the effects of pharmacological agents on risk taking, and the individual variability (which mimics the human population) allows assessment of neurobiological distinctions between subjects based on risk-taking profile. PMID:22231813

  20. Flood Impact Modelling to support decision making

    NASA Astrophysics Data System (ADS)

    Owen, Gareth; Quinn, Paul; O'Donnell, Greg

    2015-04-01

    Much of what is known about the impacts of landuse change and Natural Flood Management (NFM) is at the local/plot scale. Evidence of the downstream impacts at the larger catchment scale is limited. However, the strategic and financial decisions of land managers, stakeholders and policy makers are made at the larger scale. There are a number of techniques that have the potential to scale local impacts to the catchment scale. This poster will show findings for the 30km2 Leven catchment, North Yorkshire, England. A NFM approach has been adopted by the Environment Agency to reduce flood risk within the catchment. A dense network of stream level gauges were installed in the catchment at the commencement of this project to gain a detailed understanding of the catchment behaviour during storm events. A novel Flood Impact Modelling (FIM) approach has been adopted which uses the network of gauges to disaggregate the outlet hydrograph in terms of source locations. Using a combination of expert opinion and local evidence, the model can be used to assess the impacts of distributed changes in land use management and NFM on flood events. A number of potential future landuse and NFM scenarios have been modelled to investigate their impact on flood peaks. These modelled outcomes are mapped to a simple Decision Support Matrix (DSM). The DSM encourages end users (e.g. land managers and policy makers) to develop an NFM scheme by studying the degree to which local runoff can be attenuated and how that flow will propagate through the network to the point of impact. The DSM relates the impact on flood peaks in terms of alterations to soil management practices and landscape flow connectivity (e.g. soil underdrainage), which can be easily understood by farmers and land managers. The DSM and the FIM together provide a simple to use and transparent modelling tool, making best use of expert knowledge, to support decision making.

  1. A control-theory model for human decision-making

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Tanner, R. B.

    1971-01-01

    A model for human decision making is an adaptation of an optimal control model for pilot/vehicle systems. The models for decision and control both contain concepts of time delay, observation noise, optimal prediction, and optimal estimation. The decision making model was intended for situations in which the human bases his decision on his estimate of the state of a linear plant. Experiments are described for the following task situations: (a) single decision tasks, (b) two-decision tasks, and (c) simultaneous manual control and decision making. Using fixed values for model parameters, single-task and two-task decision performance can be predicted to within an accuracy of 10 percent. Agreement is less good for the simultaneous decision and control situation.

  2. Decision Tree Modeling for Ranking Data

    NASA Astrophysics Data System (ADS)

    Yu, Philip L. H.; Wan, Wai Ming; Lee, Paul H.

    Ranking/preference data arises from many applications in marketing, psychology, and politics. We establish a new decision tree model for the analysis of ranking data by adopting the concept of classification and regression tree. The existing splitting criteria are modified in a way that allows them to precisely measure the impurity of a set of ranking data. Two types of impurity measures for ranking data are introduced, namelyg-wise and top-k measures. Theoretical results show that the new measures exhibit properties of impurity functions. In model assessment, the area under the ROC curve (AUC) is applied to evaluate the tree performance. Experiments are carried out to investigate the predictive performance of the tree model for complete and partially ranked data and promising results are obtained. Finally, a real-world application of the proposed methodology to analyze a set of political rankings data is presented.

  3. A consensus reaching model for 2-tuple linguistic multiple attribute group decision making with incomplete weight information

    NASA Astrophysics Data System (ADS)

    Zhang, Wancheng; Xu, Yejun; Wang, Huimin

    2016-01-01

    The aim of this paper is to put forward a consensus reaching method for multi-attribute group decision-making (MAGDM) problems with linguistic information, in which the weight information of experts and attributes is unknown. First, some basic concepts and operational laws of 2-tuple linguistic label are introduced. Then, a grey relational analysis method and a maximising deviation method are proposed to calculate the incomplete weight information of experts and attributes respectively. To eliminate the conflict in the group, a weight-updating model is employed to derive the weights of experts based on their contribution to the consensus reaching process. After conflict elimination, the final group preference can be obtained which will give the ranking of the alternatives. The model can effectively avoid information distortion which is occurred regularly in the linguistic information processing. Finally, an illustrative example is given to illustrate the application of the proposed method and comparative analysis with the existing methods are offered to show the advantages of the proposed method.

  4. Subjective Expected Utility: A Model of Decision-Making.

    ERIC Educational Resources Information Center

    Fischoff, Baruch; And Others

    1981-01-01

    Outlines a model of decision making known to researchers in the field of behavioral decision theory (BDT) as subjective expected utility (SEU). The descriptive and predictive validity of the SEU model, probability and values assessment using SEU, and decision contexts are examined, and a 54-item reference list is provided. (JL)

  5. Contribution of the multi-attribute value theory to conflict resolution in groundwater management - application to the Mancha Oriental groundwater system, Spain

    NASA Astrophysics Data System (ADS)

    Apperl, B.; Pulido-Velazquez, M.; Andreu, J.; Karjalainen, T. P.

    2015-03-01

    The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have often been identified as an impediment to the realisation and success of water regulations and policies. The management of complex groundwater systems requires the clarification of stakeholders' positions (identifying stakeholder preferences and values), improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards the definition of fundamental objectives (value-thinking approach), which facilitates negotiation. The aims of the study are to analyse the potential of the multi-attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation into the different stages of the planning process, to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain), subject to intensive use of groundwater for irrigation. A complex set of objectives and attributes was defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resource availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes in preferences to the alternative ranking. Results show that the approval of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties in the results were notable, but did not influence the alternative ranking heavily. The

  6. Contribution of the Multi Attribute Value Theory to conflict resolution in groundwater management. Application to the Mancha Oriental groundwater system, Spain

    NASA Astrophysics Data System (ADS)

    Apperl, B.; Andreu, J.; Karjalainen, T. P.; Pulido-Velazquez, M.

    2014-09-01

    The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have been often identified as an impediment to the realization and success of water regulations and policies. The management of complex groundwater systems requires clarifying stakeholders' positions (identifying stakeholders preferences and values), improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards definition of fundamental objectives (value-thinking approach), what facilitates negotiation. The aims of the study are to analyse the potential of the multi attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation in the different stages of the planning process to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain), subject to an intensive use of groundwater for irrigation. A complex set of objectives and attributes were defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resources availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes of preferences to the alternative ranking. Results show that the acceptation of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties of the results were notable but did not influence heavily on the alternative ranking. The expected

  7. High dimensional decision dilemmas in climate models

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Neelin, J. D.; Luo, H.; McWilliams, J. C.; Meyerson, J. E.

    2013-10-01

    An important source of uncertainty in climate models is linked to the calibration of model parameters. Interest in systematic and automated parameter optimization procedures stems from the desire to improve the model climatology and to quantify the average sensitivity associated with potential changes in the climate system. Building upon on the smoothness of the response of an atmospheric circulation model (AGCM) to changes of four adjustable parameters, Neelin et al. (2010) used a quadratic metamodel to objectively calibrate the AGCM. The metamodel accurately estimates global spatial averages of common fields of climatic interest, from precipitation, to low and high level winds, from temperature at various levels to sea level pressure and geopotential height, while providing a computationally cheap strategy to explore the influence of parameter settings. Here, guided by the metamodel, the ambiguities or dilemmas related to the decision making process in relation to model sensitivity and optimization are examined. Simulations of current climate are subject to considerable regional-scale biases. Those biases may vary substantially depending on the climate variable considered, and/or on the performance metric adopted. Common dilemmas are associated with model revisions yielding improvement in one field or regional pattern or season, but degradation in another, or improvement in the model climatology but degradation in the interannual variability representation. Challenges are posed to the modeler by the high dimensionality of the model output fields and by the large number of adjustable parameters. The use of the metamodel in the optimization strategy helps visualize trade-offs at a regional level, e.g., how mismatches between sensitivity and error spatial fields yield regional errors under minimization of global objective functions.

  8. High dimensional decision dilemmas in climate models

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Neelin, J. D.; Luo, H.; McWilliams, J. C.; Meyerson, J. E.

    2013-05-01

    An important source of uncertainty in climate models is linked to the calibration of model parameters. Interest in systematic and automated parameter optimization procedures stems from the desire to improve the model climatology and to quantify the average sensitivity associated with potential changes in the climate system. Neelin et al. (2010) used a quadratic metamodel to objectively calibrate an atmospheric circulation model (AGCM) around four adjustable parameters. The metamodel accurately estimates global spatial averages of common fields of climatic interest, from precipitation, to low and high level winds, from temperature at various levels to sea level pressure and geopotential height, while providing a computationally cheap strategy to explore the influence of parameter settings. Here, guided by the metamodel, the ambiguities or dilemmas related to the decision making process in relation to model sensitivity and optimization are examined. Simulations of current climate are subject to considerable regional-scale biases. Those biases may vary substantially depending on the climate variable considered, and/or on the performance metric adopted. Common dilemmas are associated with model revisions yielding improvement in one field or regional pattern or season, but degradation in another, or improvement in the model climatology but degradation in the interannual variability representation. Challenges are posed to the modeler by the high dimensionality of the model output fields and by the large number of adjustable parameters. The use of the metamodel in the optimization strategy helps visualize trade-offs at a regional level, e.g. how mismatches between sensitivity and error spatial fields yield regional errors under minimization of global objective functions.

  9. A Model for Evaluation of Decision Passages.

    ERIC Educational Resources Information Center

    Stimac, Michele

    In an age when decision making is becoming more and more significant for us human beings as we face dilemmas about whether or not to clone, to engineer behavior on mass scale, to expand or to decrease nuclear power, we educators must assist students to increase their decision-making skills. Many of our students will soon be decision makers for…

  10. Modeling boolean decision rules applied to multiple-observer decision strategies.

    PubMed

    Maguire, W

    1996-01-01

    A model that derives multiple-observer decision strategy ROC curves for boolean decision rules applied to binary decisions of two or three observers is presented. It is assumed that covert decision variables consistent with ROC models of observer performance underlie decisions and that readers' decision criteria are in a fixed relationship. The specific parameters of individual ROC curves and the correlational structure that describes interobserver agreement have dramatic effects upon the relative benefits to be derived from different boolean strategies. A common strategy employed in clinical practice, in which the overall decision is positive if any observer makes a positive decision, is most effective when the readers are of similar ability, when they adopt similar decision criteria, when interreader agreement is greater for negative than for positive cases, and when the individual ROC slope is <1.0. Different multiple-observer decision strategies can be evaluated using the model equations. A bootstrap method for testing model-associated hypotheses is described. PMID:8717599

  11. Demographics of reintroduced populations: estimation, modeling, and decision analysis

    USGS Publications Warehouse

    Converse, Sarah J.; Moore, Clinton T.; Armstrong, Doug P.

    2013-01-01

    Reintroduction can be necessary for recovering populations of threatened species. However, the success of reintroduction efforts has been poorer than many biologists and managers would hope. To increase the benefits gained from reintroduction, management decision making should be couched within formal decision-analytic frameworks. Decision analysis is a structured process for informing decision making that recognizes that all decisions have a set of components—objectives, alternative management actions, predictive models, and optimization methods—that can be decomposed, analyzed, and recomposed to facilitate optimal, transparent decisions. Because the outcome of interest in reintroduction efforts is typically population viability or related metrics, models used in decision analysis efforts for reintroductions will need to include population models. In this special section of the Journal of Wildlife Management, we highlight examples of the construction and use of models for informing management decisions in reintroduced populations. In this introductory contribution, we review concepts in decision analysis, population modeling for analysis of decisions in reintroduction settings, and future directions. Increased use of formal decision analysis, including adaptive management, has great potential to inform reintroduction efforts. Adopting these practices will require close collaboration among managers, decision analysts, population modelers, and field biologists.

  12. Leadership of risk decision making in a complex, technology organization: The deliberative decision making model

    NASA Astrophysics Data System (ADS)

    Flaming, Susan C.

    2007-12-01

    The continuing saga of satellite technology development is as much a story of successful risk management as of innovative engineering. How do program leaders on complex, technology projects manage high stakes risks that threaten business success and satellite performance? This grounded theory study of risk decision making portrays decision leadership practices at one communication satellite company. Integrated product team (IPT) leaders of multi-million dollar programs were interviewed and observed to develop an extensive description of the leadership skills required to navigate organizational influences and drive challenging risk decisions to closure. Based on the study's findings the researcher proposes a new decision making model, Deliberative Decision Making, to describe the program leaders' cognitive and organizational leadership practices. This Deliberative Model extends the insights of prominent decision making models including the rational (or classical) and the naturalistic and qualifies claims made by bounded rationality theory. The Deliberative Model describes how leaders proactively engage resources to play a variety of decision leadership roles. The Model incorporates six distinct types of leadership decision activities, undertaken in varying sequence based on the challenges posed by specific risks. Novel features of the Deliberative Decision Model include: an inventory of leadership methods for managing task challenges, potential stakeholder bias and debates; four types of leadership meta-decisions that guide decision processes, and aligned organizational culture. Both supporting and constraining organizational influences were observed as leaders managed major risks, requiring active leadership on the most difficult decisions. Although the company's engineering culture emphasized the importance of data-based decisions, the uncertainties intrinsic to satellite risks required expert engineering judgment to be exercised throughout. An investigation into

  13. Application of the Multi-Attribute Value Theory for engaging stakeholders in groundwater protection in the Vosvozis catchment in Greece.

    PubMed

    Stefanopoulos, Kyriakos; Yang, Hong; Gemitzi, Alexandra; Tsagarakis, Konstantinos P

    2014-02-01

    Multi-Attribute Value Theory (MAVT) was used to investigate stakeholders' preferences and beliefs in ameliorating a deteriorating ecosystem, i.e. Vosvozis River and Ismarida Lake in Northeastern Greece. Various monetary and environmental criteria were evaluated with scores and weights by different stakeholder groups and key individuals such as farmers, fishermen, entrepreneurs, residents and ecologists to elicit their preferences concerning alternative protection scenarios. The ultimate objective was to propose policy recommendations for a sustainable water resources management for the case study area. The analysis revealed an overwhelming agreement among stakeholders regarding the dire need for immediate actions in order to preserve and enhance Vosvozis ecosystem. With a two stage evaluation process, the MAVT analysis led to a high consensus among the stakeholders on the alternative that favors water recycling from the wastewater treatment plant combined with small dams for rainwater harvesting. PMID:24121661

  14. Application of the Multi-Attribute Value Theory for engaging stakeholders in groundwater protection in the Vosvozis catchment in Greece.

    PubMed

    Stefanopoulos, Kyriakos; Yang, Hong; Gemitzi, Alexandra; Tsagarakis, Konstantinos P

    2014-02-01

    Multi-Attribute Value Theory (MAVT) was used to investigate stakeholders' preferences and beliefs in ameliorating a deteriorating ecosystem, i.e. Vosvozis River and Ismarida Lake in Northeastern Greece. Various monetary and environmental criteria were evaluated with scores and weights by different stakeholder groups and key individuals such as farmers, fishermen, entrepreneurs, residents and ecologists to elicit their preferences concerning alternative protection scenarios. The ultimate objective was to propose policy recommendations for a sustainable water resources management for the case study area. The analysis revealed an overwhelming agreement among stakeholders regarding the dire need for immediate actions in order to preserve and enhance Vosvozis ecosystem. With a two stage evaluation process, the MAVT analysis led to a high consensus among the stakeholders on the alternative that favors water recycling from the wastewater treatment plant combined with small dams for rainwater harvesting.

  15. The Multi-Attribute Task Battery II (MATB-II) Software for Human Performance and Workload Research: A User's Guide

    NASA Technical Reports Server (NTRS)

    Santiago-Espada, Yamira; Myer, Robert R.; Latorella, Kara A.; Comstock, James R., Jr.

    2011-01-01

    The Multi-Attribute Task Battery (MAT Battery). is a computer-based task designed to evaluate operator performance and workload, has been redeveloped to operate in Windows XP Service Pack 3, Windows Vista and Windows 7 operating systems.MATB-II includes essentially the same tasks as the original MAT Battery, plus new configuration options including a graphical user interface for controlling modes of operation. MATB-II can be executed either in training or testing mode, as defined by the MATB-II configuration file. The configuration file also allows set up of the default timeouts for the tasks, the flow rates of the pumps and tank levels of the Resource Management (RESMAN) task. MATB-II comes with a default event file that an experimenter can modify and adapt

  16. Making Insulation Decisions through Mathematical Modeling

    ERIC Educational Resources Information Center

    Yanik, H. Bahadir; Memis, Yasin

    2014-01-01

    Engaging students in studies about conservation and sustainability can support their understanding of making environmental conscious decisions to conserve Earth. This article aims to contribute these efforts and direct students' attention to how they can use mathematics to make environmental decisions. Contributors to iSTEM: Integrating…

  17. Use of Multi-attribute Utility Functions in Evaluating Security Systems

    SciTech Connect

    Meyers, C; Lamont, A; Sicherman, A

    2008-06-13

    In analyzing security systems, we are concerned with protecting a building or facility from an attack by an adversary. Typically, we address the possibility that an adversary could enter a building and cause damage resulting in an immediate loss of life, or at least substantial disruption in the operations of the facility. In response to this setting, we implement security systems including devices, procedures, and facility upgrades designed to (a) prevent the adversary from entering, (b) detect and neutralize him if he does enter, and (c) harden the facility to minimize damage if an attack is carried out successfully. Although we have cast this in terms of physical protection of a building, the same general approach can be applied to non-physical attacks such as cyber attacks on a computer system. A rigorous analytic process is valuable for quantitatively evaluating an existing system, identifying its weaknesses, and proposing useful upgrades. As such, in this paper we describe an approach to assess the degree of overall protection provided by security measures. Our approach evaluates the effectiveness of the individual components of the system, describes how the components work together, and finally assesses the degree of overall protection achieved. This model can then be used to quantify the amount of protection provided by existing security measures, as well as to address proposed upgrades to the system and help identify a robust and cost effective set of improvements. Within the model, we use multiattribute utility functions to perform the overall evaluations of the system.

  18. Incorporating affective bias in models of human decision making

    NASA Technical Reports Server (NTRS)

    Nygren, Thomas E.

    1991-01-01

    Research on human decision making has traditionally focused on how people actually make decisions, how good their decisions are, and how their decisions can be improved. Recent research suggests that this model is inadequate. Affective as well as cognitive components drive the way information about relevant outcomes and events is perceived, integrated, and used in the decision making process. The affective components include how the individual frames outcomes as good or bad, whether the individual anticipates regret in a decision situation, the affective mood state of the individual, and the psychological stress level anticipated or experienced in the decision situation. A focus of the current work has been to propose empirical studies that will attempt to examine in more detail the relationships between the latter two critical affective influences (mood state and stress) on decision making behavior.

  19. Seasonal to Interannual Hydroclimatic Prediction: From Identification of Dynamics to Multi-Attribute Forecasts

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2004-05-01

    Dynamical and Statistical Models for seasonal to interannual forecasts of key hydroclimatic state variables have been explored in recent years. Many authors report success based on typical performance metrics. Thus, a casual external observer may feel that we are at the verge of a breakthrough in hydrologic prediction, and hence in water resource management. This talk explores this notion, with particular regard to the multi-scale (time and space) nature of hydrologic fluxes, and of the management variables and styles that the water resources community has become accustomed to. A conceptual framework for the nascent predictive science of hydroclimatology is developed and exemplified. Aspects of the dynamics that need to be understood, and a unifying estimation/inference framework are proposed.

  20. Seasonal to Interannual Hydroclimatic Prediction: From Identification of Dynamics to Multi-Attribute Forecasts

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2004-12-01

    Dynamical and Statistical Models for seasonal to interannual forecasts of key hydroclimatic state variables have been explored in recent years. Many authors report success based on typical performance metrics. Thus, a casual external observer may feel that we are at the verge of a breakthrough in hydrologic prediction, and hence in water resource management. This talk explores this notion, with particular regard to the multi-scale (time and space) nature of hydrologic fluxes, and of the management variables and styles that the water resources community has become accustomed to. A conceptual framework for the nascent predictive science of hydroclimatology is developed and exemplified. Aspects of the dynamics that need to be understood, and a unifying estimation/inference framework are proposed.

  1. Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs

    SciTech Connect

    Gary Mavko

    2004-11-30

    is likely to be more intense near faults--sometimes referred to as the damaged zone. Yet another constraint, based on world-wide observations, is that the maximum likely fracture density increases with depth in a well-defined way. Defining these prior constrains has several benefits: they lead to a priori probability distributions of fractures, that are important for objective statistical integration; they limit the number of geologic hypotheses that need to be theoretically modeled; they provide plausible models for fracture distributions below the seismic resolution. The second element was theoretical rock physics modeling of optimal seismic attributes, including offset and azimuth dependence of traveltime, amplitude, and impedance signatures of anisotropic fractured rocks. The suggested workflow is to begin with an elastic earth model, based on well logs, theoretically add fractures to the likely facies as defined by the geologic prior information, and then compute synthetic seismic traces and attributes, including variations in P and S-wave velocities, Poisson's ratio, reflectivity, travel time, attenuation, and anisotropies of these parameters. This workflow is done in a Monte-Carlo fashion, yielding ranges of expected fracture signatures, and allowing realistic assessments of uncertainty to be honored. The third element was statistical integration of the geophysical data and prior constraints to map fracture intensity and orientations, along with uncertainties. A Bayesian framework was developed that allowed systematic integration of the prior constraints, the theoretical relations between fractures and their seismic signatures, and the various observed seismic observations. The integration scheme was successfully applied on an East Texas field site. The primary benefit from the study was the optimization and refinement of practical workflows for improved geophysical characterization of natural fractures and for quantifying the uncertainty of these

  2. The medical decision model and decision maker tools for management of radiological and nuclear incidents.

    PubMed

    Koerner, John F; Coleman, C Norman; Murrain-Hill, Paula; FitzGerald, Denis J; Sullivan, Julie M

    2014-06-01

    Effective decision making during a rapidly evolving emergency such as a radiological or nuclear incident requires timely interim decisions and communications from onsite decision makers while further data processing, consultation, and review are ongoing by reachback experts. The authors have recently proposed a medical decision model for use during a radiological or nuclear disaster, which is similar in concept to that used in medical care, especially when delay in action can have disastrous effects. For decision makers to function most effectively during a complex response, they require access to onsite subject matter experts who can provide information, recommendations, and participate in public communication efforts. However, in the time before this expertise is available or during the planning phase, just-in-time tools are essential that provide critical overview of the subject matter written specifically for the decision makers. Recognizing the complexity of the science, risk assessment, and multitude of potential response assets that will be required after a nuclear incident, the Office of the Assistant Secretary for Preparedness and Response, in collaboration with other government and non-government experts, has prepared a practical guide for decision makers. This paper illustrates how the medical decision model process could facilitate onsite decision making that includes using the deliberative reachback process from science and policy experts and describes the tools now available to facilitate timely and effective incident management. PMID:24776895

  3. A Layered Decision Model for Cost-Effective System Security

    SciTech Connect

    Wei, Huaqiang; Alves-Foss, James; Soule, Terry; Pforsich, Hugh; Zhang, Du; Frincke, Deborah A.

    2008-10-01

    System security involves decisions in at least three areas: identification of well-defined security policies, selection of cost-effective defence strategies, and implementation of real-time defence tactics. Although choices made in each of these areas affect the others, existing decision models typically handle these three decision areas in isolation. There is no comprehensive tool that can integrate them to provide a single efficient model for safeguarding a network. In addition, there is no clear way to determine which particular combinations of defence decisions result in cost-effective solutions. To address these problems, this paper introduces a Layered Decision Model (LDM) for use in deciding how to address defence decisions based on their cost-effectiveness. To validate the LDM and illustrate how it is used, we used simulation to test model rationality and applied the LDM to the design of system security for an e-commercial business case.

  4. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    SciTech Connect

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.; Zuffranieri, Jason V.; Paananen, Orman Henrie; Jones, Scott A.; Ortner, Juergen G.; Brewer, Jeffrey D.; Valdez, Maximo M.

    2005-10-01

    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carry out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.

  5. Evolution of quantum-like modeling in decision making processes

    SciTech Connect

    Khrennikova, Polina

    2012-12-18

    The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schroedinger equation to describe the evolution of people's mental states. A shortcoming of Schroedinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.

  6. Evolution of quantum-like modeling in decision making processes

    NASA Astrophysics Data System (ADS)

    Khrennikova, Polina

    2012-12-01

    The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schrödinger equation to describe the evolution of people's mental states. A shortcoming of Schrödinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.

  7. LATER models of neural decision behavior in choice tasks

    PubMed Central

    Noorani, Imran

    2014-01-01

    Reaction time has been increasingly used over the last few decades to provide information on neural decision processes: it is a direct reflection of decision time. Saccades provide an excellent paradigm for this because many of them can be made in a very short time and the underlying neural pathways are relatively well-known. LATER (linear approach to threshold with ergodic rate) is a model originally devised to explain reaction time distributions in simple decision tasks. Recently, however it is being extended to increasingly more advanced tasks, including those with decision errors and those requiring voluntary control such as the antisaccade task and those where sequential decisions are required. The strength of this modeling approach lies in its detailed, quantitative predictions of behavior, yet LATER models still retain their conceptual simplicity that made LATER initially successful in explaining reaction times in simple decision tasks. PMID:25202242

  8. Modeling Adversaries in Counterterrorism Decisions Using Prospect Theory.

    PubMed

    Merrick, Jason R W; Leclerc, Philip

    2016-04-01

    Counterterrorism decisions have been an intense area of research in recent years. Both decision analysis and game theory have been used to model such decisions, and more recently approaches have been developed that combine the techniques of the two disciplines. However, each of these approaches assumes that the attacker is maximizing its utility. Experimental research shows that human beings do not make decisions by maximizing expected utility without aid, but instead deviate in specific ways such as loss aversion or likelihood insensitivity. In this article, we modify existing methods for counterterrorism decisions. We keep expected utility as the defender's paradigm to seek for the rational decision, but we use prospect theory to solve for the attacker's decision to descriptively model the attacker's loss aversion and likelihood insensitivity. We study the effects of this approach in a critical decision, whether to screen containers entering the United States for radioactive materials. We find that the defender's optimal decision is sensitive to the attacker's levels of loss aversion and likelihood insensitivity, meaning that understanding such descriptive decision effects is important in making such decisions.

  9. Modeling Adversaries in Counterterrorism Decisions Using Prospect Theory.

    PubMed

    Merrick, Jason R W; Leclerc, Philip

    2016-04-01

    Counterterrorism decisions have been an intense area of research in recent years. Both decision analysis and game theory have been used to model such decisions, and more recently approaches have been developed that combine the techniques of the two disciplines. However, each of these approaches assumes that the attacker is maximizing its utility. Experimental research shows that human beings do not make decisions by maximizing expected utility without aid, but instead deviate in specific ways such as loss aversion or likelihood insensitivity. In this article, we modify existing methods for counterterrorism decisions. We keep expected utility as the defender's paradigm to seek for the rational decision, but we use prospect theory to solve for the attacker's decision to descriptively model the attacker's loss aversion and likelihood insensitivity. We study the effects of this approach in a critical decision, whether to screen containers entering the United States for radioactive materials. We find that the defender's optimal decision is sensitive to the attacker's levels of loss aversion and likelihood insensitivity, meaning that understanding such descriptive decision effects is important in making such decisions. PMID:25039254

  10. Relevance of a Managerial Decision-Model to Educational Administration.

    ERIC Educational Resources Information Center

    Lundin, Edward.; Welty, Gordon

    The rational model of classical economic theory assumes that the decision maker has complete information on alternatives and consequences, and that he chooses the alternative that maximizes expected utility. This model does not allow for constraints placed on the decision maker resulting from lack of information, organizational pressures,…

  11. A Diffusion Model Account of the Lexical Decision Task

    ERIC Educational Resources Information Center

    Ratcliff, Roger; Gomez, Pablo; McKoon, Gail

    2004-01-01

    The diffusion model for 2-choice decisions (R. Ratcliff, 1978) was applied to data from lexical decision experiments in which word frequency, proportion of high- versus low-frequency words, and type of nonword were manipulated. The model gave a good account of all of the dependent variables--accuracy, correct and error response times, and their…

  12. Implications of the KONVERGENCE Model for Difficult Cleanup Decisions

    SciTech Connect

    Piet, Steven James; Dakins, Maxine Ellen; Gibson, Patrick Lavern; Joe, Jeffrey Clark; Kerr, Thomas A; Nitschke, Robert Leon

    2002-08-04

    Abstract—Some cleanup decisions, such as cleanup of intractable contaminated sites or disposal of spent nuclear fuel, have proven difficult to make. Such decisions face high resistance to agreement from stakeholders possibly because they do not trust the decision makers, view the consequences of being wrong as too high, etc. Our project’s goal is to improve sciencebased cleanup decision-making. This includes diagnosing intractable situations, as a step to identifying a path toward sustainable solutions. Companion papers describe the underlying philosophy of the KONVERGENCE Model for Sustainable Decisions,1 and the overall framework and process steps.2 Where knowledge, values, and resources converge (the K, V, and R in KONVERGENCE), you will find a sustainable decision – a decision that works over time. For intractable cases, serious consideration of the adaptable class of alternatives is warranted – if properly implemented and packaged.

  13. Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics

    PubMed Central

    Rogers, Richard S; Nightlinger, Nancy S; Livingston, Brittney; Campbell, Phil; Bailey, Robert; Balland, Alain

    2015-01-01

    Regulatory agencies have recently recommended a Quality by Design (QbD) approach for the manufacturing of therapeutic molecules. A QbD strategy requires deep understanding at the molecular level of the attributes that are crucial for safety and efficacy and for insuring that the desired quality of the purified protein drug product is met at the end of the manufacturing process. A mass spectrometry (MS)-based approach to simultaneously monitor the extensive array of product quality attributes (PQAs) present on therapeutic molecules has been developed. This multi-attribute method (MAM) uses a combination of high mass accuracy / high resolution MS data generated by Orbitrap technology and automated identification and relative quantification of PQAs with dedicated software (Pinpoint). The MAM has the potential to replace several conventional electrophoretic and chromatographic methods currently used in Quality Control to release therapeutic molecules. The MAM represents an optimized analytical solution to focus on the attributes of the therapeutic molecule essential for function and implement QbD principles across process development, manufacturing and drug disposition. PMID:26186204

  14. A Review of the Development and Application of Generic Multi-Attribute Utility Instruments for Paediatric Populations.

    PubMed

    Chen, Gang; Ratcliffe, Julie

    2015-10-01

    Multi-attribute utility instruments (MAUIs) are increasingly being used as a means of quantifying utility for the calculation of quality-adjusted life-years within the context of cost utility analysis. Traditionally, MAUIs have been developed and applied in adult populations. However, increasingly, researchers in health economics and other disciplines are recognising the importance of the measurement and valuation of health in both children and adolescents. Presently, there are nine generic MAUIs available internationally that have been used in paediatric populations: the Quality of Well-Being Scale (QWB), the Health Utility Index Mark 2 (HUI2), the HUI3, the Sixteen-dimensional measure of health-related quality of life (HRQoL) (16D), the Seventeen-dimensional measure of HRQoL (17D), the Assessment of Quality of Life 6-Dimension (AQoL-6D) Adolescent, the Child Health Utility 9D (CHU9D), the EQ-5D Youth version (EQ-5D-Y) and the Adolescent Health Utility Measure (AHUM). This paper critically reviews the development and application of the above nine MAUIs and discusses the specific challenges of health utility measurement in children and adolescents. Areas for further research relating to the development and application of generic MAUIs in paediatric populations are highlighted.

  15. Modeling uncertainty in requirements engineering decision support

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Maynard-Zhang, Pedrito; Kiper, James D.

    2005-01-01

    One inherent characteristic of requrements engineering is a lack of certainty during this early phase of a project. Nevertheless, decisions about requirements must be made in spite of this uncertainty. Here we describe the context in which we are exploring this, and some initial work to support elicitation of uncertain requirements, and to deal with the combination of such information from multiple stakeholders.

  16. Validating Multivariate Decision Modeling for Educational Planning.

    ERIC Educational Resources Information Center

    Wholeben, Brent Edward

    Complex decision-making environments often demand that a range of alternative strategies be identified and compared for their shared value in achieving desired ends. Simple parametric statistical procedures such as analysis of variance and discriminant function analysis can be used in such situations to compare (using selected criteria) the value…

  17. A quantitative risk model for early lifecycle decision making

    NASA Technical Reports Server (NTRS)

    Feather, M. S.; Cornford, S. L.; Dunphy, J.; Hicks, K.

    2002-01-01

    Decisions made in the earliest phases of system development have the most leverage to influence the success of the entire development effort, and yet must be made when information is incomplete and uncertain. We have developed a scalable cost-benefit model to support this critical phase of early-lifecycle decision-making.

  18. Medical Specialty Decision Model: Utilizing Social Cognitive Career Theory

    ERIC Educational Resources Information Center

    Gibson, Denise D.; Borges, Nicole J.

    2004-01-01

    Objectives: The purpose of this study was to develop a working model to explain medical specialty decision-making. Using Social Cognitive Career Theory, we examined personality, medical specialty preferences, job satisfaction, and expectations about specialty choice to create a conceptual framework to guide specialty choice decision-making.…

  19. Beyond Decision Making: Cultural Ideology as Heuristic Paradigmatic Models.

    ERIC Educational Resources Information Center

    Whitley, L. Darrell

    A paradigmatic model of cultural ideology provides a context for understanding the relationship between decision-making and personal and cultural rationality. Cultural rules or heuristics exist which indicate that many decisions can be made on the basis of established strategy rather than continual analytical calculations. When an optimal solution…

  20. Ethnographic Decision Tree Modeling: A Research Method for Counseling Psychology.

    ERIC Educational Resources Information Center

    Beck, Kirk A.

    2005-01-01

    This article describes ethnographic decision tree modeling (EDTM; C. H. Gladwin, 1989) as a mixed method design appropriate for counseling psychology research. EDTM is introduced and located within a postpositivist research paradigm. Decision theory that informs EDTM is reviewed, and the 2 phases of EDTM are highlighted. The 1st phase, model…

  1. Validation of a transparent decision model to rate drug interactions

    PubMed Central

    2012-01-01

    Background Multiple databases provide ratings of drug-drug interactions. The ratings are often based on different criteria and lack background information on the decision making process. User acceptance of rating systems could be improved by providing a transparent decision path for each category. Methods We rated 200 randomly selected potential drug-drug interactions by a transparent decision model developed by our team. The cases were generated from ward round observations and physicians’ queries from an outpatient setting. We compared our ratings to those assigned by a senior clinical pharmacologist and by a standard interaction database, and thus validated the model. Results The decision model rated consistently with the standard database and the pharmacologist in 94 and 156 cases, respectively. In two cases the model decision required correction. Following removal of systematic model construction differences, the DM was fully consistent with other rating systems. Conclusion The decision model reproducibly rates interactions and elucidates systematic differences. We propose to supply validated decision paths alongside the interaction rating to improve comprehensibility and to enable physicians to interpret the ratings in a clinical context. PMID:22950884

  2. A spiral model of musical decision-making

    PubMed Central

    Bangert, Daniel; Schubert, Emery; Fabian, Dorottya

    2014-01-01

    This paper describes a model of how musicians make decisions about performing notated music. The model builds on psychological theories of decision-making and was developed from empirical studies of Western art music performance that aimed to identify intuitive and deliberate processes of decision-making, a distinction consistent with dual-process theories of cognition. The model proposes that the proportion of intuitive (Type 1) and deliberate (Type 2) decision-making processes changes with increasing expertise and conceptualizes this change as movement along a continually narrowing upward spiral where the primary axis signifies principal decision-making type and the vertical axis marks level of expertise. The model is intended to have implications for the development of expertise as described in two main phases. The first is movement from a primarily intuitive approach in the early stages of learning toward greater deliberation as analytical techniques are applied during practice. The second phase occurs as deliberate decisions gradually become automatic (procedural), increasing the role of intuitive processes. As a performer examines more issues or reconsiders decisions, the spiral motion toward the deliberate side and back to the intuitive is repeated indefinitely. With increasing expertise, the spiral tightens to signify greater control over decision type selection. The model draws on existing theories, particularly Evans’ (2011) Intervention Model of dual-process theories, Cognitive Continuum Theory Hammond et al. (1987), Hammond (2007), Baylor’s (2001) U-shaped model for the development of intuition by level of expertise. By theorizing how musical decision-making operates over time and with increasing expertise, this model could be used as a framework for future research in music performance studies and performance science more generally. PMID:24795673

  3. Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS): Classifying Multi-Attribute Biomedical Data

    PubMed Central

    Romo Bucheli, David Edmundo; Madabhushi, Anant

    2016-01-01

    Medical diagnostics is often a multi-attribute problem, necessitating sophisticated tools for analyzing high-dimensional biomedical data. Mining this data often results in two crucial bottlenecks: 1) high dimensionality of features used to represent rich biological data and 2) small amounts of labelled training data due to the expense of consulting highly specific medical expertise necessary to assess each study. Currently, no approach that we are aware of has attempted to use active learning in the context of dimensionality reduction approaches for improving the construction of low dimensional representations. We present our novel methodology, AdDReSS (Adaptive Dimensionality Reduction with Semi-Supervision), to demonstrate that fewer labeled instances identified via AL in embedding space are needed for creating a more discriminative embedding representation compared to randomly selected instances. We tested our methodology on a wide variety of domains ranging from prostate gene expression, ovarian proteomic spectra, brain magnetic resonance imaging, and breast histopathology. Across these various high dimensional biomedical datasets with 100+ observations each and all parameters considered, the median classification accuracy across all experiments showed AdDReSS (88.7%) to outperform SSAGE, a SSDR method using random sampling (85.5%), and Graph Embedding (81.5%). Furthermore, we found that embeddings generated via AdDReSS achieved a mean 35.95% improvement in Raghavan efficiency, a measure of learning rate, over SSAGE. Our results demonstrate the value of AdDReSS to provide low dimensional representations of high dimensional biomedical data while achieving higher classification rates with fewer labelled examples as compared to without active learning. PMID:27421116

  4. A Decision Support Model and Tool to Assist Financial Decision-Making in Universities

    ERIC Educational Resources Information Center

    Bhayat, Imtiaz; Manuguerra, Maurizio; Baldock, Clive

    2015-01-01

    In this paper, a model and tool is proposed to assist universities and other mission-based organisations to ascertain systematically the optimal portfolio of projects, in any year, meeting the organisations risk tolerances and available funds. The model and tool presented build on previous work on university operations and decision support systems…

  5. Rationality Validation of a Layered Decision Model for Network Defense

    SciTech Connect

    Wei, Huaqiang; Alves-Foss, James; Zhang, Du; Frincke, Deb

    2007-08-31

    We propose a cost-effective network defense strategy built on three key: three decision layers: security policies, defense strategies, and real-time defense tactics for countering immediate threats. A layered decision model (LDM) can be used to capture this decision process. The LDM helps decision-makers gain insight into the hierarchical relationships among inter-connected entities and decision types, and supports the selection of cost-effective defense mechanisms to safeguard computer networks. To be effective as a business tool, it is first necessary to validate the rationality of model before applying it to real-world business cases. This paper describes our efforts in validating the LDM rationality through simulation.

  6. Decision making under uncertainty: a neural model based on partially observable markov decision processes.

    PubMed

    Rao, Rajesh P N

    2010-01-01

    A fundamental problem faced by animals is learning to select actions based on noisy sensory information and incomplete knowledge of the world. It has been suggested that the brain engages in Bayesian inference during perception but how such probabilistic representations are used to select actions has remained unclear. Here we propose a neural model of action selection and decision making based on the theory of partially observable Markov decision processes (POMDPs). Actions are selected based not on a single "optimal" estimate of state but on the posterior distribution over states (the "belief" state). We show how such a model provides a unified framework for explaining experimental results in decision making that involve both information gathering and overt actions. The model utilizes temporal difference (TD) learning for maximizing expected reward. The resulting neural architecture posits an active role for the neocortex in belief computation while ascribing a role to the basal ganglia in belief representation, value computation, and action selection. When applied to the random dots motion discrimination task, model neurons representing belief exhibit responses similar to those of LIP neurons in primate neocortex. The appropriate threshold for switching from information gathering to overt actions emerges naturally during reward maximization. Additionally, the time course of reward prediction error in the model shares similarities with dopaminergic responses in the basal ganglia during the random dots task. For tasks with a deadline, the model learns a decision making strategy that changes with elapsed time, predicting a collapsing decision threshold consistent with some experimental studies. The model provides a new framework for understanding neural decision making and suggests an important role for interactions between the neocortex and the basal ganglia in learning the mapping between probabilistic sensory representations and actions that maximize rewards.

  7. A collective decision model involving vague concepts and linguistic expressions.

    PubMed

    Tang, Yongchuan

    2008-04-01

    In linguistic collective decision, the main objective is to select the best alternatives using linguistic evaluations provided by multiple experts. This paper presents a collective decision model, which is able to deal with complex linguistic evaluations. In this decision model, the linguistic evaluations are represented by linguistic expressions which are the logic formulas obtained by applying logic connectives to the set of basic linguistic labels. The vagueness of each linguistic expression is implicitly captured by a semantic similarity relation rather than a fuzzy set, since each linguistic expression determines a semantic similarity distribution on the set of basic linguistic labels. The basic idea of this collective decision model is to convert the semantic similarity distributions determined by linguistic expressions into probability distributions of the corresponding linguistic expressions. The main advantage of this proposed model is its capability to deal with complex linguistic evaluations and partial semantic overlapping among neighboring linguistic labels. PMID:18348924

  8. An analysis of symbolic linguistic computing models in decision making

    NASA Astrophysics Data System (ADS)

    Rodríguez, Rosa M.; Martínez, Luis

    2013-01-01

    It is common that experts involved in complex real-world decision problems use natural language for expressing their knowledge in uncertain frameworks. The language is inherent vague, hence probabilistic decision models are not very suitable in such cases. Therefore, other tools such as fuzzy logic and fuzzy linguistic approaches have been successfully used to model and manage such vagueness. The use of linguistic information implies to operate with such a type of information, i.e. processes of computing with words (CWW). Different schemes have been proposed to deal with those processes, and diverse symbolic linguistic computing models have been introduced to accomplish the linguistic computations. In this paper, we overview the relationship between decision making and CWW, and focus on symbolic linguistic computing models that have been widely used in linguistic decision making to analyse if all of them can be considered inside of the CWW paradigm.

  9. A Diffusion Model Account of the Lexical Decision Task

    PubMed Central

    Ratcliff, Roger; Gomez, Pablo; McKoon, Gail

    2005-01-01

    The diffusion model for 2-choice decisions (R. Ratcliff, 1978) was applied to data from lexical decision experiments in which word frequency, proportion of high- versus low-frequency words, and type of nonword were manipulated. The model gave a good account of all of the dependent variables—accuracy, correct and error response times, and their distributions—and provided a description of how the component processes involved in the lexical decision task were affected by experimental variables. All of the variables investigated affected the rate at which information was accumulated from the stimuli—called drift rate in the model. The different drift rates observed for the various classes of stimuli can all be explained by a 2-dimensional signal-detection representation of stimulus information. The authors discuss how this representation and the diffusion model’s decision process might be integrated with current models of lexical access. PMID:14756592

  10. A Representation for Gaining Insight into Clinical Decision Models

    PubMed Central

    Jimison, Holly B.

    1988-01-01

    For many medical domains uncertainty and patient preferences are important components of decision making. Decision theory is useful as a representation for such medical models in computer decision aids, but the methodology has typically had poor performance in the areas of explanation and user interface. The additional representation of probabilities and utilities as random variables serves to provide a framework for graphical and text insight into complicated decision models. The approach allows for efficient customization of a generic model that describes the general patient population of interest to a patient- specific model. Monte Carlo simulation is used to calculate the expected value of information and sensitivity for each model variable, thus providing a metric for deciding what to emphasize in the graphics and text summary. The computer-generated explanation includes variables that are sensitive with respect to the decision or that deviate significantly from what is typically observed. These techniques serve to keep the assessment and explanation of the patient's decision model concise, allowing the user to focus on the most important aspects for that patient.

  11. Reduced model-based decision-making in schizophrenia.

    PubMed

    Culbreth, Adam J; Westbrook, Andrew; Daw, Nathaniel D; Botvinick, Matthew; Barch, Deanna M

    2016-08-01

    Individuals with schizophrenia have a diminished ability to use reward history to adaptively guide behavior. However, tasks traditionally used to assess such deficits often rely on multiple cognitive and neural processes, leaving etiology unresolved. In the current study, we adopted recent computational formalisms of reinforcement learning to distinguish between model-based and model-free decision-making in hopes of specifying mechanisms associated with reinforcement-learning dysfunction in schizophrenia. Under this framework, decision-making is model-free to the extent that it relies solely on prior reward history, and model-based if it relies on prospective information such as motivational state, future consequences, and the likelihood of obtaining various outcomes. Model-based and model-free decision-making was assessed in 33 schizophrenia patients and 30 controls using a 2-stage 2-alternative forced choice task previously demonstrated to discern individual differences in reliance on the 2 forms of reinforcement-learning. We show that, compared with controls, schizophrenia patients demonstrate decreased reliance on model-based decision-making. Further, parameter estimates of model-based behavior correlate positively with IQ and working memory measures, suggesting that model-based deficits seen in schizophrenia may be partially explained by higher-order cognitive deficits. These findings demonstrate specific reinforcement-learning and decision-making deficits and thereby provide valuable insights for understanding disordered behavior in schizophrenia. (PsycINFO Database Record

  12. Decision making in bipolar disorder: a cognitive modeling approach.

    PubMed

    Yechiam, Eldad; Hayden, Elizabeth P; Bodkins, Misty; O'Donnell, Brian F; Hetrick, William P

    2008-11-30

    A formal modeling approach was used to characterize decision-making processes in bipolar disorder. Decision making was examined in 28 bipolar patients (14 acute and 14 remitted) and 25 controls using the Iowa Gambling Task (Bechara et al., 1994), a decision-making task used for assessing cognitive impulsivity. To disentangle motivational and cognitive aspects of decision-making processes, we applied a formal cognitive model to the performance on the Iowa Gambling Task. The model has three parameters: The relative impact of rewards and punishments on evaluations, the impact of recent and past payoffs, and the degree of choice consistency. The results indicated that acute bipolar patients were characterized by low choice consistency, or a tendency to make erratic choices. Low choice consistency improved the prediction of acute bipolar disorder beyond that provided by cognitive functioning and self-report measures of personality and temperament. PMID:18848361

  13. Decision making in bipolar disorder: a cognitive modeling approach.

    PubMed

    Yechiam, Eldad; Hayden, Elizabeth P; Bodkins, Misty; O'Donnell, Brian F; Hetrick, William P

    2008-11-30

    A formal modeling approach was used to characterize decision-making processes in bipolar disorder. Decision making was examined in 28 bipolar patients (14 acute and 14 remitted) and 25 controls using the Iowa Gambling Task (Bechara et al., 1994), a decision-making task used for assessing cognitive impulsivity. To disentangle motivational and cognitive aspects of decision-making processes, we applied a formal cognitive model to the performance on the Iowa Gambling Task. The model has three parameters: The relative impact of rewards and punishments on evaluations, the impact of recent and past payoffs, and the degree of choice consistency. The results indicated that acute bipolar patients were characterized by low choice consistency, or a tendency to make erratic choices. Low choice consistency improved the prediction of acute bipolar disorder beyond that provided by cognitive functioning and self-report measures of personality and temperament.

  14. RNA search with decision trees and partial covariance models.

    PubMed

    Smith, Jennifer A

    2009-01-01

    The use of partial covariance models to search for RNA family members in genomic sequence databases is explored. The partial models are formed from contiguous subranges of the overall RNA family multiple alignment columns. A binary decision-tree framework is presented for choosing the order to apply the partial models and the score thresholds on which to make the decisions. The decision trees are chosen to minimize computation time subject to the constraint that all of the training sequences are passed to the full covariance model for final evaluation. Computational intelligence methods are suggested to select the decision tree since the tree can be quite complex and there is no obvious method to build the tree in these cases. Experimental results from seven RNA families shows execution times of 0.066-0.268 relative to using the full covariance model alone. Tests on the full sets of known sequences for each family show that at least 95 percent of these sequences are found for two families and 100 percent for five others. Since the full covariance model is run on all sequences accepted by the partial model decision tree, the false alarm rate is at least as low as that of the full model alone.

  15. Climate change decision-making: Model & parameter uncertainties explored

    SciTech Connect

    Dowlatabadi, H.; Kandlikar, M.; Linville, C.

    1995-12-31

    A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.

  16. Evaluating Child Welfare policies with decision-analytic simulation models

    PubMed Central

    Goldhaber-Fiebert, Jeremy D.; Bailey, Stephanie L.; Hurlburt, Michael S.; Zhang, Jinjin; Snowden, Lonnie R.; Wulczyn, Fred; Landsverk, John; Horwitz, Sarah M.

