Exact mapping between different dynamics of isotropically trapped quantum gases
NASA Astrophysics Data System (ADS)
Wamba, Etienne; Pelster, Axel; Anglin, James R.
2016-05-01
Experiments on trapped quantum gases can probe challenging regimes of quantum many-body dynamics, where strong interactions or non-equilibrium states prevent exact theoretical treatment. In this talk, we present a class of exact mappings between all the observables of different experiments, under the experimentally attainable conditions that the gas particles interact via a homogeneously scaling two-body potential which is in general time-dependent, and are confined in an isotropic harmonic trap. We express our result through an identity relating second-quantized field operators in the Heisenberg picture of quantum mechanics which makes it general. It applies to arbitrary measurements on possibly multi-component Bose or Fermi gases in arbitrary initial quantum states, no matter how highly excited or far from equilibrium. We use an example to show how the results of two different and currently feasible experiments can be mapped onto each other by our spacetime transformation. DAMOP sorting category: 6.11 Nonlinear dynamics and out-of-equilibrium trapped gases EW acknowledge the financial support from the Alexander von Humboldt foundation.
Time-of-flight expansion of binary Bose–Einstein condensates at finite temperature
NASA Astrophysics Data System (ADS)
Lee, K. L.; Jørgensen, N. B.; Wacker, L. J.; Skou, M. G.; Skalmstang, K. T.; Arlt, J. J.; Proukakis, N. P.
2018-05-01
Ultracold quantum gases provide a unique setting for studying and understanding the properties of interacting quantum systems. Here, we investigate a multi-component system of 87Rb–39K Bose–Einstein condensates (BECs) with tunable interactions both theoretically and experimentally. Such multi-component systems can be characterized by their miscibility, where miscible components lead to a mixed ground state and immiscible components form a phase-separated state. Here we perform the first full simulation of the dynamical expansion of this system including both BECs and thermal clouds, which allows for a detailed comparison with experimental results. In particular we show that striking features emerge in time-of-flight (TOF) for BECs with strong interspecies repulsion, even for systems which were separated in situ by a large gravitational sag. An analysis of the centre of mass positions of the BECs after expansion yields qualitative agreement with the homogeneous criterion for phase-separation, but reveals no clear transition point between the mixed and the separated phases. Instead one can identify a transition region, for which the presence of a gravitational sag is found to be advantageous. Moreover, we analyse the situation where only one component is condensed and show that the density distribution of the thermal component also shows some distinct features. Our work sheds new light on the analysis of multi-component systems after TOF and will guide future experiments on the detection of miscibility in these systems.
Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction
NASA Astrophysics Data System (ADS)
He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu
2015-01-01
Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ , effective magnetic field H1, H2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν =1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry.
3D-printed components for quantum devices.
Saint, R; Evans, W; Zhou, Y; Barrett, T; Fromhold, T M; Saleh, E; Maskery, I; Tuck, C; Wildman, R; Oručević, F; Krüger, P
2018-05-30
Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential of applying such capabilities to areas as diverse as biomedical imaging, non-invasive underground mapping, and GPS-free navigation can only be realised with the scalable production of efficient, robust and portable devices. We introduce additive manufacturing as a production technique of quantum device components with unrivalled design freedom and rapid prototyping. This provides a step change in efficiency, compactness and facilitates systems integration. As a demonstrator we present an ultrahigh vacuum compatible ultracold atom source dissipating less than ten milliwatts of electrical power during field generation to produce large samples of cold rubidium gases. This disruptive technology opens the door to drastically improved integrated structures, which will further reduce size and assembly complexity in scalable series manufacture of bespoke portable quantum devices.
Metal-organic materials (MOMs) for adsorption of polarizable gases and methods of using MOMs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaworotko, Michael; Mohamed, Mona H.; Elsaidi, Sameh
Embodiments of the present disclosure provide for multi-component metal-organic materials (MOMs), systems including the MOM, systems for separating components in a gas, methods of separating polarizable gases from a gas mixture, and the like.
Thermooptic two-mode interference device for reconfigurable quantum optic circuits
NASA Astrophysics Data System (ADS)
Sahu, Partha Pratim
2018-06-01
Reconfigurable large-scale integrated quantum optic circuits require compact component having capability of accurate manipulation of quantum entanglement for quantum communication and information processing applications. Here, a thermooptic two-mode interference coupler has been introduced as a compact component for generation of reconfigurable complex multi-photons quantum interference. Both theoretical and experimental approaches are used for the demonstration of two-photon and four-photon quantum entanglement manipulated with thermooptic phase change in TMI region. Our results demonstrate complex multi-photon quantum interference with high fabrication tolerance and quantum fidelity in smaller dimension than previous thermooptic Mach-Zehnder implementations.
NASA Technical Reports Server (NTRS)
Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)
1999-01-01
A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.
NASA Astrophysics Data System (ADS)
Zhou, Chi-Chun; Dai, Wu-Sheng
2018-02-01
In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.
Thermodynamics of Quantum Gases for the Entire Range of Temperature
ERIC Educational Resources Information Center
Biswas, Shyamal; Jana, Debnarayan
2012-01-01
We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babac, Gulru
Gas flow in micro/nano scale systems has been generally studied for the Maxwell gases. In the limits of very low temperature and very confined domains, the Maxwellian approximation can break down and the quantum character of the gases becomes important. In these cases, Knudsen law, which is one of the important equations to analyze rarefied gas flows is invalid and should be reanalyzed for quantum gases. In this work, the availability of quantum gas conditions in the high Knudsen number cases is discussed and Knudsen law is analyzed for quantum gases.
Functional Wigner representation of quantum dynamics of Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Opanchuk, B.; Drummond, P. D.
2013-04-01
We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such as quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.
Universality and Quantum Criticality of the One-Dimensional Spinor Bose Gas
NASA Astrophysics Data System (ADS)
PâÅ£u, Ovidiu I.; Klümper, Andreas; Foerster, Angela
2018-06-01
We investigate the universal thermodynamics of the two-component one-dimensional Bose gas with contact interactions in the vicinity of the quantum critical point separating the vacuum and the ferromagnetic liquid regime. We find that the quantum critical region belongs to the universality class of the spin-degenerate impenetrable particle gas which, surprisingly, is very different from the single-component case and identify its boundaries with the peaks of the specific heat. In addition, we show that the compressibility Wilson ratio, which quantifies the relative strength of thermal and quantum fluctuations, serves as a good discriminator of the quantum regimes near the quantum critical point. Remarkably, in the Tonks-Girardeau regime, the universal contact develops a pronounced minimum, reflected in a counterintuitive narrowing of the momentum distribution as we increase the temperature. This momentum reconstruction, also present at low and intermediate momenta, signals the transition from the ferromagnetic to the spin-incoherent Luttinger liquid phase and can be detected in current experiments with ultracold atomic gases in optical lattices.
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
Quantum Polarization Spectroscopy of Ultracold Spinor Gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckert, K.; Zawitkowski, L.; Sanpera, A.
2007-03-09
We propose a method for the detection of ground state quantum phases of spinor gases through a series of two quantum nondemolition measurements performed by sending off-resonant, polarized light pulses through the gas. Signatures of various mean-field as well as strongly correlated phases of F=1 and F=2 spinor gases obtained by detecting quantum fluctuations and mean values of polarization of transmitted light are identified.
Atom chips with free-standing two-dimensional electron gases: advantages and challenges
NASA Astrophysics Data System (ADS)
Sinuco-León, G. A.; Krüger, P.; Fromhold, T. M.
2018-03-01
In this work, we consider the advantages and challenges of using free-standing two-dimensional electron gases (2DEG) as active components in atom chips for manipulating ultracold ensembles of alkali atoms. We calculate trapping parameters achievable with typical high-mobility 2DEGs in an atom chip configuration and identify advantages of this system for trapping atoms at sub-micron distances from the atom chip. We show how the sensitivity of atomic gases to magnetic field inhomogeneity can be exploited for controlling the atoms with quantum electronic devices and, conversely, using the atoms to probe the structural and transport properties of semiconductor devices.
Multi-layer seal for electrochemical devices
Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA
2010-11-16
Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
Multi-layer seal for electrochemical devices
Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA
2010-09-14
Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
Functional Wigner representation of quantum dynamics of Bose-Einstein condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opanchuk, B.; Drummond, P. D.
2013-04-15
We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such asmore » quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.« less
Methods for making a multi-layer seal for electrochemical devices
Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA
2007-05-29
Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
Gauge transformation and symmetries of the commutative multicomponent BKP hierarchy
NASA Astrophysics Data System (ADS)
Li, Chuanzhong
2016-01-01
In this paper, we defined a new multi-component B type Kadomtsev-Petviashvili (BKP) hierarchy that takes values in a commutative subalgebra of {gl}(N,{{C}}). After this, we give the gauge transformation of this commutative multicomponent BKP (CMBKP) hierarchy. Meanwhile, we construct a new constrained CMBKP hierarchy that contains some new integrable systems, including coupled KdV equations under a certain reduction. After this, the quantum torus symmetry and quantum torus constraint on the tau function of the commutative multi-component BKP hierarchy will be constructed.
Itinerant ferromagnetism in ultracold Fermi gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiselberg, H.
2011-05-15
Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature, a second-order transition is found at ak{sub F}{approx_equal}0.90 compatible with results of quantum-Monte-Carlo (QMC) calculations. Thermodynamic functions and observables, such as the compressibility and spin susceptibility and the resulting fluctuations in number and spin, are calculated. For trapped gases, the resulting cloud radii and kinetic energies are calculated and compared to recent experiments. Spin-polarized systems are recommended for effective separation of large ferromagnetic domains. Collective modes are predicted and tricritical points are calculatedmore » for multicomponent systems.« less
Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume, D.; Daily, K. M.
We treat small trapped unequal-mass two-component Fermi gases at unitarity within a nonperturbative microscopic framework and investigate the system properties as functions of the mass ratio {kappa}, and the numbers N{sub 1} and N{sub 2} of heavy and light fermions. While equal-mass Fermi gases with infinitely large interspecies s-wave scattering length a{sub s} are universal, we find that unequal-mass Fermi gases are, for sufficiently large {kappa} and in the regime where Efimov physics is absent, not universal. In particular, the (N{sub 1},N{sub 2})=(2,1) and (3, 1) systems exhibit three-body and four-body resonances at {kappa}=12.314(2) and 10.4(2), respectively, as well asmore » surprisingly large finite-range effects. These findings have profound implications for ongoing experimental efforts and quantum simulation proposals that utilize unequal-mass atomic Fermi gases.« less
Quantum phase slips: from condensed matter to ultracold quantum gases.
D'Errico, C; Abbate, S Scaffidi; Modugno, G
2017-12-13
Quantum phase slips (QPS) are the primary excitations in one-dimensional superfluids and superconductors at low temperatures. They have been well characterized in most condensed-matter systems, and signatures of their existence have been recently observed in superfluids based on quantum gases too. In this review, we briefly summarize the main results obtained on the investigation of phase slips from superconductors to quantum gases. In particular, we focus our attention on recent experimental results of the dissipation in one-dimensional Bose superfluids flowing along a shallow periodic potential, which show signatures of QPS.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Bahauddin, Shah Mohammad; Mehedi Faruk, Mir
2016-09-01
From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.
Method for Balancing Detector Output to a Desired Level of Balance at a Frequency
NASA Technical Reports Server (NTRS)
Sachse, Glenn W. (Inventor)
2003-01-01
A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination elements, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.
NASA Astrophysics Data System (ADS)
Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.
2018-02-01
Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.
2016-06-03
Ultracold Atoms 5:10 Zelevinsky Ye Inouye High-precision spectroscopy with two-body quantum systems Low entropy quantum gas of polar molecules New limit...12th US-Japan Seminar: Many Body Quantum Systems from Quantum Gases to Metrology and Information Processing Support was provided for The 12th US...Japan Seminar on many body quantum systems which was held in Madison, Wisconsin from September 20 to 24, 2015 at the Monona Terrace Convention Center
NASA Astrophysics Data System (ADS)
Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.
2013-04-01
The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad interdisciplinary appeal and include new studies of high temperature superfluidity, viscosity, spin-transport, spin-imbalanced mixtures, and three-component gases, this last having a close parallel to color superconductivity. Another system important for the field of strongly-interacting quantum fluids was revealed by analysis of data from the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Despite naive expectations based on asymptotic freedom that the deconfinement of quarks and gluons at high temperatures would lead to a weakly-interacting quark gluon plasma (QGP), the system appeared to be quite strongly coupled. Subsequent estimates of the viscosity-to-entropy ratio suggest that the system is tantalizingly close to the postulated bound from AdS/CFT calculations. The field is quite dynamic at the moment; new measurements are expected from upgraded detectors at RHIC, and an entirely new energy regime is being opened up by heavy ion collisions at the Large Hadron Collider (LHC) at CERN. On the theoretical side, much work remains to be done to extract the precise values of the transport coefficients, and to characterize the nature of quasi-particle excitations in the plasma. Finally, holographic dualities such as anti-de Sitter/conformal field theory (AdS/CFT) have opened a new theoretical window on strongly correlated fluids. Holography relates strongly-interacting quantum many-body systems to weakly-coupled semi-classical gravitational systems, replacing quasiparticles with geometry and translating various difficult questions about quantum fluids into simple and calculable geometric exercises. Already, some of the earliest lessons of holography, such as the conjectural bound on the viscosity-to-entropy ratio, have had a considerable impact on the theoretical and experimental study of strongly correlated fluids, from RHIC to ultracold atoms. More recently, the study of holographic superconductors, non-Fermi liquids and unitary quantum gases has touched off a flurry of interest in holography as a toolkit for studying strongly-correlated many-body systems more generally. Holography also allows us to use results from quantum fluids to study classical and quantum gravity; for example, the phase structure of a quantum many-body system translates into a rich classification of black holes in the dual space-time. Given both the rapid progress in applied holography and the exciting developments in ultracold quantum gases and QCD plasmas discussed above, the time is ripe for new collaborations across traditional lines of specialization. This focus issue explores the convergence between three heretofore separate areas of physics. Over forty research groups have contributed original work, and there will be a review article which complements these advances, overviewing them and presenting them in the context of all three fields and their interconnections. The review concludes with a list of open questions. This sets the tone for the present focus issue; namely, interdisciplinary dialog, openness, innovation, and possibility, an emphasis for which New Journal of Physics, an open-access journal of the highest quality, is especially fitted.
RELATIVE TOXICITY OF AIR POLLUTION MIXTURES
The proposed study will differentiate the health effects of components of multi-pollutant exposure mixtures. We expect to add to our understanding of the exposure- response relationship, the interaction between particulate matter and photochemical gases, and the extent to whic...
Non-equilibrium dynamics of artificial quantum matter
NASA Astrophysics Data System (ADS)
Babadi, Mehrtash
The rapid progress of the field of ultracold atoms during the past two decades has set new milestones in our control over matter. By cooling dilute atomic gases and molecules to nano-Kelvin temperatures, novel quantum mechanical states of matter can be realized and studied on a table-top experimental setup while bulk matter can be tailored to faithfully simulate abstract theoretical models. Two of such models which have witnessed significant experimental and theoretical attention are (1) the two-component Fermi gas with resonant s-wave interactions, and (2) the single-component Fermi gas with dipole-dipole interactions. This thesis is devoted to studying the non-equilibrium collective dynamics of these systems using the general framework of quantum kinetic theory. We present a concise review of the utilized mathematical methods in the first two chapters, including the Schwinger-Keldysh formalism of non-equilibrium quantum fields, two-particle irreducible (2PI) effective actions and the framework of quantum kinetic theory. We study the collective dynamics of the dipolar Fermi gas in a quasi-two-dimensional optical trap in chapter 3 and provide a detailed account of its dynamical crossover from the collisionless to the hydrodynamical regime. Chapter 4 is devoted to studying the dynamics of the attractive Fermi gas in the normal phase. Starting from the self-consistent T-matrix (pairing fluctuation) approximation, we systematically derive a set of quantum kinetic equations and show that they provide a globally valid description of the dynamics of the attractive Fermi gas, ranging from the weak-coupling Fermi liquid phase to the intermediate non-Fermi liquid pairing pseudogap regime and finally the strong-coupling Bose liquid phase. The shortcomings of the self-consistent T-matrix approximation in two spatial dimensions are discussed along with a proposal to overcome its unphysical behaviors. The developed kinetic formalism is finally utilized to reproduce and interpret the findings of a recent experiment done on the collective dynamics of trapped two-dimensional ultracold gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin Xiangguo; Chen Shu; Guan Xiwen
2011-07-15
We investigate quantum criticality and universal scaling of strongly attractive Fermi gases confined in a one-dimensional harmonic trap. We demonstrate from the power-law scaling of the thermodynamic properties that current experiments on this system are capable of measuring universal features at quantum criticality, such as universal scaling and Tomonaga-Luttinger liquid physics. The results also provide insights on recent measurements of key features of the phase diagram of a spin-imbalanced atomic Fermi gas [Y. Liao et al., Nature (London) 467, 567 (2010)] and point to further study of quantum critical phenomena in ultracold atomic Fermi gases.
Ghate, Madhav R.; Yang, Ralph T.
1987-01-01
Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.
Gaseous insulators for high voltage electrical equipment
Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.
1979-01-01
Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.
Gaseous insulators for high voltage electrical equipment
Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.
1981-01-01
Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centeno, R.; Marchenko, D.; Mandon, J.
We present a high power, widely tunable, continuous wave external cavity quantum cascade laser designed for infrared vibrational spectroscopy of molecules exhibiting broadband and single line absorption features. The laser source exhibits single mode operation with a tunability up to 303 cm{sup −1} (∼24% of the center wavelength) at 8 μm, with a maximum optical output power of 200 mW. In combination with off-axis integrated output spectroscopy, trace-gas detection of broadband absorption gases such as acetone was performed and a noise equivalent absorption sensitivity of 3.7 × 10{sup −8 }cm{sup −1 }Hz{sup −1/2} was obtained.
EDITORIAL: Cold Quantum GasesEditorial: Cold Quantum Gases
NASA Astrophysics Data System (ADS)
Vassen, W.; Hemmerich, A.; Arimondo, E.
2003-04-01
This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of cold quantum gases. Different aspects of atom optics, matter wave interferometry, laser manipulation of atoms and molecules, and production of very cold and degenerate gases are presented. The variety of subjects demonstrates the steadily expanding role associated with this research area. The topics discussed in this issue, extending from basic physics to applications of atom optics and of cold atomic samples, include: bulletBose--Einstein condensation bulletFermi degenerate gases bulletCharacterization and manipulation of quantum gases bulletCoherent and nonlinear cold matter wave optics bulletNew schemes for laser cooling bulletCoherent cold molecular gases bulletUltra-precise atomic clocks bulletApplications of cold quantum gases to metrology and spectroscopy bulletApplications of cold quantum gases to quantum computing bulletNanoprobes and nanolithography. This special issue is published in connection with the 7th International Workshop on Atom Optics and Interferometry, held in Lunteren, The Netherlands, from 28 September to 2 October 2002. This was the last in a series of Workshops organized with the support of the European Community that have greatly contributed to progress in this area. The scientific part of the Workshop was managed by A Hemmerich, W Hogervorst, W Vassen and J T M Walraven, with input from members of the International Programme Committee who are listed below. The practical aspects of the organization were ably handled by Petra de Gijsel from the Vrije Universiteit in Amsterdam. The Workshop was funded by the European Science Foundation (programme BEC2000+), the European Networks 'Cold Quantum Gases (CQG)', coordinated by E Arimondo, and 'Cold Atoms and Ultraprecise Atomic Clocks (CAUAC)', coordinated by J Henningsen, by the German Physical Society (DFG), by the Dutch Foundation for Fundamental Research on Matter (FOM) and by the Dutch Gelderland province. We thank all these sponsors and the members of the International Programme Committee for making the Workshop such a success. At this point we take the opportunity to express our gratitude to both authors and reviewers, for their efforts in preparing and ensuring the high quality of the papers in this special issue. Wim Vassen Vrije Universiteit, Amsterdam Andreas Hemmerich Universität Hamburg Ennio Arimondo Università di Pisa Guest Editors International Programme Committee A Aspect Orsay, France E Cornell Boulder, USA W Ertmer Hannover, Germany T W Haensch Munich, Germany A Hemmerich Hamburg, Germany W Hogervorst Amsterdam, The Netherlands D Kleppner Cambridge, USA C Salomon Paris, France G V Shlyapnikov Amsterdam, Paris, Moscow S Stringari Trento, Italy W Vassen Amsterdam, The Netherlands J T M Walraven Amsterdam, The Netherlands
NASA Astrophysics Data System (ADS)
Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik
2018-04-01
We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.
Stackable multi-port gas nozzles
Poppe, Steve; Rozenzon, Yan; Ding, Peijun
2015-03-03
One embodiment provides a reactor for material deposition. The reactor includes a chamber and at least one gas nozzle. The chamber includes a pair of susceptors, each having a front side and a back side. The front side mounts a number of substrates. The susceptors are positioned vertically so that the front sides of the susceptors face each other, and the vertical edges of the susceptors are in contact with each other, thereby forming a substantially enclosed narrow channel between the substrates mounted on different susceptors. The gas nozzle includes a gas-inlet component situated in the center and a detachable gas-outlet component stacked around the gas-inlet component. The gas-inlet component includes at least one opening coupled to the chamber, and is configured to inject precursor gases into the chamber. The detachable gas-outlet component includes at least one opening coupled to the chamber, and is configured to output exhaust gases from the chamber.
Introduction to Theoretical Modelling
NASA Astrophysics Data System (ADS)
Davis, Matthew J.; Gardiner, Simon A.; Hanna, Thomas M.; Nygaard, Nicolai; Proukakis, Nick P.; Szymańska, Marzena H.
2013-02-01
We briefly overview commonly encountered theoretical notions arising in the modelling of quantum gases, intended to provide a unified background to the `language' and diverse theoretical models presented elsewhere in this book, and aimed particularly at researchers from outside the quantum gases community.
Velocity-dependent quantum phase slips in 1D atomic superfluids.
Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara
2016-05-18
Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.
Composite fermion basis for two-component Bose gases
NASA Astrophysics Data System (ADS)
Meyer, Marius; Liabotro, Ola
The composite fermion (CF) construction is known to produce wave functions that are not necessarily orthogonal, or even linearly independent, after projection. While usually not a practical issue in the quantum Hall regime, we have previously shown that it presents a technical challenge for rotating Bose gases with low angular momentum. These are systems where the CF approach yield surprisingly good approximations to the exact eigenstates of weak short-range interactions, and so solving the problem of linearly dependent wave functions is of interest. It can also be useful for studying CF excitations for fermions. Here we present several ways of constructing a basis for the space of ``simple CF states'' for two-component rotating Bose gases in the lowest Landau level, and prove that they all give a basis. Using the basis, we study the structure of the lowest-lying state using so-called restricted wave functions. We also examine the scaling of the overlap between the exact and CF wave functions at the maximal possible angular momentum for simple states. This work was financially supported by the Research Council of Norway.
Disordered Quantum Gases and Spin-Dependent Lattices
2013-07-07
regarding the role of disorder in many-particle quantum systems, such as superconductors and electronic solids. These issues are of great technological...REPORT Disordered Quantum Gases and Spin-Dependent Lattices 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: This grant supported the first realization of...the disordered Bose-Hubbard models using ultra-cold atoms trapped in a disordered optical lattice. Several critical questions regarding this crucial
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-10-15
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-01-01
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996
Atomtronics: Material and Device Physics of Quantum Gases
matter physics to electrical engineering. Our projects title Atomtronics: Material and device physics of quantum gases illustrates the chasm we bridged...starting from therich and fundamental physics already revealed with cold atoms systems, then leading to an understanding of the functional materials
NASA Astrophysics Data System (ADS)
Wojtacha-Rychter, Karolina; Smoliński, Adam
2017-10-01
One of the most challenging tasks in the coal mining sector is the detection of endogenous fire risks. Under field conditions, the distance between the points where samples for the analyses are collected and the actual place where coal self-heating takes place may be quite remote. Coal is a natural sorbent with a diverse character of pore structures which are surrounded by fractures and cleavage planes constituting ideal spaces for the flow and adsorption of gases. The gases (methane, ethane, ethylene, propane, propylene, acetylene, carbon dioxide, carbon monoxide, hydrogen) released from the source of fire migrate through the seam and may be subject to adsorption, or they may cause the desorption of gases accumulated in coal. Therefore, the values of reference sample concentrations may be overstated or understated, respectively. The objective of this experimental study was to investigate the adsorption phenomena accompanying the flow of a multi-component gas mixture through a coal bed which may occur in situ. The research was conducted by means of a method based on a series of calorimetric/chromatographic measurements taken to determine the amount of gases released during coal heating at various temperatures under laboratory conditions. Based on the results obtained in the course of the experiments, it was concluded that the amount of gas adsorbed in the seam depends on the type of coal and the gas. Within the multi-component gas mixture, hydrocarbons demonstrated the largest sorption capacity, especially as concerns propylene.
Ghate, M.R.; Yang, R.T.
1985-10-03
Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.
Application of a broadly tunable SG-DBR QCL for multi-species trace gas spectroscopy.
Diba, Abdou S; Xie, Feng; Gross, Barry; Hughes, Lawrence C; Zah, Chung-en; Moshary, Fred
2015-10-19
Feasibility of using a mid-Infrared tunable sampled-grating distributed Bragg reflectors quantum cascade laser for high resolution multicomponent trace gas spectroscopy is demonstrated. By controlling the driving currents to the front and back sections of the laser, we were able to tune a pulsed 4.55 µm laser over a frequency range a of 30 cm(-1) with high resolution, accuracy and repeatability. The laser was applied to absorption spectroscopy of ambient and reduced pressure (150 Torr) air in a 205 meters multi-pass Herriott cell, and by using standard LSQ fitting to a spectral database of these trace gases (HITRAN), the concentrations of nitrous oxide, carbon monoxide, and water vapor were retrieved.
Quantum spin dynamics at terahertz frequencies in 2D hole gases and improper ferroelectrics
NASA Astrophysics Data System (ADS)
Lloyd-Hughes, J.
2015-08-01
Terahertz time-domain spectroscopy permits the excitations of novel materials to be examined with exquisite precision. Improper ferroelectric materials such as cupric oxide (CuO) exhibit complex magnetic ground states. CuO is antiferromagnetic below 213K, but has an incommensurate cycloidal magnetic phase between 213K and 230K. Remarkably, the cycloidal magnetic phase drives ferroelectricity, where the material becomes polar. Such improper multiferroics are of great contemporary interest, as a better understanding of the science of magnetoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. By examining the dynamic response of spins as they interact with THz radiation we gain insights into the underlying physics of multi-ferroics. In contrast to improper ferroelectrics, where magnetism drives structural inversion asymmetry (SIA), two-dimensional electronic systems can exhibit non-degenerate spin states as a consequence of SIA created by strain and/or electric fields. We identify and explore the influence of the Rashba spin-orbit interaction upon cyclotron resonance at terahertz frequencies in high-mobility 2D hole gases in germanium quantum wells. An enhanced Rashba spin-orbit interaction can be linked to the strain of the quantum well, while a time-frequency decomposition method permitted the dynamical formation and decay of spin-split cyclotron resonances to be tracked on picosecond timescales. Long spin-decoherence times concurrent with high hole mobilities highlight the potential of Ge quantum wells in spintronics.
Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases
Brandino, G. P.; Caux, J. -S.; Konik, R. M.
2015-12-16
Real-time dynamics in a quantum many-body system are inherently complicated and hence difficult to predict. There are, however, a special set of systems where these dynamics are theoretically tractable: integrable models. Such models possess non-trivial conserved quantities beyond energy and momentum. These quantities are believed to control dynamics and thermalization in low dimensional atomic gases as well as in quantum spin chains. But what happens when the special symmetries leading to the existence of the extra conserved quantities are broken? Is there any memory of the quantities if the breaking is weak? Here, in the presence of weak integrability breaking,more » we show that it is possible to construct residual quasi-conserved quantities, so providing a quantum analog to the KAM theorem and its attendant Nekhoreshev estimates. We demonstrate this construction explicitly in the context of quantum quenches in one-dimensional Bose gases and argue that these quasi-conserved quantities can be probed experimentally.« less
Sensing behavior of a graphene quantum dot phenalenyl towards toxic gases
NASA Astrophysics Data System (ADS)
Sharma, Vaishali; Narayan, Som; Dabhi, Shweta D.; Shinde, Satyam; Jha, Prafulla K.
2018-04-01
In the present work, by studying the interaction of graphene quantum dot (GQD) Phenalenylwith toxic gases hydrogen cyanide (HCN) and phosgene (COCl2) using density functional theory, we are aiming to evaluate the possibility of using GQD phenalenyl in the detection of HCN and COCl2. Owing to strong interactions between HCN/COCl2 and the GQD Phenalenyl, dramatic changes in the electronic properties of the graphene quantum dots together with highest occupied molecular orbitals and lowest unoccupied molecularorbitals (HOMO-LUMO) gap variationsare observed. The findings show that the GQD phenalenyl can be used as chemical nanosensor to detect HCN and COCl2 toxic gases.
49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...
49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...
EDITORIAL: Focus on Quantum Correlations in Tailored Matter
NASA Astrophysics Data System (ADS)
Muramatsu, Alejandro; Pfau, Tilman
2008-04-01
At low enough temperatures and at microscopic length scales the laws of quantum mechanics become apparent. The underlying superposition principle leads to interference phenomena for one degree of freedom and to the concept of entanglement for two and more. Entangled degrees of freedom are often correlated beyond their classically allowed correlation. These quantum correlations also appear in very large systems and are caused by strong interactions between the constituents. Strongly correlated forms of quantum matter became ubiquitous in condensed matter physics, with the discovery of heavy fermion materials, cuprates and other unconventional superconductors. Here the main players are electrons embedded in solid matter. But they also can be found in interacting quantum gases, where the main players are atoms. In the latter case the required temperatures for quantum correlations to appear are much lower. But in turn the length scales are larger and they can be embedded in well controlled potentials. A fascinating possibility offered by present day technologies is to tailor matter in order to induce the emergence of new phenomena by controlling quantum correlations. One of the routes leading to spectacular advances is the configuration of nanomaterials like quantum dots or quantum wires on the basis of semiconducting substrates that allow, e.g., to manipulate the Kondo effect or Luttinger liquids affecting transport properties through such nanostructures. Another quite different route with at the moment unlimited potential is offered by quantum optics and atomic physics, when implemented to bring quantum gases into the strongly interacting regime. This can be achieved by optical lattices leading to Mott-insulators, or to two dimensional systems displaying Kosterlitz-Thouless behavior in bosonic gases, or by Feshbach resonances, leading to fermionic systems with unconventional superfluid states like the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) one. In spite of the very different experimental realizations leading to the two routes mentioned above, they share a common goal, namely achieving a deep understanding of quantum correlations that will ultimately allow to control them and possibly realize new forms of matter. They also share the flexibility that allows to increase the complexity in quantum correlations by joining in a controlled manner well understood building units and/or by regulating their coupling to the environment. It is under the common goal of understanding and controlling quantum correlations that we see the topics presented in this focus issue of New Journal of Physics, where both lines of development, that is on solid-state substrates or with quantum gases, give a timely view of the advances towards the above mentioned common goal. Focus on Quantum Correlations in Tailored Matter Contents Temperature changes when adiabatically ramping up an optical lattice Lode Pollet, Corinna Kollath, Kris Van Houcke and Matthias Troyer Numerical study of two-body correlation in a 1D lattice with perfect blockade B Sun and F Robicheaux Kinetic Monte Carlo modeling of dipole blockade in Rydberg excitation experiment Amodsen Chotia, Matthieu Viteau, Thibault Vogt, Daniel Comparat and Pierre Pillet Motion of Rydberg atoms induced by resonant dipole-dipole interactions C Ates, A Eisfeld and J M Rost Quantum coherence due to Bose-Einstein condensation of parametrically driven magnons S O Demokritov, V E Demidov, O Dzyapko, G A Melkov and A N Slavin Chaotic dynamics in spinor Bose-Einstein condensates J Kronjäger, K Sengstock and K Bongs Damped Bloch oscillations of Bose-Einstein condensates in disordered potential gradients S Drenkelforth, G Kleine Büning, J Will, T Schulte, N Murray, W Ertmer, L Santos and J J Arlt Rabi oscillations between ground and Rydberg states and van der Waals blockade in a mesoscopic frozen Rydberg gas M Reetz-Lamour, J Deiglmayr, T Amthor and M Weidemüller Excitations in two-component Bose gases A Kleine, C Kollath, I P McCulloch, T Giamarchi and U Schollwöck Exploring the growth of correlations in a quasi one-dimensional trapped Bose gas M Eckart, R Walser and W P Schleich How to fix a broken symmetry: quantum dynamics of symmetry restoration in a ferromagnetic Bose-Einstein condensate Bogdan Damski and Wojciech H Zurek Landau levels of cold atoms in non-Abelian gauge fields A Jacob, P Öhberg, G Juzeliunas and L Santos Atomic four-wave mixing via condensate collisions A Perrin, C M Savage, D Boiron, V Krachmalnicoff, C I Westbrook and K V Kheruntsyan Semifluxons in superconductivity and cold atomic gases R Walser, E Goldobin, O Crasser, D Koelle, R Kleiner and W P Schleich Disorder-induced trapping versus Anderson localization in Bose-Einstein condensates expanding in disordered potentials L Sanchez-Palencia, D Clément, P Lugan, P Bouyer and A Aspect Critical tunneling currents in the regime of bilayer excitons L Tiemann, W Dietsche, M Hauser and K von Klitzing Quantum phases of trapped ions in an optical lattice R Schmied, T Roscilde, V Murg, D Porras and J I Cirac Generation and detection of a spin entanglement in nonequilibrium quantum dots Stefan Legel, Jürgen König and Gerd Schön Slow light in inhomogeneous and transverse fields Leon Karpa and Martin Weitz FFLO state in 1-, 2- and 3-dimensional optical lattices combined with a non-uniform background potential T K Koponen, T Paananen, J-P Martikainen, M R Bakhtiari and P Törmä Geometry-dependent interplay of long- and short-range interactions in ultracold fermionic gases: models for condensed matter and astrophysics B Deb, G Kurizki and I E Mazets Fermionic renormalization group methods for transport through inhomogeneous Luttinger liquids V Meden, S Andergassen, T Enss, H Schoeller and K Schönhammer Luttinger hydrodynamics of confined one-dimensional Bose gases with dipolar interactions R Citro, S De Palo, E Orignac, P Pedri and M-L Chiofalo Towards deterministically controlled InGaAs/GaAs lateral quantum dot molecules L Wang, A Rastelli, S Kiravittaya, P Atkinson, F Ding, C C Bof Bufon, C Hermannstädter, M Witzany, G J Beirne, P Michler and O G Schmidt Effective parameters for weakly coupled Bose-Einstein condensates S Giovanazzi, J Esteve and M K Oberthaler Current statistics of correlated charge tunnelling through an impurity in a 1D wire Alexander Herzog and Ulrich Weiss Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap Stephan A Schulz, Ulrich Poschinger, Frank Ziesel and Ferdinand Schmidt-Kaler The trapped two-dimensional Bose gas: from Bose-Einstein condensation to Berezinskii-Kosterlitz-Thouless physics Z Hadzibabic, P Krüger, M Cheneau, S P Rath and J Dalibard Dynamical protection of quantum computation from decoherence in laser-driven cold-ion and cold-atom systems Goren Gordon and Gershon Kurizki Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond Ph Tamarat, N B Manson, J P Harrison, R L McMurtrie, A Nizovtsev, C Santori, R G Beausoleil, P Neumann, T Gaebel, F Jelezko, P Hemmer and J Wrachtrup Superconductivity in the attractive Hubbard model: functional renormalization group analysis R Gersch, C Honerkamp and W Metzner Quantum stability of Mott-insulator states of ultracold atoms in optical resonators Jonas Larson, Sonia Fernández-Vidal, Giovanna Morigi and Maciej Lewenstein
Soliton Gases and Generalized Hydrodynamics
NASA Astrophysics Data System (ADS)
Doyon, Benjamin; Yoshimura, Takato; Caux, Jean-Sébastien
2018-01-01
We show that the equations of generalized hydrodynamics (GHD), a hydrodynamic theory for integrable quantum systems at the Euler scale, emerge in full generality in a family of classical gases, which generalize the gas of hard rods. In this family, the particles, upon colliding, jump forward or backward by a distance that depends on their velocities, reminiscent of classical soliton scattering. This provides a "molecular dynamics" for GHD: a numerical solver which is efficient, flexible, and which applies to the presence of external force fields. GHD also describes the hydrodynamics of classical soliton gases. We identify the GHD of any quantum model with that of the gas of its solitonlike wave packets, thus providing a remarkable quantum-classical equivalence. The theory is directly applicable, for instance, to integrable quantum chains and to the Lieb-Liniger model realized in cold-atom experiments.
Application of cascade lasers to detection of trace gaseous atmospheric pollutants
NASA Astrophysics Data System (ADS)
Miczuga, Marcin; Kopczyński, Krzysztof
2016-12-01
Understanding the impact of gaseous pollutants on the earth's atmosphere, as well as more and more felt by mankind negative effects of its contamination, result in increasing the level of environmental awareness and contribute to the intensification of actions aimed at reducing the emission of harmful gases into the atmosphere. At the same time, the extensive studies are conducted in order to continuously monitor the level of air contamination with harmful gases and the industry compliance with the standards limited the amount of emitted pollutants. Over recent years, there has been increasing use of cascade lasers and multi-pass cells in optical systems detecting the gaseous atmospheric pollutants and measuring the gas concentrations. The paper presents the use of a tunable quantum cascade laser as a source of the IR radiation in an advanced detection system enabling the trace gaseous atmospheric pollutants to be identified. Apart from the laser, the main elements of the system are: a multi-pass cell, an IR detector and a module for control and analysis. Operation of the system is exemplified by measuring the level of the air pollution with ammonia, carbon oxide and nitrous oxide.
Breath analysis system for early detection of lung diseases based on multi-sensor array
NASA Astrophysics Data System (ADS)
Jeon, Jin-Young; Yu, Joon-Boo; Shin, Jeong-Suk; Byun, Hyung-Gi; Lim, Jeong-Ok
2013-05-01
Expiratory breath contains various VOCs(Volatile Organic Compounds) produced from the human. When a certain disease exists, the exhalation has specific VOCs which may be generated from diseases. Many researchers have been actively working to find different types of biomarkers which are characteristic for particular diseases. Research regarding the identification of specific diseases from exhalation is still in progress. The aim of this research is to implement early detection of lung disease such as lung cancer and COPD(Chronic Obstructive Pulmonary Disease), which was nominated on the 6th of domestic death rate in 2010, based on multi-sensor array system. The system has been used to acquire sampled expiratory gases data and PCA(Principle Component Analysis) technique was applied to analyze signals from multi-sensor array. Throughout the experimental trials, a clearly distinguishable difference between lung disease patients and healthy controls was found from the measurement and analysis of their respective expiratory gases.
Spin filter for arbitrary spins by substrate engineering
NASA Astrophysics Data System (ADS)
Pal, Biplab; Römer, Rudolf A.; Chakrabarti, Arunava
2016-08-01
We design spin filters for particles with potentially arbitrary spin S≤ft(=1/2,1,3/2,\\ldots \\right) using a one-dimensional periodic chain of magnetic atoms as a quantum device. Describing the system within a tight-binding formalism we present an analytical method to unravel the analogy between a one-dimensional magnetic chain and a multi-strand ladder network. This analogy is crucial, and is subsequently exploited to engineer gaps in the energy spectrum by an appropriate choice of the magnetic substrate. We obtain an exact correlation between the magnitude of the spin of the incoming beam of particles and the magnetic moment of the substrate atoms in the chain desired for opening up of a spectral gap. Results of spin polarized transport, calculated within a transfer matrix formalism, are presented for particles having half-integer as well as higher spin states. We find that the chain can be made to act as a quantum device which opens a transmission window only for selected spin components over certain ranges of the Fermi energy, blocking them in the remaining part of the spectrum. The results appear to be robust even when the choice of the substrate atoms deviates substantially from the ideal situation, as verified by extending the ideas to the case of a ‘spin spiral’. Interestingly, the spin spiral geometry, apart from exhibiting the filtering effect, is also seen to act as a device flipping spins—an effect that can be monitored by an interplay of the system size and the period of the spiral. Our scheme is applicable to ultracold quantum gases, and might inspire future experiments in this direction.
Active temporal multiplexing of indistinguishable heralded single photons
Xiong, C.; Zhang, X.; Liu, Z.; Collins, M. J.; Mahendra, A.; Helt, L. G.; Steel, M. J.; Choi, D. -Y.; Chae, C. J.; Leong, P. H. W.; Eggleton, B. J.
2016-01-01
It is a fundamental challenge in quantum optics to deterministically generate indistinguishable single photons through non-deterministic nonlinear optical processes, due to the intrinsic coupling of single- and multi-photon-generation probabilities in these processes. Actively multiplexing photons generated in many temporal modes can decouple these probabilities, but key issues are to minimize resource requirements to allow scalability, and to ensure indistinguishability of the generated photons. Here we demonstrate the multiplexing of photons from four temporal modes solely using fibre-integrated optics and off-the-shelf electronic components. We show a 100% enhancement to the single-photon output probability without introducing additional multi-photon noise. Photon indistinguishability is confirmed by a fourfold Hong–Ou–Mandel quantum interference with a 91±16% visibility after subtracting multi-photon noise due to high pump power. Our demonstration paves the way for scalable multiplexing of many non-deterministic photon sources to a single near-deterministic source, which will be of benefit to future quantum photonic technologies. PMID:26996317
Multi-user quantum key distribution with entangled photons from an AlGaAs chip
NASA Astrophysics Data System (ADS)
Autebert, C.; Trapateau, J.; Orieux, A.; Lemaître, A.; Gomez-Carbonell, C.; Diamanti, E.; Zaquine, I.; Ducci, S.
2016-12-01
In view of real-world applications of quantum information technologies, the combination of miniature quantum resources with existing fibre networks is a crucial issue. Among such resources, on-chip entangled photon sources play a central role for applications spanning quantum communications, computing and metrology. Here, we use a semiconductor source of entangled photons operating at room temperature in conjunction with standard telecom components to demonstrate multi-user quantum key distribution, a core protocol for securing communications in quantum networks. The source consists of an AlGaAs chip-emitting polarisation entangled photon pairs over a large bandwidth in the main telecom band around 1550 nm without the use of any off-chip compensation or interferometric scheme; the photon pairs are directly launched into a dense wavelength division multiplexer (DWDM) and secret keys are distributed between several pairs of users communicating through different channels. We achieve a visibility measured after the DWDM of 87% and show long-distance key distribution using a 50-km standard telecom fibre link between two network users. These results illustrate a promising route to practical, resource-efficient implementations adapted to quantum network infrastructures.
NASA Astrophysics Data System (ADS)
Korenev, V. V.; Savelyev, A. V.; Maximov, M. V.; Zubov, F. I.; Shernyakov, Yu M.; Zhukov, A. E.
