Sample records for multi-detector row computed

  1. Multi-detector row computed tomography angiography of peripheral arterial disease

    PubMed Central

    Dijkshoorn, Marcel L.; Pattynama, Peter M. T.; Myriam Hunink, M. G.

    2007-01-01

    With the introduction of multi-detector row computed tomography (MDCT), scan speed and image quality has improved considerably. Since the longitudinal coverage is no longer a limitation, multi-detector row computed tomography angiography (MDCTA) is increasingly used to depict the peripheral arterial runoff. Hence, it is important to know the advantages and limitations of this new non-invasive alternative for the reference test, digital subtraction angiography. Optimization of the acquisition parameters and the contrast delivery is important to achieve a reliable enhancement of the entire arterial runoff in patients with peripheral arterial disease (PAD) using fast CT scanners. The purpose of this review is to discuss the different scanning and injection protocols using 4-, 16-, and 64-detector row CT scanners, to propose effective methods to evaluate and to present large data sets, to discuss its clinical value and major limitations, and to review the literature on the validity, reliability, and cost-effectiveness of multi-detector row CT in the evaluation of PAD. PMID:17882427

  2. Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64.

    PubMed

    Miller, Julie M; Dewey, Marc; Vavere, Andrea L; Rochitte, Carlos E; Niinuma, Hiroyuki; Arbab-Zadeh, Armin; Paul, Narinder; Hoe, John; de Roos, Albert; Yoshioka, Kunihiro; Lemos, Pedro A; Bush, David E; Lardo, Albert C; Texter, John; Brinker, Jeffery; Cox, Christopher; Clouse, Melvin E; Lima, João A C

    2009-04-01

    Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective "CORE-64" trial ("Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors"). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.

  3. Relationship between noise, dose, and pitch in cardiac multi-detector row CT.

    PubMed

    Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G

    2006-01-01

    In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006

  4. T staging of gastric cancer: role of multi-detector row CT.

    PubMed

    Kumano, Seishi; Murakami, Takamichi; Kim, Tonsok; Hori, Masatoshi; Iannaccone, Riccardo; Nakata, Saki; Onishi, Hiromitsu; Osuga, Keigo; Tomoda, Kaname; Catalano, Carlo; Nakamura, Hironobu

    2005-12-01

    To evaluate retrospectively the accuracy of multi-detector row computed tomography (CT) in the assessment of serosal invasion in patients with gastric cancer. The Ethics Committee does not require approval or informed consent for retrospective studies. Forty-one consecutive patients (24 men, 17 women; mean age, 68 years) with gastric cancer were included in this study. All patients were given 600 mL of tap water to drink and were positioned prone or supine on the scanning table. The detector row configuration included four detector rows, a section thickness of 1.25 mm, a pitch of 6, and a reconstruction interval of 0.63 mm. Transverse and multiplanar reconstruction images were simultaneously evaluated by two independent observers to assess the depth of tumor invasion in the gastric wall (ie, T stage). T staging at multi-detector row CT was compared with T staging at histologic evaluation (reference standard), which was performed by means of surgical or histologic examination of the resected specimen. We also calculated the sensitivity, specificity, and accuracy of multi-detector row CT for each observer in the assessment of serosal invasion. Analysis of interobserver agreement showed substantial or almost perfect agreement (nonweighted kappa value of 0.78 and weighted kappa value of 0.85). Correct assessment of gastric wall invasion was 80% and 85% for observers 1 and 2, respectively. The sensitivity, specificity, and accuracy of multi-detector row CT in the assessment of serosal invasion were 90%, 95%, and 93%, respectively, for observer 1 and 80%, 97%, and 93%, respectively, for observer 2. Overstaging occurred in six patients, and understaging occurred in five patients. All understaged tumors were scirrhous subtype gastric cancer. Multi-detector row CT scanning of patients with gastric cancer gave 93% accuracy in the assessment of serosal invasion in patients with gastric cancer. RSNA, 2005

  5. Non-invasive detection of aortic and coronary atherosclerosis in homozygous familial hypercholesterolemia by 64 slice multi-detector row computed tomography angiography

    USDA-ARS?s Scientific Manuscript database

    Homozygous familial hypercholesterolemia (HoFH) is a rare disorder characterized by the early onset of atherosclerosis, often at the ostia of coronary arteries. In this study we document for the first time that aortic and coronary atherosclerosis can be detected using 64 slice multiple detector row ...

  6. Accessory oral cavity associated with duplication of the tongue and the mandible in a newborn: a rare case of Diprosopus. Multi-row detector computed tomography diagnostic role.

    PubMed

    Morabito, Rosa; Colonna, Michele R; Mormina, Enricomaria; Stagno d'Alcontres, Ferdinando; Salpietro, Vincenzo; Blandino, Alfredo; Longo, Marcello; Granata, Francesca

    2014-12-01

    Craniofacial duplication is a very rare malformation. The phenotype comprises a wide spectrum, ranging from partial duplication of few facial structures to complete dicephalus. We report the case of a newborn with an accessory oral cavity associated to duplication of the tongue and the mandible diagnosed by multi-row detector Computed Tomography, few days after her birth. Our case of partial craniofacial duplication can be considered as Type II of Gorlin classification or as an intermediate form between Type I and Type II of Sun classification. Our experience demonstrates that CT scan, using appropriate reconstruction algorithms, permits a detailed evaluation of the different structures in an anatomical region. Multi-row CT scan is also the more accurate diagnostic procedure for the pre-surgical evaluation of craniofacial malformations. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Quantitative Features of Liver Lesions, Lung Nodules, and Renal Stones at Multi-Detector Row CT Examinations: Dependency on Radiation Dose and Reconstruction Algorithm.

    PubMed

    Solomon, Justin; Mileto, Achille; Nelson, Rendon C; Roy Choudhury, Kingshuk; Samei, Ehsan

    2016-04-01

    To determine if radiation dose and reconstruction algorithm affect the computer-based extraction and analysis of quantitative imaging features in lung nodules, liver lesions, and renal stones at multi-detector row computed tomography (CT). Retrospective analysis of data from a prospective, multicenter, HIPAA-compliant, institutional review board-approved clinical trial was performed by extracting 23 quantitative imaging features (size, shape, attenuation, edge sharpness, pixel value distribution, and texture) of lesions on multi-detector row CT images of 20 adult patients (14 men, six women; mean age, 63 years; range, 38-72 years) referred for known or suspected focal liver lesions, lung nodules, or kidney stones. Data were acquired between September 2011 and April 2012. All multi-detector row CT scans were performed at two different radiation dose levels; images were reconstructed with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) algorithms. A linear mixed-effects model was used to assess the effect of radiation dose and reconstruction algorithm on extracted features. Among the 23 imaging features assessed, radiation dose had a significant effect on five, three, and four of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Adaptive statistical iterative reconstruction had a significant effect on three, one, and one of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). MBIR reconstruction had a significant effect on nine, 11, and 15 of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Of note, the measured size of lung nodules and renal stones with MBIR was significantly different than those for the other two algorithms (P < .002 for all comparisons). Although lesion texture was significantly affected by the reconstruction algorithm used (average of 3.33 features affected by MBIR throughout lesion types; P < .002, for all comparisons), no significant effect of the radiation dose setting was observed for all but one of the texture features (P = .002-.998). Radiation dose settings and reconstruction algorithms affect the extraction and analysis of quantitative imaging features in lesions at multi-detector row CT.

  8. Comparative evaluation of image quality among different detector configurations using area detector computed tomography.

    PubMed

    Miura, Yohei; Ichikawa, Katsuhiro; Fujimura, Ichiro; Hara, Takanori; Hoshino, Takashi; Niwa, Shinji; Funahashi, Masao

    2018-03-01

    The 320-detector row computed tomography (CT) system, i.e., the area detector CT (ADCT), can perform helical scanning with detector configurations of 4-, 16-, 32-, 64-, 80-, 100-, and 160-detector rows for routine CT examinations. This phantom study aimed to compare the quality of images obtained using helical scan mode with different detector configurations. The image quality was measured using modulation transfer function (MTF) and noise power spectrum (NPS). The system performance function (SP), based on the pre-whitening theorem, was calculated as MTF 2 /NPS, and compared between configurations. Five detector configurations, i.e., 0.5 × 16 mm (16 row), 0.5 × 64 mm (64 row), 0.5 × 80 mm (80 row), 0.5 × 100 mm (100 row), and 0.5 × 160 mm (160 row), were compared using a constant volume CT dose index (CTDI vol ) of 25 mGy, simulating the scan of an adult abdomen, and with a constant effective mAs value. The MTF was measured using the wire method, and the NPS was measured from images of a 20-cm diameter phantom with uniform content. The SP of 80-row configuration was the best, for the constant CTDI vol , followed by the 64-, 160-, 16-, and 100-row configurations. The decrease in the rate of the 100- and 160-row configurations from the 80-row configuration was approximately 30%. For the constant effective mAs, the SPs of the 100-row and 160-row configurations were significantly lower, compared with the other three detector configurations. The 80- and 64-row configurations were adequate in cases that required dose efficiency rather than scan speed.

  9. Multi-Detector Row Computed Tomography Findings of Pelvic Congestion Syndrome Caused by Dilated Ovarian Veins

    PubMed Central

    Eren, Suat

    2010-01-01

    Objective: To evaluate the efficacy of multi-detector row CT (MDCT) on pelvic congestion syndrome (PCS), which is often overlooked or poorly visualized with routine imaging examination. Materials and Methods: We evaluated the MDCT features of 40 patients with PCS (mean age, 45 years; range, 29–60 years) using axial, coronal, sagittal, 3D volume-rendered, and Maximum Intensity Projection MIP images. Results: MDCT revealed pelvic varices and ovarian vein dilatations in all patients. Bilateral ovarian vein dilatation was present in 25 patients, and 15 patients had unilateral dilatation. While 12 cases of secondary pelvic varices occurred simultaneously with a retroaortic left renal vein, 10 cases were due solely to a mass obstruction or stenosis of venous structures. Conclusion: MDCT is an effective tool in the evaluation of PCS, and it has more advantages than other imaging modalities. PMID:25610142

  10. Multi-detector row CT colonography: effect of collimation, pitch, and orientation on polyp detection in a human colectomy specimen.

    PubMed

    Taylor, Stuart A; Halligan, Steve; Bartram, Clive I; Morgan, Paul R; Talbot, Ian C; Fry, Nicola; Saunders, Brian P; Khosraviani, Kirosh; Atkin, Wendy

    2003-10-01

    To investigate the effects of orientation, collimation, pitch, and tube current setting on polyp detection at multi-detector row computed tomographic (CT) colonography and to determine the optimal combination of scanning parameters for screening. A colectomy specimen containing 117 polyps of different sizes was insufflated and imaged with a multi-detector row CT scanner at various collimation (1.25 and 2.5 mm), pitch (3 and 6), and tube current (50, 100, and 150 mA) settings. Two-dimensional multiplanar reformatted images and three-dimensional endoluminal surface renderings from the 12 resultant data sets were examined by one observer for the presence and conspicuity of polyps. The results were analyzed with Poisson regression and logistic regression to determine the effects of scanning parameters and of specimen orientation on polyp detection. The percentage of polyps that were detected significantly increased when collimation (P =.008) and table feed (P =.03) were decreased. Increased tube current resulted in improved detection only of polyps with a diameter of less than 5 mm. Polyps of less than 5 mm were optimally depicted with a collimation of 1.25 mm, a pitch of 3, and a tube current setting of 150 mA; polyps with a diameter greater than 5 mm were adequately depicted with 1.25-mm collimation and with either pitch setting and any of the three tube current settings. Small polyps in the transverse segment (positioned at a 90 degrees angle to the z axis of scanning) were significantly less visible than those in parallel or oblique orientations (P <.001). The effective radiation dose, calculated with a Monte Carlo simulation, was 1.4-10.0 mSv. Detection of small polyps (<5 mm) with multi-detector row CT is highly dependent on collimation, pitch, and, to a lesser extent, tube current. Collimation of 1.25 mm, combined with pitch of 6 and tube current of 50 mA, provides for reliable detection of polyps 5 mm or larger while limiting the effective radiation dose. Polyps smaller than 5 mm, however, may be poorly depicted with use of these settings in the transverse colon. Copyright RSNA, 2003

  11. Recent Update on Radiation Dose Assessment for the State-of-the-Art Coronary Computed Tomography Angiography Protocols.

    PubMed

    Tan, Sock Keow; Yeong, Chai Hong; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah; Sun, Zhonghua

    2016-01-01

    This study aimed to measure the absorbed doses in selected organs for prospectively ECG-triggered coronary computed tomography angiography (CCTA) using five different generations CT scanners in a female adult anthropomorphic phantom and to estimate the effective dose (HE). Prospectively ECG-triggered CCTA was performed using five commercially available CT scanners: 64-detector-row single source CT (SSCT), 2 × 32-detector-row-dual source CT (DSCT), 2 × 64-detector-row DSCT and 320-detector-row SSCT scanners. Absorbed doses were measured in 34 organs using pre-calibrated optically stimulated luminescence dosimeters (OSLDs) placed inside a standard female adult anthropomorphic phantom. HE was calculated from the measured organ doses and compared to the HE derived from the air kerma-length product (PKL) using the conversion coefficient of 0.014 mSv∙mGy-1∙cm-1 for the chest region. Both breasts and lungs received the highest radiation dose during CCTA examination. The highest HE was received from 2 × 32-detector-row DSCT scanner (6.06 ± 0.72 mSv), followed by 64-detector-row SSCT (5.60 ± 0.68 and 5.02 ± 0.73 mSv), 2 × 64-detector-row DSCT (1.88 ± 0.25 mSv) and 320-detector-row SSCT (1.34 ± 0.48 mSv) scanners. HE calculated from the measured organ doses were about 38 to 53% higher than the HE derived from the PKL-to-HE conversion factor. The radiation doses received from a prospectively ECG-triggered CCTA are relatively small and are depending on the scanner technology and imaging protocols. HE as low as 1.34 and 1.88 mSv can be achieved in prospectively ECG-triggered CCTA using 320-detector-row SSCT and 2 × 64-detector-row DSCT scanners.

  12. Recent Update on Radiation Dose Assessment for the State-of-the-Art Coronary Computed Tomography Angiography Protocols

    PubMed Central

    Tan, Sock Keow; Yeong, Chai Hong; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah; Sun, Zhonghua

    2016-01-01

    Objectives This study aimed to measure the absorbed doses in selected organs for prospectively ECG-triggered coronary computed tomography angiography (CCTA) using five different generations CT scanners in a female adult anthropomorphic phantom and to estimate the effective dose (HE). Materials and Methods Prospectively ECG-triggered CCTA was performed using five commercially available CT scanners: 64-detector-row single source CT (SSCT), 2 × 32-detector-row-dual source CT (DSCT), 2 × 64-detector-row DSCT and 320-detector-row SSCT scanners. Absorbed doses were measured in 34 organs using pre-calibrated optically stimulated luminescence dosimeters (OSLDs) placed inside a standard female adult anthropomorphic phantom. HE was calculated from the measured organ doses and compared to the HE derived from the air kerma-length product (PKL) using the conversion coefficient of 0.014 mSv∙mGy-1∙cm-1 for the chest region. Results Both breasts and lungs received the highest radiation dose during CCTA examination. The highest HE was received from 2 × 32-detector-row DSCT scanner (6.06 ± 0.72 mSv), followed by 64-detector-row SSCT (5.60 ± 0.68 and 5.02 ± 0.73 mSv), 2 × 64-detector-row DSCT (1.88 ± 0.25 mSv) and 320-detector-row SSCT (1.34 ± 0.48 mSv) scanners. HE calculated from the measured organ doses were about 38 to 53% higher than the HE derived from the PKL-to-HE conversion factor. Conclusion The radiation doses received from a prospectively ECG-triggered CCTA are relatively small and are depending on the scanner technology and imaging protocols. HE as low as 1.34 and 1.88 mSv can be achieved in prospectively ECG-triggered CCTA using 320-detector-row SSCT and 2 × 64-detector-row DSCT scanners. PMID:27552224

  13. Recent technologic advances in multi-detector row cardiac CT.

    PubMed

    Halliburton, Sandra Simon

    2009-11-01

    Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.