    2013-01-01

    The objective was to demonstrate decision-analytic modeling in support of Child Welfare policymakers considering implementing evidence-based interventions. Outcomes included permanency (e.g., adoptions) and stability (e.g., foster placement changes). Analyses of a randomized trial of KEEP -- a foster parenting intervention -- and NSCAW-1 estimated placement change rates and KEEP's effects. A microsimulation model generalized these findings to other Child Welfare systems. The model projected that KEEP could increase permanency and stability, identifying strategies targeting higher-risk children and geographical regions that achieve benefits efficiently. Decision-analytic models enable planners to gauge the value of potential implementations. PMID:21861204

  17. A Conditional Model of Evidence-Based Decision Making

    PubMed Central

    Falzer, Paul R.; Garman, D. Melissa

    2009-01-01

    Rationale Efforts to describe how individual treatment decisions are informed by systematic knowledge have been hindered by a standard that gauges the quality of clinical decisions by their adherence to guidelines and evidence-based practices. This paper tests a new contextual standard that gauges the incorporation of knowledge into practice and develops a model of evidence-based decision making. Aims and objectives Previous work found that the forecasted outcome of a treatment guideline exerts a highly significant influence on how it is used in making decisions. This study proposed that forecasted outcomes affect the recognition of a treatment scenario, and this recognition triggers distinct contextual decision strategies. Method N=21 volunteers from a psychiatric residency program responded to 64 case vignettes, 16 in each of four treatment scenarios. The vignettes represented a fully balanced within-subjects design that included guideline switching criteria and patient-specific factors. For each vignette, participants indicated whether they endorsed the guideline’s recommendation. Results Clinicians employed consistent contextual decision strategies in responding to clearly positive or negative forecasts. When forecasts were more ambiguous or risky, their strategies became complex and relatively inconsistent. Conclusion The results support a three step model of evidence-based decision making, in which clinicians recognize a decision scenario, apply a simple contextual strategy, then if necessary engage a more complex strategy to resolve discrepancies between general guidelines and specific cases. The paper concludes by noting study limitations and discussing implications of the model for future research in clinical and shared decision making, training, and guideline development. PMID:20367718

  18. Critical infrastructure protection decision support system decision model : overview and quick-start user's guide.

    SciTech Connect

    Samsa, M.; Van Kuiken, J.; Jusko, M.; Decision and Information Sciences

    2008-12-01

    The Critical Infrastructure Protection Decision Support System Decision Model (CIPDSS-DM) is a useful tool for comparing the effectiveness of alternative risk-mitigation strategies on the basis of CIPDSS consequence scenarios. The model is designed to assist analysts and policy makers in evaluating and selecting the most effective risk-mitigation strategies, as affected by the importance assigned to various impact measures and the likelihood of an incident. A typical CIPDSS-DM decision map plots the relative preference of alternative risk-mitigation options versus the annual probability of an undesired incident occurring once during the protective life of the investment, assumed to be 20 years. The model also enables other types of comparisons, including a decision map that isolates a selected impact variable and displays the relative preference for the options of interest--parameterized on the basis of the contribution of the isolated variable to total impact, as well as the likelihood of the incident. Satisfaction/regret analysis further assists the analyst or policy maker in evaluating the confidence with which one option can be selected over another.

  19. Measuring and modeling behavioral decision dynamics in collective evacuation.

    PubMed

    Carlson, Jean M; Alderson, David L; Stromberg, Sean P; Bassett, Danielle S; Craparo, Emily M; Guiterrez-Villarreal, Francisco; Otani, Thomas

    2014-01-01

    Identifying and quantifying factors influencing human decision making remains an outstanding challenge, impacting the performance and predictability of social and technological systems. In many cases, system failures are traced to human factors including congestion, overload, miscommunication, and delays. Here we report results of a behavioral network science experiment, targeting decision making in a natural disaster. In a controlled laboratory setting, our results quantify several key factors influencing individual evacuation decision making in a controlled laboratory setting. The experiment includes tensions between broadcast and peer-to-peer information, and contrasts the effects of temporal urgency associated with the imminence of the disaster and the effects of limited shelter capacity for evacuees. Based on empirical measurements of the cumulative rate of evacuations as a function of the instantaneous disaster likelihood, we develop a quantitative model for decision making that captures remarkably well the main features of observed collective behavior across many different scenarios. Moreover, this model captures the sensitivity of individual- and population-level decision behaviors to external pressures, and systematic deviations from the model provide meaningful estimates of variability in the collective response. Identification of robust methods for quantifying human decisions in the face of risk has implications for policy in disasters and other threat scenarios, specifically the development and testing of robust strategies for training and control of evacuations that account for human behavior and network topologies.

  20. Measuring and Modeling Behavioral Decision Dynamics in Collective Evacuation

    PubMed Central

    Carlson, Jean M.; Alderson, David L.; Stromberg, Sean P.; Bassett, Danielle S.; Craparo, Emily M.; Guiterrez-Villarreal, Francisco; Otani, Thomas

    2014-01-01

    Identifying and quantifying factors influencing human decision making remains an outstanding challenge, impacting the performance and predictability of social and technological systems. In many cases, system failures are traced to human factors including congestion, overload, miscommunication, and delays. Here we report results of a behavioral network science experiment, targeting decision making in a natural disaster. In a controlled laboratory setting, our results quantify several key factors influencing individual evacuation decision making in a controlled laboratory setting. The experiment includes tensions between broadcast and peer-to-peer information, and contrasts the effects of temporal urgency associated with the imminence of the disaster and the effects of limited shelter capacity for evacuees. Based on empirical measurements of the cumulative rate of evacuations as a function of the instantaneous disaster likelihood, we develop a quantitative model for decision making that captures remarkably well the main features of observed collective behavior across many different scenarios. Moreover, this model captures the sensitivity of individual- and population-level decision behaviors to external pressures, and systematic deviations from the model provide meaningful estimates of variability in the collective response. Identification of robust methods for quantifying human decisions in the face of risk has implications for policy in disasters and other threat scenarios, specifically the development and testing of robust strategies for training and control of evacuations that account for human behavior and network topologies. PMID:24520331

  1. A model of the human observer and decision maker

    NASA Technical Reports Server (NTRS)

    Wewerinke, P. H.

    1981-01-01

    The decision process is described in terms of classical sequential decision theory by considering the hypothesis that an abnormal condition has occurred by means of a generalized likelihood ratio test. For this, a sufficient statistic is provided by the innovation sequence which is the result of the perception an information processing submodel of the human observer. On the basis of only two model parameters, the model predicts the decision speed/accuracy trade-off and various attentional characteristics. A preliminary test of the model for single variable failure detection tasks resulted in a very good fit of the experimental data. In a formal validation program, a variety of multivariable failure detection tasks was investigated and the predictive capability of the model was demonstrated.

  2. A Utility Model for Teaching Load Decisions in Academic Departments.

    ERIC Educational Resources Information Center

    Massey, William F.; Zemsky, Robert

    1997-01-01

    Presents a utility model for academic department decision making and describes the structural specifications for analyzing it. The model confirms the class-size utility asymmetry predicted by the authors' academic rachet theory, but shows that marginal utility associated with college teaching loads is always negative. Curricular structure and…

  3. Computer Simulation of Small Group Decisions: Model Three.

    ERIC Educational Resources Information Center

    Hare, A.P.; Scheiblechner, Hartmann

    In a test of three computer models to simulate group decisions, data were used from 31 American and Austrian groups on a total of 307 trials. The task for each group was to predict a series of answers of an unknown subject on a value-orientation questionnaire, after being given a sample of his typical responses. The first model, used the mean of…

  4. A normative model of hospital marketing decision making.

    PubMed

    Hammond, K L; Brown, G; Humphreys, N

    1993-01-01

    A hospital marketing model is proposed for use as a framework for applying marketing strategy and concepts to hospitals. The cells of the model, primarily summarizing the many decisions of the marketing management process as can be applied to hospitals, are justified by the health care marketing literature.

  5. Dissolving decision making? Models and their roles in decision-making processes and policy at large.

    PubMed

    Zeiss, Ragna; van Egmond, Stans

    2014-12-01

    This article studies the roles three science-based models play in Dutch policy and decision making processes. Key is the interaction between model construction and environment. Their political and scientific environments form contexts that shape the roles of models in policy decision making. Attention is paid to three aspects of the wider context of the models: a) the history of the construction process; b) (changes in) the political and scientific environments; and c) the use in policy processes over longer periods of time. Models are more successfully used when they are constructed in a stable political and scientific environment. Stability and certainty within a scientific field seems to be a key predictor for the usefulness of models for policy making. The economic model is more disputed than the ecology-based model and the model that has its theoretical foundation in physics and chemistry. The roles models play in policy processes are too complex to be considered as straightforward technocratic powers. PMID:25549446

  6. Beyond pain: modeling decision-making deficits in chronic pain

    PubMed Central

    Hess, Leonardo Emanuel; Haimovici, Ariel; Muñoz, Miguel Angel; Montoya, Pedro

    2014-01-01

    Risky decision-making seems to be markedly disrupted in patients with chronic pain, probably due to the high cost that impose pain and negative mood on executive control functions. Patients’ behavioral performance on decision-making tasks such as the Iowa Gambling Task (IGT) is characterized by selecting cards more frequently from disadvantageous than from advantageous decks, and by switching often between competing responses in comparison with healthy controls (HCs). In the present study, we developed a simple heuristic model to simulate individuals’ choice behavior by varying the level of decision randomness and the importance given to gains and losses. The findings revealed that the model was able to differentiate the behavioral performance of patients with chronic pain and HCs at the group, as well as at the individual level. The best fit of the model in patients with chronic pain was yielded when decisions were not based on previous choices and when gains were considered more relevant than losses. By contrast, the best account of the available data in HCs was obtained when decisions were based on previous experiences and losses loomed larger than gains. In conclusion, our model seems to provide useful information to measure each individual participant extensively, and to deal with the data on a participant-by-participant basis. PMID:25136301

  7. Beyond pain: modeling decision-making deficits in chronic pain.

    PubMed

    Hess, Leonardo Emanuel; Haimovici, Ariel; Muñoz, Miguel Angel; Montoya, Pedro

    2014-01-01

    Risky decision-making seems to be markedly disrupted in patients with chronic pain, probably due to the high cost that impose pain and negative mood on executive control functions. Patients' behavioral performance on decision-making tasks such as the Iowa Gambling Task (IGT) is characterized by selecting cards more frequently from disadvantageous than from advantageous decks, and by switching often between competing responses in comparison with healthy controls (HCs). In the present study, we developed a simple heuristic model to simulate individuals' choice behavior by varying the level of decision randomness and the importance given to gains and losses. The findings revealed that the model was able to differentiate the behavioral performance of patients with chronic pain and HCs at the group, as well as at the individual level. The best fit of the model in patients with chronic pain was yielded when decisions were not based on previous choices and when gains were considered more relevant than losses. By contrast, the best account of the available data in HCs was obtained when decisions were based on previous experiences and losses loomed larger than gains. In conclusion, our model seems to provide useful information to measure each individual participant extensively, and to deal with the data on a participant-by-participant basis. PMID:25136301

  8. Consumer's Online Shopping Influence Factors and Decision-Making Model

    NASA Astrophysics Data System (ADS)

    Yan, Xiangbin; Dai, Shiliang

    Previous research on online consumer behavior has mostly been confined to the perceived risk which is used to explain those barriers for purchasing online. However, perceived benefit is another important factor which influences consumers’ decision when shopping online. As a result, an integrated consumer online shopping decision-making model is developed which contains three elements—Consumer, Product, and Web Site. This model proposed relative factors which influence the consumers’ intention during the online shopping progress, and divided them into two different dimensions—mentally level and material level. We tested those factors with surveys, from both online volunteers and offline paper surveys with more than 200 samples. With the help of SEM, the experimental results show that the proposed model and method can be used to analyze consumer’s online shopping decision-making process effectively.

  9. Interactive agent based modeling of public health decision-making.

    PubMed

    Parks, Amanda L; Walker, Brett; Pettey, Warren; Benuzillo, Jose; Gesteland, Per; Grant, Juliana; Koopman, James; Drews, Frank; Samore, Matthew

    2009-01-01

    Agent-based models have yielded important insights regarding the transmission dynamics of communicable diseases. To better understand how these models can be used to study decision making of public health officials, we developed a computer program that linked an agent-based model of pertussis with an agent-based model of public health management. The program, which we call the Public Health Interactive Model & simulation (PHIMs) encompassed the reporting of cases to public health, case investigation, and public health response. The user directly interacted with the model in the role of the public health decision-maker. In this paper we describe the design of our model, and present the results of a pilot study to assess its usability and potential for future development. Affinity for specific tools was demonstrated. Participants ranked the program high in usability and considered it useful for training. Our ultimate goal is to achieve better public health decisions and outcomes through use of public health decision support tools. PMID:20351907

  10. Bridging groundwater models and decision support with a Bayesian network

    USGS Publications Warehouse

    Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert

    2013-01-01

    Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.

  11. Landslide risk models for decision making.

    PubMed

    Bonachea, Jaime; Remondo, Juan; de Terán, José Ramón Díaz; González-Díez, Alberto; Cendrero, Antonio

    2009-11-01

    This contribution presents a quantitative procedure for landslide risk analysis and zoning considering hazard, exposure (or value of elements at risk), and vulnerability. The method provides the means to obtain landslide risk models (expressing expected damage due to landslides on material elements and economic activities in monetary terms, according to different scenarios and periods) useful to identify areas where mitigation efforts will be most cost effective. It allows identifying priority areas for the implementation of actions to reduce vulnerability (elements) or hazard (processes). The procedure proposed can also be used as a preventive tool, through its application to strategic environmental impact analysis (SEIA) of land-use plans. The underlying hypothesis is that reliable predictions about hazard and risk can be made using models based on a detailed analysis of past landslide occurrences in connection with conditioning factors and data on past damage. The results show that the approach proposed and the hypothesis formulated are essentially correct, providing estimates of the order of magnitude of expected losses for a given time period. Uncertainties, strengths, and shortcomings of the procedure and results obtained are discussed and potential lines of research to improve the models are indicated. Finally, comments and suggestions are provided to generalize this type of analysis.

  12. Emergent collective decision-making: Control, model and behavior

    NASA Astrophysics Data System (ADS)

    Shen, Tian

    In this dissertation we study emergent collective decision-making in social groups with time-varying interactions and heterogeneously informed individuals. First we analyze a nonlinear dynamical systems model motivated by animal collective motion with heterogeneously informed subpopulations, to examine the role of uninformed individuals. We find through formal analysis that adding uninformed individuals in a group increases the likelihood of a collective decision. Secondly, we propose a model for human shared decision-making with continuous-time feedback and where individuals have little information about the true preferences of other group members. We study model equilibria using bifurcation analysis to understand how the model predicts decisions based on the critical threshold parameters that represent an individual's tradeoff between social and environmental influences. Thirdly, we analyze continuous-time data of pairs of human subjects performing an experimental shared tracking task using our second proposed model in order to understand transient behavior and the decision-making process. We fit the model to data and show that it reproduces a wide range of human behaviors surprisingly well, suggesting that the model may have captured the mechanisms of observed behaviors. Finally, we study human behavior from a game-theoretic perspective by modeling the aforementioned tracking task as a repeated game with incomplete information. We show that the majority of the players are able to converge to playing Nash equilibrium strategies. We then suggest with simulations that the mean field evolution of strategies in the population resemble replicator dynamics, indicating that the individual strategies may be myopic. Decisions form the basis of control and problems involving deciding collectively between alternatives are ubiquitous in nature and in engineering. Understanding how multi-agent systems make decisions among alternatives also provides insight for designing

  13. A neuro-computational model of economic decisions.

    PubMed

    Rustichini, Aldo; Padoa-Schioppa, Camillo

    2015-09-01

    Neuronal recordings and lesion studies indicate that key aspects of economic decisions take place in the orbitofrontal cortex (OFC). Previous work identified in this area three groups of neurons encoding the offer value, the chosen value, and the identity of the chosen good. An important and open question is whether and how decisions could emerge from a neural circuit formed by these three populations. Here we adapted a biophysically realistic neural network previously proposed for perceptual decisions (Wang XJ. Neuron 36: 955-968, 2002; Wong KF, Wang XJ. J Neurosci 26: 1314-1328, 2006). The domain of economic decisions is significantly broader than that for which the model was originally designed, yet the model performed remarkably well. The input and output nodes of the network were naturally mapped onto two groups of cells in OFC. Surprisingly, the activity of interneurons in the network closely resembled that of the third group of cells, namely, chosen value cells. The model reproduced several phenomena related to the neuronal origins of choice variability. It also generated testable predictions on the excitatory/inhibitory nature of different neuronal populations and on their connectivity. Some aspects of the empirical data were not reproduced, but simple extensions of the model could overcome these limitations. These results render a biologically credible model for the neuronal mechanisms of economic decisions. They demonstrate that choices could emerge from the activity of cells in the OFC, suggesting that chosen value cells directly participate in the decision process. Importantly, Wang's model provides a platform to investigate the implications of neuroscience results for economic theory. PMID:26063776

  14. A neuro-computational model of economic decisions

    PubMed Central

    Rustichini, Aldo

    2015-01-01

    Neuronal recordings and lesion studies indicate that key aspects of economic decisions take place in the orbitofrontal cortex (OFC). Previous work identified in this area three groups of neurons encoding the offer value, the chosen value, and the identity of the chosen good. An important and open question is whether and how decisions could emerge from a neural circuit formed by these three populations. Here we adapted a biophysically realistic neural network previously proposed for perceptual decisions (Wang XJ. Neuron 36: 955–968, 2002; Wong KF, Wang XJ. J Neurosci 26: 1314–1328, 2006). The domain of economic decisions is significantly broader than that for which the model was originally designed, yet the model performed remarkably well. The input and output nodes of the network were naturally mapped onto two groups of cells in OFC. Surprisingly, the activity of interneurons in the network closely resembled that of the third group of cells, namely, chosen value cells. The model reproduced several phenomena related to the neuronal origins of choice variability. It also generated testable predictions on the excitatory/inhibitory nature of different neuronal populations and on their connectivity. Some aspects of the empirical data were not reproduced, but simple extensions of the model could overcome these limitations. These results render a biologically credible model for the neuronal mechanisms of economic decisions. They demonstrate that choices could emerge from the activity of cells in the OFC, suggesting that chosen value cells directly participate in the decision process. Importantly, Wang's model provides a platform to investigate the implications of neuroscience results for economic theory. PMID:26063776

  15. Integrated Environmental Modelling: human decisions, human challenges

    USGS Publications Warehouse

    Glynn, Pierre D.

    2015-01-01

    Integrated Environmental Modelling (IEM) is an invaluable tool for understanding the complex, dynamic ecosystems that house our natural resources and control our environments. Human behaviour affects the ways in which the science of IEM is assembled and used for meaningful societal applications. In particular, human biases and heuristics reflect adaptation and experiential learning to issues with frequent, sharply distinguished, feedbacks. Unfortunately, human behaviour is not adapted to the more diffusely experienced problems that IEM typically seeks to address. Twelve biases are identified that affect IEM (and science in general). These biases are supported by personal observations and by the findings of behavioural scientists. A process for critical analysis is proposed that addresses some human challenges of IEM and solicits explicit description of (1) represented processes and information, (2) unrepresented processes and information, and (3) accounting for, and cognizance of, potential human biases. Several other suggestions are also made that generally complement maintaining attitudes of watchful humility, open-mindedness, honesty and transparent accountability. These suggestions include (1) creating a new area of study in the behavioural biogeosciences, (2) using structured processes for engaging the modelling and stakeholder communities in IEM, and (3) using ‘red teams’ to increase resilience of IEM constructs and use.

  16. Weighted Hybrid Decision Tree Model for Random Forest Classifier

    NASA Astrophysics Data System (ADS)

    Kulkarni, Vrushali Y.; Sinha, Pradeep K.; Petare, Manisha C.

    2016-06-01

    Random Forest is an ensemble, supervised machine learning algorithm. An ensemble generates many classifiers and combines their results by majority voting. Random forest uses decision tree as base classifier. In decision tree induction, an attribute split/evaluation measure is used to decide the best split at each node of the decision tree. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation among them. The work presented in this paper is related to attribute split measures and is a two step process: first theoretical study of the five selected split measures is done and a comparison matrix is generated to understand pros and cons of each measure. These theoretical results are verified by performing empirical analysis. For empirical analysis, random forest is generated using each of the five selected split measures, chosen one at a time. i.e. random forest using information gain, random forest using gain ratio, etc. The next step is, based on this theoretical and empirical analysis, a new approach of hybrid decision tree model for random forest classifier is proposed. In this model, individual decision tree in Random Forest is generated using different split measures. This model is augmented by weighted voting based on the strength of individual tree. The new approach has shown notable increase in the accuracy of random forest.

  17. Simple model for multiple-choice collective decision making.

    PubMed

    Lee, Ching Hua; Lucas, Andrew

    2014-11-01

    We describe a simple model of heterogeneous, interacting agents making decisions between n≥2 discrete choices. For a special class of interactions, our model is the mean field description of random field Potts-like models and is effectively solved by finding the extrema of the average energy E per agent. In these cases, by studying the propagation of decision changes via avalanches, we argue that macroscopic dynamics is well captured by a gradient flow along E. We focus on the permutation symmetric case, where all n choices are (on average) the same, and spontaneous symmetry breaking (SSB) arises purely from cooperative social interactions. As examples, we show that bimodal heterogeneity naturally provides a mechanism for the spontaneous formation of hierarchies between decisions and that SSB is a preferred instability to discontinuous phase transitions between two symmetric points. Beyond the mean field limit, exponentially many stable equilibria emerge when we place this model on a graph of finite mean degree. We conclude with speculation on decision making with persistent collective oscillations. Throughout the paper, we emphasize analogies between methods of solution to our model and common intuition from diverse areas of physics, including statistical physics and electromagnetism. PMID:25493831

  18. Simple model for multiple-choice collective decision making.

    PubMed

    Lee, Ching Hua; Lucas, Andrew

    2014-11-01

    We describe a simple model of heterogeneous, interacting agents making decisions between n≥2 discrete choices. For a special class of interactions, our model is the mean field description of random field Potts-like models and is effectively solved by finding the extrema of the average energy E per agent. In these cases, by studying the propagation of decision changes via avalanches, we argue that macroscopic dynamics is well captured by a gradient flow along E. We focus on the permutation symmetric case, where all n choices are (on average) the same, and spontaneous symmetry breaking (SSB) arises purely from cooperative social interactions. As examples, we show that bimodal heterogeneity naturally provides a mechanism for the spontaneous formation of hierarchies between decisions and that SSB is a preferred instability to discontinuous phase transitions between two symmetric points. Beyond the mean field limit, exponentially many stable equilibria emerge when we place this model on a graph of finite mean degree. We conclude with speculation on decision making with persistent collective oscillations. Throughout the paper, we emphasize analogies between methods of solution to our model and common intuition from diverse areas of physics, including statistical physics and electromagnetism.

  19. Emulation Modeling with Bayesian Networks for Efficient Decision Support

    NASA Astrophysics Data System (ADS)

    Fienen, M. N.; Masterson, J.; Plant, N. G.; Gutierrez, B. T.; Thieler, E. R.

    2012-12-01

    Bayesian decision networks (BDN) have long been used to provide decision support in systems that require explicit consideration of uncertainty; applications range from ecology to medical diagnostics and terrorism threat assessments. Until recently, however, few studies have applied BDNs to the study of groundwater systems. BDNs are particularly useful for representing real-world system variability by synthesizing a range of hydrogeologic situations within a single simulation. Because BDN output is cast in terms of probability—an output desired by decision makers—they explicitly incorporate the uncertainty of a system. BDNs can thus serve as a more efficient alternative to other uncertainty characterization methods such as computationally demanding Monte Carlo analyses and others methods restricted to linear model analyses. We present a unique application of a BDN to a groundwater modeling analysis of the hydrologic response of Assateague Island, Maryland to sea-level rise. Using both input and output variables of the modeled groundwater response to different sea-level (SLR) rise scenarios, the BDN predicts the probability of changes in the depth to fresh water, which exerts an important influence on physical and biological island evolution. Input variables included barrier-island width, maximum island elevation, and aquifer recharge. The variability of these inputs and their corresponding outputs are sampled along cross sections in a single model run to form an ensemble of input/output pairs. The BDN outputs, which are the posterior distributions of water table conditions for the sea-level rise scenarios, are evaluated through error analysis and cross-validation to assess both fit to training data and predictive power. The key benefit for using BDNs in groundwater modeling analyses is that they provide a method for distilling complex model results into predictions with associated uncertainty, which is useful to decision makers. Future efforts incorporate

  20. Modelling Human Emotions for Tactical Decision-Making Games

    ERIC Educational Resources Information Center

    Visschedijk, Gillian C.; Lazonder, Ard W.; van der Hulst, Anja; Vink, Nathalie; Leemkuil, Henny

    2013-01-01

    The training of tactical decision making increasingly occurs through serious computer games. A challenging aspect of designing such games is the modelling of human emotions. Two studies were performed to investigate the relation between fidelity and human emotion recognition in virtual human characters. Study 1 compared five versions of a virtual…

  1. Translational Models of Gambling-Related Decision-Making.

    PubMed

    Winstanley, Catharine A; Clark, Luke

    2016-01-01

    Gambling is a harmless, recreational pastime that is ubiquitous across cultures. However, for some, gambling becomes a maladaptive and compulsive, and this syndrome is conceptualized as a behavioural addiction. Laboratory models that capture the key cognitive processes involved in gambling behaviour, and that can be translated across species, have the potential to make an important contribution to both decision neuroscience and the study of addictive disorders. The Iowa gambling task has been widely used to assess human decision-making under uncertainty, and this paradigm can be successfully modelled in rodents. Similar neurobiological processes underpin choice behaviour in humans and rats, and thus, a preference for the disadvantageous "high-risk, high-reward" options may reflect meaningful vulnerability for mental health problems. However, the choice behaviour operationalized by these tasks does not necessarily approximate the vulnerability to gambling disorder (GD) per se. We consider a number of psychological challenges that apply to modelling gambling in a translational way, and evaluate the success of the existing models. Heterogeneity in the structure of gambling games, as well as in the motivations of individuals with GD, is highlighted. The potential issues with extrapolating too directly from established animal models of drug dependency are discussed, as are the inherent difficulties in validating animal models of GD in the absence of any approved treatments for GD. Further advances in modelling the cognitive biases endemic in human decision-making, which appear to be exacerbated in GD, may be a promising line of research.

  2. Rigorously testing multialternative decision field theory against random utility models.

    PubMed

    Berkowitsch, Nicolas A J; Scheibehenne, Benjamin; Rieskamp, Jörg

    2014-06-01

    Cognitive models of decision making aim to explain the process underlying observed choices. Here, we test a sequential sampling model of decision making, multialternative decision field theory (MDFT; Roe, Busemeyer, & Townsend, 2001), on empirical grounds and compare it against 2 established random utility models of choice: the probit and the logit model. Using a within-subject experimental design, participants in 2 studies repeatedly choose among sets of options (consumer products) described on several attributes. The results of Study 1 showed that all models predicted participants' choices equally well. In Study 2, in which the choice sets were explicitly designed to distinguish the models, MDFT had an advantage in predicting the observed choices. Study 2 further revealed the occurrence of multiple context effects within single participants, indicating an interdependent evaluation of choice options and correlations between different context effects. In sum, the results indicate that sequential sampling models can provide relevant insights into the cognitive process underlying preferential choices and thus can lead to better choice predictions.

  3. Decision from Models: Generalizing Probability Information to Novel Tasks

    PubMed Central

    Zhang, Hang; Paily, Jacienta T.; Maloney, Laurence T.

    2014-01-01

    We investigate a new type of decision under risk where—to succeed—participants must generalize their experience in one set of tasks to a novel set of tasks. We asked participants to trade distance for reward in a virtual minefield where each successive step incurred the same fixed probability of failure (referred to as hazard). With constant hazard, the probability of success (the survival function) decreases exponentially with path length. On each trial, participants chose between a shorter path with smaller reward and a longer (more dangerous) path with larger reward. They received feedback in 160 training trials: encountering a mine along their chosen path resulted in zero reward and successful completion of the path led to the reward associated with the path chosen. They then completed 600 no-feedback test trials with novel combinations of path length and rewards. To maximize expected gain, participants had to learn the correct exponential model in training and generalize it to the test conditions. We compared how participants discounted reward with increasing path length to the predictions of nine choice models including the correct exponential model. The choices of a majority of the participants were best accounted for by a model of the correct exponential form although with marked overestimation of the hazard rate. The decision-from-models paradigm differs from experience-based decision paradigms such as decision-from-sampling in the importance assigned to generalizing experience-based information to novel tasks. The task itself is representative of everyday tasks involving repeated decisions in stochastically invariant environments. PMID:25621287

  4. Embodied cognition of movement decisions: a computational modeling approach.

    PubMed

    Johnson, Joseph G

    2009-01-01

    This chapter presents a cognitive computational view of decision making as the search for, and accumulation of, evidence for options under consideration. It is based on existing models that have been successful in traditional decision tasks involving preferential choice. The model assumes shifting attention over time that determines momentary inputs to an evolving preference state. In this chapter, the cognitive model is extended to illustrate how links from the motor system may be incorporated. These links can basically be categorized into one of three influences: modifying the subjective evaluation of choice options, restricting attention, and altering the options that are to be found in the choice set. The implications for the formal model are introduced and preliminary evidence is drawn from the extant literature.

  5. A group decision-making model for siting LULUs

    SciTech Connect

    Juang, C.H.; Wu, S.; Sheu, H.J.

    1995-03-01

    This paper presents a group decision-making model for siting locally unwanted land uses (LULUs) such as hazardous and nonhazardous solid waste landfills. The new model is based on fuzzy set theory, which has been proven to be effective and efficient in handling ambiguous information such as opinions expressed by a panel of representatives with diverse backgrounds. The model involves an operation called fuzzy weighted average (FWA) for aggregating opinions. The weights used in the FWA operation are determined by the entropy method. Entropy is a measure of the uncertainty associated with a piece of information such as an opinion. By measuring the entropy of each of the opinions to be aggregated, the weight of each opinion may be objectively determined. The result of the FWA operation may be used to aid in making decisions. Examples are presented to illustrate the proposed model.

  6. A decision-making process model of young online shoppers.

    PubMed

    Lin, Chin-Feng; Wang, Hui-Fang

    2008-12-01

    Based on the concepts of brand equity, means-end chain, and Web site trust, this study proposes a novel model called the consumption decision-making process of adolescents (CDMPA) to understand adolescents' Internet consumption habits and behavioral intention toward particular sporting goods. The findings of the CDMPA model can help marketers understand adolescents' consumption preferences and habits for developing effective Internet marketing strategies.

  7. How to Say "No" to a Nonword: A Leaky Competing Accumulator Model of Lexical Decision

    ERIC Educational Resources Information Center

    Dufau, Stephane; Grainger, Jonathan; Ziegler, Johannes C.

    2012-01-01

    We describe a leaky competing accumulator (LCA) model of the lexical decision task that can be used as a response/decision module for any computational model of word recognition. The LCA model uses evidence for a word, operationalized as some measure of lexical activity, as input to the "YES" decision node. Input to the "NO" decision node is…

  8. Robust Decision-making Applied to Model Selection

    SciTech Connect

    Hemez, Francois M.

    2012-08-06

    The scientific and engineering communities are relying more and more on numerical models to simulate ever-increasingly complex phenomena. Selecting a model, from among a family of models that meets the simulation requirements, presents a challenge to modern-day analysts. To address this concern, a framework is adopted anchored in info-gap decision theory. The framework proposes to select models by examining the trade-offs between prediction accuracy and sensitivity to epistemic uncertainty. The framework is demonstrated on two structural engineering applications by asking the following question: Which model, of several numerical models, approximates the behavior of a structure when parameters that define each of those models are unknown? One observation is that models that are nominally more accurate are not necessarily more robust, and their accuracy can deteriorate greatly depending upon the assumptions made. It is posited that, as reliance on numerical models increases, establishing robustness will become as important as demonstrating accuracy.

  9. Towards a controlled sensitivity analysis of model development decisions

    NASA Astrophysics Data System (ADS)

    Clark, Martyn; Nijssen, Bart

    2016-04-01

    The current generation of hydrologic models have followed a myriad of different development paths, making it difficult for the community to test underlying hypotheses and identify a clear path to model improvement. Model comparison studies have been undertaken to explore model differences, but these studies have not been able to meaningfully attribute inter-model differences in predictive ability to individual model components because there are often too many structural and implementation differences among the models considered. As a consequence, model comparison studies to date have provided limited insight into the causes of differences in model behavior, and model development has often relied on the inspiration and experience of individual modelers rather than a systematic analysis of model shortcomings. This presentation will discuss a unified approach to process-based hydrologic modeling to enable controlled and systematic analysis of multiple model representations (hypotheses) of hydrologic processes and scaling behavior. Our approach, which we term the Structure for Unifying Multiple Modeling Alternatives (SUMMA), formulates a general set of conservation equations, providing the flexibility to experiment with different spatial representations, different flux parameterizations, different model parameter values, and different time stepping schemes. We will discuss the use of SUMMA to systematically analyze different model development decisions, focusing on both analysis of simulations for intensively instrumented research watersheds as well as simulations across a global dataset of FLUXNET sites. The intent of the presentation is to demonstrate how the systematic analysis of model shortcomings can help identify model weaknesses and inform future model development priorities.

  10. Model of decision system for 13C Isotope Separation column

    NASA Astrophysics Data System (ADS)

    Boca, M. L.

    2015-11-01

    This paper presents the model of a decisional system for 13C Isotope Separation column, which is used to detect mission critical situation. The start model was a model of one distributed control system of critical situations that may arise in the operation of the distillation column. The research work it is proposed a model of decision system which implement a temperature sensor inside of liquid nitrogen level in the condenser. The condenser is a part of column where take place the cryogenic process using nitrogen liquid. The work temperature is very low about -192oC, and because the temperature can grow or go down more than 2 degrees is a very critical location inside the column. In this way the column has a deeply monitor and supervised and it take a decision in a proper time when the temperature is grow up or getting down and became a critical situation. For monitor and supervised it was used MatLAB SimuLink. The model, the decision system gives a signal to one sensor when something is wrong in the condenser which is the most critical place of the isotopic column. In this way it creates an alarm that something is getting wrong in the isotopic column.

  11. On anthropomorphic decision making in a model observer

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali R. N.; Espig, Kathryn S.; Kimpe, Tom R. L.; Maidment, Andrew D. A.

    2015-03-01

    By analyzing human readers' performance in detecting small round lesions in simulated digital breast tomosynthesis background in a location known exactly scenario, we have developed a model observer that is a better predictor of human performance with different levels of background complexity (i.e., anatomical and quantum noise). Our analysis indicates that human observers perform a lesion detection task by combining a number of sub-decisions, each an indicator of the presence of a lesion in the image stack. This is in contrast to a channelized Hotelling observer, where the detection task is conducted holistically by thresholding a single decision variable, made from an optimally weighted linear combination of channels. However, it seems that the sub-par performance of human readers compared to the CHO cannot be fully explained by their reliance on sub-decisions, or perhaps we do not consider a sufficient number of subdecisions. To bridge the gap between the performances of human readers and the model observer based upon subdecisions, we use an additive noise model, the power of which is modulated with the level of background complexity. The proposed model observer better predicts the fast drop in human detection performance with background complexity.

  12. Modeling Common-Sense Decisions in Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2010-01-01

    A methodology has been conceived for efficient synthesis of dynamical models that simulate common-sense decision- making processes. This methodology is intended to contribute to the design of artificial-intelligence systems that could imitate human common-sense decision making or assist humans in making correct decisions in unanticipated circumstances. This methodology is a product of continuing research on mathematical models of the behaviors of single- and multi-agent systems known in biology, economics, and sociology, ranging from a single-cell organism at one extreme to the whole of human society at the other extreme. Earlier results of this research were reported in several prior NASA Tech Briefs articles, the three most recent and relevant being Characteristics of Dynamics of Intelligent Systems (NPO -21037), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48; Self-Supervised Dynamical Systems (NPO-30634), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 72; and Complexity for Survival of Living Systems (NPO- 43302), NASA Tech Briefs, Vol. 33, No. 7 (July 2009), page 62. The methodology involves the concepts reported previously, albeit viewed from a different perspective. One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Models of motor dynamics are used to simulate the observable behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. Autonomy is imparted to the decisionmaking process by feedback from mental to motor dynamics. This feedback replaces unavailable external information by information stored in the internal knowledge base. Representation

  13. Aggregation of Environmental Model Data for Decision Support

    NASA Astrophysics Data System (ADS)

    Alpert, J. C.

    2013-12-01

    Weather forecasts and warnings must be prepared and then delivered so as to reach their intended audience in good time to enable effective decision-making. An effort to mitigate these difficulties was studied at a Workshop, 'Sustaining National Meteorological Services - Strengthening WMO Regional and Global Centers' convened, June , 2013, by the World Bank, WMO and the US National Weather Service (NWS). The skill and accuracy of atmospheric forecasts from deterministic models have increased and there are now ensembles of such models that improve decisions to protect life, property and commerce. The NWS production of numerical weather prediction products result in model output from global and high resolution regional ensemble forecasts. Ensembles are constructed by changing the initial conditions to make a 'cloud' of forecasts that attempt to span the space of possible atmospheric realizations which can quantify not only the most likely forecast, but also the uncertainty. This has led to an unprecedented increase in data production and information content from higher resolution, multi-model output and secondary calculations. One difficulty is to obtain the needed subset of data required to estimate the probability of events, and report the information. The calibration required to reliably estimate the probability of events, and honing of threshold adjustments to reduce false alarms for decision makers is also needed. To meet the future needs of the ever-broadening user community and address these issues on a national and international basis, the weather service implemented the NOAA Operational Model Archive and Distribution System (NOMADS). NOMADS provides real-time and retrospective format independent access to climate, ocean and weather model data and delivers high availability content services as part of NOAA's official real time data dissemination at its new NCWCP web operations center. An important aspect of the server's abilities is to aggregate the matrix of

  14. A Product Development Decision Model for Cockpit Weather Information Systems

    NASA Technical Reports Server (NTRS)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin

    2003-01-01

    There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.

  15. A Product Development Decision Model for Cockpit Weather Information System

    NASA Technical Reports Server (NTRS)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin; Johnson, Edward J., Jr. (Technical Monitor)

    2003-01-01

    There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.

  16. Model Checking with Edge-Valued Decision Diagrams

    NASA Technical Reports Server (NTRS)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster

  17. Markov Modeling with Soft Aggregation for Safety and Decision Analysis

    SciTech Connect

    COOPER,J. ARLIN

    1999-09-01

    The methodology in this report improves on some of the limitations of many conventional safety assessment and decision analysis methods. A top-down mathematical approach is developed for decomposing systems and for expressing imprecise individual metrics as possibilistic or fuzzy numbers. A ''Markov-like'' model is developed that facilitates combining (aggregating) inputs into overall metrics and decision aids, also portraying the inherent uncertainty. A major goal of Markov modeling is to help convey the top-down system perspective. One of the constituent methodologies allows metrics to be weighted according to significance of the attribute and aggregated nonlinearly as to contribution. This aggregation is performed using exponential combination of the metrics, since the accumulating effect of such factors responds less and less to additional factors. This is termed ''soft'' mathematical aggregation. Dependence among the contributing factors is accounted for by incorporating subjective metrics on ''overlap'' of the factors as well as by correspondingly reducing the overall contribution of these combinations to the overall aggregation. Decisions corresponding to the meaningfulness of the results are facilitated in several ways. First, the results are compared to a soft threshold provided by a sigmoid function. Second, information is provided on input ''Importance'' and ''Sensitivity,'' in order to know where to place emphasis on considering new controls that may be necessary. Third, trends in inputs and outputs are tracked in order to obtain significant information% including cyclic information for the decision process. A practical example from the air transportation industry is used to demonstrate application of the methodology. Illustrations are given for developing a structure (along with recommended inputs and weights) for air transportation oversight at three different levels, for developing and using cycle information, for developing Importance and

  18. Reverse engineering cellular decisions for hybrid reconfigurable network modeling

    NASA Astrophysics Data System (ADS)

    Blair, Howard A.; Saranak, Jureepan; Foster, Kenneth W.

    2011-06-01

    Cells as microorganisms and within multicellular organisms make robust decisions. Knowing how these complex cells make decisions is essential to explain, predict or mimic their behavior. The discovery of multi-layer multiple feedback loops in the signaling pathways of these modular hybrid systems suggests their decision making is sophisticated. Hybrid systems coordinate and integrate signals of various kinds: discrete on/off signals, continuous sensory signals, and stochastic and continuous fluctuations to regulate chemical concentrations. Such signaling networks can form reconfigurable networks of attractors and repellors giving them an extra level of organization that has resilient decision making built in. Work on generic attractor and repellor networks and on the already identified feedback networks and dynamic reconfigurable regulatory topologies in biological cells suggests that biological systems probably exploit such dynamic capabilities. We present a simple behavior of the swimming unicellular alga Chlamydomonas that involves interdependent discrete and continuous signals in feedback loops. We show how to rigorously verify a hybrid dynamical model of a biological system with respect to a declarative description of a cell's behavior. The hybrid dynamical systems we use are based on a unification of discrete structures and continuous topologies developed in prior work on convergence spaces. They involve variables of discrete and continuous types, in the sense of type theory in mathematical logic. A unification such as afforded by convergence spaces is necessary if one wants to take account of the affect of the structural relationships within each type on the dynamics of the system.

  19. An environmentally sustainable decision model for urban solid waste management

    SciTech Connect

    Costi, P.; Minciardi, R.; Robba, M.; Rovatti, M.; Sacile, R

    2004-07-01

    The aim of this work is to present the structure and the application of a decision support system (DSS) designed to help decision makers of a municipality in the development of incineration, disposal, treatment and recycling integrated programs. Specifically, within a MSW management system, several treatment plants and facilities can generally be found: separators, plants for production of refuse derived fuel (RDF), incinerators with energy recovery, plants for treatment of organic material, and sanitary landfills. The main goal of the DSS is to plan the MSW management, defining the refuse flows that have to be sent to recycling or to different treatment or disposal plants, and suggesting the optimal number, the kinds, and the localization of the plants that have to be active. The DSS is based on a decision model that requires the solution of a constrained non-linear optimization problem, where some decision variables are binary and other ones are continuous. The objective function takes into account all possible economic costs, whereas constraints arise from technical, normative, and environmental issues. Specifically, pollution and impacts, induced by the overall solid waste management system, are considered through the formalization of constraints on incineration emissions and on negative effects produced by disposal or other particular treatments.

  20. Modeling Reaction Time and Accuracy of Multiple-Alternative Decisions

    PubMed Central

    Leite, Fábio P.; Ratcliff, Roger

    2009-01-01

    Several sequential sampling models using racing diffusion processes for multiple-alternative decisions were evaluated using data from two perceptual discrimination experiments. The structures of the models differed on a number of dimensions, including whether there was lateral inhibition between accumulators, whether there was decay in evidence, whether evidence could be negative, and whether there was variability in starting points. Data were collected from a letter discrimination task in which stimulus difficulty and probability of the response alternatives were varied along with number of response alternatives. Model fitting results ruled out a large number of model classes in favor of a smaller number of specific models, most of which showed a moderate to high degree of mimicking. The best-fitting models had zero to moderate values of decay, no inhibition, and assumed that the addition of alternatives either affected the subprocesses contributing to the nondecisional time, the degree of caution, or the quality of evidence extracted from stimuli. PMID:20045893

  1. Decision Consequence Model (DCM): Integrating environmental data and analysis into real time decision making

    SciTech Connect

    Cimorelli, A.J.; Stahl, C.H.; Chow, A.H.; Fernandez, C.

    1999-07-01

    A critical evaluation of the many environmental issues facing EPA Region 3 has established five major priorities: (1) ozone pollution (and its precursors); (2) impacts of acidification (acid deposition and acid mine drainage); (3) eutrophication of the Chesapeake Bay from atmospheric nitrogen deposition; (4) Cities/Urban Environment (ozone, particulate matter (PM), air toxics are some of the air components); and (5) Climate Change. Recognizing the complex nature of the systems controlling these issues, Region III's Air Protection Division (APD) is developing a decision support tool, i.e., the Decision Consequence Model (DCM), that will integrate and automate the analysis of environmental impacts in a manner that allows them to holistically address these regional priorities. Using this tool the authors intend to consider the interdependency of pollutants and their environmental impacts in order to support real-time decision making. The purpose of this paper is to outline the basic concept of the DCM and to present an example set of environmental indicators to illustrate how the DCM will be used to evaluate environmental impacts. The authors will discuss their process of indicator development, and present an example suite of indicators to provide a concrete example of the concepts presented above and, to illustrate the utility of the DCM to simultaneously evaluate multiple effects of a single pollutant. They will discuss the type of indicators chosen for this example as well as the general criteria the DCM indicators must satisfy. The framework that was developed to construct the indicators is discussed and used to calculate the example indicators. The yearly magnitudes of these example indicators are calculated for various multi-year periods to show their behavior over time.

  2. Behavioural modelling of irrigation decision making under water scarcity

    NASA Astrophysics Data System (ADS)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2013-12-01

    Providing effective policy solutions to aquifer depletion caused by abstraction for irrigation is a key challenge for socio-hydrology. However, most crop production functions used in hydrological models do not capture the intraseasonal nature of irrigation planning, or the importance of well yield in land and water use decisions. Here we develop a method for determining stochastic intraseasonal water use that is based on observed farmer behaviour but is also theoretically consistent with dynamically optimal decision making. We use the model to (i) analyse the joint land and water use decision by farmers; (ii) to assess changes in behaviour and production risk in response to water scarcity; and (iii) to understand the limits of applicability of current methods in policy design. We develop a biophysical model of water-limited crop yield building on the AquaCrop model. The model is calibrated and applied to case studies of irrigated corn production in Nebraska and Texas. We run the model iteratively, using long-term climate records, to define two formulations of the crop-water production function: (i) the aggregate relationship between total seasonal irrigation and yield (typical of current approaches); and (ii) the stochastic response of yield and total seasonal irrigation to the choice of an intraseasonal soil moisture target and irrigated area. Irrigated area (the extensive margin decision) and per-area irrigation intensity (the intensive margin decision) are then calculated for different seasonal water restrictions (corresponding to regulatory policies) and well yield constraints on intraseasonal abstraction rates (corresponding to aquifer system limits). Profit- and utility-maximising decisions are determined assuming risk neutrality and varying degrees of risk aversion, respectively. Our results demonstrate that the formulation of the production function has a significant impact on the response to water scarcity. For low well yields, which are the major concern

  3. Economic decision making and the application of nonparametric prediction models

    USGS Publications Warehouse

    Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.

    2008-01-01

    Sustained increases in energy prices have focused attention on gas resources in low-permeability shale or in coals that were previously considered economically marginal. Daily well deliverability is often relatively small, although the estimates of the total volumes of recoverable resources in these settings are often large. Planning and development decisions for extraction of such resources must be areawide because profitable extraction requires optimization of scale economies to minimize costs and reduce risk. For an individual firm, the decision to enter such plays depends on reconnaissance-level estimates of regional recoverable resources and on cost estimates to develop untested areas. This paper shows how simple nonparametric local regression models, used to predict technically recoverable resources at untested sites, can be combined with economic models to compute regional-scale cost functions. The context of the worked example is the Devonian Antrim-shale gas play in the Michigan basin. One finding relates to selection of the resource prediction model to be used with economic models. Models chosen because they can best predict aggregate volume over larger areas (many hundreds of sites) smooth out granularity in the distribution of predicted volumes at individual sites. This loss of detail affects the representation of economic cost functions and may affect economic decisions. Second, because some analysts consider unconventional resources to be ubiquitous, the selection and order of specific drilling sites may, in practice, be determined arbitrarily by extraneous factors. The analysis shows a 15-20% gain in gas volume when these simple models are applied to order drilling prospects strategically rather than to choose drilling locations randomly. Copyright ?? 2008 Society of Petroleum Engineers.

  4. Economic decision making and the application of nonparametric prediction models

    USGS Publications Warehouse

    Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.

    2007-01-01

    Sustained increases in energy prices have focused attention on gas resources in low permeability shale or in coals that were previously considered economically marginal. Daily well deliverability is often relatively small, although the estimates of the total volumes of recoverable resources in these settings are large. Planning and development decisions for extraction of such resources must be area-wide because profitable extraction requires optimization of scale economies to minimize costs and reduce risk. For an individual firm the decision to enter such plays depends on reconnaissance level estimates of regional recoverable resources and on cost estimates to develop untested areas. This paper shows how simple nonparametric local regression models, used to predict technically recoverable resources at untested sites, can be combined with economic models to compute regional scale cost functions. The context of the worked example is the Devonian Antrim shale gas play, Michigan Basin. One finding relates to selection of the resource prediction model to be used with economic models. Models which can best predict aggregate volume over larger areas (many hundreds of sites) may lose granularity in the distribution of predicted volumes at individual sites. This loss of detail affects the representation of economic cost functions and may affect economic decisions. Second, because some analysts consider unconventional resources to be ubiquitous, the selection and order of specific drilling sites may, in practice, be determined by extraneous factors. The paper also shows that when these simple prediction models are used to strategically order drilling prospects, the gain in gas volume over volumes associated with simple random site selection amounts to 15 to 20 percent. It also discusses why the observed benefit of updating predictions from results of new drilling, as opposed to following static predictions, is somewhat smaller. Copyright 2007, Society of Petroleum Engineers.

  5. Modeling human decision making behavior in supervisory control

    NASA Technical Reports Server (NTRS)

    Tulga, M. K.; Sheridan, T. B.

    1977-01-01

    An optimal decision control model was developed, which is based primarily on a dynamic programming algorithm which looks at all the available task possibilities, charts an optimal trajectory, and commits itself to do the first step (i.e., follow the optimal trajectory during the next time period), and then iterates the calculation. A Bayesian estimator was included which estimates the tasks which might occur in the immediate future and provides this information to the dynamic programming routine. Preliminary trials comparing the human subject's performance to that of the optimal model show a great similarity, but indicate that the human skips certain movements which require quick change in strategy.

  6. Real-Time Decision Making and Aggressive Behavior in Youth: A Heuristic Model of Response Evaluation and Decision (RED).

    PubMed

    Fontaine, Reid Griffith; Dodge, Kenneth A

    2006-11-01

    Considerable scientific and intervention attention has been paid to judgment and decision-making systems associated with aggressive behavior in youth. However, most empirical studies have investigated social-cognitive correlates of stable child and adolescent aggressiveness, and less is known about real-time decision making to engage in aggressive behavior. A model of real-time decision making must incorporate both impulsive actions and rational thought. The present paper advances a process model (response evaluation and decision; RED) of real-time behavioral judgments and decision making in aggressive youths with mathematic representations that may be used to quantify response strength. These components are a heuristic to describe decision making, though it is doubtful that individuals always mentally complete these steps. RED represents an organization of social-cognitive operations believed to be active during the response decision step of social information processing. The model posits that RED processes can be circumvented through impulsive responding. This article provides a description and integration of thoughtful, rational decision making and nonrational impulsivity in aggressive behavioral interactions.

  7. Real-Time Decision Making and Aggressive Behavior in Youth: A Heuristic Model of Response Evaluation and Decision (RED)

    PubMed Central

    Fontaine, Reid Griffith; Dodge, Kenneth A.