2017-11-01
The effect of modulation p-doping on multi-state lasing in InAs/InGaAs quantum dot (QD) lasers is studied for different levels of acceptor concentration. It is shown that in case of the short laser cavities, p-doping results in higher output power of the ground-state optical transitions of InAs/InGaAs QDs whereas in longer samples p-doping may result in the decrease of this power component. On the basis of this observation, the optimal design of laser active region and optimal doping level are discussed in details.
Photochemical processes on Titan: Irradiation of mixtures of gases that simulate Titan's atmosphere
NASA Astrophysics Data System (ADS)
Tran, Buu N.; Joseph, Jeffrey C.; Force, Michael; Briggs, Robert G.; Vuitton, Veronique; Ferris, James P.
2005-09-01
Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed.
Strongly Interacting Fermi Gases In Two Dimensions
2012-01-03
Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas. Figure 2 Spin Transport in Spin-Imbalanced, strongly interacting...atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice . Decreasing the dimensionality leads to the...opening of a gap in radiofrequency spectra, even on the BCS-side of a Feshbach resonance. With increasing lattice depth, the measured binding energy
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.
2017-02-01
These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for entanglement is also derived. Thus we show that spin squeezing becomes a rigorous test for entanglement in a system of massive bosons, when viewed as a test for entanglement between two modes. In addition, other previously proposed tests for entanglement involving spin operators are considered, including those based on the sum of the variances for two spin components. All of the tests are still valid when the present concept of entanglement based on the symmetrization and SSR criteria is applied. These tests also apply in cases of multi-mode entanglement, though with restrictions in the case of sub-systems each consisting of pairs of modes. Tests involving quantum correlation functions are also considered and for global SSR compliant states these are shown to be equivalent to tests involving spin operators. A new weak correlation test is derived for entanglement based on local SSR compliance for separable states, complementing the stronger correlation test obtained previously when this is ignored. The Bloch vector test is equivalent to one case of this weak correlation test. Quadrature squeezing for single modes is also examined but not found to yield a useful entanglement test, whereas two mode quadrature squeezing proves to be a valid entanglement test, though not as useful as the Bloch vector test. The various entanglement tests are considered for well-known entangled states, such as binomial states, relative phase eigenstates and NOON states—sometimes the new tests are satisfied while than those obtained in other papers are not. The present paper II then outlines the theory for a simple two mode interferometer showing that such an interferometer can be used to measure the mean values and covariance matrix for the spin operators involved in entanglement tests for the two mode bosonic system. The treatment is also generalized to cover multi-mode interferometry. The interferometer involves a pulsed classical field characterized by a phase variable and an area variable defined by the time integral of the field amplitude, and leads to a coupling between the two modes. For simplicity the center frequency was chosen to be resonant with the inter-mode transition frequency. Measuring the mean and variance of the population difference between the two modes for the output state of the interferometer for various choices of interferometer variables is shown to enable the mean values and covariance matrix for the spin operators for the input quantum state of the two mode system to be determined. The paper concludes with a discussion of several key experimental papers on spin squeezing.
Phase Diagram of Fractional Quantum Hall Effect of Composite Fermions in Multi-Component Systems
NASA Astrophysics Data System (ADS)
Coimbatore Balram, Ajit; Töke, Csaba; Wójs, Arkadiusz; Jain, Jainendra
2015-03-01
The fractional quantum Hall effect (FQHE) of composite fermions (CFs) produces delicate states arising from a weak residual interaction between CFs. We study the spin phase diagram of these states, motivated by the recent experimental observation by Liu et al. of several spin-polarization transitions at 4/5, 5/7, 6/5, 9/7, 7/9, 8/11 and 10/13 in GaAs systems. We show that the FQHE of CFs is much more prevalent in multicomponent systems, and consider the feasibility of such states for systems with N components for an SU(N) symmetric interaction. Our results apply to GaAs quantum wells, wherein electrons have two components, to AlAs quantum wells and graphene, wherein electrons have four components (two spins and two valleys), and to an H-terminated Si(111) surface, which can have six components. We provide a fairly comprehensive list of possible incompressible FQH states of CFs, their SU(N) spin content, their energies, and their phase diagram as a function of the generalized ``Zeeman'' energy. The results are in good agreement with available experiments. DOE Grant No. DE-SC0005042, Hungarian Scientific Research Funds No. K105149 (CT), the Polish NCN grant 2011/01/B/ST3/04504 and the EU Marie Curie Grant PCIG09-GA-2011-294186.
Multi-layered zinc oxide-graphene composite thin films for selective nitrogen dioxide sensing
NASA Astrophysics Data System (ADS)
Ghosh, A.; Bhowmick, T.; Majumder, S. B.
2018-02-01
In the present work, selective nitrogen dioxide (NO2) sensing characteristics of multi-layered graphene-zinc oxide (G-ZnO) thin films have been demonstrated at 150 °C. The response% of 5 ppm NO2 was measured to be 894% with response and recovery times estimated to be 150 s and 315 s, respectively. In these composite films, the interaction between graphene and zinc oxide is established through X-ray photoelectron spectroscopy in conjunction with the analyses of photoluminescence spectra. Superior NO2 sensing of these films is due to simultaneous chemiadsorption of molecular oxygen and NO2 gases onto graphene and ZnO surfaces, resulting in an appreciable increase in the depletion layer width and thereby the sensor resistance. The sensor responses for other reducing gases (viz., CO, H2, and i-C4H10) are postulated to be due to their catalytic oxidation on the sensor surface, resulting in a decrease in the sensor resistance upon gas exposure. At lower operating temperature, due to the molecular nature of the chemiadsorbed oxygen, poor catalytic oxidation leads to a far lower sensor response for reducing gases as compared to NO2. For mixed NO2 and reducing gas sensing, we have reported that fast Fourier transformation of the resistance transients of all these gases in conjunction with principal component analyses forms a reasonably distinct cluster and, therefore, could easily be differentiated.
NASA Astrophysics Data System (ADS)
Sultana, S.; Schlickeiser, R.
2018-02-01
A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.
NASA Astrophysics Data System (ADS)
Sotnikov, A. G.; Sereda, K. V.; Slyusarenko, Yu. V.
2017-01-01
Calculations of chemical potentials for ideal monatomic gases with Bose-Einstein and Fermi-Dirac statistics as functions of temperature, across the temperature region that is typical for the collective quantum degeneracy effect, are presented. Numerical calculations are performed without any additional approximations, and explicit dependences of the chemical potentials on temperature are constructed at a fixed density of gas particles. Approximate polynomial dependences of chemical potentials on temperature are obtained that allow for the results to be used in further studies without re-applying the involved numerical methods. The ease of using the obtained representations is demonstrated on examples of deformation of distribution for a population of energy states at low temperatures, and on the impact of quantum statistics (exchange interaction) on the equations of state for ideal gases and some of the thermodynamic properties thereof. The results of this study essentially unify two opposite limiting cases in an intermediate region that are used to describe the equilibrium states of ideal gases, which are well known from university courses on statistical physics, thus adding value from an educational point of view.
NASA Astrophysics Data System (ADS)
Chang, Soon Yong
2008-04-01
In the recent years, dilute Fermi gases have played the center stage role in the many-body physics. The gas of neutral alkali atoms such as Lithium-6 and Potassium-40 can be trapped at temperatures below the Fermi degeneracy. The most relevant feature of these gases is that the interaction is tunable and strongly interacting superfluid can be artificially created. I will discuss the recent progress in understanding the ground state properties of the dilute Fermi gases at different interaction regimes. First, I will present the case of the spin symmetric systems where the Fermi gas can smoothly crossover from the BCS regime to the BEC regime. Then, I will discuss the case of the spin polarized systems, where different quantum phases can occur as a function of the polarization. In the laboratory, the trapped Fermi gas shows spatial dependence of the different quantum phases. This can be understood in the context of the local variation of the chemical potential. I will present the most accurate quantum ab initio results and the relevant experiments.
Laser and Optical Subsystem for NASA's Cold Atom Laboratory
NASA Astrophysics Data System (ADS)
Kohel, James; Kellogg, James; Elliott, Ethan; Krutzik, Markus; Aveline, David; Thompson, Robert
2016-05-01
We describe the design and validation of the laser and optics subsystem for NASA's Cold Atom Laboratory (CAL), a multi-user facility being developed at NASA's Jet Propulsion Laboratory for studies of ultra-cold quantum gases in the microgravity environment of the International Space Station. Ultra-cold atoms will be generated in CAL by employing a combination of laser cooling techniques and evaporative cooling in a microchip-based magnetic trap. Laser cooling and absorption imaging detection of bosonic mixtures of 87 Rb and 39 K or 41 K will be accomplished using a high-power (up to 500 mW ex-fiber), frequency-agile dual wavelength (767 nm and 780 nm) laser and optical subsystem. The CAL laser and optical subsystem also includes the capability to generate high-power multi-frequency optical pulses at 784.87 nm to realize a dual-species Bragg atom interferometer. Currently at Humboldt-Universität zu Berlin.
Engineered Potentials and Dynamics of Ultracold Quantum Gases Under the Microscope
2014-05-09
CONTRACT OR GRANT NUMBER: DESCRIPTION OF MATERIAL INSTITUTION: PRINCIPAL INVESTIGATOR: Paola Cappellaro TYPE REPORT: Ph.D. Dissertation PERIOD...CONTRACT NUMBER Engineered potentials and dynamics of ulu·acold quantum gases W911NF-11-1-0400 under the microscope Sb. GRANT NUMBER Sc. PROGRAM...Schnorrberger, M. Moreno- Cardoner , S. Fölling, and I. Bloch, “Counting atoms using interaction blockade in an optical superlat- tice,” Phys. Rev. Lett
2014-11-10
opportunities for advanced material development and quantum simulators. These molecules include (1) the already quantum degenerate bi- alkali singlet sigma...case potassium-rubidium (KRb) and related molecules; (2) opto-electrically trapped symmetric top molecules soon to reach quantum degeneracy and...rubidium; (C) a correction of phase diagrams for dipolar gases necessary to understand experimental measurements and build accurate quantum simulators
Bosse, J; Pathak, K N; Singh, G S
2011-10-01
The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T
NASA Astrophysics Data System (ADS)
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The quest for higher efficiency, better fidelity, broader bandwidth, multimode capacity and longer storage lifetime is pursued in all those approaches, as shown in this special issue. The improvement of quantum memory operation specifically requires in-depth study and control of numerous physical processes leading to atomic decoherence. The present issue reflects the development of rare earth ion doped matrices offering long lifetime superposition states, either as bulk crystals or as optical waveguides. The need for quantum sources and high efficiency detectors at the single photon level is also illustrated. Several papers address the networking of quantum memories either in long-haul cryptography or in the prospect of quantum processing. In this context, much attention has been paid recently to interfacing quantum light with superconducting qubits and with nitrogen-vacancy centers in diamond. Finally, the quantum interfacing of light with matter raises questions on entanglement. The last two papers are devoted to the generation of entanglement by dissipative processes. It is shown that long lifetime entanglement may be built in this way. We hope this special issue will help readers to become familiar with the exciting field of ensemble-based quantum memories and will stimulate them to bring deeper insights and new ideas to this area.
Relativistic quantum thermodynamics of ideal gases in two dimensions.
Blas, H; Pimentel, B M; Tomazelli, J L
1999-11-01
In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.
NASA Astrophysics Data System (ADS)
Korenev, V. V.; Savelyev, A. V.; Maximov, M. V.; Zubov, F. I.; Shernyakov, Yu. M.; Kulagina, M. M.; Zhukov, A. E.
2017-09-01
The influence of the modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot (QD) lasers is studied experimentally for devices having various external losses. It is shown that in the case of short cavities (high external loss), there is an increase in the lasing power component corresponding to the ground-state optical transitions of QDs as the p-doping level grows. However, in the case of long cavities (small external loss), higher dopant concentrations may have an opposite effect on the output power. Based on these observations, an optimal design of laser geometry and an optimal doping level are discussed.
Epidemic Dynamics in Open Quantum Spin Systems
NASA Astrophysics Data System (ADS)
Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor
2017-10-01
We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.
Observation of roton mode population in a dipolar quantum gas
NASA Astrophysics Data System (ADS)
Chomaz, L.; van Bijnen, R. M. W.; Petter, D.; Faraoni, G.; Baier, S.; Becher, J. H.; Mark, M. J.; Wächtler, F.; Santos, L.; Ferlaino, F.
2018-05-01
The concept of a roton, a special kind of elementary excitation forming a minimum of energy at finite momentum, has been essential for the understanding of the properties of superfluid 4He (ref. 1). In quantum liquids, rotons arise from the strong interparticle interactions, whose microscopic description remains debated2. In the realm of highly controllable quantum gases, a roton mode has been predicted to emerge due to magnetic dipole-dipole interactions despite their weakly interacting character3. This prospect has raised considerable interest4-12; yet roton modes in dipolar quantum gases have remained elusive to observations. Here we report experimental and theoretical studies of the momentum distribution in Bose-Einstein condensates of highly magnetic erbium atoms, revealing the existence of the long-sought roton mode. Following an interaction quench, the roton mode manifests itself with the appearance of symmetric peaks at well-defined finite momentum. The roton momentum follows the predicted geometrical scaling with the inverse of the confinement length along the magnetization axis. From the growth of the roton population, we probe the roton softening of the excitation spectrum in time and extract the corresponding imaginary roton gap. Our results provide a further step in the quest towards supersolidity in dipolar quantum gases13.
Strong polygamy of quantum correlations in multi-party quantum systems
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2014-10-01
We propose a new type of polygamy inequality for multi-party quantum entanglement. We first consider the possible amount of bipartite entanglement distributed between a fixed party and any subset of the rest parties in a multi-party quantum system. By using the summation of these distributed entanglements, we provide an upper bound of the distributed entanglement between a party and the rest in multi-party quantum systems. We then show that this upper bound also plays as a lower bound of the usual polygamy inequality, therefore the strong polygamy of multi-party quantum entanglement. For the case of multi-party pure states, we further show that the strong polygamy of entanglement implies the strong polygamy of quantum discord.
High power, electrically tunable quantum cascade lasers
NASA Astrophysics Data System (ADS)
Slivken, Steven; Razeghi, Manijeh
2016-02-01
Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser.
A widely-tunable and sensitive optical sensor for multi-species detection in the mid-IR
NASA Astrophysics Data System (ADS)
Alquaity, Awad B. S.; Al-Saif, Bidoor; Farooq, Aamir
2018-01-01
Pulsed cavity ringdown spectroscopy (CRDS) technique was used to develop a novel widely-tunable laser-based sensor for sensitive measurements of ethylene, propene, 1-butene and allene in the mid-IR. The use of an external-cavity quantum cascade laser (EC-QCL) enabled the sensor to cover a wide wavelength range from 10 to 11.1 µm (900-1000 cm-1) to detect multiple gases relevant to combustion and environment. The sensor operation was validated in a room-temperature static cell using well-characterized absorption lines of carbon dioxide near 938.69 cm-1 and 974.62 cm-1. Detection limits for ethylene, propene, 1-butene, and allene were measured to be 17, 134, 754 and 378 ppb, respectively, at 296 K and 760 Torr for a single-pass path-length of 70 cm with averaging time of 4 ms. The excellent sensitivity of the optical sensor enabled it to measure the aforementioned gases at levels smaller than 1% of their recommended exposure limits. To the best of our knowledge, this is one of the first successful applications of the pulsed CRDS technique to measure trace levels of multiple gases in the 10-11 µm wavelength region.
Experimental studies and model analysis of noble gas fractionation in porous media
Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.
2016-01-01
The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.
NASA Astrophysics Data System (ADS)
Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu
2017-08-01
Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.
Progress towards ultracold gases in arbitrary 2D potentials
NASA Astrophysics Data System (ADS)
Corcovilos, Theodore
2016-05-01
We describe our progress in building an apparatus for investigating degenerate quantum gases of potassium in arbitrary two-dimensional optical potentials. The optical potentials are created by holographic projection of an image created using a MEMS mirror array. Systems we would like to study with this experiment are quantum simulations of bosons and fermions at crystal heterojunctions and systems with well defined boundaries, including topological edge states. Funding provided by the Charles E Kaufman Foundation, a part of the Pittsburgh Foundation.
Negative specific heat with trapped ultracold quantum gases
NASA Astrophysics Data System (ADS)
Strzys, M. P.; Anglin, J. R.
2014-01-01
The second law of thermodynamics normally prescribes that heat tends to disperse, but in certain cases it instead implies that heat will spontaneously concentrate. The spontaneous formation of stars out of cold cosmic nebulae, without which the universe would be dark and dead, is an example of this phenomenon. Here we show that the counter-intuitive thermodynamics of spontaneous heat concentration can be studied experimentally with trapped quantum gases, by using optical lattice potentials to realize weakly coupled arrays of simple dynamical subsystems, so that under the standard assumptions of statistical mechanics, the behavior of the whole system can be predicted from ensemble properties of the isolated components. A naive application of the standard statistical mechanical formalism then identifies the subsystem excitations as heat in this case, but predicts them to share the peculiar property of self-gravitating protostars, of having negative micro-canonical specific heat. Numerical solution of real-time evolution equations confirms the spontaneous concentration of heat in such arrays, with initially dispersed energy condensing quickly into dense ‘droplets’. Analysis of the nonlinear dynamics in adiabatic terms allows it to be related to familiar modulational instabilities. The model thus provides an example of a dictionary mesoscopic system, in which the same non-trivial phenomenon can be understood in both thermodynamical and mechanical terms.
Challenge for more precise e- and ion-transport in gases and liquids
NASA Astrophysics Data System (ADS)
White, Ron
2016-09-01
The full potential of technologies driven by non-equilibrium electron and ion processes in gases, liquids and soft-matter can only be realised once the basic physics has been mastered. The central component in this pursuit is an ever increasing need for the precise determination of electron and ion transport in such media. Over the last few decades, the group at James Cook University and collaborators have developed a suite of multi-term Boltzmann equation solutions to treat temporal and spatial non-locality for electrons and ions in electric and magnetic fields in gaseous systems. In this presentation, we will highlight recent developments including (i) a space-time multi-term solution of Boltzmann's equation; (ii) a unified treatment of electron and ion solutions of Boltzmann's equation which avoids mass ratio expansions; (iii) the treatment dense gases and liquids, including coherent scattering, screened potentials and (self) trapped bubble state effects, the latter of which can give rise to fractional transport behaviour, and (iv) the application to consider the self-consistency of cross-sections for electrons in biomolecules. Contributors: G. Boyle, P. Stokes, M. Casey, N. Garland, D. Cocks, D. Konovalov, S. Dujko, R. E. Robson, K. F. Ness, M. Brunger, S. Buckman, J. de Urquijo and Z. Lj. Petrovic. Support: Australian Research Council.
Multi-dimensional quantum state sharing based on quantum Fourier transform
NASA Astrophysics Data System (ADS)
Qin, Huawang; Tso, Raylin; Dai, Yuewei
2018-03-01
A scheme of multi-dimensional quantum state sharing is proposed. The dealer performs the quantum SUM gate and the quantum Fourier transform to encode a multi-dimensional quantum state into an entanglement state. Then the dealer distributes each participant a particle of the entanglement state, to share the quantum state among n participants. In the recovery, n-1 participants measure their particles and supply their measurement results; the last participant performs the unitary operation on his particle according to these measurement results and can reconstruct the initial quantum state. The proposed scheme has two merits: It can share the multi-dimensional quantum state and it does not need the entanglement measurement.
Degenerate quantum gases with spin-orbit coupling: a review.
Zhai, Hui
2015-02-01
This review focuses on recent developments in synthetic spin-orbit (SO) coupling in ultracold atomic gases. Two types of SO coupling are discussed. One is Raman process induced coupling between spin and motion along one of the spatial directions and the other is Rashba SO coupling. We emphasize their common features in both single-particle and two-body physics and the consequences of both in many-body physics. For instance, single particle ground state degeneracy leads to novel features of superfluidity and a richer phase diagram; increased low-energy density-of-state enhances interaction effects; the absence of Galilean invariance and spin-momentum locking gives rise to intriguing behaviours of superfluid critical velocity and novel quantum dynamics; and the mixing of two-body singlet and triplet states yields a novel fermion pairing structure and topological superfluids. With these examples, we show that investigating SO coupling in cold atom systems can, enrich our understanding of basic phenomena such as superfluidity, provide a good platform for simulating condensed matter states such as topological superfluids and more importantly, result in novel quantum systems such as SO coupled unitary Fermi gas and high spin quantum gases. Finally we also point out major challenges and some possible future directions.
Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Lianyi; Lu, Haifeng; Cao, Gaoqing
2015-08-14
We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show thatmore » the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length a B to the fermion scattering length a 2D. We find a B ≃ 0.56a 2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.« less
NASA Technical Reports Server (NTRS)
Roth, J. P.
1972-01-01
Methods for development of logic design together with algorithms for failure testing, a method for design of logic for ultra-large-scale integration, extension of quantum calculus to describe the functional behavior of a mechanism component-by-component and to computer tests for failures in the mechanism using the diagnosis algorithm, and the development of an algorithm for the multi-output 2-level minimization problem are discussed.
First-order intervalley scattering in low-dimensional systems
NASA Astrophysics Data System (ADS)
Monsef, Florian; Dollfus, Philippe; Galdin, Sylvie; Bournel, Arnaud
2002-06-01
The intervalley phonon scattering rate in one- and two-dimensional electron gases is calculated for the case in which the transition matrix element is of first order in the phonon wave vector. This type of interaction is important in silicon at low temperature. The interaction between electrons and bulk phonons is considered in the standard golden rule approach by including the contribution of the components of phonon wave vector in the confinement direction(s). This process makes possible the transition between different subbands, and the resulting total scattering rate differs significantly from the rate commonly used in Si quantum wells.
Exploring the nonequilibrium dynamics of ultracold quantum gases by using numerical tools
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian
Numerical tools such as exact diagonalization or the density matrix renormalization group method have been vital for the study of the nonequilibrium dynamics of strongly correlated many-body systems. Moreover, they provided unique insight for the interpretation of quantum gas experiments, whenever a direct comparison with theory is possible. By considering the example of the experiment by Ronzheimer et al., in which both an interaction quench and the release of bosons from a trap into an empty optical lattice (sudden expansion) was realized, I discuss several nonequilibrium effects of strongly interacting quantum gases. These include the thermalization of a closed quantum system and its connection to the eigenstate thermalization hypothesis, nonequilibrium mass transport, dynamical fermionization, and transient phenomena such as quantum distillation or dynamical quasicondensation. I highlight the role of integrability in giving rise to ballistic transport in strongly interacting 1D systems and in determining the asymptotic state after a quantum quench. The talk concludes with a perspective on open questions concerning 2D systems and the numerical simulation of their nonequilibrium dynamics. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 801.
Studying non-equilibrium many-body dynamics using one-dimensional Bose gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langen, Tim; Gring, Michael; Kuhnert, Maximilian
2014-12-04
Non-equilibrium dynamics of isolated quantum many-body systems play an important role in many areas of physics. However, a general answer to the question of how these systems relax is still lacking. We experimentally study the dynamics of ultracold one-dimensional (1D) Bose gases. This reveals the existence of a quasi-steady prethermalized state which differs significantly from the thermal equilibrium of the system. Our results demonstrate that the dynamics of non-equilibrium quantum many-body systems is a far richer process than has been assumed in the past.
Experiments with Ultracold Quantum-degenerate Fermionic Lithium Atoms
NASA Technical Reports Server (NTRS)
Ketterle, Wolfgang
2003-01-01
Experimental methods of laser and evaporative cooling, used in the production of atomic Bose-Einstein condensates have recently been extended to realize quantum degeneracy in trapped Fermi gases. Fermi gases are a new rich system to explore the implications of Pauli exclusion on scattering properties of the system, and ultimately fermionic superfluidity. We have produced a new macroscopic quantum system, in which a degenerate Li-6 Fermi gas coexists with a large and stable Na-23 BEC. This was accomplished using inter-species sympathetic cooling of fermionic 6Li in a thermal bath of bosonic Na-23. We have achieved high numbers of both fermions (less than 10(exp 5) and bosons (less than 10(exp 6), and Li-6 quantum degeneracy corresponding to one half of the Fermi temperature. This is the first time that a Fermi sea was produced with a condensate as a "refrigerator".
NASA Astrophysics Data System (ADS)
Mamun, A. A.
2017-10-01
The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.
Multi-species trace gas sensing with dual-wavelength QCLs
NASA Astrophysics Data System (ADS)
Hundt, P. Morten; Tuzson, Béla; Aseev, Oleg; Liu, Chang; Scheidegger, Philipp; Looser, Herbert; Kapsalidis, Filippos; Shahmohammadi, Mehran; Faist, Jérôme; Emmenegger, Lukas
2018-06-01
Instrumentation for environmental monitoring of gaseous pollutants and greenhouse gases tends to be complex, expensive, and energy demanding, because every compound measured relies on a specific analytical technique. This work demonstrates an alternative approach based on mid-infrared laser absorption spectroscopy with dual-wavelength quantum cascade lasers (QCLs). The combination of two dual- and one single-DFB QCL yields high-precision measurements of CO (0.08 ppb), CO2 (100 ppb), NH3 (0.02 ppb), NO (0.4 ppb), NO2 (0.1 ppb), N2O (0.045 ppb), and O3 (0.11 ppb) simultaneously in a compact setup (45 × 45 cm2). The lasers are driven time-multiplexed in intermittent continuous wave mode with a repetition rate of 1 kHz. The individual spectra are real-time averaged (1 s) by an FPGA-based data acquisition system. The instrument was assessed for environmental monitoring and benchmarked with reference instrumentation to demonstrate its potential for compact multi-species trace gas sensing.
Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing
NASA Astrophysics Data System (ADS)
Yu, Kun-Fei; Gu, Jun; Hwang, Tzonelih; Gope, Prosanta
2017-08-01
This paper proposes a multi-party semi-quantum secret sharing (MSQSS) protocol which allows a quantum party (manager) to share a secret among several classical parties (agents) based on GHZ-like states. By utilizing the special properties of GHZ-like states, the proposed scheme can easily detect outside eavesdropping attacks and has the highest qubit efficiency among the existing MSQSS protocols. Then, we illustrate an efficient way to convert the proposed MSQSS protocol into a multi-party semi-quantum key distribution (MSQKD) protocol. The proposed approach is even useful to convert all the existing measure-resend type of semi-quantum secret sharing protocols into semi-quantum key distribution protocols.
The triel bond: a potential force for tuning anion-π interactions
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Mousavian, Parisasadat
2018-02-01
Using ab-initio calculations, the mutual influence between anion-π and B···N or B···C triel bond interactions is investigated in some model complexes. The properties of these complexes are studied by molecular electrostatic potential, noncovalent interaction index, quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. According to the results, the formation of B···N or B···C triel bond interactions in the multi-component systems makes a significant shortening of anion-π distance. Such remarkable variation in the anion-π distances has not been reported previously. The strengthening of the anion-π bonding in the multi-component systems depend significantly on the nature of the anion, and it becomes larger in the order Br- > Cl- > F-. The parameters derived from the QTAIM and NBO methodologies are used to study the mechanism of the cooperativity between the anion-π and triel bond interactions in the multi-component complexes.
Wen, Li; Lin, Yi; Zhang, Zhi-Ling; Lu, Wen; Lv, Cheng; Chen, Zhi-Liang; Wang, Han-Zhong; Pang, Dai-Wen
2016-08-01
Envelope, capsid and nucleic acids are key viral components that are all involved in crucial events during virus infection. Thus simultaneous labeling of these key components is an indispensable prerequisite for monitoring comprehensive virus infection process and dissecting virus infection mechanism. Baculovirus was genetically tagged with biotin on its envelope protein GP64 and enhanced green fluorescent protein (EGFP) on its capsid protein VP39. Spodoptera frugiperda 9 (Sf9) cells were infected by the recombinant baculovirus and subsequently fed with streptavidin-conjugated quantum dots (SA-QDs) and cell-permeable nucleic acids dye SYTO 82. Just by genetic engineering and virus propagation, multi-labeling of envelope, capsid and nucleic acids was spontaneously accomplished during virus inherent self-assembly process, significantly simplifying the labeling process while maintaining virus infectivity. Intracellular dissociation and transportation of all the key viral components, which was barely reported previously, was real-time monitored based on the multi-labeling approach, offering opportunities for deeply understanding virus infection and developing anti-virus treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
Dynamically protected cat-qubits: a new paradigm for universal quantum computation
NASA Astrophysics Data System (ADS)
Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V.; Touzard, Steven; Schoelkopf, Robert J.; Jiang, Liang; Devoret, Michel H.
2014-04-01
We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner.
The influence of selective chemical doping on clean, low-carrier density SiC epitaxial graphene
NASA Astrophysics Data System (ADS)
Chuang, Chiashain; Yang, Yanfei; Huang, Lung-I.; Liang, Chi-Te; Elmquist, Randolph E.; National Institute of of Standards; Technology Collaboration; National Taiwan University, Department of Physics Collaboration
2015-03-01
The charge-transfer effect of ambient air on magneto-transport in polymer-free SiC graphene was investigated. Interestingly, adsorption of atmospheric gas molecules on clean epitaxial graphene can reduce the carrier density to near charge neutrality, allowing observation of highly precise v = 2 quantum Hall plateaus. The atmospheric adsorbates were reproducibly removed and pure gases (N2, O2, CO2, H2O) were used to form new individual adsorbates on SiC graphene. Our experimental results (τt/τq ~ 2) support the theoretical predictions for the ratio of transport relaxation time τt to quantum lifetime τq in clean graphene. The analysis of Shubnikov-de Haas oscillations at intermediate doping levels indicates that the carrier scattering is reduced by water and oxygen so as to increase both the classical and quantum mobility. This study points to the key dopant gases in ambient air and also paves the way towards extremely precise quantized Hall resistance standards in epitaxial graphene systems with carrier density tuned by exposure to highly pure gases and vacuum annealing treatment. National Institute of Standard and Technology.
Unconditionally secure multi-party quantum commitment scheme
NASA Astrophysics Data System (ADS)
Wang, Ming-Qiang; Wang, Xue; Zhan, Tao
2018-02-01
A new unconditionally secure multi-party quantum commitment is proposed in this paper by encoding the committed message to the phase of a quantum state. Multi-party means that there are more than one recipient in our scheme. We show that our quantum commitment scheme is unconditional hiding and binding, and hiding is perfect. Our technique is based on the interference of phase-encoded coherent states of light. Its security proof relies on the no-cloning theorem of quantum theory and the properties of quantum information.
NASA Astrophysics Data System (ADS)
Delgado, Francisco
2017-12-01
Quantum information processing should be generated through control of quantum evolution for physical systems being used as resources, such as superconducting circuits, spinspin couplings in ions and artificial anyons in electronic gases. They have a quantum dynamics which should be translated into more natural languages for quantum information processing. On this terrain, this language should let to establish manipulation operations on the associated quantum information states as classical information processing does. This work shows how a kind of processing operations can be settled and implemented for quantum states design and quantum processing for systems fulfilling a SU(2) reduction in their dynamics.
Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei
2015-01-01
Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors’ resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors. PMID:26569245
Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei
2015-11-11
Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors' resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors.
NASA Astrophysics Data System (ADS)
Tajima, Hiroyuki; Hatsuda, Tetsuo; Ohashi, Yoji
2018-03-01
We investigate an asymmetric nuclear matter consisting of protons and neutrons with spin degrees of freedom (σ = ↑, ↓). By generalizing the Nozières and Schmitt-Rink theory for two-component Fermi gases to the four-component case, we analyze the critical temperature T c of the superfluid phase transition. Although the pure neutron matter exhibits the dineutron condensation in the low-density region, the superfluid instability toward the deuteron condensation is found to take place as the proton fraction increases. We clarify the mechanism of the competition between the deuteron condensation and dineutron condensation. Our results would serve for understanding the properties of asymmetric nuclear matter realized in the interior of neutron stars.
Equilibrium properties of dense hydrogen isotope gases based on the theory of simple fluids.
Kowalczyk, Piotr; MacElroy, J M D
2006-08-03
We present a new method for the prediction of the equilibrium properties of dense gases containing hydrogen isotopes. The proposed approach combines the Feynman-Hibbs effective potential method and a deconvolution scheme introduced by Weeks et al. The resulting equations of state and the chemical potentials as functions of pressure for each of the hydrogen isotope gases depend on a single set of Lennard-Jones parameters. In addition to its simplicity, the proposed method with optimized Lennard-Jones potential parameters accurately describes the equilibrium properties of hydrogen isotope fluids in the regime of moderate temperatures and pressures. The present approach should find applications in the nonlocal density functional theory of inhomogeneous quantum fluids and should also be of particular relevance to hydrogen (clean energy) storage and to the separation of quantum isotopes by novel nanomaterials.
Multi-component testing using HZ-PAN and AgZ-PAN Sorbents for OSPREY Model validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garn, Troy G.; Greenhalgh, Mitchell; Lyon, Kevin L.
2015-04-01
In efforts to further develop the capability of the Off-gas SeParation and RecoverY (OSPREY) model, multi-component tests were completed using both HZ-PAN and AgZ-PAN sorbents. The primary purpose of this effort was to obtain multi-component xenon and krypton capacities for comparison to future OSPREY predicted multi-component capacities using previously acquired Langmuir equilibrium parameters determined from single component isotherms. Experimental capacities were determined for each sorbent using two feed gas compositions of 1000 ppmv xenon and 150 ppmv krypton in either a helium or air balance. Test temperatures were consistently held at 220 K and the gas flowrate was 50 sccm.more » Capacities were calculated from breakthrough curves using TableCurve® 2D software by Jandel Scientific. The HZ-PAN sorbent was tested in the custom designed cryostat while the AgZ-PAN was tested in a newly installed cooling apparatus. Previous modeling validation efforts indicated the OSPREY model can be used to effectively predict single component xenon and krypton capacities for both engineered form sorbents. Results indicated good agreement with the experimental and predicted capacity values for both krypton and xenon on the sorbents. Overall, the model predicted slightly elevated capacities for both gases which can be partially attributed to the estimation of the parameters and the uncertainty associated with the experimental measurements. Currently, OSPREY is configured such that one species adsorbs and one does not (i.e. krypton in helium). Modification of OSPREY code is currently being performed to incorporate multiple adsorbing species and non-ideal interactions of gas phase species with the sorbent and adsorbed phases. Once these modifications are complete, the sorbent capacities determined in the present work will be used to validate OSPREY multicomponent adsorption predictions.« less
Experimental formation of a fractional vortex in a superconducting bi-layer
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Yamamori, H.; Yanagisawa, T.; Nishio, T.; Arisawa, S.
2018-05-01
We report the experimental formation of a fractional vortex generated by using a thin superconducting bi-layer in the form of a niobium bi-layer, observed as a magnetic flux distribution image taken by a scanning superconducting quantum interference device (SQUID) microscope. Thus, we demonstrated that multi-component superconductivity can be realized by an s-wave conventional superconductor, because, in these superconductors, the magnetic flux is no longer quantized as it is destroyed by the existence of an inter-component phase soliton (i-soliton).
ATMOS: Simulating molecular spectra towards the remote detection of biosignature gases
NASA Astrophysics Data System (ADS)
Sousa-Silva, Clara; Petkowski, Janusz; Seager, Sara
2018-01-01
The ability to identify molecules within spectral data is of importance for a variety of academic and industrial uses, in particular for the spectroscopic detection of life. A comprehensive analysis of any observational spectra requires information about the spectrum of each of its molecular components. However, knowledge of molecular spectra currently only exists for a few hundred molecules and, other than a handful of exceptions (e.g. water, NH3), most of their spectra are incomplete. Given the relatively low level of accuracy that observations often require, there is value in creating approximate models for the spectra of molecules, particularly for those about which we know very little or nothing at all. ATMOS (Approximate Theoretical MOlecular Spectra) can quickly provide spectral information for any given molecule, using a combination of experimental measurements, organic chemistry and quantum mechanics. ATMOS 1.0, presented here, can identify volatile molecules with significant spectral features in any given wavelength window within the infrared region and provide approximate spectra for thousands of gases.
Scappucci, G; Klesse, W M; Hamilton, A R; Capellini, G; Jaeger, D L; Bischof, M R; Reidy, R F; Gorman, B P; Simmons, M Y
2012-09-12
Stacking of two-dimensional electron gases (2DEGs) obtained by δ-doping of Ge and patterned by scanning probe lithography is a promising approach to realize ultrascaled 3D epitaxial circuits, where multiple layers of active electronic components are integrated both vertically and horizontally. We use atom probe tomography and magnetotransport to correlate the real space 3D atomic distribution of dopants in the crystal with the quantum correction to the conductivity observed at low temperatures, probing if closely stacked δ-layers in Ge behave as independent 2DEGs. We find that at a separation of 9 nm the stacked-2DEGs, while interacting, still maintain their individuality in terms of electron transport and show long phase coherence lengths (∼220 nm). Strong vertical electron confinement is crucial to this finding, resulting in an interlayer scattering time much longer (∼1000 × ) than the scattering time within the dopant plane.
Analysis of Trace Gas Mixtures Using an External Cavity Quantum Cascade Laser Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Taubman, Matthew S.; Brumfield, Brian E.
2015-07-01
We measure and analyze mixtures of trace gases at ppb-ppm levels using an external cavity quantum cascade laser sensor with a 1-second response time. Accurate spectral fits are obtained in the presence of overlapping spectra.
Bose and Fermi Gases of Ultracold Ytterbium in a Triangular Optical Lattice
NASA Astrophysics Data System (ADS)
Thobe, Alexander; Doerscher, Soeren; Hundt, Bastian; Kochanke, Andre; Becker, Christoph; Sengstock, Klaus
2013-05-01
Quantum gases of alkaline-earth like atoms such as Calcium, Strontium and Ytterbium (Yb) open up exciting new possibilities for the study of many body physics in optical lattices, ranging from SU(N) symmetric spin Hamiltonians to the Kondo Lattice Model. Here, we present experimental studies of ultracold bosonic and fermionic Yb quantum gases. Unlike other experiments studying ultracold alkaline earth-like atoms, we have implemented a 2D-MOT instead of a Zeeman slower as a source of cold atoms. From the 2D-MOT, operating on the broad 1S0 -->1P1 transtition, the atoms are directly loaded into the 3D-MOT operating on a narrow intercombination line. The atoms are then evaporatively cooled to quantum degeneracy in a crossed optical dipole trap. With this setup we routinely produce BECs and degenerate Fermi gases of different Yb isotopes. Moreover, we present first results on spectroscopy of an interacting fermi gas on the ultranarrow 1S0 -->3P0 clock transition in a magic wavelength optical lattice. In future experiments, this spectroscopy will serve as a versatile tool for interaction sensing and selective addressing of atoms in a wavelength tunable, state dependent, triangular optical lattice, which we are currently implementing. This work is supported by DFG within SFB 925 and GrK 1355, as well as EU FETOpen (iSense).
NASA Astrophysics Data System (ADS)
Yu, Yi-Cong; Guan, Xi-Wen
2017-06-01
We present a unified derivation of the pressure equation of states, thermodynamics and scaling functions for the one-dimensional (1D) strongly attractive Fermi gases with SU(w) symmetry. These physical quantities provide a rigorous understanding on a universality class of quantum criticality characterized by the critical exponents z = 2 and correlation length exponent ν = 1/2. Such a universality class of quantum criticality can occur when the Fermi sea of one branch of charge bound states starts to fill or becomes gapped at zero temperature. The quantum critical cone can be determined by the double peaks in specific heat, which serve to mark two crossover temperatures fanning out from the critical point. Our method opens to further study on quantum phases and phase transitions in strongly interacting fermions with large SU(w) and non-SU(w) symmetries in one dimension. Supported by the National Natural Science Foundation of China under Grant No 11374331 and the key NSFC under Grant No 11534014. XWG has been partially supported by the Australian Research Council.
Formation of a Spin Texture in a Quantum Gas Coupled to a Cavity
NASA Astrophysics Data System (ADS)
Landini, M.; Dogra, N.; Kroeger, K.; Hruby, L.; Donner, T.; Esslinger, T.
2018-06-01
We observe cavity mediated spin-dependent interactions in an off-resonantly driven multilevel atomic Bose-Einstein condensate that is strongly coupled to an optical cavity. Applying a driving field with adjustable polarization, we identify the roles of the scalar and the vectorial components of the atomic polarizability tensor for single and multicomponent condensates. Beyond a critical strength of the vectorial coupling, we infer the formation of a spin texture in a condensate of two internal states from the analysis of the cavity output field. Our work provides perspectives for global dynamical gauge fields and self-consistently spin-orbit coupled gases.
Compact mode-locked diode laser system for high precision frequency comparisons in microgravity
NASA Astrophysics Data System (ADS)
Christopher, H.; Kovalchuk, E. V.; Wicht, A.; Erbert, G.; Tränkle, G.; Peters, A.
2017-11-01
Nowadays cold atom-based quantum sensors such as atom interferometers start leaving optical labs to put e.g. fundamental physics under test in space. One of such intriguing applications is the test of the Weak Equivalence Principle, the Universality of Free Fall (UFF), using different quantum objects such as rubidium (Rb) and potassium (K) ultra-cold quantum gases. The corresponding atom interferometers are implemented with light pulses from narrow linewidth lasers emitting near 767 nm (K) and 780 nm (Rb). To determine any relative acceleration of the K and Rb quantum ensembles during free fall, the frequency difference between the K and Rb lasers has to be measured very accurately by means of an optical frequency comb. Micro-gravity applications not only require good electro-optical characteristics but are also stringent in their demand for compactness, robustness and efficiency. For frequency comparison experiments the rather complex fiber laser-based frequency comb system may be replaced by one semiconductor laser chip and some passive components. Here we present an important step towards this direction, i.e. we report on the development of a compact mode-locked diode laser system designed to generate a highly stable frequency comb in the wavelength range of 780 nm.
NASA Astrophysics Data System (ADS)
Mao, Shide; Lü, Mengxin; Shi, Zeming
2017-12-01
A general equation of state (EOS) explicit in Helmholtz free energy has been developed to predict the pressure-volume-temperature-composition (PVTx) and vapor-liquid equilibrium (VLE) properties of the CH4-C2H6-C3H8-CO2-N2 fluid mixtures (main components of natural gases). This EOS, which is a function of temperature, density and composition, with four mixing parameters used, is based on the improved EOS of Sun and Ely (2004) for the pure components (CH4, C2H6, C3H8, CO2 and N2) and contains a simple generalized departure function presented by Lemmon and Jacobsen (1999). Comparison with the experimental data available indicates that the EOS can calculate the PVTx and VLE properties of the CH4-C2H6-C3H8-CO2-N2 fluid mixtures within or close to experimental uncertainties up to 623 K and 1000 bar within full range of composition. Isochores of the CH4-C2H6-C3H8-CO2-N2 system can be directly calculated from this EOS to interpret the corresponding microthermometric and Raman analysis data of fluid inclusions. The general EOS can calculate other thermodynamic properties if the ideal Helmholtz free energy of fluids is combined, and can also be extended to the multi-component natural gases including the secondary alkanes (carbon number above three) and none-alkane components such as H2S, SO2, O2, CO, Ar and H2O. This part of work will be finished in the near future.
Revealing the dark side of a bright exciton–polariton condensate
Ménard, J. -M.; Poellmann, C.; Porer, M.; Leierseder, U.; Galopin, E.; Lemaître, A.; Amo, A.; Bloch, J.; Huber, R.