  14. Differentiation of nonneoplastic and neoplastic gallbladder polyps 1 cm or bigger with multi-detector row computed tomography.

    PubMed

    Park, Ko Woon; Kim, Seong Hyun; Choi, Seong Ho; Lee, Won Jae

    2010-01-01

    To evaluate useful computed tomographic features to differentiate nonneoplastic and neoplastic gallbladder polyps 1 cm or bigger. Thirty-one patients with 32 nonneoplastic polyps and 67 patients with 73 neoplastic polyps 1 cm or bigger underwent unenhanced and dual-phase (arterial and portal venous phases) multi-detector row computed tomography. Gallbladder polyps were diagnosed by cholecystectomy. Computed tomographic features including size (1.5 cm), surface (smooth or irregular), shape (pedunculated or sessile), accompanying wall thickening, basal indentation, perception on unenhanced images, and enhancement pattern between 2 groups were compared using univariate and multivariate analyses. On univariate analysis, age 55 years or older (P = 0.0019), size bigger than 1.5 cm (P < 0.0001), irregular surface (P = 0.0033), sessile shape (P = 0.0016), accompanying wall thickening (P = 0.0056), basal indentation (P = 0.0236), and perception on unenhanced images (P < 0.0001) were significantly more frequent in neoplastic polyps as compared with nonneoplastic polyps. On multivariate analysis, size bigger than 1.5 cm (P = 0.0260), sessile shape (P = 0.0397), and perception on unenhanced images (P < 0.0001) were statistically significant. Size bigger than 1.5 cm, sessile shape, and perception on unenhanced images are the main factors that differentiate neoplastic from nonneoplastic gallbladder polyps 1 cm or bigger.

  15. Evaluation of prosthetic valve thrombosis by 64-row multi-detector computed tomography. .

    PubMed

    Tarzia, Vincenzo; Bortolussi, Giacomo; Rubino, Maurizio; Gallo, Michele; Bottio, Tomaso; Gerosa, Gino

    2015-03-01

    Multi-detector computed tomography (MDCT), combined with retrospective electrocardiographic gating, permits cardiac imaging with high accuracy. Recent advances in MDCT have seemed to respond adequately to the need for a non-invasive and reliable assessment of the coronary artery lumen. Two patients with prosthetic aortic valves (one bioprosthetic, one mechanical) presented at the authors' institution with dyspnea and syncopal episodes. MDCT was performed to evaluate thrombus characteristics and exclude coronary artery disease (CAD). Based on the MDCT coronary artery assessment, neither patient underwent preoperative invasive coronary angiography, abolishing the risk of any iatrogenic thrombus fragmentation and subsequent embolization. One patient underwent surgical treatment without complications, while medical therapy was successful in the other case. MDCT can be used for the accurate imaging of thrombi on prosthetic aortic valves, and to correctly assess possible CAD.

  16. Physics of cardiac imaging with multiple-row detector CT.

    PubMed

    Mahesh, Mahadevappa; Cody, Dianna D

    2007-01-01

    Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.

  17. The impact of manual threshold selection in medical additive manufacturing.

    PubMed

    van Eijnatten, Maureen; Koivisto, Juha; Karhu, Kalle; Forouzanfar, Tymour; Wolff, Jan

    2017-04-01

    Medical additive manufacturing requires standard tessellation language (STL) models. Such models are commonly derived from computed tomography (CT) images using thresholding. Threshold selection can be performed manually or automatically. The aim of this study was to assess the impact of manual and default threshold selection on the reliability and accuracy of skull STL models using different CT technologies. One female and one male human cadaver head were imaged using multi-detector row CT, dual-energy CT, and two cone-beam CT scanners. Four medical engineers manually thresholded the bony structures on all CT images. The lowest and highest selected mean threshold values and the default threshold value were used to generate skull STL models. Geometric variations between all manually thresholded STL models were calculated. Furthermore, in order to calculate the accuracy of the manually and default thresholded STL models, all STL models were superimposed on an optical scan of the dry female and male skulls ("gold standard"). The intra- and inter-observer variability of the manual threshold selection was good (intra-class correlation coefficients >0.9). All engineers selected grey values closer to soft tissue to compensate for bone voids. Geometric variations between the manually thresholded STL models were 0.13 mm (multi-detector row CT), 0.59 mm (dual-energy CT), and 0.55 mm (cone-beam CT). All STL models demonstrated inaccuracies ranging from -0.8 to +1.1 mm (multi-detector row CT), -0.7 to +2.0 mm (dual-energy CT), and -2.3 to +4.8 mm (cone-beam CT). This study demonstrates that manual threshold selection results in better STL models than default thresholding. The use of dual-energy CT and cone-beam CT technology in its present form does not deliver reliable or accurate STL models for medical additive manufacturing. New approaches are required that are based on pattern recognition and machine learning algorithms.

  18. Fourier crosstalk analysis of multislice and cone-beam helical CT

    NASA Astrophysics Data System (ADS)

    La Riviere, Patrick J.

    2004-05-01

    Multi-slice helical CT scanners allow for much faster scanning and better x-ray utilization than do their single-slice predecessors, but they engender considerably more complicated data sampling patterns due to the interlacing of the samples from different rows as the patient is translated. Characterizing and optimizing this sampling is challenging because the conebeam geometry of such scanners means that the projections measured by each detector row are at least slightly oblique, making it difficult to apply standard multidimensional sampling analyses. In this study, we seek to apply a more general framework for analyzing sampled imaging systems known as Fourier crosstalk analysis. Our purpose in this preliminary work is to compare the information content of the data acquired in three different scanner geometries and operating conditions with ostensibly equivalent volume coverage and average longitudinal sampling interval: a single-slice scanner operating at pitch 1, a four-slice scanner operating at pitch 3 and a 15-slice scanner operating at pitch 15. We find that moving from a single-slice to a multi-slice geometry introduces longitudinal crosstalk characteristic of the longitudinal sampling interval between periods of individual each detector row, and not of the overall interlaced sampling pattern. This is attributed to data inconsistencies caused by the obliqueness of the projections in a multi-slice/conebeam configuration. However, these preliminary results suggest that the significance of this additional crosstalk actually decreases as the number of detector rows increases.

  19. Multi-port, optically addressed RAM

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R. (Inventor); Nixon, Robert H. (Inventor); Bergman, Larry A. (Inventor); Esener, Sadik (Inventor)

    1989-01-01

    A random access memory addressing system utilizing optical links between memory and the read/write logic circuits comprises addressing circuits including a plurality of light signal sources, a plurality of optical gates including optical detectors associated with the memory cells, and a holographic optical element adapted to reflect and direct the light signals to the desired memory cell locations. More particularly, it is a multi-port, binary computer memory for interfacing with a plurality of computers. There are a plurality of storage cells for containing bits of binary information, the storage cells being disposed at the intersections of a plurality of row conductors and a plurality of column conductors. There is interfacing logic for receiving information from the computers directing access to ones of the storage cells. There are first light sources associated with the interfacing logic for transmitting a first light beam with the access information modulated thereon. First light detectors are associated with the storage cells for receiving the first light beam, for generating an electrical signal containing the access information, and for conducting the electrical signal to the one of the storage cells to which it is directed. There are holographic optical elements for reflecting the first light beam from the first light sources to the first light detectors.

  20. Feasibility of tissue characterization of coronary plaques using 320-detector row computed tomography: comparison with integrated backscatter intravascular ultrasound.

    PubMed

    Takahashi, Shigekiyo; Kawasaki, Masanori; Miyata, Shusaku; Suzuki, Keita; Yamaura, Makoto; Ido, Takahisa; Aoyama, Takuma; Fujiwara, Hisayoshi; Minatoguchi, Shinya

    2016-01-01

    Recently, a new generation of multi-detector row computed tomography (CT) with 320-detector rows (DR) has become available in the clinical settings. The purpose of the present study was to determine the cutoff values of Hounsfield unit (HU) for discrimination of plaque components by comparing HU of coronary plaques with integrated backscatter intravascular ultrasound (IB-IVUS) serving as a gold standard. Seventy-seven coronary atherosclerotic lesions in 77 patients with angina were visualized by both 320-DR CT (Aquilion One, Toshiba, Japan) and IB-IVUS at the same site. To determine the thresholds for discrimination of plaque components, we compared HU with IB values as a gold standard. Optimal thresholds were determined from receiver operating characteristic (ROC) curves analysis. The HU values of lipid pool (n = 115), fibrosis (n = 93), vessel lumen and calcification (n = 73) were 28 ± 19 HU (range -18 to 69 HU), 98 ± 31 HU (44 to 195 HU), 357 ± 65 HU (227 to 534 HU) and 998 ± 236 HU (366 to 1,489 HU), respectively. The thresholds of 56 HU, 210 HU and 490 HU were the most reliable predictors of lipid pool, fibrosis, vessel lumen and calcification, respectively. Lipid volume measured by 320-DR CT was correlated with that measured by IB-IVUS (r = 0.63, p < 0.05), whereas fibrous volume measured by 320-DR CT was not. Lipid volume measured by 320-DR CT was correlated with that measured by IB-IVUS, whereas fibrous volume was not correlated with that measured by IB-IVUS because manual exclusion of the outside of vessel hindered rigorous discrimination between fibrosis and extravascular components.

  1. Craniofacial and dental malformations in Costello syndrome: A detailed evaluation using multi-detector row computed tomography.

    PubMed

    Takahashi, Masashi; Ohashi, Hirofumi

    2013-06-01

    Costello syndrome is a rare multiple congenital anomaly syndrome caused by heterozygous germline HRAS mutations, which is characterized by intellectual disability, growth retardation, distinctive facies, loose skin, cardiomyopathy and a preposition to malignancies. Although teeth abnormalities have been encountered in nearly two-thirds of the patients in literature, the evaluation tended to be limited to the extent which can be obtained from physical examination. We investigated detailed craniofacial, oral and dental findings in four patients with Costello syndrome. In this study, images reconstructed by multi-detector row computed tomography (MDCT) were used as substitutes for dental cast study and panoramic and lateral cephalometric radiograph studies to evaluate dental arches, tooth size, relationships between craniofacial and dental structures, and hypodontia. All four patients showed true/relative macrocephaly with facial bone hypoplasia and gingival hypertrophy. Occlusal attrition, malocclusion, small dental arches, microdontia, and convex face were noted in three patients. In addition, one patient showed dental caries, conic tooth and gingivitis, and another patient showed hypodontia. Our study suggests that craniofacial and dental abnormalities are common in Costello syndrome patients and comprehensive dental care should be provided from early infancy. To our knowledge, this is the first study of thorough craniofacial and dental evaluation by using MDCT in Costello syndrome. MDCT is a useful tool for precise evaluation of craniofacial and oral manifestations in patients with congenital anomaly/intellectual disability syndromes. © 2012 The Authors. Congenital Anomalies © 2012 Japanese Teratology Society.

  2. Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with ¹⁵O-H₂O PET.

    PubMed

    Kikuchi, Yasuka; Oyama-Manabe, Noriko; Naya, Masanao; Manabe, Osamu; Tomiyama, Yuuki; Sasaki, Tsukasa; Katoh, Chietsugu; Kudo, Kohsuke; Tamaki, Nagara; Shirato, Hiroki

    2014-07-01

    This study introduces a method to calculate myocardium blood flow (MBF) and coronary flow reserve (CFR) using the relatively low-dose dynamic 320-row multi-detector computed tomography (MDCT), validates the method against (15)O-H₂O positron-emission tomography (PET) and assesses the CFRs of coronary artery disease (CAD) patients. Thirty-two subjects underwent both dynamic CT perfusion (CTP) and PET perfusion imaging at rest and during pharmacological stress. In 12 normal subjects (pilot group), the calculation method for MBF and CFR was established. In the other 13 normal subjects (validation group), MBF and CFR obtained by dynamic CTP and PET were compared. Finally, the CFRs obtained by dynamic CTP and PET were compared between the validation group and CAD patients (n = 7). Correlation between MBF of MDCT and PET was strong (r = 0.95, P < 0.0001). CFR showed good correlation between dynamic CTP and PET (r = 0.67, P = 0.0126). CFRCT in the CAD group (2.3 ± 0.8) was significantly lower than that in the validation group (5.2 ± 1.8) (P = 0.0011). We established a method for measuring MBF and CFR with the relatively low-dose dynamic MDCT. Lower CFR was well demonstrated in CAD patients by dynamic CTP. • MBF and CFR can be calculated using dynamic CTP with 320-row MDCT. • MBF and CFR showed good correlation between dynamic CTP and PET. • Lower CFR was well demonstrated in CAD patients by dynamic CTP.

  3. The efficacy of 320-detector row computed tomography for the assessment of preoperative pulmonary vasculature of candidates for pulmonary segmentectomy.

    PubMed

    Tane, Shinya; Ohno, Yoshiharu; Hokka, Daisuke; Ogawa, Hiroyuki; Tauchi, Shunsuke; Nishio, Wataru; Yoshimura, Masahiro; Okita, Yutaka; Maniwa, Yoshimasa

    2013-12-01

    The purpose of this study was to compare the efficacy of 320-detector row computed tomography (CT) with that of 64-detector row CT for three-dimensional assessment of pulmonary vasculature of candidates for pulmonary segmentectomy. We included 32 patients who underwent both 320- and 64-detector CT before pulmonary segmentectomy, which was performed by cutting the pulmonary artery and bronchi of the affected segment followed by dissection of the intersegmental plane along the intersegmental vein. Before the operation, three-dimensional pulmonary vasculature images were obtained for each patient, and the arteries and intersegmental veins of the affected segments were identified. Two thoracic surgeons independently assessed the vessels with visual scoring systems, and kappa analysis was used to determine interobserver agreement. The Wilcoxon signed-rank test was used to compare the visual scores for the assessment of the visualization capabilities of the two methods. In addition, the final determination of pulmonary vasculature at a given site was made by consensus from thoracic surgeons during operation, and receiver operating characteristic analysis was performed to compare their efficacy of pulmonary vasculature assessment. Sensitivity, specificity and accuracy of either method were also compared by means of McNemar's test. Of the 32 cases, there were no operative complications, but 1 patient died of postoperative idiopathic interstitial pneumonia. Visualization scores for the pulmonary vessels were significantly higher for 320- than those for 64-detector CT (P < 0.0001 for the affected arteries and P < 0.0001 for the intersegmental veins). As for pulmonary vasculature assessment, the areas under the curve showed no statistically significant differences in between the two methods, while the specificity and accuracy of intersegemental vein assessment were significantly better for 320- than those for 64-detector row CT (P < 0.05). Interobserver agreement for the assessment yielded by either method was almost perfect for all cases. Three hundred and twenty-detector row CT is more useful than conventional 64-detector row CT for preoperative three-dimensional assessment of pulmonary vasculature, especially when we identify the intersegmental veins, in candidates for pulmonary segmentectomy.

  4. How many CT detector rows are necessary to perform adequate three dimensional visualization?

    PubMed

    Fischer, Lars; Tetzlaff, Ralf; Schöbinger, Max; Radeleff, Boris; Bruckner, Thomas; Meinzer, H P; Büchler, M W; Schemmer, Peter

    2010-06-01

    The technical development of computer tomography (CT) imaging has experienced great progress. As consequence, CT data to be used for 3D visualization is not only based on 4 row CTs and 16 row CTs but also on 64 row CTs, respectively. The main goal of this study was to examine whether the increased amount of CT detector rows is correlated with improved quality of the 3D images. All CTs were acquired during routinely performed preoperative evaluation. Overall, there were 12 data sets based on 4 detector row CT, 12 data sets based on 16 detector row CT, and 10 data sets based on 64 detector row CT. Imaging data sets were transferred to the DKFZ Heidelberg using the CHILI teleradiology system. For the analysis all CT scans were examined in a blinded fashion, i.e. both the name of the patient as well as the name of the CT brand were erased. For analysis, the time for segmentation of liver, both portal and hepatic veins as well as the branching depth of portal veins and hepatic veins was recorded automatically. In addition, all results were validated in a blinded fashion based on given quality index. Segmentation of the liver was performed in significantly shorter time (p<0.01, Kruskal-Wallis test) in the 16 row CT (median 479 s) compared to 4 row CT (median 611 s), and 64 row CT (median 670 s), respectively. The branching depth of the portal vein did not differ significantly among the 3 different data sets (p=0.37, Kruskal-Wallis test). However, the branching depth of the hepatic veins was significantly better (p=0.028, Kruskal-Wallis test) in the 4 row CT and 16 row CT compared to 64 row CT. The grading of the quality index was not statistically different for portal veins and hepatic veins (p=0.80, Kruskal-Wallis test). Even though the total quality index was better for the vessel tree based on 64 row CT data sets (mean scale 2.6) compared to 4 CT row data (mean scale 3.25) and 16 row CT data (mean scale 3.0), these differences did not reach statistical difference (p=0.53, Kruskal-Wallis test). Even though 3D visualization is useful in operation planning, the quality of the 3D images appears to be not dependent of the number of CT detector rows. Copyright (c) 2009. Published by Elsevier Ireland Ltd.