    2009-01-01

    Considerable scientific and intervention attention has been paid to judgment and decision-making systems associated with aggressive behavior in youth. However, most empirical studies have investigated social-cognitive correlates of stable child and adolescent aggressiveness, and less is known about real-time decision making to engage in aggressive behavior. A model of real-time decision making must incorporate both impulsive actions and rational thought. The present paper advances a process model (response evaluation and decision; RED) of real-time behavioral judgments and decision making in aggressive youths with mathematic representations that may be used to quantify response strength. These components are a heuristic to describe decision making, though it is doubtful that individuals always mentally complete these steps. RED represents an organization of social–cognitive operations believed to be active during the response decision step of social information processing. The model posits that RED processes can be circumvented through impulsive responding. This article provides a description and integration of thoughtful, rational decision making and nonrational impulsivity in aggressive behavioral interactions. PMID:20802851

  8. A Spiking Network Model of Decision Making Employing Rewarded STDP

    PubMed Central

    Bazhenov, Maxim

    2014-01-01

    Reward-modulated spike timing dependent plasticity (STDP) combines unsupervised STDP with a reinforcement signal that modulates synaptic changes. It was proposed as a learning rule capable of solving the distal reward problem in reinforcement learning. Nonetheless, performance and limitations of this learning mechanism have yet to be tested for its ability to solve biological problems. In our work, rewarded STDP was implemented to model foraging behavior in a simulated environment. Over the course of training the network of spiking neurons developed the capability of producing highly successful decision-making. The network performance remained stable even after significant perturbations of synaptic structure. Rewarded STDP alone was insufficient to learn effective decision making due to the difficulty maintaining homeostatic equilibrium of synaptic weights and the development of local performance maxima. Our study predicts that successful learning requires stabilizing mechanisms that allow neurons to balance their input and output synapses as well as synaptic noise. PMID:24632858

  9. Quantum-Like Bayesian Networks for Modeling Decision Making

    PubMed Central

    Moreira, Catarina; Wichert, Andreas

    2016-01-01

    In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios. PMID:26858669

  10. Quantum-Like Bayesian Networks for Modeling Decision Making.

    PubMed

    Moreira, Catarina; Wichert, Andreas

    2016-01-01

    In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.

  11. Exploring the experiences of client involvement in medication decisions using a shared decision making model: results of a qualitative study.

    PubMed

    Goscha, Richard; Rapp, Charles

    2015-04-01

    This qualitative study explored a newly introduced model of shared decision making (CommonGround) and how psychiatric medications were experienced by clients, prescribers, case managers and peer support staff. Of the twelve client subjects, six were highly engaged in shared decision-making and six were not. Five notable differences were found between the two groups including the presence of a goal, use of personal medicine, and the behavior of case managers and prescribers. Implications for a shared decision making model in psychiatry are discussed.

  12. Single- versus Dual-Process Models of Lexical Decision Performance: Insights from Response Time Distributional Analysis

    ERIC Educational Resources Information Center

    Yap, Melvin J.; Balota, David A.; Cortese, Michael J.; Watson, Jason M.

    2006-01-01

    This article evaluates 2 competing models that address the decision-making processes mediating word recognition and lexical decision performance: a hybrid 2-stage model of lexical decision performance and a random-walk model. In 2 experiments, nonword type and word frequency were manipulated across 2 contrasts (pseudohomophone-legal nonword and…

  13. Dual or unitary system? Two alternative models of decision making.

    PubMed

    Rustichini, Aldo

    2008-12-01

    In recent years, a lively debate in neuroeconomics has focused on what appears to be a fundamental question: Is the brain a unitary or a dual system? We are still far from a consensus view. The accumulating evidence supports both sides of the debate. A reason for the difficulty in reaching a convincing solution is that we do not yet have a clear theoretical model for either position. Here I review the basic elements and potential building blocks for such theories, using sources in large measure from classical decision theory and game theory.

  14. Model-Checking with Edge-Valued Decision Diagrams

    NASA Technical Reports Server (NTRS)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD.

  15. Interactive decision-making support model in MOSD

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Lan, Ze-ying; Liu, Yao-lin; Qin, Liang-jun

    2009-10-01

    The Multi-objective spatial optimization problem is common in the word, which usually has a set of non-dominated resolutions, also called Pareto resolutions, instead of a single ideal one. So, the Multi-objectives spatial decision support system (MOSDSS) has two vital basements: how to acquire all the Pareto resolutions by Multi-objective optimization arithmetic, and how to analysis and appraise the candidates to determinate the final satisfying solution. At present, there are abundant research fruit for the former problem, however the latter one hasn't attracted abroad attention in the field. Nowadays, the findings about analyzing and evaluating the Pareto resolutions mainly focus on three aspects: the visual expression of candidates, appraising the comparability among the solutions, and designing the prototype system of visual support tools, which are lack of systemic conclusion and summarization. Hence, this paper emphasizes the latter problem of MOSDSS and puts up an interactive decision-making support model to largely improve the efficiency of analyzing and evaluating the Pareto resolutions. This model is composed of 3 pivotal parts: the geographic brush mechanism, the similarity querying operators as well as the interactive searching method. Then, the paper designs a prototype system on the base of the model, which is successfully tested in the exam.

  16. Validation of decision-making models and analysis of decision variables in the rat basal ganglia.

    PubMed

    Ito, Makoto; Doya, Kenji

    2009-08-01

    Reinforcement learning theory plays a key role in understanding the behavioral and neural mechanisms of choice behavior in animals and humans. Especially, intermediate variables of learning models estimated from behavioral data, such as the expectation of reward for each candidate choice (action value), have been used in searches for the neural correlates of computational elements in learning and decision making. The aims of the present study are as follows: (1) to test which computational model best captures the choice learning process in animals and (2) to elucidate how action values are represented in different parts of the corticobasal ganglia circuit. We compared different behavioral learning algorithms to predict the choice sequences generated by rats during a free-choice task and analyzed associated neural activity in the nucleus accumbens (NAc) and ventral pallidum (VP). The major findings of this study were as follows: (1) modified versions of an action-value learning model captured a variety of choice strategies of rats, including win-stay-lose-switch and persevering behavior, and predicted rats' choice sequences better than the best multistep Markov model; and (2) information about action values and future actions was coded in both the NAc and VP, but was less dominant than information about trial types, selected actions, and reward outcome. The results of our model-based analysis suggest that the primary role of the NAc and VP is to monitor information important for updating choice behaviors. Information represented in the NAc and VP might contribute to a choice mechanism that is situated elsewhere.

  17. A new paradigm in oil spill modeling for decision making?

    NASA Astrophysics Data System (ADS)

    Boufadel, Michel C.; Geng, Xiaolong

    2014-08-01

    Contingency plans for large oil spills rely on conducting numerical simulations that would predict the probable transport and fate of oil. Oil spill models vary in complexity from ones that assume a straight-line trajectory of oil on the water surface without any change in oil properties to fully three-dimensional models that account to all processes affecting the fate of oil. The model proposed by Bourgault et al (2014 Environ. Res. Lett. 9 054001) is intermediate in complexity in a sense that it accounts for the temporal variation of surface currents, but does not consider the transformation of oil. We believe that such an approach has a great merit as a screening tool for decision making.

  18. Decision Models for Determining the Optimal Life Test Sampling Plans

    NASA Astrophysics Data System (ADS)

    Nechval, Nicholas A.; Nechval, Konstantin N.; Purgailis, Maris; Berzins, Gundars; Strelchonok, Vladimir F.

    2010-11-01

    Life test sampling plan is a technique, which consists of sampling, inspection, and decision making in determining the acceptance or rejection of a batch of products by experiments for examining the continuous usage time of the products. In life testing studies, the lifetime is usually assumed to be distributed as either a one-parameter exponential distribution, or a two-parameter Weibull distribution with the assumption that the shape parameter is known. Such oversimplified assumptions can facilitate the follow-up analyses, but may overlook the fact that the lifetime distribution can significantly affect the estimation of the failure rate of a product. Moreover, sampling costs, inspection costs, warranty costs, and rejection costs are all essential, and ought to be considered in choosing an appropriate sampling plan. The choice of an appropriate life test sampling plan is a crucial decision problem because a good plan not only can help producers save testing time, and reduce testing cost; but it also can positively affect the image of the product, and thus attract more consumers to buy it. This paper develops the frequentist (non-Bayesian) decision models for determining the optimal life test sampling plans with an aim of cost minimization by identifying the appropriate number of product failures in a sample that should be used as a threshold in judging the rejection of a batch. The two-parameter exponential and Weibull distributions with two unknown parameters are assumed to be appropriate for modelling the lifetime of a product. A practical numerical application is employed to demonstrate the proposed approach.

  19. An Evaluation of the Decision-Making Capacity Assessment Model

    PubMed Central

    Brémault-Phillips, Suzette C.; Parmar, Jasneet; Friesen, Steven; Rogers, Laura G.; Pike, Ashley; Sluggett, Bryan

    2016-01-01

    Background The Decision-Making Capacity Assessment (DMCA) Model includes a best-practice process and tools to assess DMCA, and implementation strategies at the organizational and assessor levels to support provision of DMCAs across the care continuum. A Developmental Evaluation of the DMCA Model was conducted. Methods A mixed methods approach was used. Survey (N = 126) and focus group (N = 49) data were collected from practitioners utilizing the Model. Results Strengths of the Model include its best-practice and implementation approach, applicability to independent practitioners and inter-professional teams, focus on training/mentoring to enhance knowledge/skills, and provision of tools/processes. Post-training, participants agreed that they followed the Model’s guiding principles (90%), used problem-solving (92%), understood discipline-specific roles (87%), were confident in their knowledge of DMCAs (75%) and pertinent legislation (72%), accessed consultative services (88%), and received management support (64%). Model implementation is impeded when role clarity, physician engagement, inter-professional buy-in, accountability, dedicated resources, information sharing systems, and remuneration are lacking. Dedicated resources, job descriptions inclusive of DMCAs, ongoing education/mentoring supports, access to consultative services, and appropriate remuneration would support implementation. Conclusions The DMCA Model offers practitioners, inter-professional teams, and organizations a best-practice and implementation approach to DMCAs. Addressing barriers and further contextualizing the Model would be warranted. PMID:27729947

  20. Assembling Tools and Data for Climate Model Decision Support

    NASA Astrophysics Data System (ADS)

    Batcheller, A. L.; VanWijngaarden, F.

    2011-12-01

    The Global Earth Observation System of Systems (GEOSS) effort has identified nine areas in which society benefits from appropriate environmental information. We have targeted specific issues within these societal benefit areas by determining appropriate data sets needed and transforming these data into information useable by decision makers. Here we describe the service-oriented architecture that allows us to ingest real-time or static data into a database with a spatial data engine, make appropriate manipulations to the data using domain knowledge relevant to the problem, and expose the data as services. We then build custom portals using a library of common widgets to display and overlay the data for users to analyze. By using portals and a service-oriented architecture we can reuse services and widgets to rapidly assemble a view of geographic data, and assist decision-makers in applying and interpreting the latest scientific results. As a case study with our system, we have integrated data from Intergovernmental Panel on Climate Change (IPCC) climate models, crop yields, and environmental thresholds for crops to present a first level analysis of the impact of climate change on key crops grown in Mexico. Knowledge about changes in the regions that are favorable for crop growth is important for many stakeholders, ranging from individual farmers, to governments, to scientists working to create new seed varieties. Our work also highlights research opportunities in climate science by identifying the types and resolution of parameters modeled.

  1. The collaborative autonomy model of medical decision-making.

    PubMed

    Rubin, Michael A

    2014-04-01

    While the bioethical principle of beneficence originated in antiquity, the ascension of autonomy, or "self-rule," has redefined the physician-patient relationship to the extent that autonomy often dominates medical decision-making. Philosophical and social movements, medical research atrocities, consumerism, and case law have all had their influence on this paradigm shift. Consequently, the contemporary physician encounters an uncertainty in medical practice on how to resolve conflicts that arise in the pursuit of valuing both autonomy and beneficence. This is especially true in the practice of neurologic critical care where physicians may be advising comfort care measures for neurologically devastated patients while surrogates request physiologically futile interventions. This conundrum has been an important subject of the bioethics and social science literature but often this discourse is not disseminated to the clinicians confronting these issues. The purpose of this essay is to present a history of the principles of autonomy and beneficence and then present a shared medical decision-making model, collaborative autonomy, to provide guidance to neurologic critical care providers in how to resolve such dilemmas. Clinical vignettes will help illustrate the model. PMID:24233814

  2. Classification images in a very general decision model.

    PubMed

    Murray, Richard F

    2016-06-01

    Most of the theory supporting our understanding of classification images relies on standard signal detection models and the use of normally distributed stimulus noise. Here I show that the most common methods of calculating classification images by averaging stimulus noise samples within stimulus-response classes of trials are much more general than has previously been demonstrated, and that they give unbiased estimates of an observer's template for a wide range of decision rules and non-Gaussian stimulus noise distributions. These results are similar to findings on reverse correlation and related methods in the neurophysiology literature, but here I formulate them in terms that are tailored to signal detection analyses of visual tasks, in order to make them more accessible and useful to visual psychophysicists. I examine 2AFC and yes-no designs. These findings make it possible to use and interpret classification images in tasks where observers' decision strategies may not conform to classic signal detection models such as the difference rule, and in tasks where the stimulus noise is non-Gaussian.

  3. Collocated cokriging and neural-network multi-attribute transform in the prediction of effective porosity: A comparative case study for the Second Wall Creek Sand of the Teapot Dome field, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Moon, Seonghoon; Lee, Gwang H.; Kim, Hyeonju; Choi, Yosoon; Kim, Han-Joon

    2016-08-01

    Collocated cokriging (CCK) and neural-network multi-attribute transform (NN-MAT) are widely used in the prediction of reservoir properties because they can integrate sparsely-distributed, high-resolution well-log data and densely-sampled, low-resolution seismic data. CCK is a linear-weighted averaging method based on spatial covariance model. NN-MAT, based on a nonlinear relationship between seismic attributes and log values, treats data as spatially independent observations. In this study, we analyzed 3-D seismic and well-log data from the Second Wall Creek Sand of the Teapot Dome field, Wyoming, USA to investigate: (1) how CCK and NN-MAT perform in the prediction of porosity and (2) how the number of wells affects the results. Among a total of 64 wells, 25 wells were selected for CCK and NN-MAT and 39 wells were withheld for validation. We examined four cases: 25, 20, 15, and 10 wells. CCK overpredicted the porosity in the validation wells for all cases likely due to the strong influence of high values, but failed to predict very large porosities. Overprediction of CCK porosity becomes more pronounced with decreasing number of wells. NN-MAT largely underpredicted the porosity for all cases probably due to the band-limited nature of seismic data. The performance of CCK appears to be not affected significantly by the number of wells. Overall, NN-MAT performed better than CCK although its performance decreases continuously with decreasing number of wells.

  4. Distributed Hydrologic Modeling Apps for Decision Support in the Cloud

    NASA Astrophysics Data System (ADS)

    Swain, N. R.; Latu, K.; Christiensen, S.; Jones, N.; Nelson, J.

    2013-12-01

    Advances in computation resources and greater availability of water resources data represent an untapped resource for addressing hydrologic uncertainties in water resources decision-making. The current practice of water authorities relies on empirical, lumped hydrologic models to estimate watershed response. These models are not capable of taking advantage of many of the spatial datasets that are now available. Physically-based, distributed hydrologic models are capable of using these data resources and providing better predictions through stochastic analysis. However, there exists a digital divide that discourages many science-minded decision makers from using distributed models. This divide can be spanned using a combination of existing web technologies. The purpose of this presentation is to present a cloud-based environment that will offer hydrologic modeling tools or 'apps' for decision support and the web technologies that have been selected to aid in its implementation. Compared to the more commonly used lumped-parameter models, distributed models, while being more intuitive, are still data intensive, computationally expensive, and difficult to modify for scenario exploration. However, web technologies such as web GIS, web services, and cloud computing have made the data more accessible, provided an inexpensive means of high-performance computing, and created an environment for developing user-friendly apps for distributed modeling. Since many water authorities are primarily interested in the scenario exploration exercises with hydrologic models, we are creating a toolkit that facilitates the development of a series of apps for manipulating existing distributed models. There are a number of hurdles that cloud-based hydrologic modeling developers face. One of these is how to work with the geospatial data inherent with this class of models in a web environment. Supporting geospatial data in a website is beyond the capabilities of standard web frameworks and it

  5. Structured spreadsheet modeling in medical decision making and research.

    PubMed

    Kokol, P

    1990-06-01

    The construction, evaluation, implementation, and use of models representing various algorithms, strategies, methods, theories etc. based on the analysis of great amounts of data are necessary in both Medical Research and Decision Making (MR/DM). Performing such tasks manually is not only time consuming and tedious, but also very error-prone. The appearance of a computer with its ability to store and process information has opened an opportunity to facilitate enormously and improve activities. However, the effective use of computers is limited by difficulties accompanying noncomputer specialists like doctors, nurses, and other medical staff in learning and using conventional programming languages, tools, and techniques. In this paper we present Structured Spreadsheet Modeling as a possible solution, and show that it is applicable in the MR/DM field on a concrete basis.

  6. Decoding Problem Gamblers' Signals: A Decision Model for Casino Enterprises.

    PubMed

    Ifrim, Sandra

    2015-12-01

    The aim of the present study is to offer a validated decision model for casino enterprises. The model enables those users to perform early detection of problem gamblers and fulfill their ethical duty of social cost minimization. To this end, the interpretation of casino customers' nonverbal communication is understood as a signal-processing problem. Indicators of problem gambling recommended by Delfabbro et al. (Identifying problem gamblers in gambling venues: final report, 2007) are combined with Viterbi algorithm into an interdisciplinary model that helps decoding signals emitted by casino customers. Model output consists of a historical path of mental states and cumulated social costs associated with a particular client. Groups of problem and non-problem gamblers were simulated to investigate the model's diagnostic capability and its cost minimization ability. Each group consisted of 26 subjects and was subsequently enlarged to 100 subjects. In approximately 95% of the cases, mental states were correctly decoded for problem gamblers. Statistical analysis using planned contrasts revealed that the model is relatively robust to the suppression of signals performed by casino clientele facing gambling problems as well as to misjudgments made by staff regarding the clients' mental states. Only if the last mentioned source of error occurs in a very pronounced manner, i.e. judgment is extremely faulty, cumulated social costs might be distorted. PMID:24938732

  7. Decoding Problem Gamblers' Signals: A Decision Model for Casino Enterprises.

    PubMed

    Ifrim, Sandra

    2015-12-01

    The aim of the present study is to offer a validated decision model for casino enterprises. The model enables those users to perform early detection of problem gamblers and fulfill their ethical duty of social cost minimization. To this end, the interpretation of casino customers' nonverbal communication is understood as a signal-processing problem. Indicators of problem gambling recommended by Delfabbro et al. (Identifying problem gamblers in gambling venues: final report, 2007) are combined with Viterbi algorithm into an interdisciplinary model that helps decoding signals emitted by casino customers. Model output consists of a historical path of mental states and cumulated social costs associated with a particular client. Groups of problem and non-problem gamblers were simulated to investigate the model's diagnostic capability and its cost minimization ability. Each group consisted of 26 subjects and was subsequently enlarged to 100 subjects. In approximately 95% of the cases, mental states were correctly decoded for problem gamblers. Statistical analysis using planned contrasts revealed that the model is relatively robust to the suppression of signals performed by casino clientele facing gambling problems as well as to misjudgments made by staff regarding the clients' mental states. Only if the last mentioned source of error occurs in a very pronounced manner, i.e. judgment is extremely faulty, cumulated social costs might be distorted.

  8. A queueing model of pilot decision making in a multi-task flight management situation

    NASA Technical Reports Server (NTRS)

    Walden, R. S.; Rouse, W. B.

    1977-01-01

    Allocation of decision making responsibility between pilot and computer is considered and a flight management task, designed for the study of pilot-computer interaction, is discussed. A queueing theory model of pilot decision making in this multi-task, control and monitoring situation is presented. An experimental investigation of pilot decision making and the resulting model parameters are discussed.

  9. Alternative Approaches to Modeling the Individual Enlistment Decision: A Literature Review. Technical Report 738.

    ERIC Educational Resources Information Center

    Zirk, Deborah A.; And Others

    Findings of previous scientific decision-making literature are reviewed in an effort to specify a model depicting the many facets of the individual military enlistment decision. Theories and/or models reviewed include decision theory, social judgment theory, information integration theory, conjoint measurement/unfolding theory, cognitive decision…

  10. Rational or Anarchic: The Dilemma of Choosing a Model Describing Administrative Decision Making Behaviour.

    ERIC Educational Resources Information Center

    Kefford, Roderic E.

    One of the most persistent dilemmas faced by practicing educational administrators is choosing an appropriate model for decision making. This paper presents findings of a study that investigated the appropriateness of Cohen, March, and Olsen's (1972) Garbage Can Model of decision making. The case study examined the decision-making behavior of the…

  11. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare.

    PubMed

    Dolan, James G

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers.Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine "hard data" with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings.The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP).

  12. Composite tissue allotransplantation of the face: Decision analysis model

    PubMed Central

    Cugno, Sabrina; Sprague, Sheila; Duku, Eric; Thoma, Achilleas

    2007-01-01

    BACKGROUND: Facial composite tissue allotransplantation is a potential reconstructive option for severe facial disfigurement. The purpose of the present investigation was to use decision analysis modelling to ascertain the expected quality-adjusted life years (QALYs) gained with face transplantation (versus remaining in a disfigured state) in an effort to assist surgeons with the decision of whether to adopt this procedure. STUDY DESIGN: The probabilities of potential complications associated with facial allotransplantation were identified by a comprehensive review of kidney and hand transplant literature. A decision analysis tree illustrating possible health states for face allotransplantation was then constructed. Utilities were obtained from 30 participants, using the standard gamble and time trade-off measures. The utilities were then translated into QALYs, and the expected QALYs gained with transplantation were computed. RESULTS: Severe facial deformity was associated with an average of 7.34 QALYs. Allotransplantation of the face imparted an expected gain in QALYs of between 16.2 and 27.3 years. CONCLUSIONS: The current debate within the medical community surrounding facial composite tissue allotransplantation has centred on the issue of inducing a state of immunocompromise in a physically healthy individual for a non-life-saving procedure. However, the latter must be weighed against the potential social and psychological benefits that transplantation would confer. As demonstrated by a gain of 26.9 QALYs, participants’ valuation of quality of life is notably greater for face transplantation with its side effects of immunosuppression than for a state of uncompromised physical health with severe facial disfigurement. PMID:19554146

  13. Decision Making Methods in Space Economics and Systems Engineering

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2006-01-01

    This viewgraph presentation reviews various methods of decision making and the impact that they have on space economics and systems engineering. Some of the methods discussed are: Present Value and Internal Rate of Return (IRR); Cost-Benefit Analysis; Real Options; Cost-Effectiveness Analysis; Cost-Utility Analysis; Multi-Attribute Utility Theory (MAUT); and Analytic Hierarchy Process (AHP).

  14. Influence of proxy attributes on multiattribute decision analysis: An empirical investigation in the context of air pollution control

    SciTech Connect

    Damodaran, N.

    1988-01-01

    Three separate studies in decision analysis were conducted in the context of air pollution control wherein the preferences of informed subjects were individually assessed. The first study was designed to develop a decision model for the control of sulfur dioxide emissions by incorporating multi-media effects of pollution control using both fundamental and proxy attributes. The second study specifically compared fundamental and proxy attributes and tested the hypothesis that proxy attributes lead to biased decisions. The third study validated the results of the previous one and was extended to examine the hypothesis that proxy bias could be reduced by appropriate elicitation techniques. The findings of this study indicated that subjects behaved according to the norms of expected utility theory when the unidimensional utility function for the proxy attribute was assessed. However, subjects exhibited a near universal bias to overweight the proxy attribute, relative to prescriptions of expected utility theory, in a multi-attribute scenario.

  15. Accounting for uncertainty in health economic decision models by using model averaging.

    PubMed

    Jackson, Christopher H; Thompson, Simon G; Sharples, Linda D

    2009-04-01

    Health economic decision models are subject to considerable uncertainty, much of which arises from choices between several plausible model structures, e.g. choices of covariates in a regression model. Such structural uncertainty is rarely accounted for formally in decision models but can be addressed by model averaging. We discuss the most common methods of averaging models and the principles underlying them. We apply them to a comparison of two surgical techniques for repairing abdominal aortic aneurysms. In model averaging, competing models are usually either weighted by using an asymptotically consistent model assessment criterion, such as the Bayesian information criterion, or a measure of predictive ability, such as Akaike's information criterion. We argue that the predictive approach is more suitable when modelling the complex underlying processes of interest in health economics, such as individual disease progression and response to treatment.

  16. Qualitative modeling of the decision-making process using electrooculography.

    PubMed

    Marandi, Ramtin Zargari; Sabzpoushan, S H

    2015-12-01

    A novel method based on electrooculography (EOG) has been introduced in this work to study the decision-making process. An experiment was designed and implemented wherein subjects were asked to choose between two items from the same category that were presented within a limited time. The EOG and voice signals of the subjects were recorded during the experiment. A calibration task was performed to map the EOG signals to their corresponding gaze positions on the screen by using an artificial neural network. To analyze the data, 16 parameters were extracted from the response time and EOG signals of the subjects. Evaluation and comparison of the parameters, together with subjects' choices, revealed functional information. On the basis of this information, subjects switched their eye gazes between items about three times on average. We also found, according to statistical hypothesis testing-that is, a t test, t(10) = 71.62, SE = 1.25, p < .0001-that the correspondence rate of a subjects' gaze at the moment of selection with the selected item was significant. Ultimately, on the basis of these results, we propose a qualitative choice model for the decision-making task.

  17. Qualitative modeling of the decision-making process using electrooculography.

    PubMed

    Marandi, Ramtin Zargari; Sabzpoushan, S H

    2015-12-01

    A novel method based on electrooculography (EOG) has been introduced in this work to study the decision-making process. An experiment was designed and implemented wherein subjects were asked to choose between two items from the same category that were presented within a limited time. The EOG and voice signals of the subjects were recorded during the experiment. A calibration task was performed to map the EOG signals to their corresponding gaze positions on the screen by using an artificial neural network. To analyze the data, 16 parameters were extracted from the response time and EOG signals of the subjects. Evaluation and comparison of the parameters, together with subjects' choices, revealed functional information. On the basis of this information, subjects switched their eye gazes between items about three times on average. We also found, according to statistical hypothesis testing-that is, a t test, t(10) = 71.62, SE = 1.25, p < .0001-that the correspondence rate of a subjects' gaze at the moment of selection with the selected item was significant. Ultimately, on the basis of these results, we propose a qualitative choice model for the decision-making task. PMID:25515839

  18. Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model

    PubMed Central

    Bitzer, Sebastian; Park, Hame; Blankenburg, Felix; Kiebel, Stefan J.

    2014-01-01

    Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses. PMID:24616689

  19. Impact of modellers' decisions on hydrological a priori predictions

    NASA Astrophysics Data System (ADS)

    Holländer, H. M.; Bormann, H.; Blume, T.; Buytaert, W.; Chirico, G. B.; Exbrayat, J.-F.; Gustafsson, D.; Hölzel, H.; Krauße, T.; Kraft, P.; Stoll, S.; Blöschl, G.; Flühler, H.

    2014-06-01

    In practice, the catchment hydrologist is often confronted with the task of predicting discharge without having the needed records for calibration. Here, we report the discharge predictions of 10 modellers - using the model of their choice - for the man-made Chicken Creek catchment (6 ha, northeast Germany, Gerwin et al., 2009b) and we analyse how well they improved their prediction in three steps based on adding information prior to each following step. The modellers predicted the catchment's hydrological response in its initial phase without having access to the observed records. They used conceptually different physically based models and their modelling experience differed largely. Hence, they encountered two problems: (i) to simulate discharge for an ungauged catchment and (ii) using models that were developed for catchments, which are not in a state of landscape transformation. The prediction exercise was organized in three steps: (1) for the first prediction the modellers received a basic data set describing the catchment to a degree somewhat more complete than usually available for a priori predictions of ungauged catchments; they did not obtain information on stream flow, soil moisture, nor groundwater response and had therefore to guess the initial conditions; (2) before the second prediction they inspected the catchment on-site and discussed their first prediction attempt; (3) for their third prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step (1). Here, we detail the modeller's assumptions and decisions in accounting for the various processes. We document the prediction progress as well as the learning process resulting from the availability of added information. For the second and third steps, the progress in prediction quality is evaluated in relation to individual modelling experience and costs of

  20. Selection of Representative Models for Decision Analysis Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Meira, Luis A. A.; Coelho, Guilherme P.; Santos, Antonio Alberto S.; Schiozer, Denis J.

    2016-03-01

    The decision-making process in oil fields includes a step of risk analysis associated with the uncertainties present in the variables of the problem. Such uncertainties lead to hundreds, even thousands, of possible scenarios that are supposed to be analyzed so an effective production strategy can be selected. Given this high number of scenarios, a technique to reduce this set to a smaller, feasible subset of representative scenarios is imperative. The selected scenarios must be representative of the original set and also free of optimistic and pessimistic bias. This paper is devoted to propose an assisted methodology to identify representative models in oil fields. To do so, first a mathematical function was developed to model the representativeness of a subset of models with respect to the full set that characterizes the problem. Then, an optimization tool was implemented to identify the representative models of any problem, considering not only the cross-plots of the main output variables, but also the risk curves and the probability distribution of the attribute-levels of the problem. The proposed technique was applied to two benchmark cases and the results, evaluated by experts in the field, indicate that the obtained solutions are richer than those identified by previously adopted manual approaches. The program bytecode is available under request.

  1. Agricultural Model for the Nile Basin Decision Support System

    NASA Astrophysics Data System (ADS)

    van der Bolt, Frank; Seid, Abdulkarim

    2014-05-01

    To analyze options for increasing food supply in the Nile basin the Nile Agricultural Model (AM) was developed. The AM includes state-of-the-art descriptions of biophysical, hydrological and economic processes and realizes a coherent and consistent integration of hydrology, agronomy and economics. The AM covers both the agro-ecological domain (water, crop productivity) and the economic domain (food supply, demand, and trade) and allows to evaluate the macro-economic and hydrological impacts of scenarios for agricultural development. Starting with the hydrological information from the NileBasin-DSS the AM calculates the available water for agriculture, the crop production and irrigation requirements with the FAO-model AquaCrop. With the global commodity trade model MAGNET scenarios for land development and conversion are evaluated. The AM predicts consequences for trade, food security and development based on soil and water availability, crop allocation, food demand and food policy. The model will be used as a decision support tool to contribute to more productive and sustainable agriculture in individual Nile countries and the whole region.

  2. Agricultural climate impacts assessment for economic modeling and decision support

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  3. An Integrated Decision-Making Model for Categorizing Weather Products and Decision Aids

    NASA Technical Reports Server (NTRS)

    Elgin, Peter D.; Thomas, Rickey P.

    2004-01-01

    The National Airspace System s capacity will experience considerable growth in the next few decades. Weather adversely affects safe air travel. The FAA and NASA are working to develop new technologies that display weather information to support situation awareness and optimize pilot decision-making in avoiding hazardous weather. Understanding situation awareness and naturalistic decision-making is an important step in achieving this goal. Information representation and situation time stress greatly influence attentional resource allocation and working memory capacity, potentially obstructing accurate situation awareness assessments. Three naturalistic decision-making theories were integrated to provide an understanding of the levels of decision making incorporated in three operational situations and two conditions. The task characteristics associated with each phase of flight govern the level of situation awareness attained and the decision making processes utilized. Weather product s attributes and situation task characteristics combine to classify weather products according to the decision-making processes best supported. In addition, a graphical interface is described that affords intuitive selection of the appropriate weather product relative to the pilot s current flight situation.

  4. Impact of modellers' decisions on hydrological a priori predictions

    NASA Astrophysics Data System (ADS)

    Holländer, H. M.; Bormann, H.; Blume, T.; Buytaert, W.; Chirico, G. B.; Exbrayat, J.-F.; Gustafsson, D.; Hölzel, H.; Krauße, T.; Kraft, P.; Stoll, S.; Blöschl, G.; Flühler, H.

    2013-07-01

    The purpose of this paper is to stimulate a re-thinking of how we, the catchment hydrologists, could become reliable forecasters. A group of catchment modellers predicted the hydrological response of a man-made 6 ha catchment in its initial phase (Chicken Creek) without having access to the observed records. They used conceptually different model families. Their modelling experience differed largely. The prediction exercise was organized in three steps: (1) for the 1st prediction modellers received a basic data set describing the internal structure of the catchment (somewhat more complete than usually available to a priori predictions in ungauged catchments). They did not obtain time series of stream flow, soil moisture or groundwater response. (2) Before the 2nd improved prediction they inspected the catchment on-site and attended a workshop where the modellers presented and discussed their first attempts. (3) For their improved 3rd prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step 1. Here, we detail the modeller's decisions in accounting for the various processes based on what they learned during the field visit (step 2) and add the final outcome of step 3 when the modellers made use of additional data. We document the prediction progress as well as the learning process resulting from the availability of added information. For the 2nd and 3rd step, the progress in prediction quality could be evaluated in relation to individual modelling experience and costs of added information. We learned (i) that soft information such as the modeller's system understanding is as important as the model itself (hard information), (ii) that the sequence of modelling steps matters (field visit, interactions between differently experienced experts, choice of model, selection of available data, and methods for parameter guessing

  5. Is there a need for hydrological modelling in decision support systems for nuclear emergencies.

    PubMed

    Raskob, W; Heling, R; Zheleznyak, M

    2004-01-01

    This paper discusses the role of hydrological modelling in decision support systems for nuclear emergencies. In particular, most recent developments such as, the radionuclide transport models integrated in to the decision support system RODOS will be explored. Recent progress in the implementation of physically-based distributed hydrological models for operational forecasting in national and supranational centres, may support a closer cooperation between national hydrological services and therefore, strengthen the use of hydrological and radiological models implemented in decision support systems.

  6. The Role of Intent in Ethical Decision Making: The Ethical Choice Model

    ERIC Educational Resources Information Center

    King, Christine; Powell, Toni

    2007-01-01

    This paper reviews the major theories, studies and models concerning ethical decision making in organizations. The authors drew upon Jones' Model (1991) as the foundation for their Ethical Choice Model, which is designed to further clarify the ethical decision making process as it relates to the construct of intentionality. The model, illustrated…

  7. Time-variant clustering model for understanding cell fate decisions.

    PubMed

    Huang, Wei; Cao, Xiaoyi; Biase, Fernando H; Yu, Pengfei; Zhong, Sheng

    2014-11-01

    Both spatial characteristics and temporal features are often the subjects of concern in physical, social, and biological studies. This work tackles the clustering problems for time course data in which the cluster number and clustering structure change with respect to time, dubbed time-variant clustering. We developed a hierarchical model that simultaneously clusters the objects at every time point and describes the relationships of the clusters between time points. The hidden layer of this model is a generalized form of branching processes. A reversible-jump Markov Chain Monte Carlo method was implemented for model inference, and a feature selection procedure was developed. We applied this method to explore an open question in preimplantation embryonic development. Our analyses using single-cell gene expression data suggested that the earliest cell fate decision could start at the 4-cell stage in mice, earlier than the commonly thought 8- to 16-cell stage. These results together with independent experimental data from single-cell RNA-seq provided support against a prevailing hypothesis in mammalian development. PMID:25339442

  8. Context-dependent decision-making: a simple Bayesian model.

    PubMed

    Lloyd, Kevin; Leslie, David S

    2013-05-01

    Many phenomena in animal learning can be explained by a context-learning process whereby an animal learns about different patterns of relationship between environmental variables. Differentiating between such environmental regimes or 'contexts' allows an animal to rapidly adapt its behaviour when context changes occur. The current work views animals as making sequential inferences about current context identity in a world assumed to be relatively stable but also capable of rapid switches to previously observed or entirely new contexts. We describe a novel decision-making model in which contexts are assumed to follow a Chinese restaurant process with inertia and full Bayesian inference is approximated by a sequential-sampling scheme in which only a single hypothesis about current context is maintained. Actions are selected via Thompson sampling, allowing uncertainty in parameters to drive exploration in a straightforward manner. The model is tested on simple two-alternative choice problems with switching reinforcement schedules and the results compared with rat behavioural data from a number of T-maze studies. The model successfully replicates a number of important behavioural effects: spontaneous recovery, the effect of partial reinforcement on extinction and reversal, the overtraining reversal effect, and serial reversal-learning effects.

  9. Time-variant clustering model for understanding cell fate decisions

    PubMed Central

    Huang, Wei; Cao, Xiaoyi; Biase, Fernando H.; Yu, Pengfei; Zhong, Sheng

    2014-01-01

    Both spatial characteristics and temporal features are often the subjects of concern in physical, social, and biological studies. This work tackles the clustering problems for time course data in which the cluster number and clustering structure change with respect to time, dubbed time-variant clustering. We developed a hierarchical model that simultaneously clusters the objects at every time point and describes the relationships of the clusters between time points. The hidden layer of this model is a generalized form of branching processes. A reversible-jump Markov Chain Monte Carlo method was implemented for model inference, and a feature selection procedure was developed. We applied this method to explore an open question in preimplantation embryonic development. Our analyses using single-cell gene expression data suggested that the earliest cell fate decision could start at the 4-cell stage in mice, earlier than the commonly thought 8- to 16-cell stage. These results together with independent experimental data from single-cell RNA-seq provided support against a prevailing hypothesis in mammalian development. PMID:25339442

  10. Management decision making for fisher populations informed by occupancy modeling

    USGS Publications Warehouse

    Fuller, Angela K.; Linden, Daniel W.; Royle, J. Andrew

    2016-01-01

    Harvest data are often used by wildlife managers when setting harvest regulations for species because the data are regularly collected and do not require implementation of logistically and financially challenging studies to obtain the data. However, when harvest data are not available because an area had not previously supported a harvest season, alternative approaches are required to help inform management decision making. When distribution or density data are required across large areas, occupancy modeling is a useful approach, and under certain conditions, can be used as a surrogate for density. We collaborated with the New York State Department of Environmental Conservation (NYSDEC) to conduct a camera trapping study across a 70,096-km2 region of southern New York in areas that were currently open to fisher (Pekania [Martes] pennanti) harvest and those that had been closed to harvest for approximately 65 years. We used detection–nondetection data at 826 sites to model occupancy as a function of site-level landscape characteristics while accounting for sampling variation. Fisher occupancy was influenced positively by the proportion of conifer and mixed-wood forest within a 15-km2 grid cell and negatively associated with road density and the proportion of agriculture. Model-averaged predictions indicated high occupancy probabilities (>0.90) when road densities were low (<1 km/km2) and coniferous and mixed forest proportions were high (>0.50). Predicted occupancy ranged 0.41–0.67 in wildlife management units (WMUs) currently open to trapping, which could be used to guide a minimum occupancy threshold for opening new areas to trapping seasons. There were 5 WMUs that had been closed to trapping but had an average predicted occupancy of 0.52 (0.07 SE), and above the threshold of 0.41. These areas are currently under consideration by NYSDEC for opening a conservative harvest season. We demonstrate the use of occupancy modeling as an aid to management

  11. A Critical Analysis of HRD Evaluation Models from a Decision-Making Perspective

    ERIC Educational Resources Information Center

    Holton, Elwood F., III; Naquin, Sharon

    2005-01-01

    HRD evaluation models are recommended for use by organizations to improve decisions made about HRD interventions. However, the organizational decision-making literature has been virtually ignored by evaluation researchers. In this article, we review the organizational decision-making literature and critically review HRD evaluation research through…

  12. Between Safety and Risk: A Model for Outdoor Adventure Decision Making.

    ERIC Educational Resources Information Center

    Boyes, Michael A.; O'Hare, David

    2003-01-01

    Decision making by outdoor adventure educators revolves around balancing risk and competence. A model of outdoor adventure decision making is presented that draws on naturalistic decision-making processes and emphasizes the importance of situational recognition and prior experience. Leaders draw key information from the natural environment,…

  13. Decision-Making Models in a Tunisian University: Towards a Framework for Analysis

    ERIC Educational Resources Information Center

    Khefacha, I.; Belkacem, L.

    2014-01-01

    This study investigates how decisions are made in Tunisian public higher education establishments. Some factors are identified as having a potentially significant impact on the odds that the decision-making process follows the characteristics of one of the most well known decision-making models: collegial, political, bureaucratic or anarchical…

  14. Brain networks for exploration decisions utilizing distinct modeled information types during contextual learning

    PubMed Central

    Wang, Jane X.; Voss, Joel L.

    2014-01-01

    Summary Exploration permits acquisition of the most relevant information during learning. However, the specific information needed, the influences of this information on decision-making, and the relevant neural mechanisms remain poorly understood. We modeled distinct information types available during contextual association learning and used model-based fMRI in conjunction with manipulation of exploratory decision-making to identify neural activity associated with information-based decisions. We identified hippocampal-prefrontal contributions to advantageous decisions based on immediately available novel information, distinct from striatal contributions to advantageous decisions based on the sum total available (accumulated) information. Furthermore, network-level interactions among these regions during exploratory decision-making were related to learning success. These findings link strategic exploration decisions during learning to quantifiable information and advance understanding of adaptive behavior by identifying the distinct and interactive nature of brain-network contributions to decisions based on distinct information types. PMID:24908493

  15. Prediction of adverse drug reactions using decision tree modeling.

    PubMed

    Hammann, F; Gutmann, H; Vogt, N; Helma, C; Drewe, J

    2010-07-01

    Drug safety is of great importance to public health. The detrimental effects of drugs not only limit their application but also cause suffering in individual patients and evoke distrust of pharmacotherapy. For the purpose of identifying drugs that could be suspected of causing adverse reactions, we present a structure-activity relationship analysis of adverse drug reactions (ADRs) in the central nervous system (CNS), liver, and kidney, and also of allergic reactions, for a broad variety of drugs (n = 507) from the Swiss drug registry. Using decision tree induction, a machine learning method, we determined the chemical, physical, and structural properties of compounds that predispose them to causing ADRs. The models had high predictive accuracies (78.9-90.2%) for allergic, renal, CNS, and hepatic ADRs. We show the feasibility of predicting complex end-organ effects using simple models that involve no expensive computations and that can be used (i) in the selection of the compound during the drug discovery stage, (ii) to understand how drugs interact with the target organ systems, and (iii) for generating alerts in postmarketing drug surveillance and pharmacovigilance.

  16. Applications of a simulation model to decisions in mallard management

    USGS Publications Warehouse

    Cowardin, L.M.; Johnson, D.H.; Shaffer, T.L.; Sparling, D.W.

    1988-01-01

    A system comprising simulation models and data bases for habitat availability and nest success rates was used to predict results from a mallard (Anas platyrhynchos) management plan and to compare six management methods with a control. Individual treatments in the applications included land purchase for waterfowl production, wetland easement purchase, lease of uplands for waterfowl management, cropland retirement, use of no-till winter wheat, delayed cutting of alfalfa, installation of nest baskets, nesting island construction, and use of predator-resistant fencing.The simulations predicted that implementation of the management plan would increase recruits by 24%. Nest baskets were the most effective treatment, accounting for 20.4% of the recruits. No-till winter wheat was the second most effective, accounting for 5.9% of the recruits. Wetland loss due to drainage would cause an 11% loss of breeding population in 10 years.The models were modified to account for migrational homing. The modification indicated that migrational homing would enhance the effects of management. Nest success rates were critical contributions to individual management methods. The most effective treatments, such as nest baskets, had high success rates and affected a large portion of the breeding population.Economic analyses indicated that nest baskets would be the most economical of the three techniques tested. The applications indicated that the system is a useful tool to aid management decisions, but data are scarce for several important variables. Basic research will be required to adequately model the effect of migrational homing and density dependence on production. The comprehensive nature of predictions desired by managers will also require that production models like the one described here be extended to encompass the entire annual cycle of waterfowl.

  17. A novel sustainable decision making model for municipal solid waste management

    SciTech Connect

    Hung, M.-L. . E-mail: d89541004@ntu.edu.tw; Ma Hwongwen . E-mail: hwma@ntu.edu.tw; Yang, W.-F. . E-mail: wfyang@ntu.edu.tw

    2007-07-01

    This paper reviews several models developed to support decision making in municipal solid waste management (MSWM). The concepts underlying sustainable MSWM models can be divided into two categories: one incorporates social factors into decision making methods, and the other includes public participation in the decision-making process. The public is only apprised or takes part in discussion, and has little effect on decision making in most research efforts. Few studies have considered public participation in the decision-making process, and the methods have sought to strike a compromise between concerned criteria, not between stakeholders. However, the source of the conflict arises from the stakeholders' complex web of value. Such conflict affects the feasibility of implementing any decision. The purpose of this study is to develop a sustainable decision making model for MSWM to overcome these shortcomings. The proposed model combines multicriteria decision making (MCDM) and a consensus analysis model (CAM). The CAM is built up to aid in decision-making when MCDM methods are utilized and, subsequently, a novel sustainable decision making model for MSWM is developed. The main feature of CAM is the assessment of the degree of consensus between stakeholders for particular alternatives. A case study for food waste management in Taiwan is presented to demonstrate the practicality of this model.

  18. Bayesian Decision Theory Guiding Educational Decision-Making: Theories, Models and Application

    ERIC Educational Resources Information Center

    Pan, Yilin

    2016-01-01

    Given the importance of education and the growing public demand for improving education quality under tight budget constraints, there has been an emerging movement to call for research-informed decisions in educational resource allocation. Despite the abundance of rigorous studies on the effectiveness, cost, and implementation of educational…

  19. The professional medical ethics model of decision making under conditions of clinical uncertainty.

    PubMed

    McCullough, Laurence B

    2013-02-01

    The professional medical ethics model of decision making may be applied to decisions clinicians and patients make under the conditions of clinical uncertainty that exist when evidence is low or very low. This model uses the ethical concepts of medicine as a profession, the professional virtues of integrity and candor and the patient's virtue of prudence, the moral management of medical uncertainty, and trial of intervention. These features combine to justifiably constrain clinicians' and patients' autonomy with the goal of preventing nondeliberative decisions of patients and clinicians. To prevent biased recommendations by the clinician that promote such nondeliberative decisions, medically reasonable alternatives supported by low or very low evidence should be offered but not recommended. The professional medical ethics model of decision making aims to improve the quality of decisions by reducing the unacceptable variation that can result from nondeliberative decision making by patients and clinicians when evidence is low or very low.

  20. Modeling Decision-Specific Stress: Some Methodological Considerations.

    ERIC Educational Resources Information Center

    Holbrook, Morris B.; Ryan, Michael J.

    1982-01-01

    A national questionnaire survey of 324 automotive fleet administrators, examining the effects of three stress variables (decisional ambiguity, conflict, and work overload) in the administrators' 17 decision areas, tested whether managerial stress is decision-specific. Individual-level correlations and aggregate-level multidimensional scaling…

  1. Modeling Prosecutors' Charging Decisions in Domestic Violence Cases

    ERIC Educational Resources Information Center

    Worrall, John L.; Ross, Jay W.; McCord, Eric S.

    2006-01-01

    Relatively little research explaining prosecutors' charging decisions in criminal cases is available. Even less has focused on charging decisions in domestic violence cases. Past studies have also relied on restrictive definitions of domestic violence, notably cases with male offenders and female victims, and they have not considered prosecutors'…

  2. Multiobjective Integrated Decision Analysis System (MIDAS): Volume 1, Model overview: Final report

    SciTech Connect

    Farber, M.; Brusger, E.; Gerber, M.

    1988-04-01

    MIDAS (Multiobjective Integrated Decision Analysis System) is an innovative utility planning tool that facilitates the analysis of risk. Three features distinguish this framework from other planning models: it incorporates a generalized decision analysis approach; it includes a completely integrated planning model for demand-supply evaluation; and the complete model runs on a microcomputer. 24 figs.

  3. Decision Development in Small Groups I: A Comparison of Two Models.

    ERIC Educational Resources Information Center

    Poole, Marshall Scott

    1981-01-01

    Studies the sequence of phases in group decision making. Compares the unitary sequence model, which assumes that all groups follow the same sequence of phases, and the multiple sequence model, which assumes that different groups follow different sequences. Results support the latter model and suggest revisions in current decision development. (PD)

  4. Modeling collective & intelligent decision making of multi-cellular populations.

    PubMed

    Shin, Yong-Jun; Mahrou, Bahareh

    2014-01-01

    In the presence of unpredictable disturbances and uncertainties, cells intelligently achieve their goals by sharing information via cell-cell communication and making collective decisions, which are more reliable compared to individual decisions. Inspired by adaptive sensor network algorithms studied in communication engineering, we propose that a multi-cellular adaptive network can convert unreliable decisions by individual cells into a more reliable cell-population decision. It is demonstrated using the effector T helper (a type of immune cell) population, which plays a critical role in initiating immune reactions in response to invading foreign agents (e.g., viruses, bacteria, etc.). While each individual cell follows a simple adaptation rule, it is the combined coordination among multiple cells that leads to the manifestation of "self-organizing" decision making via cell-cell communication.

  5. A three-phase model of retirement decision making.

    PubMed

    Feldman, Daniel C; Beehr, Terry A

    2011-04-01

    The present article organizes prominent theories about retirement decision making around three different types of thinking about retirement: imagining the possibility of retirement, assessing when it is time to let go of long-held jobs, and putting concrete plans for retirement into action at present. It also highlights important directions for future research on retirement decision making, including perceptions of declining person-environment fit, the role of personality traits, occupational norms regarding retirement, broader criteria for assessing older workers' job performance, couples' joint decision making about retirement, the impact of self-funded and self-guided pension plans on retirement decisions, bridge employment before total withdrawal from the work force, and retirement decisions that are neither entirely forced nor voluntary in nature. PMID:21341883

  6. ICADS: A cooperative decision making model with CLIPS experts

    NASA Technical Reports Server (NTRS)

    Pohl, Jens; Myers, Leonard

    1991-01-01

    A cooperative decision making model is described which is comprised of six concurrently executing domain experts coordinated by a blackboard control expert. The focus application field is architectural design, and the domain experts represent consultants in the area of daylighting, noise control, structural support, cost estimating, space planning, and climate responsiveness. Both the domain experts and the blackboard were implemented as production systems, using an enhanced version of the basic CLIPS package. Acting in unison as an Expert Design Advisor, the domain and control experts react to the evolving design solution progressively developed by the user in a 2-D CAD drawing environment. A Geometry Interpreter maps each drawing action taken by the user to real world objects, such as spaces, walls, windows, and doors. These objects, endowed with geometric and nongeometric attributes, are stored as frames in a semantic network. Object descriptions are derived partly from the geometry of the drawing environment and partly from knowledge bases containing prototypical, generalized information about the building type and site conditions under consideration.