2014-01-01
Condensation of bosons causes spectacular phenomena such as superfluidity or superconductivity. Understanding the nature of the condensed particles is crucial for active control of such quantum phases. Fascinating possibilities emerge from condensates of light–matter-coupled excitations, such as exciton–polaritons, photons hybridized with hydrogen-like bound electron–hole pairs. So far, only the photon component has been resolved, while even the mere existence of excitons in the condensed regime has been challenged. Here we trace the matter component of polariton condensates by monitoring intra-excitonic terahertz transitions. We study how a reservoir of optically dark excitons forms and feeds the degenerate state. Unlike atomic gases, the atom-like transition in excitons is dramatically renormalized on macroscopic ground state population. Our results establish fundamental differences between polariton condensation and photon lasing and open possibilities for coherent control of condensates. PMID:25115964
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases
NASA Astrophysics Data System (ADS)
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
PsiQuaSP-A library for efficient computation of symmetric open quantum systems.
Gegg, Michael; Richter, Marten
2017-11-24
In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.
Proximity effects in cold gases of multiply charged atoms (Review)
NASA Astrophysics Data System (ADS)
Chikina, I.; Shikin, V.
2016-07-01
Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) < 0, which is regarded as a long-range interaction in gases. For the noble gases argon, krypton, and xenon Eproxi>0 and for the alkali and alkaline-earth elements Eproxi < 0. At finite temperatures, TF statistics manifests a new, anomalously large proximity effect, which reflects the tendency of electrons localized at Coulomb centers to escape into the continuum spectrum. The properties of thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for problems involving Eproxi. Here we are speaking of one or more sharp boundaries formed by the ionic component of a many-particle problem. These may be a metal-vacuum boundary in a standard Casimir cell in a study of the vacuum properties in the 2l gap between conducting media of different kinds or different layered systems (quantum wells) in semiconductors, etc. As the mobile part of the equilibrium near a sharp boundary, electrons can (should) escape beyond the confines of the ion core into a gap 2l with a probability that depends, among other factors, on the properties of Eproxi for the electron cloud inside the conducting walls of the Casimir cell (quantum well). The analog of the Casimir sandwich in semiconductors is the widely used multilayer heterostructures referred to as quantum wells of width 2l with sides made of suitable doped materials, which ensure statistical equilibrium exchange of electrons between the layers of the multilayer structure. The thermal component of the proximity effects in semiconducting quantum wells provides an idea of many features of the dissociation process in doped semiconductors. In particular, a positive Eproxi > 0 (relative to the bottom of the conduction band) indicates that TF donors with a finite density nd ≠ 0 form a degenerate, semiconducting state in the semiconductor. At zero temperature, there is a finite density of free carriers which increases with a power-law dependence on T.
Equation of state of the one- and three-dimensional Bose-Bose gases
NASA Astrophysics Data System (ADS)
Chiquillo, Emerson
2018-06-01
We calculate the equation of state of Bose-Bose gases in one and three dimensions in the framework of an effective quantum field theory. The beyond-mean-field approximation at zero temperature and the one-loop finite-temperature results are obtained performing functional integration on a local effective action. The ultraviolet divergent zero-point quantum fluctuations are removed by means of dimensional regularization. We derive the nonlinear Schrödinger equation to describe one- and three-dimensional Bose-Bose mixtures and solve it analytically in the one-dimensional scenario. This equation supports self-trapped brightlike solitonic droplets and self-trapped darklike solitons. At low temperature, we also find that the pressure and the number of particles of symmetric quantum droplets have a nontrivial dependence on the chemical potential and the difference between the intra- and the interspecies coupling constants.
Multi-excitonic emission from Stranski-Krastanov GaN/AlN quantum dots inside a nanoscale tip
NASA Astrophysics Data System (ADS)
Mancini, L.; Moyon, F.; Houard, J.; Blum, I.; Lefebvre, W.; Vurpillot, F.; Das, A.; Monroy, E.; Rigutti, L.
2017-12-01
Single-dot time-resolved micro-photoluminescence spectroscopy and correlated electron tomography (ET) have been performed on self-assembled GaN/AlN quantum dots isolated within a field-emission nanoscale tip by focused ion beam (FIB). Despite the effect of the FIB, the system conserves the capability of emitting light through multi-excitonic complexes. The optical spectroscopy data have then been correlated with the electronic structure and lifetime parameters that could be extracted using the structural parameters obtained by ET via a 6 band k.p model. A biexciton-exciton cascade could be identified and thoroughly analysed. The biexciton-exciton states exhibit a non-negligible polarization component along the [0001] polar crystal axis, indicating a significant valence band mixing, while the relationship between exciton energy and biexciton binding energy is consistent with a hybrid character of the biexciton.
Quantum simulation of strongly correlated condensed matter systems
NASA Astrophysics Data System (ADS)
Hofstetter, W.; Qin, T.
2018-04-01
We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.
Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network
NASA Astrophysics Data System (ADS)
Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen
2018-06-01
We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.
Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network
NASA Astrophysics Data System (ADS)
Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen
2018-02-01
We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.
Flat nonlinear optics: metasurfaces for efficient frequency mixing
NASA Astrophysics Data System (ADS)
Nookala, Nishant; Lee, Jongwon; Liu, Yingnan; Bishop, Wells; Tymchenko, Mykhailo; Gomez-Diaz, J. Sebastian; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus-Christian; Wolf, Omri; Brener, Igal; Alu, Andrea; Belkin, Mikhail A.
2017-02-01
Gradient metasurfaces, or ultrathin optical components with engineered transverse impedance gradients along the surface, are able to locally control the phase and amplitude of the scattered fields over subwavelength scales, enabling a broad range of linear components in a flat, integrable platform1-4. On the contrary, due to the weakness of their nonlinear optical responses, conventional nonlinear optical components are inherently bulky, with stringent requirements associated with phase matching and poor control over the phase and amplitude of the generated beam. Nonlinear metasurfaces have been recently proposed to enable frequency conversion in thin films without phase-matching constraints and subwavelength control of the local nonlinear phase5-8. However, the associated optical nonlinearities are far too small to produce significant nonlinear conversion efficiency and compete with conventional nonlinear components for pump intensities below the materials damage threshold. Here, we report multi-quantum-well based gradient nonlinear metasurfaces with second-order nonlinear susceptibility over 106 pm/V for second harmonic generation at a fundamental pump wavelength of 10 μm, 5-6 orders of magnitude larger than traditional crystals. Further, we demonstrate the efficacy of this approach to designing metasurfaces optimized for frequency conversion over a large range of wavelengths, by reporting multi-quantum-well and metasurface structures optimized for a pump wavelength of 6.7 μm. Finally, we demonstrate how the phase of this nonlinearly generated light can be locally controlled well below the diffraction limit using the Pancharatnam-Berry phase approach5,7,9, opening a new paradigm for ultrathin, flat nonlinear optical components.
Synthetic Spin-Orbit and Light Field Coupling in Ultra-cold Quantum Gases
NASA Astrophysics Data System (ADS)
Dong, Lin
Ultra-cold quantum gases subjected to light-induced synthetic gauge potentials have become an emergent field of theoretical and experimental studies. Because of the novel application of two-photon Raman transitions, ultra-cold neutral atoms behave like charged particles in magnetic field. The Raman coupling naturally gives rise to an effective spin-orbit interaction which couples the atoms center-of-mass motion to its selected pseudo-spin degrees of freedom. Combined with unprecedented controllability of interactions, geometry, disorder strength, spectroscopy, and high resolution measurement of momentum distribution, etc., we are truly in an exciting era of fulfilling and going beyond Richard Feynman's vision. of realizing quantum simulators to better understand the quantum mechanical nature of the universe, manifested immensely in the ultra-cold regimes. In this dissertation, we present a collection of theoretical progresses made by the doctoral candidate and his colleagues and collaborators. From the past few years of work, we mainly address three aspects of the synthetic spin-orbit and light field induced coupling in ultracold quantum gases: a) The ground-state physics of singleparticle system, two-body bound states, and many-body systems, all of which are subjected to spin-orbit coupling originated from synthetic gauge potentials; b) The symmetry breaking, topological phase transition and quench dynamics, which are conveniently offered by the realized experimental setup; c) The proposal and implications of light field induced dynamical spin-orbit coupling for atoms inside optical cavity. Our work represents an important advancement of theoretical understanding to the active research frontier of ultra-cold atom physics with spin-orbit coupling.
Tuning the Photon Statistics of a Strongly Coupled Nanophotonic System
NASA Astrophysics Data System (ADS)
Dory, C.; Fischer, K. A.; Müller, K.; Lagoudakis, K. G.; Sarmiento, T.; Rundquist, A.; Zhang, J. L.; Kelaita, Y.; Sapra, N. V.; Vučković, J.
Strongly coupled quantum-dot-photonic-crystal cavity systems provide a nonlinear ladder of hybridized light-matter states, which are a promising platform for non-classical light generation. The transmission of light through such systems enables light generation with tunable photon counting statistics. By detuning the frequencies of quantum emitter and cavity, we can tune the transmission of light to strongly enhance either single- or two-photon emission processes. However, these nanophotonic systems show a strongly dissipative nature and classical light obscures any quantum character of the emission. In this work, we utilize a self-homodyne interference technique combined with frequency-filtering to overcome this obstacle. This allows us to generate emission with a strong two-photon component in the multi-photon regime, where we measure a second-order coherence value of g (2) [ 0 ] = 1 . 490 +/- 0 . 034 . We propose rate equation models that capture the dominant processes of emission both in the single- and multi-photon regimes and support them by quantum-optical simulations that fully capture the frequency filtering of emission from our solid-state system. Finally, we simulate a third-order coherence value of g (3) [ 0 ] = 0 . 872 +/- 0 . 021 . Army Research Office (ARO) (W911NF1310309), National Science Foundation (1503759), Stanford Graduate Fellowship.
Spin Imbalanced Quasi-Two-Dimensional Fermi Gases
NASA Astrophysics Data System (ADS)
Ong, Willie C.
Spin-imbalanced Fermi gases serve as a testbed for fundamental notions and are efficient table-top emulators of a variety of quantum matter ranging from neutron stars, the quark-gluon plasma, to high critical temperature superconductors. A macroscopic quantum phenomenon which occurs in spin-imbalanced Fermi gases is that of phase separation; in three dimensions, a spin-balanced, fully-paired superfluid core is surrounded by an imbalanced normal-fluid shell, followed by a fully polarized shell. In one dimension, the behavior is reversed; a balanced phase appears outside a spin-imbalanced core. This thesis details the first density profile measurements and studies on spin-imbalanced quasi-2D Fermi gases, accomplished with high-resolution, rapid sequential spin-imaging. The measured cloud radii and central densities are in disagreement with mean-field Bardeen-Cooper-Schrieffer theory for a 2D system. Data for normal-fluid mixtures are well fit by a simple 2D polaron model of the free energy. Not predicted by the model is an observed phase transition to a spin-balanced central core above a critical polarisation.
Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua
2014-10-01
The generalized two-dimensional correlation spectroscopy and Fourier transform infrared were used to identify hydrocarbon isomers in the mixed gases for absorption spectra resolution enhancement. The Fourier transform infrared spectrum of n-butane and iso-butane and the two-dimensional correlation infrared spectrum of concentration perturbation were used for analysis as an example. The all band and the main absorption peak wavelengths of Fourier transform infrared spectrum for single component gas showed that the spectra are similar, and if they were mixed together, absorption peaks overlap and peak is difficult to identify. The synchronous and asynchronous spectrum of two-dimensional correlation spectrum can clearly identify the iso-butane and normal butane and their respective characteristic absorption peak intensity. Iso-butane has strong absorption characteristics spectrum lines at 2,893, 2,954 and 2,893 cm(-1), and n-butane at 2,895 and 2,965 cm(-1). The analysis result in this paper preliminary verified that the two-dimensional infrared correlation spectroscopy can be used for resolution enhancement in Fourier transform infrared spectrum quantitative analysis.
Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases
NASA Astrophysics Data System (ADS)
Zhang, Qi; Arikawa, Takashi; Kato, Eiji; Reno, John L.; Pan, Wei; Watson, John D.; Manfra, Michael J.; Zudov, Michael A.; Tokman, Mikhail; Erukhimova, Maria; Belyanin, Alexey; Kono, Junichiro
2014-07-01
We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem.
Thermodynamics and statistical mechanics. [thermodynamic properties of gases
NASA Technical Reports Server (NTRS)
1976-01-01
The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.
Zhao, Huaying; Fu, Yan; Glasser, Carla; Andrade Alba, Eric J; Mayer, Mark L; Patterson, George; Schuck, Peter
2016-01-01
The dynamic assembly of multi-protein complexes underlies fundamental processes in cell biology. A mechanistic understanding of assemblies requires accurate measurement of their stoichiometry, affinity and cooperativity, and frequently consideration of multiple co-existing complexes. Sedimentation velocity analytical ultracentrifugation equipped with fluorescence detection (FDS-SV) allows the characterization of protein complexes free in solution with high size resolution, at concentrations in the nanomolar and picomolar range. Here, we extend the capabilities of FDS-SV with a single excitation wavelength from single-component to multi-component detection using photoswitchable fluorescent proteins (psFPs). We exploit their characteristic quantum yield of photo-switching to imprint spatio-temporal modulations onto the sedimentation signal that reveal different psFP-tagged protein components in the mixture. This novel approach facilitates studies of heterogeneous multi-protein complexes at orders of magnitude lower concentrations and for higher-affinity systems than previously possible. Using this technique we studied high-affinity interactions between the amino-terminal domains of GluA2 and GluA3 AMPA receptors. DOI: http://dx.doi.org/10.7554/eLife.17812.001 PMID:27436096
Quantum noise in bright soliton matterwave interferometry
NASA Astrophysics Data System (ADS)
Haine, Simon A.
2018-03-01
There has been considerable recent interest in matterwave interferometry with bright solitons in quantum gases with attractive interactions, for applications such as rotation sensing. We model the quantum dynamics of these systems and find that the attractive interactions required for the presence of bright solitons causes quantum phase-diffusion, which severely impairs the sensitivity. We propose a scheme that partially restores the sensitivity, but find that in the case of rotation sensing, it is still better to work in a regime with minimal interactions if possible.
Work on the physics of ultracold atoms in Russia
NASA Astrophysics Data System (ADS)
Kolachevsky, N. N.; Taichenachev, A. V.
2018-05-01
In December 2017, the regular All-Russian Conference 'Physics of Ultracold Atoms' was held. Several tens of Russian scientists from major scientific centres of the country, as well as a number of leading foreign scientists took part in the Conference. The Conference topics covered a wide range of urgent problems: quantum metrology, quantum gases, waves of matter, spectroscopy, quantum computing, and laser cooling. This issue of Quantum Electronics publishes the papers reported at the conference and selected for the Journal by the Organising committee.
A New Quantum Proxy Multi-signature Scheme Using Maximally Entangled Seven-Qubit States
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Zhang, Jia-Fu; Liu, Jian; Li, Zeng-You
2016-02-01
In this paper, we propose a new secure quantum proxy multi-signature scheme using seven-qubit entangled quantum state as quantum channels, which may have applications in e-payment system, e-government, e-business, etc. This scheme is based on controlled quantum teleportation. The scheme uses the physical characteristics of quantum mechanics to guarantee its anonymity, verifiability, traceability, unforgetability and undeniability.
A Third-Party E-payment Protocol Based on Quantum Multi-proxy Blind Signature
NASA Astrophysics Data System (ADS)
Niu, Xu-Feng; Zhang, Jian-Zhong; Xie, Shu-Cui; Chen, Bu-Qing
2018-05-01
A third-party E-payment protocol is presented in this paper. It is based on quantum multi-proxy blind signature. Adopting the techniques of quantum key distribution, one-time pad and quantum multi-proxy blind signature, our third-party E-payment system could protect user's anonymity as the traditional E-payment systems do, and also have unconditional security which the classical E-payment systems can not provide. Furthermore, compared with the existing quantum E-payment systems, the proposed system could support the E-payment which using the third-party platforms.
Vacuum system design and tritium inventory for the TFTR charge exchange diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medley, S.S.
The charge exchange diagnostic for the TFTR is comprised of two analyzer systems which contain a total of twenty independent mass/energy analyzers and one diagnostic neutral beam tentatively rated at 80 keV, 15 A. The associated vacuum systems were analyzed using the Vacuum System Transient Simulator (VSTS) computer program which models the transient transport of multi-gas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced cost, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and ofmore » the diagnostic working gases to the torus.« less
Exotic topological density waves in cold atomic Rydberg-dressed fermions
Li, Xiaopeng; Sarma, S Das
2015-01-01
Versatile controllability of interactions in ultracold atomic and molecular gases has now reached an era where quantum correlations and unconventional many-body phases can be studied with no corresponding analogues in solid-state systems. Recent experiments in Rydberg atomic gases have achieved exquisite control over non-local interactions, allowing novel quantum phases unreachable with the usual local interactions in atomic systems. Here we study Rydberg-dressed atomic fermions in a three-dimensional optical lattice predicting the existence of hitherto unheard-of exotic mixed topological density wave phases. By varying the spatial range of the non-local interaction, we find various chiral density waves with spontaneous time-reversal symmetry breaking, whose quasiparticles form three-dimensional quantum Hall and Weyl semimetal states. Remarkably, certain density waves even exhibit mixed topologies beyond the existing topological classification. Our results suggest gapless fermionic states could exhibit far richer topology than previously expected. PMID:25972134
Quantum Proxy Multi-Signature Scheme Using Genuinely Entangled Six Qubits State
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei
2013-04-01
A quantum proxy multi-signature scheme is presented based on controlled teleportation. Genuinely entangled six qubits quantum state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. Quantum key distribution and one-time pad are adopted in our scheme, which could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.
Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeiffer, M., E-mail: mpfeiffer@irs.uni-stuttgart.de; Nizenkov, P., E-mail: nizenkov@irs.uni-stuttgart.de; Mirza, A., E-mail: mirza@irs.uni-stuttgart.de
2016-02-15
Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methodsmore » are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.« less
Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases
NASA Astrophysics Data System (ADS)
Pfeiffer, M.; Nizenkov, P.; Mirza, A.; Fasoulas, S.
2016-02-01
Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn's Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.
Multi-Hop Teleportation of an Unknown Qubit State Based on W States
NASA Astrophysics Data System (ADS)
Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-04-01
Quantum teleportation is important in quantum communication networks. Considering that quantum state information is also transmitted between two distant nodes, intermediated nodes are employed and two multi-hop teleportation protocols based on W state are proposed. One is hop-by-hop teleportation protocol and the other is the improved multi-hop teleportation protocol with centralized unitary transformation. In hop-by-hop protocol, the transmitted quantum state needs to be recovered at every node on the route. In improved multi-hop teleportation protocol with centralized unitary transformation, intermediate nodes need not to recover the transmitted quantum state. Compared to the hop-by-hop protocol, the improved protocol can reduce the transmission delay and improve the transmission efficiency.
NASA Astrophysics Data System (ADS)
Brennen, Gavin; Giacobino, Elisabeth; Simon, Christoph
2015-05-01
Quantum memories are essential for quantum information processing and long-distance quantum communication. The field has recently seen a lot of progress, and the present focus issue offers a glimpse of these developments, showing both experimental and theoretical results from many of the leading groups around the world. On the experimental side, it shows work on cold gases, warm vapors, rare-earth ion doped crystals and single atoms. On the theoretical side there are in-depth studies of existing memory protocols, proposals for new protocols including approaches based on quantum error correction, and proposals for new applications of quantum storage. Looking forward, we anticipate many more exciting results in this area.
Multi-mode of Four and Six Wave Parametric Amplified Process
NASA Astrophysics Data System (ADS)
Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng
2017-03-01
Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.
Multi-mode of Four and Six Wave Parametric Amplified Process.
Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng
2017-03-03
Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.
System and method to determine thermophysical properties of a multi-component gas
Morrow, Thomas B.; Behring, II, Kendricks A.
2003-08-05
A system and method to characterize natural gas hydrocarbons using a single inferential property, such as standard sound speed, when the concentrations of the diluent gases (e.g., carbon dioxide and nitrogen) are known. The system to determine a thermophysical property of a gas having a first plurality of components comprises a sound velocity measurement device, a concentration measurement device, and a processor to determine a thermophysical property as a function of a correlation between the thermophysical property, the speed of sound, and the concentration measurements, wherein the number of concentration measurements is less than the number of components in the gas. The method includes the steps of determining the speed of sound in the gas, determining a plurality of gas component concentrations in the gas, and determining the thermophysical property as a function of a correlation between the thermophysical property, the speed of sound, and the plurality of concentrations.
Modelling Systems of Classical/Quantum Identical Particles by Focusing on Algorithms
ERIC Educational Resources Information Center
Guastella, Ivan; Fazio, Claudio; Sperandeo-Mineo, Rosa Maria
2012-01-01
A procedure modelling ideal classical and quantum gases is discussed. The proposed approach is mainly based on the idea that modelling and algorithm analysis can provide a deeper understanding of particularly complex physical systems. Appropriate representations and physical models able to mimic possible pseudo-mechanisms of functioning and having…
Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell
Halim, Mohammad A.
2012-01-01
Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%. PMID:28348320
Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell.
Halim, Mohammad A
2012-12-27
Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley - Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun's broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.
NASA Astrophysics Data System (ADS)
Ishioka, Sachio; Fujikawa, Kazuo
2009-06-01
Committee -- Obituary: Professor Sadao Nakajima -- Opening address / H. Fukuyama -- Welcoming address / N. Osakabe -- Cold atoms and molecules. Pseudopotential method in cold atom research / C. N. Yang. Symmetry breaking in Bose-Einstein condensates / M. Ueda. Quantized vortices in atomic Bose-Einstein condensates / M. Tsubota. Quantum degenerate gases of Ytterbium atoms / S. Uetake ... [et al.]. Superfluid properties of an ultracold fermi gas in the BCS-BEC crossover region / Y. Ohashi, N. Fukushima. Fermionic superfluidity and the BEC-BCS crossover in ultracold atomic fermi gases / M. W. Zwierlein. Kibble-Zurek mechanism in magnetization of a spinor Bose-Einstein condensate / H. Saito, Y. Kawaguchi, M. Ueda. Quasiparticle inducing Josephson effect in a Bose-Einstein condensate / S. Tsuchiya, Y. Ohashi. Stability of superfluid fermi gases in optical lattices / Y. Yunomae ... [et al.]. Z[symbol] symmetry breaking in multi-band bosonic atoms confined by a two-dimensional harmonic potential / M. Sato, A. Tokuno -- Spin hall effect and anomalous hall effect. Recent advances in anomalous hall effect and spin hall effect / N. Nagaosa. Topological insulators and the quantum spin hall effect / C. L. Kane. Application of direct and inverse spin-hall effects: electric manipulation of spin relaxation and electric detection of spin currents / K. Ando, E. Saitoh. Novel current pumping mechanism by spin dynamics / A. Takeuchi, K. Hosono, G. Tatara. Quantum spin hall phase in bismuth ultrathin film / S. Murakami. Anomalous hall effect due to the vector chirality / K. Taguchi, G. Tatara. Spin current distributions and spin hall effect in nonlocal magnetic nanostructures / R. Sugano ... [et al.]. New boundary critical phenomenon at the metal-quantum spin hall insulator transition / H. Obuse. On scaling behaviors of anomalous hall conductivity in disordered ferromagnets studied with the coherent potential approximation / S. Onoda -- Magnetic domain wall dynamics and spin related phenomena. Dynamical magnetoelectric effects in multiferroics / Y. Tokura. Exchange-stabilization of spin accumulation in the two-dimensional electron gas with Rashba-type of spin-orbit interaction / H. M. Saarikoski, G. E. W. Bauer. Electronic Aharonov-Casher effect in InGaAs ring arrays / J. Nitta, M. Kohda, T. Bergsten. Microscopic theory of current-spin interaction in ferromagnets / H. Kohno ... [et al.]. Spin-polarized carrier injection effect in ferromagnetic semiconductor / diffusive semiconductor / superconductor junctions / H. Takayanagi ... [et al.]. Low voltage control of ferromagnetism in a semiconductor P-N junction / J. Wunderlich ... [et al.].Measurement of nanosecond-scale spin-transfer torque magnetization switching / K. Ito ... [et al.]. Current-induced domain wall creep in magnetic wires / J. Ieda, S. Maekawa, S. E. Barnes. Pure spin current injection into superconducting niobium wire / K. Ohnishi, T. Kimura, Y. Otani. Switching of a single atomic spin induced by spin injection: a model calculation / S. Kokado, K. Harigaya, A. Sakuma. Spin transfer torque in magnetic tunnel junctions with synthetic ferrimagnetic layers / M. Ichimura ... [et al.]. Gapless chirality excitations in one-dimensional spin-1/2 frustrated magnets / S. Furukawa ... [et al.] -- Dirac fermions in condensed matter. Electronic states of graphene and its multi-layers / T. Ando, M. Koshino. Inter-layer magnetoresistance in multilayer massless dirac fermions system [symbol]-(BEDT-TTF)[symbol]I[symbol] / N. Tajima ... [et al.]. Theory on electronic properties of gapless states in molecular solids [symbol]-(BEDT-TTF)[symbol]I[symbol] / A. Kobayashi, Y. Suzumura, H. Fukuyama. Hall effect and diamagnetism of bismuth / Y. Fuseya, M. Ogata, H. Fukuyama. Quantum Nernst effect in a bismuth single crystal / M. Matsuo ... [et al.] -- Quantum dot systems. Kondo effect and superconductivity in single InAs quantum dots contacted with superconducting leads / S. Tarucha ... [et al.]. Electron transport through a laterally coupled triple quantum dot forming Aharonov-Bohm interferometer / T. Kubo ... [et al.]. Aharonov-Bohm oscillations in parallel coupled vertical double quantum dot / T. Hatano ... [et al.]. Laterally coupled triple self-assembled quantum dots / S. Amaha ... [et al.]. Spectroscopy of charge states of a superconducting single-electron transistor in an engineered electromagnetic environment / E. Abe ... [et al.]. Numerical study of the coulomb blockade in an open quantum dot / Y. Hamamoto, T. Kato. Symmetry in the full counting statistics, the fluctuation theorem and an extension of the Onsager theorem in nonlinear transport regime / Y. Utsumi, K. Saito. Single-artificial-atom lasing and its suppression by strong pumping / J. R. Johansson ... [et al.] -- Entanglement and quantum information processing, qubit manipulations. Photonic entanglement in quantum communication and quantum computation / A. Zeilinger. Quantum non-demolition measurement of a superconducting flux qubit / J. E. Mooij. Atomic physics and quantum information processing with superconducting circuits / F. Nori. Theory of macroscopic quantum dynamics in high-T[symbol] Josephson junctions / S. Kawabata. Silicon isolated double quantum-dot qubit architectures / D. A. Williams ... [et al.]. Controlled polarisation of silicon isolated double quantum dots with remote charge sensing for qubit use / M. G. Tanner ... [et al.].Modelling of charge qubits based on Si/SiO[symbol] double quantum dots / P. Howard, A. D. Andreev, D. A. Williams. InAs based quantum dots for quantum information processing: from fundamental physics to 'plug and play' devices / X. Xu ... [et al.]. Quantum aspects in superconducting qubit readout with Josephson bifurcation amplifier / H. Nakano ... [et al.]. Double-loop Josephson-junction flux qubit with controllable energy gap / Y. Shimazu, Y. Saito, Z. Wada. Noise characteristics of the Fano effect and Fano-Kondo effect in triple quantum dots, aiming at charge qubit detection / T. Tanamoto, Y. Nishi, S. Fujita. Geometric universal single qubit operation of cold two-level atoms / H. Imai, A. Morinaga. Entanglement dynamics in quantum Brownian motion / K. Shiokawa. Coupling superconducting flux qubits using AC magnetic flxues / Y. Liu, F. Nori. Entanglement purification using natural spin chain dynamics and single spin measurements / K. Maruyama, F. Nori. Experimental analysis of spatial qutrit entanglement of down-converted photon pairs / G. Taguchi ... [et al.]. On the phase sensitivity of two path interferometry using path-symmetric N-photon states / H. F. Hofmann. Control of multi-photon coherence using the mixing ratio of down-converted photons and weak coherent light / T. Ono, H. F. Hofmann -- Mechanical properties of confined geometry. Rattling as a novel anharmonic vibration in a solid / Z. Hiroi, J. Yamaura. Micro/nanomechanical systems for information processing / H. Yamaguchi, I. Mahboob -- Precise measurements. Electron phase microscopy for observing superconductivity and magnetism / A. Tonomura. Ratio of the Al[symbol] and Hg[symbol] optical clock frequencies to 17 decimal places / W. M. Itano ... [et al.]. STM and STS observation on titanium-carbide metallofullerenes: [symbol] / N. Fukui ... [et al.]. Single shot measurement of a silicon single electron transistor / T. Ferrus ... [et al.]. Derivation of sensitivity of a Geiger mode APDs detector from a given efficiency to estimate total photon counts / K. Hammura, D. A. Williams -- Novel properties in nano-systems. First principles study of electroluminescence in ultra-thin silicon film / Y. Suwa, S. Saito. First principles nonlinear optical spectroscopy / T. Hamada, T. Ohno. Field-induced disorder and carrier localization in molecular organic transistors / M. Ando ... [et al.]. Switching dynamics in strongly coupled Josephson junctions / H. Kashiwaya ... [et al.]. Towards quantum simulation with planar coulomb crystals / I. M. Buluta, S. Hasegawa -- Fundamental problems in quantum physics. The negative binomial distribution in quantum physics / J. Söderholm, S. Inoue. On the elementary decay process / D. Kouznetsov -- List of participants.
Experimental creation of quantum Zeno subspaces by repeated multi-spin projections in diamond
NASA Astrophysics Data System (ADS)
Kalb, N.; Cramer, J.; Twitchen, D. J.; Markham, M.; Hanson, R.; Taminiau, T. H.
2016-10-01
Repeated observations inhibit the coherent evolution of quantum states through the quantum Zeno effect. In multi-qubit systems this effect provides opportunities to control complex quantum states. Here, we experimentally demonstrate that repeatedly projecting joint observables of multiple spins creates quantum Zeno subspaces and simultaneously suppresses the dephasing caused by a quasi-static environment. We encode up to two logical qubits in these subspaces and show that the enhancement of the dephasing time with increasing number of projections follows a scaling law that is independent of the number of spins involved. These results provide experimental insight into the interplay between frequent multi-spin measurements and slowly varying noise and pave the way for tailoring the dynamics of multi-qubit systems through repeated projections.
Efficient and robust relaxation procedures for multi-component mixtures including phase transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Ee, E-mail: eehan@math.uni-bremen.de; Hantke, Maren, E-mail: maren.hantke@ovgu.de; Müller, Siegfried, E-mail: mueller@igpm.rwth-aachen.de
We consider a thermodynamic consistent multi-component model in multi-dimensions that is a generalization of the classical two-phase flow model of Baer and Nunziato. The exchange of mass, momentum and energy between the phases is described by additional source terms. Typically these terms are handled by relaxation procedures. Available relaxation procedures suffer from efficiency and robustness resulting in very costly computations that in general only allow for one-dimensional computations. Therefore we focus on the development of new efficient and robust numerical methods for relaxation processes. We derive exact procedures to determine mechanical and thermal equilibrium states. Further we introduce a novelmore » iterative method to treat the mass transfer for a three component mixture. All new procedures can be extended to an arbitrary number of inert ideal gases. We prove existence, uniqueness and physical admissibility of the resulting states and convergence of our new procedures. Efficiency and robustness of the procedures are verified by means of numerical computations in one and two space dimensions. - Highlights: • We develop novel relaxation procedures for a generalized, thermodynamically consistent Baer–Nunziato type model. • Exact procedures for mechanical and thermal relaxation procedures avoid artificial parameters. • Existence, uniqueness and physical admissibility of the equilibrium states are proven for special mixtures. • A novel iterative method for mass transfer is introduced for a three component mixture providing a unique and admissible equilibrium state.« less
Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States
NASA Astrophysics Data System (ADS)
Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua
2018-03-01
A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.
Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States
NASA Astrophysics Data System (ADS)
Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua
2018-06-01
A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.
An efficient direct solver for rarefied gas flows with arbitrary statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Manuel A., E-mail: f99543083@ntu.edu.tw; Yang, Jaw-Yen, E-mail: yangjy@iam.ntu.edu.tw; Center of Advanced Study in Theoretical Science, National Taiwan University, Taipei 10167, Taiwan
2016-01-15
A new numerical methodology associated with a unified treatment is presented to solve the Boltzmann–BGK equation of gas dynamics for the classical and quantum gases described by the Bose–Einstein and Fermi–Dirac statistics. Utilizing a class of globally-stiffly-accurate implicit–explicit Runge–Kutta scheme for the temporal evolution, associated with the discrete ordinate method for the quadratures in the momentum space and the weighted essentially non-oscillatory method for the spatial discretization, the proposed scheme is asymptotic-preserving and imposes no non-linear solver or requires the knowledge of fugacity and temperature to capture the flow structures in the hydrodynamic (Euler) limit. The proposed treatment overcomes themore » limitations found in the work by Yang and Muljadi (2011) [33] due to the non-linear nature of quantum relations, and can be applied in studying the dynamics of a gas with internal degrees of freedom with correct values of the ratio of specific heat for the flow regimes for all Knudsen numbers and energy wave lengths. The present methodology is numerically validated with the unified treatment by the one-dimensional shock tube problem and the two-dimensional Riemann problems for gases of arbitrary statistics. Descriptions of ideal quantum gases including rotational degrees of freedom have been successfully achieved under the proposed methodology.« less
Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence
Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K. L.; Sum, Tze Chien; Huang, Wei
2017-01-01
The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 1015 cm−3, defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence. PMID:28239146
Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence.
Xing, Guichuan; Wu, Bo; Wu, Xiangyang; Li, Mingjie; Du, Bin; Wei, Qi; Guo, Jia; Yeow, Edwin K L; Sum, Tze Chien; Huang, Wei
2017-02-27
The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 10 15 cm -3 , defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative recombination. Herein, we overcome this limitation using van-der-Waals-coupled Ruddlesden-Popper perovskite multi-quantum-wells. Injected charge carriers are rapidly localized from adjacent thin few layer (n≤4) multi-quantum-wells to the thick (n≥5) multi-quantum-wells with extremely high efficiency (over 85%) through quantum coupling. Light emission originates from excitonic recombination in the thick multi-quantum-wells at much higher decay rate and efficiency than bimolecular recombination in three-dimensional perovskites. These multi-quantum-wells retain the simple solution processability and high charge carrier mobility of two-dimensional lead-halide perovskites. Importantly, these Ruddlesden-Popper perovskites offer new functionalities unavailable in single phase constituents, permitting the transcendence of the slow bimolecular recombination bottleneck in lead-halide perovskites for efficient electroluminescence.
A Quantum Multi-proxy Blind Signature Scheme Based on Genuine Four-Qubit Entangled State
NASA Astrophysics Data System (ADS)
Tian, Juan-Hong; Zhang, Jian-Zhong; Li, Yan-Ping
2016-02-01
In this paper, we propose a multi-proxy blind signature scheme based on controlled teleportation. Genuine four-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. The security analysis shows the scheme satisfies the security features of multi-proxy signature, unforgeability, undeniability, blindness and unconditional security.
1985-07-01
studied pressure-broadening of the 110.8 GHz line of ozone (6 1 5 6 0 6) for the foreign gases N2 and 02. Considering a temper- ature range from 200...nitrogen and oxygen as tje perturbing gases . Calculations using * conventional Anderson theory or quantum Fourier transform theory2 are shown to be...one gases in the region from 0 to 10,000 cm-’. Emphasis on this edition has been on the addition of numerous millimeter and submillimeter transitions
Novel Plasmonic and Hyberbolic Optical Materials for Control of Quantum Nanoemitters
2016-12-08
properties, metal ion implantation techniques, and multi- physics modeling to produce hyperbolic quantum nanoemitters. 15. SUBJECT TERMS nanotechnology 16...techniques, and multi- physics modeling to produce hyperbolic quantum nanoemitters. During the course of this project we studied plasmonic
Integration and initial operation of the multi-component large ring laser structure ROMY
NASA Astrophysics Data System (ADS)
Schreiber, Karl Ulrich; Igel, Heiner; Wassermann, Joachim; Gebauer, André; Simonelli, Andrea; Bernauer, Felix; Donner, Stefanie; Hadziioannou, Celine; Egdorf, Sven; Wells, Jon-Paul
2017-04-01
Rotation sensing for the geosciences requires a high sensor resolution of the order of 10 pico- radians per second or even less. An optical Sagnac interferometer offers this sensitivity, provided that the scale factor can be made very large. We have designed and built a multi- component ring laser system, consisting of 4 individual large ring lasers, each covering an area of more than 62 square m. The rings are orientated in the shape of a tetrahedron, so that all 3 spatial directions are covered, allowing also for some redundancy. We report on the initial operation of the free running gyroscopes in their underground facility in order to establish a performance estimate for the ROMY ring laser structure. Preliminary results suggest that the quantum noise limit is lower than that of the G ring laser.
Exploring the Kibble-Zurek mechanism with homogeneous Bose gases
NASA Astrophysics Data System (ADS)
Beugnon, Jérôme; Navon, Nir
2017-01-01
Out-of-equilibrium phenomena are a subject of considerable interest in many fields of physics. Ultracold quantum gases, which are extremely clean, well-isolated and highly controllable systems, offer ideal platforms to investigate this topic. The recent progress in tailoring trapping potentials now allows the experimental production of homogeneous samples in custom geometries, which is a key advance for studies of the emergence of coherence in interacting quantum systems. Here we review recent experiments in which temperature quenches have been performed across the Bose-Einstein condensation phase transition in an annular geometry and in homogeneous 3D and quasi-2D gases. Combined, these experiments comprehensively explore and validate the Kibble-Zurek (KZ) scenario through complementary measurements of correlation functions and density of topological defects. They allow the measurement of KZ scaling laws, the direct confirmation of the ‘freeze-out’ hypothesis that underlies the KZ theory, and the extraction of critical exponents of the Bose-Einstein condensation transition.
Non-equilibrium coherence dynamics in one-dimensional Bose gases.
Hofferberth, S; Lesanovsky, I; Fischer, B; Schumm, T; Schmiedmayer, J
2007-09-20
Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.
Coupled Kardar-Parisi-Zhang Equations in One Dimension
NASA Astrophysics Data System (ADS)
Ferrari, Patrik L.; Sasamoto, Tomohiro; Spohn, Herbert
2013-11-01
Over the past years our understanding of the scaling properties of the solutions to the one-dimensional KPZ equation has advanced considerably, both theoretically and experimentally. In our contribution we export these insights to the case of coupled KPZ equations in one dimension. We establish equivalence with nonlinear fluctuating hydrodynamics for multi-component driven stochastic lattice gases. To check the predictions of the theory, we perform Monte Carlo simulations of the two-component AHR model. Its steady state is computed using the matrix product ansatz. Thereby all coefficients appearing in the coupled KPZ equations are deduced from the microscopic model. Time correlations in the steady state are simulated and we confirm not only the scaling exponent, but also the scaling function and the non-universal coefficients.
Morrow, Thomas E.; Behring, II, Kendricks A.
2004-03-09
A method to determine thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.
Morrow, Thomas B.; Behring, II, Kendricks A.
2005-02-01
A computer product for determining thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.
NASA Astrophysics Data System (ADS)
Matthiesen, Stephan; Palmer, Paul; Watson, Andrew; Williams, Mathew
2016-04-01
We give an overview over the structure, objectives, and methods of the UK-based Greenhouse Gases Emissions and Feedback Programme. The overarching objective of this research programme is to deliver improved GHG inventories and predictions for the UK, and for the globe at a regional scale. To address this objective, the Programme has developed a comprehensive, multi-year and interlinked measurement and data analysis programme, focussing on the major GHGs carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The Programme integrates three UK research consortia with complementary objectives, focussing on observation and modelling in the atmosphere, the oceans, and the terrestrial biosphere: GAUGE (Greenhouse gAs Uk and Global Emissions) will produce robust estimates of the UK GHG budget, using new and existing atmospheric measurement networks and modelling activities at a range of scales. It integrates inter-calibrated information from ground-based, airborne, ferry-borne, balloon-borne, and space-borne sensors, including new sensor technology. The GREENHOUSE (Generating Regional Emissions Estimates with a Novel Hierarchy of Observations and Upscaled Simulation Experiments) project aims to understand the spatio-temporal patterns of biogenic GHG emissions in the UK's landscape of managed and semi-managed ecosystems. It uses existing UK field data and several targeted new measurement campaigns to build regional GHG inventories and improve the capabilities of land surface models. RAGNARoCC (Radiatively active gases from the North Atlantic Region and Climate Change) is an oceanographic project to investigate the air-sea fluxes of GHGs in the North Atlantic region. Through dedicated research cruises as well as data collection from ships of opportunity, it develops a comprehensive budget of natural and anthropogenic components of the carbon cycle in the North Atlantic and a better understanding of why the air-sea fluxes of CO2 vary regionally, seasonally and multi-annually. Integration activities link these three projects to foster knowledge exchange across different scales, methods and sub-disciplines, both within the Programme and with the wider research community. The three projects are integrated to improve our understanding of greenhouse gases across domains and scales. The observational components lay the foundation of new measurement infrastructure that will deliver beyond the lifetime of this Programme. Through the development of robust methods to reduce uncertainties in GHG emissions estimates, the Programme supports regulatory efforts to monitor emissions trends and the efficacy of reduction strategies.
Mechanical equivalent of quantum heat engines.
Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice
2008-06-01
Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines, employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot efficiency. Heat pumps and negative temperatures are considered.
Multi-field electron emission pattern of 2D emitter: Illustrated with graphene
NASA Astrophysics Data System (ADS)
Luo, Ma; Li, Zhibing
2016-11-01
The mechanism of laser-assisted multi-field electron emission of two-dimensional emitters is investigated theoretically. The process is basically a cold field electron emission but having more controllable components: a uniform electric field controls the emission potential barrier, a magnetic field controls the quantum states of the emitter, while an optical field controls electron populations of specified quantum states. It provides a highly orientational vacuum electron line source whose divergence angle over the beam plane is inversely proportional to square root of the emitter height. Calculations are carried out for graphene with the armchair emission edge, as a concrete example. The rate equation incorporating the optical excitation, phonon scattering, and thermal relaxation is solved in the quasi-equilibrium approximation for electron population in the bands. The far-field emission patterns, that inherit the features of the Landau bands, are obtained. It is found that the optical field generates a characteristic structure at one wing of the emission pattern.
An Efficient Scheme of Quantum Wireless Multi-hop Communication using Coefficient Matrix
NASA Astrophysics Data System (ADS)
Zhao, Bei; Zha, Xin-Wei; Duan, Ya-Jun; Sun, Xin-Mei
2015-08-01
By defining the coefficient matrix, a new quantum teleportation scheme in quantum wireless multi-hop network is proposed. With the help of intermediate nodes, an unknown qubit state can be teleported between two distant nodes which do not share entanglement in advance. Arbitrary Bell pairs and entanglement swapping are utilized for establishing quantum channel among intermediate nodes. Using collapsed matrix, the initial quantum state can be perfectly recovered at the destination.