  5. [Study of radiation dose to the eye lens by multi-detector row computed tomography of the temporal bone].

    PubMed

    Hirakuri, Ayaka; Numasawa, Kanako; Takeishi, Hideki; Satomura, Minato; Takeda, Hiromitsu; Harada, Kuniaki; Asanuma, Osamu; Sakata, Motomichi

    2012-01-01

    The exposure of the eye lens caused by multi-detector row computed tomography (MDCT) of the temporal bone is a serious problem. Our aim was to evaluate the radiation dose to the eye lens by different scan baselines (orbitomeatal line; OML, acanthiomeatal line; AML) and examine the difference of the depiction of the temporal bone structures. Measurement of the exposure to the eye lens was performed by means of MDCT of the temporal bone with a radio-photoluminescence glass dosimeter using a rand phantom. Moreover, we studied only one volunteer (58-year-old male) who had no symptom and was not suspected of having any ear abnormalities with a two scan baseline. Visualization of the major anatomical structures of the temporal bone (the tympanic portion of the facial nerve canal, the body of the incus, stapes superstructures, vestibule etc.) was performed on the volunteer. The average absorbed dose was 6.42 mGy by the OML and 1.59 mGy by the AML, respectively. With regard to visualization of the temporal bone structures, all structures were of equal quality with the two scan baseline. With the AML line, the radiation dose to the eye lens was reduced to 75%. Therefore, the authors recommended an AML for use for MDCT of the temporal bone. In clinical practice, the optimization of scanning factor (kVp, mAs etc.) and the use of the radio-protection should be implemented for radiation dose reduction of the eye lens by MDCT of the temporal bone.

  6. Correctness of multi-detector-row computed tomography for diagnosing mechanical prosthetic heart valve disorders using operative findings as a gold standard.

    PubMed

    Tsai, I-Chen; Lin, Yung-Kai; Chang, Yen; Fu, Yun-Ching; Wang, Chung-Chi; Hsieh, Shih-Rong; Wei, Hao-Ji; Tsai, Hung-Wen; Jan, Sheng-Ling; Wang, Kuo-Yang; Chen, Min-Chi; Chen, Clayton Chi-Chang

    2009-04-01

    The purpose was to compare the findings of multi-detector computed tomography (MDCT) in prosthetic valve disorders using the operative findings as a gold standard. In a 3-year period, we prospectively enrolled 25 patients with 31 prosthetic heart valves. MDCT and transthoracic echocardiography (TTE) were done to evaluate pannus formation, prosthetic valve dysfunction, suture loosening (paravalvular leak) and pseudoaneurysm formation. Patients indicated for surgery received an operation within 1 week. The MDCT findings were compared with the operative findings. One patient with a Björk-Shiley valve could not be evaluated by MDCT due to a severe beam-hardening artifact; thus, the exclusion rate for MDCT was 3.2% (1/31). Prosthetic valve disorders were suspected in 12 patients by either MDCT or TTE. Six patients received an operation that included three redo aortic valve replacements, two redo mitral replacements and one Amplatzer ductal occluder occlusion of a mitral paravalvular leak. The concordance of MDCT for diagnosing and localizing prosthetic valve disorders and the surgical findings was 100%. Except for images impaired by severe beam-hardening artifacts, MDCT provides excellent delineation of prosthetic valve disorders.

  7. [Evaluation of Slavic continuity for electrocardiograph (ECG)-gated non-helical scan using multi detector-row computed tomography with 64 data acquisition system].

    PubMed

    Shiotani, Masataka; Ogawa, Masato; Watanabe, Ryo; Shinohara, Tamotsu

    2012-01-01

    Multi detector-row computed tomography with 64 data acquisition systems are widely used for coronary CT angiography with an electrocardiograph (ECG) gated helical scan (HS). Step and shoot with ECG gated non-helical scan (snap shot pulse: SSP) could reduce exposure dose but banding artifact-like discontinuity was observed between adjacent slabs on volume rendering (VR) and curved planner reconstruction (CPR). Therefore, we investigated the factors that influence continuity of VR and CPR images by calculating image properties of Z-axis direction of slab. The observer performance studies were performed for evaluating continuity of simulated blood vessels of VR and CPR images at simulated heart rates: 50, 55, 57 and 60 beat per minute (bpm). As a result, the value of SD at both slab edges in SSP were 20.5% lower than middle part of slab and differences of value of SD were up to 4.4 between adjacent slab edges. Slice thickness of both slab edges were 20.3% thinner than that of the peripheral part of slab. At the border of the adjacent slab, the position of the simulated blood vessel was shifted. VR images of SSP at 57 bpm was indicated as the highest score and HS was significantly superior to SSP at 55 and 60 bpm (p<0.05). In CPR images, there were no significant differences at all simulated heart rates. In conclusion, we considered that VR images of SSP were influenced heart rates except 57 bpm (resonance case) and there was little difference of visibility for discontinuity of both CPR images obtained by SSP and HS.

  8. Role of enhanced multi-detector-row computed tomography before urgent endoscopy in acute upper gastrointestinal bleeding.

    PubMed

    Miyaoka, Youichi; Amano, Yuji; Ueno, Sayaka; Izumi, Daisuke; Mikami, Hironobu; Yazaki, Tomotaka; Okimoto, Eiko; Sonoyama, Takayuki; Ito, Satoko; Fujishiro, Hirofumi; Kohge, Naruaki; Imaoka, Tomonori

    2014-04-01

    Multi-detector-row computed tomography (MDCT) has been reported to be a potentially useful modality for detection of the bleeding origin in patients with acute upper massive gastrointestinal (GI) bleeding. The purpose of this study is to investigate the efficacy of MDCT as a routine method for detecting the origin of acute upper GI bleeding prior to urgent endoscopy. Five hundred seventy-seven patients with acute upper GI bleeding (514 nonvariceal patients, 63 variceal patients) who underwent urgent upper GI endoscopy were retrospectively analyzed. Patients were divided into three groups: enhanced MDCT, unenhanced MDCT, and no MDCT before endoscopy. The diagnostic accuracy of MDCT for detection of the bleeding origin was evaluated, and the average procedure times needed to endoscopically identify the bleeding origin were compared between groups. Diagnostic accuracy among endoscopists was 55.3% and 14.7% for the enhanced MDCT and unenhanced MDCT groups, respectively. Among nonvariceal patients, accuracy was 50.2% in the enhanced MDCT group, which was significantly better than that in the unenhanced MDCT group (16.5%). In variceal patients, accuracy was significantly better in the enhanced MDCT group (96.4%) than in the unenhanced MDCT group (0.0%). These accuracies were similar to those achieved by expert radiologists. The average procedure time to endoscopic detection of the bleeding origin in the enhanced MDCT group was significantly faster than that in the unenhanced MDCT and no-MDCT groups. Enhanced MDCT preceding urgent endoscopy may be an effective modality for the detection of bleeding origin in patients with acute upper GI bleeding. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  9. Assessment of temporal resolution of multi-detector row computed tomography in helical acquisition mode using the impulse method.

    PubMed

    Ichikawa, Katsuhiro; Hara, Takanori; Urikura, Atsushi; Takata, Tadanori; Ohashi, Kazuya

    2015-06-01

    The purpose of this study was to propose a method for assessing the temporal resolution (TR) of multi-detector row computed tomography (CT) (MDCT) in the helical acquisition mode using temporal impulse signals generated by a metal ball passing through the acquisition plane. An 11-mm diameter metal ball was shot along the central axis at approximately 5 m/s during a helical acquisition, and the temporal sensitivity profile (TSP) was measured from the streak image intensities in the reconstructed helical CT images. To assess the validity, we compared the measured and theoretical TSPs for the 4-channel modes of two MDCT systems. A 64-channel MDCT system was used to compare TSPs and image quality of a motion phantom for the pitch factors P of 0.6, 0.8, 1.0 and 1.2 with a rotation time R of 0.5 s, and for two R/P combinations of 0.5/1.2 and 0.33/0.8. Moreover, the temporal transfer functions (TFs) were calculated from the obtained TSPs. The measured and theoretical TSPs showed perfect agreement. The TSP narrowed with an increase in the pitch factor. The image sharpness of the 0.33/0.8 combination was inferior to that of the 0.5/1.2 combination, despite their almost identical full width at tenth maximum values. The temporal TFs quantitatively confirmed these differences. The TSP results demonstrated that the TR in the helical acquisition mode significantly depended on the pitch factor as well as the rotation time, and the pitch factor and reconstruction algorithm affected the TSP shape. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography.

    PubMed

    Prakashini, K; Babu, Satish; Rajgopal, K V; Kokila, K Raja

    2016-01-01

    To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4-10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.

  11. Task III: Development of an Effective Computational Methodology for Body Force Representation of High-speed Rotor 37

    NASA Technical Reports Server (NTRS)

    Tan, Choon-Sooi; Suder, Kenneth (Technical Monitor)

    2003-01-01

    A framework for an effective computational methodology for characterizing the stability and the impact of distortion in high-speed multi-stage compressor is being developed. The methodology consists of using a few isolated-blade row Navier-Stokes solutions for each blade row to construct a body force database. The purpose of the body force database is to replace each blade row in a multi-stage compressor by a body force distribution to produce same pressure rise and flow turning. To do this, each body force database is generated in such a way that it can respond to the changes in local flow conditions. Once the database is generated, no hrther Navier-Stokes computations are necessary. The process is repeated for every blade row in the multi-stage compressor. The body forces are then embedded as source terms in an Euler solver. The method is developed to have the capability to compute the performance in a flow that has radial as well as circumferential non-uniformity with a length scale larger than a blade pitch; thus it can potentially be used to characterize the stability of a compressor under design. It is these two latter features as well as the accompanying procedure to obtain the body force representation that distinguish the present methodology from the streamline curvature method. The overall computational procedures have been developed. A dimensional analysis was carried out to determine the local flow conditions for parameterizing the magnitudes of the local body force representation of blade rows. An Euler solver was modified to embed the body forces as source terms. The results from the dimensional analysis show that the body forces can be parameterized in terms of the two relative flow angles, the relative Mach number, and the Reynolds number. For flow in a high-speed transonic blade row, they can be parameterized in terms of the local relative Mach number alone.

  12. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography

    PubMed Central

    Prakashini, K; Babu, Satish; Rajgopal, KV; Kokila, K Raja

    2016-01-01

    Aims and Objectives: To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. Materials and Methods: A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Observations and Results: Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4–10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. Conclusion: CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time. PMID:27578931

  13. Pitfalls in 16-detector row CT of the coronary arteries.

    PubMed

    Nakanishi, Tadashi; Kayashima, Yasuyo; Inoue, Rintaro; Sumii, Kotaro; Gomyo, Yukihiko

    2005-01-01

    Recently developed 16-detector row computed tomography (CT) has been introduced as a reliable noninvasive imaging modality for evaluating the coronary arteries. In most cases, with appropriate premedication that includes beta-blockers and nitroglycerin, ideal data sets can be acquired from which to obtain excellent-quality coronary CT angiograms, most often with multiplanar reformation, thin-slab maximum intensity projection, and volume rendering. However, various artifacts associated with data creation and reformation, postprocessing methods, and image interpretation can hamper accurate diagnosis. These artifacts can be related to pulsation (nonassessable segments, pseudostenosis) as well as rhythm disorders, respiratory issues, partial volume averaging effect, high-attenuation entities, inappropriate scan pitch, contrast material enhancement, and patient body habitus. Some artifacts have already been resolved with technical advances, whereas others represent partially inherent limitations of coronary CT angiography. Familiarity with the pitfalls of coronary angiography with 16-detector row CT, coupled with the knowledge of both the normal anatomy and anatomic variants of the coronary arteries, can almost always help radiologists avoid interpretive errors in the diagnosis of coronary artery stenosis. (c) RSNA, 2005.

  14. Imaging in chronic obstructive pulmonary disease.

    PubMed

    Shaker, Saher B; Dirksen, Asger; Bach, Karen S; Mortensen, Jann

    2007-06-01

    Chronic obstructive pulmonary disease (COPD) is divided into pulmonary emphysema and chronic bronchitis (CB). Emphysema is defined patho-anatomically as "permanent enlargement of airspaces distal to the terminal bronchiole, accompanied by the destruction of their walls, and without obvious fibrosis" (1). These lesions are readily identified and quantitated using computed tomography (CT), whereas the accompanying hyperinflation is best detected on plain chest X-ray, especially in advanced disease. The diagnosis of CB is clinical and relies on the presence of productive cough for 3 months in 2 or more successive years. The pathological changes of mucosal inflammation and bronchial wall thickening have been more difficult to identify with available imaging techniques. However, recent studies using Multi-detector row CT (MDCT) reported more reproducible assessment of air wall thickening.

  15. Estimation of regional lung expansion via 3D image registration

    NASA Astrophysics Data System (ADS)

    Pan, Yan; Kumar, Dinesh; Hoffman, Eric A.; Christensen, Gary E.; McLennan, Geoffrey; Song, Joo Hyun; Ross, Alan; Simon, Brett A.; Reinhardt, Joseph M.

    2005-04-01

    A method is described to estimate regional lung expansion and related biomechanical parameters using multiple CT images of the lungs, acquired at different inflation levels. In this study, the lungs of two sheep were imaged utilizing a multi-detector row CT at different lung inflations in the prone and supine positions. Using the lung surfaces and the airway branch points for guidance, a 3D inverse consistent image registration procedure was used to match different lung volumes at each orientation. The registration was validated using a set of implanted metal markers. After registration, the Jacobian of the deformation field was computed to express regional expansion or contraction. The regional lung expansion at different pressures and different orientations are compared.

  16. Features of cranio-maxillofacial trauma in the massive Sichuan earthquake: analysis of 221 cases with multi-detector row CT.

    PubMed

    Chu, Zhi-gang; Yang, Zhi-gang; Dong, Zhi-hui; Chen, Tian-wu; Zhu, Zhi-yu; Deng, Wen; Xiao, Jia-he

    2011-10-01

    In a massive earthquake, cranio-maxillofacial trauma was common. The present study was to determine the features of cranio-maxillofacial trauma sustained in the massive Sichuan earthquake by multi-detector row computed tomography (MDCT). The study included 221 consecutive patients (123 males and 98 females; age range, 1-83 years; median age, 35 years) with cranio-maxillofacial trauma in the Sichuan earthquake, who underwent cranio-maxillofacial MDCT scans. The image data were retrospectively reviewed focusing on the injuries of the cranio-maxillofacial soft tissue, facial bones and cranium. All patients had soft tissue injuries frequently with foreign bodies. Ninety-seven (43.9%) patients had fractures (1.5 involved sites per patient, range from 1 to 8) including single cranial fractures in 36 (37.1%) cases, single maxillofacial fractures were seen in 48 (49.5%) and cranio-maxillofacial fractures in 13 (13.4%). Single bone fracture was more common than multiple bone fractures (p<0.05). Nasal, ethmoid bones and the orbits were the most commonly involved sites of the craniofacial region. Thirty-eight (17.2%) patients had intracranial injuries, the commonest being subarachnoid haemorrhage and the commonest sites were the temporal and frontal regions. Coexisting intracranial injuries were more common in patients with cranial fractures than in patients with maxillofacial fractures (p<0.05). Our results indicate that the cranio-maxillofacial trauma arising from the massive Sichuan earthquake had some characteristic features, and a significant number of individuals had the potential for combined cranial and maxillofacial injuries, successful management of which required a multidisciplinary approach. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  17. Reduction of thoracic aorta motion artifact with high-pitch 128-slice dual-source computed tomographic angiography: a historical control study.