  7. Making Risk Models Operational for Situational Awareness and Decision Support

    SciTech Connect

    Paulson, Patrick R.; Coles, Garill A.; Shoemaker, Steven V.

    2012-06-12

    Modernization of nuclear power operations control systems, in particular the move to digital control systems, creates an opportunity to modernize existing legacy infrastructure and extend plant life. We describe here decision support tools that allow the assessment of different facets of risk and support the optimization of available resources to reduce risk as plants are upgraded and maintained. This methodology could become an integrated part of the design review process and a part of the operations management systems. The methodology can be applied to the design of new reactors such as small nuclear reactors (SMR), and be helpful in assessing the risks of different configurations of the reactors. Our tool provides a low cost evaluation of alternative configurations and provides an expanded safety analysis by considering scenarios while early in the implementation cycle where cost impacts can be minimized. The effects of failures can be modeled and thoroughly vetted to understand their potential impact on risk. The process and tools presented here allow for an integrated assessment of risk by supporting traditional defense in depth approaches while taking into consideration the insertion of new digital instrument and control systems.

  8. Exposure models for the prior distribution in bayesian decision analysis for occupational hygiene decision making.

    PubMed

    Lee, Eun Gyung; Kim, Seung Won; Feigley, Charles E; Harper, Martin

    2013-01-01

    This study introduces two semi-quantitative methods, Structured Subjective Assessment (SSA) and Control of Substances Hazardous to Health (COSHH) Essentials, in conjunction with two-dimensional Monte Carlo simulations for determining prior probabilities. Prior distribution using expert judgment was included for comparison. Practical applications of the proposed methods were demonstrated using personal exposure measurements of isoamyl acetate in an electronics manufacturing facility and of isopropanol in a printing shop. Applicability of these methods in real workplaces was discussed based on the advantages and disadvantages of each method. Although these methods could not be completely independent of expert judgments, this study demonstrated a methodological improvement in the estimation of the prior distribution for the Bayesian decision analysis tool. The proposed methods provide a logical basis for the decision process by considering determinants of worker exposure. PMID:23252451

  9. Exposure models for the prior distribution in bayesian decision analysis for occupational hygiene decision making.

    PubMed

    Lee, Eun Gyung; Kim, Seung Won; Feigley, Charles E; Harper, Martin

    2013-01-01

    This study introduces two semi-quantitative methods, Structured Subjective Assessment (SSA) and Control of Substances Hazardous to Health (COSHH) Essentials, in conjunction with two-dimensional Monte Carlo simulations for determining prior probabilities. Prior distribution using expert judgment was included for comparison. Practical applications of the proposed methods were demonstrated using personal exposure measurements of isoamyl acetate in an electronics manufacturing facility and of isopropanol in a printing shop. Applicability of these methods in real workplaces was discussed based on the advantages and disadvantages of each method. Although these methods could not be completely independent of expert judgments, this study demonstrated a methodological improvement in the estimation of the prior distribution for the Bayesian decision analysis tool. The proposed methods provide a logical basis for the decision process by considering determinants of worker exposure.

  10. Determining the optimal planting density and land expectation value -- a numerical evaluation of decision model

    SciTech Connect

    Gong, P. . Dept. of Forest Economics)

    1998-08-01

    Different decision models can be constructed and used to analyze a regeneration decision in even-aged stand management. However, the optimal decision and management outcomes determined in an analysis may depend on the decision model used in the analysis. This paper examines the proper choice of decision model for determining the optimal planting density and land expectation value (LEV) for a Scots pine (Pinus sylvestris L.) plantation in northern Sweden. First, a general adaptive decision model for determining the regeneration alternative that maximizes the LEV is presented. This model recognizes future stand state and timber price uncertainties by including multiple stand state and timber price scenarios, and assumes that the harvest decision in each future period will be made conditional on the observed stand state and timber prices. Alternative assumptions about future stand states, timber prices, and harvest decisions can be incorporated into this general decision model, resulting in several different decision models that can be used to analyze a specific regeneration problem. Next, the consequences of choosing different modeling assumptions are determined using the example Scots pine plantation problem. Numerical results show that the most important sources of uncertainty that affect the optimal planting density and LEV are variations of the optimal clearcut time due to short-term fluctuations of timber prices. It is appropriate to determine the optimal planting density and harvest policy using an adaptive decision model that recognizes uncertainty only in future timber prices. After the optimal decisions have been found, however, the LEV should be re-estimated by incorporating both future stand state and timber price uncertainties.

  11. Assessing electronic health record systems in emergency departments: Using a decision analytic Bayesian model.

    PubMed

    Ben-Assuli, Ofir; Leshno, Moshe

    2016-09-01

    In the last decade, health providers have implemented information systems to improve accuracy in medical diagnosis and decision-making. This article evaluates the impact of an electronic health record on emergency department physicians' diagnosis and admission decisions. A decision analytic approach using a decision tree was constructed to model the admission decision process to assess the added value of medical information retrieved from the electronic health record. Using a Bayesian statistical model, this method was evaluated on two coronary artery disease scenarios. The results show that the cases of coronary artery disease were better diagnosed when the electronic health record was consulted and led to more informed admission decisions. Furthermore, the value of medical information required for a specific admission decision in emergency departments could be quantified. The findings support the notion that physicians and patient healthcare can benefit from implementing electronic health record systems in emergency departments.

  12. Decision model for evaluating reactor disposition of excess plutonium

    SciTech Connect

    Edmunds, T.

    1995-02-01

    The US Department of Energy is currently considering a range of technologies for disposition of excess weapon plutonium. Use of plutonium fuel in fission reactors to generate spent fuel is one class of technology options. This report describes the inputs and results of decision analyses conducted to evaluate four evolutionary/advanced and three existing fission reactor designs for plutonium disposition. The evaluation incorporates multiple objectives or decision criteria, and accounts for uncertainty. The purpose of the study is to identify important and discriminating decision criteria, and to identify combinations of value judgments and assumptions that tend to favor one reactor design over another.

  13. Quantifying the Value of Downscaled Climate Model Information for Adaptation Decisions: When is Downscaling a Smart Decision?

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Wootten, A.; Eaton, M. J.; Runge, M. C.; Littell, J. S.; Bryan, A. M.; Carter, S. L.

    2015-12-01

    Two types of decisions face society with respect to anthropogenic climate change: (1) whether to enact a global greenhouse gas abatement policy, and (2) how to adapt to the local consequences of current and future climatic changes. The practice of downscaling global climate models (GCMs) is often used to address (2) because GCMs do not resolve key features that will mediate global climate change at the local scale. In response, the development of downscaling techniques and models has accelerated to aid decision makers seeking adaptation guidance. However, quantifiable estimates of the value of information are difficult to obtain, particularly in decision contexts characterized by deep uncertainty and low system-controllability. Here we demonstrate a method to quantify the additional value that decision makers could expect if research investments are directed towards developing new downscaled climate projections. As a proof of concept we focus on a real-world management problem: whether to undertake assisted migration for an endangered tropical avian species. We also take advantage of recently published multivariate methods that account for three vexing issues in climate impacts modeling: maximizing climate model quality information, accounting for model dependence in ensembles of opportunity, and deriving probabilistic projections. We expand on these global methods by including regional (Caribbean Basin) and local (Puerto Rico) domains. In the local domain, we test whether a high resolution (2km) dynamically downscaled GCM reduces the multivariate error estimate compared to the original coarse-scale GCM. Initial tests show little difference between the downscaled and original GCM multivariate error. When propagated through to a species population model, the Value of Information analysis indicates that the expected utility that would accrue to the manager (and species) if this downscaling were completed may not justify the cost compared to alternative actions.

  14. Decision Support Model for Introduction of Gamification Solution Using AHP

    PubMed Central

    2014-01-01

    Gamification means the use of various elements of game design in nongame contexts including workplace collaboration, marketing, education, military, and medical services. Gamification is effective for both improving workplace productivity and motivating employees. However, introduction of gamification is not easy because the planning and implementation processes of gamification are very complicated and it needs interdisciplinary knowledge such as information systems, organization behavior, and human psychology. Providing a systematic decision making method for gamification process is the purpose of this paper. This paper suggests the decision criteria for selection of gamification platform to support a systematic decision making process for managements. The criteria are derived from previous works on gamification, introduction of information systems, and analytic hierarchy process. The weights of decision criteria are calculated through a survey by the professionals on game, information systems, and business administration. The analytic hierarchy process is used to derive the weights. The decision criteria and weights provided in this paper could support the managements to make a systematic decision for selection of gamification platform. PMID:24892075

  15. Decision support model for introduction of gamification solution using AHP.

    PubMed

    Kim, Sangkyun

    2014-01-01

    Gamification means the use of various elements of game design in nongame contexts including workplace collaboration, marketing, education, military, and medical services. Gamification is effective for both improving workplace productivity and motivating employees. However, introduction of gamification is not easy because the planning and implementation processes of gamification are very complicated and it needs interdisciplinary knowledge such as information systems, organization behavior, and human psychology. Providing a systematic decision making method for gamification process is the purpose of this paper. This paper suggests the decision criteria for selection of gamification platform to support a systematic decision making process for managements. The criteria are derived from previous works on gamification, introduction of information systems, and analytic hierarchy process. The weights of decision criteria are calculated through a survey by the professionals on game, information systems, and business administration. The analytic hierarchy process is used to derive the weights. The decision criteria and weights provided in this paper could support the managements to make a systematic decision for selection of gamification platform. PMID:24892075

  16. Learning to maximize reward rate: a model based on semi-Markov decision processes.

    PubMed

    Khodadadi, Arash; Fakhari, Pegah; Busemeyer, Jerome R

    2014-01-01

    WHEN ANIMALS HAVE TO MAKE A NUMBER OF DECISIONS DURING A LIMITED TIME INTERVAL, THEY FACE A FUNDAMENTAL PROBLEM: how much time they should spend on each decision in order to achieve the maximum possible total outcome. Deliberating more on one decision usually leads to more outcome but less time will remain for other decisions. In the framework of sequential sampling models, the question is how animals learn to set their decision threshold such that the total expected outcome achieved during a limited time is maximized. The aim of this paper is to provide a theoretical framework for answering this question. To this end, we consider an experimental design in which each trial can come from one of the several possible "conditions." A condition specifies the difficulty of the trial, the reward, the penalty and so on. We show that to maximize the expected reward during a limited time, the subject should set a separate value of decision threshold for each condition. We propose a model of learning the optimal value of decision thresholds based on the theory of semi-Markov decision processes (SMDP). In our model, the experimental environment is modeled as an SMDP with each "condition" being a "state" and the value of decision thresholds being the "actions" taken in those states. The problem of finding the optimal decision thresholds then is cast as the stochastic optimal control problem of taking actions in each state in the corresponding SMDP such that the average reward rate is maximized. Our model utilizes a biologically plausible learning algorithm to solve this problem. The simulation results show that at the beginning of learning the model choses high values of decision threshold which lead to sub-optimal performance. With experience, however, the model learns to lower the value of decision thresholds till finally it finds the optimal values.

  17. Learning to maximize reward rate: a model based on semi-Markov decision processes

    PubMed Central

    Khodadadi, Arash; Fakhari, Pegah; Busemeyer, Jerome R.

    2014-01-01

    When animals have to make a number of decisions during a limited time interval, they face a fundamental problem: how much time they should spend on each decision in order to achieve the maximum possible total outcome. Deliberating more on one decision usually leads to more outcome but less time will remain for other decisions. In the framework of sequential sampling models, the question is how animals learn to set their decision threshold such that the total expected outcome achieved during a limited time is maximized. The aim of this paper is to provide a theoretical framework for answering this question. To this end, we consider an experimental design in which each trial can come from one of the several possible “conditions.” A condition specifies the difficulty of the trial, the reward, the penalty and so on. We show that to maximize the expected reward during a limited time, the subject should set a separate value of decision threshold for each condition. We propose a model of learning the optimal value of decision thresholds based on the theory of semi-Markov decision processes (SMDP). In our model, the experimental environment is modeled as an SMDP with each “condition” being a “state” and the value of decision thresholds being the “actions” taken in those states. The problem of finding the optimal decision thresholds then is cast as the stochastic optimal control problem of taking actions in each state in the corresponding SMDP such that the average reward rate is maximized. Our model utilizes a biologically plausible learning algorithm to solve this problem. The simulation results show that at the beginning of learning the model choses high values of decision threshold which lead to sub-optimal performance. With experience, however, the model learns to lower the value of decision thresholds till finally it finds the optimal values. PMID:24904252

  18. Simulation modeling to derive the value-of-information for risky animal disease-import decisions.

    PubMed

    Disney, W Terry; Peters, Mark A

    2003-11-12

    Simulation modeling can be used in aiding decision-makers in deciding when to invest in additional research and when the risky animal disease-import decision should go forward. Simulation modeling to evaluate value-of-information (VOI) techniques provides a robust, objective and transparent framework for assisting decision-makers in making risky animal and animal product decisions. In this analysis, the hypothetical risk from poultry disease in chicken-meat imports was modeled. Economic criteria were used to quantify alternative confidence-increasing decisions regarding potential import testing and additional research requirements. In our hypothetical example, additional information about poultry disease in the exporting country (either by requiring additional export-flock surveillance that results in no sign of disease, or by conducting additional research into lack of disease transmittal through chicken-meat ingestion) captured >75% of the value-of-information attainable regarding the chicken-meat-import decision.

  19. Decision-Tree Models of Categorization Response Times, Choice Proportions, and Typicality Judgments

    ERIC Educational Resources Information Center

    Lafond, Daniel; Lacouture, Yves; Cohen, Andrew L.

    2009-01-01

    The authors present 3 decision-tree models of categorization adapted from T. Trabasso, H. Rollins, and E. Shaughnessy (1971) and use them to provide a quantitative account of categorization response times, choice proportions, and typicality judgments at the individual-participant level. In Experiment 1, the decision-tree models were fit to…

  20. A Review of Contemporary Ethical Decision-Making Models for Mental Health Professionals

    ERIC Educational Resources Information Center

    Francis, Perry C.

    2015-01-01

    Mental health professionals are faced with increasingly complex ethical decisions that are impacted by culture, personal and professional values, and the contexts in which they and their clients inhabit. This article presents the reasons for developing and implementing multiple ethical decision making models and reviews four models that address…

  1. Methodology for the use of DSSAT Models for Precision Agriculture Decision Support

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prototype decision support system (DSS) called Apollo was developed to assist researchers in using the Decision Support System for Agrotechnology Transfer (DSSAT) crop growth models to analyze precision farming datasets. Because the DSSAT models are written to simulate crop growth and development...

  2. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed simulation models are used extensively to investigate hydrologic processes, landuse and climate change impacts, pollutant load assessments and best management practices (BMPs). Developing, calibrating and validating these models require a number of critical decisions that will influence t...

  3. Models for Rational Decision Making. Analysis of Literature and Selected Bibliography. Analysis and Bibliography Series, No. 6.

    ERIC Educational Resources Information Center

    Hall, John S.

    This review analyzes the trend in educational decision making to replace hierarchical authority structures with more rational models for decision making drawn from management science. Emphasis is also placed on alternatives to a hierarchical decision-making model, including governing models, union models, and influence models. A 54-item…

  4. Decision-Making Models with Sets of Strategies for Applications to Individuals and Groups in Higher Education.

    ERIC Educational Resources Information Center

    Gill, Wanda E.

    Three decision-making models that have applications for college presidents and administrators are reviewed. While both individual and group decision-making are addressed, emphasis is placed on the importance of group decisions on institutional policy planning. The model of Edmund M. Burke (1979) presents specific decision-making strategies in…

  5. Decision support models for solid waste management: Review and game-theoretic approaches

    SciTech Connect

    Karmperis, Athanasios C.; Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios

    2013-05-15

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.

  6. Stochastic model for fatigue crack size and cost effective design decisions. [for aerospace structures

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1975-01-01

    This paper describes a methodology for making cost effective fatigue design decisions. The methodology is based on a probabilistic model for the stochastic process of fatigue crack growth with time. The development of a particular model for the stochastic process is also discussed in the paper. The model is based on the assumption of continuous time and discrete space of crack lengths. Statistical decision theory and the developed probabilistic model are used to develop the procedure for making fatigue design decisions on the basis of minimum expected cost or risk function and reliability bounds. Selections of initial flaw size distribution, NDT, repair threshold crack lengths, and inspection intervals are discussed.

  7. Decision Support Systems and the Conflict Model of Decision Making: A Stimulus for New Computer-Assisted Careers Guidance Systems.

    ERIC Educational Resources Information Center

    Ballantine, R. Malcolm

    Decision Support Systems (DSSs) are computer-based decision aids to use when making decisions which are partially amenable to rational decision-making procedures but contain elements where intuitive judgment is an essential component. In such situations, DSSs are used to improve the quality of decision-making. The DSS approach is based on Simon's…

  8. A Core Journal Decision Model Based on Weighted Page Rank

    ERIC Educational Resources Information Center

    Wang, Hei-Chia; Chou, Ya-lin; Guo, Jiunn-Liang

    2011-01-01

    Purpose: The paper's aim is to propose a core journal decision method, called the local impact factor (LIF), which can evaluate the requirements of the local user community by combining both the access rate and the weighted impact factor, and by tracking citation information on the local users' articles. Design/methodology/approach: Many…

  9. A Three-Phase Model of Retirement Decision Making

    ERIC Educational Resources Information Center

    Feldman, Daniel C.; Beehr, Terry A.

    2011-01-01

    The present article organizes prominent theories about retirement decision making around three different types of thinking about retirement: imagining the possibility of retirement, assessing when it is time to let go of long-held jobs, and putting concrete plans for retirement into action at present. It also highlights important directions for…

  10. A new fit-for-purpose model testing framework: Decision Crash Tests

    NASA Astrophysics Data System (ADS)

    Tolson, Bryan; Craig, James

    2016-04-01

    Decision-makers in water resources are often burdened with selecting appropriate multi-million dollar strategies to mitigate the impacts of climate or land use change. Unfortunately, the suitability of existing hydrologic simulation models to accurately inform decision-making is in doubt because the testing procedures used to evaluate model utility (i.e., model validation) are insufficient. For example, many authors have identified that a good standard framework for model testing called the Klemes Crash Tests (KCTs), which are the classic model validation procedures from Klemeš (1986) that Andréassian et al. (2009) rename as KCTs, have yet to become common practice in hydrology. Furthermore, Andréassian et al. (2009) claim that the progression of hydrological science requires widespread use of KCT and the development of new crash tests. Existing simulation (not forecasting) model testing procedures such as KCTs look backwards (checking for consistency between simulations and past observations) rather than forwards (explicitly assessing if the model is likely to support future decisions). We propose a fundamentally different, forward-looking, decision-oriented hydrologic model testing framework based upon the concept of fit-for-purpose model testing that we call Decision Crash Tests or DCTs. Key DCT elements are i) the model purpose (i.e., decision the model is meant to support) must be identified so that model outputs can be mapped to management decisions ii) the framework evaluates not just the selected hydrologic model but the entire suite of model-building decisions associated with model discretization, calibration etc. The framework is constructed to directly and quantitatively evaluate model suitability. The DCT framework is applied to a model building case study on the Grand River in Ontario, Canada. A hypothetical binary decision scenario is analysed (upgrade or not upgrade the existing flood control structure) under two different sets of model building

  11. Analysis and Management of Animal Populations: Modeling, Estimation and Decision Making

    USGS Publications Warehouse

    Williams, B.K.; Nichols, J.D.; Conroy, M.J.

    2002-01-01

    This book deals with the processes involved in making informed decisions about the management of animal populations. It covers the modeling of population responses to management actions, the estimation of quantities needed in the modeling effort, and the application of these estimates and models to the development of sound management decisions. The book synthesizes and integrates in a single volume the methods associated with these themes, as they apply to ecological assessment and conservation of animal populations. KEY FEATURES * Integrates population modeling, parameter estimation and * decision-theoretic approaches to management in a single, cohesive framework * Provides authoritative, state-of-the-art descriptions of quantitative * approaches to modeling, estimation and decision-making * Emphasizes the role of mathematical modeling in the conduct of science * and management * Utilizes a unifying biological context, consistent mathematical notation, * and numerous biological examples

  12. A neurocognitive model of the ethical decision-making process: implications for study and practice.

    PubMed

    Reynolds, Scott J

    2006-07-01

    The field of business ethics is entrenched in a cognitive approach that portrays the ethical decision-making process as a completely deliberate and reasoned exercise. In light of growing concerns about the veracity of this approach, I build upon current knowledge of how the brain functions to present a neurocognitive model of ethical decision making. The model suggests that ethical decision making involves 2 interrelated yet functionally distinct cycles, a reflexive pattern matching cycle and a higher order conscious reasoning cycle, and thereby describes not only reasoned analysis, but also the intuitive and retrospective aspects of ethical decision making. The model sparks research in new areas, holds significant implications for the study of ethical decision making, and provides suggestions for improving ethical behavior in organizations.

  13. Enabling Integrated Decision Making for Electronic-Commerce by Modelling an Enterprise's Sharable Knowledge.

    ERIC Educational Resources Information Center

    Kim, Henry M.

    2000-01-01

    An enterprise model, a computational model of knowledge about an enterprise, is a useful tool for integrated decision-making by e-commerce suppliers and customers. Sharable knowledge, once represented in an enterprise model, can be integrated by the modeled enterprise's e-commerce partners. Presents background on enterprise modeling, followed by…

  14. A Socioecological Model of Rape Survivors' Decisions to Aid in Case Prosecution

    ERIC Educational Resources Information Center

    Anders, Mary C.; Christopher, F. Scott

    2011-01-01

    The purpose of our study was to identify factors underlying rape survivors' post-assault prosecution decisions by testing a decision model that included the complex relations between the multiple social ecological systems within which rape survivors are embedded. We coded 440 police rape cases for characteristics of the assault and characteristics…

  15. The Development and Trials of a Decision-Making Model: An Evaluation.

    ERIC Educational Resources Information Center

    Peters, Michael; And Others

    1986-01-01

    The Administrative Decision-Making Skills Project, undertaken for the New Zealand State Services Commission, is described. A philosophical model of decision making and the associated teaching/learning package for government officers is evaluated. The project, including instruments, methodology, and major findings, is evaluated. (Author/LMO)

  16. Assessing the Utility of the Willingness/Prototype Model in Predicting Help-Seeking Decisions

    ERIC Educational Resources Information Center

    Hammer, Joseph H.; Vogel, David L.

    2013-01-01

    Prior research on professional psychological help-seeking behavior has operated on the assumption that the decision to seek help is based on intentional and reasoned processes. However, research on the dual-process prototype/willingness model (PWM; Gerrard, Gibbons, Houlihan, Stock, & Pomery, 2008) suggests health-related decisions may also…

  17. A Need to Know: An Ethical Decision-Making Model for Research Administrators

    ERIC Educational Resources Information Center

    Lincoln, Sarah Hope; Holmes, Elizabeth K.

    2008-01-01

    When faced with a morally charged situation, individuals engage in an ethical decision-making process to resolve the ethical dilemma. This paper outlines a model that describes the steps in the ethical decision-making process and identifies situational factors, collectively termed moral intensity, which may influence this process. The use of a…

  18. A Multilevel Model of Minority Opinion Expression and Team Decision-Making Effectiveness

    ERIC Educational Resources Information Center

    Park, Guihyun; DeShon, Richard P.

    2010-01-01

    The consideration of minority opinions when making team decisions is an important factor that contributes to team effectiveness. A multilevel model of minority opinion influence in decision-making teams is developed to address the conditions that relate to adequate consideration of minority opinions. Using a sample of 57 teams working on a…

  19. Examination of a Group Counseling Model of Career Decision Making with College Students

    ERIC Educational Resources Information Center

    Rowell, P. Clay; Mobley, A. Keith; Kemer, Gulsah; Giordano, Amanda

    2014-01-01

    The authors examined the effectiveness of a group career counseling model (Pyle, K. R., 2007) on college students' career decision-making abilities. They used a Solomon 4-group design and found that students who participated in the career counseling groups had significantly greater increases in career decision-making abilities than those who…

  20. A Framework for Making Sustainable Cleanup Decisions Using the KONVERGENCE Model

    SciTech Connect

    Piet, Steven James; Dettmers, Dana Lee; Dakins, Maxine Ellen; Eide, Steven Arvid; Gibson, Patrick Lavern; Joe, Jeffrey Clark; Kerr, Thomas A; Nitschke, Robert Leon; Oswald, Kyle Blaine; Reisenauer, John Phillip

    2002-08-01

    The effects of closure decisions for used nuclear facilities can extend centuries into the future. Yet, the longevity of decisions made over the past half century has been poor. Our goal is an improved decision framework for decommissioning, stewardship, and waste management. This paper describes our overall framework. Companion papers describe the underlying philosophy of the KONVERGENCE Model for Sustainable Decisions1 and implications for a class of intractable decision problems.2 Where knowledge, values, and resources converge (the K, V, and R in KONVERGENCE), you will find a sustainable decision – a decision that works over time. Our approach clarifies what is needed to make and keep decisions over relevant time periods. The process guides participants through establishing the real problem, understanding the universes of knowledge, values, resources, and generating alternatives. We explore three classes of alternatives – reusable (e.g. greenfield), closed (e.g. entombed structures), and adaptable. After testing for konvergence of alternatives among knowledge, values, resources, we offer suggestions to diagnose divergence, to reduce divergence by refining alternatives to address identified weaknesses, and to plan to keep konvergence over the life of the decision. We believe that decisions made via this method will better stand the test of time – because it will be either acceptable to keep them unchanged or possible to adapt them as knowledge, values, and resources change.

  1. Assessment of trading partners for China's rare earth exports using a decision analytic approach.

    PubMed

    He, Chunyan; Lei, Yalin; Ge, Jianping

    2014-01-01

    Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies.

  2. Assessment of Trading Partners for China's Rare Earth Exports Using a Decision Analytic Approach

    PubMed Central

    He, Chunyan; Lei, Yalin; Ge, Jianping

    2014-01-01

    Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies. PMID:25051534

  3. Assessment of trading partners for China's rare earth exports using a decision analytic approach.

    PubMed

    He, Chunyan; Lei, Yalin; Ge, Jianping

    2014-01-01

    Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies. PMID:25051534

  4. Decision making and memory: a critique of Juslin and Olsson's (1997) sampling model of sensory discrimination.

    PubMed

    Vickers, D; Pietsch, A

    2001-10-01

    P. Juslin and H. Olsson's (1997) distinction between Thurstonian and Brunswikian uncertainty is examined and their sampling model of sensory discrimination analyzed as a representative of the class of memoryless decision processes. The separate characteristics and combined behavior of 4 main components of the model are explored: (a) the basic decision process, (b) the assumption of deadline responding, (c) the moving window model of memory, and (d) the hypothesized basis for confidence. It is argued that grafting a moving window memory onto a memoryless decision process has several undesirable consequences. Moreover, the suggested basis for confidence leads to predictions that are counterintuitive and unsupported by empirical evidence. It is concluded that the window-sampling model is a maladapted combination of inappropriate elements, which is implausible as a model of decision making, memory, or confidence, in sensory discrimination. PMID:11699117

  5. Clarity versus complexity: land-use modeling as a practical tool for decision-makers

    USGS Publications Warehouse

    Sohl, Terry L.; Claggett, Peter R.

    2013-01-01

    The last decade has seen a remarkable increase in the number of modeling tools available to examine future land-use and land-cover (LULC) change. Integrated modeling frameworks, agent-based models, cellular automata approaches, and other modeling techniques have substantially improved the representation of complex LULC systems, with each method using a different strategy to address complexity. However, despite the development of new and better modeling tools, the use of these tools is limited for actual planning, decision-making, or policy-making purposes. LULC modelers have become very adept at creating tools for modeling LULC change, but complicated models and lack of transparency limit their utility for decision-makers. The complicated nature of many LULC models also makes it impractical or even impossible to perform a rigorous analysis of modeling uncertainty. This paper provides a review of land-cover modeling approaches and the issues causes by the complicated nature of models, and provides suggestions to facilitate the increased use of LULC models by decision-makers and other stakeholders. The utility of LULC models themselves can be improved by 1) providing model code and documentation, 2) through the use of scenario frameworks to frame overall uncertainties, 3) improving methods for generalizing key LULC processes most important to stakeholders, and 4) adopting more rigorous standards for validating models and quantifying uncertainty. Communication with decision-makers and other stakeholders can be improved by increasing stakeholder participation in all stages of the modeling process, increasing the transparency of model structure and uncertainties, and developing user-friendly decision-support systems to bridge the link between LULC science and policy. By considering these options, LULC science will be better positioned to support decision-makers and increase real-world application of LULC modeling results.

  6. Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam

    NASA Astrophysics Data System (ADS)

    Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit

    2016-04-01

    Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.

  7. Models in animal collective decision-making: information uncertainty and conflicting preferences.

    PubMed

    Conradt, Larissa

    2012-04-01

    Collective decision-making plays a central part in the lives of many social animals. Two important factors that influence collective decision-making are information uncertainty and conflicting preferences. Here, I bring together, and briefly review, basic models relating to animal collective decision-making in situations with information uncertainty and in situations with conflicting preferences between group members. The intention is to give an overview about the different types of modelling approaches that have been employed and the questions that they address and raise. Despite the use of a wide range of different modelling techniques, results show a coherent picture, as follows. Relatively simple cognitive mechanisms can lead to effective information pooling. Groups often face a trade-off between decision accuracy and speed, but appropriate fine-tuning of behavioural parameters could achieve high accuracy while maintaining reasonable speed. The right balance of interdependence and independence between animals is crucial for maintaining group cohesion and achieving high decision accuracy. In conflict situations, a high degree of decision-sharing between individuals is predicted, as well as transient leadership and leadership according to needs and physiological status. Animals often face crucial trade-offs between maintaining group cohesion and influencing the decision outcome in their own favour. Despite the great progress that has been made, there remains one big gap in our knowledge: how do animals make collective decisions in situations when information uncertainty and conflict of interest operate simultaneously?

  8. Models in animal collective decision-making: information uncertainty and conflicting preferences

    PubMed Central

    Conradt, Larissa

    2012-01-01

    Collective decision-making plays a central part in the lives of many social animals. Two important factors that influence collective decision-making are information uncertainty and conflicting preferences. Here, I bring together, and briefly review, basic models relating to animal collective decision-making in situations with information uncertainty and in situations with conflicting preferences between group members. The intention is to give an overview about the different types of modelling approaches that have been employed and the questions that they address and raise. Despite the use of a wide range of different modelling techniques, results show a coherent picture, as follows. Relatively simple cognitive mechanisms can lead to effective information pooling. Groups often face a trade-off between decision accuracy and speed, but appropriate fine-tuning of behavioural parameters could achieve high accuracy while maintaining reasonable speed. The right balance of interdependence and independence between animals is crucial for maintaining group cohesion and achieving high decision accuracy. In conflict situations, a high degree of decision-sharing between individuals is predicted, as well as transient leadership and leadership according to needs and physiological status. Animals often face crucial trade-offs between maintaining group cohesion and influencing the decision outcome in their own favour. Despite the great progress that has been made, there remains one big gap in our knowledge: how do animals make collective decisions in situations when information uncertainty and conflict of interest operate simultaneously? PMID:23565335

  9. Polya’s bees: A model of decentralized decision-making

    PubMed Central

    Golman, Russell; Hagmann, David; Miller, John H.

    2015-01-01

    How do social systems make decisions with no single individual in control? We observe that a variety of natural systems, including colonies of ants and bees and perhaps even neurons in the human brain, make decentralized decisions using common processes involving information search with positive feedback and consensus choice through quorum sensing. We model this process with an urn scheme that runs until hitting a threshold, and we characterize an inherent tradeoff between the speed and the accuracy of a decision. The proposed common mechanism provides a robust and effective means by which a decentralized system can navigate the speed-accuracy tradeoff and make reasonably good, quick decisions in a variety of environments. Additionally, consensus choice exhibits systemic risk aversion even while individuals are idiosyncratically risk-neutral. This too is adaptive. The model illustrates how natural systems make decentralized decisions, illuminating a mechanism that engineers of social and artificial systems could imitate. PMID:26601255

  10. Automatically updating predictive modeling workflows support decision-making in drug design.

    PubMed

    Muegge, Ingo; Bentzien, Jörg; Mukherjee, Prasenjit; Hughes, Robert O

    2016-09-01

    Using predictive models for early decision-making in drug discovery has become standard practice. We suggest that model building needs to be automated with minimum input and low technical maintenance requirements. Models perform best when tailored to answering specific compound optimization related questions. If qualitative answers are required, 2-bin classification models are preferred. Integrating predictive modeling results with structural information stimulates better decision making. For in silico models supporting rapid structure-activity relationship cycles the performance deteriorates within weeks. Frequent automated updates of predictive models ensure best predictions. Consensus between multiple modeling approaches increases the prediction confidence. Combining qualified and nonqualified data optimally uses all available information. Dose predictions provide a holistic alternative to multiple individual property predictions for reaching complex decisions.

  11. Automatically updating predictive modeling workflows support decision-making in drug design.

    PubMed

    Muegge, Ingo; Bentzien, Jörg; Mukherjee, Prasenjit; Hughes, Robert O

    2016-09-01

    Using predictive models for early decision-making in drug discovery has become standard practice. We suggest that model building needs to be automated with minimum input and low technical maintenance requirements. Models perform best when tailored to answering specific compound optimization related questions. If qualitative answers are required, 2-bin classification models are preferred. Integrating predictive modeling results with structural information stimulates better decision making. For in silico models supporting rapid structure-activity relationship cycles the performance deteriorates within weeks. Frequent automated updates of predictive models ensure best predictions. Consensus between multiple modeling approaches increases the prediction confidence. Combining qualified and nonqualified data optimally uses all available information. Dose predictions provide a holistic alternative to multiple individual property predictions for reaching complex decisions. PMID:27584594

  12. An analytical framework to assist decision makers in the use of forest ecosystem model predictions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The predictions of most terrestrial ecosystem models originate from deterministic simulations. Relatively few uncertainty evaluation exercises in model outputs are performed by either model developers or users. This issue has important consequences for decision makers who rely on models to develop n...

  13. Sex differences in a rat model of risky decision making.

    PubMed

    Orsini, Caitlin A; Willis, Markie L; Gilbert, Ryan J; Bizon, Jennifer L; Setlow, Barry

    2016-02-01

    Many debilitating psychiatric conditions, including drug addiction, are characterized by poor decision making and maladaptive risk-taking. Recent research has begun to probe this relationship to determine how brain mechanisms mediating risk-taking become compromised after chronic drug use. Currently, however, the majority of work in this field has used male subjects. Given the well-established sex differences in drug addiction, it is conceivable that such differences are also evident in risk-based decision making. To test this possibility, male and female adult rats were trained in a risky decision making task (RDT), in which they chose between a small, "safe" food reward and a large, "risky" food reward accompanied by an increasing probability of mild footshock punishment. Consistent with findings in human subjects, females were more risk averse, choosing the large, risky reward significantly less than males. This effect was not due to differences in shock reactivity or body weight, and risk-taking in females was not modulated by estrous phase. Systemic amphetamine administration decreased risk-taking in both males and females; however, females exhibited greater sensitivity to amphetamine, suggesting that dopaminergic signaling may partially account for sex differences in risk-taking. Finally, although males displayed greater instrumental responding for food reward, reward choice in the RDT was not affected by satiation, indicating that differences in motivation to obtain food reward cannot fully account for sex differences in risk-taking. These results should prove useful for developing targeted treatments for psychiatric conditions in which risk-taking is altered and that are known to differentially affect males and females. PMID:26653713

  14. [Do clinical decision models improve the triage of acutely ill children?].

    PubMed

    Berger, Marjolein Y

    2015-01-01

    Acute infection is the most common presentation of children in primary care, with only a few having serious infections. To avoid complications, early recognition and appropriate referral are essential. Clinical decision models have the potential to improve diagnostic decision-making for these serious conditions. Although many models have been developed, few have proven cost-effective. A recent model developed in acutely ill children presenting in Belgian primary care and validated in a new cohort has been shown to adequately identify children that are hospitalised with acute infections. The results are impressive but raise questions about generalisability and cost-effectiveness. In conclusion, clinical decision models appear currently incapable of improving decision-making in acutely ill children. As an alternative, we should consider asking the general practitioner to perform telephone triage.

  15. Analysis of a decision model in the context of equilibrium pricing and order book pricing

    NASA Astrophysics Data System (ADS)

    Wagner, D. C.; Schmitt, T. A.; Schäfer, R.; Guhr, T.; Wolf, D. E.

    2014-12-01

    An agent-based model for financial markets has to incorporate two aspects: decision making and price formation. We introduce a simple decision model and consider its implications in two different pricing schemes. First, we study its parameter dependence within a supply-demand balance setting. We find realistic behavior in a wide parameter range. Second, we embed our decision model in an order book setting. Here, we observe interesting features which are not present in the equilibrium pricing scheme. In particular, we find a nontrivial behavior of the order book volumes which reminds of a trend switching phenomenon. Thus, the decision making model alone does not realistically represent the trading and the stylized facts. The order book mechanism is crucial.

  16. The Integrated Medical Model: A Decision Support Tool for In-flight Crew Health Care

    NASA Technical Reports Server (NTRS)

    Butler, Doug

    2009-01-01

    This viewgraph presentation reviews the development of an Integrated Medical Model (IMM) decision support tool for in-flight crew health care safety. Clinical methods, resources, and case scenarios are also addressed.

  17. Modeling confidence judgments, response times, and multiple choices in decision making: recognition memory and motion discrimination.

    PubMed

    Ratcliff, Roger; Starns, Jeffrey J

    2013-07-01

    Confidence in judgments is a fundamental aspect of decision making, and tasks that collect confidence judgments are an instantiation of multiple-choice decision making. We present a model for confidence judgments in recognition memory tasks that uses a multiple-choice diffusion decision process with separate accumulators of evidence for the different confidence choices. The accumulator that first reaches its decision boundary determines which choice is made. Five algorithms for accumulating evidence were compared, and one of them produced proportions of responses for each of the choices and full response time distributions for each choice that closely matched empirical data. With this algorithm, an increase in the evidence in one accumulator is accompanied by a decrease in the others so that the total amount of evidence in the system is constant. Application of the model to the data from an earlier experiment (Ratcliff, McKoon, & Tindall, 1994) uncovered a relationship between the shapes of z-transformed receiver operating characteristics and the behavior of response time distributions. Both are explained in the model by the behavior of the decision boundaries. For generality, we also applied the decision model to a 3-choice motion discrimination task and found it accounted for data better than a competing class of models. The confidence model presents a coherent account of confidence judgments and response time that cannot be explained with currently popular signal detection theory analyses or dual-process models of recognition.

  18. A Multi Criteria Group Decision-Making Model for Teacher Evaluation in Higher Education Based on Cloud Model and Decision Tree

    ERIC Educational Resources Information Center

    Chang, Ting-Cheng; Wang, Hui

    2016-01-01

    This paper proposes a cloud multi-criteria group decision-making model for teacher evaluation in higher education which is involving subjectivity, imprecision and fuzziness. First, selecting the appropriate evaluation index depending on the evaluation objectives, indicating a clear structural relationship between the evaluation index and…

  19. Emotion, Decision-Making and Substance Dependence: A Somatic-Marker Model of Addiction

    PubMed Central

    Verdejo-García, A; Pérez-García, M; Bechara, A

    2006-01-01

    Similar to patients with orbitofrontal cortex lesions, substance dependent individuals (SDI) show signs of impairments in decision-making, characterised by a tendency to choose the immediate reward at the expense of severe negative future consequences. The somatic-marker hypothesis proposes that decision-making depends in many important ways on neural substrates that regulate homeostasis, emotion and feeling. According to this model, there should be a link between abnormalities in experiencing emotions in SDI, and their severe impairments in decision-making in real-life. Growing evidence from neuroscientific studies suggests that core aspects of substance addiction may be explained in terms of abnormal emotional guidance of decision-making. Behavioural studies have revealed emotional processing and decision-making deficits in SDI. Combined neuropsychological and physiological assessment has demonstrated that the poorer decision-making of SDI is associated with altered reactions to reward and punishing events. Imaging studies have shown that impaired decision-making in addiction is associated with abnormal functioning of a distributed neural network critical for the processing of emotional information, including the ventromedial cortex, the amygdala, the striatum, the anterior cingulate cortex, and the insular/somato-sensory cortices, as well as non-specific neurotransmitter systems that modulate activities of neural processes involved in decision-making. The aim of this paper is to review this growing evidence, and to examine the extent of which these studies support a somatic-marker model of addiction. PMID:18615136

  20. New models for decision making in moral theology.

    PubMed

    Lauer, E F

    1986-01-01

    The way that the Christian tradition faces moral issues is being reshaped. Rather than focusing solely on Scripture and tradition as the basis for resolving ethical issues, decision makers should investigate human experience as well, some contemporary theologians recommend. In contrast to a traditional notion of natural law, which analyzes "human nature," the revisionist approach analyzes human experiences to discover what is authentic in them. This process looks not only at the physical structure of an act but also at its intentionality and its effect on the parties involved. Absolute material norms do not exist, according to the revisionist school. Instead one must examine an act's effects on a person's relationship to God, to others, to the physical world, and to oneself to determine whether it is morally right or wrong. Although this theological trend could be disconcerting to those who serve on ethics committees--since it does not rely on clear-cut rules--and may make decision making more difficult, its value lies in its potential to bring Christians closer to a divine understanding of reality.

  1. Model of human collective decision-making in complex environments

    NASA Astrophysics Data System (ADS)

    Carbone, Giuseppe; Giannoccaro, Ilaria

    2015-12-01

    A continuous-time Markov process is proposed to analyze how a group of humans solves a complex task, consisting in the search of the optimal set of decisions on a fitness landscape. Individuals change their opinions driven by two different forces: (i) the self-interest, which pushes them to increase their own fitness values, and (ii) the social interactions, which push individuals to reduce the diversity of their opinions in order to reach consensus. Results show that the performance of the group is strongly affected by the strength of social interactions and by the level of knowledge of the individuals. Increasing the strength of social interactions improves the performance of the team. However, too strong social interactions slow down the search of the optimal solution and worsen the performance of the group. In particular, we find that the threshold value of the social interaction strength, which leads to the emergence of a superior intelligence of the group, is just the critical threshold at which the consensus among the members sets in. We also prove that a moderate level of knowledge is already enough to guarantee high performance of the group in making decisions.

  2. Decision analysis: a tool to guide the R and D selection of alternative energy sources

    SciTech Connect

    Kriz, T.

    1980-05-01

    The array of alternative energy sources which are vying for the federal government's R and D dollar is formidable when compared to the politically acceptable amount which can be used to fund the research. To guide how these funds should be dispersed, a rational, defensible procedure is needed which can repeatedly be applied as new technologies and new information become available. The procedure advanced in this paper is a decision analysis technique known as multi attribute decision analysis (MADA) and its use is illustrated in an evaluation and ranking of solar thermal electric power generating systems. Since the ultimate purchase decision is made in the market place, the preferences of potential users have been sampled and brought to bear on the ranking. The focus of this description is on the formulation of the problem structure and the decision model, the treatment of uncertainty, and how the results relate to the questions asked by and of the Department of Energy, which funded the study. A final note proposes how decision analysis can be used to address the broader questions of choice among competing technologies with cautions concerning misuse of the procedure.

  3. Application of the Viterbi Algorithm in Hidden Markov Models for Exploring Irrigation Decision Series

    NASA Astrophysics Data System (ADS)

    Andriyas, S.; McKee, M.

    2014-12-01

    Anticipating farmers' irrigation decisions can provide the possibility of improving the efficiency of canal operations in on-demand irrigation systems. Although multiple factors are considered during irrigation decision making, for any given farmer there might be one factor playing a major role. Identification of that biophysical factor which led to a farmer deciding to irrigate is difficult because of high variability of those factors during the growing season. Analysis of the irrigation decisions of a group of farmers for a single crop can help to simplify the problem. We developed a hidden Markov model (HMM) to analyze irrigation decisions and explore the factor and level at which the majority of farmers decide to irrigate. The model requires observed variables as inputs and the hidden states. The chosen model inputs were relatively easily measured, or estimated, biophysical data, including such factors (i.e., those variables which are believed to affect irrigation decision-making) as cumulative evapotranspiration, soil moisture depletion, soil stress coefficient, and canal flows. Irrigation decision series were the hidden states for the model. The data for the work comes from the Canal B region of the Lower Sevier River Basin, near Delta, Utah. The main crops of the region are alfalfa, barley, and corn. A portion of the data was used to build and test the model capability to explore that factor and the level at which the farmer takes the decision to irrigate for future irrigation events. Both group and individual level behavior can be studied using HMMs. The study showed that the farmers cannot be classified into certain classes based on their irrigation decisions, but vary in their behavior from irrigation-to-irrigation across all years and crops. HMMs can be used to analyze what factor and, subsequently, what level of that factor on which the farmer most likely based the irrigation decision. The study shows that the HMM is a capable tool to study a process

  4. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.

    PubMed

    Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results. PMID:26871694

  5. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model

    PubMed Central

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies’ business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and “what-if” scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results. PMID:26871694

  6. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.

    PubMed

    Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.

  7. A decision model for cost effective design of biomass based green energy supply chains.

    PubMed

    Yılmaz Balaman, Şebnem; Selim, Hasan

    2015-09-01

    The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures.

  8. A decision model for cost effective design of biomass based green energy supply chains.

    PubMed

    Yılmaz Balaman, Şebnem; Selim, Hasan

    2015-09-01

    The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures. PMID:25983228

  9. Combined monitoring, decision and control model for the human operator in a command and control desk

    NASA Technical Reports Server (NTRS)

    Muralidharan, R.; Baron, S.

    1978-01-01

    A report is given on the ongoing efforts to mode the human operator in the context of the task during the enroute/return phases in the ground based control of multiple flights of remotely piloted vehicles (RPV). The approach employed here uses models that have their analytical bases in control theory and in statistical estimation and decision theory. In particular, it draws heavily on the modes and the concepts of the optimal control model (OCM) of the human operator. The OCM is being extended into a combined monitoring, decision, and control model (DEMON) of the human operator by infusing decision theoretic notions that make it suitable for application to problems in which human control actions are infrequent and in which monitoring and decision-making are the operator's main activities. Some results obtained with a specialized version of DEMON for the RPV control problem are included.

  10. Optimizing Negotiation Conflict in the Cloud Service Negotiation Framework Using Probabilistic Decision Making Model.

    PubMed

    Rajavel, Rajkumar; Thangarathinam, Mala

    2015-01-01

    Optimization of negotiation conflict in the cloud service negotiation framework is identified as one of the major challenging issues. This negotiation conflict occurs during the bilateral negotiation process between the participants due to the misperception, aggressive behavior, and uncertain preferences and goals about their opponents. Existing research work focuses on the prerequest context of negotiation conflict optimization by grouping similar negotiation pairs using distance, binary, context-dependent, and fuzzy similarity approaches. For some extent, these approaches can maximize the success rate and minimize the communication overhead among the participants. To further optimize the success rate and communication overhead, the proposed research work introduces a novel probabilistic decision making model for optimizing the negotiation conflict in the long-term negotiation context. This decision model formulates the problem of managing different types of negotiation conflict that occurs during negotiation process as a multistage Markov decision problem. At each stage of negotiation process, the proposed decision model generates the heuristic decision based on the past negotiation state information without causing any break-off among the participants. In addition, this heuristic decision using the stochastic decision tree scenario can maximize the revenue among the participants available in the cloud service negotiation framework.

  11. Optimizing Negotiation Conflict in the Cloud Service Negotiation Framework Using Probabilistic Decision Making Model

    PubMed Central

    Rajavel, Rajkumar; Thangarathinam, Mala

    2015-01-01

    Optimization of negotiation conflict in the cloud service negotiation framework is identified as one of the major challenging issues. This negotiation conflict occurs during the bilateral negotiation process between the participants due to the misperception, aggressive behavior, and uncertain preferences and goals about their opponents. Existing research work focuses on the prerequest context of negotiation conflict optimization by grouping similar negotiation pairs using distance, binary, context-dependent, and fuzzy similarity approaches. For some extent, these approaches can maximize the success rate and minimize the communication overhead among the participants. To further optimize the success rate and communication overhead, the proposed research work introduces a novel probabilistic decision making model for optimizing the negotiation conflict in the long-term negotiation context. This decision model formulates the problem of managing different types of negotiation conflict that occurs during negotiation process as a multistage Markov decision problem. At each stage of negotiation process, the proposed decision model generates the heuristic decision based on the past negotiation state information without causing any break-off among the participants. In addition, this heuristic decision using the stochastic decision tree scenario can maximize the revenue among the participants available in the cloud service negotiation framework. PMID:26543899

  12. Optimizing Negotiation Conflict in the Cloud Service Negotiation Framework Using Probabilistic Decision Making Model.

    PubMed

    Rajavel, Rajkumar; Thangarathinam, Mala

    2015-01-01

    Optimization of negotiation conflict in the cloud service negotiation framework is identified as one of the major challenging issues. This negotiation conflict occurs during the bilateral negotiation process between the participants due to the misperception, aggressive behavior, and uncertain preferences and goals about their opponents. Existing research work focuses on the prerequest context of negotiation conflict optimization by grouping similar negotiation pairs using distance, binary, context-dependent, and fuzzy similarity approaches. For some extent, these approaches can maximize the success rate and minimize the communication overhead among the participants. To further optimize the success rate and communication overhead, the proposed research work introduces a novel probabilistic decision making model for optimizing the negotiation conflict in the long-term negotiation context. This decision model formulates the problem of managing different types of negotiation conflict that occurs during negotiation process as a multistage Markov decision problem. At each stage of negotiation process, the proposed decision model generates the heuristic decision based on the past negotiation state information without causing any break-off among the participants. In addition, this heuristic decision using the stochastic decision tree scenario can maximize the revenue among the participants available in the cloud service negotiation framework. PMID:26543899

  13. Modeling Feedbacks Between Individual Human Decisions and Hydrology Using Interconnected Physical and Social Models

    NASA Astrophysics Data System (ADS)

    Murphy, J.; Lammers, R. B.; Proussevitch, A. A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Alessa, L.; Kliskey, A. D.