A Quantum Approach to Multi-Agent Systems (MAS), Organizations, and Control
2003-06-01
interdependent interactions between individuals represented approximately as vocal harmonic I resonators. Then the growth rate of an organization fits ...A quantum approach to multi-agent systems (MAS), organizations , and control W.F. Lawless Paine College 1235 15th Street Augusta, GA 30901...AND SUBTITLE A quantum approach to multi-agent systems (MAS), organizations , and control 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
Multimode Bose-Hubbard model for quantum dipolar gases in confined geometries
NASA Astrophysics Data System (ADS)
Cartarius, Florian; Minguzzi, Anna; Morigi, Giovanna
2017-06-01
We theoretically consider ultracold polar molecules in a wave guide. The particles are bosons: They experience a periodic potential due to an optical lattice oriented along the wave guide and are polarized by an electric field orthogonal to the guide axis. The array is mechanically unstable by opening the transverse confinement in the direction orthogonal to the polarizing electric field and can undergo a transition to a double-chain (zigzag) structure. For this geometry we derive a multimode generalized Bose-Hubbard model for determining the quantum phases of the gas at the mechanical instability, taking into account the quantum fluctuations in all directions of space. Our model limits the dimension of the numerically relevant Hilbert subspace by means of an appropriate decomposition of the field operator, which is obtained from a field theoretical model of the linear-zigzag instability. We determine the phase diagrams of small systems using exact diagonalization and find that, even for tight transverse confinement, the aspect ratio between the two transverse trap frequencies controls not only the classical but also the quantum properties of the ground state in a nontrivial way. Convergence tests at the linear-zigzag instability demonstrate that our multimode generalized Bose-Hubbard model can catch the essential features of the quantum phases of dipolar gases in confined geometries with a limited computational effort.
Multi-functional quantum router using hybrid opto-electromechanics
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Yan, Lei-Lei; Chen, Gui-Bin; Li, Xiao-Wei; Liu, Shu-Jing; Zhan, You-Bang
2018-03-01
Quantum routers engineered with multiple frequency bands play a key role in quantum networks. We propose an experimentally accessible scheme for a multi-functional quantum router, using photon-phonon conversion in a hybrid opto-electromechanical system. Our proposed device functions as a bidirectional, tunable multi-channel quantum router, and demonstrates the possibility to route single optical photons bidirectionally and simultaneously to three different output ports, by adjusting the microwave power. Further, the device also behaves as an interswitching unit for microwave and optical photons, yielding probabilistic routing of microwave (optical) signals to optical (microwave) outports. With respect to potential application, we verify the insignificant influence from vacuum and thermal noises in the performance of the router under cryogenic conditions.
Quantum networks in divergence-free circuit QED
NASA Astrophysics Data System (ADS)
Parra-Rodriguez, A.; Rico, E.; Solano, E.; Egusquiza, I. L.
2018-04-01
Superconducting circuits are one of the leading quantum platforms for quantum technologies. With growing system complexity, it is of crucial importance to develop scalable circuit models that contain the minimum information required to predict the behaviour of the physical system. Based on microwave engineering methods, divergent and non-divergent Hamiltonian models in circuit quantum electrodynamics have been proposed to explain the dynamics of superconducting quantum networks coupled to infinite-dimensional systems, such as transmission lines and general impedance environments. Here, we study systematically common linear coupling configurations between networks and infinite-dimensional systems. The main result is that the simple Lagrangian models for these configurations present an intrinsic natural length that provides a natural ultraviolet cutoff. This length is due to the unavoidable dressing of the environment modes by the network. In this manner, the coupling parameters between their components correctly manifest their natural decoupling at high frequencies. Furthermore, we show the requirements to correctly separate infinite-dimensional coupled systems in local bases. We also compare our analytical results with other analytical and approximate methods available in the literature. Finally, we propose several applications of these general methods to analogue quantum simulation of multi-spin-boson models in non-perturbative coupling regimes.
Quantum anonymous voting with unweighted continuous-variable graph states
NASA Astrophysics Data System (ADS)
Guo, Ying; Feng, Yanyan; Zeng, Guihua
2016-08-01
Motivated by the revealing topological structures of continuous-variable graph state (CVGS), we investigate the design of quantum voting scheme, which has serious advantages over the conventional ones in terms of efficiency and graphicness. Three phases are included, i.e., the preparing phase, the voting phase and the counting phase, together with three parties, i.e., the voters, the tallyman and the ballot agency. Two major voting operations are performed on the yielded CVGS in the voting process, namely the local rotation transformation and the displacement operation. The voting information is carried by the CVGS established before hand, whose persistent entanglement is deployed to keep the privacy of votes and the anonymity of legal voters. For practical applications, two CVGS-based quantum ballots, i.e., comparative ballot and anonymous survey, are specially designed, followed by the extended ballot schemes for the binary-valued and multi-valued ballots under some constraints for the voting design. Security is ensured by entanglement of the CVGS, the voting operations and the laws of quantum mechanics. The proposed schemes can be implemented using the standard off-the-shelf components when compared to discrete-variable quantum voting schemes attributing to the characteristics of the CV-based quantum cryptography.
Laser photoacoustic sensor for air toxicity measurements
NASA Astrophysics Data System (ADS)
Prasad, Coorg R.; Lei, Jie; Shi, Wenhui; Li, Guangkun; Dunayevskiy, Ilya; Patel, C. Kumar N.
2012-06-01
US EPA's Clean Air Act lists 187 hazardous air pollutants (HAP) or airborne toxics that are considered especially harmful to health, and hence the measurement of their concentration is of great importance. Numerous sensor systems have been reported for measuring these toxic gases and vapors. However, most of these sensors are specific to a single gas or able to measure only a few of them. Thus a sensor capable of measuring many of the toxic gases simultaneously is desirable. Laser photoacoustic spectroscopy (LPAS) sensors have the potential for true broadband measurement when used in conjunction with one or more widely tunable laser sources. An LPAS gas analyzer equipped with a continuous wave, room temperature IR Quantum Cascade Laser tunable over the wavelength range of 9.4 μm to 9.7 μm was used for continuous real-time measurements of multiple gases/chemical components. An external cavity grating tuner was used to generate several (75) narrow line output wavelengths to conduct photoacoustic absorption measurements of gas mixtures. We have measured various HAPs such as Benzene, Formaldehyde, and Acetaldehyde in the presence of atmospheric interferents water vapor, and carbon dioxide. Using the preliminary spectral pattern recognition algorithm, we have shown our ability to measure all these chemical compounds simultaneously in under 3 minutes. Sensitivity levels of a few part-per-billion (ppb) were achieved with several of the measured compounds with the preliminary laboratory system.
A Quantum Non-Demolition Parity measurement in a mixed-species trapped-ion quantum processor
NASA Astrophysics Data System (ADS)
Marinelli, Matteo; Negnevitsky, Vlad; Lo, Hsiang-Yu; Flühmann, Christa; Mehta, Karan; Home, Jonathan
2017-04-01
Quantum non-demolition measurements of multi-qubit systems are an important tool in quantum information processing, in particular for syndrome extraction in quantum error correction. We have recently demonstrated a protocol for quantum non-demolition measurement of the parity of two beryllium ions by detection of a co-trapped calcium ion. The measurement requires a sequence of quantum gates between the three ions, using mixed-species gates between beryllium hyperfine qubits and a calcium optical qubit. Our work takes place in a multi-zone segmented trap setup in which we have demonstrated high fidelity control of both species and multi-well ion shuttling. The advantage of using two species of ion is that we can individually manipulate and read out the state of each ion species without disturbing the internal state of the other. The methods demonstrated here can be used for quantum error correcting codes as well as quantum metrology and are key ingredients for realizing a hybrid universal quantum computer based on trapped ions. Mixed-species control may also enable the investigation of new avenues in quantum simulation and quantum state control. left the group and working in a company now.
Grassmann phase space methods for fermions. II. Field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, B.J., E-mail: bdalton@swin.edu.au; Jeffers, J.; Barnett, S.M.
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, thoughmore » fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.« less
NASA Astrophysics Data System (ADS)
Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos
2018-04-01
The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.
Anonymous voting for multi-dimensional CV quantum system
NASA Astrophysics Data System (ADS)
Rong-Hua, Shi; Yi, Xiao; Jin-Jing, Shi; Ying, Guo; Moon-Ho, Lee
2016-06-01
We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012), and the MEST-NRF of Korea (Grant No. 2012-002521).
Knowles, Kathryn E; McArthur, Eric A; Weiss, Emily A
2011-03-22
A combination of transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopies performed on solution-phase samples of colloidal CdSe quantum dots (QDs) allows the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of the QD. Data from TA and TRPL yield the same six exponential components, with time constants ranging from ∼1 ps to 50 ns, for excitonic decay. Comparison of TA signals in the visible and near-infrared (NIR) spectral regions enables determination of the relative contributions of electron and hole dynamics to each decay component, and comparison of TA and TRPL reveals that each component represents a competition between radiative and nonradiative decay pathways. In total, these data suggest that the QD sample comprises at least three distinct populations that differ in both the radiative and nonradiative decay pathways available to the excitonic charge carriers, and provide evidence for multiple emissive excitonic states in which the hole is not in the valence band, but rather a relaxed or trapped state.
Tunable single-photon multi-channel quantum router based on an optomechanical system
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Yan, Lei-Lei; Zhang, Jian; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang
2018-01-01
Routing of photons plays a key role in optical communication networks and quantum networks. Although the quantum routing of signals has been investigated for various systems, both in theory and experiment, the general form of a quantum router with multi-output terminals still needs to be explored. Here, we propose an experimentally accessible tunable single-photon multi-channel routing scheme using an optomechanics cavity which is Coulomb coupled to a nanomechanical resonator. The router can extract single photons from the coherent input signal and directly modulate them into three different output channels. More importantly, the two output signal frequencies can be selected by adjusting the Coulomb coupling strength. For application purposes, we justify that there is insignificant influence from the vacuum and thermal noises on the performance of the router under cryogenic conditions. Our proposal may pave a new avenue towards multi-channel routers and quantum networks.
NASA Astrophysics Data System (ADS)
Mehedi Faruk, Mir; Muktadir Rahman, Md
2016-03-01
The well known relation for ideal classical gas $\\Delta \\epsilon^2=kT^2 C_V$ which does not remain valid for quantum system is revisited. A new connection is established between energy fluctuation and specific heat for quantum gases, valid in the classical limit and the degenerate quantum regime as well. Most importantly the proposed Biswas-Mitra-Bhattacharyya (BMB) conjecture (Biswas $et.$ $al.$, J. Stat. Mech. P03013, 2015.) relating hump in energy fluctuation and discontinuity of specific heat is proved and precised in this manuscript.
I.C.E.: a transportable atomic inertial sensor for test in microgravity
NASA Astrophysics Data System (ADS)
Nyman, R. A.; Varoquaux, G.; Clement, J.-F.; Bouyer, P.; Santarelli, G.; Pereira Dos Santos, F.; Clairon, A.; Landragin, A.; Chambon, D.; Lienhart, F.; Boussen, S.; Bresson, A.
2017-11-01
We present our the construction of an atom interferometer for inertial sensing in microgravity, as part of the I.C.E. (Interferometrie Coherente pour l'Espace) collaboration. On-board laser systems have been developed based on fibre-optic components, which are insensitive to mechanical vibrations and acoustic noise, have sub-MHz linewidth, and remain frequency stabilised for weeks at a time. A compact, transportable vacuum system has been built, and used for laser cooling and magneto-optical trapping. We will use a mixture of quantum degenerate gases, bosonic 87Rb and fermionic 40K, in order to find the optimal conditions for precision and sensitivity of inertial measurements. Microgravity will be realised in parabolic flights lasting up to 20s in an Airbus.
Analytical optimal pulse shapes obtained with the aid of genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co; Arango, Carlos A.; Reyes, Andrés
2015-09-28
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding themore » interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.« less
Multi-Wavelength Measurement of Bus Exhausts Using a Four QC Laser Spectrometer
NASA Astrophysics Data System (ADS)
Hay, K. G.; Wilson, D.; Duxbury, G.; Langford, N.
2010-06-01
Using a portable, lightweight, four laser intra-pulse quantum cascade laser spectrometer we have measured the variation of the composition of exhaust gases emitted by diesel engined buses which are representative of the decades from the 1930's until the 1990's. The lasers and the fast detector used in the spectrometer are Peltier cooled, and the spectra are recorded using each laser in turn, in a repeated four laser cycle. The instrument is controlled via a ruggedised laptop computer. The wavelengths of the lasers used were 7.84 microns (methane, nitrous oxide and formaldehyde), 6.13 microns (nitrogen dioxide) 5.25 microns (nitric oxide and water) and 4.88 microns (carbon monoxide and carbon dioxide). The path length of the multiple pass absorption cell used was 77 m. The results we will present demonstrate the possibility of deploying this type of instrument for investigating gas emissions from a variety of sources.
Thermalization and prethermalization in isolated quantum systems: a theoretical overview
NASA Astrophysics Data System (ADS)
Mori, Takashi; Ikeda, Tatsuhiko N.; Kaminishi, Eriko; Ueda, Masahito
2018-06-01
The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several remarkable features, which emerge from quantum entanglement and are quite distinct from those in classical systems. Experimentally, well isolated and highly controllable ultracold quantum gases offer an ideal testbed to study the nonequilibrium dynamics in isolated quantum systems, promoting intensive recent theoretical endeavors on this fundamental subject. Besides thermalization, many isolated quantum systems show intriguing behavior in relaxation processes, especially prethermalization. Prethermalization occurs when there is a clear separation of relevant time scales and has several different physical origins depending on individual systems. In this review, we overview theoretical approaches to the problems of thermalization and prethermalization.
Jin, Rui-Bo; Shimizu, Ryosuke; Morohashi, Isao; Wakui, Kentaro; Takeoka, Masahiro; Izumi, Shuro; Sakamoto, Takahide; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide
2014-12-19
Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures.
Much Polyphony but Little Harmony: Otto Sackur's Groping for a Quantum Theory of Gases
NASA Astrophysics Data System (ADS)
Badino, Massimiliano; Friedrich, Bretislav
2013-09-01
The endeavor of Otto Sackur (1880-1914) was driven, on the one hand, by his interest in Nernst's heat theorem, statistical mechanics, and the problem of chemical equilibrium and, on the other hand, by his goal to shed light on classical mechanics from the quantum vantage point. Inspired by the interplay between classical physics and quantum theory, Sackur chanced to expound his personal take on the role of the quantum in the changing landscape of physics in the turbulent 1910s. We tell the story of this enthusiastic practitioner of the old quantum theory and early contributor to quantum statistical mechanics, whose scientific ontogenesis provides a telling clue about the phylogeny of his contemporaries.
Chemical potential, Gibbs-Duhem equation and quantum gases
NASA Astrophysics Data System (ADS)
Lee, M. Howard
2017-05-01
Thermodynamic relations like the Gibbs-Duhem are valid from the lowest to the highest temperatures. But they cannot by themselves provide any specific temperature behavior of thermodynamic functions like the chemical potential. In this work, we show that if some general conditions are attached to the Gibbs-Duhem equation, it is possible to obtain the low temperature form of the chemical potential for the ideal Fermi and Bose gases very directly.
Observation and quantification of the quantum dynamics of a strong-field excited multi-level system.
Liu, Zuoye; Wang, Quanjun; Ding, Jingjie; Cavaletto, Stefano M; Pfeifer, Thomas; Hu, Bitao
2017-01-04
The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.
Gas Sensor for Volatile Anesthetic Agents Based on Raman Scattering
NASA Astrophysics Data System (ADS)
Schlüter, Sebastian; Popovska-Leipertz, Nadejda; Seeger, Thomas; Leipertz, Alfred
Continuous monitoring of respiratory and anesthetic gases during a surgery is of vital importance for the patient safety. Commonly the gas composition is determined by gas chromatography or a combination of IR-spectroscopy and electrochemical sensors. This study presents a concept for an optical sensor based on spontaneous Raman scattering which offers several advantages compared to established systems. All essential components can be detected simultaneously, no sample preparation is necessary and it provides fast response times. To reach the performance of a commonly used gas monitor signal gain has to be increased e.g. by using a multi pass setup.
NASA Astrophysics Data System (ADS)
Huang, Wen-Min; Mou, Chung-Yu; Chang, Cheng-Hung
2010-02-01
While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semiclassical Landauer-Büttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravtsov, A.I.
To determine the effect of geologic factors on the composition of abyssal derivates (complementing existing information on the geochemistry of volcanic gases) isotopic analysis of carbon was used to obtain physicochemical criteria of the origin of gases, independent of geologic-petrographic data. The investigations include component analysis of all the gases, particularly hydrocarbon compounds, repeatedly found in the fumarole emanations of pyroclastic streams. Volcanic carbon dioxide which is the principal component of gases of active volcanoes and hot springs in the Kuril-Kamchatka volcanic arc and of other volcanoes was investigated.
NASA Astrophysics Data System (ADS)
Wagner, Markus R.; Reparaz, Juan Sebastian; Callsen, Gordon; Nippert, Felix; Kure, Thomas; Hoffmann, Axel; Hugues, Maxime; Teysseire, Monique; Damilano, Benjamin; Chauveau, Jean-Michel
2017-03-01
We address the electronic, phononic, and thermal properties of oxide based superlattices and multi quantum well heterostructures. In the first part, we review the present understanding of phonon coupling and phonon propagation in superlattices and elucidate current research aspects of phonon coherence in these structure. Subsequently, we focus on the experimental study of MBE grown ZnO/ZnMgO multi quantum well heterostructures with varying Mg content, barrier thickness, quantum well thickness, and number of periods. In particular, we discuss how the controlled variation of these parameters affect the phonon dispersion relation and phonon propagation and their impact on the thermal properties.
A high-resolution Godunov method for compressible multi-material flow on overlapping grids
NASA Astrophysics Data System (ADS)
Banks, J. W.; Schwendeman, D. W.; Kapila, A. K.; Henshaw, W. D.
2007-04-01
A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on a uniform-pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on the Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of a planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.
Comparison of coherently coupled multi-cavity and quantum dot embedded single cavity systems.
Kocaman, Serdar; Sayan, Gönül Turhan
2016-12-12
Temporal group delays originating from the optical analogue to electromagnetically induced transparency (EIT) are compared in two systems. Similar transmission characteristics are observed between a coherently coupled high-Q multi-cavity array and a single quantum dot (QD) embedded cavity in the weak coupling regime. However, theoretically generated group delay values for the multi-cavity case are around two times higher. Both configurations allow direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics (QED).
Quantum coordinated multi-point communication based on entanglement swapping
NASA Astrophysics Data System (ADS)
Du, Gang; Shang, Tao; Liu, Jian-wei
2017-05-01
In a quantum network, adjacent nodes can communicate with each other point to point by using pre-shared Einsten-Podolsky-Rosen (EPR) pairs, and furthermore remote nodes can establish entanglement channels by using quantum routing among intermediate nodes. However, with the rapid development of quantum networks, the demand of various message transmission among nodes inevitably emerges. In order to realize this goal and extend quantum networks, we propose a quantum coordinated multi-point communication scheme based on entanglement swapping. The scheme takes full advantage of EPR pairs between adjacent nodes and performs multi-party entanglement swapping to transmit messages. Considering various demands of communication, all nodes work cooperatively to realize different message transmission modes, including one to many, many to one and one to some. Scheme analysis shows that the proposed scheme can flexibly organize a coordinated group and efficiently use EPR resources, while it meets basic security requirement under the condition of coordinated communication.
Machine learning action parameters in lattice quantum chromodynamics
NASA Astrophysics Data System (ADS)
Shanahan, Phiala E.; Trewartha, Daniel; Detmold, William
2018-05-01
Numerical lattice quantum chromodynamics studies of the strong interaction are important in many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. The high information content and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development.
ERIC Educational Resources Information Center
Sevilla, F. J.; Olivares-Quiroz, L.
2012-01-01
In this work, we address the concept of the chemical potential [mu] in classical and quantum gases towards the calculation of the equation of state [mu] = [mu](n, T) where n is the particle density and "T" the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are…
Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components
NASA Astrophysics Data System (ADS)
Champion, Christophe
2013-05-01
Ionization of biomolecules remains still today rarely investigated on both the experimental and the theoretical sides. In this context, the present work appears as one of the first quantum mechanical approaches providing a multi-differential description of the electron-induced ionization process of the main DNA components for impact energies ranging from the target ionization threshold up to about 10 keV. The cross section calculations are here performed within the 1st Born approximation framework in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered electrons are both described by a plane wave. The biological targets of interest, namely, the DNA nucleobases and the sugar-phosphate backbone, are here described by means of the GAUSSIAN 09 system using the restricted Hartree-Fock method with geometry optimization. The theoretical predictions also obtained have shown a reasonable agreement with the experimental total ionization cross sections while huge discrepancies have been pointed out with existing theoretical models, mainly developed within a semi-classical framework.
Quantum Effects at a Proton Relaxation at Low Temperatures
NASA Astrophysics Data System (ADS)
Kalytka, V. A.; Korovkin, M. V.
2016-11-01
Quantum effects during migratory polarization in multi-well crystals (including multi-well silicates and crystalline hydrates) are investigated in a variable electric field at low temperatures by direct quantum-mechanical calculations. Based on analytical solution of the quantum Liouville kinetic equation in the linear approximation for the polarizing field, the non-stationary density matrix is calculated for an ensemble of non-interacting protons moving in the field of one-dimensional multi-well crystal potential relief of rectangular shape. An expression for the complex dielectric constant convenient for a comparison with experiment and calculation of relaxer parameters is derived using the nonequilibrium polarization density matrix. The density matrix apparatus can be used for analytical investigation of the quantum mechanism of spontaneous polarization of a ferroelectric material (KDP and DKDP).
W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution
Zhu, Changhua; Xu, Feihu; Pei, Changxing
2015-01-01
W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network. PMID:26644289
Multi-party Semi-quantum Key Agreement with Delegating Quantum Computation
NASA Astrophysics Data System (ADS)
Liu, Wen-Jie; Chen, Zhen-Yu; Ji, Sai; Wang, Hai-Bin; Zhang, Jun
2017-10-01
A multi-party semi-quantum key agreement (SQKA) protocol based on delegating quantum computation (DQC) model is proposed by taking Bell states as quantum resources. In the proposed protocol, the participants only need the ability of accessing quantum channel and preparing single photons {|0〉, |1〉, |+〉, |-〉}, while the complicated quantum operations, such as the unitary operations and Bell measurement, will be delegated to the remote quantum center. Compared with previous quantum key agreement protocols, this client-server model is more feasible in the early days of the emergence of quantum computers. In order to prevent the attacks from outside eavesdroppers, inner participants and quantum center, two single photon sequences are randomly inserted into Bell states: the first sequence is used to perform the quantum channel detection, while the second is applied to disorder the positions of message qubits, which guarantees the security of the protocol.
Multi-server blind quantum computation over collective-noise channels
NASA Astrophysics Data System (ADS)
Xiao, Min; Liu, Lin; Song, Xiuli
2018-03-01
Blind quantum computation (BQC) enables ordinary clients to securely outsource their computation task to costly quantum servers. Besides two essential properties, namely correctness and blindness, practical BQC protocols also should make clients as classical as possible and tolerate faults from nonideal quantum channel. In this paper, using logical Bell states as quantum resource, we propose multi-server BQC protocols over collective-dephasing noise channel and collective-rotation noise channel, respectively. The proposed protocols permit completely or almost classical client, meet the correctness and blindness requirements of BQC protocol, and are typically practical BQC protocols.
Keeping Mars warm with new super greenhouse gases
Gerstell, M. F.; Francisco, J. S.; Yung, Y. L.; Boxe, C.; Aaltonee, E. T.
2001-01-01
Our selection of new super greenhouse gases to fill a putative “window” in a future Martian atmosphere relies on quantum-mechanical calculations. Our study indicates that if Mars could somehow acquire an Earth-like atmospheric composition and surface pressure, then an Earth-like temperature could be sustained by a mixture of five to seven fluorine compounds. Martian mining requirements for replenishing the fluorine could be comparable to current terrestrial extraction. PMID:11226208
Problem of nature of inert gases in lunar surface material
NASA Technical Reports Server (NTRS)
Levskiy, L. K.
1974-01-01
The origin of isotopes of inert gases in lunar surface material was investigated from the standpoint of the isotopic two-component status of inert gases in the solar system. Helium and neon represent the solar wind component, while krypton and xenon are planetary gases. Type A gases are trapped by the material of the regolith in the early stages of the existence of the solar system and were brought to the lunar surface together with dust. The material of the regolith therefore cannot be considered as the product of the erosion of the crystalline rocks of the moon and in this sense are extralunar. The regolith material containing type A gases must be identified with the high temperature minerals of the carbonaceous chondrites.
Quantum interference between transverse spatial waveguide modes.
Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal
2017-01-20
Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.
Quantum Phase Transitions in the Bose Hubbard Model and in a Bose-Fermi Mixture
NASA Astrophysics Data System (ADS)
Duchon, Eric Nicholas
Ultracold atomic gases may be the ultimate quantum simulator. These isolated systems have the lowest temperatures in the observable universe, and their properties and interactions can be precisely and accurately tuned across a full spectrum of behaviors, from few-body physics to highly-correlated many-body effects. The ability to impose potentials on and tune interactions within ultracold gases to mimic complex systems mean they could become a theorist's playground. One of their great strengths, however, is also one of the largest obstacles to this dream: isolation. This thesis touches on both of these themes. First, methods to characterize phases and quantum critical points, and to construct finite temperature phase diagrams using experimentally accessible observables in the Bose Hubbard model are discussed. Then, the transition from a weakly to a strongly interacting Bose-Fermi mixture in the continuum is analyzed using zero temperature numerical techniques. Real materials can be emulated by ultracold atomic gases loaded into optical lattice potentials. We discuss the characteristics of a single boson species trapped in an optical lattice (described by the Bose Hubbard model) and the hallmarks of the quantum critical region that separates the superfluid and the Mott insulator ground states. We propose a method to map the quantum critical region using the single, experimentally accessible, local quantity R, the ratio of compressibility to local number fluctuations. The procedure to map a phase diagram with R is easily generalized to inhomogeneous systems and generic many-body Hamiltonians. We illustrate it here using quantum Monte Carlo simulations of the 2D Bose Hubbard model. Secondly, we investigate the transition from a degenerate Fermi gas weakly coupled to a Bose Einstein condensate to the strong coupling limit of composite boson-fermion molecules. We propose a variational wave function to investigate the ground state properties of such a Bose-Fermi mixture with equal population, as a function of increasing attraction between bosons and fermions. The variational wave function captures the weak and the strong coupling limits and at intermediate coupling we make two predictions using zero temperature quantum Monte Carlo methods: (I) a complete destruction of the atomic Fermi surface and emergence of a molecular Fermi sea that coexists with a remnant of the Bose-Einstein condensate, and (II) evidence for enhanced short-ranged fermion-fermion correlations mediated by bosons.
Ultrafast creation of large Schrödinger cat states of an atom.
Johnson, K G; Wong-Campos, J D; Neyenhuis, B; Mizrahi, J; Monroe, C
2017-09-26
Mesoscopic quantum superpositions, or Schrödinger cat states, are widely studied for fundamental investigations of quantum measurement and decoherence as well as applications in sensing and quantum information science. The generation and maintenance of such states relies upon a balance between efficient external coherent control of the system and sufficient isolation from the environment. Here we create a variety of cat states of a single trapped atom's motion in a harmonic oscillator using ultrafast laser pulses. These pulses produce high fidelity impulsive forces that separate the atom into widely separated positions, without restrictions that typically limit the speed of the interaction or the size and complexity of the resulting motional superposition. This allows us to quickly generate and measure cat states larger than previously achieved in a harmonic oscillator, and create complex multi-component superposition states in atoms.Generation of mesoscopic quantum superpositions requires both reliable coherent control and isolation from the environment. Here, the authors succeed in creating a variety of cat states of a single trapped atom, mapping spin superpositions into spatial superpositions using ultrafast laser pulses.
Multi-Chromatic Ultrashort Pulse Filamentation and Bulk Modification in Dielectrics
2016-05-05
multi -pulse fields 7 6 Filamentation and bulk modification by spatio-temporally chirped pulses 8 7 Quantum modeling of photoionization and nonlinear...pulses. (b) two co-propagating pulses of di↵erent frequencies. 4) Develop non-time-averaged multi -chromatic quantum -mechanical models of photoion- ization...very well with those of the extended multi -rate equation using the relaxation approximation, which is much faster. A continued collaboration to also
Equilibration in one-dimensional quantum hydrodynamic systems
NASA Astrophysics Data System (ADS)
Sotiriadis, Spyros
2017-10-01
We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady state is inherently connected to the presence of ballistically moving localised excitations. When such excitations are present, the system retains memory of initial correlations up to infinite times, thus evading decoherence. We demonstrate this connection in the context of the Luttinger model, the simplest quantum hydrodynamic model, and in the quantum KdV equation. In the standard Luttinger model, memory of all initial correlations is preserved throughout the time evolution up to infinitely large times, as a result of the purely ballistic dynamics. However nonlinear dispersion or interactions, when separately present, lead to spreading and delocalisation that suppress the above effect by eliminating the memory of non-Gaussian correlations. We show that, for any initial state that satisfies sufficient clustering of correlations, the steady state is Gaussian in terms of the bosonised or fermionised fields in the dispersive or interacting case respectively. On the other hand, when dispersion and interaction are simultaneously present, a semiclassical approximation suggests that localisation is restored as the two effects compensate each other and solitary waves are formed. Solitary waves, or simply solitons, are experimentally observed in quantum gases and theoretically predicted based on semiclassical approaches, but the question of their stability at the quantum level remains to a large extent an open problem. We give a general overview on the subject and discuss the relevance of our findings to general out of equilibrium problems. Dedicated to John Cardy on the occasion of his 70th birthday.
An Investigation of Quantum Dot Super Lattice Use in Nonvolatile Memory and Transistors
NASA Astrophysics Data System (ADS)
Mirdha, P.; Parthasarathy, B.; Kondo, J.; Chan, P.-Y.; Heller, E.; Jain, F. C.
2018-02-01
Site-specific self-assembled colloidal quantum dots (QDs) will deposit in two layers only on p-type substrate to form a QD superlattice (QDSL). The QDSL structure has been integrated into the floating gate of a nonvolatile memory component and has demonstrated promising results in multi-bit storage, ease of fabrication, and memory retention. Additionally, multi-valued logic devices and circuits have been created by using QDSL structures which demonstrated ternary and quaternary logic. With increasing use of site-specific self-assembled QDSLs, fundamental understanding of silicon and germanium QDSL charge storage capability, self-assembly on specific surfaces, uniform distribution, and mini-band formation has to be understood for successful implementation in devices. In this work, we investigate the differences in electron charge storage by building metal-oxide semiconductor (MOS) capacitors and using capacitance and voltage measurements to quantify the storage capabilities. The self-assembly process and distribution density of the QDSL is done by obtaining atomic force microscopy (AFM) results on line samples. Additionally, we present a summary of the theoretical density of states in each of the QDSLs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hua-Gen; Song, Hongwei; Yang, Minghui
Here, we report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2H 3. The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2H 3. All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Our results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from thatmore » of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. Additionally, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2H 3 without the requirement of explicit wavefunctions.« less
Yu, Hua-Gen; Song, Hongwei; Yang, Minghui
2017-06-14
We report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2 H 3 . The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2 H 3 . All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from that of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2 H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. In addition, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2 H 3 without the requirement of explicit wavefunctions.
Yu, Hua-Gen; Song, Hongwei; Yang, Minghui
2017-06-12
Here, we report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2H 3. The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2H 3. All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Our results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from thatmore » of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. Additionally, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2H 3 without the requirement of explicit wavefunctions.« less
Multi-controller quantum teleportation with remote rotation and its applications
NASA Astrophysics Data System (ADS)
Kao, Shih-Hung; Chen, Yu-Ting; Tsai, Chia-Wei; Hwang, Tzonelih
2015-12-01
This work proposes the first multi-controller quantum teleportation with remote rotations, which allows a sender to teleport an arbitrary qubit to a receiver and at the same time, many controllers can remotely perform two kinds of rotation operations with various angles on the teleported qubit. In order to show its usefulness, a controlled quantum teleportation protocol has also been proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Biao; Wang, Lin-Xue; Chen, Guang-Ping
We perform a detailed numerical study of the equilibrium ground-state structures of a binary rotating Bose–Einstein condensate with unequal atomic masses. Our results show that the ground-state distribution and its related vortex configurations are complex events that differ markedly depending strongly on the strength of rotation frequency, as well as on the ratio of atomic masses. We also discuss the structures and radii of the clouds, the number and the size of the core region of the vortices, as a function of the rotation frequency, and of the ratio of atomic masses, and the analytical results agree well with ourmore » numerical simulations. This work may open an alternate way in the quantum control of the binary rotating quantum gases with unequal atomic masses. - Highlights: • A binary quantum gases with unequal atomic masses is considered. • Effects of the ratio of atomic masses and rotation frequency are discussed in full parameter space. • The detailed information about both the cloud and vortices are also discussed.« less
Zhang, Wei; Ding, Dong-Sheng; Dong, Ming-Xin; Shi, Shuai; Wang, Kai; Liu, Shi-Long; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2016-11-14
Entanglement in multiple degrees of freedom has many benefits over entanglement in a single one. The former enables quantum communication with higher channel capacity and more efficient quantum information processing and is compatible with diverse quantum networks. Establishing multi-degree-of-freedom entangled memories is not only vital for high-capacity quantum communication and computing, but also promising for enhanced violations of nonlocality in quantum systems. However, there have been yet no reports of the experimental realization of multi-degree-of-freedom entangled memories. Here we experimentally established hyper- and hybrid entanglement in multiple degrees of freedom, including path (K-vector) and orbital angular momentum, between two separated atomic ensembles by using quantum storage. The results are promising for achieving quantum communication and computing with many degrees of freedom.
Cooling Atomic Gases With Disorder
Paiva, Thereza; Khatami, Ehsan; Yang, Shuxiang; ...
2015-12-10
Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. Here in this paper, we propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approachmore » the Néel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.« less
Laser driving and data processing concept for mobile trace gas sensing: Design and implementation
NASA Astrophysics Data System (ADS)
Liu, Chang; Tuzson, Béla; Scheidegger, Philipp; Looser, Herbert; Bereiter, Bernhard; Graf, Manuel; Hundt, Morten; Aseev, Oleg; Maas, Deran; Emmenegger, Lukas
2018-06-01
High precision mobile sensing of multi-species gases is greatly demanded in a wide range of applications. Although quantum cascade laser absorption spectroscopy demonstrates excellent field-deployment capabilities for gas sensing, the implementation of this measurement technique into sensor-like portable instrumentation still remains challenging. In this paper, two crucial elements, the laser driving and data acquisition electronics, are addressed. Therefore, we exploit the benefits of the time-division multiplexed intermittent continuous wave driving concept and the real-time signal pre-processing capabilities of a commercial System-on-Chip (SoC, Red Pitaya). We describe a re-designed current driver that offers a universal solution for operating a wide range of multi-wavelength quantum cascade laser device types and allows stacking for the purpose of multiple laser configurations. Its adaptation to the various driving situations is enabled by numerous field programmable gate array (FPGA) functionalities that were developed on the SoC, such as flexible generation of a large variety of synchronized trigger signals and digital inputs/outputs (DIOs). The same SoC is used to sample the spectroscopic signal at rates up to 125 MS/s with 14-bit resolution. Additional FPGA functionalities were implemented to enable on-board averaging of consecutive spectral scans in real-time, resulting in optimized memory bandwidth and hardware resource utilisation and autonomous system operation. Thus, we demonstrate how a cost-effective, compact, and commercial SoC can successfully be adapted to obtain a fully operational research-grade laser spectrometer. The overall system performance was examined in a spectroscopic setup by analyzing low pressure absorption features of CO2 at 4.3 μm.
Dynamical quantum phase transitions in discrete time crystals
NASA Astrophysics Data System (ADS)
Kosior, Arkadiusz; Sacha, Krzysztof
2018-05-01
Discrete time crystals are related to nonequilibrium dynamics of periodically driven quantum many-body systems where the discrete time-translation symmetry of the Hamiltonian is spontaneously broken into another discrete symmetry. Recently, the concept of phase transitions has been extended to nonequilibrium dynamics of time-independent systems induced by a quantum quench, i.e., a sudden change of some parameter of the Hamiltonian. There, the return probability of a system to the ground state reveals singularities in time which are dubbed dynamical quantum phase transitions. We show that the quantum quench in a discrete time crystal leads to dynamical quantum phase transitions where the return probability of a periodically driven system to a Floquet eigenstate before the quench reveals singularities in time. It indicates that dynamical quantum phase transitions are not restricted to time-independent systems and can be also observed in systems that are periodically driven. We discuss how the phenomenon can be observed in ultracold atomic gases.
Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stokes, G.M.; Tichler, J.L.
The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the studymore » of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.« less
Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi
2016-01-01
CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.
Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi
2016-01-01
CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658
NASA Astrophysics Data System (ADS)
Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan
2018-04-01
The development of multi-node quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of pre-selected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multi-mode interference beamsplitter via in-situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with $g^{(2)}(0) = 0.13\\pm 0.02$. Due to its high patterning resolution as well as spectral and spatial control, in-situ electron beam lithography allows for integration of pre-selected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way towards multi-node, fully integrated quantum photonic chips.
Jin, Rui-Bo; Shimizu, Ryosuke; Morohashi, Isao; Wakui, Kentaro; Takeoka, Masahiro; Izumi, Shuro; Sakamoto, Takahide; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide
2014-01-01
Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures. PMID:25524646
A 3 kbar hydrogen-compatible gas loader for Paris-Edinburgh presses
NASA Astrophysics Data System (ADS)
Klotz, S.; Philippe, J.; Bull, C. L.; Loveday, J. S.; Nelmes, R. J.
2013-03-01
We present a device which allows compressed gases to be loaded into large volume opposed anvils used for high pressure neutron scattering in the multi-10 GPa range. The gases are initially loaded into clamps which can then be inserted into VX-Paris-Edinburgh load frames. The system is compatible with all inert gases as well as hydrogen and permits loading pressures of up to 3 kbar for which most gases have densities close to that of the liquid at ambient pressure. The device should have applications for the study of simple molecular solids as well as for loading gases as pressure-transmitting media.
Generation of mechanical interference fringes by multi-photon counting
NASA Astrophysics Data System (ADS)
Ringbauer, M.; Weinhold, T. J.; Howard, L. A.; White, A. G.; Vanner, M. R.
2018-05-01
Exploring the quantum behaviour of macroscopic objects provides an intriguing avenue to study the foundations of physics and to develop a suite of quantum-enhanced technologies. One prominent path of study is provided by quantum optomechanics which utilizes the tools of quantum optics to control the motion of macroscopic mechanical resonators. Despite excellent recent progress, the preparation of mechanical quantum superposition states remains outstanding due to weak coupling and thermal decoherence. Here we present a novel optomechanical scheme that significantly relaxes these requirements allowing the preparation of quantum superposition states of motion of a mechanical resonator by exploiting the nonlinearity of multi-photon quantum measurements. Our method is capable of generating non-classical mechanical states without the need for strong single-photon coupling, is resilient against optical loss, and offers more favourable scaling against initial mechanical thermal occupation than existing schemes. Moreover, our approach allows the generation of larger superposition states by projecting the optical field onto NOON states. We experimentally demonstrate this multi-photon-counting technique on a mechanical thermal state in the classical limit and observe interference fringes in the mechanical position distribution that show phase super-resolution. This opens a feasible route to explore and exploit quantum phenomena at a macroscopic scale.
Plasmon confinement in fractal quantum systems
NASA Astrophysics Data System (ADS)
Westerhout, Tom; van Veen, Edo; Katsnelson, Mikhail I.; Yuan, Shengjun
2018-05-01
Recent progress in the fabrication of materials has made it possible to create arbitrary nonperiodic two-dimensional structures in the quantum plasmon regime. This paves the way for exploring the quantum plasmonic properties of electron gases in complex geometries. In this work we study systems with a fractal dimension. We calculate the full dielectric functions of two prototypical fractals with different ramification numbers, namely the Sierpinski carpet and gasket. We show that the Sierpinski carpet has a dispersion comparable to a square lattice, but the Sierpinski gasket features highly localized plasmon modes with a flat dispersion. This strong plasmon confinement in finitely ramified fractals can provide a novel setting for manipulating light at the quantum level.
Quantum cryptography and applications in the optical fiber network
NASA Astrophysics Data System (ADS)
Luo, Yuhui
2005-09-01
Quantum cryptography, as part of quantum information and communications, can provide absolute security for information transmission because it is established on the fundamental laws of quantum theory, such as the principle of uncertainty, No-cloning theorem and quantum entanglement. In this thesis research, a novel scheme to implement quantum key distribution based on multiphoton entanglement with a new protocol is proposed. Its advantages are: a larger information capacity can be obtained with a longer transmission distance and the detection of multiple photons is easier than that of a single photon. The security and attacks pertaining to such a system are also studied. Next, a quantum key distribution over wavelength division multiplexed (WDM) optical fiber networks is realized. Quantum key distribution in networks is a long-standing problem for practical applications. Here we combine quantum cryptography and WDM to solve this problem because WDM technology is universally deployed in the current and next generation fiber networks. The ultimate target is to deploy quantum key distribution over commercial networks. The problems arising from the networks are also studied in this part. Then quantum key distribution in multi-access networks using wavelength routing technology is investigated in this research. For the first time, quantum cryptography for multiple individually targeted users has been successfully implemented in sharp contrast to that using the indiscriminating broadcasting structure. It overcomes the shortcoming that every user in the network can acquire the quantum key signals intended to be exchanged between only two users. Furthermore, a more efficient scheme of quantum key distribution is adopted, hence resulting in a higher key rate. Lastly, a quantum random number generator based on quantum optics has been experimentally demonstrated. This device is a key component for quantum key distribution as it can create truly random numbers, which is an essential requirement to perform quantum key distribution. This new generator is composed of a single optical fiber coupler with fiber pigtails, which can be easily used in optical fiber communications.
Statistical Mechanics and Applications in Condensed Matter
NASA Astrophysics Data System (ADS)
Di Castro, Carlo; Raimondi, Roberto
2015-08-01
Preface; 1. Thermodynamics: a brief overview; 2. Kinetics; 3. From Boltzmann to Gibbs; 4. More ensembles; 5. The thermodynamic limit and its thermodynamic stability; 6. Density matrix and quantum statistical mechanics; 7. The quantum gases; 8. Mean-field theories and critical phenomena; 9. Second quantization and Hartree-Fock approximation; 10. Linear response and fluctuation-dissipation theorem in quantum systems: equilibrium and small deviations; 11. Brownian motion and transport in disordered systems; 12. Fermi liquids; 13. The Landau theory of the second order phase transitions; 14. The Landau-Wilson model for critical phenomena; 15. Superfluidity and superconductivity; 16. The scaling theory; 17. The renormalization group approach; 18. Thermal Green functions; 19. The microscopic foundations of Fermi liquids; 20. The Luttinger liquid; 21. Quantum interference effects in disordered electron systems; Appendix A. The central limit theorem; Appendix B. Some useful properties of the Euler Gamma function; Appendix C. Proof of the second theorem of Yang and Lee; Appendix D. The most probable distribution for the quantum gases; Appendix E. Fermi-Dirac and Bose-Einstein integrals; Appendix F. The Fermi gas in a uniform magnetic field: Landau diamagnetism; Appendix G. Ising and gas-lattice models; Appendix H. Sum over discrete Matsubara frequencies; Appendix I. Hydrodynamics of the two-fluid model of superfluidity; Appendix J. The Cooper problem in the theory of superconductivity; Appendix K. Superconductive fluctuations phenomena; Appendix L. Diagrammatic aspects of the exact solution of the Tomonaga Luttinger model; Appendix M. Details on the theory of the disordered Fermi liquid; References; Author index; Index.