    PubMed

    Nakagawa, Junichiro; Tasaki, Osamu; Watanabe, Yoshiyuki; Azuma, Takeo; Ohnishi, Mitsuo; Ukai, Isao; Tahara, Kenichi; Ogura, Hiroshi; Kuwagata, Yasuyuki; Hamasaki, Toshimitsu; Shimazu, Takeshi

    2013-01-01

    Electrocardiogram-gated imaging combined with multi-detector row computed tomography (MDCT) has reduced cardiac motion artifacts, but it was not practical in the emergency setting. The purpose of this study was to evaluate the ability of a high-pitch, 128-slice dual-source CT (DSCT) scanner to reduce motion artifacts in patients admitted to the emergency room. This study comprised 100 patients suspected of having thoracic aorta lesions. We examined 47 patients with the 128-slice DSCT scanner (DSCT group), and 53 patients were examined with a 64-slice MDCT scanner (MDCT group). Six anatomic areas in the thoracic aorta were evaluated. Computed tomography images in the DSCT group were distinct, and significant differences were observed in images of all areas between the 2 groups except for the descending aorta. The high-pitch DSCT scanner can reduce motion artifacts of the thoracic aorta and enable radiological diagnosis even in patients with tachycardia and without breath hold.

  18. Temporal resolution measurement of 128-slice dual source and 320-row area detector computed tomography scanners in helical acquisition mode using the impulse method.

    PubMed

    Hara, Takanori; Urikura, Atsushi; Ichikawa, Katsuhiro; Hoshino, Takashi; Nishimaru, Eiji; Niwa, Shinji

    2016-04-01

    To analyse the temporal resolution (TR) of modern computed tomography (CT) scanners using the impulse method, and assess the actual maximum TR at respective helical acquisition modes. To assess the actual TR of helical acquisition modes of a 128-slice dual source CT (DSCT) scanner and a 320-row area detector CT (ADCT) scanner, we assessed the TRs of various acquisition combinations of a pitch factor (P) and gantry rotation time (R). The TR of the helical acquisition modes for the 128-slice DSCT scanner continuously improved with a shorter gantry rotation time and greater pitch factor. However, for the 320-row ADCT scanner, the TR with a pitch factor of <1.0 was almost equal to the gantry rotation time, whereas with pitch factor of >1.0, it was approximately one half of the gantry rotation time. The maximum TR values of single- and dual-source helical acquisition modes for the 128-slice DSCT scanner were 0.138 (R/P=0.285/1.5) and 0.074s (R/P=0.285/3.2), and the maximum TR values of the 64×0.5- and 160×0.5-mm detector configurations of the helical acquisition modes for the 320-row ADCT scanner were 0.120 (R/P=0.275/1.375) and 0.195s (R/P=0.3/0.6), respectively. Because the TR of a CT scanner is not accurately depicted in the specifications of the individual scanner, appropriate acquisition conditions should be determined based on the actual TR measurement. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. New technology in the management of liver trauma

    PubMed Central

    Chatoupis, Konstantinos; Papadopoulou, Glikeria; Kaskarelis, Ioannis

    2013-01-01

    The liver is the second most frequently injured solid organ in patients with blunt abdominal trauma. Hence the diagnosis and clinical assessment of hepatic trauma is of great importance because of the relationship of the liver to high morbidity and mortality. Multi detector-row computed tomography is the main diagnostic modality for the examination of hepatic parenchyma and other associated organ injuries, such as acute or delayed complications. Based on clinical and radiological findings, the majority of patients are managed conservatively, with the most important criterion of surgical therapy being hemodynamic instability. Radiologists must demonstrate a high knowledge of imaging recommendations and standardization of reporting to enable the selection of the appropriate treatment algorithm. Transcatheter embolization therapy is a method of great potential for the management of patients with traumatic hepatic injuries. PMID:24714662

  20. Simultaneous profile measurements of medium- and high-Z impurity concentrations (nZ/ne) , Te , ΔZeff and n e2Zeff in MCF plasmas from multi-energy x-rays

    NASA Astrophysics Data System (ADS)

    Maddox, Jacob; Delgado-Aparicio, Luis; Pablant, Novimir; Rutman, Max; Hill, Ken; Bitter, Manfred; Reinke, Matthew; Rice, John

    2016-10-01

    Novel energy resolved measurements of x-ray emissions were used to characterize impurity concentrations, electron temperature, and ΔZeff in a variety of Alcator C-Mod plasmas. A PILATUS2 detector programmed in a multi-energy configuration and used in a pinhole camera geometry provides the capability to function similar to a pulse height analyzer (PHA) but with full plasma profile views and sufficient spatial ( 1 cm), energy ( .5 keV), and temporal ( 10 ms) resolution. Each of the PILATUS2's 100k (487x195) pixels can be set to an energy threshold, which sorts x-ray emissions into energy bins by counting only photons with energy above the threshold energy. By setting every 13th pixel row to the same energy bin and the 12 interjacent pixel rows to different energy bins on the PILATUS2 detector gives 38 poloidal sightlines (487 rows/13 energy bins). The number of photons detected in each energy bin depends on (nZ/ne) , Te, and ne2Zeff, so that these plasma parameters can be extracted by fitting the data to an emission model, which includes free-free, free-bound, and bound-bound emissions from a De/H background plasma with perturbing medium and high-Z impurities, like intrinsic Mo, Fe, and Cu or injected W. Also, radial electron temperature profiles were measured during LHRF and ICRF and compared to Thomson scattering and ECE.

  1. Impact of reduced-radiation dual-energy protocols using 320-detector row computed tomography for analyzing urinary calculus components: initial in vitro evaluation.

    PubMed

    Cai, Xiangran; Zhou, Qingchun; Yu, Juan; Xian, Zhaohui; Feng, Youzhen; Yang, Wencai; Mo, Xukai

    2014-10-01

    To evaluate the impact of reduced-radiation dual-energy (DE) protocols using 320-detector row computed tomography on the differentiation of urinary calculus components. A total of 58 urinary calculi were placed into the same phantom and underwent DE scanning with 320-detector row computed tomography. Each calculus was scanned 4 times with the DE protocols using 135 kV and 80 kV tube voltage and different tube current combinations, including 100 mA and 570 mA (group A), 50 mA and 290 mA (group B), 30 mA and 170 mA (group C), and 10 mA and 60 mA (group D). The acquisition data of all 4 groups were then analyzed by stone DE analysis software, and the results were compared with x-ray diffraction analysis. Noise, contrast-to-noise ratio, and radiation dose were compared. Calculi were correctly identified in 56 of 58 stones (96.6%) using group A and B protocols. However, only 35 stones (60.3%) and 16 stones (27.6%) were correctly diagnosed using group C and D protocols, respectively. Mean noise increased significantly and mean contrast-to-noise ratio decreased significantly from groups A to D (P <.05). In addition, the effective dose decreased markedly from groups A to D at 3.78, 1.81, 1.07, and 0.37 mSv, respectively. Decreasing the DE tube currents from 100 mA and 570 mA to 50 mA and 290 mA resulted in 96.6% accuracy for urinary calculus component analysis while reducing patient radiation exposure to 1.81 mSv. Further reduction of tube currents may compromise diagnostic accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Periportal low attenuation associated with liver metastasis from colorectal cancer: evaluation using multi-detector-row CT with pathological correlation.

    PubMed

    Takaji, Ryo; Matsumoto, Shunro; Kiyonaga, Maki; Yamada, Yasunari; Mori, Hiromu; Iwashita, Yukio; Ohta, Masayuki; Inomata, Masafumi; Hijiya, Naoki; Moriyama, Masatsugu; Takaki, Hajime; Fukuzawa, Kengo; Yonemasu, Hirotoshi

    2017-01-01

    Periportal low attenuation (PPLA) associated with metastatic liver cancer is occasionally seen on multi-detector-row CT (MDCT). The purpose of this study was to investigate the MDCT patterns of the PPLA and to correlate it with pathological findings. We retrospectively reviewed the MDCT images of 63 patients with metastatic liver cancers from colorectal adenocarcinoma. On MDCT scans, PPLA associated with liver metastasis was visualized in six patients with colorectal cancer. In these six patients who had undergone surgical resection, the radiologic-pathologic correlation was analyzed. All patients underwent a single contrast-enhanced MDCT within 1 month before surgical resection. The six liver cancers were pathologically proven to be moderately differentiated adenocarcinoma. We assessed the PPLA on MDCT concerning the distribution patterns and contrast enhancement with pathological correlation. In five of the patients, the PPLA extended to the hilar side from metastatic liver cancer. Pathologically, there was no cancer invasion into the intra-hepatic periportal area; however, massive lymphedema and fibrosis occurred in all six cases. PPLA on the hilar and peripheral sides of hepatic metastasis from colorectal cancer may be present suggesting lymphedema and fibrosis of portal tracts not always indicating cancer infiltration.

  3. Thoracic-abdominal imaging with a novel dual-layer spectral detector CT: intra-individual comparison of image quality and radiation dose with 128-row single-energy acquisition.

    PubMed

    Haneder, Stefan; Siedek, Florian; Doerner, Jonas; Pahn, Gregor; Grosse Hokamp, Nils; Maintz, David; Wybranski, Christian

    2018-01-01

    Background A novel, multi-energy, dual-layer spectral detector computed tomography (SDCT) is commercially available now with the vendor's claim that it yields the same or better quality of polychromatic, conventional CT images like modern single-energy CT scanners without any radiation dose penalty. Purpose To intra-individually compare the quality of conventional polychromatic CT images acquired with a dual-layer spectral detector (SDCT) and the latest generation 128-row single-energy-detector (CT128) from the same manufacturer. Material and Methods Fifty patients underwent portal-venous phase, thoracic-abdominal CT scans with the SDCT and prior CT128 imaging. The SDCT scanning protocol was adapted to yield a similar estimated dose length product (DLP) as the CT128. Patient dose optimization by automatic tube current modulation and CT image reconstruction with a state-of-the-art iterative algorithm were identical on both scanners. CT image contrast-to-noise ratio (CNR) was compared between the SDCT and CT128 in different anatomic structures. Image quality and noise were assessed independently by two readers with 5-point-Likert-scales. Volume CT dose index (CTDI vol ), and DLP were recorded and normalized to 68 cm acquisition length (DLP 68 ). Results The SDCT yielded higher mean CNR values of 30.0% ± 2.0% (26.4-32.5%) in all anatomic structures ( P < 0.001) and excellent scores for qualitative parameters surpassing the CT128 (all P < 0.0001) with substantial inter-rater agreement (κ ≥ 0.801). Despite adapted scan protocols the SDCT yielded lower values for CTDI vol (-10.1 ± 12.8%), DLP (-13.1 ± 13.9%), and DLP 68 (-15.3 ± 16.9%) than the CT128 (all P < 0.0001). Conclusion The SDCT scanner yielded better CT image quality compared to the CT128 and lower radiation dose parameters.

  4. Electrocardiographically gated 16-section CT of the thorax: cardiac motion suppression.

    PubMed

    Hofmann, Lars K; Zou, Kelly H; Costello, Philip; Schoepf, U Joseph

    2004-12-01

    Thirty patients underwent 16-section multi-detector row computed tomographic (CT) angiography of the thorax with retrospective electrocardiographic gating. Institutional review board approval was obtained for retrospective analysis of CT scan data and records; patient informed consent was not required. Images reconstructed at six different time points (0%, 20%, 40%, 50%, 60%, 80%) within the R-R interval on the electrocardiogram were analyzed by two radiologists for diagnostic quality, to identify suitable reconstruction intervals for optimal suppression of cardiac motion. Five regions of interest (left coronary artery, aortic root, ascending and descending aorta, pulmonary arteries) were evaluated. Best image quality was achieved by referencing image reconstruction to middiastole (50%-60%) for the left coronary artery, aortic root, and ascending aorta. The pulmonary arteries are best displayed during mid- to late diastole (80%). (c) RSNA, 2004

  5. Saccular aortic aneurysm that resembled a mediastinal neoplasm

    PubMed Central

    Nose, Naohiro; Kataoka, Hiroumi; Hamada, Masakatsu; Kosako, Yukio; Matsuno, Yasuji; Ishii, Takahiro

    2012-01-01

    INTRODUCTION Saccular aortic arch aneurysms in unusual sites may be misdiagnosed as a neoplasm. We present the case of a rare saccular aortic arch aneurysm between trachea and esophagus that resembled a mediastinal neoplasm in the preoperative findings. PRESENTATION OF CASE A 63-year-old male with an abnormal mediastinal shadow on chest X-ray was referred to the hospital. An axial plain computed tomogram of the chest revealed mediastinal soft tissue next to the right side of the aortic arch resembling a neoplasm originating from the gap between the trachea and the esophagus. The coronal view constructed by enhanced 64-row multi detector computed tomography revealed the soft tissue was an aneurysm arising from the inner side of the aortic arch. An aortic arch replacement was performed via a median sternotomy. DISCUSSION A thoracic aortic aneurysm sometimes behaves like a mediastinal neoplasm. The multiple cross-sectional image from multidetector computed tomography was useful for the correct diagnosis of such an aneurysm. CONCLUSION The possibility of an aneurysm should be considered whenever a mass in contact with the aortic wall is identified. PMID:22995656

  6. Exact consideration of data redundancies for spiral cone-beam CT

    NASA Astrophysics Data System (ADS)

    Lauritsch, Guenter; Katsevich, Alexander; Hirsch, Michael

    2004-05-01

    In multi-slice spiral computed tomography (CT) there is an obvious trend in adding more and more detector rows. The goals are numerous: volume coverage, isotropic spatial resolution, and speed. Consequently, there will be a variety of scan protocols optimizing clinical applications. Flexibility in table feed requires consideration of data redundancies to ensure efficient detector usage. Until recently this was achieved by approximate reconstruction algorithms only. However, due to the increasing cone angles there is a need of exact treatment of the cone beam geometry. A new, exact and efficient 3-PI algorithm for considering three-fold data redundancies was derived from a general, theoretical framework based on 3D Radon inversion using Grangeat's formula. The 3-PI algorithm possesses a simple and efficient structure as the 1-PI method for non-redundant data previously proposed. Filtering is one-dimensional, performed along lines with variable tilt on the detector. This talk deals with a thorough evaluation of the performance of the 3-PI algorithm in comparison to the 1-PI method. Image quality of the 3-PI algorithm is superior. The prominent spiral artifacts and other discretization artifacts are significantly reduced due to averaging effects when taking into account redundant data. Certainly signal-to-noise ratio is increased. The computational expense is comparable even to that of approximate algorithms. The 3-PI algorithm proves its practicability for applications in medical imaging. Other exact n-PI methods for n-fold data redundancies (n odd) can be deduced from the general, theoretical framework.

  7. Computer-aided detection of acute pulmonary embolism with 64-slice multi-detector row computed tomography: impact of the scanning conditions and overall image quality in the detection of peripheral clots.