    2014-12-01

    The global hydrological cycle intersects with human decision making at multiple scales, from dams and irrigation works to the taps in individuals' homes. Residential water consumers are commonly encouraged to conserve; these messages are heard against a background of individual values and conceptions about water quality, uses, and availability. The degree to which these values impact the larger-hydrological dynamics, the way that changes in those values have impacts on the hydrological cycle through time, and the feedbacks by which water availability and quality in turn shape those values, are not well explored. To investigate this domain we employ a global-scale water balance model (WBM) coupled with a social-science-grounded agent-based model (ABM). The integration of a hydrological model with an agent-based model allows us to explore driving factors in the dynamics in coupled human-natural systems. From the perspective of the physical hydrologist, the ABM offers a richer means of incorporating the human decisions that drive the hydrological system; from the view of the social scientist, a physically-based hydrological model allows the decisions of the agents to play out against constraints faithful to the real world. We apply the interconnected models to a study of Tucson, Arizona, USA, and its role in the larger Colorado River system. Our core concept is Technology-Induced Environmental Distancing (TIED), which posits that layers of technology can insulate consumers from direct knowledge of a resource. In Tucson, multiple infrastructure and institutional layers have arguably increased the conceptual distance between individuals and their water supply, offering a test case of the TIED framework. Our coupled simulation allows us to show how the larger system transforms a resource with high temporal and spatial variability into a consumer constant, and the effects of this transformation on the regional system. We use this to explore how pricing, messaging, and

  14. Modeling Integrated Water-User Decisions with Intermittent Supplies

    NASA Astrophysics Data System (ADS)

    Lund, J. R.; Rosenberg, D.

    2006-12-01

    We present an economic-engineering method to estimate urban water use demands with intermittent water supplies. A two-stage, probabilistic optimization formulation includes a wide variety of water supply enhancement and conservation actions that individual households can adopt to meet multiple water quality uses with uncertain water availability. We embed the optimization in Monte-Carlo simulations to show aggregate effects at a utility (citywide) scale for a population of user conditions and decisions. Parametric analysis provides derivations of supply curves to subsidize conservation, demand responses to alternative pricing, and customer willingness-to-pay to avoid shortages. Results show a good empirical fit for the average and distribution of billed residential water use in Amman, Jordan. Additional outputs give likely market penetration rates for household conservation actions, associated water savings, and subsidies required to entice further adoption. We discuss new insights to size, target, market, and finance conservation programs and interpret a demand curve with block pricing.

  15. Using Communication Models to Analyze Decision-Making in the Developmental Process.

    ERIC Educational Resources Information Center

    Silverblank, Francine

    This paper uses two communication models, Goffman's theatrical model and Harris' psychological model, to illustrate the communication process as it occurs in curriculum projects and to analyze the processes by which people influence each other--decision making and nondecision making. It is suggested that viewing such projects from diverse…

  16. A Feedback Learning and Mental Models Perspective on Strategic Decision Making

    ERIC Educational Resources Information Center

    Capelo, Carlos; Dias, Joao Ferreira

    2009-01-01

    This study aims to be a contribution to a theoretical model that explains the effectiveness of the learning and decision-making processes by means of a feedback and mental models perspective. With appropriate mental models, managers should be able to improve their capacity to deal with dynamically complex contexts, in order to achieve long-term…

  17. Consistency and consensus models for group decision-making with uncertain 2-tuple linguistic preference relations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Guo, Chonghui

    2016-08-01

    Due to the uncertainty of the decision environment and the lack of knowledge, decision-makers may use uncertain linguistic preference relations to express their preferences over alternatives and criteria. For group decision-making problems with preference relations, it is important to consider the individual consistency and the group consensus before aggregating the preference information. In this paper, consistency and consensus models for group decision-making with uncertain 2-tuple linguistic preference relations (U2TLPRs) are investigated. First of all, a formula which can construct a consistent U2TLPR from the original preference relation is presented. Based on the consistent preference relation, the individual consistency index for a U2TLPR is defined. An iterative algorithm is then developed to improve the individual consistency of a U2TLPR. To help decision-makers reach consensus in group decision-making under uncertain linguistic environment, the individual consensus and group consensus indices for group decision-making with U2TLPRs are defined. Based on the two indices, an algorithm for consensus reaching in group decision-making with U2TLPRs is also developed. Finally, two examples are provided to illustrate the effectiveness of the proposed algorithms.

  18. From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions

    NASA Astrophysics Data System (ADS)

    Fenicia, Fabrizio; Kavetski, Dmitri; Savenije, Hubert H. G.; Pfister, Laurent

    2016-02-01

    This paper explores the development and application of distributed hydrological models, focusing on the key decisions of how to discretize the landscape, which model structures to use in each landscape element, and how to link model parameters across multiple landscape elements. The case study considers the Attert catchment in Luxembourg—a 300 km2 mesoscale catchment with 10 nested subcatchments that exhibit clearly different streamflow dynamics. The research questions are investigated using conceptual models applied at hydrologic response unit (HRU) scales (1-4 HRUs) on 6 hourly time steps. Multiple model structures are hypothesized and implemented using the SUPERFLEX framework. Following calibration, space/time model transferability is tested using a split-sample approach, with evaluation criteria including streamflow prediction error metrics and hydrological signatures. Our results suggest that: (1) models using geology-based HRUs are more robust and capture the spatial variability of streamflow time series and signatures better than models using topography-based HRUs; this finding supports the hypothesis that, in the Attert, geology exerts a stronger control than topography on streamflow generation, (2) streamflow dynamics of different HRUs can be represented using distinct and remarkably simple model structures, which can be interpreted in terms of the perceived dominant hydrologic processes in each geology type, and (3) the same maximum root zone storage can be used across the three dominant geological units with no loss in model transferability; this finding suggests that the partitioning of water between streamflow and evaporation in the study area is largely independent of geology and can be used to improve model parsimony. The modeling methodology introduced in this study is general and can be used to advance our broader understanding and prediction of hydrological behavior, including the landscape characteristics that control hydrologic response, the

  19. Identifying the decision to be supported: a review of papers from environmental modelling and software

    USGS Publications Warehouse

    Sojda, Richard S.; Chen, Serena H.; El Sawah, Sondoss; Guillaume, Joseph H.A.; Jakeman, A.J.; Lautenbach, Sven; McIntosh, Brian S.; Rizzoli, A.E.; Seppelt, Ralf; Struss, Peter; Voinov, Alexey; Volk, Martin

    2012-01-01

    Two of the basic tenets of decision support system efforts are to help identify and structure the decisions to be supported, and to then provide analysis in how those decisions might be best made. One example from wetland management would be that wildlife biologists must decide when to draw down water levels to optimise aquatic invertebrates as food for breeding ducks. Once such a decision is identified, a system or tool to help them make that decision in the face of current and projected climate conditions could be developed. We examined a random sample of 100 papers published from 2001-2011 in Environmental Modelling and Software that used the phrase “decision support system” or “decision support tool”, and which are characteristic of different sectors. In our review, 41% of the systems and tools related to the water resources sector, 34% were related to agriculture, and 22% to the conservation of fish, wildlife, and protected area management. Only 60% of the papers were deemed to be reporting on DSS. This was based on the papers reviewed not having directly identified a specific decision to be supported. We also report on the techniques that were used to identify the decisions, such as formal survey, focus group, expert opinion, or sole judgment of the author(s). The primary underlying modelling system, e.g., expert system, agent based model, Bayesian belief network, geographical information system (GIS), and the like was categorised next. Finally, since decision support typically should target some aspect of unstructured decisions, we subjectively determined to what degree this was the case. In only 23% of the papers reviewed, did the system appear to tackle unstructured decisions. This knowledge should be useful in helping workers in the field develop more effective systems and tools, especially by being exposed to the approaches in different, but related, disciplines. We propose that a standard blueprint for reporting on DSS be developed for

  20. Revisited: The South Dakota Board of Nursing theory-based regulatory decisioning model.

    PubMed

    Damgaard, Gloria; Bunkers, Sandra Schmidt

    2012-07-01

    The authors of this column describe the South Dakota Board of Nursing's 11 year journey utilizing a humanbecoming theory-based regulatory decisioning model. The column revisits the model with an emphasis on the cocreation of a strategic plan guiding the work of the South Dakota Board of Nursing through 2014. The strategic plan was influenced by the latest refinements of the humanbecoming postulates and the humanbecoming community change concepts. A graphic picture of the decisioning model is presented along with future plans for the theory-based model.

  1. Modelling human decision-making in coupled human and natural systems

    NASA Astrophysics Data System (ADS)

    Feola, G.

    2012-12-01

    A solid understanding of human decision-making is essential to analyze the complexity of coupled human and natural systems (CHANS) and inform policies to promote resilience in the face of environmental change. Human decisions drive and/or mediate the interactions and feedbacks, and contribute to the heterogeneity and non-linearity that characterize CHANS. However, human decision-making is usually over-simplistically modeled, whereby human agents are represented deterministically either as dumb or clairvoyant decision-makers. Decision-making models fall short in the integration of both environmental and human behavioral drivers, and concerning the latter, tend to focus on only one category, e.g. economic, cultural, or psychological. Furthermore, these models render a linear decision-making process and therefore fail to account for the recursive co-evolutionary dynamics in CHANS. As a result, these models constitute only a weak basis for policy-making. There is therefore scope and an urgent need for better approaches to human decision-making, to produce the knowledge that can inform vulnerability reduction policies in the face of environmental change. This presentation synthesizes the current state-of-the-art of modelling human decision-making in CHANS, with particular reference to agricultural systems, and delineates how the above mentioned shortcomings can be overcome. Through examples from research on pesticide use and adaptation to climate change, both based on the integrative agent-centered framework (Feola and Binder, 2010), the approach for an improved understanding of human agents in CHANS are illustrated. This entails: integrative approach, focus on behavioral dynamics more than states, feedbacks between individual and system levels, and openness to heterogeneity.

  2. Dual Processing Model for Medical Decision-Making: An Extension to Diagnostic Testing.

    PubMed

    Tsalatsanis, Athanasios; Hozo, Iztok; Kumar, Ambuj; Djulbegovic, Benjamin

    2015-01-01

    Dual Processing Theories (DPT) assume that human cognition is governed by two distinct types of processes typically referred to as type 1 (intuitive) and type 2 (deliberative). Based on DPT we have derived a Dual Processing Model (DPM) to describe and explain therapeutic medical decision-making. The DPM model indicates that doctors decide to treat when treatment benefits outweigh its harms, which occurs when the probability of the disease is greater than the so called "threshold probability" at which treatment benefits are equal to treatment harms. Here we extend our work to include a wider class of decision problems that involve diagnostic testing. We illustrate applicability of the proposed model in a typical clinical scenario considering the management of a patient with prostate cancer. To that end, we calculate and compare two types of decision-thresholds: one that adheres to expected utility theory (EUT) and the second according to DPM. Our results showed that the decisions to administer a diagnostic test could be better explained using the DPM threshold. This is because such decisions depend on objective evidence of test/treatment benefits and harms as well as type 1 cognition of benefits and harms, which are not considered under EUT. Given that type 1 processes are unique to each decision-maker, this means that the DPM threshold will vary among different individuals. We also showed that when type 1 processes exclusively dominate decisions, ordering a diagnostic test does not affect a decision; the decision is based on the assessment of benefits and harms of treatment. These findings could explain variations in the treatment and diagnostic patterns documented in today's clinical practice.

  3. Dual Processing Model for Medical Decision-Making: An Extension to Diagnostic Testing.

    PubMed

    Tsalatsanis, Athanasios; Hozo, Iztok; Kumar, Ambuj; Djulbegovic, Benjamin

    2015-01-01

    Dual Processing Theories (DPT) assume that human cognition is governed by two distinct types of processes typically referred to as type 1 (intuitive) and type 2 (deliberative). Based on DPT we have derived a Dual Processing Model (DPM) to describe and explain therapeutic medical decision-making. The DPM model indicates that doctors decide to treat when treatment benefits outweigh its harms, which occurs when the probability of the disease is greater than the so called "threshold probability" at which treatment benefits are equal to treatment harms. Here we extend our work to include a wider class of decision problems that involve diagnostic testing. We illustrate applicability of the proposed model in a typical clinical scenario considering the management of a patient with prostate cancer. To that end, we calculate and compare two types of decision-thresholds: one that adheres to expected utility theory (EUT) and the second according to DPM. Our results showed that the decisions to administer a diagnostic test could be better explained using the DPM threshold. This is because such decisions depend on objective evidence of test/treatment benefits and harms as well as type 1 cognition of benefits and harms, which are not considered under EUT. Given that type 1 processes are unique to each decision-maker, this means that the DPM threshold will vary among different individuals. We also showed that when type 1 processes exclusively dominate decisions, ordering a diagnostic test does not affect a decision; the decision is based on the assessment of benefits and harms of treatment. These findings could explain variations in the treatment and diagnostic patterns documented in today's clinical practice. PMID:26244571

  4. An integrated crop model and GIS decision support system for assisting agronomic decision making under climate change.

    PubMed

    Kadiyala, M D M; Nedumaran, S; Singh, Piara; S, Chukka; Irshad, Mohammad A; Bantilan, M C S

    2015-07-15

    The semi-arid tropical (SAT) regions of India are suffering from low productivity which may be further aggravated by anticipated climate change. The present study analyzes the spatial variability of climate change impacts on groundnut yields in the Anantapur district of India and examines the relative contribution of adaptation strategies. For this purpose, a web based decision support tool that integrates crop simulation model and Geographical Information System (GIS) was developed to assist agronomic decision making and this tool can be scalable to any location and crop. The climate change projections of five global climate models (GCMs) relative to the 1980-2010 baseline for Anantapur district indicates an increase in rainfall activity to the tune of 10.6 to 25% during Mid-century period (2040-69) with RCP 8.5. The GCMs also predict warming exceeding 1.4 to 2.4°C by 2069 in the study region. The spatial crop responses to the projected climate indicate a decrease in groundnut yields with four GCMs (MPI-ESM-MR, MIROC5, CCSM4 and HadGEM2-ES) and a contrasting 6.3% increase with the GCM, GFDL-ESM2M. The simulation studies using CROPGRO-Peanut model reveals that groundnut yields can be increased on average by 1.0%, 5.0%, 14.4%, and 20.2%, by adopting adaptation options of heat tolerance, drought tolerant cultivars, supplemental irrigation and a combination of drought tolerance cultivar and supplemental irrigation respectively. The spatial patterns of relative benefits of adaptation options were geographically different and the greatest benefits can be achieved by adopting new cultivars having drought tolerance and with the application of one supplemental irrigation at 60days after sowing.

  5. An integrated crop model and GIS decision support system for assisting agronomic decision making under climate change.

    PubMed

    Kadiyala, M D M; Nedumaran, S; Singh, Piara; S, Chukka; Irshad, Mohammad A; Bantilan, M C S

    2015-07-15

    The semi-arid tropical (SAT) regions of India are suffering from low productivity which may be further aggravated by anticipated climate change. The present study analyzes the spatial variability of climate change impacts on groundnut yields in the Anantapur district of India and examines the relative contribution of adaptation strategies. For this purpose, a web based decision support tool that integrates crop simulation model and Geographical Information System (GIS) was developed to assist agronomic decision making and this tool can be scalable to any location and crop. The climate change projections of five global climate models (GCMs) relative to the 1980-2010 baseline for Anantapur district indicates an increase in rainfall activity to the tune of 10.6 to 25% during Mid-century period (2040-69) with RCP 8.5. The GCMs also predict warming exceeding 1.4 to 2.4°C by 2069 in the study region. The spatial crop responses to the projected climate indicate a decrease in groundnut yields with four GCMs (MPI-ESM-MR, MIROC5, CCSM4 and HadGEM2-ES) and a contrasting 6.3% increase with the GCM, GFDL-ESM2M. The simulation studies using CROPGRO-Peanut model reveals that groundnut yields can be increased on average by 1.0%, 5.0%, 14.4%, and 20.2%, by adopting adaptation options of heat tolerance, drought tolerant cultivars, supplemental irrigation and a combination of drought tolerance cultivar and supplemental irrigation respectively. The spatial patterns of relative benefits of adaptation options were geographically different and the greatest benefits can be achieved by adopting new cultivars having drought tolerance and with the application of one supplemental irrigation at 60days after sowing. PMID:25829290

  6. CO2-PENS: A CO2 Sequestration Systems Model Supporting Risk-Based Decisions

    NASA Astrophysics Data System (ADS)

    Stauffer, P. H.; Viswanathan, H. S.; Guthrie, G. D.; Pawar, R. J.; Kaszuba, J. P.; Carey, J. W.; Lichtner, P. C.; Ziock, H. J.; Dubey, M. K.; Olsen, S. C.; Chipera, S. J.; Fessenden-Rahn, J. E.

    2005-12-01

    The Zero Emissions Research and Technology (ZERT) project at the Los Alamos National Laboratory is studying the injection of CO2 into geologic repositories. We are formulating the problem as science based decision framework that can address issues of risk, cost, and technical requirements at all stages of the sequestration process. The framework is implemented in a system model that is capable of performing stochastic simulations to address uncertainty in different geologic sequestration scenarios, including injection into poorly characterized brine aquifers. Processes level laboratory experiments, field experiments, modeling, economic data, and risk theory are used to support the system level model that will be the basis for decision making. The current system model, CO2-PENS, is already proving to be useful in showing complex interactions between the different components of the framework. The system model also provides a consistent platform to document decisions made during the site selection, implementation, and closure periods.

  7. Characterizing Decision-Analysis Performances of Risk Prediction Models Using ADAPT Curves

    PubMed Central

    Lee, Wen-Chung; Wu, Yun-Chun

    2016-01-01

    Abstract The area under the receiver operating characteristic curve is a widely used index to characterize the performance of diagnostic tests and prediction models. However, the index does not explicitly acknowledge the utilities of risk predictions. Moreover, for most clinical settings, what counts is whether a prediction model can guide therapeutic decisions in a way that improves patient outcomes, rather than to simply update probabilities. Based on decision theory, the authors propose an alternative index, the “average deviation about the probability threshold” (ADAPT). An ADAPT curve (a plot of ADAPT value against the probability threshold) neatly characterizes the decision-analysis performances of a risk prediction model. Several prediction models can be compared for their ADAPT values at a chosen probability threshold, for a range of plausible threshold values, or for the whole ADAPT curves. This should greatly facilitate the selection of diagnostic tests and prediction models. PMID:26765451

  8. Using ILOG OPL-CPLEX and ILOG Optimization Decision Manager (ODM) to Develop Better Models

    NASA Astrophysics Data System (ADS)

    2008-10-01

    This session will provide an in-depth overview on building state-of-the-art decision support applications and models. You will learn how to harness the full power of the ILOG OPL-CPLEX-ODM Development System (ODMS) to develop optimization models and decision support applications that solve complex problems ranging from near real-time scheduling to long-term strategic planning. We will demonstrate how to use ILOG's Open Programming Language (OPL) to quickly model problems solved by ILOG CPLEX, and how to use ILOG ODM to gain further insight about the model. By the end of the session, attendees will understand how to take advantage of the powerful combination of ILOG OPL (to describe an optimization model) and ILOG ODM (to understand the relationships between data, decision variables and constraints).

  9. Prioritization of engineering support requests and advanced technology projects using decision support and industrial engineering models

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid

    1995-01-01

    The evaluation and prioritization of Engineering Support Requests (ESR's) is a particularly difficult task at the Kennedy Space Center (KSC) -- Shuttle Project Engineering Office. This difficulty is due to the complexities inherent in the evaluation process and the lack of structured information. The evaluation process must consider a multitude of relevant pieces of information concerning Safety, Supportability, O&M Cost Savings, Process Enhancement, Reliability, and Implementation. Various analytical and normative models developed over the past have helped decision makers at KSC utilize large volumes of information in the evaluation of ESR's. The purpose of this project is to build on the existing methodologies and develop a multiple criteria decision support system that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. The model utilizes the Analytic Hierarchy Process (AHP), subjective probabilities, the entropy concept, and Maximize Agreement Heuristic (MAH) to enhance the decision maker's intuition in evaluating a set of ESR's.

  10. Ecosystem services: Challenges and opportunities for hydrologic modeling to support decision making

    NASA Astrophysics Data System (ADS)

    Guswa, Andrew J.; Brauman, Kate A.; Brown, Casey; Hamel, Perrine; Keeler, Bonnie L.; Sayre, Susan Stratton

    2014-05-01

    Ecosystem characteristics and processes provide significant value to human health and well-being, and there is growing interest in quantifying those values. Of particular interest are water-related ecosystem services and the incorporation of their value into local and regional decision making. This presents multiple challenges and opportunities to the hydrologic-modeling community. To motivate advances in water-resources research, we first present three common decision contexts that draw upon an ecosystem-service framework: scenario analysis, payments for watershed services, and spatial planning. Within these contexts, we highlight the particular challenges to hydrologic modeling, and then present a set of opportunities that arise from ecosystem-service decisions. The paper concludes with a set of recommendations regarding how we can prioritize our work to support decisions based on ecosystem-service valuation.

  11. Using the Benner intuitive-humanistic decision-making model in action: a case study.

    PubMed

    Blum, Cynthia Ann

    2010-09-01

    Nurse educators make decisions that affect students in profound ways. This decision-making process may follow an intuitive-humanistic decision-making model. The author most connected with developing the intuitive model and the distinction between theoretical knowledge and experiential knowledge in the discipline of nursing is Patricia Benner (Thompson, 1999). Educators use intuition in forming judgments regarding educational planning. The educator may not be aware of subtleties that influence the decision but rely on a 'gut' instinct as they determine the appropriate action. Utilizing six key concepts identified by Dreyfus and Dreyfus (Benner and Tanner, 1987) this process utilizes what is known to the educator from previous situations to determine a course of action appropriate for the given situation. This paper describes a method one nursing educator used and identifies outcomes that could impact the career path for the student when determining if they were safe to continue in a practice based course.

  12. Journey of Excellence: Implementing a Shared Decision-Making Model.

    PubMed

    Murray, Karen; Yasso, Sabrina; Schomburg, Roberta; Terhune, Molly; Beidelschies, Marissa; Bowers, Devin; Goodyear-Bruch, Caryl

    2016-04-01

    Research has shown that nurses who participate in shared decision making (SDM) have more control over their practice and greater job satisfaction, and hospitals that have instituted SDM have lower rates of nurse turnover and better patient outcomes. The purpose of this article is to describe the implementation of an SDM structure at a pediatric hospital. The hospital's chief nurse officer charged a group of nurses with developing SDM guidelines to outline the purpose, structure, and function of unit councils. A targeted, multifaceted approach to the implementation of these guidelines led to the successful standardization of nine existing unit councils and the expansion of the SDM unit council structure to all other hospital units. Work continues with guideline refinement in response to the real-life circumstances nurses encounter on the units, and the original group of nurses continues to review literature on SDM best practices. In addition, professions other than nursing, including multidisciplinary teams in dialysis, cardiovascular surgery, respiratory therapy, and child life, have adopted the guidelines for use in their departments. PMID:27011138

  13. A Decision Model for Evaluating Potential Change in Instructional Programs.

    ERIC Educational Resources Information Center

    Amor, J. P.; Dyer, J. S.

    A statistical model designed to assist elementary school principals in the process of selection educational areas which should receive additional emphasis is presented. For each educational area, the model produces an index number which represents the expected "value" per dollar spent on an instructional program appropriate for strengthening that…

  14. Modeling Adaptation as a Flow and Stock Decision with Mitigation

    EPA Science Inventory

    Mitigation and adaptation are the two key responses available to policymakers to reduce the risks of climate change. We model these two policies together in a new DICE-based integrated assessment model that characterizes adaptation as either short-lived flow spending or long-liv...

  15. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    PubMed

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events.

  16. Relevance of behavioral and social models to the study of consumer energy decision making and behavior

    SciTech Connect

    Burns, B.A.

    1980-11-01

    This report reviews social and behavioral science models and techniques for their possible use in understanding and predicting consumer energy decision making and behaviors. A number of models and techniques have been developed that address different aspects of the decision process, use different theoretical bases and approaches, and have been aimed at different audiences. Three major areas of discussion were selected: (1) models of adaptation to social change, (2) decision making and choice, and (3) diffusion of innovation. Within these three areas, the contributions of psychologists, sociologists, economists, marketing researchers, and others were reviewed. Five primary components of the models were identified and compared. The components are: (1) situational characteristics, (2) product characteristics, (3) individual characteristics, (4) social influences, and (5) the interaction or decision rules. The explicit use of behavioral and social science models in energy decision-making and behavior studies has been limited. Examples are given of a small number of energy studies which applied and tested existing models in studying the adoption of energy conservation behaviors and technologies, and solar technology.

  17. Scale (in)variance in a unified diffusion model of decision making and timing.

    PubMed

    Simen, Patrick; Vlasov, Ksenia; Papadakis, Samantha

    2016-03-01

    Weber's law is the canonical scale-invariance law in psychology: when the intensities of 2 stimuli are scaled by any value k, the just-noticeable-difference between them also scales by k. A diffusion model that approximates a spike-counting process accounts for Weber's law (Link, 1992), but there exist surprising corollaries of this account that have not yet been described or tested. We show that (a) this spike-counting diffusion model predicts time-scale invariant decision time distributions in perceptual decision making, and time-scale invariant response time (RT) distributions in interval timing; (b) for 2-choice perceptual decisions, the model predicts equal accuracy but faster responding for stimulus pairs with equally scaled-up intensities; (c) the coefficient of variation (CV) of decision times should remain constant across average intensity scales, but should otherwise decrease as a specific function of stimulus discriminability and speed-accuracy trade-off; and (d) for timing tasks, RT CVs should be constant for all durations, and RT skewness should always equal 3 times the CV. We tested these predictions using visual, auditory and vibrotactile decision tasks and visual interval timing tasks in humans. The data conformed closely to the predictions in all modalities. These results support a unified theory of decision making and timing in terms of a common, underlying spike-counting process, compactly represented as a diffusion process. PMID:26461957

  18. Adaptive network models of collective decision making in swarming systems.

    PubMed

    Chen, Li; Huepe, Cristián; Gross, Thilo

    2016-08-01

    We consider a class of adaptive network models where links can only be created or deleted between nodes in different states. These models provide an approximate description of a set of systems where nodes represent agents moving in physical or abstract space, the state of each node represents the agent's heading direction, and links indicate mutual awareness. We show analytically that the adaptive network description captures a phase transition to collective motion in some swarming systems, such as the Vicsek model, and that the properties of this transition are determined by the number of states (discrete heading directions) that can be accessed by each agent.

  19. Adaptive network models of collective decision making in swarming systems

    NASA Astrophysics Data System (ADS)

    Chen, Li; Huepe, Cristián; Gross, Thilo

    2016-08-01

    We consider a class of adaptive network models where links can only be created or deleted between nodes in different states. These models provide an approximate description of a set of systems where nodes represent agents moving in physical or abstract space, the state of each node represents the agent's heading direction, and links indicate mutual awareness. We show analytically that the adaptive network description captures a phase transition to collective motion in some swarming systems, such as the Vicsek model, and that the properties of this transition are determined by the number of states (discrete heading directions) that can be accessed by each agent.

  20. Adaptive network models of collective decision making in swarming systems.

    PubMed

    Chen, Li; Huepe, Cristián; Gross, Thilo

    2016-08-01

    We consider a class of adaptive network models where links can only be created or deleted between nodes in different states. These models provide an approximate description of a set of systems where nodes represent agents moving in physical or abstract space, the state of each node represents the agent's heading direction, and links indicate mutual awareness. We show analytically that the adaptive network description captures a phase transition to collective motion in some swarming systems, such as the Vicsek model, and that the properties of this transition are determined by the number of states (discrete heading directions) that can be accessed by each agent. PMID:27627342

  1. From Process Models to Decision Making: The Use of Data Mining Techniques for Developing Effect Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Conrads, P. A.; Roehl, E. A.

    2010-12-01

    Natural-resource managers face the difficult problem of controlling the interactions between hydrologic and man-made systems in ways that preserve resources while optimally meeting the needs of disparate stakeholders. Finding success depends on obtaining and employing detailed scientific knowledge about the cause-effect relations that govern the physics of these hydrologic systems. This knowledge is most credible when derived from large field-based datasets that encompass the wide range of variability in the parameters of interest. The means of converting data into knowledge of the hydrologic system often involves developing computer models that predict the consequences of alternative management practices to guide resource managers towards the best path forward. Complex hydrologic systems are typically modeled using computer programs that implement traditional, generalized, physical equations, which are calibrated to match the field data as closely as possible. This type of model commonly is limited in terms of demonstrable predictive accuracy, development time, and cost. The science of data mining presents a powerful complement to physics-based models. Data mining is a relatively new science that assists in converting large databases into knowledge and is uniquely able to leverage the real-time, multivariate data now being collected for hydrologic systems. In side-by-side comparisons with state-of-the-art physics-based hydrologic models, the authors have found data-mining solutions have been substantially more accurate, less time consuming to develop, and embeddable into spreadsheets and sophisticated decision support systems (DSS), making them easy to use by regulators and stakeholders. Three data-mining applications will be presented that demonstrate how data-mining techniques can be applied to existing environmental databases to address regional concerns of long-term consequences. In each case, data were transformed into information, and ultimately, into

  2. An analytical framework to assist decision makers in the use of forest ecosystem model predictions

    USGS Publications Warehouse

    Larocque, Guy R.; Bhatti, Jagtar S.; Ascough, J.C.; Liu, J.; Luckai, N.; Mailly, D.; Archambault, L.; Gordon, Andrew M.

    2011-01-01

    The predictions from most forest ecosystem models originate from deterministic simulations. However, few evaluation exercises for model outputs are performed by either model developers or users. This issue has important consequences for decision makers using these models to develop natural resource management policies, as they cannot evaluate the extent to which predictions stemming from the simulation of alternative management scenarios may result in significant environmental or economic differences. Various numerical methods, such as sensitivity/uncertainty analyses, or bootstrap methods, may be used to evaluate models and the errors associated with their outputs. However, the application of each of these methods carries unique challenges which decision makers do not necessarily understand; guidance is required when interpreting the output generated from each model. This paper proposes a decision flow chart in the form of an analytical framework to help decision makers apply, in an orderly fashion, different steps involved in examining the model outputs. The analytical framework is discussed with regard to the definition of problems and objectives and includes the following topics: model selection, identification of alternatives, modelling tasks and selecting alternatives for developing policy or implementing management scenarios. Its application is illustrated using an on-going exercise in developing silvicultural guidelines for a forest management enterprise in Ontario, Canada. ?? 2010.

  3. A 3-states magnetic model of binary decisions in sociophysics

    NASA Astrophysics Data System (ADS)

    Fernandez, Miguel A.; Korutcheva, Elka; de la Rubia, F. Javier

    2016-11-01

    We study a diluted Blume-Capel model of 3-states sites as an attempt to understand how some social processes as cooperation or organization happen. For this aim, we study the effect of the complex network topology on the equilibrium properties of the model, by focusing on three different substrates: random graph, Watts-Strogatz and Newman substrates. Our computer simulations are in good agreement with the corresponding analytical results.

  4. Non-thermal transitions in a model inspired by moral decisions

    NASA Astrophysics Data System (ADS)

    Alamino, Roberto C.

    2016-08-01

    This work introduces a model in which agents of a network act upon one another according to three different kinds of moral decisions. These decisions are based on an increasing level of sophistication in the empathy capacity of the agent, a hierarchy which we name Piaget’s ladder. The decision strategy of the agents is non-rational, in the sense they are arbitrarily fixed, and the model presents quenched disorder given by the distribution of its defining parameters. An analytical solution for this model is obtained in the large system limit as well as a leading order correction for finite-size systems which shows that typical realisations of the model develop a phase structure with both continuous and discontinuous non-thermal transitions.

  5. Issues in Developing a Normative Descriptive Model for Dyadic Decision Making

    NASA Technical Reports Server (NTRS)

    Serfaty, D.; Kleinman, D. L.

    1984-01-01

    Most research in modelling human information processing and decision making has been devoted to the case of the single human operator. In the present effort, concepts from the fields of organizational behavior, engineering psychology, team theory and mathematical modelling are merged in an attempt to consider first the case of two cooperating decisionmakers (the Dyad) in a multi-task environment. Rooted in the well-known Dynamic Decision Model (DDM), the normative descriptive approach brings basic cognitive and psychophysical characteristics inherent to human behavior into a team theoretic analytic framework. An experimental paradigm, involving teams in dynamic decision making tasks, is designed to produce the data with which to build the theoretical model.

  6. Customer Decision Making in Web Services with an Integrated P6 Model

    NASA Astrophysics Data System (ADS)

    Sun, Zhaohao; Sun, Junqing; Meredith, Grant

    Customer decision making (CDM) is an indispensable factor for web services. This article examines CDM in web services with a novel P6 model, which consists of the 6 Ps: privacy, perception, propensity, preference, personalization and promised experience. This model integrates the existing 6 P elements of marketing mix as the system environment of CDM in web services. The new integrated P6 model deals with the inner world of the customer and incorporates what the customer think during the DM process. The proposed approach will facilitate the research and development of web services and decision support systems.

  7. Analysis of Phase Transition in Traffic Flow based on a New Model of Driving Decision

    NASA Astrophysics Data System (ADS)

    Peng, Yu; Shang, Hua-Yan; Lu, Hua-Pu

    2011-07-01

    Different driving decisions will cause different processes of phase transition in traffic flow. To reveal the inner mechanism, this paper built a new cellular automaton (CA) model, based on the driving decision (DD). In the DD model, a driver's decision is divided into three stages: decision-making, action, and result. The acceleration is taken as a decision variable and three core factors, i.e. distance between adjacent vehicles, their own velocity, and the preceding vehicle's velocity, are considered. Simulation results show that the DD model can simulate the synchronized flow effectively and describe the phase transition in traffic flow well. Further analyses illustrate that various density will cause the phase transition and the random probability will impact the process. Compared with the traditional NaSch model, the DD model considered the preceding vehicle's velocity, the deceleration limitation, and a safe distance, so it can depict closer to the driver preferences on pursuing safety, stability and fuel-saving and has strong theoretical innovation for future studies.

  8. Modelling Vague Knowledge for Decision Support in Planning Archaeological Prospections

    NASA Astrophysics Data System (ADS)

    Boos, S.; Hornung, S.; Müller, H.

    2012-07-01

    Most archaeological predictive models lack significance because fuzziness of data and uncertainty in knowledge about human behaviour and natural processes are hardly ever considered. One possibility to cope with such uncertainties is utilization of probability based approaches like Bayes Theorem or Dempster-Shafer-Theory. We analyzed an area of 50 km2 in Rhineland Palatinate (Germany) near a Celtic oppidum by use of Dempster-Shafer's theory of evidence for predicting spatial probability distribution of archaeological sites. This technique incorporates uncertainty by assigning various weights of evidence to defined variables, in that way estimating the probability for supporting a specific hypothesis (in our case the hypothesis presence or absence of a site). Selection of variables for our model relied both on assumptions about settlement patterns and on statistically tested relationships between known archaeological sites and environmental factors. The modelling process was conducted in a Geographic Information System (GIS) by generating raster-based likelihood surfaces. The corresponding likelihood surfaces were aggregated to a final weight of evidence surface, which resulted in a likelihood value for every single cell of being a site or a non-site. Finally the result was tested against a database of known archaeological sites for evaluating the gain of the model. For the purpose of enhancing the gain of our model and sharpening our criteria we used a two-step approach to improve the modelling of former settlement strategies in our study area. Applying the developed model finally yielded a 100 percent success rate of known archaeological sites located in predicted high potential areas.

  9. Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models.

    PubMed

    Orsini, Caitlin A; Moorman, David E; Young, Jared W; Setlow, Barry; Floresco, Stan B

    2015-11-01

    Over the past 20 years there has been a growing interest in the neural underpinnings of cost/benefit decision-making. Recent studies with animal models have made considerable advances in our understanding of how different prefrontal, striatal, limbic and monoaminergic circuits interact to promote efficient risk/reward decision-making, and how dysfunction in these circuits underlies aberrant decision-making observed in numerous psychiatric disorders. This review will highlight recent findings from studies exploring these questions using a variety of behavioral assays, as well as molecular, pharmacological, neurophysiological, and translational approaches. We begin with a discussion of how neural systems related to decision subcomponents may interact to generate more complex decisions involving risk and uncertainty. This is followed by an overview of interactions between prefrontal-amygdala-dopamine and habenular circuits in regulating choice between certain and uncertain rewards and how different modes of dopamine transmission may contribute to these processes. These data will be compared with results from other studies investigating the contribution of some of these systems to guiding decision-making related to rewards vs. punishment. Lastly, we provide a brief summary of impairments in risk-related decision-making associated with psychiatric disorders, highlighting recent translational studies in laboratory animals.

  10. A Model of Supervisor Decision-Making in the Accommodation of Workers with Low Back Pain.

    PubMed

    Williams-Whitt, Kelly; Kristman, Vicki; Shaw, William S; Soklaridis, Sophie; Reguly, Paula

    2016-09-01

    Purpose To explore supervisors' perspectives and decision-making processes in the accommodation of back injured workers. Methods Twenty-three semi-structured, in-depth interviews were conducted with supervisors from eleven Canadian organizations about their role in providing job accommodations. Supervisors were identified through an on-line survey and interviews were recorded, transcribed and entered into NVivo software. The initial analyses identified common units of meaning, which were used to develop a coding guide. Interviews were coded, and a model of supervisor decision-making was developed based on the themes, categories and connecting ideas identified in the data. Results The decision-making model includes a process element that is described as iterative "trial and error" decision-making. Medical restrictions are compared to job demands, employee abilities and available alternatives. A feasible modification is identified through brainstorming and then implemented by the supervisor. Resources used for brainstorming include information, supervisor experience and autonomy, and organizational supports. The model also incorporates the experience of accommodation as a job demand that causes strain for the supervisor. Accommodation demands affect the supervisor's attitude, brainstorming and monitoring effort, and communication with returning employees. Resources and demands have a combined effect on accommodation decision complexity, which in turn affects the quality of the accommodation option selected. If the employee is unable to complete the tasks or is reinjured during the accommodation, the decision cycle repeats. More frequent iteration through the trial and error process reduces the likelihood of return to work success. Conclusion A series of propositions is developed to illustrate the relationships among categories in the model. The model and propositions show: (a) the iterative, problem solving nature of the RTW process; (b) decision resources necessary

  11. A Model of Supervisor Decision-Making in the Accommodation of Workers with Low Back Pain.

    PubMed

    Williams-Whitt, Kelly; Kristman, Vicki; Shaw, William S; Soklaridis, Sophie; Reguly, Paula

    2016-09-01

    Purpose To explore supervisors' perspectives and decision-making processes in the accommodation of back injured workers. Methods Twenty-three semi-structured, in-depth interviews were conducted with supervisors from eleven Canadian organizations about their role in providing job accommodations. Supervisors were identified through an on-line survey and interviews were recorded, transcribed and entered into NVivo software. The initial analyses identified common units of meaning, which were used to develop a coding guide. Interviews were coded, and a model of supervisor decision-making was developed based on the themes, categories and connecting ideas identified in the data. Results The decision-making model includes a process element that is described as iterative "trial and error" decision-making. Medical restrictions are compared to job demands, employee abilities and available alternatives. A feasible modification is identified through brainstorming and then implemented by the supervisor. Resources used for brainstorming include information, supervisor experience and autonomy, and organizational supports. The model also incorporates the experience of accommodation as a job demand that causes strain for the supervisor. Accommodation demands affect the supervisor's attitude, brainstorming and monitoring effort, and communication with returning employees. Resources and demands have a combined effect on accommodation decision complexity, which in turn affects the quality of the accommodation option selected. If the employee is unable to complete the tasks or is reinjured during the accommodation, the decision cycle repeats. More frequent iteration through the trial and error process reduces the likelihood of return to work success. Conclusion A series of propositions is developed to illustrate the relationships among categories in the model. The model and propositions show: (a) the iterative, problem solving nature of the RTW process; (b) decision resources necessary

  12. Modeling the Occupational/Career Decision-Making Processes of Intellectually Gifted Adolescents: A Competing Models Strategy

    ERIC Educational Resources Information Center

    Jung, Jae Yup

    2014-01-01

    This study developed and empirically tested two related models of the occupational/career decision-making processes of gifted adolescents using a competing models strategy. The two models that guided the study, which acknowledged cultural orientations, social influences from the family, occupational/career values, and characteristics of…

  13. Ecological models supporting environmental decision making: a strategy for the future

    USGS Publications Warehouse

    Schmolke, Amelie; Thorbek, Pernille; DeAngelis, Donald L.; Grimm, Volker

    2010-01-01

    Ecological models are important for environmental decision support because they allow the consequences of alternative policies and management scenarios to be explored. However, current modeling practice is unsatisfactory. A literature review shows that the elements of good modeling practice have long been identified but are widely ignored. The reasons for this might include lack of involvement of decision makers, lack of incentives for modelers to follow good practice, and the use of inconsistent terminologies. As a strategy for the future, we propose a standard format for documenting models and their analyses: transparent and comprehensive ecological modeling (TRACE) documentation. This standard format will disclose all parts of the modeling process to scrutiny and make modeling itself more efficient and coherent.

  14. A Decision Model for Steady-State Choice in Concurrent Chains

    ERIC Educational Resources Information Center

    Christensen, Darren R.; Grace, Randolph C.

    2010-01-01

    Grace and McLean (2006) proposed a decision model for acquisition of choice in concurrent chains which assumes that after reinforcement in a terminal link, subjects make a discrimination whether the preceding reinforcer delay was short or long relative to a criterion. Their model was subsequently extended by Christensen and Grace (2008, 2009a,…

  15. MODELS AS A COMPONENT OF DECISION-MAKING AT BROWNFIELDS SITES

    EPA Science Inventory

    Models have become an integral part of decision-making for many LUST and Brownfields sites if only because they form the basis of RCBA tiered assessments. Models, though, are based on a series of assumptions concerning how chemicals behave in the environment, how water flows thr...

  16. A Dual-Process Approach to Health Risk Decision Making: The Prototype Willingness Model

    ERIC Educational Resources Information Center

    Gerrard, Meg; Gibbons, Frederick X.; Houlihan, Amy E.; Stock, Michelle L.; Pomery, Elizabeth A.

    2008-01-01

    Although dual-process models in cognitive, personality, and social psychology have stimulated a large body of research about analytic and heuristic modes of decision making, these models have seldom been applied to the study of adolescent risk behaviors. In addition, the developmental course of these two kinds of information processing, and their…

  17. Curriculum Needs Assessment: A Model for Trade & Industrial Education Decision-Making.

    ERIC Educational Resources Information Center

    Wichowski, Chester

    A multi-dimensional needs assessment model has been developed to provide a research tool for the review of statewide curriculum needs in vocational education. The model provides for an integrated review of selected demographic, educational, and decision-making data to target vocational education program areas and occupational titles for additional…

  18. To Be or Not to Be an Entrepreneur: Applying a Normative Model to Career Decisions

    ERIC Educational Resources Information Center

    Callanan, Gerard A.; Zimmerman, Monica

    2016-01-01

    Reflecting the need for a better and broader understanding of the factors influencing the choices to enter into or exit an entrepreneurial career, this article applies a structured, normative model of career management to the career decision-making of entrepreneurs. The application of a structured model can assist career counselors, college career…

  19. Career Decision-Making Self-Efficacy and an Integrated Model of Student Persistence.

    ERIC Educational Resources Information Center

    Sandler, Martin E.

    In response to the extraordinarily diverse adult population in college today, a new structural equation model adapted from Cabrera et al. (1993) integrated model of student retention was identified with the addition of two variables: career decision-making self-efficacy (CDMSE) and financial difficulty. The study examined the persistence/attrition…

  20. A conceptual and computational model of moral decision making in human and artificial agents.

    PubMed

    Wallach, Wendell; Franklin, Stan; Allen, Colin

    2010-07-01

    Recently, there has been a resurgence of interest in general, comprehensive models of human cognition. Such models aim to explain higher-order cognitive faculties, such as deliberation and planning. Given a computational representation, the validity of these models can be tested in computer simulations such as software agents or embodied robots. The push to implement computational models of this kind has created the field of artificial general intelligence (AGI). Moral decision making is arguably one of the most challenging tasks for computational approaches to higher-order cognition. The need for increasingly autonomous artificial agents to factor moral considerations into their choices and actions has given rise to another new field of inquiry variously known as Machine Morality, Machine Ethics, Roboethics, or Friendly AI. In this study, we discuss how LIDA, an AGI model of human cognition, can be adapted to model both affective and rational features of moral decision making. Using the LIDA model, we will demonstrate how moral decisions can be made in many domains using the same mechanisms that enable general decision making. Comprehensive models of human cognition typically aim for compatibility with recent research in the cognitive and neural sciences. Global workspace theory, proposed by the neuropsychologist Bernard Baars (1988), is a highly regarded model of human cognition that is currently being computationally instantiated in several software implementations. LIDA (Franklin, Baars, Ramamurthy, & Ventura, 2005) is one such computational implementation. LIDA is both a set of computational tools and an underlying model of human cognition, which provides mechanisms that are capable of explaining how an agent's selection of its next action arises from bottom-up collection of sensory data and top-down processes for making sense of its current situation. We will describe how the LIDA model helps integrate emotions into the human decision-making process, and we

  1. Using Enrollment Demand Models in Institutional Pricing Decisions.

    ERIC Educational Resources Information Center

    Weiler, William C.

    1984-01-01

    Issues in the application of enrollment demand analysis to institutions' pricing policy are discussed, including price change impact on enrollment, the role of enrollment demand models on long-range financial and personnel planning, use of tuition and financial aid policy in optimizing policymakers' enrollment objectives, and the redistribution…

  2. A SPATIALLY REALISTIC MODEL FOR INFORMING FOREST MANAGEMENT DECISIONS

    EPA Science Inventory

    Spatially realistic population models (SRPMs) address a fundamental
    problem commonly confronted by wildlife managers - predicting the
    effects of landscape-scale habitat management on an animal population.
    SRPMs typically consist of three submodels: (1) a habitat submodel...

  3. Exploring foraging decisions in a social primate using discrete-choice models.

    PubMed

    Marshall, Harry H; Carter, Alecia J; Coulson, Tim; Rowcliffe, J Marcus; Cowlishaw, Guy

    2012-10-01

    There is a growing appreciation of the multiple social and nonsocial factors influencing the foraging behavior of social animals but little understanding of how these factors depend on habitat characteristics or individual traits. This partly reflects the difficulties inherent in using conventional statistical techniques to analyze multifactor, multicontext foraging decisions. Discrete-choice models provide a way to do so, and we demonstrate this by using them to investigate patch preference in a wild population of social foragers (chacma baboons Papio ursinus). Data were collected from 29 adults across two social groups, encompassing 683 foraging decisions over a 6-month period and the results interpreted using an information-theoretic approach. Baboon foraging decisions were influenced by multiple nonsocial and social factors and were often contingent on the characteristics of the habitat or individual. Differences in decision making between habitats were consistent with changes in interference-competition costs but not with changes in social-foraging benefits. Individual differences in decision making were suggestive of a trade-off between dominance rank and social capital. Our findings emphasize that taking a multifactor, multicontext approach is important to fully understand animal decision making. We also demonstrate how discrete-choice models can be used to achieve this.

  4. An Intuitionistic Fuzzy Logic Models for Multicriteria Decision Making Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Jana, Biswajit; Mohanty, Sachi Nandan

    2016-06-01

    The purpose of this paper is to enhance the applicability of the fuzzy sets for developing mathematical models for decision making under uncertainty, In general a decision making process consist of four stages, namely collection of information from various sources, compile the information, execute the information and finally take the decision/action. Only fuzzy sets theory is capable to quantifying the linguistic expression to mathematical form in complex situation. Intuitionistic fuzzy set (IFSs) which reflects the fact that the degree of non membership is not always equal to one minus degree of membership. There may be some degree of hesitation. Thus, there are some situations where IFS theory provides a more meaningful and applicable to cope with imprecise information present for solving multiple criteria decision making problem. This paper emphasis on IFSs, which is help for solving real world problem in uncertainty situation.

  5. Model-driven decision support for monitoring network design: methods and applications

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Harp, D. R.; Mishra, P. K.; Katzman, D.

    2012-12-01

    A crucial aspect of any decision-making process for environmental management of contaminated sites and protection of groundwater resources is the identification of scientifically defensible remediation scenarios. The selected scenarios are ranked based on both their protective and cost effectiveness. The decision-making process is facilitated by implementation of site-specific data- and model-driven analyses for decision support (DS) taking into account existing uncertainties to evaluate alternative characterization and remedial activities. However, due to lack of data and/or complex interdependent uncertainties (conceptual elements, model parameters, measurement/computational errors, etc.), the DS optimization problem is ill posed (non unique) and the model-prediction uncertainties are difficult to quantify. Recently, we have developed and implemented several novel theoretical approaches and computational algorithms for model-driven decision support. New and existing DS tools have been employed for model analyses of the fate and extent of a chromium plume in the regional aquifer at Sandia Canyon Site, LANL. Since 2007, we have performed three iterations of DS analyses implementing different models, decision-making tools, and data sets providing guidance on design of a subsurface monitoring network for (1) characterization of the flow and transports processes, and (2) protection of the water users. The monitoring network is augmented by new wells at locations where acquired new data can effectively reduce uncertainty in model predicted contaminant concentrations. A key component of the DS analyses is contaminant source identification. Due to data and conceptual uncertainties, subsurface processes controlling the contaminant arrival at the top of the regional aquifer are not well defined. Nevertheless, the model-based analyses of the existing data and conceptual knowledge, including respective uncertainties, provide constrained probabilistic estimates of the

  6. A decision model applied to alcohol effects on driver signal light behavior

    NASA Technical Reports Server (NTRS)

    Schwartz, S. H.; Allen, R. W.

    1978-01-01

    A decision model including perceptual noise or inconsistency is developed from expected value theory to explain driver stop and go decisions at signaled intersections. The model is applied to behavior in a car simulation and instrumented vehicle. Objective and subjective changes in driver decision making were measured with changes in blood alcohol concentration (BAC). Treatment levels averaged 0.00, 0.10 and 0.14 BAC for a total of 26 male subjects. Data were taken for drivers approaching signal lights at three timing configurations. The correlation between model predictions and behavior was highly significant. In contrast to previous research, analysis indicates that increased BAC results in increased perceptual inconsistency, which is the primary cause of increased risk taking at low probability of success signal lights.