Periodic Table of Elements: Los Alamos National Laboratory
Highlighted in Huffington Post 12/6/17 Quantum dots amplify light with electrical pumping 11/20/17 Josh Smith Actinides Transition metals Nonmetals Post-transition metals Halogens Metalloid Noble gases Contact
Removal of oxides of nitrogen from gases in multi-stage coal combustion
Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.
1998-01-13
Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.
Removal of oxides of nitrogen from gases in multi-stage coal combustion
Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.
1998-01-01
Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.
Machine learning action parameters in lattice quantum chromodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanahan, Phiala; Trewartha, Daneil; Detmold, William
Numerical lattice quantum chromodynamics studies of the strong interaction underpin theoretical understanding of many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. Finally, the high information contentmore » and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development.« less
NASA Astrophysics Data System (ADS)
Zhu, Zhonghu; Chen, Ai-Xi; Bai, Yanfeng; Yang, Wen-Xing; Lee, Ray-Kuang
2014-05-01
In this paper, we analyze theoretically the optical steady behavior in GaAs quantum well structure which interacts with a single elliptically polarized field (EPF) and a π-polarized probe field. Due to the existence of the robust nonradiative coherence, we demonstrate that the controllable optical steady behavior including multi-stability (OM) and optical bistability (OB) can be obtained. More interestingly, our numerical results also illustrate that tuning the phase difference between two components of polarized electric field of the EPF can realize the conversion between OB and OM. Our results illustrate the potential to utilize the optical phase for developing the new all-optical switching devices, as well as a guidance in the design for possible experimental implementations.
Machine learning action parameters in lattice quantum chromodynamics
Shanahan, Phiala; Trewartha, Daneil; Detmold, William
2018-05-16
Numerical lattice quantum chromodynamics studies of the strong interaction underpin theoretical understanding of many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. Finally, the high information contentmore » and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development.« less
Schrodinger's catapult II: entanglement between stationary and flying fields
NASA Astrophysics Data System (ADS)
Pfaff, W.; Axline, C.; Burkhart, L.; Vool, U.; Reinhold, P.; Frunzio, L.; Jiang, L.; Devoret, M.; Schoelkopf, R.
Entanglement between nodes is an elementary resource in a quantum network. An important step towards its realization is entanglement between stationary and flying states. Here we experimentally demonstrate entanglement generation between a long-lived cavity memory and traveling mode in circuit QED. A large on/off ratio and fast control over a parametric mixing process allow us to realize conversion with tunable magnitude and duration between standing and flying mode. In the case of half-conversion, we observe correlations between the standing and flying state that confirm the generation of entangled states. We show this for both single-photon and multi-photon states, paving the way for error-correctable remote entanglement. Our system could serve as an essential component in a modular architecture for error-protected quantum information processing.
NASA Astrophysics Data System (ADS)
Xue, ShiChuan; Wu, JunJie; Xu, Ping; Yang, XueJun
2018-02-01
Quantum computing is a significant computing capability which is superior to classical computing because of its superposition feature. Distinguishing several quantum states from quantum algorithm outputs is often a vital computational task. In most cases, the quantum states tend to be non-orthogonal due to superposition; quantum mechanics has proved that perfect outcomes could not be achieved by measurements, forcing repetitive measurement. Hence, it is important to determine the optimum measuring method which requires fewer repetitions and a lower error rate. However, extending current measurement approaches mainly aiming at quantum cryptography to multi-qubit situations for quantum computing confronts challenges, such as conducting global operations which has considerable costs in the experimental realm. Therefore, in this study, we have proposed an optimum subsystem method to avoid these difficulties. We have provided an analysis of the comparison between the reduced subsystem method and the global minimum error method for two-qubit problems; the conclusions have been verified experimentally. The results showed that the subsystem method could effectively discriminate non-orthogonal two-qubit states, such as separable states, entangled pure states, and mixed states; the cost of the experimental process had been significantly reduced, in most circumstances, with acceptable error rate. We believe the optimal subsystem method is the most valuable and promising approach for multi-qubit quantum computing applications.
Quantum Field Theory Approach to Condensed Matter Physics
NASA Astrophysics Data System (ADS)
Marino, Eduardo C.
2017-09-01
Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.
NASA Astrophysics Data System (ADS)
Sharif, Puya; Heydari, Hoshang
We give a self contained introduction to a few quantum game protocols, starting with the quantum version of the two-player two-choice game of Prisoners dilemma, followed by an n-player generalization trough the quantum minority games, and finishing with a contribution towards an n-player m-choice generalization with a quantum version of a three-player Kolkata restaurant problem. We have omitted some technical details accompanying these protocols, and instead laid the focus on presenting some general aspects of the field as a whole. This review contains an introduction to the formalism of quantum information theory, as well as to important game theoretical concepts, and is aimed to work as a review suiting economists and game theorists with limited knowledge of quantum physics as well as to physicists with limited knowledge of game theory.
Experimental realization of entanglement in multiple degrees of freedom between two quantum memories
Zhang, Wei; Ding, Dong-Sheng; Dong, Ming-Xin; Shi, Shuai; Wang, Kai; Liu, Shi-Long; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2016-01-01
Entanglement in multiple degrees of freedom has many benefits over entanglement in a single one. The former enables quantum communication with higher channel capacity and more efficient quantum information processing and is compatible with diverse quantum networks. Establishing multi-degree-of-freedom entangled memories is not only vital for high-capacity quantum communication and computing, but also promising for enhanced violations of nonlocality in quantum systems. However, there have been yet no reports of the experimental realization of multi-degree-of-freedom entangled memories. Here we experimentally established hyper- and hybrid entanglement in multiple degrees of freedom, including path (K-vector) and orbital angular momentum, between two separated atomic ensembles by using quantum storage. The results are promising for achieving quantum communication and computing with many degrees of freedom. PMID:27841274
2012-11-19
the velocity is linear in the coordinates. The solution is analogous to Hubble flows in cosmology and the Bjorken expansion of a QGP, as discussed in...gµν), R is the Ricci curvature scalar built out of two derivatives of the metric, R ∼ ∂∂g, 3 is a cosmological constant (also known as the tension of...the AdS metric solves the Einstein equation (68) with the AdS radius L determined by the cosmological constant, 3, as 3=− d(d−2)2L2 . One can then
Classical and Quantum Thermal Physics
NASA Astrophysics Data System (ADS)
Prasad, R.
2016-11-01
List of figures; List of tables; Preface; Acknowledgement; Dedication; 1. The kinetic theory of gases; 2. Ideal to real gas, viscosity, conductivity and diffusion; 3. Thermodynamics: definitions and Zeroth law; 4. First Law of Thermodynamics and some of its applications; 5. Second Law of Thermodynamics and some of its applications; 6. TdS equations and their applications; 7. Thermodynamic functions, potentials, Maxwell equations, the Third Law and equilibrium; 8. Some applications of thermodynamics to problems of physics and engineering; 9. Application of thermodynamics to chemical reactions; 10. Quantum thermodynamics; 11. Some applications of quantum thermodynamics; 12. Introduction to the thermodynamics of irreversible processes; Index.
Scissors Mode of Dipolar Quantum Droplets of Dysprosium Atoms
NASA Astrophysics Data System (ADS)
Ferrier-Barbut, Igor; Wenzel, Matthias; Böttcher, Fabian; Langen, Tim; Isoard, Mathieu; Stringari, Sandro; Pfau, Tilman
2018-04-01
We report on the observation of the scissors mode of a single dipolar quantum droplet. The existence of this mode is due to the breaking of the rotational symmetry by the dipole-dipole interaction, which is fixed along an external homogeneous magnetic field. By modulating the orientation of this magnetic field, we introduce a new spectroscopic technique for studying dipolar quantum droplets. This provides a precise probe for interactions in the system, allowing us to extract a background scattering length for 164Dy of 69 (4 )a0 . Our results establish an analogy between quantum droplets and atomic nuclei, where the existence of the scissors mode is also only due to internal interactions. They further open the possibility to explore physics beyond the available theoretical models for strongly dipolar quantum gases.
Entanglement entropy of one-dimensional gases.
Calabrese, Pasquale; Mintchev, Mihail; Vicari, Ettore
2011-07-08
We introduce a systematic framework to calculate the bipartite entanglement entropy of a spatial subsystem in a one-dimensional quantum gas which can be mapped into a noninteracting fermion system. To show the wide range of applicability of the proposed formalism, we use it for the calculation of the entanglement in the eigenstates of periodic systems, in a gas confined by boundaries or external potentials, in junctions of quantum wires, and in a time-dependent parabolic potential.
Probing Molecular Ions With Laser-Cooled Atomic Ions
2017-10-11
Sept. 23, 2015 Precision Chemical Dynamics and Quantum Control of Ultracold Molecular Ion Reactions , Cold Molecular Ions at the Quantum limit (COMIQ...ken.brown@chemistry.gatech.edu This work solved an old mystery about the lifetime of Ca+ due to reactions with background gases in laser-cooling experiments...Relative to other alkaline earths, Ca+ had a much slower reaction rate. We discovered the reason is that the Doppler cooling laser is near
Quantum Hall effect breakdown in two-dimensional hole gases
NASA Astrophysics Data System (ADS)
Eaves, L.; Stoddart, S. T.; Wirtz, R.; Neumann, A. C.; Gallagher, B. L.; Main, P. C.; Henini, M.
2000-02-01
The breakdown of dissipationless current flow in the quantum Hall effect is studied for a two-dimensional hole gas at filling factors i=1 and 2. At high currents, the magnetoresistance curves at breakdown exhibit a series of steps accompanied by hysteresis and intermittent noise. These are compared with similar data for electron systems and are discussed in terms of a hydrodynamic model involving inter-Landau level scattering at the sample edge.
NASA Astrophysics Data System (ADS)
Simula, Tapio
2018-02-01
We consider the inertial mass of a vortex in a superfluid. We obtain a vortex mass that is well defined and is determined microscopically and self-consistently by the elementary excitation energy of the kelvon quasiparticle localized within the vortex core. The obtained result for the vortex mass is found to be consistent with experimental observations on superfluid quantum gases and vortex rings in water. We propose a method to measure the inertial rest mass and Berry phase of a vortex in superfluid Bose and Fermi gases.
[A trace methane gas sensor using mid-infrared quantum cascaded laser at 7.5 microm].
Chen, Chen; Dang, Jing-Min; Huang, Jian-Qiang; Yang, Yue; Wang, Yi-Ding
2012-11-01
Presented is a compact instrument developed for in situ high-stable and sensitive continuous measurement of trace gases in air, with results shown for ambient methane (CH4) concentration accurate, real-time and in-situ. This instrument takes advantage of recent technology in thermoelectrically cooling (TEC) pulsed Fabry-Perot (FP) quantum cascaded laser (QCL) driving in a pulse mode operating at 7.5 microm ambient temperature to cover a fundamental spectral absorption band near v4 of CH4. A high quality Liquid Nitrogen (LN) cooled Mercury Cadmium Telluride (HgCdTe) mid-infrared (MIR) detector is used along with a total reflection coated gold ellipsoid mirror offering 20 cm single pass optical absorption in an open-path cell to achieve stability of 5.2 x 10(-3) under experimental condition of 200 micromol x mol(-1) measured ambient CH4. The instrument integrated software via time discriminating electronics technology to control QCL provides continuous quantitative trace gas measurements without calibration. The results show that the instrument can be applied to field measurements of gases of environmental concern. Additional, operator could substitute a QCL operating at a different wavelength to measure other gases.
Multi-target-qubit unconventional geometric phase gate in a multi-cavity system
NASA Astrophysics Data System (ADS)
Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping
2016-02-01
Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.
Multi-target-qubit unconventional geometric phase gate in a multi-cavity system.
Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping
2016-02-22
Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.
Multi-dimensional photonic states from a quantum dot
NASA Astrophysics Data System (ADS)
Lee, J. P.; Bennett, A. J.; Stevenson, R. M.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2018-04-01
Quantum states superposed across multiple particles or degrees of freedom offer an advantage in the development of quantum technologies. Creating these states deterministically and with high efficiency is an ongoing challenge. A promising approach is the repeated excitation of multi-level quantum emitters, which have been shown to naturally generate light with quantum statistics. Here we describe how to create one class of higher dimensional quantum state, a so called W-state, which is superposed across multiple time bins. We do this by repeated Raman scattering of photons from a charged quantum dot in a pillar microcavity. We show this method can be scaled to larger dimensions with no reduction in coherence or single-photon character. We explain how to extend this work to enable the deterministic creation of arbitrary time-bin encoded qudits.
Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases
Huang, Xu-Guang
2016-01-01
The chiral magnetic and chiral separation effects—quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma—have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084
Multi terabits/s optical access transport technologies
NASA Astrophysics Data System (ADS)
Binh, Le Nguyen; Wang Tao, Thomas; Livshits, Daniil; Gubenko, Alexey; Karinou, Fotini; Liu Ning, Gordon; Shkolnik, Alexey
2016-02-01
Tremendous efforts have been developed for multi-Tbps over ultra-long distance and metro and access optical networks. With the exponential increase demand on data transmission, storage and serving, especially the 5G wireless access scenarios, the optical Internet networking has evolved to data-center based optical networks pressuring on novel and economical access transmission systems. This paper reports (1) Experimental platforms and transmission techniques employing band-limited optical components operating at 10G for 100G based at 28G baud. Advanced modulation formats such as PAM-4, DMT, duo-binary etc are reported and their advantages and disadvantages are analyzed so as to achieve multi-Tbps optical transmission systems for access inter- and intra- data-centered-based networks; (2) Integrated multi-Tbps combining comb laser sources and micro-ring modulators meeting the required performance for access systems are reported. Ten-sub-carrier quantum dot com lasers are employed in association with wideband optical intensity modulators to demonstrate the feasibility of such sources and integrated micro-ring modulators acting as a combined function of demultiplexing/multiplexing and modulation, hence compactness and economy scale. Under the use of multi-level modulation and direct detection at 56 GBd an aggregate of higher than 2Tbps and even 3Tbps can be achieved by interleaved two comb lasers of 16 sub-carrier lines; (3) Finally the fundamental designs of ultra-compacts flexible filters and switching integrated components based on Si photonics for multi Tera-bps active interconnection are presented. Experimental results on multi-channels transmissions and performances of optical switching matrices and effects on that of data channels are proposed.
NASA Astrophysics Data System (ADS)
Zha, Xinwei; Da, Zhang; Ahmed, Irfan; Zhang, Dan; Zhang, Yanpeng
2018-02-01
In this paper, we determine the complementarity relations for pure quantum states of N qubits by presenting the definition of local and non-local forms. By comparing the entanglement monogamy equality proposed by Coffman, Kundu, and Wootters, we prove that there exist strict monogamy laws for quantum correlations in all many-qubit systems. Further, the proper form of general entanglement monogamy equality for arbitrary quantum states is found with the characterization of total quantum correlation of qubits. These results may open a new window for multi-qubit entanglement.
Quantum games with a multi-slit electron diffraction set-up
NASA Astrophysics Data System (ADS)
Iqbal, A.
2003-05-01
A set-up is proposed to play a quantum version of the famous bimatrix game of Prisoners' Dilemma. Multi-slit electron diffraction with each player's pure strategy consisting of opening one of the two slits at his/her disposal are essential features of the set-up. Instead of entanglement the association of waves with travelling material objects is suggested as another resource to play quantum games.
NASA Astrophysics Data System (ADS)
Zakiya, Hanifah; Sinaga, Parlindungan; Hamidah, Ida
2017-05-01
The results of field studies showed the ability of science literacy of students was still low. One root of the problem lies in the books used in learning is not oriented toward science literacy component. This study focused on the effectiveness of the use of textbook-oriented provisioning capability science literacy by using multi modal representation. The text books development method used Design Representational Approach Learning to Write (DRALW). Textbook design which was applied to the topic of "Kinetic Theory of Gases" is implemented in XI grade students of high school learning. Effectiveness is determined by consideration of the effect and the normalized percentage gain value, while the hypothesis was tested using Independent T-test. The results showed that the textbooks which were developed using multi-mode representation science can improve the literacy skills of students. Based on the size of the effect size textbooks developed with representation multi modal was found effective in improving students' science literacy skills. The improvement was occurred in all the competence and knowledge of scientific literacy. The hypothesis testing showed that there was a significant difference on the ability of science literacy between class that uses textbooks with multi modal representation and the class that uses the regular textbook used in schools.
Zheng, Ruilin; Zhang, Qi; Yu, Kehan; Liu, Chunxiao; Ding, Jianyong; Lv, Peng; Wei, Wei
2017-10-15
A kind of Sn 2+ /Mn 2+ co-doped fluorphosphate (FP) glasses that served as single-component continuous tunable broadband emitting multi-chromatic phosphors are developed for the first time. Importantly, these FP glasses have high thermal conductivity (3.25-3.70 W/m·K) and good chemical stability in water (80°C). By combining with commercially available UV-LEDs directly, the emission colors can be tuned from blue/cold-white to warm-white/red through the energy transfer from Sn 2+ to Mn 2+ , and the broadband spectra covering the whole visible region from 380 nm to 760 nm. Notably, the FP glass can also serve as a white light phosphor by controlling the content of SnO/MnO, which has excellent optical properties. The CIE chromaticity coordinate, color rendering index, and quantum efficiency are (0.33, 0.29), 84, and 0.952, respectively. These new phosphors, possessing good optical and chemical properties, are promising for applications in solid-state lighting devices.
A High-Resolution Godunov Method for Compressible Multi-Material Flow on Overlapping Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J W; Schwendeman, D W; Kapila, A K
2006-02-13
A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on amore » uniform pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of an planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.« less
Müller, K; Kaldewey, T; Ripszam, R; Wildmann, J S; Bechtold, A; Bichler, M; Koblmüller, G; Abstreiter, G; Finley, J J
2013-01-01
The ability to control and exploit quantum coherence and entanglement drives research across many fields ranging from ultra-cold quantum gases to spin systems in condensed matter. Transcending different physical systems, optical approaches have proven themselves to be particularly powerful, since they profit from the established toolbox of quantum optical techniques, are state-selective, contact-less and can be extremely fast. Here, we demonstrate how a precisely timed sequence of monochromatic ultrafast (~ 2-5 ps) optical pulses, with a well defined polarisation can be used to prepare arbitrary superpositions of exciton spin states in a semiconductor quantum dot, achieve ultrafast control of the spin-wavefunction without an applied magnetic field and make high fidelity read-out the quantum state in an arbitrary basis simply by detecting a strong (~ 2-10 pA) electric current flowing in an external circuit. The results obtained show that the combined quantum state preparation, control and read-out can be performed with a near-unity (≥97%) fidelity.
Pan, Ling-Yun; Pan, Gen-Cai; Zhang, Yong-Lai; Gao, Bing-Rong; Dai, Zhen-Wen
2013-02-01
As the priority of interconnects and active components in nanoscale optical and electronic devices, three-dimensional hyper-branched nanostructures came into focus of research. Recently, a novel crystallization route, named as "nonclassical crystallization," has been reported for three-dimensional nanostructuring. In this process, Quantum dots are used as building blocks for the construction of the whole hyper-branched structures instead of ions or single-molecules in conventional crystallization. The specialty of these nanostructures is the inheritability of pristine quantum dots' physical integrity because of their polycrystalline structures, such as quantum confinement effect and thus the luminescence. Moreover, since a longer diffusion length could exist in polycrystalline nanostructures due to the dramatically decreased distance between pristine quantum dots, the exciton-exciton interaction would be different with well dispersed quantum dots and single crystal nanostructures. This may be a benefit for electron transport in solar cell application. Therefore, it is very necessary to investigate the exciton-exciton interaction in such kind of polycrystalline nanostructures and their optical properites for solar cell application. In this research, we report a novel CdTe hyper-branched nanostructures based on self-assembly of CdTe quantum dots. Each branch shows polycrystalline with pristine quantum dots as the building units. Both steady state and time-resolved spectroscopy were performed to investigate the properties of carrier transport. Steady state optical properties of pristine quantum dots are well inherited by formed structures. While a suppressed multi-exciton recombination rate was observed. This result supports the percolation of carriers through the branches' network.
Controlling interactions between highly magnetic atoms with Feshbach resonances.
Kotochigova, Svetlana
2014-09-01
This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.
Terahertz magneto-optical spectroscopy of a two-dimensional hole gas
Kamaraju, N.; Pan, W.; Ekenberg, U.; ...
2015-01-21
Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is also shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG,more » in contrast with the dominance of superradiant damping in two-dimensional electron gases. Furthermore, these results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.« less
Terahertz magneto-optical spectroscopy of a two-dimensional hole gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamaraju, N., E-mail: nkamaraju@lanl.gov; Taylor, A. J.; Prasankumar, R. P., E-mail: rpprasan@lanl.gov
2015-01-19
Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG, inmore » contrast with the dominance of superradiant damping in two-dimensional electron gases. Our results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.« less
Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerscher, Soeren; Thobe, Alexander; Hundt, Bastian
2013-04-15
We report on the first experimental setup based on a 2D-/3D-magneto-optical trap (MOT) scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong {sup 1}S{sub 0}{yields}{sup 1}P{sub 1} transition captures ytterbium directly from a dispenser of atoms and loads a 3D-MOT on the narrow {sup 1}S{sub 0}{yields}{sup 3}P{sub 1} intercombination transition. Subsequently, atoms are transferred to a crossed opticalmore » dipole trap and cooled evaporatively to quantum degeneracy.« less
NASA Astrophysics Data System (ADS)
Porter, William J.; Drut, Joaquín E.
2017-05-01
Path-integral analyses originally pioneered in the study of the complex-phase problem afflicting lattice calculations of finite-density quantum chromodynamics are generalized to nonrelativistic Fermi gases with repulsive interactions. Using arguments similar to those previously applied to relativistic theories, we show that the analogous problem in nonrelativistic systems manifests itself naturally in Tan's contact as a nontrivial cancellation between terms with varied dependence on extensive thermodynamic quantities. We analyze that case under the assumption of a Gaussian phase distribution, which is supported by our Monte Carlo calculations and perturbative considerations. We further generalize these results to observables other than the contact, as well as to polarized systems and systems with fixed particle number. Our results are quite general in that they apply to repulsive multicomponent fermions, they are independent of dimensionality or trapping potential, and they hold in the ground state as well as at finite temperature.
Authenticated multi-user quantum key distribution with single particles
NASA Astrophysics Data System (ADS)
Lin, Song; Wang, Hui; Guo, Gong-De; Ye, Guo-Hua; Du, Hong-Zhen; Liu, Xiao-Fen
2016-03-01
Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.
Qudit hypergraph states and their properties
NASA Astrophysics Data System (ADS)
Xiong, Fei-Lei; Zhen, Yi-Zheng; Cao, Wen-Fei; Chen, Kai; Chen, Zeng-Bing
2018-01-01
Hypergraph states, a generalization of graph states, constitute a large class of quantum states with intriguing nonlocal properties, and they have promising applications in quantum information science and technology. In this paper, we study some features of an independently proposed generalization of hypergraph states to qudit hypergraph states, i.e., each vertex in the generalized hypergraph (multi-hypergraph) represents a d -level system instead of a two-level one. It is shown that multi-hypergraphs and d -level hypergraph states have a one-to-one correspondence, and the structure of a multi-hypergraph exhibits the entanglement property of the corresponding quantum state. We discuss their relationship with some well-known state classes, e.g., real equally weighted states and stabilizer states. The Bell nonlocality, an important resource in fulfilling many quantum information tasks, is also investigated.
Miniaturized multi channel infrared optical gas sensor system
NASA Astrophysics Data System (ADS)
Wöllenstein, Jürgen; Eberhardt, Andre; Rademacher, Sven; Schmitt, Katrin
2011-06-01
Infrared spectroscopy uses the characteristic absorption of the molecules in the mid infrared and allows the determination of the gases and their concentration. Especially by the absorption at longer wavelengths between 8 μm and 12 μm, the so called "fingerprint" region, the molecules can be measured with highest selectivity. We present an infrared optical filter photometer for the analytical determination of trace gases in the air. The challenge in developing the filter photometer was the construction of a multi-channel system using a novel filter wheel concept - which acts as a chopper too- in order to measure simultaneously four gases: carbon monoxide, carbon dioxide, methane and ammonia. The system consists of a broadband infrared emitter, a long path cell with 1.7m optical path length, a filter wheel and analogue and digital signal processing. Multi channel filter photometers normally need one filter and one detector per target gas. There are small detection units with one, two or more detectors with integrated filters available on the market. One filter is normally used as reference at a wavelength without any cross-sensitivities to possible interfering gases (e.g. at 3.95 μm is an "atmospheric window" - a small spectral band without absorbing gases in the atmosphere). The advantage of a filter-wheel set-up is that a single IR-detector can be used, which reduces the signal drift enormously. Pyroelectric and thermopile detectors are often integrated in these kinds of spectrometers. For both detector types a modulation of the light is required and can be done - without an additional chopper - with the filter wheel.
Sen, Siddhartha; Voorheis, H Paul
2014-12-21
The mechanism of protein folding during early stages of the process has three determinants. First, moving water molecules obey the rules of low Reynolds number physics without an inertial component. Molecular movement is instantaneous and size insensitive. Proteins emerging from the ribosome move and rotate without an external force if they change shape, forming and propagating helical structures that increases translocational efficiency. Forward motion ceases when the shape change or propelling force ceases. Second, application of quantum field theory to water structure predicts the spontaneous formation of low density coherent units of fixed size that expel dissolved atmospheric gases. Structured water layers with both coherent and non-coherent domains, form a sheath around the new protein. The surface of exposed hydrophobic amino acids is protected from water contact by small nanobubbles of dissolved atmospheric gases, 5 or 6 molecules on average, that vibrate, attracting even widely separated resonating nanobubbles. This force results from quantum effects, appearing only when the system is within and interacts with an oscillating electromagnetic field. The newly recognized quantum force sharply bends the peptide and is part of a dynamic field determining the pathway of protein folding. Third, the force initiating the tertiary folding of proteins arises from twists at the position of each hydrophobic amino acid, that minimizes surface exposure of the hydrophobic amino acids and propagates along the protein. When the total bend reaches 360°, the leading segment of water sheath intersects the trailing segment. This steric self-intersection expels water from overlapping segments of the sheath and by Newton׳s second law moves the polypeptide chain in an opposite direction. Consequently, with very few exceptions that we enumerate and discuss, tertiary structures are absent from proteins without hydrophobic amino acids, which control the early stages of protein folding and the overall shape of protein. Consequently, proteins only adopt a limited number of forms. The formation of quaternary structures is not necessarily prevented by the absence of hydrophobic amino acids. Copyright © 2014 Elsevier Ltd. All rights reserved.
Deterministic Multi-hop Controlled Teleportation of Arbitrary Single-Qubit State
NASA Astrophysics Data System (ADS)
Peng, Jia-yin; Bai, Ming-qiang; Mo, Zhi-wen
2017-10-01
Multi-hop teleportation is of great significance due to long-distance delivery of quantum information and wireless quantum communication networks. In existing protocols of multi-hop teleportation, the more nodes, the smaller the success probability. In this paper, fusing the ideas of multi-hop teleportation and controlled teleportation, we put forward a scheme for implementing multi-hop controlled teleportation of single-qubit state. A set of ingenious three-qubit non-maximally entangled states are constructed to serve as the quantum channels. The information is perfectly transmitted hop by hop through teleportation under the control of the supervisors. Unit success probability can be achieved independent of channel's entanglement degree and the number of intermediate nodes. Only Pauli operations, single-qubit rotation, Hadamard gate, controlled-NOT gate, Bell-state measurement and single-qubit measurement are used in our scheme, so this scheme is easily realized in physical experiment.
Closed System Step Etching of CI chondrite Ivuna reveals primordial noble gases in the HF-solubles
NASA Astrophysics Data System (ADS)
Riebe, My E. I.; Busemann, Henner; Wieler, Rainer; Maden, Colin
2017-05-01
We analyzed all the noble gases in HF-soluble phases in the CI chondrite Ivuna by in-vacuum gas release using the "Closed System Step Etching" (CSSE) technique, which allows for direct noble gas measurements of acid-soluble phases. The main motivation was to investigate if there are primordial noble gases in HF-soluble phases in Ivuna, something that has not been done before in CI chondrites, as most primordial noble gases are known to reside in HF-resistant phases. The first steps under mild etching released He, Ne, and Ar with solar-like elemental and isotopic compositions, confirming that Ivuna contains implanted solar wind (SW) noble gases acquired in the parent body regolith. The SW component released in some etch steps was elementally unfractionated. This is unusual as trapped SW noble gases are elementally fractionated in most meteoritic material. In the intermediate etch steps under slightly harsher etching, cosmogenic noble gases were more prominent than SW noble gases. The HF-soluble portion of Ivuna contained primordial Ne and Xe, that was most visible in the last etch steps after all cosmogenic and most SW gases had been released. The primordial Ne and Xe in the HF-solubles have isotopic and elemental ratios readily explained as a mixture of the two most abundant primordial noble gas components in Ivuna bulk samples: HL and Q. Only small fractions of the total HL and Q in Ivuna were released during CSSE analysis; ∼3% of 20NeHL and ∼4% of 132XeQ. HL is known to reside in nanodiamond-rich separates and Q-gases are most likely carried by a carbonaceous phase known as phase Q. Q-gases were likely released from an HF-soluble portion of phase Q. However, nanodiamonds might not be the source of the HL-gases released upon etching, since nanodiamond-rich separates are very HF-resistant and the less tightly bound nanodiamond component P3 was not detected.
The oxygen uptake slow component at submaximal intensities in breaststroke swimming
Oliveira, Diogo R.; Gonçalves, Lio F.; Reis, António M.; Fernandes, Ricardo J.; Garrido, Nuno D.
2016-01-01
Abstract The present work proposed to study the oxygen uptake slow component (VO2 SC) of breaststroke swimmers at four different intensities of submaximal exercise, via mathematical modeling of a multi-exponential function. The slow component (SC) was also assessed with two different fixed interval methods and the three methods were compared. Twelve male swimmers performed a test comprising four submaximal 300 m bouts at different intensities where all expired gases were collected breath by breath. Multi-exponential modeling showed values above 450 ml·min−1 of the SC in the two last bouts of exercise (those with intensities above the lactate threshold). A significant effect of the method that was used to calculate the VO2 SC was revealed. Higher mean values were observed when using mathematical modeling compared with the fixed interval 3rd min method (F=7.111; p=0.012; η2=0.587); furthermore, differences were detected among the two fixed interval methods. No significant relationship was found between the SC determined by any method and the blood lactate measured at each of the four exercise intensities. In addition, no significant association between the SC and peak oxygen uptake was found. It was concluded that in trained breaststroke swimmers, the presence of the VO2 SC may be observed at intensities above that corresponding to the 3.5 mM-1 threshold. Moreover, mathematical modeling of the oxygen uptake on-kinetics tended to show a higher slow component as compared to fixed interval methods. PMID:28149379
Support for Implications of Compressive Sensing Concepts to Imaging Systems
2015-08-02
34pretty picture" is not only not needed, but is not ALLOWED due to privacy concerns. Remember the huge controversy caused by mmW imagers seeing people...in 2003, for experimental studies of quantum degenerate atomic gases. From 2004-2006 he was a postdoctoral researcher in the Electrical and...Computer Engineering at the University of Arizona. He was recently also a program manager at DARPA/DSO where he started programs on quantum information
Software Integration in Multi-scale Simulations: the PUPIL System
NASA Astrophysics Data System (ADS)
Torras, J.; Deumens, E.; Trickey, S. B.
2006-10-01
The state of the art for computational tools in both computational chemistry and computational materials physics includes many algorithms and functionalities which are implemented again and again. Several projects aim to reduce, eliminate, or avoid this problem. Most such efforts seem to be focused within a particular specialty, either quantum chemistry or materials physics. Multi-scale simulations, by their very nature however, cannot respect that specialization. In simulation of fracture, for example, the energy gradients that drive the molecular dynamics (MD) come from a quantum mechanical treatment that most often derives from quantum chemistry. That “QM” region is linked to a surrounding “CM” region in which potentials yield the forces. The approach therefore requires the integration or at least inter-operation of quantum chemistry and materials physics algorithms. The same problem occurs in “QM/MM” simulations in computational biology. The challenge grows if pattern recognition or other analysis codes of some kind must be used as well. The most common mode of inter-operation is user intervention: codes are modified as needed and data files are managed “by hand” by the user (interactively and via shell scripts). User intervention is however inefficient by nature, difficult to transfer to the community, and prone to error. Some progress (e.g Sethna’s work at Cornell [C.R. Myers et al., Mat. Res. Soc. Symp. Proc., 538(1999) 509, C.-S. Chen et al., Poster presented at the Material Research Society Meeting (2000)]) has been made on using Python scripts to achieve a more efficient level of interoperation. In this communication we present an alternative approach to merging current working packages without the necessity of major recoding and with only a relatively light wrapper interface. The scheme supports communication among the different components required for a given multi-scale calculation and access to the functionalities of those components for the potential user. A general main program allows the management of every package with a special communication protocol between their interfaces following the directives introduced by the user which are stored in an XML structured file. The initial prototype of the PUPIL (Program for User Packages Interfacing and Linking) system has been done using Java as a fast, easy prototyping object oriented (OO) language. In order to test it, we have applied this prototype to a previously studied problem, the fracture of a silica nanorod. We did so joining two different packages to do a QM/MD calculation. The results show the potential for this software system to do different kind of simulations and its simplicity of maintenance.
Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, S.; Zhou, X.; Li, M.
Metal organic chemical vapor deposition of InGaAs/InP multi-quantum-well in nanoscale V-grooved trenches on Si (001) substrate was studied using the aspect ratio trapping method. A high quality GaAs/InP buffer layer with two convex (111) B facets was selectively grown to promote the highly uniform, single-crystal ridge InP/InGaAs multi-quantum-well structure growth. Material quality was confirmed by transmission electron microscopy and room temperature micro-photoluminescence measurements. This approach shows great promise for the fabrication of photonics devices and nanolasers on Si substrate.
NASA Astrophysics Data System (ADS)
Matsuoka, Ken; Esumi, Motoki; Ikeguchi, Ken Bryan; Kasahara, Jiro; Matsuo, Akiko; Funaki, Ikkoh
We developed a novel coaxial rotary valve for a multi-tube PDE. Since this single valve can supply three different gases (fuel, oxidizer and purge gas) into a combustor, the unification of the valve systems for three different gases is possible by using our newly designed valve. A PDRE system can be simple and lightweight by using this valve, and thus its thrust-weight ratio can be increased. We proposed the design of a multi-tube rotary-valved PDRE system by this rotary valve. Moreover, in preparation for a multi-tube rotary-valved PDRE, we carried out the multi-cycle operation experiment by the single-tube rotary-valved PDRE system. The combustion wave velocity was measured to confirm the operation of the PDRE system. Deflagration-to-detonation transition (DDT) was confirmed and DDT distance decreased under the condition of high operation frequency. In addition, a maximum operation frequency was 159 Hz.
High-fidelity projective read-out of a solid-state spin quantum register.
Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald
2011-09-21
Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved
NASA Technical Reports Server (NTRS)
Woodyard, James R.
1995-01-01
Multi-junction solar cells are attractive for space applications because they can be designed to convert a larger fraction of AMO into electrical power at a lower cost than single-junction cells. The performance of multi-junction cells is much more sensitive to the spectral irradiance of the illuminating source than single-junction cells. The design of high efficiency multi-junction cells for space applications requires matching the optoelectronic properties of the junctions to AMO spectral irradiance. Unlike single-junction cells, it is not possible to carry out quantum efficiency measurements using only a monochromatic probe beam and determining the cell short-circuit current assuming linearity of the quantum efficiency. Additionally, current-voltage characteristics can not be calculated from measurements under non-AMO light sources using spectral-correction methods. There are reports in the literature on characterizing the performance of multi junction cells by measuring and convoluting the quantum efficiency of each junction with the spectral irradiance; the technique is of limited value for the characterization of cell performance under AMO power-generating conditions. We report the results of research to develop instrumentation and techniques for characterizing multi junction solar cells for space . An integrated system is described which consists of a standard lamp, spectral radiometer, dual-source solar simulator, and personal computer based current-voltage and quantum efficiency equipment. The spectral radiometer is calibrated regularly using the tungsten-halogen standard lamp which has a calibration based on NIST scales. The solar simulator produces the light bias beam for current-voltage and cell quantum efficiency measurements. The calibrated spectral radiometer is used to 'fit' the spectral irradiance of the dual-source solar simulator to WRL AMO data. The quantum efficiency apparatus includes a monochromatic probe beam for measuring the absolute cell quantum efficiency at various voltage biases, including the voltage bias corresponding to the maximum-power point under AMO light bias. The details of the procedures to 'fit' the spectral irradiance to AMO will be discussed. An assessment of the role of the accuracy of the 'fit' of the spectral irradiance and probe beam intensity on measured cell characteristics will be presented. quantum efficiencies were measured with both spectral light bias and AMO light bias; the measurements show striking differences. Spectral irradiances were convoluted with cell quantum efficiencies to calculate cell currents as function of voltage. The calculated currents compare with measured currents at the 1% level. Measurements on a variety of multi-junction cells will be presented. The dependence of defects in junctions on cell quantum efficiencies measured under light and voltage bias conditions will be presented. Comments will be made on issues related to standards for calibration, and limitations of the instrumentation and techniques. Expeditious development of multi-junction solar cell technology for space presents challenges for cell characterization in the laboratory.
Secure multi-party communication with quantum key distribution managed by trusted authority
Nordholt, Jane Elizabeth; Hughes, Richard John; Peterson, Charles Glen
2013-07-09
Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.
Secure multi-party communication with quantum key distribution managed by trusted authority
Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen
2015-01-06
Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.
NASA Astrophysics Data System (ADS)
Mazzucchi, Gabriel; Caballero-Benitez, Santiago F.; Mekhov, Igor B.
2016-08-01
Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions.
Mauderly, J L; Kracko, D; Brower, J; Doyle-Eisele, M; McDonald, J D; Lund, A K; Seilkop, S K
2014-09-01
An experiment was conducted to test the hypothesis that a mixture of five inorganic gases could reproduce certain central vascular effects of repeated inhalation exposure of apolipoprotein E-deficient mice to diesel or gasoline engine exhaust. The hypothesis resulted from preceding multiple additive regression tree (MART) analysis of a composition-concentration-response database of mice exposed by inhalation to the exhausts and other complex mixtures. The five gases were the predictors most important to MART models best fitting the vascular responses. Mice on high-fat diet were exposed 6 h/d, 7 d/week for 50 d to clean air or a mixture containing 30.6 ppm CO, 20.5 ppm NO, 1.4 ppm NO₂, 0.5 ppm SO₂, and 2.0 ppm NH₃ in air. The gas concentrations were below the maxima in the preceding studies but in the range of those in exhaust exposure levels that caused significant effects. Five indicators of stress and pro-atherosclerotic responses were measured in aortic tissue. The exposure increased all five response indicators, with the magnitude of effect and statistical significance varying among the indicators and depending on inclusion or exclusion of an apparent outlying control. With the outlier excluded, three responses approximated predicted values and two fell below predictions. The results generally supported evidence that the five gases drove the effects of exhaust, and thus supported the potential of the MART approach for identifying putative causal components of complex mixtures.
Universal Themes of Bose-Einstein Condensation
NASA Astrophysics Data System (ADS)
Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.
2017-04-01
Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose-Einstein condensation of photons and grand-canonical condensate fluctuations J. Klaers and M. Weitz; 20. Laser operation and Bose-Einstein condensation: analogies and differences A. Chiocchetta, A. Gambassi and I. Carusotto; 21. Vortices in resonant polariton condensates in semiconductor microcavities D. N. Krizhanovskii, K. Guda, M. Sich, M. S. Skolnick, L. Dominici and D. Sanvitto; 22. Optical control of polariton condensates G. Christmann, P. G. Savvidis and J. J. Baumberg; 23. Disorder, synchronization and phase-locking in non-equilibrium Bose-Einstein condensates P. R. Eastham and B. Rosenow; 24. Collective topological excitations in 1D polariton quantum fluids H. Terças, D. D. Solnyshkov and G. Malpuech; 25. Microscopic theory of Bose-Einstein condensation of magnons at room temperature H. Salman, N. G. Berloff and S. O. Demokritov; 26. Spintronics and magnon Bose-Einstein condensation R. A. Duine, A. Brataas, S. A. Bender and Y. Tserkovnyak; 27. Spin-superfluidity and spin-current mediated non-local transport H. Chen and A. H. MacDonald; 28. Bose-Einstein condensation in quantum magnets C. Kollath, T. Giamarchi and C. Rüegg; Part V. Condensates in Astrophysics and Cosmology: Editorial notes; 29. Bose-Einstein condensates in neutron stars C. J. Pethick, T. Schäfer and A. Schwenk; 30. A simulated cosmological metric: the superfluid 3He condensate G. R. Pickett; 31. Cosmic axion Bose-Einstein condensation N. Banik and P. Sikivie; 32. Graviton BECs: a new approach to quantum gravity G. Dvali and C. Gomez; Universal Bose-Einstein condensation workshop; Index.
Integrated generation of complex optical quantum states and their coherent control
NASA Astrophysics Data System (ADS)
Roztocki, Piotr; Kues, Michael; Reimer, Christian; Romero Cortés, Luis; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2018-01-01
Complex optical quantum states based on entangled photons are essential for investigations of fundamental physics and are the heart of applications in quantum information science. Recently, integrated photonics has become a leading platform for the compact, cost-efficient, and stable generation and processing of optical quantum states. However, onchip sources are currently limited to basic two-dimensional (qubit) two-photon states, whereas scaling the state complexity requires access to states composed of several (<2) photons and/or exhibiting high photon dimensionality. Here we show that the use of integrated frequency combs (on-chip light sources with a broad spectrum of evenly-spaced frequency modes) based on high-Q nonlinear microring resonators can provide solutions for such scalable complex quantum state sources. In particular, by using spontaneous four-wave mixing within the resonators, we demonstrate the generation of bi- and multi-photon entangled qubit states over a broad comb of channels spanning the S, C, and L telecommunications bands, and control these states coherently to perform quantum interference measurements and state tomography. Furthermore, we demonstrate the on-chip generation of entangled high-dimensional (quDit) states, where the photons are created in a coherent superposition of multiple pure frequency modes. Specifically, we confirm the realization of a quantum system with at least one hundred dimensions. Moreover, using off-the-shelf telecommunications components, we introduce a platform for the coherent manipulation and control of frequencyentangled quDit states. Our results suggest that microcavity-based entangled photon state generation and the coherent control of states using accessible telecommunications infrastructure introduce a powerful and scalable platform for quantum information science.