    PubMed

    Dewailly, Marion; Rémy-Jardin, Martine; Duhamel, Alain; Faivre, Jean-Baptiste; Pontana, François; Deken, Valérie; Bakai, Anne-Marie; Remy, Jacques

    2010-01-01

    To evaluate the performance of a computer-aided detection (CAD) system for diagnosing peripheral acute pulmonary embolism (PE) with a 64-slice multi-detector row computed tomography (CT). Two radiologists investigated the accuracy of a software aimed at detecting peripheral clots (PECAD prototype, version 7; Siemens Medical Systems, Forchheim, Germany) by applying this tool for the analysis of the pulmonary arterial bed of 74 CT angiograms obtained with 64-slice dual-source CT (Definition; Siemens Medical Systems). These cases were retrospectively selected from a database of CT studies performed on the same CT unit, with a similar collimation (64 x 0.6 mm) and similar injection protocols. Patient selection was based on a variety of (1) scanning conditions, namely, nongated (n = 30), electrocardiography-gated (n = 30), and dual-energy CT angiograms (n = 14), and (2) image quality (IQ), namely, scans of excellent IQ (n = 53) and lower IQ due to lower levels of arterial enhancement and/or presence of noise (n = 21). The standard of truth was based on the 2 radiologists' consensus reading and the results of CAD. The software detected 80 of 93 peripheral clots present in the 21 patients (42 segmental and 38 subsegmental clots). The overall sensitivity (95% confidence interval) of the CAD tool was 86% (77%-92%) for detecting peripheral clots, 78% (64.5%-88%) at the segmental level and 97% (85.5%-99.9%) at the subsegmental level. Assuming normal vascular anatomy with 20 segmental and 40 subsegmental arteries, overall specificity and positive and negative predictive values (95% confidence interval) of the software were 91.8% (91%-92.6%), 18.4% (15%-22.4%), and 99.7% (99.5%-99.8%), respectively. A mean of 5.4 false positives was found per patient (total, 354 false positives), mainly linked to the presence of perivascular connective tissue (n = 119; 34%) and perivascular airspace consolidation (n = 97; 27%). The sensitivities (95% confidence interval) for the CAD tool were 91% (69.8%-99.3%) for dual-energy, 87% (59.3%-93.2%) for electrocardiography-gated, and 87% (73.5%-95.3%) for nongated scans (P > 0.05). No significant difference was found in the sensitivity of the CAD software when comparing the scans according to the scanning conditions and image quality. The evaluated CAD software has a good sensitivity in detecting peripheral PE, which is not influenced by the scanning conditions or the overall image quality.

  8. Determining contrast medium dose and rate on basis of lean body weight: does this strategy improve patient-to-patient uniformity of hepatic enhancement during multi-detector row CT?

    PubMed

    Ho, Lisa M; Nelson, Rendon C; Delong, David M

    2007-05-01

    To prospectively evaluate the use of lean body weight (LBW) as the main determinant of the volume and rate of contrast material administration during multi-detector row computed tomography of the liver. This HIPAA-compliant study had institutional review board approval. All patients gave written informed consent. Four protocols were compared. Standard protocol involved 125 mL of iopamidol injected at 4 mL/sec. Total body weight (TBW) protocol involved 0.7 g iodine per kilogram of TBW. Calculated LBW and measured LBW protocols involved 0.86 g of iodine per kilogram and 0.92 g of iodine per kilogram calculated or measured LBW for men and women, respectively. Injection rate used for the three experimental protocols was determined proportionally on the basis of the calculated volume of contrast material. Postcontrast attenuation measurements during portal venous phase were obtained in liver, portal vein, and aorta for each group and were summed for each patient. Patient-to-patient enhancement variability in same group was measured with Levene test. Two-tailed t test was used to compare the three experimental protocols with the standard protocol. Data analysis was performed in 101 patients (25 or 26 patients per group), including 56 men and 45 women (mean age, 53 years). Average summed attenuation values for standard, TBW, calculated LBW, and measured LBW protocols were 419 HU +/- 50 (standard deviation), 443 HU +/- 51, 433 HU +/- 50, and 426 HU +/- 33, respectively (P = not significant for all). Levene test results for summed attenuation data for standard, TBW, calculated LBW, and measured LBW protocols were 40 +/- 29, 38 +/- 33 (P = .83), 35 +/- 35 (P = .56), and 26 +/- 19 (P = .05), respectively. By excluding highly variable but poorly perfused adipose tissue from calculation of contrast medium dose, the measured LBW protocol may lessen patient-to-patient enhancement variability while maintaining satisfactory hepatic and vascular enhancement.

  9. A Numerical Analysis on the Effects of Self-Excited Tip Flow Unsteadiness and Upstream Blade Row Interactions on the Performance Predictions of a Transonic Compressor

    NASA Astrophysics Data System (ADS)

    Heberling, Brian

    Computational fluid dynamics (CFD) simulations can offer a detailed view of the complex flow fields within an axial compressor and greatly aid the design process. However, the desire for quick turnaround times raises the question of how exact the model must be. At design conditions, steady CFD simulating an isolated blade row can accurately predict the performance of a rotor. However, as a compressor is throttled and mass flow rate decreased, axial flow becomes weaker making the capturing of unsteadiness, wakes, or other flow features more important. The unsteadiness of the tip clearance flow and upstream blade wake can have a significant impact on a rotor. At off-design conditions, time-accurate simulations or modeling multiple blade rows can become necessary in order to receive accurate performance predictions. Unsteady and multi- bladerow simulations are computationally expensive, especially when used in conjunction. It is important to understand which features are important to model in order to accurately capture a compressor's performance. CFD simulations of a transonic axial compressor throttling from the design point to stall are presented. The importance of capturing the unsteadiness of the rotor tip clearance flow versus capturing upstream blade-row interactions is examined through steady and unsteady, single- and multi-bladerow computations. It is shown that there are significant differences at near stall conditions between the different types of simulations.

  10. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    NASA Astrophysics Data System (ADS)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.

  11. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms.

    PubMed

    Cros, Maria; Joemai, Raoul M S; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-07-17

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.

  12. [Chronic pancreatitis: which is the role of 320-row CT for the staging?].

    PubMed

    Stabile Ianora, Amato Antonio; Rubini, Giuseppe; Lorusso, Filomenamila; Ambriola, Angela; Rella, Leonarda; Di Crescenzo, Vincenzo; Moschetta, Marco

    2013-01-01

    The purpose of this study was to evaluate the diagnostic potential of multi-planar and volumetric reconstructions obtained from isotropic data by using 16-slice computed tomography (CT) in the diagnosis and staging of chronic pancreatitis. In a group of 42 patients CT images were evaluated searching for alterations in morphology and structure of the pancreas, alterations of the Wirsung duct, dilatation of the bile ducts, fluid collections, and vascular involvement of the digestive tract. The disease was then staged in mild, moderate and severe and correlated with the clinical staging. CT allowed the recognition of chronic pancreatitis in all cases. The staging was correct in 25/42 patients, with an accuracy rate of 59.5%. In the staging of moderate and severe forms, CT correlation with clinical and laboratory data was valid, but in mild forms it appeared less significant. Multi-detector CT is accurate in the recognition of moderate, advanced forms of chronic pancreatitis and in the identification of its complications, while it is poorly correlated with the clinical staging in mild forms of the disease.

  13. Numerical Investigations of Two Typical Unsteady Flows in Turbomachinery Using the Multi-Passage Model

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Lu, Zhiliang; Guo, Tongqing; Shen, Ennan

    2016-06-01

    In this paper, the research on two types of unsteady flow problems in turbomachinery including blade flutter and rotor-stator interaction is made by means of numerical simulation. For the former, the energy method is often used to predict the aeroelastic stability by calculating the aerodynamic work per vibration cycle. The inter-blade phase angle (IBPA) is an important parameter in computation and may have significant effects on aeroelastic behavior. For the latter, the numbers of blades in each row are usually not equal and the unsteady rotor-stator interactions could be strong. An effective way to perform multi-row calculations is the domain scaling method (DSM). These two cases share a common point that the computational domain has to be extended to multi passages (MP) considering their respective features. The present work is aimed at modeling these two issues with the developed MP model. Computational fluid dynamics (CFD) technique is applied to resolve the unsteady Reynolds-averaged Navier-Stokes (RANS) equations and simulate the flow fields. With the parallel technique, the additional time cost due to modeling more passages can be largely decreased. Results are presented on two test cases including a vibrating rotor blade and a turbine stage.

  14. Pacemaker-induced Metallic Artifacts in Coronary Computed Tomography Angiography: Clinical Feasibility of Single Energy Metal Artifact Reduction Technique.

    PubMed

    Takayanagi, Tomoya; Arai, Takehiro; Amanuma, Makoto; Sano, Tomonari; Ichiba, Masato; Ishizaka, Kazumasa; Sekine, Takako; Matsutani, Hideyuki; Morita, Hitomi; Takase, Shinichi

    2017-01-01

    Coronary computed tomography angiography (CCTA) in patients with pacemaker suffers from metallic lead-induced artifacts, which often interfere with accurate assessment of coronary luminal stenosis. The purpose of this study was to assess a frequency of the lead-induced artifacts and artifact-suppression effect by the single energy metal artifact reduction (SEMAR) technique. Forty-one patients with a dual-chamber pacemaker were evaluated using a 320 multi-detector row CT (MDCT). Among them, 22 patients with motion-free full data reconstruction images were the final candidates. Images with and without the SMEAR technique were subjectively compared, and the degree of metallic artifacts was compared. On images without SEMAR, severe metallic artifacts were often observed in the right coronary artery (#1, #2, #3) and distal anterior descending branch (#8). These artifacts were effectively suppressed by SEMAR, and the luminal accessibility was significantly improved in #3 and #8. While pacemaker leads often cause metallic-induced artifacts, SEMAR technique reduced the artifacts and significantly improved the accessibility of coronary lumen in #3 and #8.

  15. A CMOS ASIC Design for SiPM Arrays

    PubMed Central

    Dey, Samrat; Banks, Lushon; Chen, Shaw-Pin; Xu, Wenbin; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.

    2012-01-01

    Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal processing. We are taking the next step by implementing a monolithic CMOS chip which is based on the row-column architecture. In addition, this paper explores the option of using diagonal summation as well as calibration to compensate for temperature and process variations. Further description of a timing pickoff signal which aligns all of the positioning (spatial channels) pulses in the array is described. The ASIC design is targeted to be scalable with the detector size and flexible to accommodate detectors from different vendors. This paper focuses on circuit implementation issues associated with the design of the ASIC to interface our Phase II MiCES FPGA board with a SiPM array. Moreover, a discussion is provided for strategies to eventually integrate all the analog and mixed-signal electronics with the SiPM, on either a single-silicon substrate or multi-chip module (MCM). PMID:24825923

  16. Evaluation of the effect of postural and gravitational variations on the distribution of pulmonary blood flow via an image-based computational model.

    PubMed

    Burrowes, K S; Hunter, P J; Tawhai, M H

    2005-01-01

    We have developed an image-based computational model of blood flow within the human pulmonary circulation in order to investigate the distribution of flow under various conditions of posture and gravity. Geometric models of the lobar surfaces and largest arterial and venous vessels were derived from multi-detector row X-ray computed tomography. The remaining blood vessels were generated using a volume-filling branching algorithm. Equations representing conservation of mass and momentum are solved within the vascular geometry to calculate pressure, radius, and velocity distributions. Flow solutions are obtained within the model in the upright, inverted, prone, and supine postures and in the upright posture with and without gravity. Additional equations representing large deformation mechanics are used to calculate the change in lung geometry and pressure distributions within the lung in the various postures - creating a coupled, co-dependent model of mechanics and flow. The embedded vascular meshes deform in accordance with the lung geometry. Results illustrate a persistent flow gradient from the top to the bottom of the lung even in the absence of gravity and in all postures, indicating that vascular branching structure is largely responsible for the distribution of flow.

  17. Nonlinear dynamic simulation of single- and multi-spool core engines

    NASA Technical Reports Server (NTRS)

    Schobeiri, T.; Lippke, C.; Abouelkheir, M.

    1993-01-01

    In this paper a new computational method for accurate simulation of the nonlinear dynamic behavior of single- and multi-spool core engines, turbofan engines, and power generation gas turbine engines is presented. In order to perform the simulation, a modularly structured computer code has been developed which includes individual mathematical modules representing various engine components. The generic structure of the code enables the dynamic simulation of arbitrary engine configurations ranging from single-spool thrust generation to multi-spool thrust/power generation engines under adverse dynamic operating conditions. For precise simulation of turbine and compressor components, row-by-row calculation procedures were implemented that account for the specific turbine and compressor cascade and blade geometry and characteristics. The dynamic behavior of the subject engine is calculated by solving a number of systems of partial differential equations, which describe the unsteady behavior of the individual components. In order to ensure the capability, accuracy, robustness, and reliability of the code, comprehensive critical performance assessment and validation tests were performed. As representatives, three different transient cases with single- and multi-spool thrust and power generation engines were simulated. The transient cases range from operating with a prescribed fuel schedule, to extreme load changes, to generator and turbine shut down.

  18. User's Guide for MSAP2D: A Program for Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Multistage Compressors and Turbines. 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    1996-01-01

    This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.

  19. Clustering header categories extracted from web tables

    NASA Astrophysics Data System (ADS)

    Nagy, George; Embley, David W.; Krishnamoorthy, Mukkai; Seth, Sharad

    2015-01-01

    Revealing related content among heterogeneous web tables is part of our long term objective of formulating queries over multiple sources of information. Two hundred HTML tables from institutional web sites are segmented and each table cell is classified according to the fundamental indexing property of row and column headers. The categories that correspond to the multi-dimensional data cube view of a table are extracted by factoring the (often multi-row/column) headers. To reveal commonalities between tables from diverse sources, the Jaccard distances between pairs of category headers (and also table titles) are computed. We show how about one third of our heterogeneous collection can be clustered into a dozen groups that exhibit table-title and header similarities that can be exploited for queries.

  20. CT cardiac imaging: evolution from 2D to 3D backprojection

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Pan, Tinsu; Sasaki, Kosuke

    2004-04-01

    The state-of-the-art multiple detector-row CT, which usually employs fan beam reconstruction algorithms by approximating a cone beam geometry into a fan beam geometry, has been well recognized as an important modality for cardiac imaging. At present, the multiple detector-row CT is evolving into volumetric CT, in which cone beam reconstruction algorithms are needed to combat cone beam artifacts caused by large cone angle. An ECG-gated cardiac cone beam reconstruction algorithm based upon the so-called semi-CB geometry is implemented in this study. To get the highest temporal resolution, only the projection data corresponding to 180° plus the cone angle are row-wise rebinned into the semi-CB geometry for three-dimensional reconstruction. Data extrapolation is utilized to extend the z-coverage of the ECG-gated cardiac cone beam reconstruction algorithm approaching the edge of a CT detector. A helical body phantom is used to evaluate the ECG-gated cone beam reconstruction algorithm"s z-coverage and capability of suppressing cone beam artifacts. Furthermore, two sets of cardiac data scanned by a multiple detector-row CT scanner at 16 x 1.25 (mm) and normalized pitch 0.275 and 0.3 respectively are used to evaluate the ECG-gated CB reconstruction algorithm"s imaging performance. As a reference, the images reconstructed by a fan beam reconstruction algorithm for multiple detector-row CT are also presented. The qualitative evaluation shows that, the ECG-gated cone beam reconstruction algorithm outperforms its fan beam counterpart from the perspective of cone beam artifact suppression and z-coverage while the temporal resolution is well maintained. Consequently, the scan speed can be increased to reduce the contrast agent amount and injection time, improve the patient comfort and x-ray dose efficiency. Based up on the comparison, it is believed that, with the transition of multiple detector-row CT into volumetric CT, ECG-gated cone beam reconstruction algorithms will provide better image quality for CT cardiac applications.

  1. Computer systems and methods for the query and visualization of multidimensional databases

    DOEpatents

    Stolte, Chris; Tang, Diane L; Hanrahan, Patrick

    2015-03-03

    A computer displays a graphical user interface on its display. The graphical user interface includes a schema information region and a data visualization region. The schema information region includes multiple operand names, each operand corresponding to one or more fields of a multi-dimensional database that includes at least one data hierarchy. The data visualization region includes a columns shelf and a rows shelf. The computer detects user actions to associate one or more first operands with the columns shelf and to associate one or more second operands with the rows shelf. The computer generates a visual table in the data visualization region in accordance with the user actions. The visual table includes one or more panes. Each pane has an x-axis defined based on data for the one or more first operands, and each pane has a y-axis defined based on data for the one or more second operands.

  2. Computer systems and methods for the query and visualization of multidimensional databases

    DOEpatents

    Stolte, Chris; Tang, Diane L.; Hanrahan, Patrick

    2015-11-10

    A computer displays a graphical user interface on its display. The graphical user interface includes a schema information region and a data visualization region. The schema information region includes a plurality of fields of a multi-dimensional database that includes at least one data hierarchy. The data visualization region includes a columns shelf and a rows shelf. The computer detects user actions to associate one or more first fields with the columns shelf and to associate one or more second fields with the rows shelf. The computer generates a visual table in the data visualization region in accordance with the user actions. The visual table includes one or more panes. Each pane has an x-axis defined based on data for the one or more first fields, and each pane has a y-axis defined based on data for the one or more second fields.