  7. OUTSHORE Maturity Model: Assistance for Software Offshore Outsourcing Decisions

    NASA Astrophysics Data System (ADS)

    Mäkiö, Juho; Betz, Stafanie; Oberweis, Andreas

    Offshore outsourcing software development (OOSD) is increasingly being used by the Software Industry. OOSD is a specific variant of Geographically Distributed Software Developmentdistributed software development (GDSD). Compared to the traditional mode of software development (i.e., in-house) GDSD is more edgy and puts at risk the attainment of the expected results. Although the failure of an offshore outsourcing software project may be caused by a variety of factors, one major complication is geographical distance. Consequently we argue that risk avoidance in outshore software development should be undertaken well in advance of the development launch. This could be done by testing the offshore outsourcing relevance of each software project and then the offshore outsourcing company involved. With this in mind we have developed the OUTSHORE Maturity Modeloutshore maturity model - OMM.

  8. A model for amalgamation in group decision making

    NASA Technical Reports Server (NTRS)

    Cutello, Vincenzo; Montero, Javier

    1992-01-01

    In this paper we present a generalization of the model proposed by Montero, by allowing non-complete fuzzy binary relations for individuals. A degree of unsatisfaction can be defined in this case, suggesting that any democratic aggregation rule should take into account not only ethical conditions or some degree of rationality in the amalgamating procedure, but also a minimum support for the set of alternatives subject to the group analysis.

  9. A human performance modelling approach to intelligent decision support systems

    NASA Technical Reports Server (NTRS)

    Mccoy, Michael S.; Boys, Randy M.

    1987-01-01

    Manned space operations require that the many automated subsystems of a space platform be controllable by a limited number of personnel. To minimize the interaction required of these operators, artificial intelligence techniques may be applied to embed a human performance model within the automated, or semi-automated, systems, thereby allowing the derivation of operator intent. A similar application has previously been proposed in the domain of fighter piloting, where the demand for pilot intent derivation is primarily a function of limited time and high workload rather than limited operators. The derivation and propagation of pilot intent is presented as it might be applied to some programs.

  10. Effects of Practice on Task Architecture: Combined Evidence from Interference Experiments and Random-Walk Models of Decision Making

    ERIC Educational Resources Information Center

    Kamienkowski, Juan E.; Pashler, Harold; Dehaene, Stanislas; Sigman, Mariano

    2011-01-01

    Does extensive practice reduce or eliminate central interference in dual-task processing? We explored the reorganization of task architecture with practice by combining interference analysis (delays in dual-task experiment) and random-walk models of decision making (measuring the decision and non-decision contributions to RT). The main delay…

  11. Locating the Optic Nerve in Retinal Images: Comparing Model-Based and Bayesian Decision Methods

    SciTech Connect

    Karnowski, Thomas Paul; Tobin Jr, Kenneth William; Muthusamy Govindasamy, Vijaya Priya; Chaum, Edward

    2006-01-01

    In this work we compare two methods for automatic optic nerve (ON) localization in retinal imagery. The first method uses a Bayesian decision theory is criminator based on four spatial features of the retina imagery. The second method uses a principal component-based reconstruction to model the ON. We report on an improvement to the model-based technique by incorporating linear discriminant analysis and Bayesian decision theory methods. We explore a method to combine both techniques to produce a composite technique with high accuracy and rapid throughput. Results are shown for a data set of 395 images with 2-fold validation testing.

  12. Geothermal-district-heating assessment model for decision making

    SciTech Connect

    Reisman, A.

    1981-11-01

    A methodology developed to assess the economic feasibility of district heating for any community in the United States is described. The overall philosophy which has guided its development is the conviction that district heating must be examined on a site-by-site basis. To support this approach, a set of extensive, in-house supporting data bases has been created and useful external data bases with national coverage have been identified. These data bases provide information at a sufficient level of detail to permit a first-cut examination of the district heating potential of a community without requiring outside data collection (allowing a substantial cost and time savings). The results of this blind look at a community permit a rapid, yet adequate estimate of district heating potential, costs, and energy savings. The data utilized in the initial examination can be supplemented or replaced by more detailed information obtained from on-site data collection, if the first results are promising. The fact that the data and methodology are computerized allows many locations within the community, alternate heat sources, ownership options, pipe technologies, etc. to be examined in a short period of time. The structure of the District Heating Model (DHM) (the methodology in computerized form) is described followed by a discussion of the application of the model to Provo, UT.

  13. An Agent-Based Model of Farmer Decision Making in Jordan

    NASA Astrophysics Data System (ADS)

    Selby, Philip; Medellin-Azuara, Josue; Harou, Julien; Klassert, Christian; Yoon, Jim

    2016-04-01

    We describe an agent based hydro-economic model of groundwater irrigated agriculture in the Jordan Highlands. The model employs a Multi-Agent-Simulation (MAS) framework and is designed to evaluate direct and indirect outcomes of climate change scenarios and policy interventions on farmer decision making, including annual land use, groundwater use for irrigation, and water sales to a water tanker market. Land use and water use decisions are simulated for groups of farms grouped by location and their behavioural and economic similarities. Decreasing groundwater levels, and the associated increase in pumping costs, are important drivers for change within Jordan'S agricultural sector. We describe how this is considered by coupling of agricultural and groundwater models. The agricultural production model employs Positive Mathematical Programming (PMP), a method for calibrating agricultural production functions to observed planted areas. PMP has successfully been used with disaggregate models for policy analysis. We adapt the PMP approach to allow explicit evaluation of the impact of pumping costs, groundwater purchase fees and a water tanker market. The work demonstrates the applicability of agent-based agricultural decision making assessment in the Jordan Highlands and its integration with agricultural model calibration methods. The proposed approach is designed and implemented with software such that it could be used to evaluate a variety of physical and human influences on decision making in agricultural water management.

  14. Decision Modeling Framework to Minimize Arrival Delays from Ground Delay Programs

    NASA Astrophysics Data System (ADS)

    Mohleji, Nandita

    Convective weather and other constraints create uncertainty in air transportation, leading to costly delays. A Ground Delay Program (GDP) is a strategy to mitigate these effects. Systematic decision support can increase GDP efficacy, reduce delays, and minimize direct operating costs. In this study, a decision analysis (DA) model is constructed by combining a decision tree and Bayesian belief network. Through a study of three New York region airports, the DA model demonstrates that larger GDP scopes that include more flights in the program, along with longer lead times that provide stakeholders greater notice of a pending program, trigger the fewest average arrival delays. These findings are demonstrated to result in a savings of up to $1,850 per flight. Furthermore, when convective weather is predicted, forecast weather confidences remain the same level or greater at least 70% of the time, supporting more strategic decision making. The DA model thus enables quantification of uncertainties and insights on causal relationships, providing support for future GDP decisions.

  15. Modelling the participation decision and duration of sporting activity in Scotland

    PubMed Central

    Eberth, Barbara; Smith, Murray D.

    2010-01-01

    Motivating individuals to actively engage in physical activity due to its beneficial health effects has been an integral part of Scotland's health policy agenda. The current Scottish guidelines recommend individuals participate in physical activity of moderate vigour for 30 min at least five times per week. For an individual contemplating the recommendation, decisions have to be made in regard of participation, intensity, duration and multiplicity. For the policy maker, understanding the determinants of each decision will assist in designing an intervention to effect the recommended policy. With secondary data sourced from the 2003 Scottish Health Survey (SHeS) we statistically model the combined decisions process, employing a copula approach to model specification. In taking this approach the model flexibly accounts for any statistical associations that may exist between the component decisions. Thus, we model the endogenous relationship between the decision of individuals to participate in sporting activities and, amongst those who participate, the duration of time spent undertaking their chosen activities. The main focus is to establish whether dependence exists between the two random variables assuming the vigour with which sporting activity is performed to be independent of the participation and duration decision. We allow for a variety of controls including demographic factors such as age and gender, economic factors such as income and educational attainment, lifestyle factors such as smoking, alcohol consumption, healthy eating and medical history. We use the model to compare the effect of interventions designed to increase the vigour with which individuals undertake their sport, relating it to obesity as a health outcome. PMID:20640033

  16. Shared Decision-Making Models Acknowledging an Interprofessional Approach: A Theory Analysis to Inform Nursing Practice.

    PubMed

    Lewis, Krystina B; Stacey, Dawn; Squires, Janet E; Carroll, Sandra

    2016-01-01

    Patient engagement in collaboration with health professionals is essential to deliver quality health care. A shared decision-making (SDM) approach requires that patients are involved in decisions regarding their health. SDM is expanding from the patient-physician dyad to incorporate an interprofessional perspective. Conceptual models can be used to better understand theoretical underpinnings for application in clinical practice. The aim of this article was to conduct a theory analysis of conceptual models using an interprofessional approach to SDM and discuss each model's relevance to nursing practice. Walker and Avant's theory analysis approach was used. Three conceptual models were eligible. For all models, the decision-making process was considered iterative. The development process was described for 1 model. All models were logical, parsimonious, and generalizable. One was supported by empirical testing. No model described how partnerships are enacted to achieve interprofessional SDM. Also, there was limited articulation as to how nurses' roles and contributions differ from other team members. This theory analysis highlights the need for a model that explains how partnerships among interprofessional team members are enacted to better understand the operationalization of interprofessional SDM. Implications for nursing practice at all system levels are offered and supported by the 3 models. PMID:27024998

  17. Shared Decision-Making Models Acknowledging an Interprofessional Approach: A Theory Analysis to Inform Nursing Practice.

    PubMed

    Lewis, Krystina B; Stacey, Dawn; Squires, Janet E; Carroll, Sandra

    2016-01-01

    Patient engagement in collaboration with health professionals is essential to deliver quality health care. A shared decision-making (SDM) approach requires that patients are involved in decisions regarding their health. SDM is expanding from the patient-physician dyad to incorporate an interprofessional perspective. Conceptual models can be used to better understand theoretical underpinnings for application in clinical practice. The aim of this article was to conduct a theory analysis of conceptual models using an interprofessional approach to SDM and discuss each model's relevance to nursing practice. Walker and Avant's theory analysis approach was used. Three conceptual models were eligible. For all models, the decision-making process was considered iterative. The development process was described for 1 model. All models were logical, parsimonious, and generalizable. One was supported by empirical testing. No model described how partnerships are enacted to achieve interprofessional SDM. Also, there was limited articulation as to how nurses' roles and contributions differ from other team members. This theory analysis highlights the need for a model that explains how partnerships among interprofessional team members are enacted to better understand the operationalization of interprofessional SDM. Implications for nursing practice at all system levels are offered and supported by the 3 models.

  18. Evidence accumulation in decision making: unifying the "take the best" and the "rational" models.

    PubMed

    Lee, Michael D; Cummins, Tarrant D R

    2004-04-01

    An evidence accumulation model of forced-choice decision making is proposed to unify the fast and frugal take the best (TTB) model and the alternative rational (RAT) model with which it is usually contrasted. The basic idea is to treat the TTB model as a sequential-sampling process that terminates as soon as any evidence in favor of a decision is found and the rational approach as a sequential-sampling process that terminates only when all available information has been assessed. The unified TTB and RAT models were tested in an experiment in which participants learned to make correct judgments for a set of real-world stimuli on the basis of feedback, and were then asked to make additional judgments without feedback for cases in which the TTB and the rational models made different predictions. The results show that, in both experiments, there was strong intraparticipant consistency in the use of either the TTB or the rational model but large interparticipant differences in which model was used. The unified model is shown to be able to capture the differences in decision making across participants in an interpretable way and is preferred by the minimum description length model selection criterion.

  19. A conceptual model of emergency physician decision making for head computed tomography in mild head injury.

    PubMed

    Probst, Marc A; Kanzaria, Hemal K; Schriger, David L

    2014-06-01

    The use of computed tomographic scanning in blunt head trauma has increased dramatically in recent years without an accompanying rise in the prevalence of injury or hospital admission for serious conditions. Because computed tomography is neither harmless nor inexpensive, researchers have attempted to optimize utilization, largely through research that describes which clinical variables predict intracranial injury, and use this information to develop clinical decision instruments. Although such techniques may be useful when the benefits and harms of each strategy (neuroimaging vs observation) are quantifiable and amenable to comparison, the exact magnitude of these benefits and harms remains unknown in this clinical scenario. We believe that most clinical decision instrument development efforts are misguided insofar as they ignore critical, nonclinical factors influencing the decision to image. In this article, we propose a conceptual model to illustrate how clinical and nonclinical factors influence emergency physicians making this decision. We posit that elements unrelated to standard clinical factors, such as personality of the physician, fear of litigation and of missed diagnoses, patient expectations, and compensation method, may have equal or greater impact on actual decision making than traditional clinical factors. We believe that 3 particular factors deserve special consideration for further research: fear of error/malpractice, financial incentives, and patient engagement. Acknowledgement and study of these factors will be essential if we are to understand how emergency physicians truly make these decisions and how test-ordering behavior can be modified.

  20. Integrated Bayesian models of learning and decision making for saccadic eye movements.

    PubMed

    Brodersen, Kay H; Penny, Will D; Harrison, Lee M; Daunizeau, Jean; Ruff, Christian C; Duzel, Emrah; Friston, Karl J; Stephan, Klaas E

    2008-11-01

    The neurophysiology of eye movements has been studied extensively, and several computational models have been proposed for decision-making processes that underlie the generation of eye movements towards a visual stimulus in a situation of uncertainty. One class of models, known as linear rise-to-threshold models, provides an economical, yet broadly applicable, explanation for the observed variability in the latency between the onset of a peripheral visual target and the saccade towards it. So far, however, these models do not account for the dynamics of learning across a sequence of stimuli, and they do not apply to situations in which subjects are exposed to events with conditional probabilities. In this methodological paper, we extend the class of linear rise-to-threshold models to address these limitations. Specifically, we reformulate previous models in terms of a generative, hierarchical model, by combining two separate sub-models that account for the interplay between learning of target locations across trials and the decision-making process within trials. We derive a maximum-likelihood scheme for parameter estimation as well as model comparison on the basis of log likelihood ratios. The utility of the integrated model is demonstrated by applying it to empirical saccade data acquired from three healthy subjects. Model comparison is used (i) to show that eye movements do not only reflect marginal but also conditional probabilities of target locations, and (ii) to reveal subject-specific learning profiles over trials. These individual learning profiles are sufficiently distinct that test samples can be successfully mapped onto the correct subject by a naïve Bayes classifier. Altogether, our approach extends the class of linear rise-to-threshold models of saccadic decision making, overcomes some of their previous limitations, and enables statistical inference both about learning of target locations across trials and the decision-making process within trials.

  1. Simulation and modeling efforts to support decision making in healthcare supply chain management.

    PubMed

    AbuKhousa, Eman; Al-Jaroodi, Jameela; Lazarova-Molnar, Sanja; Mohamed, Nader

    2014-01-01

    Recently, most healthcare organizations focus their attention on reducing the cost of their supply chain management (SCM) by improving the decision making pertaining processes' efficiencies. The availability of products through healthcare SCM is often a matter of life or death to the patient; therefore, trial and error approaches are not an option in this environment. Simulation and modeling (SM) has been presented as an alternative approach for supply chain managers in healthcare organizations to test solutions and to support decision making processes associated with various SCM problems. This paper presents and analyzes past SM efforts to support decision making in healthcare SCM and identifies the key challenges associated with healthcare SCM modeling. We also present and discuss emerging technologies to meet these challenges. PMID:24683333

  2. Simulation and Modeling Efforts to Support Decision Making in Healthcare Supply Chain Management

    PubMed Central

    Lazarova-Molnar, Sanja

    2014-01-01

    Recently, most healthcare organizations focus their attention on reducing the cost of their supply chain management (SCM) by improving the decision making pertaining processes' efficiencies. The availability of products through healthcare SCM is often a matter of life or death to the patient; therefore, trial and error approaches are not an option in this environment. Simulation and modeling (SM) has been presented as an alternative approach for supply chain managers in healthcare organizations to test solutions and to support decision making processes associated with various SCM problems. This paper presents and analyzes past SM efforts to support decision making in healthcare SCM and identifies the key challenges associated with healthcare SCM modeling. We also present and discuss emerging technologies to meet these challenges. PMID:24683333

  3. HIV Treatment as Prevention: Models, Data, and Questions—Towards Evidence-Based Decision-Making

    PubMed Central

    2012-01-01

    Antiretroviral therapy (ART) for those infected with HIV can prevent onward transmission of infection, but biological efficacy alone is not enough to guide policy decisions about the role of ART in reducing HIV incidence. Epidemiology, economics, demography, statistics, biology, and mathematical modelling will be central in framing key decisions in the optimal use of ART. PLoS Medicine, with the HIV Modelling Consortium, has commissioned a set of articles that examine different aspects of HIV treatment as prevention with a forward-looking research agenda. Interlocking themes across these articles are discussed in this introduction. We hope that this article, and others in the collection, will provide a foundation upon which greater collaborations between disciplines will be formed, and will afford deeper insights into the key factors involved, to help strengthen the support for evidence-based decision-making in HIV prevention. PMID:22802739

  4. Towards Measures to Establish the Relevance of Climate Model Output for Decision Support

    NASA Astrophysics Data System (ADS)

    Clarke, L.; Smith, L. A.

    2007-12-01

    How exactly can decision-support and policy making benefit from the use of multiple climate model experiments in terms of coping with the uncertainties on climate change projections? Climate modelling faces challenges beyond those of weather forecasting or even seasonal forecasting, as with climate we are now (and will probably always be) required to extrapolate to regimes in which we have no relevant forecast-verification archive. This suggests a very different approach from traditional methods of mixing models and skill based weighting to gain profitable probabilistic information when a large forecast-verification archive is in hand. In the case of climate, it may prove more rational to search for agreement between our models (in distribution), the aim being to determine the space and timescales on which, given our current understanding, the details of the simulation models are unimportant. This suggestion and others from Smith (2002, Proc. National Acad. Sci. USA 4 (99): 2487-2492) are interpreted in the light of recent advances. Climate models are large nonlinear dynamical systems which insightfully but imperfectly reflect the evolving weather patterns of the Earth. Their use in policy making and decision support assumes both that they contain sufficient information regarding reality to inform the decision, and that this information can be effectively communicated to the decision makers. There is nothing unique about climate modeling and these constraints, they apply in all cases where scientific modeling is applied to real-word actions (other than, perhaps, the action of improving our models). Starting with the issue of communication, figures from the 2007 IPCC Summary for Policy Makers will be constructively criticized from the perspective of decision makers, specifically those of the energy sector and the insurance/reinsurance sector. More information on basic questions of reliability and robustness would be of significant value when determining how heavily

  5. Modeling Applications to Inform Hydromodification Management Design Decisions

    NASA Astrophysics Data System (ADS)

    Goodman, J.

    2013-12-01

    Hydromodification is defined as changes in runoff characteristics and in-stream processes caused by altered land use. The impact of hydromodification can manifest itself through adjustment of stream morphology via channel incision, widening, planform alteration, or coarsening of the bed material. The state of the practice for hydromodification management in California and Western Washington for new and re-development has been to mimic pre-development site hydrology. The theory is that if the pre-development distribution of in-stream flows is maintained, then the baseline capacity to transport sediment, a proxy for the geomorphic condition, will be maintained as well. A popular method of mimicking the pre-development flow regime is by maintaining the pre-development frequency distribution of runoff, known as flow duration control. This can be done by routing post-development runoff through structural stormwater facilities (BMPs) such that runoff is stored and slowly released to match pre-development flow duration characteristics. As it turns out, storage requirements for hydromodification control tend to be much larger than that for surface water treatment requirements (see nomograph). As regulatory requirements for hydromodification evolve and begin to spread to other parts of the country, it is necessary that scientists, water resources professionals, and policy makers understand the practical challenges of implementing hydromodification controls, including the sizing and cost constraints, and know about innovations which could make hydromodification controls more feasible to implement. In an effort to provide the audience with this better understanding, this presentation will share a step-by-step approach for predicting long-term hydromodification impacts; demonstrate options for mitigating these impacts within the context of the modeling approach; and discuss sizing sensitivities of LID-type hydromodification control structural BMPs as a function of performance

  6. Paediatric models in motion: requirements for model-based decision support at the bedside.

    PubMed

    Barrett, Jeffrey S

    2015-01-01

    Optimal paediatric pharmacotherapy is reliant on a detailed understanding of the individual patient including their developmental status and disease state as well as the pharmaceutical agents he/she is receiving for treatment or management of side effects. Our appreciation for size and maturation effects on the pharmacokinetic/pharmacodynamic (PK/PD) phenomenon has improved to the point that we can develop predictive models that permit us to individualize therapy, especially in the situation where we are monitoring drug effects or therapeutic concentrations. The growth of efforts to guide paediatric pharmacotherapy via model-based decision support necessitates a coordinated and systematic approach to ensuring reliable and robust output to caregivers that represents the current standard of care and adheres to governance imposed by the host institution or coalition responsible. Model-based systems which guide caregivers on dosing paediatric patients in a more comprehensive manner are in development at several institutions. Care must be taken that these systems provide robust guidance with the current best practice. These systems must evolve as new information becomes available and ultimately are best constructed from diverse data representing global input on demographics, ethnic / racial diversity, diet and other lifestyle factors. Multidisciplinary involvement at the project team level is key to the ultimate clinical valuation. Likewise, early engagement of clinical champions is also critical for the success of model-based tools. Adherence to regulatory requirements as well as best practices with respect to software development and testing are essential if these tools are to be used as part of the routine standard of care.

  7. Paediatric models in motion: requirements for model-based decision support at the bedside.

    PubMed

    Barrett, Jeffrey S

    2015-01-01

    Optimal paediatric pharmacotherapy is reliant on a detailed understanding of the individual patient including their developmental status and disease state as well as the pharmaceutical agents he/she is receiving for treatment or management of side effects. Our appreciation for size and maturation effects on the pharmacokinetic/pharmacodynamic (PK/PD) phenomenon has improved to the point that we can develop predictive models that permit us to individualize therapy, especially in the situation where we are monitoring drug effects or therapeutic concentrations. The growth of efforts to guide paediatric pharmacotherapy via model-based decision support necessitates a coordinated and systematic approach to ensuring reliable and robust output to caregivers that represents the current standard of care and adheres to governance imposed by the host institution or coalition responsible. Model-based systems which guide caregivers on dosing paediatric patients in a more comprehensive manner are in development at several institutions. Care must be taken that these systems provide robust guidance with the current best practice. These systems must evolve as new information becomes available and ultimately are best constructed from diverse data representing global input on demographics, ethnic / racial diversity, diet and other lifestyle factors. Multidisciplinary involvement at the project team level is key to the ultimate clinical valuation. Likewise, early engagement of clinical champions is also critical for the success of model-based tools. Adherence to regulatory requirements as well as best practices with respect to software development and testing are essential if these tools are to be used as part of the routine standard of care. PMID:24251868

  8. Paediatric models in motion: requirements for model-based decision support at the bedside

    PubMed Central

    Barrett, Jeffrey S

    2015-01-01

    Optimal paediatric pharmacotherapy is reliant on a detailed understanding of the individual patient including their developmental status and disease state as well as the pharmaceutical agents he/she is receiving for treatment or management of side effects. Our appreciation for size and maturation effects on the pharmacokinetic/pharmacodynamic (PK/PD) phenomenon has improved to the point that we can develop predictive models that permit us to individualize therapy, especially in the situation where we are monitoring drug effects or therapeutic concentrations. The growth of efforts to guide paediatric pharmacotherapy via model-based decision support necessitates a coordinated and systematic approach to ensuring reliable and robust output to caregivers that represents the current standard of care and adheres to governance imposed by the host institution or coalition responsible. Model-based systems which guide caregivers on dosing paediatric patients in a more comprehensive manner are in development at several institutions. Care must be taken that these systems provide robust guidance with the current best practice. These systems must evolve as new information becomes available and ultimately are best constructed from diverse data representing global input on demographics, ethnic / racial diversity, diet and other lifestyle factors. Multidisciplinary involvement at the project team level is key to the ultimate clinical valuation. Likewise, early engagement of clinical champions is also critical for the success of model-based tools. Adherence to regulatory requirements as well as best practices with respect to software development and testing are essential if these tools are to be used as part of the routine standard of care. PMID:24251868

  9. A Descriptive Decision Process Model for Hierarchical Management of Interconnected Reservoir Systems

    NASA Astrophysics Data System (ADS)

    Adigüzel, R. Ä.°Lker; CoşKunoǧLu, Osman

    1984-07-01

    A significant limitation of prescriptive optimization models is that their formulation is disassociated from the behavioral and organizational attributes of the problem addressed. In an attempt to alleviate this limitation a decision process model is formulated directly within a framework of decision agents involved in integrated long- and short-term planning and management of multipurpose and multireservoir system operations. The resulting model is ierarchical, multilevel, multilayer, and decentralized. As such it is descriptive of a reservoir system managed and operated by geographically separated multiple agents with different authorities and responsibilities. Robustness and performance of the model is investigated by using the Shasta-Trinity system of California as an example. Results are encouraging for the descriptive as well as prescriptive relevance of the model.

  10. An integrative formal model of motivation and decision making: The MGPM*.

    PubMed

    Ballard, Timothy; Yeo, Gillian; Loft, Shayne; Vancouver, Jeffrey B; Neal, Andrew

    2016-09-01

    We develop and test an integrative formal model of motivation and decision making. The model, referred to as the extended multiple-goal pursuit model (MGPM*), is an integration of the multiple-goal pursuit model (Vancouver, Weinhardt, & Schmidt, 2010) and decision field theory (Busemeyer & Townsend, 1993). Simulations of the model generated predictions regarding the effects of goal type (approach vs. avoidance), risk, and time sensitivity on prioritization. We tested these predictions in an experiment in which participants pursued different combinations of approach and avoidance goals under different levels of risk. The empirical results were consistent with the predictions of the MGPM*. Specifically, participants pursuing 1 approach and 1 avoidance goal shifted priority from the approach to the avoidance goal over time. Among participants pursuing 2 approach goals, those with low time sensitivity prioritized the goal with the larger discrepancy, whereas those with high time sensitivity prioritized the goal with the smaller discrepancy. Participants pursuing 2 avoidance goals generally prioritized the goal with the smaller discrepancy. Finally, all of these effects became weaker as the level of risk increased. We used quantitative model comparison to show that the MGPM* explained the data better than the original multiple-goal pursuit model, and that the major extensions from the original model were justified. The MGPM* represents a step forward in the development of a general theory of decision making during multiple-goal pursuit. (PsycINFO Database Record

  11. Decision support model for evaluating biofuel development along the U.S.-Mexico border.

    SciTech Connect

    Tidwell, Vincent Carroll; Correa, Alberto; Maxwell, Paul; Malczynski, Leonard A.

    2010-04-01

    Recently, Sandia National Laboratories and General Motors cooperated on the development of the Biofuels Deployment Model (BDM) to assess the feasibility, implications, limitations, and enablers of producing 90 billion gallons of ethanol per year by 2030. Leveraging the past investment, a decision support model based on the BDM is being developed to assist investors, entrepreneurs, and decision makers in evaluating the costs and benefits associated with biofuels development in the U.S.-Mexico border region. Specifically, the model is designed to assist investors and entrepreneurs in assessing the risks and opportunities associated with alternative biofuels development strategies along the U.S.-Mexico border, as well as, assist local and regional decision makers in understanding the tradeoffs such development poses to their communities. The decision support model is developed in a system dynamics framework utilizing a modular architecture that integrates the key systems of feedstock production, transportation, and conversion. The model adopts a 30-year planning horizon, operating on an annual time step. Spatially the model is disaggregated at the county level on the U.S. side of the border and at the municipos level on the Mexican side. The model extent includes Luna, Hildalgo, Dona Anna, and Otero counties in New Mexico, El Paso and Hudspeth counties in Texas, and the four munipos along the U.S. border in Chihuahua. The model considers a variety of feedstocks; specifically, algae, gitropha, castor oil, and agricultural waste products from chili and pecans - identifying suitable lands for these feedstocks, possible yields, and required water use. The model also evaluates the carbon balance for each crop and provides insight into production costs including labor demands. Finally, the model is fitted with an interactive user interface comprised of a variety of controls (e.g., slider bars, radio buttons), descriptive text, and output graphics allowing stakeholders to

  12. Sensorimotor learning biases choice behavior: a learning neural field model for decision making.

    PubMed

    Klaes, Christian; Schneegans, Sebastian; Schöner, Gregor; Gail, Alexander

    2012-01-01

    According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making) should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject's learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action selection required for

  13. Sensorimotor Learning Biases Choice Behavior: A Learning Neural Field Model for Decision Making

    PubMed Central

    Schöner, Gregor; Gail, Alexander

    2012-01-01

    According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making) should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject's learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action selection required for

  14. GAPS OF DECISION SUPPORT MODELS FOR PIPELINE RENEWAL AND RECOMMENDATIONS FOR IMPROVEMENT (SLIDE)

    EPA Science Inventory

    In terms of the development of software for decision support for pipeline renewal, more attention to date has been paid to the development of asset management models that help an owner decide on which portions of a system to prioritize needed actions. There has been much less wor...

  15. Gaps of Decision Support Models for Pipeline Renewal and Recommendations for Improvement

    EPA Science Inventory

    In terms of the development of software for decision support for pipeline renewal, more attention to date has been paid to the development of asset management models that help an owner decide on which portions of a system to prioritize needed actions. There has been much less w...

  16. A cortical network model of cognitive and emotional influences in human decision making.

    PubMed

    Nazir, Azadeh Hassannejad; Liljenström, Hans

    2015-10-01

    Decision making (DM)(2) is a complex process that appears to involve several brain structures. In particular, amygdala, orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) seem to be essential in human decision making, where both emotional and cognitive aspects are taken into account. In this paper, we present a computational network model representing the neural information processing of DM, from perception to behavior. We model the population dynamics of the three neural structures (amygdala, OFC and LPFC), as well as their interaction. In our model, the neurodynamic activity of amygdala and OFC represents the neural correlates of secondary emotion, while the activity of certain neural populations in OFC alone represents the outcome expectancy of different options. The cognitive/rational aspect of DM is associated with LPFC. Our model is intended to give insights on the emotional and cognitive processes involved in DM under various internal and external contexts. Different options for actions are represented by the oscillatory activity of cell assemblies, which may change due to experience and learning. Knowledge and experience of the outcome of our decisions and actions can eventually result in changes in our neural structures, attitudes and behaviors. Simulation results may have implications for how we make decisions for our individual actions, as well as for societal choices, where we take examples from transport and its impact on CO2 emissions and climate change.

  17. Citizens' Perceptions of Flood Hazard Adjustments: An Application of the Protective Action Decision Model

    ERIC Educational Resources Information Center

    Terpstra, Teun; Lindell, Michael K.

    2013-01-01

    Although research indicates that adoption of flood preparations among Europeans is low, only a few studies have attempted to explain citizens' preparedness behavior. This article applies the Protective Action Decision Model (PADM) to explain flood preparedness intentions in the Netherlands. Survey data ("N" = 1,115) showed that…

  18. The Use of Touch in Counseling: An Ethical Decision-Making Model

    ERIC Educational Resources Information Center

    Calmes, Stephanie A.; Piazza, Nick J.; Laux, John M.

    2013-01-01

    Although some counselors have advocated for the limited use of touch in counseling, others have argued that touch has no place within the counseling relationship. Despite the controversy, the use of touch has been shown to have a number of therapeutic benefits; however, there are few ethical decision-making models that are appropriate for…

  19. Modeling the College Application Decision Process in a Land-Grant Institution.

    ERIC Educational Resources Information Center

    DesJardins, Stephen L.; And Others

    This study used a logistic probability model to investigate the effects of variables relating student characteristics and institutional factors on the decision to apply to a large land-grant research university. The study used the entire data set from American College Testing (ACT) program test-takers in the fall of 1995 and institutional data on…

  20. Modeling the College Application Decision Process in a Land-Grant University.

    ERIC Educational Resources Information Center

    DesJardins, Stephen L.; Dundar, Halil; Hendel, Darwin D.

    1999-01-01

    College-preference studies can help administrators identify a potential pool of desirable students and implement new recruitment techniques. This study, which supports earlier findings, used a logistic regression model to investigate the effects of variables relating student characteristics and institutional factors on the decision to apply to a…

  1. FORBEEF: A Forage-Livestock System Computer Model Used as a Teaching Aid for Decision Making.

    ERIC Educational Resources Information Center

    Stringer, W. C.; And Others

    1987-01-01

    Describes the development of a computer simulation model of forage-beef production systems, which is intended to incorporate soil, forage, and animal decisions into an enterprise scenario. Produces a summary of forage production and livestock needs. Cites positive assessment of the program's value by participants in inservice training workshops.…

  2. OASIS: A GEOGRAPHICAL DECISION SUPPORT SYSTEM FOR GROUND-WATER CONTAMINANT MODELING

    EPA Science Inventory

    Three new software technologies were applied to develop an efficient and easy to use decision support system for ground-water contaminant modeling. Graphical interfaces create a more intuitive and effective form of communication with the computer compared to text-based interfaces...

  3. The Success of Linear Bootstrapping Models: Decision Domain-, Expertise-, and Criterion-Specific Meta-Analysis

    PubMed Central

    Kaufmann, Esther; Wittmann, Werner W.

    2016-01-01

    The success of bootstrapping or replacing a human judge with a model (e.g., an equation) has been demonstrated in Paul Meehl’s (1954) seminal work and bolstered by the results of several meta-analyses. To date, however, analyses considering different types of meta-analyses as well as the potential dependence of bootstrapping success on the decision domain, the level of expertise of the human judge, and the criterion for what constitutes an accurate decision have been missing from the literature. In this study, we addressed these research gaps by conducting a meta-analysis of lens model studies. We compared the results of a traditional (bare-bones) meta-analysis with findings of a meta-analysis of the success of bootstrap models corrected for various methodological artifacts. In line with previous studies, we found that bootstrapping was more successful than human judgment. Furthermore, bootstrapping was more successful in studies with an objective decision criterion than in studies with subjective or test score criteria. We did not find clear evidence that the success of bootstrapping depended on the decision domain (e.g., education or medicine) or on the judge’s level of expertise (novice or expert). Correction of methodological artifacts increased the estimated success of bootstrapping, suggesting that previous analyses without artifact correction (i.e., traditional meta-analyses) may have underestimated the value of bootstrapping models. PMID:27327085

  4. Modeling Comparative Daily Enrollment Indicators To Aid Intelligent College Decisions. AIR 2001 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Lajubutu, Oyebanjo A.

    This paper shows how three critical enrollment indicators drawn from a relationship database were used to guide planning and management decisions. The paper discusses the guidelines for the development of the model, attributes needed, variables to be calculated, and other issues that may improve the effectiveness and efficiency of daily enrollment…

  5. Developing a Decision Model of Sustainable Product Design and Development from Product Servicizing in Taiwan

    ERIC Educational Resources Information Center

    Huang, Yu-Chen; Tu, Jui-Che; Hung, So-Jeng

    2016-01-01

    In response to the global trend of low carbon and the concept of sustainable development, enterprises need to develop R&D for the manufacturing of energy-saving and sustainable products and low carbon products. Therefore, the purpose of this study was to construct a decision model for sustainable product design and development from product…

  6. The Cultural Mind: Environmental Decision Making and Cultural Modeling within and across Populations

    ERIC Educational Resources Information Center

    Atran, Scott; Medin, Douglas L.; Ross, Norbert O.

    2005-01-01

    This article describes cross-cultural research on the relation between how people conceptualize nature and how they act in it. Mental models of nature differ dramatically among populations living in the same area and engaged in similar activities. This has novel implications for environmental decision making and management, including commons…

  7. The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2010-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.

  8. Children Home Alone Unsupervised: Modeling Parental Decisions and Associated Factors in Botswana, Mexico, and Vietnam

    ERIC Educational Resources Information Center

    Ruiz-Casares, Monica; Heymann, Jody

    2009-01-01

    Objective: This paper examines different child care arrangements utilized by working families in countries undergoing major socio-economic transitions, with a focus on modeling parental decisions to leave children home alone. Method: The study interviewed 537 working caregivers attending government health clinics in Botswana, Mexico, and Vietnam.…

  9. Reason, Intuition, and Social Justice: Elaborating on Parson's Career Decision-Making Model.

    ERIC Educational Resources Information Center

    Hartung, Paul J.; Blustein, David L.

    2002-01-01

    Nearly a century ago, Frank Parsons established the Vocation Bureau in Boston and spawned the development of the counseling profession. Elaborating on Parsons's socially responsible vision for counseling, the authors examine contemporary perspectives on career decision making that include both rational and alternative models and propose that these…

  10. Occupational Decision-Related Processes for Amotivated Adolescents: Confirmation of a Model

    ERIC Educational Resources Information Center

    Jung, Jae Yup; McCormick, John

    2011-01-01

    This study developed and (statistically) confirmed a new model of the occupational decision-related processes of adolescents, in terms of the extent to which they may be amotivated about choosing a future occupation. A theoretical framework guided the study. A questionnaire that had previously been administered to an Australian adolescent sample…

  11. Felony Investigation Decision Model: An Analysis of Investigative Elements of Information.

    ERIC Educational Resources Information Center

    Greenberg, Bernard; And Others

    The primary goal of research performed in Oakland, California was decision models for four felony classes--robbery, assault, with a deadly weapon, car theft, and rape--to determine cases having sufficient probability of clearance to warrant intensive investigation. A secondary objective, determination of personal-appearance and crime-event…

  12. Verification and validation of the decision analysis model for assessment of tank waste remediation system waste treatment strategies

    SciTech Connect

    Awadalla, N.G.; Eaton, S.C.F.

    1996-09-04

    This document is the verification and validation final report for the Decision Analysis Model for Assessment of Tank Waste Remediation System Waste Treatment Strategies. This model is also known as the INSIGHT Model.

  13. A new approach to hazardous materials transportation risk analysis: decision modeling to identify critical variables.

    PubMed

    Clark, Renee M; Besterfield-Sacre, Mary E

    2009-03-01

    We take a novel approach to analyzing hazardous materials transportation risk in this research. Previous studies analyzed this risk from an operations research (OR) or quantitative risk assessment (QRA) perspective by minimizing or calculating risk along a transport route. Further, even though the majority of incidents occur when containers are unloaded, the research has not focused on transportation-related activities, including container loading and unloading. In this work, we developed a decision model of a hazardous materials release during unloading using actual data and an exploratory data modeling approach. Previous studies have had a theoretical perspective in terms of identifying and advancing the key variables related to this risk, and there has not been a focus on probability and statistics-based approaches for doing this. Our decision model empirically identifies the critical variables using an exploratory methodology for a large, highly categorical database involving latent class analysis (LCA), loglinear modeling, and Bayesian networking. Our model identified the most influential variables and countermeasures for two consequences of a hazmat incident, dollar loss and release quantity, and is one of the first models to do this. The most influential variables were found to be related to the failure of the container. In addition to analyzing hazmat risk, our methodology can be used to develop data-driven models for strategic decision making in other domains involving risk.

  14. A new approach to hazardous materials transportation risk analysis: decision modeling to identify critical variables.

    PubMed

    Clark, Renee M; Besterfield-Sacre, Mary E

    2009-03-01

    We take a novel approach to analyzing hazardous materials transportation risk in this research. Previous studies analyzed this risk from an operations research (OR) or quantitative risk assessment (QRA) perspective by minimizing or calculating risk along a transport route. Further, even though the majority of incidents occur when containers are unloaded, the research has not focused on transportation-related activities, including container loading and unloading. In this work, we developed a decision model of a hazardous materials release during unloading using actual data and an exploratory data modeling approach. Previous studies have had a theoretical perspective in terms of identifying and advancing the key variables related to this risk, and there has not been a focus on probability and statistics-based approaches for doing this. Our decision model empirically identifies the critical variables using an exploratory methodology for a large, highly categorical database involving latent class analysis (LCA), loglinear modeling, and Bayesian networking. Our model identified the most influential variables and countermeasures for two consequences of a hazmat incident, dollar loss and release quantity, and is one of the first models to do this. The most influential variables were found to be related to the failure of the container. In addition to analyzing hazmat risk, our methodology can be used to develop data-driven models for strategic decision making in other domains involving risk. PMID:19087232

  15. Spatial modelling and the prediction of Loa loa risk: decision making under uncertainty.

    PubMed

    Diggle, P J; Thomson, M C; Christensen, O F; Rowlingson, B; Obsomer, V; Gardon, J; Wanji, S; Takougang, I; Enyong, P; Kamgno, J; Remme, J H; Boussinesq, M; Molyneux, D H

    2007-09-01

    Health decision-makers working in Africa often need to act for millions of people over large geographical areas on little and uncertain information. Spatial statistical modelling and Bayesian inference have now been used to quantify the uncertainty in the predictions of a regional, environmental risk map for Loa loa (a map that is currently being used as an essential decision tool by the African Programme for Onchocerciasis Control). The methodology allows the expression of the probability that, given the data, a particular location does or does not exceed a predefined high-risk threshold for which a change in strategy for the delivery of the antihelmintic ivermectin is required. PMID:17716433

  16. An attributional sequence model of jury decision making in civil torts.

    PubMed

    Spievak, Elizabeth R; Bettler, Robert F

    2009-08-01

    A jury simulation study was designed to replicate and extend prior research on attributional decision-making sequences in a litigation context. Although previous studies implicated injury severity, causality, responsibility, and punishment, a maximum of three stages in various combinations were tested, and only occasionally in the context of civil litigation. The present effort integrated all four stages into a more inclusive model focused on civil jury decision making. Undergraduate participants (N=91) read six case vignettes and responded to attribution questions in each of four categories. Path analyses supported the hypothesized 4-stage attributional sequence.

  17. Dynamics of Entropy in Quantum-like Model of Decision Making

    NASA Astrophysics Data System (ADS)

    Basieva, Irina; Khrennikov, Andrei; Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu

    2011-03-01

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices. By using this equilibrium point Alice determines her mixed (i.e., probabilistic) strategy with respect to Bob. Thus our model is a model of thinking through decoherence of initially pure mental state. Decoherence is induced by interaction with memory and external environment. In this paper we study (numerically) dynamics of quantum entropy of Alice's state in the process of decision making. Our analysis demonstrates that this dynamics depends nontrivially on the initial state of Alice's mind on her own actions and her prediction state (for possible actions of Bob.)

  18. Econ's optimal decision model of wheat production and distribution-documentation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The report documents the computer programs written to implement the ECON optical decision model. The programs were written in APL, an extremely compact and powerful language particularly well suited to this model, which makes extensive use of matrix manipulations. The algorithms used are presented and listings of and descriptive information on the APL programs used are given. Possible changes in input data are also given.

  19. An opinion diffusion model with decision-making groups: The influence of the opinion's acceptability

    NASA Astrophysics Data System (ADS)

    Cheng, Zhichao; Xiong, Yang; Xu, Yiwen

    2016-11-01

    An opinion dynamic model with decision-making groups was proposed to study the process of adopting new opinions or ideas by individuals. The opinion's acceptability is introduced to distinguish the general character of different opinions. The simulation results on a free-scale network demonstrate that when two opinions have similar acceptability, the opinion supported by more decision-making groups in the beginning will eventually win the support of more agents, whereas an opinion supported by fewer decision-making groups in the beginning may be supported by the majority at the end only if it has better acceptability, and if the tolerance threshold of the society is higher than a specific value.

  20. A Family-Oriented Decision-Making Model for Human Research in Mainland China.

    PubMed

    Rui, Deng

    2015-08-01

    This essay argues that individual-oriented informed consent is inadequate to protect human research subjects in mainland China. The practice of family-oriented decision-making is better suited to guide moral research conduct. The family's role in medical decision-making originates from the mutual benevolence that exists among family members, and is in accordance with family harmony, which is the aim of Confucian society. I argue that the practice of informed consent for medical research on human subjects ought to remain family-oriented in mainland China. This essay explores the main features of this model of informed consent and demonstrates the proper authority of the family. The family's participation in decision-making as a whole does not negate or deny the importance of the individual who is the subject of the choice, but rather acts more fully to protect research subjects.

  1. Computer models used to support cleanup decision-making at hazardous and radioactive waste sites

    SciTech Connect

    Moskowitz, P.D.; Pardi, R.; DePhillips, M.P.; Meinhold, A.F. )

    1992-12-01

    Massive efforts are underway to clean up hazardous and radioactive waste sites located throughout the United States. To help determine cleanup priorities, computer models are being used to characterize the source, transport, fate, and effects of hazardous chemicals and radioactive materials found at these sites. Although the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and the US Nuclear Regulatory Commission (NRC) have provided preliminary guidance to promote the use of computer models for remediation purposes, no agency has produced directed guidance on models that must be used in these efforts. As a result, model selection is currently done on an ad hoc basis. This is administratively ineffective and costly, and can also result in technically inconsistent decision-making. To identify what models are actually being used to support decision-making at hazardous and radioactive waste sites, a project jointly funded by EPA, DOE, and NRC was initiated. The purpose of this project was to: (1) identify models being used for hazardous and radioactive waste site assessment purposes; and (2) describe and classify these models. This report presents the results of this study. A mail survey was conducted to identify models in use. The survey was sent to [approx] 550 persons engaged in the cleanup of hazardous and radioactive waste sites; 87 individuals responded. They represented organizations including federal agencies, national laboratories, and contractor organizations. The respondents identified 127 computer models that were being used to help support cleanup decision-making. There were a few models that appeared to be used across a large number of sites (e.g., RESRAD). In contrast, the survey results also suggested that most sites were using models which were not reported in use elsewhere. Information is presented on the types of models being used and the characteristics of the models in use.

  2. A model of subjective report and objective discrimination as categorical decisions in a vast representational space.

    PubMed

    King, J-R; Dehaene, S

    2014-05-01

    Subliminal perception studies have shown that one can objectively discriminate a stimulus without subjectively perceiving it. We show how a minimalist framework based on Signal Detection Theory and Bayesian inference can account for this dissociation, by describing subjective and objective tasks with similar decision-theoretic mechanisms. Each of these tasks relies on distinct response classes, and therefore distinct priors and decision boundaries. As a result, they may reach different conclusions. By formalizing, within the same framework, forced-choice discrimination responses, subjective visibility reports and confidence ratings, we show that this decision model suffices to account for several classical characteristics of conscious and unconscious perception. Furthermore, the model provides a set of original predictions on the nonlinear profiles of discrimination performance obtained at various levels of visibility. We successfully test one such prediction in a novel experiment: when varying continuously the degree of perceptual ambiguity between two visual symbols presented at perceptual threshold, identification performance varies quasi-linearly when the stimulus is unseen and in an 'all-or-none' manner when it is seen. The present model highlights how conscious and non-conscious decisions may correspond to distinct categorizations of the same stimulus encoded by a high-dimensional neuronal population vector. PMID:24639577

  3. Devaluation and sequential decisions: linking goal-directed and model-based behavior.

    PubMed

    Friedel, Eva; Koch, Stefan P; Wendt, Jean; Heinz, Andreas; Deserno, Lorenz; Schlagenhauf, Florian

    2014-01-01

    In experimental psychology different experiments have been developed to assess goal-directed as compared to habitual control over instrumental decisions. Similar to animal studies selective devaluation procedures have been used. More recently sequential decision-making tasks have been designed to assess the degree of goal-directed vs. habitual choice behavior in terms of an influential computational theory of model-based compared to model-free behavioral control. As recently suggested, different measurements are thought to reflect the same construct. Yet, there has been no attempt to directly assess the construct validity of these different measurements. In the present study, we used a devaluation paradigm and a sequential decision-making task to address this question of construct validity in a sample of 18 healthy male human participants. Correlational analysis revealed a positive association between model-based choices during sequential decisions and goal-directed behavior after devaluation suggesting a single framework underlying both operationalizations and speaking in favor of construct validity of both measurement approaches. Up to now, this has been merely assumed but never been directly tested in humans.

  4. Accidents and Decision Making under Uncertainty: A Comparison of Four Models.

    PubMed

    Barkan; Zohar; Erev

    1998-05-01

    Heinrich's (1931) classical study implies that most industrial accidents can be characterized as a probabilistic result of human error. The present research quantifies Heinrich's observation and compares four descriptive models of decision making in the abstracted setting. The suggested quantification utilizes signal detection theory (Green & Swets, 1966). It shows that Heinrich's observation can be described as a probabilistic signal detection task. In a controlled experiment, 90 decision makers participated in 600 trials of six safety games. Each safety game was a numerical example of the probabilistic SDT abstraction of Heinrich's proposition. Three games were designed under a frame of gain to represent perception of safe choice as costless, while the other three were designed under a frame of loss to represent perception of safe choice as costly. Probabilistic penalty for Miss was given at three different levels (1, .5, .1). The results showed that decisions tended initially to be risky and that experience led to safer behavior. As the probability of being penalized was lowered decisions became riskier and the learning process was impaired. The results support the cutoff reinforcement learning model suggested by Erev et al. (1995). The hill-climbing learning model (Busemeyer & Myung, 1992) was partially supported. Theoretical and practical implications are discussed. Copyright 1998 Academic Press.

  5. Modeling Protected Species Habitat and Assigning Risk to Inform Regulatory Decisions

    NASA Astrophysics Data System (ADS)

    Montgomery, Robert A.; Rubeck-Schurtz, C. Nichole; Millenbah, Kelly F.; Roloff, Gary J.; Whalon, Mark E.; Olsen, Larry G.

    2009-07-01

    In the United States, environmental regulatory agencies are required to use “best available” scientific information when making decisions on a variety of issues. However, agencies are often hindered by coarse or incomplete data, particularly as it pertains to threatened and endangered species protection. Stakeholders often agree that more resolute and integrated processes for decision-making are desirable. We demonstrate a process that uses species occurrence data for a federally endangered insect (Karner blue butterfly), a readily available habitat modeling tool, and spatially explicit information about an important Michigan commodity (tart cherries). This case study has characteristics of many protected species regulatory decisions in that species occurrence data were sparse and unequally distributed; regulatory decisions (on pesticide use) were required with potentially significant impacts on a viable agricultural industry; and stakeholder relations were diverse, misinformed, and, in some situations, unjustly contentious. Results from our process include a large-scale, empirically derived habitat suitability map for the focal species and a risk ranking of tart cherry orchards with risk based on the likelihood that pesticide applications will influence the focal protected species. Although the majority (77%) of pesticide-influence zones overlapped Karner blue butterfly habitat, risk scores associated with each orchard were low. Through our process we demonstrated that spatially explicit models can help stakeholders visualize and quantify potential protected species effects. In addition, model outputs can serve to guide field activities (e.g., species surveys and implementation of pesticide buffer zones) that help minimize future effects.