Multi-scale Methods in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Polyzou, W. N.; Michlin, Tracie; Bulut, Fatih
2018-05-01
Daubechies wavelets are used to make an exact multi-scale decomposition of quantum fields. For reactions that involve a finite energy that take place in a finite volume, the number of relevant quantum mechanical degrees of freedom is finite. The wavelet decomposition has natural resolution and volume truncations that can be used to isolate the relevant degrees of freedom. The application of flow equation methods to construct effective theories that decouple coarse and fine scale degrees of freedom is examined.
Applications of absorption spectroscopy using quantum cascade lasers.
Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli
2014-01-01
Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.
Separated Representations and Fast Algorithms for Materials Science
2007-10-29
Quantum Chemisty , 127 (1999), pp. 143–269. [28] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis. Applications in the Chemical Sciences, John...Advances in highly correlated approaches. Advances in Quantum Chemisty , 127:143–269, 1999. [58] Age Smilde, Rasmus Bro, and Paul Geladi. Multi-way Analysis
Lee, Jae-Sung; Yoon, Na-Rae; Kang, Byoung-Ho; Lee, Sang-Won; Gopalan, Sai-Anand; Jeong, Hyun-Min; Lee, Seung-Ha; Kwon, Dae-Hyuk; Kang, Shin-Won
2014-07-01
We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC) gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG) provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone). To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt's dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylamino)cinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics.
A New All Solid State Approach to Gaseous Pollutant Detection
NASA Technical Reports Server (NTRS)
Brown, V.; Tamstorf, K.
1971-01-01
Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.
Dong, Ming-Xin; Zhang, Wei; Hou, Zhi-Bo; Yu, Yi-Chen; Shi, Shuai; Ding, Dong-Sheng; Shi, Bao-Sen
2017-11-15
Multi-photon entangled states not only play a crucial role in research on quantum physics but also have many applications in quantum information fields such as quantum computation, quantum communication, and quantum metrology. To fully exploit the multi-photon entangled states, it is important to establish the interaction between entangled photons and matter, which requires that photons have narrow bandwidth. Here, we report on the experimental generation of a narrowband four-photon Greenberger-Horne-Zeilinger state with a fidelity of 64.9% through multiplexing two spontaneous four-wave mixings in a cold Rb85 atomic ensemble. The full bandwidth of the generated GHZ state is about 19.5 MHz. Thus, the generated photons can effectively match the atoms, which are very suitable for building a quantum computation and quantum communication network based on atomic ensembles.
Programmable multi-node quantum network design and simulation
NASA Astrophysics Data System (ADS)
Dasari, Venkat R.; Sadlier, Ronald J.; Prout, Ryan; Williams, Brian P.; Humble, Travis S.
2016-05-01
Software-defined networking offers a device-agnostic programmable framework to encode new network functions. Externally centralized control plane intelligence allows programmers to write network applications and to build functional network designs. OpenFlow is a key protocol widely adopted to build programmable networks because of its programmability, flexibility and ability to interconnect heterogeneous network devices. We simulate the functional topology of a multi-node quantum network that uses programmable network principles to manage quantum metadata for protocols such as teleportation, superdense coding, and quantum key distribution. We first show how the OpenFlow protocol can manage the quantum metadata needed to control the quantum channel. We then use numerical simulation to demonstrate robust programmability of a quantum switch via the OpenFlow network controller while executing an application of superdense coding. We describe the software framework implemented to carry out these simulations and we discuss near-term efforts to realize these applications.
NASA Astrophysics Data System (ADS)
Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori
2017-05-01
We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.
Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Nielsen, Maj Lyck; Merrick, Joav
2006-11-14
Deep quantum chemistry is a theory of deeply structured quantum fields carrying the biological information of the cell, making it able to remember, intend, represent the inner and outer world for comparison, understand what it "sees", and make choices on its structure, form, behavior and division. We suggest that deep quantum chemistry gives the cell consciousness and all the qualities and abilities related to consciousness. We use geometric symbolism, which is a pre-mathematical and philosophical approach to problems that cannot yet be handled mathematically. Using Occam's razor we have started with the simplest model that works; we presume this to be a many-dimensional, spiral fractal. We suggest that all the electrons of the large biological molecules' orbitals make one huge "cell-orbital", which is structured according to the spiral fractal nature of quantum fields. Consciousness of single cells, multi cellular structures as e.g. organs, multi-cellular organisms and multi-individual colonies (like ants) and human societies can thus be explained by deep quantum chemistry. When biochemical activity is strictly controlled by the quantum-mechanical super-orbital of the cell, this orbital can deliver energetic quanta as biological information, distributed through many fractal levels of the cell to guide form and behavior of an individual single or a multi-cellular organism. The top level of information is the consciousness of the cell or organism, which controls all the biochemical processes. By this speculative work inspired by Penrose and Hameroff we hope to inspire other researchers to formulate more strict and mathematically correct hypothesis on the complex and coherence nature of matter, life and consciousness.
Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Nielsen, Maj Lyck; Merrick, Joav
2006-01-01
Deep quantum chemistry is a theory of deeply structured quantum fields carrying the biological information of the cell, making it able to remember, intend, represent the inner and outer world for comparison, understand what it “sees”, and make choices on its structure, form, behavior and division. We suggest that deep quantum chemistry gives the cell consciousness and all the qualities and abilities related to consciousness. We use geometric symbolism, which is a pre-mathematical and philosophical approach to problems that cannot yet be handled mathematically. Using Occams razor we have started with the simplest model that works; we presume this to be a many-dimensional, spiral fractal. We suggest that all the electrons of the large biological molecules orbitals make one huge “cell-orbital”, which is structured according to the spiral fractal nature of quantum fields. Consciousness of single cells, multi cellular structures as e.g. organs, multi-cellular organisms and multi-individual colonies (like ants) and human societies can thus be explained by deep quantum chemistry. When biochemical activity is strictly controlled by the quantum-mechanical super-orbital of the cell, this orbital can deliver energetic quanta as biological information, distributed through many fractal levels of the cell to guide form and behavior of an individual single or a multi-cellular organism. The top level of information is the consciousness of the cell or organism, which controls all the biochemical processes. By this speculative work inspired by Penrose and Hameroff we hope to inspire other researchers to formulate more strict and mathematically correct hypothesis on the complex and coherence nature of matter, life and consciousness. PMID:17115084
Production of NO2 from Photolysis of Peroxyacetyl Nitrate
NASA Technical Reports Server (NTRS)
Mazely, Troy L.; Friedl, Randall R.; Sander, Stanley P.
1965-01-01
Peroxyacetyl nitrate (PAN) vapor was photolyzed at 248 nm, and the NO2 photoproduct was detected by laser-induced fluorescence. The quantum yield for the production of NO2 from PAN photolysis was determined by comparison to HNO3 photolysis data taken under identical experimental conditions. The average of data collected over a range of total pressures, precursor concentrations, and buffer gases was 0.83 +/- 0.09 for the NO2 quantum yield, where the statistical uncertainty is 2 standard deviations.
Secure satellite communication using multi-photon tolerant quantum communication protocol
NASA Astrophysics Data System (ADS)
Darunkar, Bhagyashri; Punekar, Nikhil; Verma, Pramode K.
2015-09-01
This paper proposes and analyzes the potential of a multi-photon tolerant quantum communication protocol to secure satellite communication. For securing satellite communication, quantum cryptography is the only known unconditionally secure method. A number of recent experiments have shown feasibility of satellite-aided global quantum key distribution (QKD) using different methods such as: Use of entangled photon pairs, decoy state methods, and entanglement swapping. The use of single photon in these methods restricts the distance and speed over which quantum cryptography can be applied. Contemporary quantum cryptography protocols like the BB84 and its variants suffer from the limitation of reaching the distances of only Low Earth Orbit (LEO) at the data rates of few kilobits per second. This makes it impossible to develop a general satellite-based secure global communication network using the existing protocols. The method proposed in this paper allows secure communication at the heights of the Medium Earth Orbit (MEO) and Geosynchronous Earth Orbit (GEO) satellites. The benefits of the proposed method are two-fold: First it enables the realization of a secure global communication network based on satellites and second it provides unconditional security for satellite networks at GEO heights. The multi-photon approach discussed in this paper ameliorates the distance and speed issues associated with quantum cryptography through the use of contemporary laser communication (lasercom) devices. This approach can be seen as a step ahead towards global quantum communication.
Secure multi-party communication with quantum key distribution managed by trusted authority
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen
Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD aremore » extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.« less
Beyond Moore's law: towards competitive quantum devices
NASA Astrophysics Data System (ADS)
Troyer, Matthias
2015-05-01
A century after the invention of quantum theory and fifty years after Bell's inequality we see the first quantum devices emerge as products that aim to be competitive with the best classical computing devices. While a universal quantum computer of non-trivial size is still out of reach there exist a number commercial and experimental devices: quantum random number generators, quantum simulators and quantum annealers. In this colloquium I will present some of these devices and validation tests we performed on them. Quantum random number generators use the inherent randomness in quantum measurements to produce true random numbers, unlike classical pseudorandom number generators which are inherently deterministic. Optical lattice emulators use ultracold atomic gases in optical lattices to mimic typical models of condensed matter physics. In my talk I will focus especially on the devices built by Canadian company D-Wave systems, which are special purpose quantum simulators for solving hard classical optimization problems. I will review the controversy around the quantum nature of these devices and will compare them to state of the art classical algorithms. I will end with an outlook towards universal quantum computing and end with the question: which important problems that are intractable even for post-exa-scale classical computers could we expect to solve once we have a universal quantum computer?
Analysis of quantum information processors using quantum metrology
NASA Astrophysics Data System (ADS)
Kandula, Mark J.; Kok, Pieter
2018-06-01
Physical implementations of quantum information processing devices are generally not unique, and we are faced with the problem of choosing the best implementation. Here, we consider the sensitivity of quantum devices to variations in their different components. To measure this, we adopt a quantum metrological approach and find that the sensitivity of a device to variations in a component has a particularly simple general form. We use the concept of cost functions to establish a general practical criterion to decide between two different physical implementations of the same quantum device consisting of a variety of components. We give two practical examples of sensitivities of quantum devices to variations in beam splitter transmittivities: the Knill-Laflamme-Milburn (KLM) and reverse nonlinear sign gates for linear optical quantum computing with photonic qubits, and the enhanced optical Bell detectors by Grice and Ewert and van Loock. We briefly compare the sensitivity to the diamond distance and find that the latter is less suited for studying the behavior of components embedded within the larger quantum device.
Quantum ballistic transport in strained epitaxial germanium
NASA Astrophysics Data System (ADS)
Gul, Y.; Holmes, S. N.; Newton, P. J.; Ellis, D. J. P.; Morrison, C.; Pepper, M.; Barnes, C. H. W.; Myronov, M.
2017-12-01
Large scale fabrication using Complementary Metal Oxide Semiconductor compatible technology of semiconductor nanostructures that operate on the principles of quantum transport is an exciting possibility now due to the recent development of ultra-high mobility hole gases in epitaxial germanium grown on standard silicon substrates. We present here a ballistic transport study of patterned surface gates on strained Ge quantum wells with SiGe barriers, which confirms the quantum characteristics of the Ge heavy hole valence band structure in 1-dimension. Quantised conductance at multiples of 2e2/h is a universal feature of hole transport in Ge up to 10 × (2e2/h). The behaviour of ballistic plateaus with finite source-drain bias and applied magnetic field is elucidated. In addition, a reordering of the ground state is observed.
[Infrared spectroscopy based on quantum cascade lasers].
Wen, Zhong-Quan; Chen, Gang; Peng, Chen; Yuan, Wei-Qing
2013-04-01
Quantum cascade lasers (QCLs) are promising infrared coherent sources. Thanks to the quantum theory and band-gap engineering, QCL can access the wavelength in the range from 3 to 100 microm. Since the fingerprint spectrum of most gases are located in the mid-infrared range, mid-infrared quantum cascade laser based gas sensing technique has become the research focus world wide because of its high power, narrow linewidth and fast scanning. Recent progress in the QCL technology leads to a great improvement in laser output power and efficiency, which stimulates a fast development in the infrared laser spectroscopy. The present paper gives a broad review on the QCL based spectroscopy techniques according to their working principles. A discussion on their applications in gas sensing and explosive detecting is also given at the end of the paper.
Quantum Effects in Cosmochemistry: Complexation Energy and Van Der Waals Radii
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.; Wilson, T. L.
2007-01-01
The subject of quantum effects in cosmochemistry was recently addressed with the goal of understanding how they contribute to Q-phase noble gas abundances found in meteorites. It was the pursuit of the Q-phase carrier of noble gases and their anomalous abundances that ultimately led to the identification, isolation, and discovery of presolar grains. In spite of its importance, Q-phase investigations have led a number of authors to reach conclusions that do not seem to be supported by quantum chemistry. In view of the subject's fundamental significance, additional study is called for. Two quantum properties of Q-phase candidates known as endohedral carbon-cage clathrates such as fullerenes will be addressed here. These are complexation energy and instability induced by Pauli blocking (exclusion principle).
Accidental degeneracies in nonlinear quantum deformed systems
NASA Astrophysics Data System (ADS)
Aleixo, A. N. F.; Balantekin, A. B.
2011-09-01
We construct a multi-parameter nonlinear deformed algebra for quantum confined systems that includes many other deformed models as particular cases. We demonstrate that such systems exhibit the property of accidental pairwise energy level degeneracies. We also study, as a special case of our multi-parameter deformation formalism, the extension of the Tamm-Dancoff cutoff deformed oscillator and the occurrence of accidental pairwise degeneracy in the energy levels of the deformed system. As an application, we discuss the case of a trigonometric Rosen-Morse potential, which is successfully used in models for quantum confined systems, ranging from electrons in quantum dots to quarks in hadrons.
Multi-objective optimization in quantum parameter estimation
NASA Astrophysics Data System (ADS)
Gong, BeiLi; Cui, Wei
2018-04-01
We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.
Multi-Dimensional Quantum Tunneling and Transport Using the Density-Gradient Model
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario; Rafferty, Conor; Saini, Subhash (Technical Monitor)
1999-01-01
We show that quantum effects are likely to significantly degrade the performance of MOSFETs (metal oxide semiconductor field effect transistor) as these devices are scaled below 100 nm channel length and 2 nm oxide thickness over the next decade. A general and computationally efficient electronic device model including quantum effects would allow us to monitor and mitigate these effects. Full quantum models are too expensive in multi-dimensions. Using a general but efficient PDE solver called PROPHET, we implemented the density-gradient (DG) quantum correction to the industry-dominant classical drift-diffusion (DD) model. The DG model efficiently includes quantum carrier profile smoothing and tunneling in multi-dimensions and for any electronic device structure. We show that the DG model reduces DD model error from as much as 50% down to a few percent in comparison to thin oxide MOS capacitance measurements. We also show the first DG simulations of gate oxide tunneling and transverse current flow in ultra-scaled MOSFETs. The advantages of rapid model implementation using the PDE solver approach will be demonstrated, as well as the applicability of the DG model to any electronic device structure.
Classical and quantum filaments in the ground state of trapped dipolar Bose gases
NASA Astrophysics Data System (ADS)
Cinti, Fabio; Boninsegni, Massimo
2017-07-01
We study, by quantum Monte Carlo simulations, the ground state of a harmonically confined dipolar Bose gas with aligned dipole moments and with the inclusion of a repulsive two-body potential of varying range. Two different limits can clearly be identified, namely, a classical one in which the attractive part of the dipolar interaction dominates and the system forms an ordered array of parallel filaments and a quantum-mechanical one, wherein filaments are destabilized by zero-point motion, and eventually the ground state becomes a uniform cloud. The physical character of the system smoothly evolves from classical to quantum mechanical as the range of the repulsive two-body potential increases. An intermediate regime is observed in which ordered filaments are still present, albeit forming different structures from the ones predicted classically; quantum-mechanical exchanges of indistinguishable particles across different filaments allow phase coherence to be established, underlying a global superfluid response.
Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming
2013-01-01
The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153
Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping
2000-01-01
We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.
Study of multi-dimensional radiative energy transfer in molecular gases
NASA Technical Reports Server (NTRS)
Liu, Jiwen; Tiwari, S. N.
1993-01-01
The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical arrow band model with an exponential-tailed inverse intensity distribution. Consideration of spectral correlation results in some distinguishing features of the Monte Carlo formulations. Validation of the Monte Carlo formulations has been conducted by comparing results of this method with other solutions. Extension of a one-dimensional problem to a multi-dimensional problem requires some special treatments in the Monte Carlo analysis. Use of different assumptions results in different sets of Monte Carlo formulations. The nongray narrow band formulations provide the most accurate results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, K.
1974-04-24
An installation for the catalytic afterburning of exhaust gases of a multi-cylinder internal combustion engine has two cylinder rows with two exhaust gas lines, each of which includes at least one catalyst. A temperature-responsive control is operable during engine start-up to conduct substantially the entire exhaust gas flow from the internal combustion engine during warmup for a predetermined time by way of only one of the two catalyst and then, after a short period of time, to conduct the exhaust gas flow from each row of cylinders by way of its associated gas line and catalyst.
WIND Validation Cases: Computational Study of Thermally-perfect Gases
NASA Technical Reports Server (NTRS)
DalBello, Teryn; Georgiadis, Nick (Technical Monitor)
2002-01-01
The ability of the WIND Navier-Stokes code to predict the physics of multi-species gases is investigated in support of future high-speed, high-temperature propulsion applications relevant to NASA's Space Transportation efforts. Three benchmark cases are investigated to evaluate the capability of the WIND chemistry model to accurately predict the aerodynamics of multi-species chemically non-reacting (frozen) gases. Case 1 represents turbulent mixing of sonic hydrogen and supersonic vitiated air. Case 2 consists of heated and unheated round supersonic jet exiting to ambient. Case 3 represents 2-D flow through a converging-diverging Mach 2 nozzle. For Case 1, the WIND results agree fairly well with experimental results and that significant mixing occurs downstream of the hydrogen injection point. For Case 2, the results show that the Wilke and Sutherland viscosity laws gave similar results, and the available SST turbulence model does not predict round supersonic nozzle flows accurately. For Case 3, results show that experimental, frozen, and 1-D gas results agree fairly well, and that frozen, homogeneous, multi-species gas calculations can be approximated by running in perfect gas mode while specifying the mixture gas constant and Ratio of Specific Heats.
New catalysts and adsorbents on the basis of the InSb-CdTe semiconducting system
NASA Astrophysics Data System (ADS)
Kirovskaya, I. A.
2007-04-01
The acid-base properties of solid solutions and binary components of the InSb-CdTe system were studied by IR spectroscopy, pH isoelectric point measurements, and conductometric titration; adsorption properties with respect to CO, O2, NO2, NH3, CO + O2, and NO2 + NH3, by piezoquartz microweighing; and catalytic properties in the oxidation of carbon(II) oxide and reduction of nitrogen(IV) oxide with ammonia, by the pulsed and circulation flow methods. The nature, strength, and concentration of acid centers were determined. Changes in the concentration of acid centers under the action of gases (NO2 and NH3), gamma irradiation, and composition variations were estimated. The experimental dependences, thermodynamic and kinetic adsorption characteristics, the electrophysical, acid-base, and other physicochemical characteristics of the adsorbents, and adsorption characteristic-composition phase diagrams were analyzed taking into account the electronic nature of adsorbate molecules to determine the mechanism and characteristics of adsorption processes depending on the conditions of adsorption and the composition of the system. The results of adsorption studies were used to preliminarily determine the temperature regions of the occurrence and the mechanism of the reactions studied. A shock mechanism was suggested. Separate components (predominantly, solid solutions) of the InSb-CdTe system showed high catalytic activity at comparatively low temperatures. Along with behavior common to the system and its binary compounds (InSb and CdTe), solid solutions exhibited features characteristic of multi-component systems. These were the presence of extrema in the pHiso-composition, adsorption characteristic-composition, and catalytic activity-composition diagrams. The use of these diagrams allowed us to discover system components most active with respect to the gases and reactions studied and create high-sensitivity and selective sensors and high-activity and selective catalysts on the basis of these components.
Parallelizing quantum circuit synthesis
NASA Astrophysics Data System (ADS)
Di Matteo, Olivia; Mosca, Michele
2016-03-01
Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools that can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in the number of qubits and circuit depth, leaving synthesis intractable for circuits on more than a handful of qubits. Even modest improvements in circuit synthesis procedures may lead to significant advances, pushing forward the boundaries of not only the size of solvable circuit synthesis problems, but also in what can be realized physically as a result of having more efficient circuits. We present a method for quantum circuit synthesis using deterministic walks. Also termed pseudorandom walks, these are walks in which once a starting point is chosen, its path is completely determined. We apply our method to construct a parallel framework for circuit synthesis, and implement one such version performing optimal T-count synthesis over the Clifford+T gate set. We use our software to present examples where parallelization offers a significant speedup on the runtime, as well as directly confirm that the 4-qubit 1-bit full adder has optimal T-count 7 and T-depth 3.
Spectrum of spin waves in cold polarized gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreeva, T. L., E-mail: phdocandreeva@yandex.ru
2017-02-15
The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.
Process for removal of ammonia and acid gases from contaminated waters
King, C. Judson; MacKenzie, Patricia D.
1985-01-01
Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.
Process for removal of ammonia and acid gases from contaminated waters
King, C.J.; Mackenzie, P.D.
1982-09-03
Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.
NASA Technical Reports Server (NTRS)
Gunapala, Sarath D. (Inventor); Bandara, Sumith V. (Inventor); Liu, John K. (Inventor)
2006-01-01
Devices and techniques for coupling radiation to intraband quantum-well semiconductor sensors that are insensitive to the wavelength of the coupled radiation. At least one reflective surface is implemented in the quantum-well region to direct incident radiation towards the quantum-well layers.
Secure multi-party quantum summation based on quantum Fourier transform
NASA Astrophysics Data System (ADS)
Yang, Hui-Yi; Ye, Tian-Yu
2018-06-01
In this paper, we propose a novel secure multi-party quantum summation protocol based on quantum Fourier transform, where the traveling particles are transmitted in a tree-type mode. The party who prepares the initial quantum states is assumed to be semi-honest, which means that she may misbehave on her own but will not conspire with anyone. The proposed protocol can resist both the outside attacks and the participant attacks. Especially, one party cannot obtain other parties' private integer strings; and it is secure for the colluding attack performed by at most n - 2 parties, where n is the number of parties. In addition, the proposed protocol calculates the addition of modulo d and implements the calculation of addition in a secret-by-secret way rather than a bit-by-bit way.
NASA Astrophysics Data System (ADS)
Zou, Zhen-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-04-01
At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.
A Quantum Multi-Proxy Weak Blind Signature Scheme Based on Entanglement Swapping
NASA Astrophysics Data System (ADS)
Yan, LiLi; Chang, Yan; Zhang, ShiBin; Han, GuiHua; Sheng, ZhiWei
2017-02-01
In this paper, we present a multi-proxy weak blind signature scheme based on quantum entanglement swapping of Bell states. In the scheme, proxy signers can finish the signature instead of original singer with his/her authority. It can be applied to the electronic voting system, electronic paying system, etc. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. It could guarantee not only the unconditionally security but also the anonymity of the message owner. The security analysis shows the scheme satisfies the security features of multi-proxy weak signature, singers cannot disavowal his/her signature while the signature cannot be forged by others, and the message owner can be traced.
NASA Astrophysics Data System (ADS)
Gong, Li-Hua; He, Xiang-Tao; Tan, Ru-Chao; Zhou, Zhi-Hong
2018-01-01
In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.
Multi-frequency entanglement router system
NASA Astrophysics Data System (ADS)
Erdmann, Reinhard; Hughes, David
2017-05-01
A high performance free-space Wavelength Division Multiplexed (WDM) transceiver system is assessed as to its viability for routing collinear entangled photons in place of the classical optical signals for which it was designed. Explicit calculations demonstrate that entanglement in the input state is retained through transit of the system without intrinsic loss. Introducing spatial degrees of freedom changed the entanglement so that it could be manifested at remote locations, as required in non-local Bell test measurements or Quantum Key Distribution (QKD) Protocols. It was also found that by adding proper components, the exit state could be changed from being frequency entangled to polarization entangled, with respect to the (remote) paths of the photons. Finally it was found possible to route a complete entangled state to either of the two remote users by proper selection of the discrete frequencies in the input state. Each entanglement in the photon states was maximal, hence suited for Quantum Information Processing (QIP) applications.
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2013-10-01
A statistical description of the all-particle cosmic-ray spectrum is given in the 10^{14}\\ \\text{eV} to 10^{20}\\ \\text{eV} interval. The high-energy cosmic-ray flux is modeled as an ultra-relativistic multi-component plasma, whose components constitute a mixture of nearly ideal but nonthermal gases of low density and high temperature. Each plasma component is described by an ultra-relativistic power-law density manifested as spectral peak in the wideband fit. The “knee” and “ankle” features of the high- and ultra-high-energy spectrum turn out to be the global and local extrema of the double-logarithmic E3-scaled flux representation in which the spectral fit is performed. The all-particle spectrum is covered by recent data sets from several air shower arrays, and can be modeled as three-component plasma in the indicated energy range extending over six decades. The temperature, specific number density, internal energy and entropy of each plasma component are extracted from the partial fluxes in the broadband fit. The grand partition function and the extensive entropy functional of a non-equilibrated gas mixture with power-law components are derived in phase space by ensemble averaging.
Non-classical light generated by quantum-noise-driven cavity optomechanics.
Brooks, Daniel W C; Botter, Thierry; Schreppler, Sydney; Purdy, Thomas P; Brahms, Nathan; Stamper-Kurn, Dan M
2012-08-23
Optomechanical systems, in which light drives and is affected by the motion of a massive object, will comprise a new framework for nonlinear quantum optics, with applications ranging from the storage and transduction of quantum information to enhanced detection sensitivity in gravitational wave detectors. However, quantum optical effects in optomechanical systems have remained obscure, because their detection requires the object’s motion to be dominated by vacuum fluctuations in the optical radiation pressure; so far, direct observations have been stymied by technical and thermal noise. Here we report an implementation of cavity optomechanics using ultracold atoms in which the collective atomic motion is dominantly driven by quantum fluctuations in radiation pressure. The back-action of this motion onto the cavity light field produces ponderomotive squeezing. We detect this quantum phenomenon by measuring sub-shot-noise optical squeezing. Furthermore, the system acts as a low-power, high-gain, nonlinear parametric amplifier for optical fluctuations, demonstrating a gain of 20 dB with a pump corresponding to an average of only seven intracavity photons. These findings may pave the way for low-power quantum optical devices, surpassing quantum limits on position and force sensing, and the control and measurement of motion in quantum gases.
Photonic Programmable Tele-Cloning Network.
Li, Wei; Chen, Ming-Cheng
2016-06-29
The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling.
Isotopic studies in returned lunar samples
NASA Technical Reports Server (NTRS)
Alexander, E. C., Jr.
1971-01-01
Analysis of lunar soil samples returned by Apollo 11 and 12 flights are discussed. Isotopic studies of the rare gases from Apollo 11 flight lunar samples are presented. The lunar soil analyses indicated the following: (1) high concentrations of solar wind rare gases, (2) isotopic match between solar wind gases and gas components in gas-rich meteorites, and (3) rare gases attributable to spallation reactions induced in heavier nuclides by cosmic ray particles.
Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping
2000-01-01
We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.
Tunable quantum interference in a 3D integrated circuit.
Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J
2015-04-27
Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.308 Continuous..., the gas concentrations must be adjusted to account for the dilution from ambient air drawn into the... recommended when blending span gases diluted in N2 with span gases diluted in air. You may use a multi-gas...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications § 1065.308 Continuous..., the gas concentrations must be adjusted to account for the dilution from ambient air drawn into the... recommended when blending span gases diluted in N2 with span gases diluted in air. You may use a multi-gas...
The Future of Single- to Multi-band Detector Technologies: Review
NASA Technical Reports Server (NTRS)
Abedin, M. Nurul; Bhat, Ishwara; Gunapala, Sarath D.; Bandara, Sumith V.; Refaat, Tamer F.; Sandford, Stephen P.; Singh, Upendra N.
2006-01-01
Using classical optical components such as filters, prisms and gratings to separate the desired wavelengths before they reach the detectors results in complex optical systems composed of heavy components. A simpler system will result by utilizing a single optical system and a detector that responds separately to each wavelength band. Therefore, a continuous endeavors to develop the capability to reliably fabricate detector arrays that respond to multiple wavelength regions. In this article, we will review the state-of-the-art single and multicolor detector technologies over a wide spectral-range, for use in space-based and airborne remote sensing applications. Discussions will be focused on current and the most recently developed focal plane arrays (FPA) in addition to emphasizing future development in UV-to-Far infrared multicolor FPA detectors for next generation space-based instruments to measure water vapor and greenhouse gases. This novel detector component will make instruments designed for these critical measurements more efficient while reducing complexity and associated electronics and weight. Finally, we will discuss the ongoing multicolor detector technology efforts at NASA Langley Research Center, Jet Propulsion Laboratory, Rensselaer Polytechnic Institute, and others.
Microwave heat treating of manufactured components
Ripley, Edward B.
2007-01-09
An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.
Statistical manifestation of quantum correlations via disequilibrium
NASA Astrophysics Data System (ADS)
Pennini, F.; Plastino, A.
2017-12-01
The statistical notion of disequilibrium (D) was introduced by López-Ruiz, Mancini, and Calbet (LMC) (1995) [1] more than 20 years ago. D measures the amount of ;correlational structure; of a system. We wish to use D to analyze one of the simplest types of quantum correlations, those present in gaseous systems due to symmetry considerations. To this end we extend the LMC formalism to the grand canonical environment and show that D displays distinctive behaviors for simple gases, that allow for interesting insights into their structural properties.
NASA Astrophysics Data System (ADS)
Jiang, Min; Li, Hui; Zhang, Zeng-ke; Zeng, Jia
2011-02-01
We present an approach to faithfully teleport an unknown quantum state of entangled particles in a multi-particle system involving multi spatially remote agents via probabilistic channels. In our scheme, the integrity of an entangled multi-particle state can be maintained even when the construction of a faithful channel fails. Furthermore, in a quantum teleportation network, there are generally multi spatially remote agents which play the role of relay nodes between a sender and a distant receiver. Hence, we propose two schemes for directly and indirectly constructing a faithful channel between the sender and the distant receiver with the assistance of relay agents, respectively. Our results show that the required auxiliary particle resources, local operations and classical communications are considerably reduced for the present purpose.
Goff, F.; Janik, C.J.
2002-01-01
Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210-300??C) consist of roughly 98.5 mo1% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas ??13C-CO2 values (-3 to -5???) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ???1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982-1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987-1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone). Published by Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Omelchenko, Alexander V.; Maximov, Mikhail V.
2014-05-01
We introduce an analytical approach to the multi-state lasing phenomenon in p-doped and undoped InAs/InGaAs quantum dot lasers which were studied both theoretically and experimentally. It is shown that the asymmetry in charge carrier distribution in quantum dots as well as hole-to-electron capture rate ratio jointly determine laser's behavior in such a regime. If the ratio is lower than a certain critical value, the complete quenching of ground-state lasing takes place at sufficiently high injection currents; at higher values of the ratio, our model predicts saturation of the ground-state power. It was experimentally shown that the modulation p-doping of laser's active region results in increase of output power emitted via the ground-state optical transitions of quantum dots and in enhancement of the injection currents range in which multi-state lasing takes place. The maximum temperature at which multi-state lasing exists was increased by about 50°C in the p-doped samples. These effects are qualitatively explained in the terms of the proposed model.
Quantum channel for the transmission of information
Dress, William B.; Kisner, Roger A.; Richards, Roger K.
2004-01-13
Systems and methods are described for a quantum channel for the transmission of information. A method includes: down converting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometric multi-color entangled photon beam; combining the first interferometric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam within a single beam splitter; wherein combining includes erasing energy and momentum characteristics from both the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam; splitting the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam within the single beam splitter, wherein splitting yields a first output beam of multi-color entangled photons and a second output beam of multi-color entangled photons; and modulating the first output beam of multi-color entangled photons.
Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Ronco, Michele
2017-10-01
We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow) and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales) and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.
The birth of quantum networks: merging remote entanglement with local multi-qubit control
NASA Astrophysics Data System (ADS)
Hanson, Ronald
The realization of a highly connected network of qubit registers is a central challenge for quantum information processing and long-distance quantum communication. Diamond spins associated with NV centers are promising building blocks for such a network: they combine a coherent spin-photon interface that has already enabled creation of spin-spin entanglement over 1km with a local register of robust and well-controlled nuclear spin qubits for information processing and error correction. We are now entering a new research stage in which we can exploit these features simultaneously and build multi-qubit networks. I will present our latest results towards the first of such experiments: entanglement distillation between remote quantum network nodes. Finally, I will discuss the challenges and opportunities ahead on the road to large-scale networks of qubit registers for quantum computation and communication.
Kannan, V; Kim, M R; Chae, Y S; Ramana, Ch V V; Rhee, J K
2011-01-14
Multi-layer heterostructure negative differential resistance devices based on poly-[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene] (MEH-PPV) conducting polymer and CdSe quantum dots is reported. The conducting polymer MEH-PPV acts as a barrier while CdSe quantum dots form the well layer. The devices exhibit negative differential resistance (NDR) at low voltages. For these devices, strong negative differential resistance is observed at room temperature. A maximum value of 51 for the peak-to-valley ratio of current is reported. Tunneling of electrons through the discrete quantum confined states in the CdSe quantum dots is believed to be responsible for the multiple peaks observed in the I-V measurement. Depending on the observed NDR signature, operating mechanisms are explored based on resonant tunneling and Coulomb blockade effects.
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation; Airborne Radar Interferometric Repeat-Pass Processing; Plug-and-Play Environmental Monitoring Spacecraft Subsystem; Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz; Wallops Ship Surveillance System; Source Lines Counter (SLiC) Version 4.0; Guidance, Navigation, and Control Program; Single-Frame Terrain Mapping Software for Robotic Vehicles; Auto Draw from Excel Input Files; Observation Scheduling System; CFDP for Interplanetary Overlay Network; X-Windows Widget for Image Display; Binary-Signal Recovery; Volumetric 3D Display System with Static Screen; MMIC Replacement for Gunn Diode Oscillators; Feature Acquisition with Imbalanced Training Data; Mount Protects Thin-Walled Glass or Ceramic Tubes from Large Thermal and Vibration Loads; Carbon Nanotube-Based Structural Health Monitoring Sensors; Wireless Inductive Power Device Suppresses Blade Vibrations; Safe, Advanced, Adaptable Isolation System Eliminates the Need for Critical Lifts; Anti-Rotation Device Releasable by Insertion of a Tool; A Magnetically Coupled Cryogenic Pump; Single Piezo-Actuator Rotary-Hammering Drill; Fire-Retardant Polymeric Additives; Catalytic Generation of Lift Gases for Balloons; Ionic Liquids to Replace Hydrazine; Variable Emittance Electrochromics Using Ionic Electrolytes and Low Solar Absorptance Coatings; Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger; Multi-Mission Power Analysis Tool; Correction for Self-Heating When Using Thermometers as Heaters in Precision Control Applications; Gravitational Wave Detection with Single-Laser Atom Interferometers; Titanium Alloy Strong Back for IXO Mirror Segments; Improved Ambient Pressure Pyroelectric Ion Source; Multi-Modal Image Registration and Matching for Localization of a Balloon on Titan; Entanglement in Quantum-Classical Hybrid; Algorithm for Autonomous Landing; Quantum-Classical Hybrid for Information Processing; Small-Scale Dissipation in Binary-Species Transitional Mixing Layers; Superpixel-Augmented Endmember Detection for Hyperspectral Images; Coding for Parallel Links to Maximize the Expected Value of Decodable Messages; and Microwave Tissue Soldering for Immediate Wound Closure.
Many-body physics using cold atoms
NASA Astrophysics Data System (ADS)
Sundar, Bhuvanesh
Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin, which have Feshbach-induced spin-dependent interactions, to produce a quantum dimer model. I propose an experiment to detect the ground state in this system. In a final project, I develop tools to simulate the dynamics of fermionic superfluids in which fermions interact via a short-range interaction.
Handheld Multi-Gas Meters Market Survey Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Gustavious; Wald-Hopkins, Mark David; Obrey, Stephen J.
2016-06-23
Handheld multi-gas meters (MGMs) are equipped with sensors to monitor oxygen (O2) levels and additional sensors to detect the presence of combustible or toxic gases in the environment. This report is limited to operational response-type MGMs that include at least four different sensors. These sensors can vary by type and by the chemical monitored. In real time, the sensors report the concentration of monitored gases in the atmosphere near the MGM. To provide emergency responders with information on handheld multi-gas meters, the System Assessment and Validation for Emergency Responders (SAVER) Program conducted a market survey. This market survey report ismore » based on information gathered between November 2015 and February 2016 from vendors, Internet research, industry publications, an emergency responder focus group, and a government issued Request for Information (RFI) that was posted on the Federal Business Opportunities website.« less
Photonic Programmable Tele-Cloning Network
Li, Wei; Chen, Ming-Cheng
2016-01-01
The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling. PMID:27353838
Ferroelectric tunnel junctions with multi-quantum well structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhijun; Zhang, Tianjin, E-mail: zhangtj@hubu.edu.cn; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062
Ferroelectric tunnel junctions (FTJs) with multi-quantum well structures are proposed and the tunneling electroresistance (TER) effect is investigated theoretically. Compared with conventional FTJs with monolayer ferroelectric barriers, FTJs with single-well structures provide TER ratio improvements of one order of magnitude, while FTJs with optimized multi-well structures can enhance this improvement by another order of magnitude. It is believed that the increased resonant tunneling strength combined with appropriate asymmetry in these FTJs contributes to the improvement. These studies may help to fabricate FTJs with large TER ratio experimentally and put them into practice.
Quantum dot SOA/silicon external cavity multi-wavelength laser.
Zhang, Yi; Yang, Shuyu; Zhu, Xiaoliang; Li, Qi; Guan, Hang; Magill, Peter; Bergman, Keren; Baehr-Jones, Thomas; Hochberg, Michael
2015-02-23
We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac loop mirror and microring wavelength filter. We show four major lasing peaks from a single cavity with less than 3 dB power non-uniformity and demonstrate error-free 4 × 10 Gb/s data transmission.
NASA Astrophysics Data System (ADS)
Yang, Li; Pu, Han
2016-09-01
We show that the wave function in one spatial sector x1
A System-Level Throughput Model for Quantum Key Distribution
2015-09-17
object. In quantum entanglement , the physical properties of particle pairs or groups of particles are correlated – the quantum state of each particle...One-Time Pad Algorithm ............................................................................. 8 Figure 2. Photon Polarization [19...64 Poisson distribution for multi- photon probability (29
Compact component for integrated quantum optic processing
Sahu, Partha Pratim
2015-01-01
Quantum interference is indispensable to derive integrated quantum optic technologies (1–2). For further progress in large scale integration of quantum optic circuit, we have introduced first time two mode interference (TMI) coupler as an ultra compact component. The quantum interference varying with coupling length corresponding to the coupling ratio is studied and the larger HOM dip with peak visibility ~0.963 ± 0.009 is found at half coupling length of TMI coupler. Our results also demonstrate complex quantum interference with high fabrication tolerance and quantum visibility in TMI coupler. PMID:26584759
Multi-Bit Quantum Private Query
NASA Astrophysics Data System (ADS)
Shi, Wei-Xu; Liu, Xing-Tong; Wang, Jian; Tang, Chao-Jing
2015-09-01
Most of the existing Quantum Private Queries (QPQ) protocols provide only single-bit queries service, thus have to be repeated several times when more bits are retrieved. Wei et al.'s scheme for block queries requires a high-dimension quantum key distribution system to sustain, which is still restricted in the laboratory. Here, based on Markus Jakobi et al.'s single-bit QPQ protocol, we propose a multi-bit quantum private query protocol, in which the user can get access to several bits within one single query. We also extend the proposed protocol to block queries, using a binary matrix to guard database security. Analysis in this paper shows that our protocol has better communication complexity, implementability and can achieve a considerable level of security.
Apparatus with moderating material for microwave heat treatment of manufactured components
Ripley, Edward B [Knoxville, TN
2011-05-10
An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.
Apparatus for microwave heat treatment of manufactured components
Babcock & Wilcox Technical Services Y-12, LLC
2008-04-15
An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.
Methods for microwave heat treatment of manufactured components
Ripley, Edward B.
2010-08-03
An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.
40 CFR 86.309-79 - Sampling and analytical system; schematic drawing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or parts of components that are wetted by the sample or corrosive calibration gases shall be either... must be within 2 inches of the analyzer entrance port. (vi) Calibration or span gases for the NOX... calibration gases. (ii) V2—optional heated selector valve to purge the sample probe, perform leak checks, or...
40 CFR 86.309-79 - Sampling and analytical system; schematic drawing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or parts of components that are wetted by the sample or corrosive calibration gases shall be either... must be within 2 inches of the analyzer entrance port. (vi) Calibration or span gases for the NOX... calibration gases. (ii) V2—optional heated selector valve to purge the sample probe, perform leak checks, or...
Quantum phases of spinful Fermi gases in optical cavities
NASA Astrophysics Data System (ADS)
Colella, E.; Citro, R.; Barsanti, M.; Rossini, D.; Chiofalo, M.-L.
2018-04-01
We explore the quantum phases emerging from the interplay between spin and motional degrees of freedom of a one-dimensional quantum fluid of spinful fermionic atoms, effectively interacting via a photon-mediating mechanism with tunable sign and strength g , as it can be realized in present-day experiments with optical cavities. We find the emergence, in the very same system, of spin- and atomic-density wave ordering, accompanied by the occurrence of superfluidity for g >0 , while cavity photons are seen to drive strong correlations at all g values, with fermionic character for g >0 , and bosonic character for g <0 . Due to the long-range nature of interactions, to infer these results we combine mean-field and exact-diagonalization methods supported by bosonization analysis.
NASA Astrophysics Data System (ADS)
Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl
2012-10-01
We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.
Long distance quantum communication with quantum Reed-Solomon codes
NASA Astrophysics Data System (ADS)
Muralidharan, Sreraman; Zou, Chang-Ling; Li, Linshu; Jiang, Liang; Jianggroup Team
We study the construction of quantum Reed Solomon codes from classical Reed Solomon codes and show that they achieve the capacity of quantum erasure channel for multi-level quantum systems. We extend the application of quantum Reed Solomon codes to long distance quantum communication, investigate the local resource overhead needed for the functioning of one-way quantum repeaters with these codes, and numerically identify the parameter regime where these codes perform better than the known quantum polynomial codes and quantum parity codes . Finally, we discuss the implementation of these codes into time-bin photonic states of qubits and qudits respectively, and optimize the performance for one-way quantum repeaters.