  3. Measuring coronary calcium on CT images adjusted for attenuation differences.

    PubMed

    Nelson, Jennifer Clark; Kronmal, Richard A; Carr, J Jeffrey; McNitt-Gray, Michael F; Wong, Nathan D; Loria, Catherine M; Goldin, Jonathan G; Williams, O Dale; Detrano, Robert

    2005-05-01

    To quantify scanner and participant variability in attenuation values for computed tomographic (CT) images assessed for coronary calcium and define a method for standardizing attenuation values and calibrating calcium measurements. Institutional review board approval and participant informed consent were obtained at all study sites. An image attenuation adjustment method involving the use of available calibration phantom data to define standard attenuation values was developed. The method was applied to images from two population-based multicenter studies: the Coronary Artery Risk Development in Young Adults study (3041 participants) and the Multi-Ethnic Study of Atherosclerosis (6814 participants). To quantify the variability in attenuation, analysis of variance techniques were used to compare the CT numbers of standardized torso phantom regions across study sites, and multivariate linear regression models of participant-specific calibration phantom attenuation values that included participant age, race, sex, body mass index (BMI), smoking status, and site as covariates were developed. To assess the effect of the calibration method on calcium measurements, Pearson correlation coefficients between unadjusted and attenuation-adjusted calcium measurements were computed. Multivariate models were used to examine the effect of sex, race, BMI, smoking status, unadjusted score, and site on Agatston score adjustments. Mean attenuation values (CT numbers) of a standard calibration phantom scanned beneath participants varied significantly according to scanner and participant BMI (P < .001 for both). Values were lowest for Siemens multi-detector row CT scanners (110.0 HU), followed by GE-Imatron electron-beam (116.0 HU) and GE LightSpeed multi-detector row scanners (121.5 HU). Values were also lower for morbidly obese (BMI, > or =40.0 kg/m(2)) participants (108.9 HU), followed by obese (BMI, 30.0-39.9 kg/m(2)) (114.8 HU), overweight (BMI, 25.0-29.9 kg/m(2)) (118.5 HU), and normal-weight or underweight (BMI, <25.0 kg/m(2)) (120.1 HU) participants. Agatston score calibration adjustments ranged from -650 to 1071 (mean, -8 +/- 50 [standard deviation]) and increased with Agatston score (P < .001). The direction and magnitude of adjustment varied significantly according to scanner and BMI (P < .001 for both) and were consistent with phantom attenuation results in that calibration resulted in score decreases for images with higher phantom attenuation values. Image attenuation values vary by scanner and participant body size, producing calcium score differences that are not due to true calcium burden disparities. Use of calibration phantoms to adjust attenuation values and calibrate calcium measurements in research studies and clinical practice may improve the comparability of such measurements between persons scanned with different scanners and within persons over time.

  4. Subtraction coronary CT angiography using second-generation 320-detector row CT.

    PubMed

    Yoshioka, Kunihiro; Tanaka, Ryoichi; Muranaka, Kenta; Sasaki, Tadashi; Ueda, Takanori; Chiba, Takuya; Takeda, Kouta; Sugawara, Tsuyoshi

    2015-06-01

    The purpose of this study was to explore the feasibility of subtraction coronary computed tomography angiography (CCTA) by second-generation 320-detector row CT in patients with severe coronary artery calcification using invasive coronary angiography (ICA) as the gold standard. This study was approved by the institutional board, and all subjects provided written consent. Twenty patients with calcium scores of >400 underwent conventional CCTA and subtraction CCTA followed by ICA. A total of 82 segments were evaluated for image quality using a 4-point scale and the presence of significant (>50 %) luminal stenosis by two independent readers. The average image quality was 2.3 ± 0.8 with conventional CCTA and 3.2 ± 0.6 with subtraction CCTA (P < 0.001). The percentage of segments with non-diagnostic image quality was 43.9 % on conventional CCTA versus 8.5 % on subtraction CCTA (P = 0.004). The segment-based diagnostic accuracy for detecting significant stenosis according to ICA revealed an area under the receiver operating characteristics curve of 0.824 (95 % confidence interval [CI], 0.750-0.899) for conventional CCTA and 0.936 (95 % CI 0.889-0.936) for subtraction CCTA (P = 0.001). The sensitivity, specificity, positive predictive value, and negative predictive value for conventional CCTA were 88.2, 62.5, 62.5, and 88.2 %, respectively, and for subtraction CCTA they were 94.1, 85.4, 82.1, and 95.3 %, respectively. As compared to conventional, subtraction CCTA using a second-generation 320-detector row CT showed improvement in diagnostic accuracy at segment base analysis in patients with severe calcifications.

  5. Chromatic Modulator for a High-Resolution CCD or APS

    NASA Technical Reports Server (NTRS)

    Hartley, Frank; Hull, Anthony

    2008-01-01

    A chromatic modulator has been proposed to enable the separate detection of the red, green, and blue (RGB) color components of the same scene by a single charge-coupled device (CCD), active-pixel sensor (APS), or similar electronic image detector. Traditionally, the RGB color-separation problem in an electronic camera has been solved by use of either (1) fixed color filters over three separate image detectors; (2) a filter wheel that repeatedly imposes a red, then a green, then a blue filter over a single image detector; or (3) different fixed color filters over adjacent pixels. The use of separate image detectors necessitates precise registration of the detectors and the use of complicated optics; filter wheels are expensive and add considerably to the bulk of the camera; and fixed pixelated color filters reduce spatial resolution and introduce color-aliasing effects. The proposed chromatic modulator would not exhibit any of these shortcomings. The proposed chromatic modulator would be an electromechanical device fabricated by micromachining. It would include a filter having a spatially periodic pattern of RGB strips at a pitch equal to that of the pixels of the image detector. The filter would be placed in front of the image detector, supported at its periphery by a spring suspension and electrostatic comb drive. The spring suspension would bias the filter toward a middle position in which each filter strip would be registered with a row of pixels of the image detector. Hard stops would limit the excursion of the spring suspension to precisely one pixel row above and one pixel row below the middle position. In operation, the electrostatic comb drive would be actuated to repeatedly snap the filter to the upper extreme, middle, and lower extreme positions. This action would repeatedly place a succession of the differently colored filter strips in front of each pixel of the image detector. To simplify the processing, it would be desirable to encode information on the color of the filter strip over each row (or at least over some representative rows) of pixels at a given instant of time in synchronism with the pixel output at that instant.

  6. Optical image encryption via high-quality computational ghost imaging using iterative phase retrieval

    NASA Astrophysics Data System (ADS)

    Liansheng, Sui; Yin, Cheng; Bing, Li; Ailing, Tian; Krishna Asundi, Anand

    2018-07-01

    A novel computational ghost imaging scheme based on specially designed phase-only masks, which can be efficiently applied to encrypt an original image into a series of measured intensities, is proposed in this paper. First, a Hadamard matrix with a certain order is generated, where the number of elements in each row is equal to the size of the original image to be encrypted. Each row of the matrix is rearranged into the corresponding 2D pattern. Then, each pattern is encoded into the phase-only masks by making use of an iterative phase retrieval algorithm. These specially designed masks can be wholly or partially used in the process of computational ghost imaging to reconstruct the original information with high quality. When a significantly small number of phase-only masks are used to record the measured intensities in a single-pixel bucket detector, the information can be authenticated without clear visualization by calculating the nonlinear correlation map between the original image and its reconstruction. The results illustrate the feasibility and effectiveness of the proposed computational ghost imaging mechanism, which will provide an effective alternative for enriching the related research on the computational ghost imaging technique.

  7. Computation of rotor-stator interaction using the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Whitfield, David L.; Chen, Jen-Ping

    1995-01-01

    The numerical scheme presented belongs to a family of codes known as UNCLE (UNsteady Computation of fieLd Equations) as reported by Whitfield (1995), that is being used to solve problems in a variety of areas including compressible and incompressible flows. This derivation is specifically developed for general unsteady multi-blade-row turbomachinery problems. The scheme solves the Reynolds-averaged N-S equations with the Baldwin-Lomax turbulence model.

  8. Coronary Events and Anatomy After Arterial Switch Operation for Transposition of the Great Arteries: Detection by 16-Row Multislice Computed Tomography Angiography in Pediatric Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oztunc, Funda, E-mail: foztunc@yahoo.com; Baris, Safa, E-mail: safabaris@hotmail.co; Adaletli, Ibrahim, E-mail: iadaletli@yahoo.com

    2009-03-15

    The purpose of this study was to evaluate the feasibility of multislice computed tomographic (MSCT) angiography as a noninvasive method for detecting ostial, proximal, and middle segment coronary stenosis or occlusion and anatomy in patients with transposition of the great arteries who had undergone arterial switch operation (ASO). Sixteen-detector-row MSCT angiography was performed in 16 patients treated with ASO for transposition of the great arteries. The median age was 10.3 years (range, 6.2-16.3 years). Sixteen-detector-row MSCT angiography was performed in 16 patients who had undergone ASO. CT imaging was performed in the craniocaudal direction from 2 cm above the carinamore » up to the heart basis. Noninvasive assessment of coronary artery stenosis and anatomy were investigated by MSCT angiography. Two patients were excluded from the study because of artifacts. Of 14 evaluated patients, 1 patient had ostial stenosis (7.1%). A coronary artery anatomy variant was present in six patients: left main artery (LMA) and right coronary artery (RCA) originating from the right sinus as a single orifice (n = 2); left circumflex artery (LCX) originating from the RCA (n = 1); LMA and RCA, after branching to the LCX, originating separately from the right sinus (n = 1); and LMA (n = 1) and left anterior descending artery (LADA; n = 1) originating directly from the right sinus. Intramural bridging in the LAD (n = 2) was detected. Five patients were normal. In conclusion, MSCT angiography, as a noninvasive, feasible technique for assessing coronary stenosis or occlusion and anatomy, can be used in the follow-up of patients who have undergone ASO.« less

  9. [Comparison of radiation dose reduction of prospective ECG-gated one beat scan using 320 area detector CT coronary angiography and prospective ECG-gated helical scan with high helical pitch (FlashScan) using 64 multidetector-row CT coronary angiography].

    PubMed

    Matsutani, Hideyuki; Sano, Tomonari; Kondo, Takeshi; Fujimoto, Shinichiro; Sekine, Takako; Arai, Takehiro; Morita, Hitomi; Takase, Shinichi

    2010-12-20

    A high radiation dose associated with 64 multidetector-row computed tomography (64-MDCT) is a major concern for physicians and patients alike. A new 320 row area detector computed tomography (ADCT) can obtain a view of the entire heart with one rotation (0.35 s) without requiring the helical method. As such, ADCT is expected to reduce the radiation dose. We studied image quality and radiation dose of ADCT compared to that of 64-MDCT in patients with a low heart rate (HR≤60). Three hundred eighty-five consecutive patients underwent 64-MDCT and 379 patients, ADCT. Patients with an arrhythmia were excluded. Prospective ECG-gated helical scan with high HP (FlashScan) in 64 was used for MDCT and prospective ECG-gated conventional one beat scan, for 320-ADCT. Image quality was visually evaluated by an image quality score. Radiation dose was estimated by DLP (mGy・cm) for 64-MDCT and DLP.e (mGy・cm) for 320-ADCT. Radiation dose of 320-ADCT (208±48 mGy・cm) was significantly (P<0.0001) lower than that of 64-MDCT (484±112 mGy・cm), and image quality score of 320-ADCT (3.0±0.2) was significantly (P=0.0011) higher than that of 64-MDCT (2.9±0.4). Scan time of 320-ADCT (1.4±0.1 s) was also significantly (P<0.0001) shorter than that of 64-MDCT (6.8±0.6 s). 320-ADCT can achieve not only a reduction in radiation dose but also a superior image quality and shortening of scan time compared to 64-MDCT.

  10. Comparison of image features calculated in different dimensions for computer-aided diagnosis of lung nodules

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Lee, Michael C.; Boroczky, Lilla; Cann, Aaron D.; Borczuk, Alain C.; Kawut, Steven M.; Powell, Charles A.

    2009-02-01

    Features calculated from different dimensions of images capture quantitative information of the lung nodules through one or multiple image slices. Previously published computer-aided diagnosis (CADx) systems have used either twodimensional (2D) or three-dimensional (3D) features, though there has been little systematic analysis of the relevance of the different dimensions and of the impact of combining different dimensions. The aim of this study is to determine the importance of combining features calculated in different dimensions. We have performed CADx experiments on 125 pulmonary nodules imaged using multi-detector row CT (MDCT). The CADx system computed 192 2D, 2.5D, and 3D image features of the lesions. Leave-one-out experiments were performed using five different combinations of features from different dimensions: 2D, 3D, 2.5D, 2D+3D, and 2D+3D+2.5D. The experiments were performed ten times for each group. Accuracy, sensitivity and specificity were used to evaluate the performance. Wilcoxon signed-rank tests were applied to compare the classification results from these five different combinations of features. Our results showed that 3D image features generate the best result compared with other combinations of features. This suggests one approach to potentially reducing the dimensionality of the CADx data space and the computational complexity of the system while maintaining diagnostic accuracy.

  11. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  12. Quantitative colorectal cancer perfusion measurement using dynamic contrast-enhanced multidetector-row computed tomography: effect of acquisition time and implications for protocols.

    PubMed

    Goh, Vicky; Halligan, Steve; Hugill, Jo-Ann; Gartner, Louise; Bartram, Clive I

    2005-01-01

    To determine the effect of acquisition time on quantitative colorectal cancer perfusion measurement. Dynamic contrast-enhanced computed tomography (CT) was performed prospectively in 10 patients with histologically proven colorectal cancer using 4-detector row CT (Lightspeed Plus; GE Healthcare Technologies, Waukesha, WI). Tumor blood flow, blood volume, mean transit time, and permeability were assessed for 3 acquisition times (45, 65, and 130 seconds). Mean values for all 4 perfusion parameters for each acquisition time were compared using the paired t test. Significant differences in permeability values were noted between acquisitions of 45 seconds and 65 and 130 seconds, respectively (P=0.02, P=0.007). There was no significant difference for values of blood volume, blood flow, and mean transit time between any of the acquisition times. Scan acquisitions of 45 seconds are too short for reliable permeability measurement in the abdomen. Longer acquisition times are required.

  13. CT features and common causes of arc of Riolan expansion: an analysis with 64-detector-row computed tomographic angiography

    PubMed Central

    Xie, Yuanliang; Jin, Chaolin; Zhang, Shutong; Wang, Xiang; Jiang, Yanping

    2015-01-01

    Objective: To study the manifestations of arc of Riolan expansion (ARE) using multi-detector computed tomography angiography (MDCTA). Materials and methods: The manifestations and clinical data of 626 consecutive mesentery CTA images were retrospectively analyzed. The 47 cases with ARE and 47 patients without expansion were involved. The average diameter of arc of Riolan was measured. Two radiologists after reaching consensus analyzed the shapes of mesenteric artery, CT findings and the occurrence and causes of ARE. Results: The mean diameter of arc of Riolan was 1.2 mm, 4.6 mm, 2.5 mm, 2.3 mm, 1.9 mm, 2.5 mm, and 2.0 mm at baseline and following obstruction of superior mesenteric artery (SMA), stenosis of SMA, obstruction of inferior mesenteric artery (IMA), stenosis of IMA, colon cancer, and active ulcerative colitis, respectively. The expansion of arc of Riolan was the most significant following obstruction of SMA. The diameters of arc of Riolan were significantly different between the upward flow group and the downward or the two-way flow groups, and between the colon tumor group and the active ulcerative colitis group. CT findings such as bowel wall thickening, contrast enhancement, intestinal obstruction, marginal artery expansion, lymph node enlargement varied and were help to identify the cause of ARE. Conclusions: ARE often suggests the occurrence of obstructed intestinal feeding artery or intestinal lesions. MDCTA can clearly display the situation of arc of Riolan and collateral circulation, and together with CT symptoms, can guide the selection of diagnosis and treatment schemes in clinic. PMID:26064208

  14. [New methods for the evaluation of bone quality. Assessment of bone structural property using imaging.