  6. Modeling protected species habitat and assigning risk to inform regulatory decisions.

    PubMed

    Montgomery, Robert A; Rubeck-Schurtz, C Nichole; Millenbah, Kelly F; Roloff, Gary J; Whalon, Mark E; Olsen, Larry G

    2009-07-01

    In the United States, environmental regulatory agencies are required to use "best available" scientific information when making decisions on a variety of issues. However, agencies are often hindered by coarse or incomplete data, particularly as it pertains to threatened and endangered species protection. Stakeholders often agree that more resolute and integrated processes for decision-making are desirable. We demonstrate a process that uses species occurrence data for a federally endangered insect (Karner blue butterfly), a readily available habitat modeling tool, and spatially explicit information about an important Michigan commodity (tart cherries). This case study has characteristics of many protected species regulatory decisions in that species occurrence data were sparse and unequally distributed; regulatory decisions (on pesticide use) were required with potentially significant impacts on a viable agricultural industry; and stakeholder relations were diverse, misinformed, and, in some situations, unjustly contentious. Results from our process include a large-scale, empirically derived habitat suitability map for the focal species and a risk ranking of tart cherry orchards with risk based on the likelihood that pesticide applications will influence the focal protected species. Although the majority (77%) of pesticide-influence zones overlapped Karner blue butterfly habitat, risk scores associated with each orchard were low. Through our process we demonstrated that spatially explicit models can help stakeholders visualize and quantify potential protected species effects. In addition, model outputs can serve to guide field activities (e.g., species surveys and implementation of pesticide buffer zones) that help minimize future effects.

  7. Using multi-species occupancy models in structured decision making on managed lands

    USGS Publications Warehouse

    Sauer, John R.; Blank, Peter J.; Zipkin, Elise F.; Fallon, Jane E.; Fallon, Frederick W.

    2013-01-01

    Land managers must balance the needs of a variety of species when manipulating habitats. Structured decision making provides a systematic means of defining choices and choosing among alternative management options; implementation of a structured decision requires quantitative approaches to predicting consequences of management on the relevant species. Multi-species occupancy models provide a convenient framework for making structured decisions when the management objective is focused on a collection of species. These models use replicate survey data that are often collected on managed lands. Occupancy can be modeled for each species as a function of habitat and other environmental features, and Bayesian methods allow for estimation and prediction of collective responses of groups of species to alternative scenarios of habitat management. We provide an example of this approach using data from breeding bird surveys conducted in 2008 at the Patuxent Research Refuge in Laurel, Maryland, evaluating the effects of eliminating meadow and wetland habitats on scrub-successional and woodland-breeding bird species using summed total occupancy of species as an objective function. Removal of meadows and wetlands decreased value of an objective function based on scrub-successional species by 23.3% (95% CI: 20.3–26.5), but caused only a 2% (0.5, 3.5) increase in value of an objective function based on woodland species, documenting differential effects of elimination of meadows and wetlands on these groups of breeding birds. This approach provides a useful quantitative tool for managers interested in structured decision making.

  8. Devaluation and sequential decisions: linking goal-directed and model-based behavior.

    PubMed

    Friedel, Eva; Koch, Stefan P; Wendt, Jean; Heinz, Andreas; Deserno, Lorenz; Schlagenhauf, Florian

    2014-01-01

    In experimental psychology different experiments have been developed to assess goal-directed as compared to habitual control over instrumental decisions. Similar to animal studies selective devaluation procedures have been used. More recently sequential decision-making tasks have been designed to assess the degree of goal-directed vs. habitual choice behavior in terms of an influential computational theory of model-based compared to model-free behavioral control. As recently suggested, different measurements are thought to reflect the same construct. Yet, there has been no attempt to directly assess the construct validity of these different measurements. In the present study, we used a devaluation paradigm and a sequential decision-making task to address this question of construct validity in a sample of 18 healthy male human participants. Correlational analysis revealed a positive association between model-based choices during sequential decisions and goal-directed behavior after devaluation suggesting a single framework underlying both operationalizations and speaking in favor of construct validity of both measurement approaches. Up to now, this has been merely assumed but never been directly tested in humans. PMID:25136310

  9. A model of subjective report and objective discrimination as categorical decisions in a vast representational space

    PubMed Central

    King, J-R.; Dehaene, S.

    2014-01-01

    Subliminal perception studies have shown that one can objectively discriminate a stimulus without subjectively perceiving it. We show how a minimalist framework based on Signal Detection Theory and Bayesian inference can account for this dissociation, by describing subjective and objective tasks with similar decision-theoretic mechanisms. Each of these tasks relies on distinct response classes, and therefore distinct priors and decision boundaries. As a result, they may reach different conclusions. By formalizing, within the same framework, forced-choice discrimination responses, subjective visibility reports and confidence ratings, we show that this decision model suffices to account for several classical characteristics of conscious and unconscious perception. Furthermore, the model provides a set of original predictions on the nonlinear profiles of discrimination performance obtained at various levels of visibility. We successfully test one such prediction in a novel experiment: when varying continuously the degree of perceptual ambiguity between two visual symbols presented at perceptual threshold, identification performance varies quasi-linearly when the stimulus is unseen and in an ‘all-or-none’ manner when it is seen. The present model highlights how conscious and non-conscious decisions may correspond to distinct categorizations of the same stimulus encoded by a high-dimensional neuronal population vector. PMID:24639577

  10. Assessing the utility of the willingness/prototype model in predicting help-seeking decisions.

    PubMed

    Hammer, Joseph H; Vogel, David L

    2013-01-01

    Prior research on professional psychological help-seeking behavior has operated on the assumption that the decision to seek help is based on intentional and reasoned processes. However, research on the dual-process prototype/willingness model (PWM; Gerrard, Gibbons, Houlihan, Stock, & Pomery, 2008) suggests health-related decisions may also involve social reaction processes that influence one's spontaneous willingness (rather than planned intention) to seek help, given conducive circumstances. The present study used structural equation modeling to evaluate the ability of these 2 information-processing pathways (i.e., the reasoned pathway and the social reaction pathway) to predict help-seeking decisions among 182 college students currently experiencing clinical levels of psychological distress. Results indicated that when both pathways were modeled simultaneously, only the social reaction pathway independently accounted for significant variance in help-seeking decisions. These findings argue for the utility of the PWM framework in the context of professional psychological help seeking and hold implications for future counseling psychology research, prevention, and practice. PMID:23106820

  11. Young adults' decision making surrounding heavy drinking: a multi-staged model of planned behaviour.

    PubMed

    Northcote, Jeremy

    2011-06-01

    This paper examines the real life contexts in which decisions surrounding heavy drinking are made by young adults (that is, on occasions when five or more alcoholic drinks are consumed within a few hours). It presents a conceptual model that views such decision making as a multi-faceted and multi-staged process. The mixed method study draws on purposive data gathered through direct observation of eight social networks consisting of 81 young adults aged between 18 and 25 years in Perth, Western Australia, including in-depth interviews with 31 participants. Qualitative and some basic quantitative data were gathered using participant observation and in-depth interviews undertaken over an eighteen month period. Participants explained their decision to engage in heavy drinking as based on a variety of factors. These elements relate to socio-cultural norms and expectancies that are best explained by the theory of planned behaviour. A framework is proposed that characterises heavy drinking as taking place in a multi-staged manner, with young adults having: 1. A generalised orientation to the value of heavy drinking shaped by wider influences and norms; 2. A short-term orientation shaped by situational factors that determines drinking intentions for specific events; and 3. An evaluative orientation shaped by moderating factors. The value of qualitative studies of decision making in real life contexts is advanced to complement the mostly quantitative research that dominates research on alcohol decision making. PMID:21632161

  12. Young adults' decision making surrounding heavy drinking: a multi-staged model of planned behaviour.

    PubMed

    Northcote, Jeremy

    2011-06-01

    This paper examines the real life contexts in which decisions surrounding heavy drinking are made by young adults (that is, on occasions when five or more alcoholic drinks are consumed within a few hours). It presents a conceptual model that views such decision making as a multi-faceted and multi-staged process. The mixed method study draws on purposive data gathered through direct observation of eight social networks consisting of 81 young adults aged between 18 and 25 years in Perth, Western Australia, including in-depth interviews with 31 participants. Qualitative and some basic quantitative data were gathered using participant observation and in-depth interviews undertaken over an eighteen month period. Participants explained their decision to engage in heavy drinking as based on a variety of factors. These elements relate to socio-cultural norms and expectancies that are best explained by the theory of planned behaviour. A framework is proposed that characterises heavy drinking as taking place in a multi-staged manner, with young adults having: 1. A generalised orientation to the value of heavy drinking shaped by wider influences and norms; 2. A short-term orientation shaped by situational factors that determines drinking intentions for specific events; and 3. An evaluative orientation shaped by moderating factors. The value of qualitative studies of decision making in real life contexts is advanced to complement the mostly quantitative research that dominates research on alcohol decision making.

  13. A decision-making framework to model environmental flow requirements in oasis areas using Bayesian networks

    NASA Astrophysics Data System (ADS)

    Xue, Jie; Gui, Dongwei; Zhao, Ying; Lei, Jiaqiang; Zeng, Fanjiang; Feng, Xinlong; Mao, Donglei; Shareef, Muhammad

    2016-09-01

    The competition for water resources between agricultural and natural oasis ecosystems has become an increasingly serious problem in oasis areas worldwide. Recently, the intensive extension of oasis farmland has led to excessive exploitation of water discharge, and consequently has resulted in a lack of water supply in natural oasis. To coordinate the conflicts, this paper provides a decision-making framework for modeling environmental flows in oasis areas using Bayesian networks (BNs). Three components are included in the framework: (1) assessment of agricultural economic loss due to meeting environmental flow requirements; (2) decision-making analysis using BNs; and (3) environmental flow decision-making under different water management scenarios. The decision-making criterion is determined based on intersection point analysis between the probability of large-level total agro-economic loss and the ratio of total to maximum agro-economic output by satisfying environmental flows. An application in the Qira oasis area of the Tarim Basin, Northwest China indicates that BNs can model environmental flow decision-making associated with agricultural economic loss effectively, as a powerful tool to coordinate water-use conflicts. In the case study, the environmental flow requirement is determined as 50.24%, 49.71% and 48.73% of the natural river flow in wet, normal and dry years, respectively. Without further agricultural economic loss, 1.93%, 0.66% and 0.43% of more river discharge can be allocated to eco-environmental water demands under the combined strategy in wet, normal and dry years, respectively. This work provides a valuable reference for environmental flow decision-making in any oasis area worldwide.

  14. Emergence of viral diseases: mathematical modeling as a tool for infection control, policy and decision making.

    PubMed

    Louz, Derrick; Bergmans, Hans E; Loos, Birgit P; Hoeben, Rob C

    2010-08-01

    Mathematical modeling can be used for the development and implementation of infection control policy to combat outbreaks and epidemics of communicable viral diseases. Here an outline is provided of basic concepts and approaches used in mathematical modeling and parameterization of disease transmission. The use of mathematical models is illustrated, using the 2001 UK foot-and-mouth disease (FMD) epidemic, the 2003 global severe acute respiratory syndrome (SARS) epidemic, and human influenza pandemics, as examples. This provides insights in the strengths, limitations, and weaknesses of the various models, and demonstrates their potential for supporting policy and decision making. PMID:20218764

  15. Emergence of viral diseases: mathematical modeling as a tool for infection control, policy and decision making.

    PubMed

    Louz, Derrick; Bergmans, Hans E; Loos, Birgit P; Hoeben, Rob C

    2010-08-01

    Mathematical modeling can be used for the development and implementation of infection control policy to combat outbreaks and epidemics of communicable viral diseases. Here an outline is provided of basic concepts and approaches used in mathematical modeling and parameterization of disease transmission. The use of mathematical models is illustrated, using the 2001 UK foot-and-mouth disease (FMD) epidemic, the 2003 global severe acute respiratory syndrome (SARS) epidemic, and human influenza pandemics, as examples. This provides insights in the strengths, limitations, and weaknesses of the various models, and demonstrates their potential for supporting policy and decision making.

  16. Contribution of the Multi-attribute Value Theory to conflict resolution in groundwater management. Application to the Mancha Oriental system (Spain)

    NASA Astrophysics Data System (ADS)

    Apperl, B.; Pulido-Velazquez, M.; Andreu, J.; Llopis-Albert, C.

    2012-04-01

    observed reactions: acceptance of more rigorous measures, on one hand, and a tendency to soft measures with the same cost, as a reaction to the decreased effectiveness of the alternatives. The implementation of the method to a very complex case study, with many conflicting objectives and alternatives and uncertain outcomes, including future scenarios (climate change) illustrate the potential of the method for supporting management decisions.

  17. From complex questionnaire and interviewing data to intelligent Bayesian Network models for medical decision support

    PubMed Central

    Constantinou, Anthony Costa; Fenton, Norman; Marsh, William; Radlinski, Lukasz

    2016-01-01

    Objectives 1) To develop a rigorous and repeatable method for building effective Bayesian network (BN) models for medical decision support from complex, unstructured and incomplete patient questionnaires and interviews that inevitably contain examples of repetitive, redundant and contradictory responses; 2) To exploit expert knowledge in the BN development since further data acquisition is usually not possible; 3) To ensure the BN model can be used for interventional analysis; 4) To demonstrate why using data alone to learn the model structure and parameters is often unsatisfactory even when extensive data is available. Method The method is based on applying a range of recent BN developments targeted at helping experts build BNs given limited data. While most of the components of the method are based on established work, its novelty is that it provides a rigorous consolidated and generalised framework that addresses the whole life-cycle of BN model development. The method is based on two original and recent validated BN models in forensic psychiatry, known as DSVM-MSS and DSVM-P. Results When employed with the same datasets, the DSVM-MSS demonstrated competitive to superior predictive performance (AUC scores 0.708 and 0.797) against the state-of-the-art (AUC scores ranging from 0.527 to 0.705), and the DSVM-P demonstrated superior predictive performance (cross-validated AUC score of 0.78) against the state-of-the-art (AUC scores ranging from 0.665 to 0.717). More importantly, the resulting models go beyond improving predictive accuracy and into usefulness for risk management purposes through intervention, and enhanced decision support in terms of answering complex clinical questions that are based on unobserved evidence. Conclusions This development process is applicable to any application domain which involves large-scale decision analysis based on such complex information, rather than based on data with hard facts, and in conjunction with the incorporation of

  18. Effective Use of Models in the Decision Processes: Theory Grounded in Three Case Studies. AIR Forum 1982 Paper.

    ERIC Educational Resources Information Center

    Hinman, Martha M.; Kallio, Ruth E.

    The technical, social, and procedural phenomena that facilitate the effective utilization of analytic models in decision-making are examined. Attention is focused on the theoretical issues associated with: (1) selection and fit of the model to the needs of the decision setting; (2) human factors such as cognitive style and the political climate…

  19. Modification of the Decision-Making Capability in the Social Force Model for the Evacuation Process

    NASA Astrophysics Data System (ADS)

    Zainuddin, Zarita; Shuaib, Mohammed

    2010-01-01

    The Social Force Model is one of the most successful microscopic pedestrian models that represent the well-organized phenomena of the pedestrian flow. The model has been modified for evacuation process by incorporating physical forces when contact exists, on one hand, and incorporating factors into the preferred velocity to govern the individual's behavior corresponding to the situation under consideration (normal or evacuation) on the other hand. The latter incorporation has enhanced the ability of the model to represent the decision-making process of pedestrians. However, the variety of pedestrian's abilities to make decisions in emergency situations has not been incorporated properly into the model. In this article we enhance the decision-making capability of the independent pedestrians first by improving the assessment process of selecting an exit from the set of exits available in the physical environment by considering a new factor (crowd at exits); and second, by incorporating following crowds as a new feature for those who are independent. A simulation of an emergency situation inside a room is performed to validate our work.

  20. Collaborative modelling and integrated decision support system analysis of a developed terminal lake basin

    USGS Publications Warehouse

    Niswonger, Richard; Allander, Kip K.; Jeton, Anne E.

    2014-01-01

    A terminal lake basin in west-central Nevada, Walker Lake, has undergone drastic change over the past 90 yrs due to upstream water use for agriculture. Decreased inflows to the lake have resulted in 100 km2 decrease in lake surface area and a total loss of fisheries due to salinization. The ecologic health of Walker Lake is of great concern as the lake is a stopover point on the Pacific route for migratory birds from within and outside the United States. Stakeholders, water institutions, and scientists have engaged in collaborative modeling and the development of a decision support system that is being used to develop and analyze management change options to restore the lake. Here we use an integrated management and hydrologic model that relies on state-of-the-art simulation capabilities to evaluate the benefits of using integrated hydrologic models as components of a decision support system. Nonlinear feedbacks among climate, surface-water and groundwater exchanges, and water use present challenges for simulating realistic outcomes associated with management change. Integrated management and hydrologic modeling provides a means of simulating benefits associated with management change in the Walker River basin where drastic changes in the hydrologic landscape have taken place over the last century. Through the collaborative modeling process, stakeholder support is increasing and possibly leading to management change options that result in reductions in Walker Lake salt concentrations, as simulated by the decision support system.

  1. Collaborative modelling and integrated decision support system analysis of a developed terminal lake basin

    NASA Astrophysics Data System (ADS)

    Niswonger, Richard G.; Allander, Kip K.; Jeton, Anne E.

    2014-09-01

    A terminal lake basin in west-central Nevada, Walker Lake, has undergone drastic change over the past 90 yrs due to upstream water use for agriculture. Decreased inflows to the lake have resulted in 100 km2 decrease in lake surface area and a total loss of fisheries due to salinization. The ecologic health of Walker Lake is of great concern as the lake is a stopover point on the Pacific route for migratory birds from within and outside the United States. Stakeholders, water institutions, and scientists have engaged in collaborative modeling and the development of a decision support system that is being used to develop and analyze management change options to restore the lake. Here we use an integrated management and hydrologic model that relies on state-of-the-art simulation capabilities to evaluate the benefits of using integrated hydrologic models as components of a decision support system. Nonlinear feedbacks among climate, surface-water and groundwater exchanges, and water use present challenges for simulating realistic outcomes associated with management change. Integrated management and hydrologic modeling provides a means of simulating benefits associated with management change in the Walker River basin where drastic changes in the hydrologic landscape have taken place over the last century. Through the collaborative modeling process, stakeholder support is increasing and possibly leading to management change options that result in reductions in Walker Lake salt concentrations, as simulated by the decision support system.

  2. Neural network modeling of the level of observation decision in an acute psychiatric ward.

    PubMed

    Penny, W D; Frost, D P

    1997-02-01

    Patients in an acute psychiatric ward need to be observed with varying levels of closeness. We report a series of experiments in which neural networks were trained to model this "level of observation" decision. One hundred eighty-seven such clinical decisions were used to train and test the networks which were evaluated by a multitrial v-fold cross-validation procedure. One neural network modeling approach was to break down the decision process into four subproblems, each of which was solved by a perceptron unit. This resulted in a hierarchical perceptron network having a structure that was equivalent to a sparsely connected two-layer perceptron. Neural network approaches were compared with nearest neighbor, linear regression, and naive Bayes classifiers. The hierarchical and sparse neural networks were the most accurate classifiers. This shows that the decision process is nonlinear, that neural nets can be more accurate than other statistical approaches, and that hierarchical decomposition is a useful methodology for neural network design.

  3. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    NASA Astrophysics Data System (ADS)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  4. Adaptation and Evaluation of a Multi-Criteria Decision Analysis Model for Lyme Disease Prevention.

    PubMed

    Aenishaenslin, Cécile; Gern, Lise; Michel, Pascal; Ravel, André; Hongoh, Valérie; Waaub, Jean-Philippe; Milord, François; Bélanger, Denise

    2015-01-01

    Designing preventive programs relevant to vector-borne diseases such as Lyme disease (LD) can be complex given the need to include multiple issues and perspectives into prioritizing public health actions. A multi-criteria decision aid (MCDA) model was previously used to rank interventions for LD prevention in Quebec, Canada, where the disease is emerging. The aim of the current study was to adapt and evaluate the decision model constructed in Quebec under a different epidemiological context, in Switzerland, where LD has been endemic for the last thirty years. The model adaptation was undertaken with a group of Swiss stakeholders using a participatory approach. The PROMETHEE method was used for multi-criteria analysis. Key elements and results of the MCDA model are described and contrasted with the Quebec model. All criteria and most interventions of the MCDA model developed for LD prevention in Quebec were directly transferable to the Swiss context. Four new decision criteria were added, and the list of proposed interventions was modified. Based on the overall group ranking, interventions targeting human populations were prioritized in the Swiss model, with the top ranked action being the implementation of a large communication campaign. The addition of criteria did not significantly alter the intervention rankings, but increased the capacity of the model to discriminate between highest and lowest ranked interventions. The current study suggests that beyond the specificity of the MCDA models developed for Quebec and Switzerland, their general structure captures the fundamental and common issues that characterize the complexity of vector-borne disease prevention. These results should encourage public health organizations to adapt, use and share MCDA models as an effective and functional approach to enable the integration of multiple perspectives and considerations in the prevention and control of complex public health issues such as Lyme disease or other vector

  5. Adaptation and Evaluation of a Multi-Criteria Decision Analysis Model for Lyme Disease Prevention

    PubMed Central

    Aenishaenslin, Cécile; Gern, Lise; Michel, Pascal; Ravel, André; Hongoh, Valérie; Waaub, Jean-Philippe; Milord, François; Bélanger, Denise

    2015-01-01

    Designing preventive programs relevant to vector-borne diseases such as Lyme disease (LD) can be complex given the need to include multiple issues and perspectives into prioritizing public health actions. A multi-criteria decision aid (MCDA) model was previously used to rank interventions for LD prevention in Quebec, Canada, where the disease is emerging. The aim of the current study was to adapt and evaluate the decision model constructed in Quebec under a different epidemiological context, in Switzerland, where LD has been endemic for the last thirty years. The model adaptation was undertaken with a group of Swiss stakeholders using a participatory approach. The PROMETHEE method was used for multi-criteria analysis. Key elements and results of the MCDA model are described and contrasted with the Quebec model. All criteria and most interventions of the MCDA model developed for LD prevention in Quebec were directly transferable to the Swiss context. Four new decision criteria were added, and the list of proposed interventions was modified. Based on the overall group ranking, interventions targeting human populations were prioritized in the Swiss model, with the top ranked action being the implementation of a large communication campaign. The addition of criteria did not significantly alter the intervention rankings, but increased the capacity of the model to discriminate between highest and lowest ranked interventions. The current study suggests that beyond the specificity of the MCDA models developed for Quebec and Switzerland, their general structure captures the fundamental and common issues that characterize the complexity of vector-borne disease prevention. These results should encourage public health organizations to adapt, use and share MCDA models as an effective and functional approach to enable the integration of multiple perspectives and considerations in the prevention and control of complex public health issues such as Lyme disease or other vector

  6. Dimension Reduction and Dynamics of a Spiking Neural Network Model for Decision Making under Neuromodulation().

    PubMed

    Eckhoff, Philip; Wong-Lin, Kongfatt; Holmes, Philip

    2011-01-01

    Previous models of neuromodulation in cortical circuits have used either physiologically based networks of spiking neurons or simplified gain adjustments in low-dimensional connectionist models. Here we reduce a high-dimensional spiking neuronal network model, first to a four-population mean-field model and then to a two-population model. This provides a realistic implementation of neuromodulation in low-dimensional decision-making models, speeds up simulations by three orders of magnitude, and allows bifurcation and phase-plane analyses of the reduced models that illuminate neuromodulatory mechanisms. As modulation of excitation-inhibition varies, the network can move from unaroused states, through optimal performance to impulsive states, and eventually lose inhibition-driven winner-take-all behavior: all are clear outcomes of the bifurcation structure. We illustrate the value of reduced models by a study of the speed-accuracy tradeoff in decision making. The ability of such models to recreate neuromodulatory dynamics of the spiking network will accelerate the pace of future experiments linking behavioral data to cellular neurophysiology. PMID:22768006

  7. The Role of Inertia in Modeling Decisions from Experience with Instance-Based Learning

    PubMed Central

    Dutt, Varun; Gonzalez, Cleotilde

    2012-01-01

    One form of inertia is the tendency to repeat the last decision irrespective of the obtained outcomes while making decisions from experience (DFE). A number of computational models based upon the Instance-Based Learning Theory, a theory of DFE, have included different inertia implementations and have shown to simultaneously account for both risk-taking and alternations between alternatives. The role that inertia plays in these models, however, is unclear as the same model without inertia is also able to account for observed risk-taking quite well. This paper demonstrates the predictive benefits of incorporating one particular implementation of inertia in an existing IBL model. We use two large datasets, estimation and competition, from the Technion Prediction Tournament involving a repeated binary-choice task to show that incorporating an inertia mechanism in an IBL model enables it to account for the observed average risk-taking and alternations. Including inertia, however, does not help the model to account for the trends in risk-taking and alternations over trials compared to the IBL model without the inertia mechanism. We generalize the two IBL models, with and without inertia, to the competition set by using the parameters determined in the estimation set. The generalization process demonstrates both the advantages and disadvantages of including inertia in an IBL model. PMID:22685443

  8. Enabling Real-time Water Decision Support Services Using Model as a Service

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Minsker, B. S.; Lee, J. S.; Salas, F. R.; Maidment, D. R.; David, C. H.

    2014-12-01

    Through application of computational methods and an integrated information system, data and river modeling services can help researchers and decision makers more rapidly understand river conditions under alternative scenarios. To enable this capability, workflows (i.e., analysis and model steps) are created and published as Web services delivered through an internet browser, including model inputs, a published workflow service, and visualized outputs. The RAPID model, which is a river routing model developed at University of Texas Austin for parallel computation of river discharge, has been implemented as a workflow and published as a Web application. This allows non-technical users to remotely execute the model and visualize results as a service through a simple Web interface. The model service and Web application has been prototyped in the San Antonio and Guadalupe River Basin in Texas, with input from university and agency partners. In the future, optimization model workflows will be developed to link with the RAPID model workflow to provide real-time water allocation decision support services.

  9. Improving Water Management Decision Support Tools Using NASA Satellite and Modeling Data

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Arsenault, K.; Nigro, J.; Pinheiro, A.; Engman, E. T.; Triggs, J.; Cosgrove, B.; Alonge, C.; Boyle, D.; Allen, R.; Townsend, P.; Ni-Meister, W.

    2006-05-01

    One of twelve Applications of National priority within NASA's Applied Science Program, the Water Management Program Element addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools for problem solving. The Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. This paper further describes the Water Management Program with the objective of informing the applications community of the potential opportunities for using NASA science products for problem solving. We will illustrate some ongoing and application Water Management projects evaluating and benchmarking NASA data with partnering federal agencies and their decision support tools: 1) Environmental Protection Agency for water quality; 2) Bureau of Reclamation for water supply, demand and forecast; and 3) NOAA National Weather Service for improved weather prediction. Examples of the types of NASA contributions to the these agency decision support tools include: 1) satellite observations within models assist to estimate water storage, i.e., snow water equivalent, soil moisture, aquifer volumes, or reservoir storages; 2) model derived products, i.e., evapotranspiration, precipitation, runoff, ground water recharge, and other 4-dimensional data assimilation products; 3) improve water quality, assessments by using improved inputs from NASA models (precipitation, evaporation) and satellite observations (e.g., temperature, turbidity, land cover) to nonpoint source models; and 4) water (i.e., precipitation) and temperature predictions from days to decades over local, regional and global scales.

  10. A multicriteria decision analysis model and risk assessment framework for carbon capture and storage.

    PubMed

    Humphries Choptiany, John Michael; Pelot, Ronald

    2014-09-01

    Multicriteria decision analysis (MCDA) has been applied to various energy problems to incorporate a variety of qualitative and quantitative criteria, usually spanning environmental, social, engineering, and economic fields. MCDA and associated methods such as life-cycle assessments and cost-benefit analysis can also include risk analysis to address uncertainties in criteria estimates. One technology now being assessed to help mitigate climate change is carbon capture and storage (CCS). CCS is a new process that captures CO2 emissions from fossil-fueled power plants and injects them into geological reservoirs for storage. It presents a unique challenge to decisionmakers (DMs) due to its technical complexity, range of environmental, social, and economic impacts, variety of stakeholders, and long time spans. The authors have developed a risk assessment model using a MCDA approach for CCS decisions such as selecting between CO2 storage locations and choosing among different mitigation actions for reducing risks. The model includes uncertainty measures for several factors, utility curve representations of all variables, Monte Carlo simulation, and sensitivity analysis. This article uses a CCS scenario example to demonstrate the development and application of the model based on data derived from published articles and publicly available sources. The model allows high-level DMs to better understand project risks and the tradeoffs inherent in modern, complex energy decisions. PMID:24772997

  11. A multicriteria decision analysis model and risk assessment framework for carbon capture and storage.

    PubMed

    Humphries Choptiany, John Michael; Pelot, Ronald

    2014-09-01

    Multicriteria decision analysis (MCDA) has been applied to various energy problems to incorporate a variety of qualitative and quantitative criteria, usually spanning environmental, social, engineering, and economic fields. MCDA and associated methods such as life-cycle assessments and cost-benefit analysis can also include risk analysis to address uncertainties in criteria estimates. One technology now being assessed to help mitigate climate change is carbon capture and storage (CCS). CCS is a new process that captures CO2 emissions from fossil-fueled power plants and injects them into geological reservoirs for storage. It presents a unique challenge to decisionmakers (DMs) due to its technical complexity, range of environmental, social, and economic impacts, variety of stakeholders, and long time spans. The authors have developed a risk assessment model using a MCDA approach for CCS decisions such as selecting between CO2 storage locations and choosing among different mitigation actions for reducing risks. The model includes uncertainty measures for several factors, utility curve representations of all variables, Monte Carlo simulation, and sensitivity analysis. This article uses a CCS scenario example to demonstrate the development and application of the model based on data derived from published articles and publicly available sources. The model allows high-level DMs to better understand project risks and the tradeoffs inherent in modern, complex energy decisions.

  12. Models of governance in multihospital systems. Implications for hospital and system-level decision-making.

    PubMed

    Morlock, L L; Alexander, J A

    1986-12-01

    This study utilizes data from a national survey of 159 multihospital systems in order to describe the types of governance structures currently being utilized, and to compare the policy making process for various types of decisions in systems with different approaches to governance. Survey results indicate that multihospital systems most often use one of three governance models. Forty-one percent of the systems (including 33% of system hospitals) use a parent holding company model in which there is a system-wide corporate governing board and separate governing boards for each member hospital. Twenty-two percent of systems in the sample (but 47% of all system hospitals) utilize what we have termed a modified parent holding company model in which there is one system-wide governing board, but advisory boards are substituted for governing boards at the local hospital level. Twenty-three percent of the sampled systems (including 11% of system hospitals) use a corporate model in which there is one system-wide governing board but no other governing or advisory boards at either the divisional, regional or local hospital levels. A comparison of systems using these three governance approaches found significant variation in terms of system size, ownership and the geographic proximity of member hospitals. In order to examine the relationship between alternative approaches to governance and patterns of decision-making, the three model types were compared with respect to the percentages of systems reporting that local boards, corporate management and/or system-wide corporate boards have responsibility for decision-making in a number of specific issue areas. Study results indicate that, regardless of model type, corporate boards are most likely to have responsibility for decisions regarding the transfer, pledging and sale of assets; the formation of new companies; purchase of assets greater than $100,000; changes in hospital bylaws; and the appointment of local board members. In

  13. Decision Making in Rangelands: An Integrated Modeling Approach to Resilience and Change

    NASA Astrophysics Data System (ADS)

    Galvin, K. A.; Ojima, D. S.; Boone, R. B.

    2007-12-01

    Rangelands comprise approximately 25% of the earth's surface and these landscapes support more than 20 million people and most of the world's charismatic megafauna. Most of the people who live in these regions of the world herd domestic livestock and some do limited cultivation so they are dependent directly on the environment for their livelihoods. But change is rapidly changing the environments upon which these people depend through such factors as population pressures, land use and land tenure changes, climate variability, and policy changes which fragment their resources and thus their ability to earn a living. How can we understand change in this linked human-environment system? The study of complex biophysical and human systems can be greatly assisted by appropriate simulation models that integrate what is known about ecological and human decision-making processes. We have developed an integrated modeling system for Kajiado, Kenya where land use management decisions have implications for economics and the ecosystem. In this paper we look at how land use decisions, that is, livestock movement patterns have implications for societal economics and ecosystem services. Research that focuses on local behavior is important because it is at that level where fundamental decisions are made regarding events like extreme climate and changes such as land tenure policy and it is here where resilience is manifested. The notion that broad recommendation domains can be identified for a broad set of people and large regions coping with change is becoming increasingly hard to trust given the spatial and temporal heterogeneity of the systems we are looking at, and the complexity of the world we now live in. Why is this important? The only way the research community is going to make great progress in attaining objectives that do confer resilience (on social and ecological systems) is through much better targeting ability, a large part of which seem to be intimately entwined with

  14. An optimal hierarchical decision model for a regional logistics network with environmental impact consideration.

    PubMed

    Zhang, Dezhi; Li, Shuangyan; Qin, Jin

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level. PMID:24977209

  15. An Optimal Hierarchical Decision Model for a Regional Logistics Network with Environmental Impact Consideration

    PubMed Central

    Zhang, Dezhi; Li, Shuangyan

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level. PMID:24977209

  16. An optimal hierarchical decision model for a regional logistics network with environmental impact consideration.

    PubMed

    Zhang, Dezhi; Li, Shuangyan; Qin, Jin

    2014-01-01

    This paper proposes a new model of simultaneous optimization of three-level logistics decisions, for logistics authorities, logistics operators, and logistics users, for regional logistics network with environmental impact consideration. The proposed model addresses the interaction among the three logistics players in a complete competitive logistics service market with CO2 emission charges. We also explicitly incorporate the impacts of the scale economics of the logistics park and the logistics users' demand elasticity into the model. The logistics authorities aim to maximize the total social welfare of the system, considering the demand of green logistics development by two different methods: optimal location of logistics nodes and charging a CO2 emission tax. Logistics operators are assumed to compete with logistics service fare and frequency, while logistics users minimize their own perceived logistics disutility given logistics operators' service fare and frequency. A heuristic algorithm based on the multinomial logit model is presented for the three-level decision model, and a numerical example is given to illustrate the above optimal model and its algorithm. The proposed model provides a useful tool for modeling competitive logistics services and evaluating logistics policies at the strategic level.

  17. Nursing students' experience of ethical problems and use of ethical decision-making models.

    PubMed

    Cameron, M E; Schaffer, M; Park, H A

    2001-09-01

    Using a conceptual framework and method combining ethical enquiry and phenomenology, we asked 73 senior baccalaureate nursing students to answer two questions: (1) What is nursing students' experience of an ethical problem involving nursing practice? and (2) What is nursing students' experience of using an ethical decision-making model? Each student described one ethical problem, from which emerged five content categories, the largest being that involving health professionals (44%). The basic nature of the ethical problems consisted of the nursing students' experience of conflict, resolution and rationale; 85% of the students stated that using an ethical decision-making model was helpful. Although additional research is needed, these findings have important implications for nursing ethics education and practice. PMID:16004097

  18. A spiking Basal Ganglia model of synchrony, exploration and decision making.

    PubMed

    Mandali, Alekhya; Rengaswamy, Maithreye; Chakravarthy, V Srinivasa; Moustafa, Ahmed A

    2015-01-01

    To make an optimal decision we need to weigh all the available options, compare them with the current goal, and choose the most rewarding one. Depending on the situation an optimal decision could be to either "explore" or "exploit" or "not to take any action" for which the Basal Ganglia (BG) is considered to be a key neural substrate. In an attempt to expand this classical picture of BG function, we had earlier hypothesized that the Indirect Pathway (IP) of the BG could be the subcortical substrate for exploration. In this study we build a spiking network model to relate exploration to synchrony levels in the BG (which are a neural marker for tremor in Parkinson's disease). Key BG nuclei such as the Sub Thalamic Nucleus (STN), Globus Pallidus externus (GPe) and Globus Pallidus internus (GPi) were modeled as Izhikevich spiking neurons whereas the Striatal output was modeled as Poisson spikes. The model is cast in reinforcement learning framework with the dopamine signal representing reward prediction error. We apply the model to two decision making tasks: a binary action selection task (similar to one used by Humphries et al., 2006) and an n-armed bandit task (Bourdaud et al., 2008). The model shows that exploration levels could be controlled by STN's lateral connection strength which also influenced the synchrony levels in the STN-GPe circuit. An increase in STN's lateral strength led to a decrease in exploration which can be thought as the possible explanation for reduced exploratory levels in Parkinson's patients. Our simulations also show that on complete removal of IP, the model exhibits only Go and No-Go behaviors, thereby demonstrating the crucial role of IP in exploration. Our model provides a unified account for synchronization, action section, and explorative behavior. PMID:26074761

  19. A spiking Basal Ganglia model of synchrony, exploration and decision making

    PubMed Central

    Mandali, Alekhya; Rengaswamy, Maithreye; Chakravarthy, V. Srinivasa; Moustafa, Ahmed A.

    2015-01-01

    To make an optimal decision we need to weigh all the available options, compare them with the current goal, and choose the most rewarding one. Depending on the situation an optimal decision could be to either “explore” or “exploit” or “not to take any action” for which the Basal Ganglia (BG) is considered to be a key neural substrate. In an attempt to expand this classical picture of BG function, we had earlier hypothesized that the Indirect Pathway (IP) of the BG could be the subcortical substrate for exploration. In this study we build a spiking network model to relate exploration to synchrony levels in the BG (which are a neural marker for tremor in Parkinson's disease). Key BG nuclei such as the Sub Thalamic Nucleus (STN), Globus Pallidus externus (GPe) and Globus Pallidus internus (GPi) were modeled as Izhikevich spiking neurons whereas the Striatal output was modeled as Poisson spikes. The model is cast in reinforcement learning framework with the dopamine signal representing reward prediction error. We apply the model to two decision making tasks: a binary action selection task (similar to one used by Humphries et al., 2006) and an n-armed bandit task (Bourdaud et al., 2008). The model shows that exploration levels could be controlled by STN's lateral connection strength which also influenced the synchrony levels in the STN-GPe circuit. An increase in STN's lateral strength led to a decrease in exploration which can be thought as the possible explanation for reduced exploratory levels in Parkinson's patients. Our simulations also show that on complete removal of IP, the model exhibits only Go and No-Go behaviors, thereby demonstrating the crucial role of IP in exploration. Our model provides a unified account for synchronization, action section, and explorative behavior. PMID:26074761

  20. Visual Attention Allocation Between Robotic Arm and Environmental Process Control: Validating the STOM Task Switching Model

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher; Vieanne, Alex; Clegg, Benjamin; Sebok, Angelia; Janes, Jessica

    2015-01-01

    Fifty six participants time shared a spacecraft environmental control system task with a realistic space robotic arm control task in either a manual or highly automated version. The former could suffer minor failures, whose diagnosis and repair were supported by a decision aid. At the end of the experiment this decision aid unexpectedly failed. We measured visual attention allocation and switching between the two tasks, in each of the eight conditions formed by manual-automated arm X expected-unexpected failure X monitoring- failure management. We also used our multi-attribute task switching model, based on task attributes of priority interest, difficulty and salience that were self-rated by participants, to predict allocation. An un-weighted model based on attributes of difficulty, interest and salience accounted for 96 percent of the task allocation variance across the 8 different conditions. Task difficulty served as an attractor, with more difficult tasks increasing the tendency to stay on task.

  1. Optimal inventories for overhaul of repairable redundant systems - A Markov decision model

    NASA Technical Reports Server (NTRS)

    Schaefer, M. K.

    1984-01-01

    A Markovian decision model was developed to calculate the optimal inventory of repairable spare parts for an avionics control system for commercial aircraft. Total expected shortage costs, repair costs, and holding costs are minimized for a machine containing a single system of redundant parts. Transition probabilities are calculated for each repair state and repair rate, and optimal spare parts inventory and repair strategies are determined through linear programming. The linear programming solutions are given in a table.

  2. Diffusion Modelling Reveals the Decision Making Processes Underlying Negative Judgement Bias in Rats.

    PubMed

    Hales, Claire A; Robinson, Emma S J; Houghton, Conor J

    2016-01-01

    Human decision making is modified by emotional state. Rodents exhibit similar biases during interpretation of ambiguous cues that can be altered by affective state manipulations. In this study, the impact of negative affective state on judgement bias in rats was measured using an ambiguous-cue interpretation task. Acute treatment with an anxiogenic drug (FG7142), and chronic restraint stress and social isolation both induced a bias towards more negative interpretation of the ambiguous cue. The diffusion model was fit to behavioural data to allow further analysis of the underlying decision making processes. To uncover the way in which parameters vary together in relation to affective state manipulations, independent component analysis was conducted on rate of information accumulation and distances to decision threshold parameters for control data. Results from this analysis were applied to parameters from negative affective state manipulations. These projected components were compared to control components to reveal the changes in decision making processes that are due to affective state manipulations. Negative affective bias in rodents induced by either FG7142 or chronic stress is due to a combination of more negative interpretation of the ambiguous cue, reduced anticipation of the high reward and increased anticipation of the low reward.

  3. Diffusion Modelling Reveals the Decision Making Processes Underlying Negative Judgement Bias in Rats

    PubMed Central

    Hales, Claire A.; Robinson, Emma S. J.; Houghton, Conor J.

    2016-01-01

    Human decision making is modified by emotional state. Rodents exhibit similar biases during interpretation of ambiguous cues that can be altered by affective state manipulations. In this study, the impact of negative affective state on judgement bias in rats was measured using an ambiguous-cue interpretation task. Acute treatment with an anxiogenic drug (FG7142), and chronic restraint stress and social isolation both induced a bias towards more negative interpretation of the ambiguous cue. The diffusion model was fit to behavioural data to allow further analysis of the underlying decision making processes. To uncover the way in which parameters vary together in relation to affective state manipulations, independent component analysis was conducted on rate of information accumulation and distances to decision threshold parameters for control data. Results from this analysis were applied to parameters from negative affective state manipulations. These projected components were compared to control components to reveal the changes in decision making processes that are due to affective state manipulations. Negative affective bias in rodents induced by either FG7142 or chronic stress is due to a combination of more negative interpretation of the ambiguous cue, reduced anticipation of the high reward and increased anticipation of the low reward. PMID:27023442

  4. A modeling framework for optimal long-term care insurance purchase decisions in retirement planning.

    PubMed

    Gupta, Aparna; Li, Lepeng

    2004-05-01

    The level of need and costs of obtaining long-term care (LTC) during retired life require that planning for it is an integral part of retirement planning. In this paper, we divide retirement planning into two phases, pre-retirement and post-retirement. On the basis of four interrelated models for health evolution, wealth evolution, LTC insurance premium and coverage, and LTC cost structure, a framework for optimal LTC insurance purchase decisions in the pre-retirement phase is developed. Optimal decisions are obtained by developing a trade-off between post-retirement LTC costs and LTC insurance premiums and coverage. Two-way branching models are used to model stochastic health events and asset returns. The resulting optimization problem is formulated as a dynamic programming problem. We compare the optimal decision under two insurance purchase scenarios: one assumes that insurance is purchased for good and other assumes it may be purchased, relinquished and re-purchased. Sensitivity analysis is performed for the retirement age.

  5. Multi-phase intelligent decision model for reservoir real-time flood control during typhoons

    NASA Astrophysics Data System (ADS)

    Hsu, Nien-Sheng; Huang, Chien-Lin; Wei, Chih-Chiang

    2015-03-01

    This study applies an Adaptive Network-based Fuzzy Inference System (ANFIS) and a Real-Time Recurrent Learning Neural Network (RTRLNN) with an optimized reservoir release hydrograph using Mixed Integer Linear Programming (MILP) from historical typhoon events to develop a multi-phase intelligent real-time reservoir operation model for flood control. The flood control process is divided into three stages: (1) before flood (Stage I); (2) before peak flow (Stage II); and (3) after peak flow (Stage III). The models are then constructed with either three phase modules (ANFIS-3P and RTRLNN-3P) or two phase (Stage I + II and Stage III) modules (ANFIS-2P and RTRLNN-2P). The multi-phase modules are developed with consideration of the difference in operational decision mechanisms, decision information, release functions, and targets between each flood control stage to solve the problem of time-consuming computation and difficult system integration of MILP. In addition, the model inputs include the coupled short lead time and total reservoir inflow forecast information that are developed using radar- and satellite-based meteorological monitoring techniques, forecasted typhoon tracks, meteorological image similarity analysis, ANFIS and RTRLNN. This study uses the Tseng-Wen Reservoir basin as the study area, and the model results showed that RTRLNN outperformed ANFIS in the simulated outcomes from the optimized hydrographs. This study also applies the models to Typhoons Kalmaegi and Morakot to compare the simulations to historical operations. From the operation results, the RTRLNN-3P model is better than RTRLNN-2P and historical operations. Further, because the RTRLNN-3P model combines the innovative multi-phase module with monitored and forecasted decision information, the operation can simultaneously, effectively and automatically achieve the dual goals of flood detention at peak flow periods and water supply at the end of a typhoon event.

  6. Reservoir Operations and Flow Modeling to Support Decision Making in the Delaware River Basin

    NASA Astrophysics Data System (ADS)

    Quinodoz, H. A.

    2006-12-01

    About five percent of the US population depends on the waters from the Delaware River Basin for its water supply, including New York City and Philadelphia. Water management in the basin is governed by a compact signed in 1961 by the four basin states and the federal government. The compact created the Delaware River Basin Commission (DRBC) and gave it broad powers to plan, regulate, and manage the development of the basin water resources. The compact also recognized a pre-existing (1954) U.S. Supreme Court Decree that grants the City of New York the right to export up to 800 million gallons per day out of the basin, provided that a prescribed minimum flow is met at Montague, New Jersey for the use of the lower-basin states. The Delaware River Basin Compact also allows the DRBC to adjust the releases and diversions under the Decree, subject to the unanimous consent of the decree parties. This mechanism has been used several times over the last 30 years, to implement and modify rules governing drought operations, instream flows, minimum flow targets, and control of salinity intrusion. In every case, decision makers have relied upon extensive modeling of alternative proposals, using a basin-wide daily flow model. Often, stakeholders have modified and used the same model to test and refine their proposals prior to consideration by the decision makers. The flow model has been modified over the years, to simulate new features and processes in a river system partially controlled by more than ten reservoirs. The flow model has proved to be an adaptable tool, able to simulate the dynamics of a complex system driven by conflicting objectives. This presentation reviews the characteristics of the daily flow model in its current form, discuss how model simulations are used to inform the decision-making process, and provide a case study of a recent modification of the system-wide drought operating plan.

  7. Improved Hypoxia Modeling for Nutrient Control Decisions in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Pickering, Ken; Tzortziou, Maria; Maninio, Antonio; Policelli, Fritz; Stehr, Jeff

    2011-01-01

    The Gulf of Mexico Modeling Framework is a suite of coupled models linking the deposition and transport of sediment and nutrients to subsequent bio-geo chemical processes and the resulting effect on concentrations of dissolved oxygen in the coastal waters of Louisiana and Texas. Here, we examine the potential benefits of using multiple NASA remote sensing data products within this Modeling Framework for increasing the accuracy of the models and their utility for nutrient control decisions in the Gulf of Mexico. Our approach is divided into three components: evaluation and improvement of (a) the precipitation input data (b) atmospheric constituent concentrations in EPA's air quality/deposition model and (c) the calculation of algal biomass, organic carbon and suspended solids within the water quality/eutrophication models of the framework.

  8. Computer models used to support cleanup decision-making at hazardous and radioactive waste sites

    SciTech Connect

    Moskowitz, P.D.; Pardi, R.; DePhillips, M.P.; Meinhold, A.F.

    1992-07-01

    Massive efforts are underway to cleanup hazardous and radioactive waste sites located throughout the US To help determine cleanup priorities, computer models are being used to characterize the source, transport, fate and effects of hazardous chemicals and radioactive materials found at these sites. Although, the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and the US Nuclear Regulatory Commission (NRC) have provided preliminary guidance to promote the use of computer models for remediation purposes, no Agency has produced directed guidance on models that must be used in these efforts. To identify what models are actually being used to support decision-making at hazardous and radioactive waste sites, a project jointly funded by EPA, DOE and NRC was initiated. The purpose of this project was to: (1) Identify models being used for hazardous and radioactive waste site assessment purposes; and (2) describe and classify these models. This report presents the results of this study.

  9. The decision of out-of-home placement in residential care after parental neglect: Empirically testing a psychosocial model.

    PubMed

    Rodrigues, Leonor; Calheiros, Manuela; Pereira, Cícero

    2015-11-01

    Out-of-home placement decisions in residential care are complex, ambiguous and full of uncertainty, especially in cases of parental neglect. Literature on this topic is so far unable to understand and demonstrate the source of errors involved in those decisions and still fails to focus on professional's decision making process. Therefore, this work intends to test a socio-psychological model of decision-making that is a more integrated, dualistic and ecological version of the Theory of Planned Behavior's model. It describes the process through which the decision maker takes into account personal, contextual and social factors of the Decision-Making Ecology in the definition of his/her decision threshold. One hundred and ninety-five professionals from different Children and Youth Protection Units, throughout the Portuguese territory, participated in this online study. After reading a vignette of a (psychological and physical) neglect case toward a one-year-old child, participants were presented with a group of questions that measured worker's assessment of risk, intention, attitude, subjective norm, behavior control and beliefs toward residential care placement decision, as well as worker's behavior experience, emotions and family/child-related-values involved in that decision. A set of structural equation modeling analyses have proven the good fit of the proposed model. The intention to propose a residential care placement decision was determined by cognitive, social, affective, value-laden and experience variables and the perceived risk. Altogether our model explained 61% of professional's decision toward a parental neglect case. The theoretical and practical implications of these results are discussed, namely the importance of raising awareness about the existence of these biased psychosocial determinants.

  10. The decision of out-of-home placement in residential care after parental neglect: Empirically testing a psychosocial model.