NASA Astrophysics Data System (ADS)
Yu, Long-Bao; Zhang, Wen-Hai; Ye, Liu
2007-09-01
We propose a simple scheme to realize 1→M economical phase-covariant quantum cloning machine (EPQCM) with superconducting quantum interference device (SQUID) qubits. In our scheme, multi-SQUIDs are fixed into a microwave cavity by adiabatic passage for their manipulation. Based on this model, we can realize the EPQCM with high fidelity via adiabatic quantum computation.
Trapped noble gases indicate lunar origin for Antarctic meteorite
NASA Technical Reports Server (NTRS)
Bogard, D. D.; Johnson, P.
1983-01-01
The isotopic abundances of the noble gases (He, Ne, Ar, Kr, Xe) are reported for Antarctic ALHA 81005. It contains solar wind-implanted gases whose absolute and relative concentrations are quite similar to lunar regolith samples but not to other meteorites. ALHA 81005 also contains a large excess Ar-40 component which is identical to the component in lunar fines implanted from the lunar atmosphere. Large concentrations of cosmogenic Ne-21, Kr-82, and Xe-126 in ALHA 81005 indicate a total cosmic ray exposure age of at least 200 million years. The noble gas data alone are strong evidence for a lunar origin of this meteorite.
Tuning single-photon sources for telecom multi-photon experiments.
Greganti, Chiara; Schiansky, Peter; Calafell, Irati Alonso; Procopio, Lorenzo M; Rozema, Lee A; Walther, Philip
2018-02-05
Multi-photon state generation is of great interest for near-future quantum simulation and quantum computation experiments. To-date spontaneous parametric down-conversion is still the most promising process, even though two major impediments still exist: accidental photon noise (caused by the probabilistic non-linear process) and imperfect single-photon purity (arising from spectral entanglement between the photon pairs). In this work, we overcome both of these difficulties by (1) exploiting a passive temporal multiplexing scheme and (2) carefully optimizing the spectral properties of the down-converted photons using periodically-poled KTP crystals. We construct two down-conversion sources in the telecom wavelength regime, finding spectral purities of > 91%, while maintaining high four-photon count rates. We use single-photon grating spectrometers together with superconducting nanowire single-photon detectors to perform a detailed characterization of our multi-photon source. Our methods provide practical solutions to produce high-quality multi-photon states, which are in demand for many quantum photonics applications.
Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates
NASA Astrophysics Data System (ADS)
Rodionov, Andrey
An important challenge in quantum information science and quantum computing is the experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum process tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first present the results of the estimation of the process matrix for superconducting multi-qubit quantum gates using the full data set employing various methods: linear inversion, maximum likelihood, and least-squares. To alleviate the problem of exponential resource scaling needed to characterize a multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of initial states and measurement configurations. We show that the CS method still works when the amount of data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix is approximately sparse (the Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by its process matrix and average state fidelity, as well as by the corresponding standard deviation defined via the variation of the state fidelity for different initial states. We calculate the standard deviation of the average state fidelity both analytically and numerically, using a Monte Carlo method. Overall, we show that CS QPT offers a significant reduction in the needed amount of experimental data for two-qubit and three-qubit quantum gates.
Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions
NASA Astrophysics Data System (ADS)
Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.
2016-09-01
We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.
Crystallization of spin superlattices with pressure and field in the layered magnet SrCu 2(BO 3) 2
Haravifard, S.; Graf, D.; Feiguin, A. E.; ...
2016-06-20
An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu 2(BO 3) 2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices.more » In conclusion, the magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems.« less
NASA Astrophysics Data System (ADS)
Neri, Elettra; Scazza, Francesco; Roati, Giacomo
2018-04-01
Quantum systems out of equilibrium offer the possibility of understanding intriguing and challenging problems in modern physics. Studying transport properties is not only valuable to unveil fundamental properties of quantum matter but it is also an excellent tool for developing new quantum devices which inherently employ quantum-mechanical effects. In this contribution, we present our experimental studies on quantum transport using ultracold Fermi gases of 6Li atoms. We realize the analogous of a Josephson junction by bisecting fermionic superfluids by a thin optical barrier. We observe coherent dynamics in both the population and in the relative phase between the two reservoirs. For critical parameters, the superfluid dynamics exhibits both coherent and resistive flow due to phase-slippage events manifesting as vortices propagating into the bulk. We uncover also a regime of strong dissipation where the junction operation is irreversibly affected by vortex proliferation. Our studies open new directions for investigating dissipation and superfluid transport in strongly correlated fermionic systems.
NASA Astrophysics Data System (ADS)
Zhang, Zhan-Jun; Liu, Yi-Min; Man, Zhong-Xiao
2005-11-01
We present a method to teleport multi-qubit quantum information in an easy way from a sender to a receiver via the control of many agents in a network. Only when all the agents collaborate with the quantum information receiver can the unknown states in the sender's qubits be fully reconstructed in the receiver's qubits. In our method, agents's control parameters are obtained via quantum entanglement swapping. As the realization of the many-agent controlled teleportation is concerned, compared to the recent method [C.P. Yang, et al., Phys. Rev. A 70 (2004) 022329], our present method considerably reduces the preparation difficulty of initial states and the identification difficulty of entangled states, moreover, it does not need local Hadamard operations and it is more feasible in technology. The project supported by National Natural Science Foundation of China under Grant No. 10304022
Casimir forces between defects in one-dimensional quantum liquids
NASA Astrophysics Data System (ADS)
Recati, A.; Fuchs, J. N.; Peça, C. S.; Zwerger, W.
2005-08-01
We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.
Interaction-induced decay of a heteronuclear two-atom system
Xu, Peng; Yang, Jiaheng; Liu, Min; He, Xiaodong; Zeng, Yong; Wang, Kunpeng; Wang, Jin; Papoular, D. J.; Shlyapnikov, G. V.; Zhan, Mingsheng
2015-01-01
Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. PMID:26199051
Electron spin control of optically levitated nanodiamonds in vacuum.
Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-07-19
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.
Quantum gases. Observation of many-body dynamics in long-range tunneling after a quantum quench.
Meinert, Florian; Mark, Manfred J; Kirilov, Emil; Lauber, Katharina; Weinmann, Philipp; Gröbner, Michael; Daley, Andrew J; Nägerl, Hanns-Christoph
2014-06-13
Quantum tunneling is at the heart of many low-temperature phenomena. In strongly correlated lattice systems, tunneling is responsible for inducing effective interactions, and long-range tunneling substantially alters many-body properties in and out of equilibrium. We observe resonantly enhanced long-range quantum tunneling in one-dimensional Mott-insulating Hubbard chains that are suddenly quenched into a tilted configuration. Higher-order tunneling processes over up to five lattice sites are observed as resonances in the number of doubly occupied sites when the tilt per site is tuned to integer fractions of the Mott gap. This forms a basis for a controlled study of many-body dynamics driven by higher-order tunneling and demonstrates that when some degrees of freedom are frozen out, phenomena that are driven by small-amplitude tunneling terms can still be observed. Copyright © 2014, American Association for the Advancement of Science.
Electron spin control of optically levitated nanodiamonds in vacuum
Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-01-01
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin–optomechanical system for studying macroscopic quantum mechanics. PMID:27432560
Electron spin control of optically levitated nanodiamonds in vacuum
NASA Astrophysics Data System (ADS)
Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-07-01
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.
Versatile multi-functionalization of protein nanofibrils for biosensor applications
NASA Astrophysics Data System (ADS)
Sasso, L.; Suei, S.; Domigan, L.; Healy, J.; Nock, V.; Williams, M. A. K.; Gerrard, J. A.
2014-01-01
Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the changes in surface chemistry of the nanostructures. We show how these methods can be used to decorate whey protein nanofibrils with several components such as fluorescent quantum dots, enzymes, and metal nanoparticles. A multi-functionalization approach is used, as a proof of principle, for the development of a glucose biosensor platform, where the protein nanofibrils act as nanoscaffolds for glucose oxidase. Biotinylation is used for enzyme attachment and thiolation for nanoscaffold anchoring onto a gold electrode surface. Characterization via cyclic voltammetry shows an increase in glucose-oxidase mediated current response due to thiol-metal interactions with the gold electrode. The presented approach for protein nanofibril multi-functionalization is novel and has the potential of being applied to other protein nanostructures with similar surface chemistry.Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the changes in surface chemistry of the nanostructures. We show how these methods can be used to decorate whey protein nanofibrils with several components such as fluorescent quantum dots, enzymes, and metal nanoparticles. A multi-functionalization approach is used, as a proof of principle, for the development of a glucose biosensor platform, where the protein nanofibrils act as nanoscaffolds for glucose oxidase. Biotinylation is used for enzyme attachment and thiolation for nanoscaffold anchoring onto a gold electrode surface. Characterization via cyclic voltammetry shows an increase in glucose-oxidase mediated current response due to thiol-metal interactions with the gold electrode. The presented approach for protein nanofibril multi-functionalization is novel and has the potential of being applied to other protein nanostructures with similar surface chemistry. Electronic supplementary information (ESI) available: Cyclic voltammetry characterization of biosensor platforms including bare Au electrodes (Fig. S1), biosensor response to various glucose concentrations (Fig. S2), and AFM roughness measurements due to WPNF modifications (Fig. S3). See DOI: 10.1039/c3nr05752f
Thermoelectric energy harvesting with quantum dots
NASA Astrophysics Data System (ADS)
Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N.
2015-01-01
We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.
Observation of photonic states dynamics in 3-D integrated Fourier circuits
NASA Astrophysics Data System (ADS)
Flamini, Fulvio; Viggianiello, Niko; Giordani, Taira; Bentivegna, Marco; Spagnolo, Nicolò; Crespi, Andrea; Corrielli, Giacomo; Osellame, Roberto; Martin-Delgado, Miguel Angel; Sciarrino, Fabio
2018-07-01
Entanglement is a fundamental resource at the basis of quantum-enhanced performances in several applications, such as quantum algorithms and quantum metrology. In these contexts, Fourier interferometers implement a relevant class of unitary evolutions which can be embedded in a large variety of protocols. For instance, in the single-particle regime it can be adopted to implement the quantum Fourier transform, while in the multi-particle scenario it can be employed to generate quantum states possessing useful entanglement for quantum phase estimation purposes, or as a tool to verify genuine multi-photon interference. In this article, we study experimentally the dynamics of single-photon and two-photon input states during the evolution provided by a 8-mode Fourier transformation, implemented by exploiting a three-dimensional architecture enabled by the femtosecond laser micromachining technology. In such a way, we fabricated three devices to study the evolution after each step of the decomposition. We observe that the probability distributions obey a step-by-step majorization relationship, where the quantum state occupies a progressively larger portion of the Hilbert space. Such behaviour can be related to the majorization principle, which has been conjectured as a necessary condition for quantum speedup.
NASA Technical Reports Server (NTRS)
Manuel, O. K.; Srinivasan, B.; Hennecke, E. W.; Sinclair, D. E.
1972-01-01
The abundance and isotopic composition of helium, neon, argon, krypton, and xenon which were released by stepwise heating of lunar fines (15601.64) and (15271.65) were measured spectrometrically. The results of a composition of noble gases released from the lunar fines with noble gases in meteorites and in the earth are presented along with the isotopic composition of noble gases in lunar fines, in meteorites, and in the atmosphere. A study of two isotopically distinct components of trapped xenon in carbonaceous chondrites is also included.
Design of mini-multi-gas monitoring system based on IR absorption
NASA Astrophysics Data System (ADS)
Tan, Qiu-lin; Zhang, Wen-dong; Xue, Chen-yang; Xiong, Ji-jun; Ma, You-chun; Wen, Fen
2008-07-01
In this paper, a novel non-dispersive infrared ray (IR) gas detection system is described. Conventional devices typically include several primary components: a broadband source (usually an incandescent filament), a rotating chopper shutter, a narrow-band filter, a sample tube and a detector. But we mainly use the mini-multi-channel detector, electrical modulation means and mini-gas-cell structure. To solve the problems of gas accidents in coal mines, and for family safety that results from using gas, this new IR detection system with integration, miniaturization and non-moving parts has been developed. It is based on the principle that certain gases absorb infrared radiation at specific (and often unique) wavelengths. The infrared detection optics principle used in developing this system is mainly analyzed. The idea of multi-gas detection is introduced and guided through the analysis of the single-gas detection. Through researching the design of cell structure, a cell with integration and miniaturization has been devised. By taking a single-chip microcomputer (SCM) as intelligence handling, the functional block diagram of a gas detection system is designed with the analyzing and devising of its hardware and software system. The way of data transmission on a controller area network (CAN) bus and wireless data transmission mode is explained. This system has reached the technology requirement of lower power consumption, mini-volume, wide measure range, and is able to realize multi-gas detection.
Rapier, P.M.
1980-06-26
A multi-stage flash degaser is incorporated in an energy conversion system having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger in order that the heat exchanger and a turbine and condenser of the system can operate at optimal efficiency.
Temporal and spatiotemporal correlation functions for trapped Bose gases
NASA Astrophysics Data System (ADS)
Kohnen, M.; Nyman, R. A.
2015-03-01
Density correlations unambiguously reveal the quantum nature of matter. Here, we study correlations between measurements of density in cold-atom clouds at different times at one position, and also at two separated positions. We take into account the effects of finite-size and -duration measurements made by light beams passing through the atom cloud. We specialize to the case of Bose gases in harmonic traps above critical temperature, for weakly perturbative measurements. For overlapping measurement regions, shot-noise correlations revive after a trap oscillation period. For nonoverlapping regions, bosonic correlations dominate at long times, and propagate at finite speeds. Finally, we give a realistic measurement protocol for performing such experiments.
Multi-party quantum summation without a trusted third party based on single particles
NASA Astrophysics Data System (ADS)
Zhang, Cai; Situ, Haozhen; Huang, Qiong; Yang, Pingle
We propose multi-party quantum summation protocols based on single particles, in which participants are allowed to compute the summation of their inputs without the help of a trusted third party and preserve the privacy of their inputs. Only one participant who generates the source particles needs to perform unitary operations and only single particles are needed in the beginning of the protocols.
NASA Astrophysics Data System (ADS)
Bogolubov, Nikolai N.; Soldatov, Andrey V.
2017-12-01
Exact and approximate master equations were derived by the projection operator method for the reduced statistical operator of a multi-level quantum system with finite number N of quantum eigenstates interacting with arbitrary external classical fields and dissipative environment simultaneously. It was shown that the structure of these equations can be simplified significantly if the free Hamiltonian driven dynamics of an arbitrary quantum multi-level system under the influence of the external driving fields as well as its Markovian and non-Markovian evolution, stipulated by the interaction with the environment, are described in terms of the SU(N) algebra representation. As a consequence, efficient numerical methods can be developed and employed to analyze these master equations for real problems in various fields of theoretical and applied physics. It was also shown that literally the same master equations hold not only for the reduced density operator but also for arbitrary nonequilibrium multi-time correlation functions as well under the only assumption that the system and the environment are uncorrelated at some initial moment of time. A calculational scheme was proposed to account for these lost correlations in a regular perturbative way, thus providing additional computable terms to the correspondent master equations for the correlation functions.
Quantum phases of quadrupolar Fermi gases in coupled one-dimensional systems
NASA Astrophysics Data System (ADS)
Huang, Wen-Min; Lahrz, M.; Mathey, L.
2014-01-01
Following the recent proposal to create quadrupolar gases [Bhongale et al., Phys. Rev. Lett. 110, 155301 (2013), 10.1103/PhysRevLett.110.155301], we investigate what quantum phases can be created in these systems in one dimension. We consider a geometry of two coupled one-dimensional (1D) systems, and derive the quantum phase diagram of ultracold fermionic atoms interacting via quadrupole-quadrupole interactions within a Tomonaga-Luttinger-liquid framework. We map out the phase diagram as a function of the distance between the two tubes and the angle between the direction of the tubes and the quadrupolar moments. The latter can be controlled by an external field. We show that there are two magic angles θB,1c and θB,2c between 0 and π /2, where the intratube quadrupolar interactions vanish and change signs. Adopting a pseudospin language with regard to the two 1D systems, the system undergoes a spin-gap transition and displays a zigzag density pattern, above θB,2c and below θB,1c. Between the two magic angles, we show that polarized triplet superfluidity and a planar spin-density-wave order compete with each other. The latter corresponds to a bond-order solid in higher dimensions. We demonstrate that this order can be further stabilized by applying a commensurate periodic potential along the tubes.
NASA Astrophysics Data System (ADS)
Datta, Nilanjana; Pautrat, Yan; Rouzé, Cambyse
2016-06-01
Quantum Stein's lemma is a cornerstone of quantum statistics and concerns the problem of correctly identifying a quantum state, given the knowledge that it is one of two specific states (ρ or σ). It was originally derived in the asymptotic i.i.d. setting, in which arbitrarily many (say, n) identical copies of the state (ρ⊗n or σ⊗n) are considered to be available. In this setting, the lemma states that, for any given upper bound on the probability αn of erroneously inferring the state to be σ, the probability βn of erroneously inferring the state to be ρ decays exponentially in n, with the rate of decay converging to the relative entropy of the two states. The second order asymptotics for quantum hypothesis testing, which establishes the speed of convergence of this rate of decay to its limiting value, was derived in the i.i.d. setting independently by Tomamichel and Hayashi, and Li. We extend this result to settings beyond i.i.d. Examples of these include Gibbs states of quantum spin systems (with finite-range, translation-invariant interactions) at high temperatures, and quasi-free states of fermionic lattice gases.
Computing Properties of Hadrons, Nuclei and Nuclear Matter from Quantum Chromodynamics (LQCD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negele, John W.
Building on the success of two preceding generations of Scientific Discovery through Advanced Computing (SciDAC) projects, this grant supported the MIT component (P.I. John Negele) of a multi-institutional SciDAC-3 project that also included Brookhaven National Laboratory, the lead laboratory with P. I. Frithjof Karsch serving as Project Director, Thomas Jefferson National Accelerator Facility with P. I. David Richards serving as Co-director, University of Washington with P. I. Martin Savage, University of North Carolina with P. I. Rob Fowler, and College of William and Mary with P. I. Andreas Stathopoulos. Nationally, this multi-institutional project coordinated the software development effort that themore » nuclear physics lattice QCD community needs to ensure that lattice calculations can make optimal use of forthcoming leadership-class and dedicated hardware, including that at the national laboratories, and to exploit future computational resources in the Exascale era.« less
Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions
NASA Astrophysics Data System (ADS)
Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.
2018-04-01
In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.
High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots.
Genc, Rukan; Alas, Melis Ozge; Harputlu, Ersan; Repp, Sergej; Kremer, Nora; Castellano, Mike; Colak, Suleyman Gokhan; Ocakoglu, Kasim; Erdem, Emre
2017-09-11
Multi-colored, water soluble fluorescent carbon nanodots (C-Dots) with quantum yield changing from 4.6 to 18.3% were synthesized in multi-gram using dated cola beverage through a simple thermal synthesis method and implemented as conductive and ion donating supercapacitor component. Various properties of C-Dots, including size, crystal structure, morphology and surface properties along with their Raman and electron paramagnetic resonance spectra were analyzed and compared by means of their fluorescence and electronic properties. α-Manganese Oxide-Polypyrrole (PPy) nanorods decorated with C-Dots were further conducted as anode materials in a supercapacitor. Reduced graphene oxide was used as cathode along with the dicationic bis-imidazolium based ionic liquid in order to enhance the charge transfer and wetting capacity of electrode surfaces. For this purpose, we used octyl-bis(3-methylimidazolium)diiodide (C8H16BImI) synthesized by N-alkylation reaction as liquid ionic membrane electrolyte. Paramagnetic resonance and impedance spectroscopy have been undertaken in order to understand the origin of the performance of hybrid capacitor in more depth. In particular, we obtained high capacitance value (C = 17.3 μF/cm 2 ) which is exceptionally related not only the quality of synthesis but also the choice of electrode and electrolyte materials. Moreover, each component used in the construction of the hybrid supercapacitor is also played a key role to achieve high capacitance value.
Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction.
Qi, Ji; Lu, Dandan; Song, Hongwei; Li, Jun; Yang, Minghui
2017-03-28
The prototypical multi-channel reaction H + H 2 S → H 2 + SH/H + H 2 S has been investigated using the full-dimensional quantum scattering and quasi-classical trajectory methods to unveil the underlying competition mechanism between different product channels and the mode specificity. This reaction favors the abstraction channel over the exchange channel. For both channels, excitations in the two stretching modes promote the reaction with nearly equal efficiency and are more efficient than the bending mode excitation. However, they are all less efficient than the translational energy. In addition, the experimentally observed non-Arrhenius temperature dependence of the thermal rate constants is reasonably reproduced by the quantum dynamics calculations, confirming that the non-Arrhenius behavior is caused by the pronounced quantum tunneling.
Shortwave quantum cascade laser frequency comb for multi-heterodyne spectroscopy
NASA Astrophysics Data System (ADS)
Lu, Q. Y.; Manna, S.; Wu, D. H.; Slivken, S.; Razeghi, M.
2018-04-01
Quantum cascade lasers (QCLs) are versatile light sources with tailorable emitting wavelengths covering the mid-infrared and terahertz spectral ranges. When the dispersion is minimized, frequency combs can be directly emitted from quantum cascade lasers via four-wave mixing. To date, most of the mid-infrared quantum cascade laser combs are operational in a narrow wavelength range wherein the QCL dispersion is minimal. In this work, we address the issue of very high dispersion for shortwave QCLs and demonstrate 1-W dispersion compensated shortwave QCL frequency combs at λ ˜ 5.0 μm, spanning a spectral range of 100 cm-1. The multi-heterodyne spectrum exhibits 95 equally spaced frequency comb lines, indicating that the shortwave QCL combs are ideal candidates for high-speed high-resolution spectroscopy.
Quantum random number generation for loophole-free Bell tests
NASA Astrophysics Data System (ADS)
Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar
2015-05-01
We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.
Composite fermion theory for bosonic quantum Hall states on lattices.
Möller, G; Cooper, N R
2009-09-04
We study the ground states of the Bose-Hubbard model in a uniform magnetic field, motivated by the physics of cold atomic gases on lattices at high vortex density. Mapping the bosons to composite fermions (CF) leads to the prediction of quantum Hall fluids that have no counterpart in the continuum. We construct trial states for these phases and test numerically the predictions of the CF model. We establish the existence of strongly correlated phases beyond those in the continuum limit and provide evidence for a wider scope of the composite fermion approach beyond its application to the lowest Landau level.
Physics of higher orbital bands in optical lattices: a review.
Li, Xiaopeng; Liu, W Vincent
2016-11-01
The orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensates and topological semimetals emerge. A brief introduction of orbital degrees of freedom in optical lattices is given and a summary of exotic orbital models and resulting many-body phases is provided. Experimental consequences of the novel phases are also discussed.
The Heat Capacity of Ideal Gases
ERIC Educational Resources Information Center
Scott, Robert L.
2006-01-01
The heat capacity of an ideal gas has been shown to be calculable directly by statistical mechanics if the energies of the quantum states are known. However, unless one makes careful calculations, it is not easy for a student to understand the qualitative results. Why there are maxima (and occasionally minima) in heat capacity-temperature curves…
Is Q for Quantum? From Quantum Mechanics to Formation of the Solar System
NASA Technical Reports Server (NTRS)
Wilson, T. L.; Mittlefehldt, D. W.
2006-01-01
The realization in 1985 that fullerenes exist in nature [1] as a third form of carbon-carbon clustering, continues to inspire new areas of research. In particular, the study of closed-cage endohedral fullerenes [2-6] is of scientific interest because of its potential application in a number of promising fields from medical imaging to astrophysics. One of these is to provide a possible chronometer for studying the age and origin of certain astromaterials in the solar system. Fullerenes are closed carbon cages that are fundamentally related to a long-standing debate over the "Q-Phase" origin of planetary noble gases in carbonaceous chondrites [7]. Although Q-phase has been identified as the carrier of planetary noble gases [8- 10], its physical nature has not been explained. Our limited understanding of it is based primarily on the laboratory chemical processing which it survives as well as the fact that it must have been widely distributed in the solar nebula [11]. Yet as important as it might be while preoccupying some 30 years of research, the question of what actually is Q-phase remains unresolved.
Collective Modes in a Trapped Gas from Second-Order Hydrodynamics
NASA Astrophysics Data System (ADS)
Lewis, William; Romatschke, Paul
Navier-Stokes equations are often used to analyze collective oscillations and expansion dynamics of strongly interacting quantum gases. However, their use, for example, in precision determination of transport properties such as the ratio shear viscosity to entropy density (η / s) in strongly interacting Fermi gases problematic. Second-order hydrodynamics addresses this by promoting the viscous stress tensor to a hydrodynamic variable relaxing to the Navier-Stokes form on a timescale τπ. We derive frequencies, damping rates, and spatial structure of collective oscillations up to the decapole mode of a harmonically trapped gas in this framework. We find damping of higher-order modes (i.e. beyond quadrupolar) exhibits greater sensitivity to shear viscosity. Thus measurement of the hexapolar mode, for example, may lead to a stronger experimental constraint on η / s . Additionally, we find ``non-hydrodynamic'' modes not contained in a Navier-Stokes description. We calculate excitation amplitudes of non-hydrodynamic modes demonstrating they should be observable. Non-hydrodynamic modes may have implications for the hydrodynamization timescale, the existence of quasi-particles, and universal transport behavior in strongly interacting quantum fluids.
Lin, Liangxu; Zhang, Shaowei
2012-10-21
We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.
Multi-strategy based quantum cost reduction of linear nearest-neighbor quantum circuit
NASA Astrophysics Data System (ADS)
Tan, Ying-ying; Cheng, Xue-yun; Guan, Zhi-jin; Liu, Yang; Ma, Haiying
2018-03-01
With the development of reversible and quantum computing, study of reversible and quantum circuits has also developed rapidly. Due to physical constraints, most quantum circuits require quantum gates to interact on adjacent quantum bits. However, many existing quantum circuits nearest-neighbor have large quantum cost. Therefore, how to effectively reduce quantum cost is becoming a popular research topic. In this paper, we proposed multiple optimization strategies to reduce the quantum cost of the circuit, that is, we reduce quantum cost from MCT gates decomposition, nearest neighbor and circuit simplification, respectively. The experimental results show that the proposed strategies can effectively reduce the quantum cost, and the maximum optimization rate is 30.61% compared to the corresponding results.
NASA Astrophysics Data System (ADS)
Wei, Chun-Yan; Gao, Fei; Wen, Qiao-Yan; Wang, Tian-Yin
2014-12-01
Until now, the only kind of practical quantum private query (QPQ), quantum-key-distribution (QKD)-based QPQ, focuses on the retrieval of a single bit. In fact, meaningful message is generally composed of multiple adjacent bits (i.e., a multi-bit block). To obtain a message from database, the user Alice has to query l times to get each ai. In this condition, the server Bob could gain Alice's privacy once he obtains the address she queried in any of the l queries, since each ai contributes to the message Alice retrieves. Apparently, the longer the retrieved message is, the worse the user privacy becomes. To solve this problem, via an unbalanced-state technique and based on a variant of multi-level BB84 protocol, we present a protocol for QPQ of blocks, which allows the user to retrieve a multi-bit block from database in one query. Our protocol is somewhat like the high-dimension version of the first QKD-based QPQ protocol proposed by Jacobi et al., but some nontrivial modifications are necessary.
Wei, Chun-Yan; Gao, Fei; Wen, Qiao-Yan; Wang, Tian-Yin
2014-01-01
Until now, the only kind of practical quantum private query (QPQ), quantum-key-distribution (QKD)-based QPQ, focuses on the retrieval of a single bit. In fact, meaningful message is generally composed of multiple adjacent bits (i.e., a multi-bit block). To obtain a message from database, the user Alice has to query l times to get each ai. In this condition, the server Bob could gain Alice's privacy once he obtains the address she queried in any of the l queries, since each ai contributes to the message Alice retrieves. Apparently, the longer the retrieved message is, the worse the user privacy becomes. To solve this problem, via an unbalanced-state technique and based on a variant of multi-level BB84 protocol, we present a protocol for QPQ of blocks, which allows the user to retrieve a multi-bit block from database in one query. Our protocol is somewhat like the high-dimension version of the first QKD-based QPQ protocol proposed by Jacobi et al., but some nontrivial modifications are necessary. PMID:25518810
NASA Technical Reports Server (NTRS)
Kessler, W. J.; Allen, M. G.; Davis, S. J.
1993-01-01
Measurements of the collisional broadening and line shift of the (1,0) band of the A2Sigma(+)-X2Pi system of OH are reported in atmospheric pressure hydrogen-air combustion gases. The measurements were made using a single-mode, narrow linewidth, frequency-doubled ring dye laser operating near 283 nm. The OH was generated in the combustion gases of a flat flame H2-air burner. Collisional broadening parameters for equilibrium mixtures of H2, O2, H2O, and N2 were obtained spanning a range of fuel/air equivalence ratios from 0.6 to 1.6 and temperatures from 1500 to 2050 K. Measurements were obtained spanning rotational quantum numbers from 4.5 to 16.5. The collision induced frequency shift was determined to be 0.1 that of the collisional broadening.
Detecting Friedel oscillations in ultracold Fermi gases
NASA Astrophysics Data System (ADS)
Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning
2017-09-01
Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.
Multi-hop teleportation based on W state and EPR pairs
NASA Astrophysics Data System (ADS)
Hai-Tao, Zhan; Xu-Tao, Yu; Pei-Ying, Xiong; Zai-Chen, Zhang
2016-05-01
Multi-hop teleportation has significant value due to long-distance delivery of quantum information. Many studies about multi-hop teleportation are based on Bell pairs, partially entangled pairs or W state. The possibility of multi-hop teleportation constituted by partially entangled pairs relates to the number of nodes. The possibility of multi-hop teleportation constituted by double W states is after n-hop teleportation. In this paper, a multi-hop teleportation scheme based on W state and EPR pairs is presented and proved. The successful possibility of quantum information transmitted hop by hop through intermediate nodes is deduced. The possibility of successful transmission is after n-hop teleportation. Project supported by the National Natural Science Foundation of China (Grant No. 61571105), the Prospective Future Network Project of Jiangsu Province, China (Grant No. BY2013095-1-18), and the Independent Project of State Key Laboratory of Millimeter Waves, China (Grant No. Z201504).
Quantum machine learning for quantum anomaly detection
NASA Astrophysics Data System (ADS)
Liu, Nana; Rebentrost, Patrick
2018-04-01
Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafari Salim, A., E-mail: ajafaris@uwaterloo.ca; Eftekharian, A.; University of Waterloo, Waterloo, Ontario N2L 3G1
In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potentialmore » barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.« less
Quantum pattern recognition with multi-neuron interactions
NASA Astrophysics Data System (ADS)
Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.
2018-03-01
We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.
Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states
NASA Astrophysics Data System (ADS)
Shi, Runhua; Huang, Liusheng; Yang, Wei; Zhong, Hong
2011-12-01
We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.
Diffusion of Charged Species in Liquids
NASA Astrophysics Data System (ADS)
Del Río, J. A.; Whitaker, S.
2016-11-01
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.
Diffusion of Charged Species in Liquids.
Del Río, J A; Whitaker, S
2016-11-04
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.
Diffusion of Charged Species in Liquids
del Río, J. A.; Whitaker, S.
2016-01-01
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases. PMID:27811959
Network-Centric Quantum Communications
NASA Astrophysics Data System (ADS)
Hughes, Richard
2014-03-01
Single-photon quantum communications (QC) offers ``future-proof'' cryptographic security rooted in the laws of physics. Today's quantum-secured communications cannot be compromised by unanticipated future technological advances. But to date, QC has only existed in point-to-point instantiations that have limited ability to address the cyber security challenges of our increasingly networked world. In my talk I will describe a fundamentally new paradigm of network-centric quantum communications (NQC) that leverages the network to bring scalable, QC-based security to user groups that may have no direct user-to-user QC connectivity. With QC links only between each of N users and a trusted network node, NQC brings quantum security to N2 user pairs, and to multi-user groups. I will describe a novel integrated photonics quantum smartcard (``QKarD'') and its operation in a multi-node NQC test bed. The QKarDs are used to implement the quantum cryptographic protocols of quantum identification, quantum key distribution and quantum secret splitting. I will explain how these cryptographic primitives are used to provide key management for encryption, authentication, and non-repudiation for user-to-user communications. My talk will conclude with a description of a recent demonstration that QC can meet both the security and quality-of-service (latency) requirements for electric grid control commands and data. These requirements cannot be met simultaneously with present-day cryptography.
Path integral molecular dynamics for exact quantum statistics of multi-electronic-state systems.
Liu, Xinzijian; Liu, Jian
2018-03-14
An exact approach to compute physical properties for general multi-electronic-state (MES) systems in thermal equilibrium is presented. The approach is extended from our recent progress on path integral molecular dynamics (PIMD), Liu et al. [J. Chem. Phys. 145, 024103 (2016)] and Zhang et al. [J. Chem. Phys. 147, 034109 (2017)], for quantum statistical mechanics when a single potential energy surface is involved. We first define an effective potential function that is numerically favorable for MES-PIMD and then derive corresponding estimators in MES-PIMD for evaluating various physical properties. Its application to several representative one-dimensional and multi-dimensional models demonstrates that MES-PIMD in principle offers a practical tool in either of the diabatic and adiabatic representations for studying exact quantum statistics of complex/large MES systems when the Born-Oppenheimer approximation, Condon approximation, and harmonic bath approximation are broken.
Path integral molecular dynamics for exact quantum statistics of multi-electronic-state systems
NASA Astrophysics Data System (ADS)
Liu, Xinzijian; Liu, Jian
2018-03-01
An exact approach to compute physical properties for general multi-electronic-state (MES) systems in thermal equilibrium is presented. The approach is extended from our recent progress on path integral molecular dynamics (PIMD), Liu et al. [J. Chem. Phys. 145, 024103 (2016)] and Zhang et al. [J. Chem. Phys. 147, 034109 (2017)], for quantum statistical mechanics when a single potential energy surface is involved. We first define an effective potential function that is numerically favorable for MES-PIMD and then derive corresponding estimators in MES-PIMD for evaluating various physical properties. Its application to several representative one-dimensional and multi-dimensional models demonstrates that MES-PIMD in principle offers a practical tool in either of the diabatic and adiabatic representations for studying exact quantum statistics of complex/large MES systems when the Born-Oppenheimer approximation, Condon approximation, and harmonic bath approximation are broken.
Nanoparticle embedded p-type electrodes for GaN-based flip-chip light emitting diodes.
Kwak, Joon Seop; Song, J O; Seong, T Y; Kim, B I; Cho, J; Sone, C; Park, Y
2006-11-01
We have investigated high-quality ohmic contacts for flip-chip light emitting diodes using Zn-Ni nanoparticles/Ag schemes. The Zn-Ni nanoparticles/Ag contacts produce specific contact resistances of 10(-5)-10(-6) omegacm2 when annealed at temperatures of 330-530 degrees C for 1 min in air ambient, which are much better than those obtained from the Ag contacts. It is shown that blue InGaN/GaN multi-quantum well light emitting diodes fabricated with the annealed Zn-Ni nanoparticles/Ag contacts give much lower forward-bias voltages at 20 mA compared with those of the multi-quantum well light emitting diodes made with the as-deposited Ag contacts. It is further presented that the multi-quantum well light emitting diodes made with the Zn-Ni nanoparticles/Ag contacts show similar output power compared to those fabricated with the Ag contact layers.
Chen, Shaoqiang; Zhu, Lin; Yoshita, Masahiro; Mochizuki, Toshimitsu; Kim, Changsu; Akiyama, Hidefumi; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko
2015-01-01
World-wide studies on multi-junction (tandem) solar cells have led to record-breaking improvements in conversion efficiencies year after year. To obtain detailed and proper feedback for solar-cell design and fabrication, it is necessary to establish standard methods for diagnosing subcells in fabricated tandem devices. Here, we propose a potential standard method to quantify the detailed subcell properties of multi-junction solar cells based on absolute measurements of electroluminescence (EL) external quantum efficiency in addition to the conventional solar-cell external-quantum-efficiency measurements. We demonstrate that the absolute-EL-quantum-efficiency measurements provide I–V relations of individual subcells without the need for referencing measured I–V data, which is in stark contrast to previous works. Moreover, our measurements quantify the absolute rates of junction loss, non-radiative loss, radiative loss, and luminescence coupling in the subcells, which constitute the “balance sheets” of tandem solar cells. PMID:25592484
Spectral gain profile of a multi-stack terahertz quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachmann, D., E-mail: dominic.bachmann@tuwien.ac.at; Deutsch, C.; Krall, M.
2014-11-03
The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of themore » measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.« less
NASA Astrophysics Data System (ADS)
Wang, Song-Bai; Chen, Ye-Hong; Wu, Qi-Cheng; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan
2018-07-01
A scheme is proposed to implement quantum state engineering (QSE) in a four-state system via counterdiabatic driving. In the scheme, single- and multi-mode driving methods are used respectively to drive the system to a target state at a predefined time. It is found that a fast QSE can be realized by utilizing simply designed pulses. In addition, a beneficial discussion on the energy consumption between the single- and multi-mode driving protocols shows that the multi-mode driving method seems to have a wider range of applications than the single-mode driving method with respect to different parameters. Finally, the scheme is also helpful for implementing the generalization QSE in high-dimensional systems via the concept of a dressed state. Therefore, the scheme can be implemented with the present experimental technology, which is useful in quantum information processing.
NASA Astrophysics Data System (ADS)
Roubinet, Claire; Moreira, Manuel A.
2018-02-01
Noble gases in oceanic basalts always show the presence in variable proportions of a component having elemental and isotopic compositions that are similar to those of the atmosphere and distinct from the mantle composition. Although this component could be mantle-derived (e.g. subduction of air or seawater-derived noble gases trapped in altered oceanic crust and sediments), it is most often suggested that this air component is added after sample collection and probably during storage at ambient air, although the mechanism remains unknown. In an attempt to reduce this atmospheric component observed in MORBs, four experimental protocols have been followed in this study. These protocols are based on the hypothesis that air can be removed from the samples, as it appears to be sheltered in distinct vesicles compared to those filled with mantle gases. All of the protocols involve a glove box filled with nitrogen, and in certain cases, the samples are stored under primary vacuum (lower than 10-2 mbar) to pump air out or, alternatively, under high pressure of N2 to expel atmospheric noble gases. In all protocols, three components are observed: atmospheric, fractionated atmospheric and magmatic. The fractionated air component seems to be derived from the non-vitreous part of the pillow-lava, which has cooled more slowly. This component is enriched in Ne relative to Ar, reflecting a diffusive process. This contaminant has already been observed in other studies and thus seems to be relatively common. Although it is less visible, unfractionated air has also been detected in some crushing steps, which tends to indicate that despite the experiments, air is still present in the vesicles. This result is surprising, since studies have demonstrated that atmospheric contamination could be limited if samples were stored under nitrogen quickly after their recovery from the seafloor. Thus, the failure of the protocols could be explained by the insufficient duration of these protocols or by the inaccessibility of vesicles filled with air as assessed by (Ballentine and Barfod, 2000).
Chemoresistive sensors based on multi-walled carbon nanotubes (MWCNTs)functionalized with SnO2 nanocrystals have great potential for detecting trace gases at low concentrations (single ppm levels) at room temperature, because the SnO2 nanocrystals act as active sites for the chem...
Cao, Lushuai; Krönke, Sven; Vendrell, Oriol; Schmelcher, Peter
2013-10-07
We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.
Reconfigurable quadruple quantum dots in a silicon nanowire transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F.
2016-05-16
We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.
Classical synchronization indicates persistent entanglement in isolated quantum systems
Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc
2017-01-01
Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms. PMID:28401881
Classical synchronization indicates persistent entanglement in isolated quantum systems.
Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc
2017-04-12
Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.
Polyport atmospheric gas sampler
Guggenheim, S. Frederic
1995-01-01
An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.
NASA Astrophysics Data System (ADS)
Cai, X. J.; Wang, X. X.; Zou, X. B.; Lu, Z. W.
2018-01-01
An understanding of electron kinetics is of importance in various applications of low temperature plasmas. We employ a series of model and real gases to investigate electron transport and relaxation properties based on improved multi-term approximation of the Boltzmann equation. First, a comparison of different methods to calculate the interaction integrals has been carried out; the effects of free parameters, such as vmax, lmax, and the arbitrary temperature Tb, on the convergence of electron transport coefficients are analyzed. Then, the modified attachment model of Ness et al. and SF6 are considered to investigate the effect of attachment on the electron transport properties. The deficiency of the pulsed Townsend technique to measure the electron transport and reaction coefficients in electronegative gases is highlighted when the reduced electric field is small. In order to investigate the effect of external magnetic field on the electron transport properties, Ar plasmas in high power impulse sputtering devices are considered. In the end, the electron relaxation properties of the Reid model under the influence of electric and magnetic fields are demonstrated.
Enhancing multi-step quantum state tomography by PhaseLift
NASA Astrophysics Data System (ADS)
Lu, Yiping; Zhao, Qing
2017-09-01
Multi-photon system has been studied by many groups, however the biggest challenge faced is the number of copies of an unknown state are limited and far from detecting quantum entanglement. The difficulty to prepare copies of the state is even more serious for the quantum state tomography. One possible way to solve this problem is to use adaptive quantum state tomography, which means to get a preliminary density matrix in the first step and revise it in the second step. In order to improve the performance of adaptive quantum state tomography, we develop a new distribution scheme of samples and extend it to three steps, that is to correct it once again based on the density matrix obtained in the traditional adaptive quantum state tomography. Our numerical results show that the mean square error of the reconstructed density matrix by our new method is improved to the level from 10-4 to 10-9 for several tested states. In addition, PhaseLift is also applied to reduce the required storage space of measurement operator.
Unconventional Bose—Einstein Condensations from Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Wu, Cong-Jun; Ian, Mondragon-Shem; Zhou, Xiang-Fa
2011-09-01
According to the “no-node" theorem, the many-body ground state wavefunctions of conventional Bose—Einstein condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm. We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction. In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree—Fock level due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate through the “order-from-disorder" mechanism. In a strong harmonic confining trap, the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.
NASA Astrophysics Data System (ADS)
Ratnesh, R. K.; Mehata, Mohan Singh
2017-02-01
We report two port synthesis of CdSe/CdS/ZnS core-multi-shell quantum dots (Q-dots) and their structural properties. The multi-shell structures of Q-dots were developed by using successive ionic layer adsorption and reaction (SILAR) technique. The obtained Q-dots show high crystallinity with the step-wise adjustment of lattice parameters in the radial direction. The size of the core and core-shell Q-dots estimated by transmission electron microscopy images and absorption spectra is about 3.4 and 5.3 nm, respectively. The water soluble Q-dots (scheme-1) were prepared by using ligand exchange method, and the effect of pH was discussed regarding the variation of quantum yield (QY). The decrease of a lifetime of core-multi-shell Q-dots with respect to core CdSe indicates that the shell growth may be tuned by the lifetimes. Thus, the study clearly demonstrates that the core-shell approach can be used to substantially improve the optical properties of Q-dots desired for various applications.
Volcanic Plume Measurements with UAV (Invited)
NASA Astrophysics Data System (ADS)
Shinohara, H.; Kaneko, T.; Ohminato, T.