    PubMed

    Ito, Masako

    Structural property of bone includes micro- or nano-structural property of the trabecular and cortical bone, and macroscopic geometry. Radiological technique is useful to analyze the bone structural property;multi-detector row CT(MDCT)or high-resolution peripheral QCT(HR-pQCT)is available to analyze human bone in vivo . For the analysis of hip geometry, CT-based hip structure analysis(HSA)is available as well as DXA-based HSA. These structural parameters are related to biomechanical property, and these assessment tools provide information of pathological changes or the effects of anti-osteoporotic agents on bone.

  15. Influence of detector collimation and beam pitch for identification and image quality of ground-glass attenuation and nodules on 16- and 64-detector row CT systems: experimental study using chest phantom.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Kono, Astushi; Terada, Mari; Inokawa, Hiroyasu; Matsumoto, Sumiaki; Sugimura, Kazuro

    2007-12-01

    The purpose of the present study was to determine the influence of detector collimation and beam pitch for identification and image quality of ground-glass attenuation (GGA) and nodules on 16- and 64-detector row CTs, by using a commercially available chest phantom. A chest CT phantom including simulated GGAs and nodules was scanned with different detector collimations, beam pitches and tube currents. The probability and image quality of each simulated abnormality was visually assessed with a five-point scoring system. ROC-analysis and ANOVA were then performed to compare the identification and image quality of either protocol with standard values. Detection rates of low-dose CTs were significantly reduced when tube currents were set at 40mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32mmx1.0mm for low pitch, and at 100mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32mmx1.0mm for high pitch (p<0.05). Image qualities of low-dose CTs deteriorated significantly when tube current was set at 100mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32x1.0mm for low pitch, and at 150mA or less by using detector collimation 16 and 64x0.5mm and 16 and 32x1.0mm for high pitch (p<0.05). Detector collimation and beam pitch were important factors for the image quality and identification of GGA and nodules by 16- and 64-detector row CT.

  16. Paleoradiology: advanced CT in the evaluation of nine Egyptian mummies.

    PubMed

    Hoffman, Heidi; Torres, William E; Ernst, Randy D

    2002-01-01

    Axial thin-collimation state-of-the-art spiral computed tomography (CT) was combined with sagittal and coronal reformatting, three-dimensional (3D) reconstruction, and virtual "fly-through" techniques to nondestructively study nine Egyptian mummies. These techniques provided important paleopathologic and historical information about mummification techniques, depicted anatomy in the most informative imaging plane, illustrated the soft-tissue preservation and physical appearance of mummies in superb detail, and generated an intriguing virtual tour through hollow mummified remains without harming the specimens themselves. Images generated with these methods can help archaeologists and Egyptologists understand these fascinating members of mankind and can serve as adjunct visual aids for laypersons who are interested in mummies. CT has emerged as the imaging modality of choice for the examination of Egyptian mummies due to its noninvasive cross-sectional nature and inherently superior contrast and spatial resolution. As multi-detector row CT and postprocessing tools evolve, the capabilities and applications of CT will continue to proliferate, attesting to the expanded versatility and utility of CT as a noninvasive research tool in the multidisciplinary study of Egyptian mummies. Copyright RSNA, 2002

  17. Emerging role of multi-detector computed tomography in the diagnosis of hematuria following percutaneous nephrolithotomy: A case scenario.

    PubMed

    Sivanandam, S E; Mathew, Georgie; Bhat, Sanjay H

    2009-07-01

    Persistent hematuria is one of the most dreaded complications following percutanous nephrolithotomy (PCNL). Although invasive, a catheter-based angiogram is usually used to localize the bleeding vessel and subsequently embolize it. Advances in imaging technology have now made it possible to use a non invasive multi-detector computed tomography (MDCT) angiogram with 3-D reconstruction to establish the diagnosis. We report a case of post-PCNL hemorrhage due to a pseudo aneurysm that was missed by a conventional angiogram and subsequently detected on MDCT angiogram.

  18. Development and calibration of a new gamma camera detector using large square Photomultiplier Tubes

    NASA Astrophysics Data System (ADS)

    Zeraatkar, N.; Sajedi, S.; Teimourian Fard, B.; Kaviani, S.; Akbarzadeh, A.; Farahani, M. H.; Sarkar, S.; Ay, M. R.

    2017-09-01

    Large area scintillation detectors applied in gamma cameras as well as Single Photon Computed Tomography (SPECT) systems, have a major role in in-vivo functional imaging. Most of the gamma detectors utilize hexagonal arrangement of Photomultiplier Tubes (PMTs). In this work we applied large square-shaped PMTs with row/column arrangement and positioning. The Use of large square PMTs reduces dead zones in the detector surface. However, the conventional center of gravity method for positioning may not introduce an acceptable result. Hence, the digital correlated signal enhancement (CSE) algorithm was optimized to obtain better linearity and spatial resolution in the developed detector. The performance of the developed detector was evaluated based on NEMA-NU1-2007 standard. The acquired images using this method showed acceptable uniformity and linearity comparing to three commercial gamma cameras. Also the intrinsic and extrinsic spatial resolutions with low-energy high-resolution (LEHR) collimator at 10 cm from surface of the detector were 3.7 mm and 7.5 mm, respectively. The energy resolution of the camera was measured 9.5%. The performance evaluation demonstrated that the developed detector maintains image quality with a reduced number of used PMTs relative to the detection area.

  19. [Measurement of scatter radiation on MDCT equipment using an OSL dosimeter].

    PubMed

    Tomita, Hironobu; Morozumi, Kunihiko

    2004-11-01

    The recent introduction of multi-detector row computed tomography (MDCT) has made it possible to scan the entire abdomen within approximately 10 sec in procedures such as interventional radiology computed tomography (IVRCT), which are associated with operator exposure. Therefore, anxious patients and patients who are not able to remain still can be examined with an assistant. In the present study, radiation exposure to the assistant was estimated, and the distribution of scattered radiation near the gantry was measured using an optically stimulated luminescence (OSL) dosimeter. Simultaneous measurements were obtained using a direction storage (DIS) dosimeter for reference. The maximum value of 1.47 mSv per examination was obtained at the point closest to the gantry's center (50 cm from the center at a height of 150 cm above the floor) . In addition, scattered radiation decreased as the measurement point was moved further from the gantry's center, falling below the limit of detection (0.1 mSv or less) at 200 cm and at the sides of the gantry. OSL dosimeters are also employed as personal dosimeters, permitting reliable values to be obtained easily. They were found to be an effective tool for the measurement of scattered radiation, as in the present study, helping to provide better understanding of the distribution of scattered radiation within the CT room.

  20. A Multi-Source Inverse-Geometry CT system: Initial results with an 8 spot x-ray source array

    PubMed Central

    Baek, Jongduk; De Man, Bruno; Uribe, Jorge; Longtin, Randy; Harrison, Daniel; Reynolds, Joseph; Neculaes, Bogdan; Frutschy, Kristopher; Inzinna, Louis; Caiafa, Antonio; Senzig, Robert; Pelc, Norbert J.

    2014-01-01

    We present initial experimental results of a rotating-gantry multi-source inverse-geometry CT (MS-IGCT) system. The MS-IGCT system was built with a single module of 2×4 x-ray sources and a 2D detector array. It produced a 75 mm in-plane field-of-view (FOV) with 160 mm axial coverage in a single gantry rotation. To evaluate system performance, a 2.5 inch diameter uniform PMMA cylinder phantom, a 200 μm diameter tungsten wire, and a euthanized rat were scanned. Each scan acquired 125 views per source and the gantry rotation time was 1 second per revolution. Geometric calibration was performed using a bead phantom. The scanning parameters were 80 kVp, 125 mA, and 5.4 us pulse per source location per view. A data normalization technique was applied to the acquired projection data, and beam hardening and spectral nonlinearities of each detector channel were corrected. For image reconstruction, the projection data of each source row were rebinned into a full cone beam data set, and the FDK algorithm was used. The reconstructed volumes from upper and lower source rows shared an overlap volume which was combined in image space. The images of the uniform PMMA cylinder phantom showed good uniformity and no apparent artefacts. The measured in-plane MTF showed 13 lp/cm at 10% cutoff, in good agreement with expectations. The rat data were also reconstructed reliably. The initial experimental results from this rotating-gantry MS-IGCT system demonstrated its ability to image a complex anatomical object without any significant image artefacts and to achieve high image resolution and large axial coverage in a single gantry rotation. PMID:24556567

  1. Multi-object detection and tracking technology based on hexagonal opto-electronic detector

    NASA Astrophysics Data System (ADS)

    Song, Yong; Hao, Qun; Li, Xiang

    2008-02-01

    A novel multi-object detection and tracking technology based on hexagonal opto-electronic detector is proposed, in which (1) a new hexagonal detector, which is composed of 6 linear CCDs, has been firstly developed to achieve the field of view of 360 degree, (2) to achieve the detection and tracking of multi-object with high speed, the object recognition criterions of Object Signal Width Criterion (OSWC) and Horizontal Scale Ratio Criterion (HSRC) are proposed. In this paper, Simulated Experiments have been carried out to verify the validity of the proposed technology, which show that the detection and tracking of multi-object can be achieved with high speed by using the proposed hexagonal detector and the criterions of OSWC and HSRC, indicating that the technology offers significant advantages in Photo-electric Detection, Computer Vision, Virtual Reality, Augment Reality, etc.

  2. Reduced complexity of multi-track joint 2-D Viterbi detectors for bit-patterned media recording channel

    NASA Astrophysics Data System (ADS)

    Myint, L. M. M.; Warisarn, C.

    2017-05-01

    Two-dimensional (2-D) interference is one of the prominent challenges in ultra-high density recording system such as bit patterned media recording (BPMR). The multi-track joint 2-D detection technique with the help of the array-head reading can tackle this problem effectively by jointly processing the multiple readback signals from the adjacent tracks. Moreover, it can robustly alleviate the impairments due to track mis-registration (TMR) and media noise. However, the computational complexity of such detectors is normally too high and hard to implement in a reality, even for a few multiple tracks. Therefore, in this paper, we mainly focus on reducing the complexity of multi-track joint 2-D Viterbi detector without paying a large penalty in terms of the performance. We propose a simplified multi-track joint 2-D Viterbi detector with a manageable complexity level for the BPMR's multi-track multi-head (MTMH) system. In the proposed method, the complexity of detector's trellis is reduced with the help of the joint-track equalization method which employs 1-D equalizers and 2-D generalized partial response (GPR) target. Moreover, we also examine the performance of a full-fledged multi-track joint 2-D detector and the conventional 2-D detection. The results show that the simplified detector can perform close to the full-fledge detector, especially when the system faces high media noise, with the significant low complexity.

  3. VizieR Online Data Catalog: IN-SYNC. I. APOGEE stellar parameters (Cottaar+, 2014)

    NASA Astrophysics Data System (ADS)

    Cottaar, M.; Covey, K. R.; Meyer, M. R.; Nidever, D. L.; Stassun, K. G.; Foster, J. B.; Tan, J. C.; Chojnowski, S. D.; da Rio, N.; Flaherty, K. M.; Frinchaboy, P. M.; Skrutskie, M.; Majewski, S. R.; Wilson, J. C.; Zasowski, G.

    2015-06-01

    The spectra were collected with APOGEE's multi-object, high-resolution (R~22500) spectrograph with a spectral range covering much of the H band from 1.51 to 1.69um, which is fiber-fed from the Sloan 2.5m telescope. We provide two companion tables to this paper, which contain the derived stellar parameters for the stars in IC 348 and the Pleiades. The first table contains one row per star with the mean spectral and photometric parameters. The second table contains one row per epoch with the spectral parameters measured at that epoch. In both tables we provide the uncertainties computed by Equation (5). (2 data files).

  4. Parallel Computing for the Computed-Tomography Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2008-01-01

    This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.

  5. Entrance surface dose measurements using a small OSL dosimeter with a computed tomography scanner having 320 rows of detectors.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Yamada, Kenji; Mihara, Yoshiki; Kimoto, Natsumi; Kanazawa, Yuki; Higashino, Kousaku; Yamashita, Kazuta; Hayashi, Fumio; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2017-03-01

    Entrance surface dose (ESD) measurements are important in X-ray computed tomography (CT) for examination, but in clinical settings it is difficult to measure ESDs because of a lack of suitable dosimeters. We focus on the capability of a small optically stimulated luminescence (OSL) dosimeter. The aim of this study is to propose a practical method for using an OSL dosimeter to measure the ESD when performing a CT examination. The small OSL dosimeter has an outer width of 10 mm; it is assumed that a partial dose may be measured because the slice thickness and helical pitch can be set to various values. To verify our method, we used a CT scanner having 320 rows of detectors and checked the consistencies of the ESDs measured using OSL dosimeters by comparing them with those measured using Gafchromic™ films. The films were calibrated using an ionization chamber on the basis of half-value layer estimation. On the other hand, the OSL dosimeter was appropriately calibrated using a practical calibration curve previously proposed by our group. The ESDs measured using the OSL dosimeters were in good agreement with the reference ESDs from the Gafchromic™ films. Using these data, we also estimated the uncertainty of ESDs measured with small OSL dosimeters. We concluded that a small OSL dosimeter can be considered suitable for measuring the ESD with an uncertainty of 30 % during CT examinations in which pitch factors below 1.000 are applied.

  6. Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.

    PubMed

    Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe

    2018-06-02

    This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.

  7. Computed Tomography Assessment of Hepatic Metastases of Breast Cancer with Revised Response Evaluation Criteria in Solid Tumors (RECIST) Criteria (Version 1.1): Inter-Observer Agreement.

    PubMed

    Ghobrial, Fady Emil Ibrahim; Eldin, Manal Salah; Razek, Ahmed Abdel Khalek Abdel; Atwan, Nadia Ibrahim; Shamaa, Sameh Sayed Ahmed

    2017-01-01

    To assess inter-observer agreement of revised RECIST criteria (version 1.1) for computed tomography assessment of hepatic metastases of breast cancer. A prospective study was conducted in 28 female patients with breast cancer and with at least one measurable metastatic lesion in the liver that was treated with 3 cycles of anthracycline-based chemotherapy. All patients underwent computed tomography of the abdomen with 64-row multi- detector CT at baseline and after 3 cycles of chemotherapy for response assessment. Image analysis was performed by 2 observers, based on the RECIST criteria (version 1.1). Computed tomography revealed partial response of hepatic metastases in 7 patients (25%) by one observer and in 10 patients (35.7%) by the other observer, with good inter-observer agreement (k=0.75, percent agreement of 89.29%). Stable disease was detected in 19 patients (67.8%) by one observer and in 16 patients (57.1%) by the other observer, with good agreement (k=0.774, percent agreement of 89.29%). Progressive disease was detected in 2 patients (7.2%) by both observers, with perfect agreement (k=1, percent agreement of 100%). The overall inter-observer agreement in the CT-based response assessment of hepatic metastasis between the two observers was good ( k =0.793, percent agreement of 89.29%). We concluded that computed tomography is a reliable and reproducible imaging modality for response assessment of hepatic metastases of breast cancer according to the RECIST criteria (version 1.1).

  8. Application of multidetector-row computed tomography in propeller flap planning.

    PubMed

    Ono, Shimpei; Chung, Kevin C; Hayashi, Hiromitsu; Ogawa, Rei; Takami, Yoshihiro; Hyakusoku, Hiko

    2011-02-01

    The propeller flap is defined as (1) being island-shaped, (2) having an axis that includes the perforators, and (3) having the ability to be rotated around an axis. The advantage of the propeller flap is that it is a pedicle flap that can be applied to cover defects located at the distal ends of the extremities. The specific aims of the authors' study were (1) to evaluate the usefulness of multidetector-row computed tomography in the planning of propeller flaps and (2) to present a clinical case series of propeller flap reconstructions that were planned preoperatively using multidetector-row computed tomography. The authors retrospectively analyzed all cases between April of 2007 and April of 2010 at Nippon Medical School Hospital in Tokyo, where multidetector-row computed tomography was used preoperatively to plan surgical reconstructions using propeller flaps. Thirteen patients underwent 16 flaps using the propeller flap technique. The perforators were identified accurately by multidetector-row computed tomography preoperatively in all cases. This is the first report describing the application of multidetector-row computed tomography in the planning of propeller flaps. Multidetector-row computed tomography is superior to other imaging methods because it demonstrates more precisely the perforator's position and subcutaneous course using high-resolution three-dimensional images. By using multidetector-row computed tomography to preoperatively identify a flap's perforators, the surgeon can better plan the flap design to efficiently conduct the flap surgery.