    PubMed

    Rodrigues, Leonor; Calheiros, Manuela; Pereira, Cícero

    2015-11-01

    Out-of-home placement decisions in residential care are complex, ambiguous and full of uncertainty, especially in cases of parental neglect. Literature on this topic is so far unable to understand and demonstrate the source of errors involved in those decisions and still fails to focus on professional's decision making process. Therefore, this work intends to test a socio-psychological model of decision-making that is a more integrated, dualistic and ecological version of the Theory of Planned Behavior's model. It describes the process through which the decision maker takes into account personal, contextual and social factors of the Decision-Making Ecology in the definition of his/her decision threshold. One hundred and ninety-five professionals from different Children and Youth Protection Units, throughout the Portuguese territory, participated in this online study. After reading a vignette of a (psychological and physical) neglect case toward a one-year-old child, participants were presented with a group of questions that measured worker's assessment of risk, intention, attitude, subjective norm, behavior control and beliefs toward residential care placement decision, as well as worker's behavior experience, emotions and family/child-related-values involved in that decision. A set of structural equation modeling analyses have proven the good fit of the proposed model. The intention to propose a residential care placement decision was determined by cognitive, social, affective, value-laden and experience variables and the perceived risk. Altogether our model explained 61% of professional's decision toward a parental neglect case. The theoretical and practical implications of these results are discussed, namely the importance of raising awareness about the existence of these biased psychosocial determinants. PMID:25882668

  11. Harnessing ecosystem models and multi-criteria decision analysis for the support of forest management.

    PubMed

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  12. Harnessing Ecosystem Models and Multi-Criteria Decision Analysis for the Support of Forest Management

    NASA Astrophysics Data System (ADS)

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  13. A model study on the circuit mechanism underlying decision-making in Drosophila.

    PubMed

    Wu, Zhihua; Guo, Aike

    2011-05-01

    Previous elegant experiments in a flight simulator showed that conditioned Drosophila is able to make a clear-cut decision to avoid potential danger. When confronted with conflicting visual cues, the relative saliency of two competing cues is found to be a sensory ruler for flies to judge which cue should be used for decision-making. Further genetic manipulations and immunohistological analysis revealed that the dopamine system and mushroom bodies are indispensable for such a clear-cut or nonlinear decision. The neural circuit mechanism, however, is far from being clear. In this paper, we adopt a computational modeling approach to investigate how different brain areas and the dopamine system work together to drive a fly to make a decision. By developing a systems-level neural network, a two-pathway circuit is proposed. Besides a direct pathway from a feature binding area to the motor center, another connects two areas via the mushroom body, a target of dopamine release. A raised dopamine level is hypothesized to be induced by complex choice tasks and to enhance lateral inhibition and steepen the units' response gain in the mushroom body. Simulations show that training helps to assign values to formerly neutral features. For a circuit model with a blocked mushroom body, the direct pathway passes all alternatives to the motor center without changing original values, giving rise to a simple choice characterized by a linear choice curve. With respect to an intact circuit, enhanced lateral inhibition dependent on dopamine critically promotes competition between alternatives, turning the linear- into nonlinear choice behavior. Results account well for experimental data, supporting the reasonableness of model working hypotheses. Several testable predictions are made for future studies. PMID:21310589

  14. A micro-pool model for decision-related signals in visual cortical areas.

    PubMed

    Parker, Andrew J

    2013-01-01

    The study of sensory signaling in the visual cortex has been greatly advanced by the recording of neural activity simultaneously with the performance of a specific psychophysical task. Individual nerve cells may also increase their firing leading up to the particular choice or decision made on a single psychophysical trial. Understanding these signals is important because they have been taken as evidence that a particular nerve cell or group of nerve cells in the cortex is involved in the formation of the perceptual decision ultimately signaled by the organism. However, recent analyses show that the size of a decision-related change in firing in a particular neuron is not a secure basis for concluding anything about the contribution of a single neuron to the formation of a decision: rather the size of the decision-related firing is expected to be dominated by the extent to which the activation of a single neuron is correlated with the firing of the pool of neurons. The critical question becomes what defines membership of a population of neurons. This article presents the proposal that groups of neurons are naturally linked together by their connectivity, which in turn reflects the previous history of sensory stimulations. When a new psychophysical task is performed, a group of neurons relevant to the judgment becomes involved because the firing of some neurons in that group is strongly relevant to the task. This group of neurons is called a micro-pool. This article examines the consequences of such a proposal within the visual nervous system. The main focus is on the signals available from single neurons, but it argued that models of choice-related signals must scale up to larger numbers of neurons because MRI and MEG studies also show evidence of similar choice signals.

  15. Social modeling influences on sensory decision theory and psychophysiological indexes of pain.

    PubMed

    Craig, K D; Prkachin, K M

    1978-08-01

    Subjects exposed to social models dissimulating tolerance or intolerance generally exhibit matching behavior in their verbal ratings of painful stimulation. It has been unclear, however, whether these changes reflect voluntary alteration of evidence or genuine changes in distress. This study used alternative measures and controlled for methodological limitations of earlier studies by examining nonpalmar skin potential in addition to palmar skin conductance and heart rate indexes of psychophysiological response to electric shock, and by evaluating verbal expressions of pain with sensory decision theory methodology. Of 20 female volunteer subjects, half served as controls, and half were exposed to a tolerant female model. Both the subject and the model verbalized ratings of discomfort provoked by a series of electric shocks of increasing intensity. Subjects then underwent a series of preselected random shocks. Sensory decision theory analyses revealed lower discriminability of the shocks among subjects exposed to a tolerant model. Several indexes of nonpalmar skin potential and heart rate reactivity exhibited lower reactivity in the tolerant group. Tolerant modeling was also associated with decreases in subjective stress. The results were consistent with the position that changes in pain indexes associated with exposure to a tolerant model represented variations in fundamental characteristics of painful experiences as opposed to suppression of information.

  16. Bayesian decision-network modeling of multiple stakeholders for reef ecosystem restoration in the coral triangle.

    PubMed

    Varkey, Divya A; Pitcher, Tony J; McAllister, Murdoch K; Sumaila, Rashid S

    2013-06-01

    Proposals for marine conservation measures have proliferated in the last 2 decades due to increased reports of fishery declines and interest in conservation. Fishers and fisheries managers have often disagreed strongly when discussing controls on fisheries. In such situations, ecosystem-based models and fisheries-stock assessment models can help resolve disagreements by highlighting the trade-offs that would be made under alternative management scenarios. We extended the analytical framework for modeling such trade-offs by including additional stakeholders whose livelihoods and the value they place on conservation depend on the condition of the marine ecosystem. To do so, we used Bayesian decision-network models (BDNs) in a case study of an Indonesian coral reef fishery. Our model included interests of the fishers and fishery managers; individuals in the tourism industry; conservation interests of the state, nongovernmental organizations, and the local public; and uncertainties in ecosystem status, projections of fisheries revenues, tourism growth, and levels of interest in conservation. We calculated the total utility (i.e., value) of a range of restoration scenarios. Restricting net fisheries and live-fish fisheries appeared to be the best compromise solutions under several combinations of settings of modeled variables. Results of our case study highlight the implications of alternate formulations for coral reef stakeholder utility functions and discount rates for the calculation of the net benefits of alternative fisheries management options. This case study may also serve as a useful example for other decision analyses with multiple stakeholders. PMID:23530881

  17. Coupled hydrological, ecological, decision and economic models for monetary valuation of riparian ecosystem services

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Brookshire, D.; Broadbent, C.; Dixon, M. D.; Brand, L. A.; Thacher, J.; Benedict, K. K.; Lansey, K. E.; Stromberg, J. C.; Stewart, S.; McIntosh, M.

    2011-12-01

    Water is a critical component for sustaining both natural and human systems. Yet the value of water for sustaining ecosystem services is not well quantified in monetary terms. Ideally decisions involving water resource management would include an apples-to-apples comparison of the costs and benefits in dollars of both market and non-market goods and services - human and ecosystem. To quantify the value of non-market ecosystem services, scientifically defensible relationships must be developed that link the effect of a decision (e.g. human growth) to the change in ecosystem attributes from current conditions. It is this linkage that requires the "poly-disciplinary" coupling of knowledge and models from the behavioral, physical, and ecological sciences. In our experience another key component of making this successful linkage is development of a strong poly-disciplinary scientific team that can readily communicate complex disciplinary knowledge to non-specialists outside their own discipline. The time to build such a team that communicates well and has a strong sense of trust should not be underestimated. The research described in the presentation incorporated hydrologic, vegetation, avian, economic, and decision models into an integrated framework to determine the value of changes in ecological systems that result from changes in human water use. We developed a hydro-bio-economic framework for the San Pedro River Region in Arizona that considers groundwater, stream flow, and riparian vegetation, as well as abundance, diversity, and distribution of birds. In addition, we developed a similar framework for the Middle Rio Grande of New Mexico. There are six research components for this project: (1) decision support and scenario specification, (2) regional groundwater model, (3) the riparian vegetation model, (4) the avian model, (5) methods for displaying the information gradients in the valuation survey instruments (Choice Modeling and Contingent Valuation), and (6

  18. Prediction versus management models relevant to risk assessment: the importance of legal decision-making context.

    PubMed

    Heilbrun, K

    1997-08-01

    Most of the theoretical and empirical literature on violence risk to date has focused on the task of predicting who will behave violently. In the present article, it is argued that at least two models of risk assessment may be applied to the varying legal decisions in which violence risk is a consideration: prediction (with an emphasis on overall accuracy) and management (with an emphasis on risk reduction). These two models are described, and discussed in the contexts of the literatures on forensic assessment and therapeutic jurisprudence. The implications for research, policy, and practice are considered.

  19. A software development and evolution model based on decision-making

    NASA Technical Reports Server (NTRS)

    Wild, J. Christian; Dong, Jinghuan; Maly, Kurt

    1991-01-01

    Design is a complex activity whose purpose is to construct an artifact which satisfies a set of constraints and requirements. However the design process is not well understood. The software design and evolution process is the focus of interest, and a three dimensional software development space organized around a decision-making paradigm is presented. An initial instantiation of this model called 3DPM(sub p) which was partly implemented, is presented. Discussion of the use of this model in software reuse and process management is given.

  20. Early Prostate Cancer: Hedonic Prices Model of Provider-Patient Interactions and Decisions

    SciTech Connect

    Jani, Ashesh B. Hellman, Samuel

    2008-03-15

    Purpose: To determine the relative influence of treatment features and treatment availabilities on final treatment decisions in early prostate cancer. Methods and Materials: We describe and apply a model, based on hedonic prices, to understand provider-patient interactions in prostate cancer. This model included four treatments (observation, external beam radiotherapy, brachytherapy, and prostatectomy) and five treatment features (one efficacy and four treatment complication features). We performed a literature search to estimate (1) the intersections of the 'bid' functions and 'offer' functions with the price function along different treatment feature axes, and (2) the treatments actually rendered in different patient subgroups based on age. We performed regressions to determine the relative weight of each feature in the overall interaction and the relative availability of each treatment modality to explain differences between observed vs. predicted use of different modalities in different patient subpopulations. Results: Treatment efficacy and potency preservation are the major factors influencing decisions for young patients, whereas preservation of urinary and rectal function is much more important for very elderly patients. Referral patterns seem to be responsible for most of the deviations of observed use of different treatments from those predicted by idealized provider-patient interactions. Specifically, prostatectomy is used far more commonly in young patients and radiotherapy and observation used far more commonly in elderly patients than predicted by a uniform referral pattern. Conclusions: The hedonic prices approach facilitated identifying the relative importance of treatment features and quantification of the impact of the prevailing referral pattern on prostate cancer treatment decisions.

  1. Countering the negative effects of job insecurity through participative decision making: lessons from the demand-control model.

    PubMed

    Probst, Tahira M

    2005-10-01

    This study examined the effectiveness of increased organizational participative decision making in attenuating the negative consequences of job insecurity. Data were collected from 807 employees in 6 different companies. Analyses suggest that job insecurity is related to lower coworker, work, and supervisor satisfaction and higher turnover intentions and work withdrawal behaviors. However, employees with greater participative decision-making opportunities reported fewer negative consequences of job insecurity compared with employees with fewer participative decision-making opportunities. Results are interpreted using the demand-control model and suggest that organizations that allow greater employee participative decision making may experience fewer negative side effects from today's rising levels of employee job insecurity. PMID:16248683

  2. Design model of computerized personal decision aid for youth: An expert review

    NASA Astrophysics Data System (ADS)

    Sarif, Siti Mahfuzah; Ibrahim, Norfiza; Shiratuddin, Norshuhada

    2016-08-01

    This paper provides a structured review of a design model of a computerized personal decision aid that is intended for youth, named as YouthPDA Design Model. The proposed design model was examined by experts in related areas to ensure the appropriateness of the proposed components and elements, relevancy of the terminologies used, logic of the flow, usability, and practicality of the design model towards development of YouthPDA application. Seven experts from related areas were involved in the evaluation. Discussions on the findings obtained from the expert review are included in this paper. Finally, a revised design model of YouthPDA is proposed as main guidance to develop YouthPDA application.

  3. Multidisciplinary Modelling of Symptoms and Signs with Archetypes and SNOMED-CT for Clinical Decision Support.

    PubMed

    Marco-Ruiz, Luis; Maldonado, J Alberto; Karlsen, Randi; Bellika, Johan G

    2015-01-01

    Clinical Decision Support Systems (CDSS) help to improve health care and reduce costs. However, the lack of knowledge management and modelling hampers their maintenance and reuse. Current EHR standards and terminologies can allow the semantic representation of the data and knowledge of CDSS systems boosting their interoperability, reuse and maintenance. This paper presents the modelling process of respiratory conditions' symptoms and signs by a multidisciplinary team of clinicians and information architects with the help of openEHR, SNOMED and clinical information modelling tools for a CDSS. The information model of the CDSS was defined by means of an archetype and the knowledge model was implemented by means of an SNOMED-CT based ontology. PMID:25991115

  4. Multiscale modelling and analysis of collective decision making in swarm robotics.

    PubMed

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable. PMID:25369026

  5. Multiscale Modelling and Analysis of Collective Decision Making in Swarm Robotics

    PubMed Central

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable. PMID:25369026

  6. Signal detection by human observers: a cutoff reinforcement learning model of categorization decisions under uncertainty.

    PubMed

    Erev, I

    1998-04-01

    Previous experimental examinations of binary categorization decisions have documented robust behavioral regularities that cannot be predicted by signal detection theory (D.M. Green & J.A. Swets, 1966/1988). The present article reviews the known regularities and demonstrates that they can be accounted for by a minimal modification of signal detection theory: the replacement of the "ideal observer" cutoff placement rule with a cutoff reinforcement learning rule. This modification is derived from a cognitive game theoretic analysis (A.E. Roth & I. Erev, 1995). The modified model reproduces all 19 experimental regularities that have been considered. In all cases,it outperforms the original explanations. Some of these previous explanations are based on important concepts such as conservatism, probability matching, and "the gambler's fallacy" that receive new meanings given the current results. Implications for decision-making research and for applications of traditional signal detection theory are discussed.

  7. Integrating Decision Tree and Hidden Markov Model (HMM) for Subtype Prediction of Human Influenza A Virus

    NASA Astrophysics Data System (ADS)

    Attaluri, Pavan K.; Chen, Zhengxin; Weerakoon, Aruna M.; Lu, Guoqing

    Multiple criteria decision making (MCDM) has significant impact in bioinformatics. In the research reported here, we explore the integration of decision tree (DT) and Hidden Markov Model (HMM) for subtype prediction of human influenza A virus. Infection with influenza viruses continues to be an important public health problem. Viral strains of subtype H3N2 and H1N1 circulates in humans at least twice annually. The subtype detection depends mainly on the antigenic assay, which is time-consuming and not fully accurate. We have developed a Web system for accurate subtype detection of human influenza virus sequences. The preliminary experiment showed that this system is easy-to-use and powerful in identifying human influenza subtypes. Our next step is to examine the informative positions at the protein level and extend its current functionality to detect more subtypes. The web functions can be accessed at http://glee.ist.unomaha.edu/.

  8. Multiscale modelling and analysis of collective decision making in swarm robotics.

    PubMed

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable.

  9. Prediction of Antimicrobial Activity of Synthetic Peptides by a Decision Tree Model

    PubMed Central

    Lira, Felipe; Perez, Pedro S.; Baranauskas, José A.

    2013-01-01

    Antimicrobial resistance is a persistent problem in the public health sphere. However, recent attempts to find effective substitutes to combat infections have been directed at identifying natural antimicrobial peptides in order to circumvent resistance to commercial antibiotics. This study describes the development of synthetic peptides with antimicrobial activity, created in silico by site-directed mutation modeling using wild-type peptides as scaffolds for these mutations. Fragments of antimicrobial peptides were used for modeling with molecular modeling computational tools. To analyze these peptides, a decision tree model, which indicated the action range of peptides on the types of microorganisms on which they can exercise biological activity, was created. The decision tree model was processed using physicochemistry properties from known antimicrobial peptides available at the Antimicrobial Peptide Database (APD). The two most promising peptides were synthesized, and antimicrobial assays showed inhibitory activity against Gram-positive and Gram-negative bacteria. Colossomin C and colossomin D were the most inhibitory peptides at 5 μg/ml against Staphylococcus aureus and Escherichia coli. The methods described in this work and the results obtained are useful for the identification and development of new compounds with antimicrobial activity through the use of computational tools. PMID:23455341

  10. A Critical Meta-Analysis of Lens Model Studies in Human Judgment and Decision-Making

    PubMed Central

    Kaufmann, Esther; Reips, Ulf-Dietrich; Wittmann, Werner W.

    2013-01-01

    Achieving accurate judgment (‘judgmental achievement’) is of utmost importance in daily life across multiple domains. The lens model and the lens model equation provide useful frameworks for modeling components of judgmental achievement and for creating tools to help decision makers (e.g., physicians, teachers) reach better judgments (e.g., a correct diagnosis, an accurate estimation of intelligence). Previous meta-analyses of judgment and decision-making studies have attempted to evaluate overall judgmental achievement and have provided the basis for evaluating the success of bootstrapping (i.e., replacing judges by linear models that guide decision making). However, previous meta-analyses have failed to appropriately correct for a number of study design artifacts (e.g., measurement error, dichotomization), which may have potentially biased estimations (e.g., of the variability between studies) and led to erroneous interpretations (e.g., with regards to moderator variables). In the current study we therefore conduct the first psychometric meta-analysis of judgmental achievement studies that corrects for a number of study design artifacts. We identified 31 lens model studies (N = 1,151, k = 49) that met our inclusion criteria. We evaluated overall judgmental achievement as well as whether judgmental achievement depended on decision domain (e.g., medicine, education) and/or the level of expertise (expert vs. novice). We also evaluated whether using corrected estimates affected conclusions with regards to the success of bootstrapping with psychometrically-corrected models. Further, we introduce a new psychometric trim-and-fill method to estimate the effect sizes of potentially missing studies correct psychometric meta-analyses for effects of publication bias. Comparison of the results of the psychometric meta-analysis with the results of a traditional meta-analysis (which only corrected for sampling error) indicated that artifact correction leads to a) an

  11. Impact of Uncertainty in SWAT Model Simulations on Consequent Decisions on Optimal Crop Management Practices

    NASA Astrophysics Data System (ADS)

    Krishnan, N.; Sudheer, K. P.; Raj, C.; Chaubey, I.

    2015-12-01

    The diminishing quantities of non-renewable forms of energy have caused an increasing interest in the renewable sources of energy, such as biofuel, in the recent years. However, the demand for biofuel has created a concern for allocating grain between the fuel and food industry. Consequently, appropriate regulations that limit grain based ethanol production have been developed and are put to practice, which resulted in cultivating perennial grasses like Switch grass and Miscanthus to meet the additional cellulose demand. A change in cropping and management practice, therefore, is essential to cater the conflicting requirement for food and biofuel, which has a long-term impact on the downstream water quality. Therefore it is essential to implement optimal cropping practices to reduce the pollutant loadings. Simulation models in conjunction with optimization procedures are useful in developing efficient cropping practices in such situations. One such model is the Soil and Water Assessment Tool (SWAT), which can simulate both the water and the nutrient cycle, as well as quantify long-term impacts of changes in management practice in the watershed. It is envisaged that the SWAT model, along with an optimization algorithm, can be used to identify the optimal cropping pattern that achieves the minimum guaranteed grain production with less downstream pollution, while maximizing the biomass production for biofuel generation. However, the SWAT simulations do have a certain level of uncertainty that needs to be accounted for before making decisions. Therefore, the objectives of this study are twofold: (i) to understand how model uncertainties influence decision-making, and (ii) to develop appropriate management scenarios that account the uncertainty. The simulation uncertainty of the SWAT model is assessed using Shuffled Complex Evolutionary Metropolis Algorithm (SCEM). With the data collected from St. Joseph basin, IN, USA, the preliminary results indicate that model

  12. A critical meta-analysis of lens model studies in human judgment and decision-making.

    PubMed

    Kaufmann, Esther; Reips, Ulf-Dietrich; Wittmann, Werner W

    2013-01-01

    Achieving accurate judgment ('judgmental achievement') is of utmost importance in daily life across multiple domains. The lens model and the lens model equation provide useful frameworks for modeling components of judgmental achievement and for creating tools to help decision makers (e.g., physicians, teachers) reach better judgments (e.g., a correct diagnosis, an accurate estimation of intelligence). Previous meta-analyses of judgment and decision-making studies have attempted to evaluate overall judgmental achievement and have provided the basis for evaluating the success of bootstrapping (i.e., replacing judges by linear models that guide decision making). However, previous meta-analyses have failed to appropriately correct for a number of study design artifacts (e.g., measurement error, dichotomization), which may have potentially biased estimations (e.g., of the variability between studies) and led to erroneous interpretations (e.g., with regards to moderator variables). In the current study we therefore conduct the first psychometric meta-analysis of judgmental achievement studies that corrects for a number of study design artifacts. We identified 31 lens model studies (N = 1,151, k = 49) that met our inclusion criteria. We evaluated overall judgmental achievement as well as whether judgmental achievement depended on decision domain (e.g., medicine, education) and/or the level of expertise (expert vs. novice). We also evaluated whether using corrected estimates affected conclusions with regards to the success of bootstrapping with psychometrically-corrected models. Further, we introduce a new psychometric trim-and-fill method to estimate the effect sizes of potentially missing studies correct psychometric meta-analyses for effects of publication bias. Comparison of the results of the psychometric meta-analysis with the results of a traditional meta-analysis (which only corrected for sampling error) indicated that artifact correction leads to a) an

  13. Dual Processes in Decision Making and Developmental Neuroscience: A Fuzzy-Trace Model.

    PubMed

    Reyna, Valerie F; Brainerd, Charles J

    2011-09-01

    From Piaget to the present, traditional and dual-process theories have predicted improvement in reasoning from childhood to adulthood, and improvement has been observed. However, developmental reversals-that reasoning biases emerge with development -have also been observed in a growing list of paradigms. We explain how fuzzy-trace theory predicts both improvement and developmental reversals in reasoning and decision making. Drawing on research on logical and quantitative reasoning, as well as on risky decision making in the laboratory and in life, we illustrate how the same small set of theoretical principles apply to typical neurodevelopment, encompassing childhood, adolescence, and adulthood, and to neurological conditions such as autism and Alzheimer's disease. For example, framing effects-that risk preferences shift when the same decisions are phrases in terms of gains versus losses-emerge in early adolescence as gist-based intuition develops. In autistic individuals, who rely less on gist-based intuition and more on verbatim-based analysis, framing biases are attenuated (i.e., they outperform typically developing control subjects). In adults, simple manipulations based on fuzzy-trace theory can make framing effects appear and disappear depending on whether gist-based intuition or verbatim-based analysis is induced. These theoretical principles are summarized and integrated in a new mathematical model that specifies how dual modes of reasoning combine to produce predictable variability in performance. In particular, we show how the most popular and extensively studied model of decision making-prospect theory-can be derived from fuzzy-trace theory by combining analytical (verbatim-based) and intuitive (gist-based) processes.

  14. Counseling for Decisions

    ERIC Educational Resources Information Center

    Smaby, Marlowe H.; Tamminen, Armas W.

    1978-01-01

    This article presents a model for training counselors to help counselees in the process of making decisions. An effective decision-helping approach that includes processing decisions, relating values to process, and relating actions to beliefs is presented. (Author)

  15. Improved Hypoxia Modeling for Nutrient Control Decisions in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Habib, Shaid; Pickering, Ken; Tzortziou, Maria; Maninio, Antonio; Policelli, Fritz

    2010-01-01

    As required by the Harmful Algal Bloom and Hypoxia Research Control Act of 1998, the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force issued the 2001 Gulf Hypoxia Action Plan (updated in 2008). In response to the Gulf Hypoxia Action Plan of 2001 (updated in 2008), the EPA Gulf of Mexico Hypoxia Modeling and Monitoring Project has established a detailed model for the Mississippi-Attchafalaya River Basin which provides a capability to forecast the multi-source nutrient loading to the Gulf and the subsequent bio-geochemical processes leading to hypoxic conditions and subsequent effects on Gulf habitats and fisheries. The primary purpose of the EPA model is to characterize the impacts of nutrient management actions, or proposed actions on the spatial and temporal characteristics of the Gulf hypoxic zone. The model is expected to play a significant role in determining best practices and improved strategies for incentivizing nutrient reduction strategies, including installation of on-farm structures to reduce sediment and nutrient runoff, use of cover crops and other agricultural practices, restoration of wetlands and riparian buffers, improved waste water treatment and decreased industrial nitrogen emissions. These decisions are currently made in a fragmented way by federal, state, and local agencies, using a variety of small scale models and limited data. During the past three years, EPA has collected an enormous amount of in-situ data to be used in the model. We believe that the use of NASA satellite data products in the model and for long term validation of the model has the potential to significantly increase the accuracy and therefore the utility of the model for the decision making described above. This proposal addresses the Gulf of Mexico Alliance (GOMA) priority issue of reductions in nutrient inputs to coastal ecosystem. It further directly relates to water quality for healthy beaches and shellfish beds and wetland and coastal conservation

  16. Developing a utility decision framework to evaluate predictive models in breast cancer risk estimation

    PubMed Central

    Wu, Yirong; Abbey, Craig K.; Chen, Xianqiao; Liu, Jie; Page, David C.; Alagoz, Oguzhan; Peissig, Peggy; Onitilo, Adedayo A.; Burnside, Elizabeth S.

    2015-01-01

    Abstract. Combining imaging and genetic information to predict disease presence and progression is being codified into an emerging discipline called “radiogenomics.” Optimal evaluation methodologies for radiogenomics have not been well established. We aim to develop a decision framework based on utility analysis to assess predictive models for breast cancer diagnosis. We garnered Gail risk factors, single nucleotide polymorphisms (SNPs), and mammographic features from a retrospective case-control study. We constructed three logistic regression models built on different sets of predictive features: (1) Gail, (2) Gail + Mammo, and (3) Gail + Mammo + SNP. Then we generated receiver operating characteristic (ROC) curves for three models. After we assigned utility values for each category of outcomes (true negatives, false positives, false negatives, and true positives), we pursued optimal operating points on ROC curves to achieve maximum expected utility of breast cancer diagnosis. We performed McNemar’s test based on threshold levels at optimal operating points, and found that SNPs and mammographic features played a significant role in breast cancer risk estimation. Our study comprising utility analysis and McNemar’s test provides a decision framework to evaluate predictive models in breast cancer risk estimation. PMID:26835489

  17. Decision analysis and risk models for land development affecting infrastructure systems.

    PubMed

    Thekdi, Shital A; Lambert, James H

    2012-07-01

    Coordination and layering of models to identify risks in complex systems such as large-scale infrastructure of energy, water, and transportation is of current interest across application domains. Such infrastructures are increasingly vulnerable to adjacent commercial and residential land development. Land development can compromise the performance of essential infrastructure systems and increase the costs of maintaining or increasing performance. A risk-informed approach to this topic would be useful to avoid surprise, regret, and the need for costly remedies. This article develops a layering and coordination of models for risk management of land development affecting infrastructure systems. The layers are: system identification, expert elicitation, predictive modeling, comparison of investment alternatives, and implications of current decisions for future options. The modeling layers share a focus on observable factors that most contribute to volatility of land development and land use. The relevant data and expert evidence include current and forecasted growth in population and employment, conservation and preservation rules, land topography and geometries, real estate assessments, market and economic conditions, and other factors. The approach integrates to a decision framework of strategic considerations based on assessing risk, cost, and opportunity in order to prioritize needs and potential remedies that mitigate impacts of land development to the infrastructure systems. The approach is demonstrated for a 5,700-mile multimodal transportation system adjacent to 60,000 tracts of potential land development.

  18. Web-based environmental simulation: bridging the gap between scientific modeling and decision-making.

    PubMed

    Buytaert, Wouter; Baez, Selene; Bustamante, Macarena; Dewulf, Art

    2012-02-21

    Data availability in environmental sciences is growing rapidly. Conventional monitoring systems are collecting data at increasing spatial and temporal resolutions; satellites provide a constant stream of global observations, and citizen scientist generate local data with electronic gadgets and cheap devices. There is a need to process this stream of heterogeneous data into useful information, both for science and for decision-making. Advances in networking and computer technologies increasingly enable accessing, combining, processing, and visualizing these data. This Feature reflects upon the role of environmental models in this process. We consider models as the primary tool for data processing, pattern identification, and scenario analysis. As such, they are an essential element of science-based decision-making. The new technologies analyzed here have the potential to turn the typical top-down flow of information from scientists to users into a much more direct, interactive approach. This may accelerate the dissemination of environmental information to a larger community of users. It may also facilitate harvesting feedback, and evaluating simulations and predictions from different perspectives. However, the evolution poses challenges, not only to model development but also to the communication of model results and their assumptions, shortcomings, and errors.

  19. Decision-making in healthcare: a practical application of partial least square path modelling to coverage of newborn screening programmes

    PubMed Central

    2012-01-01

    Background Decision-making in healthcare is complex. Research on coverage decision-making has focused on comparative studies for several countries, statistical analyses for single decision-makers, the decision outcome and appraisal criteria. Accounting for decision processes extends the complexity, as they are multidimensional and process elements need to be regarded as latent constructs (composites) that are not observed directly. The objective of this study was to present a practical application of partial least square path modelling (PLS-PM) to evaluate how it offers a method for empirical analysis of decision-making in healthcare. Methods Empirical approaches that applied PLS-PM to decision-making in healthcare were identified through a systematic literature search. PLS-PM was used as an estimation technique for a structural equation model that specified hypotheses between the components of decision processes and the reasonableness of decision-making in terms of medical, economic and other ethical criteria. The model was estimated for a sample of 55 coverage decisions on the extension of newborn screening programmes in Europe. Results were evaluated by standard reliability and validity measures for PLS-PM. Results After modification by dropping two indicators that showed poor measures in the measurement models’ quality assessment and were not meaningful for newborn screening, the structural equation model estimation produced plausible results. The presence of three influences was supported: the links between both stakeholder participation or transparency and the reasonableness of decision-making; and the effect of transparency on the degree of scientific rigour of assessment. Reliable and valid measurement models were obtained to describe the composites of ‘transparency’, ‘participation’, ‘scientific rigour’ and ‘reasonableness’. Conclusions The structural equation model was among the first applications of PLS-PM to coverage decision

  20. The Decision Making Ecology of placing a child into foster care: A structural equation model.

    PubMed

    Graham, J Christopher; Dettlaff, Alan J; Baumann, Donald J; Fluke, John D

    2015-11-01

    The Decision Making Ecology provided a framework for empirically testing the impact of Case, Caseworker and Organizational factors on the decision to place children in out-of-home care. The structural equation model we developed fit the data extremely well, indicating a complex relationship between the variables. The main findings indicate that Case factors, even as aggregated to the worker level, were of most importance: Percent Removed was increased in part by greater average Risk being assessed and more families on a worker's caseload being Low Income. Furthermore, removal rates were increased by lower proportions of Hispanic families on the caseload, as well as lower organizational support, and a perception of manageable workload and sufficient resources. Individual factors, i.e., variables characterizing the caseworkers themselves, were not found to directly influence the placement decision, including workers' own race/ethnicity, though various orders of mediated effects were indicated, and these are detailed. Interrelationships between variables that affect case, caseworker and organizational factors are discussed along with implications for practice.

  1. Medical Waste Disposal Method Selection Based on a Hierarchical Decision Model with Intuitionistic Fuzzy Relations

    PubMed Central

    Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W.

    2016-01-01

    Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty’s 1–9 scale, this paper proposes a cross-ratio-based bipolar 0.1–0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness. PMID:27618082

  2. Medical Waste Disposal Method Selection Based on a Hierarchical Decision Model with Intuitionistic Fuzzy Relations.

    PubMed

    Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W

    2016-01-01

    Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty's 1-9 scale, this paper proposes a cross-ratio-based bipolar 0.1-0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness. PMID:27618082

  3. Medical Waste Disposal Method Selection Based on a Hierarchical Decision Model with Intuitionistic Fuzzy Relations.

    PubMed

    Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W

    2016-01-01

    Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty's 1-9 scale, this paper proposes a cross-ratio-based bipolar 0.1-0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness.

  4. TIME Impact - a new user-friendly tuberculosis (TB) model to inform TB policy decisions.

    PubMed

    Houben, R M G J; Lalli, M; Sumner, T; Hamilton, M; Pedrazzoli, D; Bonsu, F; Hippner, P; Pillay, Y; Kimerling, M; Ahmedov, S; Pretorius, C; White, R G

    2016-01-01

    Tuberculosis (TB) is the leading cause of death from infectious disease worldwide, predominantly affecting low- and middle-income countries (LMICs), where resources are limited. As such, countries need to be able to choose the most efficient interventions for their respective setting. Mathematical models can be valuable tools to inform rational policy decisions and improve resource allocation, but are often unavailable or inaccessible for LMICs, particularly in TB. We developed TIME Impact, a user-friendly TB model that enables local capacity building and strengthens country-specific policy discussions to inform support funding applications at the (sub-)national level (e.g. Ministry of Finance) or to international donors (e.g. the Global Fund to Fight AIDS, Tuberculosis and Malaria).TIME Impact is an epidemiological transmission model nested in TIME, a set of TB modelling tools available for free download within the widely-used Spectrum software. The TIME Impact model reflects key aspects of the natural history of TB, with additional structure for HIV/ART, drug resistance, treatment history and age. TIME Impact enables national TB programmes (NTPs) and other TB policymakers to better understand their own TB epidemic, plan their response, apply for funding and evaluate the implementation of the response.The explicit aim of TIME Impact's user-friendly interface is to enable training of local and international TB experts towards independent use. During application of TIME Impact, close involvement of the NTPs and other local partners also builds critical understanding of the modelling methods, assumptions and limitations inherent to modelling. This is essential to generate broad country-level ownership of the modelling data inputs and results. In turn, it stimulates discussions and a review of the current evidence and assumptions, strengthening the decision-making process in general.TIME Impact has been effectively applied in a variety of settings. In South Africa, it

  5. Data Model for Multi Hazard Risk Assessment Spatial Support Decision System

    NASA Astrophysics Data System (ADS)

    Andrejchenko, Vera; Bakker, Wim; van Westen, Cees

    2014-05-01

    The goal of the CHANGES Spatial Decision Support System is to support end-users in making decisions related to risk reduction measures for areas at risk from multiple hydro-meteorological hazards. The crucial parts in the design of the system are the user requirements, the data model, the data storage and management, and the relationships between the objects in the system. The implementation of the data model is carried out entirely with an open source database management system with a spatial extension. The web application is implemented using open source geospatial technologies with PostGIS as the database, Python for scripting, and Geoserver and javascript libraries for visualization and the client-side user-interface. The model can handle information from different study areas (currently, study areas from France, Romania, Italia and Poland are considered). Furthermore, the data model handles information about administrative units, projects accessible by different types of users, user-defined hazard types (floods, snow avalanches, debris flows, etc.), hazard intensity maps of different return periods, spatial probability maps, elements at risk maps (buildings, land parcels, linear features etc.), economic and population vulnerability information dependent on the hazard type and the type of the element at risk, in the form of vulnerability curves. The system has an inbuilt database of vulnerability curves, but users can also add their own ones. Included in the model is the management of a combination of different scenarios (e.g. related to climate change, land use change or population change) and alternatives (possible risk-reduction measures), as well as data-structures for saving the calculated economic or population loss or exposure per element at risk, aggregation of the loss and exposure using the administrative unit maps, and finally, producing the risk maps. The risk data can be used for cost-benefit analysis (CBA) and multi-criteria evaluation (SMCE). The

  6. TIME Impact - a new user-friendly tuberculosis (TB) model to inform TB policy decisions.

    PubMed

    Houben, R M G J; Lalli, M; Sumner, T; Hamilton, M; Pedrazzoli, D; Bonsu, F; Hippner, P; Pillay, Y; Kimerling, M; Ahmedov, S; Pretorius, C; White, R G

    2016-03-24

    Tuberculosis (TB) is the leading cause of death from infectious disease worldwide, predominantly affecting low- and middle-income countries (LMICs), where resources are limited. As such, countries need to be able to choose the most efficient interventions for their respective setting. Mathematical models can be valuable tools to inform rational policy decisions and improve resource allocation, but are often unavailable or inaccessible for LMICs, particularly in TB. We developed TIME Impact, a user-friendly TB model that enables local capacity building and strengthens country-specific policy discussions to inform support funding applications at the (sub-)national level (e.g. Ministry of Finance) or to international donors (e.g. the Global Fund to Fight AIDS, Tuberculosis and Malaria).TIME Impact is an epidemiological transmission model nested in TIME, a set of TB modelling tools available for free download within the widely-used Spectrum software. The TIME Impact model reflects key aspects of the natural history of TB, with additional structure for HIV/ART, drug resistance, treatment history and age. TIME Impact enables national TB programmes (NTPs) and other TB policymakers to better understand their own TB epidemic, plan their response, apply for funding and evaluate the implementation of the response.The explicit aim of TIME Impact's user-friendly interface is to enable training of local and international TB experts towards independent use. During application of TIME Impact, close involvement of the NTPs and other local partners also builds critical understanding of the modelling methods, assumptions and limitations inherent to modelling. This is essential to generate broad country-level ownership of the modelling data inputs and results. In turn, it stimulates discussions and a review of the current evidence and assumptions, strengthening the decision-making process in general.TIME Impact has been effectively applied in a variety of settings. In South Africa, it

  7. Grambling State University's Planning/Budgeting Model: An Integral Component of a Decision Support System. SAIR Conference Paper.

    ERIC Educational Resources Information Center

    Lundy, Harold W.

    The development of a planning/budgeting model as an integral component of a decision support system is described. The case study approach is used to describe how Grambling State University (GSU) developed the model to improve its financial planning and budgeting processes. The model can be used for tactical and/or strategic planning. The model is…

  8. MEETING IN CZECH REPUBLIC: SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING, AND RISK ASSESSMENT

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  9. SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING AND RISK ASSESSMENT (SLIDE PRESENTATION)

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  10. MEETING IN CHICAGO: SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING, AND ENVIRONMENTAL RISK ASSESSMENT

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  11. Modeling spatial decisions with graph theory: logging roads and forest fragmentation in the Brazilian Amazon.

    PubMed

    Walker, Robert; Arima, Eugenio; Messina, Joe; Soares-Filho, Britaldo; Perz, Stephen; Vergara, Dante; Sales, Marcio; Pereira, Ritaumaria; Castro, Williams

    2013-01-01

    This article addresses the spatial decision-making of loggers and implications for forest fragmentation in the Amazon basin. It provides a behavioral explanation for fragmentation by modeling how loggers build road networks, typically abandoned upon removal of hardwoods. Logging road networks provide access to land, and the settlers who take advantage of them clear fields and pastures that accentuate their spatial signatures. In shaping agricultural activities, these networks organize emergent patterns of forest fragmentation, even though the loggers move elsewhere. The goal of the article is to explicate how loggers shape their road networks, in order to theoretically explain an important type of forest fragmentation found in the Amazon basin, particularly in Brazil. This is accomplished by adapting graph theory to represent the spatial decision-making of loggers, and by implementing computational algorithms that build graphs interpretable as logging road networks. The economic behavior of loggers is conceptualized as a profit maximization problem, and translated into spatial decision-making by establishing a formal correspondence between mathematical graphs and road networks. New computational approaches, adapted from operations research, are used to construct graphs and simulate spatial decision-making as a function of discount rates, land tenure, and topographic constraints. The algorithms employed bracket a range of behavioral settings appropriate for areas of terras de volutas, public lands that have not been set aside for environmental protection, indigenous peoples, or colonization. The simulation target sites are located in or near so-called Terra do Meio, once a major logging frontier in the lower Amazon Basin. Simulation networks are compared to empirical ones identified by remote sensing and then used to draw inferences about factors influencing the spatial behavior of loggers. Results overall suggest that Amazonia's logging road networks induce more

  12. Quality Assurance Decisions with Air Models: A Case Study of ImputatIon of Missing Input Data Using EPA's Multi-Layer Model

    EPA Science Inventory

    Abstract Environmental models are frequently used within regulatory and policy frameworks to estimate environmental metrics that are difficult or impossible to physically measure. As important decision tools, the uncertainty associated with the model outputs should impact their ...

  13. Modelling the learning of biomechanics and visual planning for decision-making of motor actions.

    PubMed

    Cos, Ignasi; Khamassi, Mehdi; Girard, Benoît

    2013-11-01

    Recent experiments showed that the bio-mechanical ease and end-point stability associated to reaching movements are predicted prior to movement onset, and that these factors exert a significant influence on the choice of movement. As an extension of these results, here we investigate whether the knowledge about biomechanical costs and their influence on decision-making are the result of an adaptation process taking place during each experimental session or whether this knowledge was learned at an earlier stage of development. Specifically, we analysed both the pattern of decision-making and its fluctuations during each session, of several human subjects making free choices between two reaching movements that varied in path distance (target relative distance), biomechanical cost, aiming accuracy and stopping requirement. Our main result shows that the effect of biomechanics is well established at the start of the session, and that, consequently, the learning of biomechanical costs in decision-making occurred at an earlier stage of development. As a means to characterise the dynamics of this learning process, we also developed a model-based reinforcement learning model, which generates a possible account of how biomechanics may be incorporated into the motor plan to select between reaching movements. Results obtained in simulation showed that, after some pre-training corresponding to a motor babbling phase, the model can reproduce the subjects' overall movement preferences. Although preliminary, this supports that the knowledge about biomechanical costs may have been learned in this manner, and supports the hypothesis that the fluctuations observed in the subjects' behaviour may adapt in a similar fashion.

  14. Modelling the learning of biomechanics and visual planning for decision-making of motor actions.

    PubMed

    Cos, Ignasi; Khamassi, Mehdi; Girard, Benoît

    2013-11-01

    Recent experiments showed that the bio-mechanical ease and end-point stability associated to reaching movements are predicted prior to movement onset, and that these factors exert a significant influence on the choice of movement. As an extension of these results, here we investigate whether the knowledge about biomechanical costs and their influence on decision-making are the result of an adaptation process taking place during each experimental session or whether this knowledge was learned at an earlier stage of development. Specifically, we analysed both the pattern of decision-making and its fluctuations during each session, of several human subjects making free choices between two reaching movements that varied in path distance (target relative distance), biomechanical cost, aiming accuracy and stopping requirement. Our main result shows that the effect of biomechanics is well established at the start of the session, and that, consequently, the learning of biomechanical costs in decision-making occurred at an earlier stage of development. As a means to characterise the dynamics of this learning process, we also developed a model-based reinforcement learning model, which generates a possible account of how biomechanics may be incorporated into the motor plan to select between reaching movements. Results obtained in simulation showed that, after some pre-training corresponding to a motor babbling phase, the model can reproduce the subjects' overall movement preferences. Although preliminary, this supports that the knowledge about biomechanical costs may have been learned in this manner, and supports the hypothesis that the fluctuations observed in the subjects' behaviour may adapt in a similar fashion. PMID:23973913

  15. Watershed models for decision support in the Yakima River basin, Washington

    USGS Publications Warehouse

    Mastin, M.C.; Vaccaro, J.J.

    2002-01-01

    A Decision Support System (DSS) is being developed by the U.S. Geological Survey and the Bureau of Reclamation as part of a long-term project, the Watershed and River Systems Management Program. The goal of the program is to apply the DSS to U.S. Bureau of Reclamation projects in the western United States. The DSS was applied to the Reclamation's Yakima Project in the Yakima River Basin in eastern Washington. An important component of the DSS is the physical hydrology modeling. For the application to the Yakima River Basin, the physical hydrology component consisted of constructing four watershed models using the U.S. Geological Survey's Precipitation-Runoff Modeling System within the Modular Modeling System. The implementation of these models is described. To facilitate calibration of the models, mean annual streamflow also was estimated for ungaged subbasins. The models were calibrated for water years 1950-94 and tested for water years 1995-98. The integration of the models in the DSS for real-time water-management operations using an interface termed the Object User Interface is also described. The models were incorporated in the DSS for use in long-term to short-term planning and have been used in a real-time operational mode since water year 1999.

  16. Modeling the Economics of Beach Nourishment Decisions in Response to Coastal Erosion

    NASA Astrophysics Data System (ADS)

    Ware, M.; Ashton, A. D.; Hoagland, P.; Jin, D.; Kite-Powell, H.; Lorenzo-Trueba, J.

    2012-12-01

    Beaches are constantly moving and changing. The dynamic transformations of beaches are mostly the result of the erosion of sand, which can occur through movements alongshore caused by waves, movements off-shore due to storms, or submersion due to sea-level rise. Predicted climate change impacts include potential changes in storminess and accelerated sea-level rise, which will lead to increased coastal erosion. At the same time, the number of people residing in coastal communities is increasing. The risks from eroding beaches (increased coastal flooding, damage to infrastructure, and displaced residents) are therefore increasing in number and scale; and coastal residents are taking actions to protect their homes. One such action is beach nourishment, where sand is added to a resident's property in order to widen the beach. We have developed an economic model of beach nourishment decision-making to investigate the relationship between the optimal volume and timing of beach nourishment and factors such as property value, erosion rate, and initial beach width. In this model, waterfront property owners nourish a beach when the losses in net rental income exceed the costs incurred from nourishing the beach. (Rental income is a function of property value, which in turn depends upon the width of the beach.) It is assumed that erosion and sea-level rise are related. We examine different nourishment scenarios, including one-time nourishment in the first year; constant annual nourishment; and a myopic decision process in which the homeowner nourishes the beach if property losses from erosion over the next five years are expected to exceed the cost of nourishment. One-time nourishment delays property flooding for both constant and accelerating sea level rise; however, this delay is more substantial under constant sea level rise. With continual nourishment, the beach can be maintained under constant sea-level rise, provided that the erosion rate is comparable to the additional

  17. Impact on some planning decisions from a fuzzy modeling of power systems

    SciTech Connect

    Saraiva, J.T.; Miranda, V. ); Pinto, L.M.V.G. )

    1994-05-01

    In this paper, system component reinforcements are analyzed from the perspective of their impact in increasing the flexibility in system design. The proposed framework integrates a fuzzy optimal power flow model through which one can derive, as a function of load uncertainties, possibility distributions for generation, power flows and power not supplied. Exposure and robustness indices, based on risk analysis concepts, are defined. These indices can be used to rank the expansion alternatives, giving the planner insight to system behavior in the face of adverse futures. Their use in conjunction with investment assessments is proposed as a necessary step in a decision making methodology.

  18. Fostering dental faculty collaboration with an evidence-based decision making model designed for curricular change.

    PubMed

    Stafford, Gary L

    2014-03-01

    This article introduces an innovative decision making model for adapting evidence-based practice to the specific needs of a department in a dental school. The design encourages suggestions for curricular change directly from the faculty members, while providing a mechanism that allows them to actively participate in the process through the use of evidence-based principles and practice. The nucleus of this model is an Advisory Council comprised of nine full-time departmental faculty members who, when charged, act as independent task force leaders who recruit other faculty members and lead small teams that investigate suggestions for curricular change. Following an accelerated investigative process, recommendations to the Advisory Council are made; if approved, these changes are integrated into the curriculum. The incorporation of an interdisciplinary Advisory Council of key departmental faculty members structured to investigate questions or concerns posed by students, administrators, or other faculty members through the use of evidence-based methodologies has proved to be a successful management tool. Well received by the participants, this model has the potential to further develop and calibrate the school's faculty, increase the timeliness of the decision making process, and lessen the time required to incorporate a proposed change into the curriculum. PMID:24609337

  19. Development of Decision Model for Selection of Appropriate Power Generation System Using Distance Based Approach Method

    NASA Astrophysics Data System (ADS)

    Widiyanto, Anugerah; Kato, Seizo; Maruyama, Naoki

    For solving decision problems in electric generation planning, a matrix operation based deterministic quantitative model called the Distance Based Approach (DBA) has been proposed for comparing the technical-economical and environmental features of various electric power plants. The customized computer code is developed to evaluate the overall function of alternative energy systems from the performance pattern corresponding to the selected energy attributes. For the purpose of exploring the applicability and the effectiveness of the proposed model, the model is applied to decision problems concerning the selection of energy sources for power generation in Japan. The set of nine energy alternatives includes conventional and new energy technologies of oil fired-, natural gas fired-, coal fired-, nuclear power, hydropower, geothermal, solar photovoltaic, wind power and solar thermal plants. Also, a set of criteria for optimized selection includes five areas of concern; energy economy, energy security, environmental protection, socio-economic development and technological aspects for electric power generation. The result will be a ranking of alternative sources of energy based on the Euclidean composite distance of each alternative to the designated optimal source of energy.

  20. Decision support system for optimal reservoir operation modeling within sediment deposition control.

    PubMed

    Hadihardaja, Iwan K

    2009-01-01

    Suspended sediment deals with surface runoff moving toward watershed affects reservoir sustainability due to the reduction of storage capacity. The purpose of this study is to introduce a reservoir operation model aimed at minimizing sediment deposition and maximizing energy production expected to obtain optimal decision policy for both objectives. The reservoir sediment-control operation model is formulated by using Non-Linear Programming with an iterative procedure based on a multi-objective measurement in order to achieve optimal decision policy that is established in association with the development of a relationship between stream inflow and sediment rate by utilizing the Artificial Neural Network. Trade off evaluation is introduced to generate a strategy for controlling sediment deposition at same level of target ratio while producing hydroelectric energy. The case study is carried out at the Sanmenxia Reservoir in China where redesign and reconstruction have been accomplished. However, this model deals only with the original design and focuses on a wet year operation. This study will also observe a five-year operation period to show the accumulation of sediment due to the impact of reservoir storage capacity.