2013-12-01
Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima volcano operated by ERI, Tokyo University. In all cases, we could estimated volcanic gas compositions, such as CO2/SO2 ratios, but also found out that it is necessary to improve the techniques to avoid the contamination of the exhaust gases and to approach more concentrated part of the plume. It was also revealed that the aerial measurements have an advantage of the stable background. The error of the volcanic gas composition estimates are largely due to the large fluctuation of the atmospheric H2O and CO2 concentrations near the ground. The stable atmospheric background obtained by the UAV measurements enables accurate estimate of the volcanic gas compositions. One of the most successful measurements was that on May 18, 2011 at Shinomoedake, Kirishima volcano during repeating Vulcanian eruption stage. The major component composition was obtained as H2O=97, CO2=1.5, SO2=0.2, H2S=0.24, H2=0.006 mol%; the high CO2 contents suggests relatively deep source of the magma degassing and the apparent equilibrium temperature obtained as 400°C indicates that the gas was cooled during ascent to the surface. The volcanic plume measurement with UAV will become an important tool for the volcano monitoring that provides important information to understand eruption processes.
Two Quantum Protocols for Oblivious Set-member Decision Problem
NASA Astrophysics Data System (ADS)
Shi, Run-Hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2015-10-01
In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-member Decision problem, which allows one party to decide whether a secret of another party belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious Set-member Decision problem in fields of the multi-party collaborative computation of protecting the privacy of the users, such as private set intersection and union, anonymous authentication, electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle operations so that it needs lower costs in both communication and computation complexity; while Protocol II takes photons as quantum resources and only performs simple single-particle projective measurements, thus it is more feasible with the present technology.
NASA Astrophysics Data System (ADS)
Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.
2017-04-01
In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.
Network-based Arbitrated Quantum Signature Scheme with Graph State
NASA Astrophysics Data System (ADS)
Ma, Hongling; Li, Fei; Mao, Ningyi; Wang, Yijun; Guo, Ying
2017-08-01
Implementing an arbitrated quantum signature(QAS) through complex networks is an interesting cryptography technology in the literature. In this paper, we propose an arbitrated quantum signature for the multi-user-involved networks, whose topological structures are established by the encoded graph state. The determinative transmission of the shared keys, is enabled by the appropriate stabilizers performed on the graph state. The implementation of this scheme depends on the deterministic distribution of the multi-user-shared graph state on which the encoded message can be processed in signing and verifying phases. There are four parties involved, the signatory Alice, the verifier Bob, the arbitrator Trent and Dealer who assists the legal participants in the signature generation and verification. The security is guaranteed by the entanglement of the encoded graph state which is cooperatively prepared by legal participants in complex quantum networks.
Two Quantum Protocols for Oblivious Set-member Decision Problem
Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2015-01-01
In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-member Decision problem, which allows one party to decide whether a secret of another party belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious Set-member Decision problem in fields of the multi-party collaborative computation of protecting the privacy of the users, such as private set intersection and union, anonymous authentication, electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle operations so that it needs lower costs in both communication and computation complexity; while Protocol II takes photons as quantum resources and only performs simple single-particle projective measurements, thus it is more feasible with the present technology. PMID:26514668
Two Quantum Protocols for Oblivious Set-member Decision Problem.
Shi, Run-Hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2015-10-30
In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-member Decision problem, which allows one party to decide whether a secret of another party belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious Set-member Decision problem in fields of the multi-party collaborative computation of protecting the privacy of the users, such as private set intersection and union, anonymous authentication, electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle operations so that it needs lower costs in both communication and computation complexity; while Protocol II takes photons as quantum resources and only performs simple single-particle projective measurements, thus it is more feasible with the present technology.
Dichromatic Langmuir waves in degenerate quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Kitayev, I. N.
2015-06-15
Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.
Understanding/Modelling of Thermal and Radiation Benefits of Quantum Dot Solar Cells
2008-07-11
GaAs solar cells have been investigated. Strain compensation is a key step in realizing high- efficiency quantum dots solar cells (QDSC). InAs...factor. A strong correlation between the temperature dependent quantum dot electroluminescence peak emission wavelength and the sub-GaAs bandgap...increased efficiency and radiation resistance devices. The incorporation of quantum dots (QDs) into traditional single or multi-junction crystalline solar
Advanced Space-Based Detector Research at the Air Force Research Laboratory (PREPRINT)
2006-10-01
purposes. The dark backgrounds place very stringent requirements on the noise characteristics of the sensor system, resulting in FPAs that must be cooled...2.1. Quantum interference Quantum well infrared photodetectors ( QWIPs ) are based on intersubband absorption in III–V semiconductor multi-quantum well...Although considerable progress has been made in QWIPs , their relatively low quantum efficiencies constitute their greatest problem for space-based
Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...
2015-07-16
We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less
A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury
Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.
2011-01-01
Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI. PMID:21083431
Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...
2015-02-18
We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less
A multi-mode shock tube for investigation of blast-induced traumatic brain injury.
Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W
2011-01-01
Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI.
Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R., E-mail: Andrew.watt@materials.ox.ac.uk
2015-09-07
Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less
Autonomous quantum to classical transitions and the generalized imaging theorem
NASA Astrophysics Data System (ADS)
Briggs, John S.; Feagin, James M.
2016-03-01
The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.
Multi-harmonic quantum dot optomechanics in fused LiNbO3-(Al)GaAs hybrids
NASA Astrophysics Data System (ADS)
Nysten, Emeline D. S.; Huo, Yong Heng; Yu, Hailong; Song, Guo Feng; Rastelli, Armando; Krenner, Hubert J.
2017-11-01
We fabricated an acousto-optic semiconductor hybrid device for strong optomechanical coupling of individual quantum emitters and a surface acoustic wave. Our device comprises of a surface acoustic wave chip made from highly piezoelectric LiNbO3 and a GaAs-based semiconductor membrane with an embedded layer of quantum dots. Employing multi-harmonic transducers, we generated sound waves on LiNbO3 over a wide range of radio frequencies. We monitored their coupling to and propagation across the semiconductor membrane, both in the electrical and optical domain. We demonstrate the enhanced optomechanical tuning of the embedded quantum dots with increasing frequencies. This effect was verified by finite element modelling of our device geometry and attributed to an increased localization of the acoustic field within the semiconductor membrane. For moderately high acoustic frequencies, our simulations predict strong optomechanical coupling, making our hybrid device ideally suited for applications in semiconductor based quantum acoustics.
Quantum teleportation through noisy channels with multi-qubit GHZ states
NASA Astrophysics Data System (ADS)
Espoukeh, Pakhshan; Pedram, Pouria
2014-08-01
We investigate two-party quantum teleportation through noisy channels for multi-qubit Greenberger-Horne-Zeilinger (GHZ) states and find which state loses less quantum information in the process. The dynamics of states is described by the master equation with the noisy channels that lead to the quantum channels to be mixed states. We analytically solve the Lindblad equation for -qubit GHZ states where Lindblad operators correspond to the Pauli matrices and describe the decoherence of states. Using the average fidelity, we show that 3GHZ state is more robust than GHZ state under most noisy channels. However, GHZ state preserves same quantum information with respect to Einstein-Podolsky-Rosen and 3GHZ states where the noise is in direction in which the fidelity remains unchanged. We explicitly show that Jung et al.'s conjecture (Phys Rev A 78:012312, 2008), namely "average fidelity with same-axis noisy channels is in general larger than average fidelity with different-axes noisy channels," is not valid for 3GHZ and 4GHZ states.
NASA Astrophysics Data System (ADS)
Srivastava, D. P.; Sahni, V.; Satsangi, P. S.
2014-08-01
Graph-theoretic quantum system modelling (GTQSM) is facilitated by considering the fundamental unit of quantum computation and information, viz. a quantum bit or qubit as a basic building block. Unit directional vectors "ket 0" and "ket 1" constitute two distinct fundamental quantum across variable orthonormal basis vectors, for the Hilbert space, specifying the direction of propagation of information, or computation data, while complementary fundamental quantum through, or flow rate, variables specify probability parameters, or amplitudes, as surrogates for scalar quantum information measure (von Neumann entropy). This paper applies GTQSM in continuum of protein heterodimer tubulin molecules of self-assembling polymers, viz. microtubules in the brain as a holistic system of interacting components representing hierarchical clustered quantum Hopfield network, hQHN, of networks. The quantum input/output ports of the constituent elemental interaction components, or processes, of tunnelling interactions and Coulombic bidirectional interactions are in cascade and parallel interconnections with each other, while the classical output ports of all elemental components are interconnected in parallel to accumulate micro-energy functions generated in the system as Hamiltonian, or Lyapunov, energy function. The paper presents an insight, otherwise difficult to gain, for the complex system of systems represented by clustered quantum Hopfield network, hQHN, through the application of GTQSM construct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidler, Meinrad; Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich; Rauter, Patrick
2014-02-03
We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.
Probabilistic teleportation via multi-parameter measurements and partially entangled states
NASA Astrophysics Data System (ADS)
Wei, Jiahua; Shi, Lei; Han, Chen; Xu, Zhiyan; Zhu, Yu; Wang, Gang; Wu, Hao
2018-04-01
In this paper, a novel scheme for probabilistic teleportation is presented with multi-parameter measurements via a non-maximally entangled state. This is in contrast to the fact that the measurement kinds for quantum teleportation are usually particular in most previous schemes. The detail implementation producers for our proposal are given by using of appropriate local unitary operations. Moreover, the total success probability and classical information of this proposal are calculated. It is demonstrated that the success probability and classical cost would be changed with the multi-measurement parameters and the entanglement factor of quantum channel. Our scheme could enlarge the research range of probabilistic teleportation.
Analysis of Effluent Gases During the CCVD Growth of Multi Wall Carbon Nanotubes from Acetylene
NASA Technical Reports Server (NTRS)
Schmitt, T. C.; Biris, A. S.; Miller, D. W.; Biris, A. R.; Lupu, D.; Trigwell, S.; Rahman, Z. U.
2005-01-01
Catalytic chemical vapor deposition was used to grow multi-walled carbon nanotubes on a Fe:Co:CaCO3 catalyst from acetylene. The influent and effluent gases were analyzed by gas chromatography and mass spectrometry at different time intervals during the nanotubes growth process in order to better understand and optimize the overall reaction. A large number of byproducts were identified and it was found that the number and the level for some of the carbon byproducts significantly increased over time. The CaCO3 catalytic support thermally decomposed into CaO and CO2 resulting in a mixture of two catalysts for growing the nanotubes, which were found to have outer diameters belonging to two main groups 8 to 35 nm and 40 to 60 nm, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steill, Jeffrey D.; Huang, Haifeng; Hoops, Alexandra A.
This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to thesemore » species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.« less
A holographic model for the fractional quantum Hall effect
NASA Astrophysics Data System (ADS)
Lippert, Matthew; Meyer, René; Taliotis, Anastasios
2015-01-01
Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ0(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an -invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.
Li, Enze; Li, Jianjun; Zeng, Peiyuan; Feng, Rongfang; Xu, Meiying
2018-01-01
Biotrickling filters (BTFs) are becoming very potential means to purify waste gases containing multiple VOC components, but the removal of the waste gases by BTF has been a major challenge due to the extremely complicated interactions among the components. Four biotrickling filters packed with polyurethane foam were employed to identify the interactions among four aromatic compounds (benzene, toluene, xylene and styrene). The elimination capacities obtained at 90% of removal efficiency for individual toluene, styrene and xylene were 297.02, 225.27 and 180.75 g/m3h, respectively. No obvious removal for benzene was observed at the inlet loading rates ranging from 20 to 450 g/m3h. The total elimination capacities for binary gases significantly decreased in all biotrickling filters. However, the removal of benzene was enhanced in the presence of other gases. The removal capacities of ternary and quaternary gases were further largely lowered. High-throughput sequencing results revealed that microbial communities changed greatly with the composition of gases, from which we found that: all samples were dominated either by the genus Achromobacter or the Burkholderia. Different gaseous combination enriched or inhibited some microbial species. Group I includes samples of BTFs treating single and binary gases and was dominated by the genus Achromobacter, with little Burkholderia inside. Group II includes the rest of the samples taken from BTFs domesticated with ternary and quaternary gases, and was dominated by the genus Burkholderia, with little Achromobacter detected. These genera were highly associated with the biodegradation of benzene series in BTFs. PMID:29293540
Backscatter absorption gas imaging systems and light sources therefore
Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA
2006-12-19
The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.
NASA Astrophysics Data System (ADS)
Gharabaghi, Masumeh; Shahbazian, Shant
2017-04-01
The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.
Gharabaghi, Masumeh; Shahbazian, Shant
2017-04-21
The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Ghosh, Manas
2015-07-01
We investigate the modulation of diagonal components of static linear (αxx, αyy) and first nonlinear (βxxx, βyyy) polarizabilities of quantum dots by Gaussian white noise. Quantum dot is doped with impurity represented by a Gaussian potential and repulsive in nature. The study reveals the importance of mode of application of noise (additive/multiplicative) on the polarizability components. The doped system is further exposed to a static external electric field of given intensity. As important observation we have found that the strength of additive noise becomes unable to influence the polarizability components. However, the multiplicative noise influences them conspicuously and gives rise to additional interesting features. Multiplicative noise even enhances the magnitude of the polarizability components immensely. The present investigation deems importance in view of the fact that noise seriously affects the optical properties of doped quantum dot devices.
Controlling bi-partite entanglement in multi-qubit systems
NASA Astrophysics Data System (ADS)
Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír
2004-02-01
Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.
Multi-factor authentication using quantum communication
Hughes, Richard John; Peterson, Charles Glen; Thrasher, James T.; Nordholt, Jane E.; Yard, Jon T.; Newell, Raymond Thorson; Somma, Rolando D.
2018-02-06
Multi-factor authentication using quantum communication ("QC") includes stages for enrollment and identification. For example, a user enrolls for multi-factor authentication that uses QC with a trusted authority. The trusted authority transmits device factor information associated with a user device (such as a hash function) and user factor information associated with the user (such as an encrypted version of a user password). The user device receives and stores the device factor information and user factor information. For multi-factor authentication that uses QC, the user device retrieves its stored device factor information and user factor information, then transmits the user factor information to the trusted authority, which also retrieves its stored device factor information. The user device and trusted authority use the device factor information and user factor information (more specifically, information such as a user password that is the basis of the user factor information) in multi-factor authentication that uses QC.
Blind Quantum Signature with Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Li, Wei; Shi, Ronghua; Guo, Ying
2017-04-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kazumasa; Ishi-Hayase, Junko; Akahane, Kouichi
2013-12-04
We performed the proof-of-principle demonstration of photon-echo quantum memory using strain-compensated InAs quantum dot ensemble in the telecommunication wavelength range. We succeeded in transfer and retrieval of relative phase of a time-bin pulse with a high fidelity. Our demonstration suggests the possibility of realizing ultrabroadband, high time-bandwidth products, multi-mode quantum memory which is operable at telecommunication wavelength.
This project will transform MESA Air from its current focus on PM2.5 into a multi-pollutant study that can meaningfully investigate the impact of traffic-derived air pollution on cardiovascular health using a source-to-exposure approach. We will integrate data on tr...
Rapier, Pascal M.
1982-01-01
A multi-stage flash degaser (18) is incorporated in an energy conversion system (10) having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger (22) in order that the heat exchanger (22) and a turbine (48) and condenser (32) of the system (10) can operate at optimal efficiency.
NASA Tech Briefs, January 2005
NASA Technical Reports Server (NTRS)
2005-01-01
Topics covered include: Fiber-Optic Sensor Would Monitor Growth of Polymer Film; Sensors for Pointing Moving Instruments Toward Each Other; Pd/CeO2/SiC Chemical Sensors; Microparticle Flow Sensor; Scattering-Type Surface-Plasmon-Resonance Biosensors; Diode-Laser-Based Spectrometer for Sensing Gases; Improved Cathode Structure for a Direct Methanol Fuel Cell; X-Band, 17-Watt Solid-State Power Amplifier; Improved Anode for a Direct Methanol Fuel Cell; Tools for Designing and Analyzing Structures; Interactive Display of Scenes with Annotations; Solving Common Mathematical Problems; Tools for Basic Statistical Analysis; Program Calculates Forces in Bolted Structural Joints; Integrated Structural Analysis and Test Program; Molybdate Coatings for Protecting Aluminum Against Corrosion; Synthesizing Diamond from Liquid Feedstock; Modifying Silicates for Better Dispersion in Nanocomposites; Powder-Collection System for Ultrasonic/Sonic Drill/Corer; Semiautomated, Reproducible Batch Processing of Soy; Hydrogen Peroxide Enhances Removal of NOx from Flue Gases; Subsurface Ice Probe; Real-Time Simulation of Aeroheating of the Hyper-X Airplane; Using Laser-Induced Incandescence To Measure Soot in Exhaust; Method of Real-Time Principal-Component Analysis; Insect-Inspired Flight Control for Unmanned Aerial Vehicles; Domain Compilation for Embedded Real-Time Planning; Semantic Metrics for Analysis of Software; Simulation of Laser Cooling and Trapping in Engineering Applications; Large Fluvial Fans and Exploration for Hydrocarbons; Doping-Induced Interband Gain in InAs/AlSb Quantum Wells; Development of Software for a Lidar-Altimeter Processor; Upgrading the Space Shuttle Caution and Warning System; and Fractal Reference Signals in Pulse-Width Modulation.
Ultrafast Nonlinear Response of Atomic and Molecular Gases in Near-IR and Mid-IR Regions
NASA Astrophysics Data System (ADS)
Zahedpour Anaraki, Sina
There is a dynamical interaction between an ultrashort laser pulse and the medium it propagates through. At the shortest timescales, the near-instantaneous electronic response of the medium contributes to an induced polarization nonlinearity. On a longer timescale, the vibrational response can contribute, followed on even longer timescales by the rotational response. One of the major consequences of these nonlinearities is that they can induce the collapse and filamentation of the laser pulse, leading to ionization and plasma generation. In this dissertation, measurements and theory are presented for both the fundamental atomic and molecular nonlinearities themselves (electronic, rovibrational, and ionization rates) in the range lambda=400nm-2600nm, and their applications. The media investigated are air constituents (Ar, N 2, O2), H2, D2, and common transparent optical materials. In particular, in one application it is shown that in molecular gases like N2 and O2, the propagating laser electric field can pump a rotational wavepacket, producing molecular ensembles with both transient and long-lived ("permanent") alignment components. This alignment, which generates quantum echoes (rotational revivals), can interact with the pulse that generated it (rotational nonlinearity) and with any pulses that may follow. We show that a properly timed train of ultrashort laser pulses can resonate with the rotational revivals, causing a "permanent" alignment in the gas which thermalizes and then drives a strong hydrodynamic response which can exceed that from the plasma heating by a filament.
Separation of Time Scales in a Quantum Newton’s Cradle
van den Berg, R.; Wouters, B.; Eliëns, S.; ...
2016-06-01
For strongly repulsive bosons in one dimension, we provide detailed modeling of the Bragg pulse used in quantum Newton's cradle-like settings or in Bragg spectroscopy experiments. By employing the Fermi-Bose mapping for a nite harmonically trapped gas and the Quench Action approach for a thermodynamic system on a ring, we reconstruct the exact post-pulse many-body time evolution of Lieb-Liniger gases in the Tonks-Girardeau limit, together with their changing local density pro le and momentum distribution. Our results display a clear separation of timescales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, Nilanjana; Rouzé, Cambyse; Pautrat, Yan
2016-06-15
Quantum Stein’s lemma is a cornerstone of quantum statistics and concerns the problem of correctly identifying a quantum state, given the knowledge that it is one of two specific states (ρ or σ). It was originally derived in the asymptotic i.i.d. setting, in which arbitrarily many (say, n) identical copies of the state (ρ{sup ⊗n} or σ{sup ⊗n}) are considered to be available. In this setting, the lemma states that, for any given upper bound on the probability α{sub n} of erroneously inferring the state to be σ, the probability β{sub n} of erroneously inferring the state to be ρmore » decays exponentially in n, with the rate of decay converging to the relative entropy of the two states. The second order asymptotics for quantum hypothesis testing, which establishes the speed of convergence of this rate of decay to its limiting value, was derived in the i.i.d. setting independently by Tomamichel and Hayashi, and Li. We extend this result to settings beyond i.i.d. Examples of these include Gibbs states of quantum spin systems (with finite-range, translation-invariant interactions) at high temperatures, and quasi-free states of fermionic lattice gases.« less
Anesthetics act in quantum channels in brain microtubules to prevent consciousness.
Craddock, Travis J A; Hameroff, Stuart R; Ayoub, Ahmed T; Klobukowski, Mariusz; Tuszynski, Jack A
2015-01-01
The mechanism by which anesthetic gases selectively prevent consciousness and memory (sparing non-conscious brain functions) remains unknown. At the turn of the 20(th) century Meyer and Overton showed that potency of structurally dissimilar anesthetic gas molecules correlated precisely over many orders of magnitude with one factor, solubility in a non-polar, 'hydrophobic' medium akin to olive oil. In the 1980s Franks and Lieb showed anesthetics acted in such a medium within proteins, suggesting post-synaptic membrane receptors. But anesthetic studies on such proteins yielded only confusing results. In recent years Eckenhoff and colleagues have found anesthetic action in microtubules, cytoskeletal polymers of the protein tubulin inside brain neurons. 'Quantum mobility' in microtubules has been proposed to mediate consciousness. Through molecular modeling we have previously shown: (1) olive oil-like non-polar, hydrophobic quantum mobility pathways ('quantum channels') of tryptophan rings in tubulin, (2) binding of anesthetic gas molecules in these channels, and (3) capabilities for π-electron resonant energy transfer, or exciton hopping, among tryptophan aromatic rings in quantum channels, similar to photosynthesis protein quantum coherence. Here, we show anesthetic molecules can impair π-resonance energy transfer and exciton hopping in tubulin quantum channels, and thus account for selective action of anesthetics on consciousness and memory.
Wei, Chun-Yan; Gao, Fei; Wen, Qiao-Yan; Wang, Tian-Yin
2014-12-18
Until now, the only kind of practical quantum private query (QPQ), quantum-key-distribution (QKD)-based QPQ, focuses on the retrieval of a single bit. In fact, meaningful message is generally composed of multiple adjacent bits (i.e., a multi-bit block). To obtain a message a1a2···al from database, the user Alice has to query l times to get each ai. In this condition, the server Bob could gain Alice's privacy once he obtains the address she queried in any of the l queries, since each a(i) contributes to the message Alice retrieves. Apparently, the longer the retrieved message is, the worse the user privacy becomes. To solve this problem, via an unbalanced-state technique and based on a variant of multi-level BB84 protocol, we present a protocol for QPQ of blocks, which allows the user to retrieve a multi-bit block from database in one query. Our protocol is somewhat like the high-dimension version of the first QKD-based QPQ protocol proposed by Jacobi et al., but some nontrivial modifications are necessary.
Multi-client quantum key distribution using wavelength division multiplexing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grice, Warren P; Bennink, Ryan S; Earl, Dennis Duncan
Quantum Key Distribution (QKD) exploits the rules of quantum mechanics to generate and securely distribute a random sequence of bits to two spatially separated clients. Typically a QKD system can support only a single pair of clients at a time, and so a separate quantum link is required for every pair of users. We overcome this limitation with the design and characterization of a multi-client entangled-photon QKD system with the capacity for up to 100 clients simultaneously. The time-bin entangled QKD system includes a broadband down-conversion source with two unique features that enable the multi-user capability. First, the photons aremore » emitted across a very large portion of the telecom spectrum. Second, and more importantly, the photons are strongly correlated in their energy degree of freedom. Using standard wavelength division multiplexing (WDM) hardware, the photons can be routed to different parties on a quantum communication network, while the strong spectral correlations ensure that each client is linked only to the client receiving the conjugate wavelength. In this way, a single down-conversion source can support dozens of channels simultaneously--and to the extent that the WDM hardware can send different spectral channels to different clients, the system can support multiple client pairings. We will describe the design and characterization of the down-conversion source, as well as the client stations, which must be tunable across the emission spectrum.« less
NASA Astrophysics Data System (ADS)
Sivanathan, P. C.; Shuhaimi, Ahmad; Hamza, Hebal; Kowsz, Stacy J.; Abdul Khudus, Muhammad I. M.; Li, Hongjian; Allif, Kamarul
2018-07-01
The InGaN/GaN multi-quantum wells, growth on bulk GaN substrate were studied for blue light emission. Growth temperature plays a key role determining the peak wavelength of a quantum well. The study was carried out by growing quantum wells, MQWs on the whole sapphire at 716 °C and observed peak wavelength at 463 nm. While the bulk GaN substrate with sapphire corral grown at 703 °C and observed a blueshift at 433 nm peak wavelength. These results contradict that of typical observation of wavelength emission inversely proportional to the growth temperature. On the other hand, the growth of GaN-sapphire and GaN-silicon at similar conditions emits 435 nm and 450 nm respectively. The heat interaction of bulk GaN substrates surrounded by the sapphire corral exhibits different growth conditions in multi-quantum wells when compared to that of a whole sapphire substrate (absence of bulk GaN). The predicated surface temperature of bulk GaN substrate is 10 °C-15 °C of more than the corral sapphire. This observation may link to the difference in the thermal distribution of the growth surface corresponding to the different thermal conductivity ratio. The photoluminescence and computational techniques were used to understand in-depth of the heat interaction.
Giant gain from spontaneously generated coherence in Y-type double quantum dot structure
NASA Astrophysics Data System (ADS)
Al-Nashy, B.; Razzaghi, Sonia; Al-Musawi, Muwaffaq Abdullah; Rasooli Saghai, H.; Al-Khursan, Amin H.
A theoretical model was presented for linear susceptibility using density matrix theory for Y-configuration of double quantum dots (QDs) system including spontaneously generated coherence (SGC). Two SGC components are included for this system: V, and Λ subsystems. It is shown that at high V-component, the system have a giga gain. At low Λ-system component; it is possible to controls the light speed between superluminal and subluminal using one parameter by increasing SGC component of the V-system. This have applications in quantum information storage and spatially-varying temporal clock.
Majorana fermion surface code for universal quantum computation
Vijay, Sagar; Hsieh, Timothy H.; Fu, Liang
2015-12-10
In this study, we introduce an exactly solvable model of interacting Majorana fermions realizing Z 2 topological order with a Z 2 fermion parity grading and lattice symmetries permuting the three fundamental anyon types. We propose a concrete physical realization by utilizing quantum phase slips in an array of Josephson-coupled mesoscopic topological superconductors, which can be implemented in a wide range of solid-state systems, including topological insulators, nanowires, or two-dimensional electron gases, proximitized by s-wave superconductors. Our model finds a natural application as a Majorana fermion surface code for universal quantum computation, with a single-step stabilizer measurement requiring no physicalmore » ancilla qubits, increased error tolerance, and simpler logical gates than a surface code with bosonic physical qubits. We thoroughly discuss protocols for stabilizer measurements, encoding and manipulating logical qubits, and gate implementations.« less
Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P
2016-09-07
We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.
NASA Astrophysics Data System (ADS)
Mitra, Aditi
2018-03-01
Quench dynamics is an active area of study encompassing condensed matter physics and quantum information, with applications to cold-atomic gases and pump-probe spectroscopy of materials. Recent theoretical progress in studying quantum quenches is reviewed. Quenches in interacting one-dimensional systems as well as systems in higher spatial dimensions are covered. The appearance of nontrivial steady states following a quench in exactly solvable models is discussed, and the stability of these states to perturbations is described. Proper conserving approximations needed to capture the onset of thermalization at long times are outlined. The appearance of universal scaling for quenches near critical points and the role of the renormalization group in capturing the transient regime are reviewed. Finally, the effect of quenches near critical points on the dynamics of entanglement entropy and entanglement statistics is discussed. The extraction of critical exponents from the entanglement statistics is outlined.
SO(3) "Nuclear Physics" with ultracold Gases
NASA Astrophysics Data System (ADS)
Rico, E.; Dalmonte, M.; Zoller, P.; Banerjee, D.; Bögli, M.; Stebler, P.; Wiese, U.-J.
2018-06-01
An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S = 3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.
Quasi-molecular bosonic complexes-a pathway to SQUID with controlled sensitivity
NASA Astrophysics Data System (ADS)
Safavi-Naini, Arghavan; Capogrosso-Sansone, Barbara; Kuklov, Anatoly; Penna, Vittorio
2016-02-01
Recent experimental advances in realizing degenerate quantum dipolar gases in optical lattices and the flexibility of experimental setups in attaining various geometries offer the opportunity to explore exotic quantum many-body phases stabilized by anisotropic, long-range dipolar interaction. Moreover, the unprecedented control over the various physical properties of these systems, ranging from the quantum statistics of the particles, to the inter-particle interactions, allow one to engineer novel devices. In this paper, we consider dipolar bosons trapped in a stack of one-dimensional optical lattice layers, previously studied in (Safavi-Naini et al 2014 Phys. Rev. A 90 043604). Building on our prior results, we provide a description of the quantum phases stabilized in this system which include composite superfluids (CSFs), solids, and supercounterfluids, most of which are found to be threshold-less with respect to the dipolar interaction strength. We also demonstrate the effect of enhanced sensitivity to rotations of a SQUID-type device made of two CSF trapped in a ring-shaped optical lattice layer with weak links.
Electron spin control and torsional optomechanics of an optically levitated nanodiamond in vacuum
NASA Astrophysics Data System (ADS)
Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon
Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centers, indicating potential applications of NV centers in oxygen gas sensing. For spin-optomechanics, it is important to control the orientation of the nanodiamond and NV centers in a magnetic field. Recently, we have observed the angular trapping and torsional vibration of a levitated nanodiamond, which paves the way towards levitated torsional optomechanics in the quantum regime. NSF 1555035-PHY.
Tuning of few-electron states and optical absorption anisotropy in GaAs quantum rings.
Wu, Zhenhua; Li, Jian; Li, Jun; Yin, Huaxiang; Liu, Yu
2017-11-15
The electronic and optical properties of a GaAs quantum ring (QR) with few electrons in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) have been investigated theoretically. The configuration interaction (CI) method is employed to calculate the eigenvalues and eigenstates of the multiple-electron QR accurately. Our numerical results demonstrate that the symmetry breaking induced by the RSOI and DSOI leads to an anisotropic distribution of multi-electron states. The Coulomb interaction offers additional modulation of the electron distribution and thus the optical absorption indices in the quantum rings. By tuning the magnetic/electric fields and/or electron numbers in a quantum ring, one can change its optical properties significantly. Our theory provides a new way to control the multi-electron states and optical properties of a QR by hybrid modulations or by electrical means only.
Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond
NASA Astrophysics Data System (ADS)
Neukirch, Levi P.; von Haartman, Eva; Rosenholm, Jessica M.; Nick Vamivakas, A.
2015-10-01
Considerable advances made in the development of nanomechanical and nano-optomechanical devices have enabled the observation of quantum effects, improved sensitivity to minute forces, and provided avenues to probe fundamental physics at the nanoscale. Concurrently, solid-state quantum emitters with optically accessible spin degrees of freedom have been pursued in applications ranging from quantum information science to nanoscale sensing. Here, we demonstrate a hybrid nano-optomechanical system composed of a nanodiamond (containing a single nitrogen-vacancy centre) that is levitated in an optical dipole trap. The mechanical state of the diamond is controlled by modulation of the optical trapping potential. We demonstrate the ability to imprint the multi-dimensional mechanical motion of the cavity-free mechanical oscillator into the nitrogen-vacancy centre fluorescence and manipulate the mechanical system's intrinsic spin. This result represents the first step towards a hybrid quantum system based on levitating nanoparticles that simultaneously engages optical, phononic and spin degrees of freedom.
NASA Astrophysics Data System (ADS)
Webb, Alexander J.; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David
2013-04-01
Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.
Observation of Multimode Quantum Correlations in Fiber Optical Solitons
NASA Astrophysics Data System (ADS)
Spälter, S.; Korolkova, N.; König, F.; Sizmann, A.; Leuchs, G.
1998-07-01
Quantum correlations of photon numbers in different spectral components of ultrashort optical solitons have been observed experimentally. These correlations are crucial for the understanding and characterization of the internal quantum structure of soliton pulses and contribute significantly to soliton squeezing by spectral filtering. The accessible information on the nonclassical state of the correlated spectral components is discussed with the example of two modes. The method may be generalized to obtain a complete quantum description of a multimode field.
3-D simulation of gases transport under condition of inert gas injection into goaf
NASA Astrophysics Data System (ADS)
Liu, Mao-Xi; Shi, Guo-Qing; Guo, Zhixiong; Wang, Yan-Ming; Ma, Li-Yang
2016-12-01
To prevent coal spontaneous combustion in mines, it is paramount to understand O2 gas distribution under condition of inert gas injection into goaf. In this study, the goaf was modeled as a 3-D porous medium based on stress distribution. The variation of O2 distribution influenced by CO2 or N2 injection was simulated based on the multi-component gases transport and the Navier-Stokes equations using Fluent. The numerical results without inert gas injection were compared with field measurements to validate the simulation model. Simulations with inert gas injection show that CO2 gas mainly accumulates at the goaf floor level; however, a notable portion of N2 gas moves upward. The evolution of the spontaneous combustion risky zone with continuous inert gas injection can be classified into three phases: slow inerting phase, rapid accelerating inerting phase, and stable inerting phase. The asphyxia zone with CO2 injection is about 1.25-2.4 times larger than that with N2 injection. The efficacy of preventing and putting out mine fires is strongly related with the inert gas injecting position. Ideal injections are located in the oxidation zone or the transitional zone between oxidation zone and heat dissipation zone.
Code of Federal Regulations, 2013 CFR
2013-01-01
... vapors outside the shroud. (h) If significant traps exist, each turbine engine exhaust system must have... exhaust gases without fire hazard or carbon monoxide contamination in any personnel compartment. (b) Each... exhaust system. (c) Each component upon which hot exhaust gases could impinge, or that could be subjected...
Code of Federal Regulations, 2011 CFR
2011-01-01
... vapors outside the shroud. (h) If significant traps exist, each turbine engine exhaust system must have... exhaust gases without fire hazard or carbon monoxide contamination in any personnel compartment. (b) Each... exhaust system. (c) Each component upon which hot exhaust gases could impinge, or that could be subjected...
Code of Federal Regulations, 2014 CFR
2014-01-01
... vapors outside the shroud. (h) If significant traps exist, each turbine engine exhaust system must have... exhaust gases without fire hazard or carbon monoxide contamination in any personnel compartment. (b) Each... exhaust system. (c) Each component upon which hot exhaust gases could impinge, or that could be subjected...
Code of Federal Regulations, 2012 CFR
2012-01-01
... vapors outside the shroud. (h) If significant traps exist, each turbine engine exhaust system must have... exhaust gases without fire hazard or carbon monoxide contamination in any personnel compartment. (b) Each... exhaust system. (c) Each component upon which hot exhaust gases could impinge, or that could be subjected...
30 CFR 7.503 - Application requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... following: (1) The operating range, type of sensor, gas or gases measured, and environmental limitations, including the cross-sensitivity to other gases, of each detector or device in the air-monitoring component... gas concentrations over a 96-hour period. (3) The procedures for monitoring and maintaining breathable...
30 CFR 7.503 - Application requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... following: (1) The operating range, type of sensor, gas or gases measured, and environmental limitations, including the cross-sensitivity to other gases, of each detector or device in the air-monitoring component... gas concentrations over a 96-hour period. (3) The procedures for monitoring and maintaining breathable...
Late Impacts and the Origins of the Atmospheres on the Terrestrial Planets
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.; Stewart, S. T.; Lock, S. J.; Parai, R.; Tucker, J. M.
2014-12-01
Models for the origin of terrestrial atmospheres typically require an intricate sequence of events, including hydrodynamic escape, outgassing of mantle volatiles and late delivery. Here we discuss the origin of the atmospheres on the terrestrial planets in light of new ideas about the formation of the Moon, giant impact induced atmospheric loss and recent noble gas measurements. Our new measurements indicate that noble gases in the Earth's atmosphere cannot be derived from any combination of fractionation of a nebular-derived atmosphere followed by outgassing of deep or shallow mantle volatiles. While Ne in the mantle retains a nebular component, the present-day atmosphere has no memory of nebular gases. Rather, atmospheric noble gases have a close affinity to chondrites. On the other hand, Venus's atmosphere has 20 and 70 times higher abundance of 20Ne and 36Ar, respectively, and a 20Ne/22Ne ratio closer to the solar value than Earth's atmosphere. While the present atmosphere of Mars is significantly fractionated in the lighter noble gases due to long term atmospheric escape, the Kr isotopic ratios in Martian atmosphere are identical to solar. Thus, while Earth's atmosphere has no memory of accretion of nebular gases, atmospheres on both Venus and Mars preserve at least a component of nebular gases. To explain the above observations, we propose that a common set of processes operated on the terrestrial planets, and that their subsequent evolutionary divergence is simply explained by planetary size and the stochastic nature of giant impacts. We present geochemical observations and simulations of giant impacts to show that most of Earth's mantle was degassed and the outgassed volatiles were largely lost during the final sequence of giant impacts onto Earth. Earth's noble gases were therefore dominantly derived from late-accreting planetesimals. In contrast, Venus did not suffer substantial atmospheric loss by a late giant impact and retains a higher abundance of both nebular and chondritic noble gases compared to Earth. Fast-accreting Mars has a noble gas signature inherited from the solar nebula, and its low mass allowed for gravitational escape of the volatile components in late accreting planetesimals due to vaporization upon impact.
Entanglement routers via a wireless quantum network based on arbitrary two qubit systems
NASA Astrophysics Data System (ADS)
Metwally, N.
2014-12-01
A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrifvars, B.J.; Blomquist, J.P.; Hupa, M.
1998-12-31
Previous work at Aabo Akademi University has focused on identification and quantification of various sintering mechanisms which are relevant for problematic ash behavior during biomass combustion in fluidized bed combustion conditions, and on multi-component multi-phase thermodynamic phase equilibrium calculations of ash chemistry in these conditions. In both areas new information has been developed and useful modeling capabilities have been created. Based on the previous work, the authors now present a novel approach of using a combination of an advanced fuel analysis method and thermodynamic phase equilibrium calculations to predict the chemical and thermal behavior of the ash when firing biomass.more » Four different fuels [coal, forest residues, wood chips, and a mixture of forest residue and wood chips] were analyzed using the chemical fractionation analysis technique. Based on the results from these analyses, the authors formed two different ash fractions, (1) one fine sized fraction consisting of those elements found in the water and weak acid leach, and (2) a coarse ash particle fraction consisting of those elements found in the strong acid leach and non-leachable rest. The small sized ash fraction was then assumed to be carried up with the flue gases and consequently formed the base for any ash related problems in the flue gas channel. This fraction was therefore analyzed on its chemical and thermal behavior using multi-component multi-phase equilibrium calculations, by which the composition and the melting behavior was estimated as a function of the temperature. The amount of melt, which has earlier been found to be strongly related to problematic ash behavior, was finally expressed as a function of the temperature for the fraction. The coarse fraction was treated separately. Here the authors estimate the composition only. The paper discusses the results and their relevance to full scale combustion.« less
A Multidisciplinary Approach to Assessing the Causal Components of Climate Change
NASA Astrophysics Data System (ADS)
Gosnold, W. D.; Todhunter, P. E.; Dong, X.; Rundquist, B.; Majorowicz, J.; Blackwell, D. D.
2004-05-01
Separation of climate forcing by anthropogenic greenhouse gases from natural radiative climate forcing is difficult because the composite temperature signal in the meteorological and multi-proxy temperature records cannot be resolved directly into radiative forcing components. To address this problem, we have initiated a large-scale, multidisciplinary project to test coherence between ground surface temperatures (GST) reconstructed from borehole T-z profiles, surface air temperatures (SAT), soil temperatures, and solar radiation. Our hypothesis is that radiative heating and heat exchange between the ground and the air directly control the ground surface temperature. Consequently, borehole T-z measurements at multi-year intervals spanning time periods when solar radiation, soil and air temperatures have been recorded should enable comparison of the thermal energy stored in the ground to these quantities. If coherence between energy storage, solar radiation, GST, SAT and multi-proxy temperature data can be discerned for a one or two decade scale, synthesis of GST and multi-proxy data over the past several centuries may enable us to separately determine the anthropogenic and natural forcings of climate change. The data we are acquiring include: (1) New T-z measurements in boreholes previously used in paleoclimate and heat flow research in Canada and the United States from the 1970's to the present. (2) Meteorological data from the US Historical Climatology Network and the Automated Weather Data Network of the High Plains Regional Climate Center, and Environment Canada. (3) Direct and remotely sensed data on land use, environment, and soil properties at selected borehole and meteorological sites for the periods between borehole observations. The project addresses three related questions: What is the coherence between the GST, SAT, soil temperatures and solar radiation? Have microclimate changes at borehole sites and climate stations affected temperature trends? If good coherence is obtained, can the coherence between thermal energy stored in the ground and radiative forcing during the time between T-z measurements be extended several centuries into the past?
Noble gases released by vacuum crushing of EETA 79001 glass
NASA Technical Reports Server (NTRS)
Wiens, R. C.
1988-01-01
An EETA 79001 glass sample was crushed in a vacuum to observe the gases released. About 15 pct of the total gas concentrations were a mixture of a small amount of SPB-type gas with larger proportions of another air-like component. Less than 5 pct of the SPB gas was released by crushing, while 36-40 pct of the EETV (indigenous) gas was crush-released. The results are consistent with a siting of the EETV component in 10-100 micron vesicles seen in the glass. It is suggested that the SPB component is either in vesicles less than 6 microns in diameter or is primarily sited elsewhere.
Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure
NASA Astrophysics Data System (ADS)
Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.
2014-08-01
Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver hfodd that is based on the harmonic-oscillator basis expansion. Several examples are considered, including the self-consistent HFB problem for spin-polarized trapped cold fermions and the Skyrme-Hartree-Fock (+BCS) problem for triaxial deformed nuclei. Conclusions: The new madness-hfb framework has many attractive features when applied to nuclear and atomic problems involving many-particle superfluid systems. Of particular interest are weakly bound nuclear configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present in fission and heavy-ion fusion, and exotic pasta phases that appear in neutron star crust.
NASA Astrophysics Data System (ADS)
Hsieh, Chang-Yu; Cao, Jianshu
2018-01-01
We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.
The special features of tree ring gas chronologies
NASA Astrophysics Data System (ADS)
Ageev, Boris G.; Gruzdev, Aleksandr N.; Sapozhnikova, Valeria A.
2015-11-01
Stem wood is known to contain significant amounts of gases. However, literature data on the functional role of the gases are lacking. The results of our experiments show that porous wood structure is capable of annual accumulation (sorption) of the stem gas components that include H2O vapor and plant cell-respired CO2. This allows for development of additional chronologies to be used for gaining a deeper insight into the behavior of the stem gases. An analysis of the vacuum-extracted wood tree ring CO2 and H2O has revealed that the CO2 and H2O chronologies are associated with interannual variations in the total pressure of the gas components in the tree rings and are characterized by short-period cycles independent of tree age and by long-period variations with tree age. Our investigations led us to propose a procedure for using the CO2 content as a marker of year-to-year variations in the total pressure of the residual gas components found in wood tree rings.