  9. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube.

    PubMed

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip; Schulze, Derek; Liang, Yongguang; Zhang, Tiezhi

    2011-10-01

    To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO(4) scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. The focal spots were measured at about 1 × 2 mm(2) using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.

  10. Development of a fast multi-line x-ray CT detector for NDT

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.

    2015-04-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of pixels. By using a modular assembly of the detector, the width can be chosen as multiples of 512 pixels. With a frame rate of up to 300 frames/s (full resolution) or 1200 frame/s (analog binning to 400 μ m pixel pitch) time-resolved 3D CT applications become possible. Two versions of the detector are in development, one with a high resolution scintillator and one with a thick, structured and very efficient scintillator (pitch 400 μ m). This way the detector can even work with X-ray energies up to 450 kVp.

  11. Heart CT scan

    MedlinePlus

    ... Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agatston ... table that slides into the center of the CT scanner. You will lie on your back with ...

  12. ARGUS/LLNL IR Camera Calibration and Characterization

    DTIC Science & Technology

    1989-11-01

    122 of the 244 rows, once every 1/60 second. The even-numbered detector rows, beginning with row zero , are read out in one field; the odd-numbered...Radiometrically, a very cold reference scene is desirable because the absolute signal level of the reference scene is subtracted from all subsequent...to have effectively zero radiant energy within the spectral passband of the sensor, and so may be ignored. 1.3 LABORATORY EQUIPMENT CONFIGURATION The

  13. Helical cone beam CT with an asymmetrical detector.

    PubMed

    Zamyatin, Alexander A; Taguchi, Katsuyuki; Silver, Michael D

    2005-10-01

    If a multislice or other area detector is shifted to one side to cover a larger field of view, then the data are truncated on one side. We propose a method to restore the missing data in helical cone-beam acquisitions that uses measured data on the longer side of the asymmetric detector array. The method is based on the idea of complementary rays, which is well known in fan beam geometry; in this paper we extend this concept to the cone-beam case. Different cases of complementary data coverage and dependence on the helical pitch are considered. The proposed method is used in our prototype 16-row CT scanner with an asymmetric detector and a 700 mm field of view. For evaluation we used scanned body phantom data and computer-simulated data. To simulate asymmetric truncation, the full, symmetric datasets were truncated by dropping either 22.5% or 45% from one side of the detector. Reconstructed images from the prototype scanner with the asymmetrical detector show excellent image quality in the extended field of view. The proposed method allows flexible helical pitch selection and can be used with overscan, short-scan, and super-short-scan reconstructions.

  14. Computational characterization of HPGe detectors usable for a wide variety of source geometries by using Monte Carlo simulation and a multi-objective evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Guerra, J. G.; Rubiano, J. G.; Winter, G.; Guerra, A. G.; Alonso, H.; Arnedo, M. A.; Tejera, A.; Martel, P.; Bolivar, J. P.

    2017-06-01

    In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs.

  15. A boundary PDE feedback control approach for the stabilization of mortgage price dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Sarno, D.

    2017-11-01

    Several transactions taking place in financial markets are dependent on the pricing of mortgages (loans for the purchase of residences, land or farms). In this article, a method for stabilization of mortgage price dynamics is developed. It is considered that mortgage prices follow a PDE model which is equivalent to a multi-asset Black-Scholes PDE. Actually it is a diffusion process evolving in a 2D assets space, where the first asset is the house price and the second asset is the interest rate. By applying semi-discretization and a finite differences scheme this multi-asset PDE is transformed into a state-space model consisting of ordinary nonlinear differential equations. For the local subsystems, into which the mortgage PDE is decomposed, it becomes possible to apply boundary-based feedback control. The controller design proceeds by showing that the state-space model of the mortgage price PDE stands for a differentially flat system. Next, for each subsystem which is related to a nonlinear ODE, a virtual control input is computed, that can invert the subsystem's dynamics and can eliminate the subsystem's tracking error. From the last row of the state-space description, the control input (boundary condition) that is actually applied to the multi-factor mortgage price PDE system is found. This control input contains recursively all virtual control inputs which were computed for the individual ODE subsystems associated with the previous rows of the state-space equation. Thus, by tracing the rows of the state-space model backwards, at each iteration of the control algorithm, one can finally obtain the control input that should be applied to the mortgage price PDE system so as to assure that all its state variables will converge to the desirable setpoints. By showing the feasibility of such a control method it is also proven that through selected modification of the PDE boundary conditions the price of the mortgage can be made to converge and stabilize at specific reference values.

  16. Event sequence detector

    NASA Technical Reports Server (NTRS)

    Hanna, M. F. (Inventor)

    1973-01-01

    An event sequence detector is described with input units, each associated with a row of bistable elements arranged in an array of rows and columns. The detector also includes a shift register which is responsive to clock pulses from any of the units to sequentially provide signals on its output lines each of which is connected to the bistable elements in a corresponding column. When the event-indicating signal is received by an input unit it provides a clock pulse to the shift register to provide the signal on one of its output lines. The input unit also enables all its bistable elements so that the particular element in the column supplied with the signal from the register is driven to an event-indicating state.

  17. Zonal wavefront sensor with reduced number of rows in the detector array.

    PubMed

    Boruah, Bosanta R; Das, Abhijit

    2011-07-10

    In this paper, we describe a zonal wavefront sensor in which the photodetector array can have a smaller number of rows. The test wavefront is incident on a two-dimensional array of diffraction gratings followed by a single focusing lens. The periodicity and the orientation of the grating rulings of each grating can be chosen such that the +1 order beam from the gratings forms an array of focal spots in the detector plane. We show that by using a square array of zones, it is possible to generate an array of +1 order focal spots having a smaller number of rows, thus reducing the height of the required detector array. The phase profile of the test wavefront can be estimated by measuring the displacements of the +1 order focal spots for the test wavefront relative to the +1 order focal spots for a plane reference wavefront. The narrower width of the photodetector array can offer several advantages, such as a faster frame rate of the wavefront sensor, a reduced amount of cross talk between the nearby detector zones, and a decrease in the maximum thermal noise. We also present experimental results of a proof-of-concept experimental arrangement using the proposed wavefront sensing scheme. © 2011 Optical Society of America

  18. Numerical Analysis of Organ Doses Delivered During Computed Tomography Examinations Using Japanese Adult Phantoms with the WAZA-ARI Dosimetry System.

    PubMed

    Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji; Ban, Nobuhiko; Hasegawa, Takayuki; Katsunuma, Yasushi; Yoshitake, Takayasu; Kai, Michiaki

    2015-08-01

    A dosimetry system for computed tomography (CT) examinations, named WAZA-ARI, is being developed to accurately assess radiation doses to patients in Japan. For dose calculations in WAZA-ARI, organ doses were numerically analyzed using average adult Japanese male (JM) and female (JF) phantoms with the Particle and Heavy Ion Transport code System (PHITS). Experimental studies clarified the photon energy distribution of emitted photons and dose profiles on the table for some multi-detector row CT (MDCT) devices. Numerical analyses using a source model in PHITS could specifically take into account emissions of x rays from the tube to the table with attenuation of photons through a beam-shaping filter for each MDCT device based on the experiment results. The source model was validated by measuring the CT dose index (CTDI). Numerical analyses with PHITS revealed a concordance of organ doses with body sizes of the JM and JF phantoms. The organ doses in the JM phantoms were compared with data obtained using previously developed systems. In addition, the dose calculations in WAZA-ARI were verified with previously reported results by realistic NUBAS phantoms and radiation dose measurement using a physical Japanese model (THRA1 phantom). The results imply that numerical analyses using the Japanese phantoms and specified source models can give reasonable estimates of dose for MDCT devices for typical Japanese adults.

  19. Influence of detector collimation on SNR in four different MDCT scanners using a reconstructed slice thickness of 5 mm.

    PubMed

    Verdun, F R; Noel, A; Meuli, R; Pachoud, M; Monnin, P; Valley, J-F; Schnyder, P; Denys, A

    2004-10-01

    The purpose of this paper is to compare the influence of detector collimation on the signal-to-noise ratio (SNR) for a 5.0 mm reconstructed slice thickness for four multi-detector row CT (MDCT) units. SNRs were measured on Catphan test phantom images from four MDCT units: a GE LightSpeed QX/I, a Marconi MX 8000, a Toshiba Aquilion and a Siemens Volume Zoom. Five-millimetre-thick reconstructed slices were obtained from acquisitions performed using detector collimations of 2.0-2.5 mm and 5.0 mm, 120 kV, a 360 degrees tube rotation time of 0.5 s, a wide range of mA and pitch values in the range of 0.75-0.85 and 1.25-1.5. For each set of acquisition parameters, a Wiener spectrum was also calculated. Statistical differences in SNR for the different acquisition parameters were evaluated using a Student's t-test (P<0.05). The influence of detector collimation on the SNR for a 5.0-mm reconstructed slice thickness is different for different MDCT scanners. At pitch values lower than unity, the use of a small detector collimation to produce 5.0-mm thick slices is beneficial for one unit and detrimental for another. At pitch values higher than unity, using a small detector collimation is beneficial for two units. One manufacturer uses different reconstruction filters when switching from a 2.5- to a 5.0-mm detector collimation. For a comparable reconstructed slice thickness, using a smaller detector collimation does not always reduce image noise. Thus, the impact of the detector collimation on image noise should be determined by standard deviation calculations, and also by assessing the power spectra of the noise. Copyright 2004 Springer-Verlag

  20. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip

    2011-10-15

    Purpose: To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. Methods: A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. Inmore » this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO{sub 4} scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. Results: The focal spots were measured at about 1 x 2 mm{sup 2} using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. Conclusions: A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.« less

  1. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    PubMed

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2017-06-01

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  2. Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT.

    PubMed

    McCollough, Cynthia H; Ulzheimer, Stefan; Halliburton, Sandra S; Shanneik, Kaiss; White, Richard D; Kalender, Willi A

    2007-05-01

    To develop a consensus standard for quantification of coronary artery calcium (CAC). A standard for CAC quantification was developed by a multi-institutional, multimanufacturer international consortium of cardiac radiologists, medical physicists, and industry representatives. This report specifically describes the standardization of scan acquisition and reconstruction parameters, the use of patient size-specific tube current values to achieve a prescribed image noise, and the use of the calcium mass score to eliminate scanner- and patient size-based variations. An anthropomorphic phantom containing calibration inserts and additional phantom rings were used to simulate small, medium-size, and large patients. The three phantoms were scanned by using the recommended protocols for various computed tomography (CT) systems to determine the calibration factors that relate measured CT numbers to calcium hydroxyapatite density and to determine the tube current values that yield comparable noise values. Calculation of the calcium mass score was standardized, and the variance in Agatston, volume, and mass scores was compared among CT systems. Use of the recommended scanning parameters resulted in similar noise for small, medium-size, and large phantoms with all multi-detector row CT scanners. Volume scores had greater interscanner variance than did Agatston and calcium mass scores. Use of a fixed calcium hydroxyapatite density threshold (100 mg/cm(3)), as compared with use of a fixed CT number threshold (130 HU), reduced interscanner variability in Agatston and calcium mass scores. With use of a density segmentation threshold, the calcium mass score had the smallest variance as a function of patient size. Standardized quantification of CAC yielded comparable image noise, spatial resolution, and mass scores among different patient sizes and different CT systems and facilitated reduced radiation dose for small and medium-size patients.

  3. Task I: A Computational Model for Short Wavelength Stall Inception and Development In Multi-Stage Compressors

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi

    2003-01-01

    A computational model is presented for simulating axial compressor stall inception and development via disturbances with length scales on the order of several (typically about three) blade pitches. The model was designed for multi-stage compressors in which stall is initiated by these short wavelength disturbances, also referred to as spikes. The inception process described is fundamentally nonlinear, in contrast to the essentially linear behavior seen in so-called modal stall inception . The model was able to capture the following experimentally observed phenomena: (1) development of rotating stall via short wavelength disturbances, (2) formation and evolution of localized short wavelength stall cells in the first stage of a mismatched compressor, (3) the switch from long to short wavelength stall inception resulting from the re-staggering of the inlet guide vane, (4) the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic. Parametric investigations indicated that (1) short wavelength disturbances were supported by the rotor blade row, (2) the disturbance strength was attenuated within the stators, and (3) the reduction of inter-blade row gaps can suppress the growth of short wavelength disturbances. It is argued that each local component group (rotor plus neighboring stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group.

  4. A CFD analysis of blade row interactions within a high-speed axial compressor

    NASA Astrophysics Data System (ADS)

    Richman, Michael Scott

    Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.

  5. Inter-algorithm lesion volumetry comparison of real and 3D simulated lung lesions in CT

    NASA Astrophysics Data System (ADS)

    Robins, Marthony; Solomon, Justin; Hoye, Jocelyn; Smith, Taylor; Ebner, Lukas; Samei, Ehsan

    2017-03-01

    The purpose of this study was to establish volumetric exchangeability between real and computational lung lesions in CT. We compared the overall relative volume estimation performance of segmentation tools when used to measure real lesions in actual patient CT images and computational lesions virtually inserted into the same patient images (i.e., hybrid datasets). Pathologically confirmed malignancies from 30 thoracic patient cases from Reference Image Database to Evaluate Therapy Response (RIDER) were modeled and used as the basis for the comparison. Lesions included isolated nodules as well as those attached to the pleura or other lung structures. Patient images were acquired using a 16 detector row or 64 detector row CT scanner (Lightspeed 16 or VCT; GE Healthcare). Scans were acquired using standard chest protocols during a single breath-hold. Virtual 3D lesion models based on real lesions were developed in Duke Lesion Tool (Duke University), and inserted using a validated image-domain insertion program. Nodule volumes were estimated using multiple commercial segmentation tools (iNtuition, TeraRecon, Inc., Syngo.via, Siemens Healthcare, and IntelliSpace, Philips Healthcare). Consensus based volume comparison showed consistent trends in volume measurement between real and virtual lesions across all software. The average percent bias (+/- standard error) shows -9.2+/-3.2% for real lesions versus -6.7+/-1.2% for virtual lesions with tool A, 3.9+/-2.5% and 5.0+/-0.9% for tool B, and 5.3+/-2.3% and 1.8+/-0.8% for tool C, respectively. Virtual lesion volumes were statistically similar to those of real lesions (< 4% difference) with p >.05 in most cases. Results suggest that hybrid datasets had similar inter-algorithm variability compared to real datasets.

  6. Development of a three-dimensional multistage inverse design method for aerodynamic matching of axial compressor blading

    NASA Astrophysics Data System (ADS)

    van Rooij, Michael P. C.

    Current turbomachinery design systems increasingly rely on multistage Computational Fluid Dynamics (CFD) as a means to assess performance of designs. However, design weaknesses attributed to improper stage matching are addressed using often ineffective strategies involving a costly iterative loop between blading modification, revision of design intent, and evaluation of aerodynamic performance. A design methodology is presented which greatly improves the process of achieving design-point aerodynamic matching. It is based on a three-dimensional viscous inverse design method which generates the blade camber surface based on prescribed pressure loading, thickness distribution and stacking line. This inverse design method has been extended to allow blading analysis and design in a multi-blade row environment. Blade row coupling was achieved through a mixing plane approximation. Parallel computing capability in the form of MPI has been implemented to reduce the computational time for multistage calculations. Improvements have been made to the flow solver to reach the level of accuracy required for multistage calculations. These include inclusion of heat flux, temperature-dependent treatment of viscosity, and improved calculation of stress components and artificial dissipation near solid walls. A validation study confirmed that the obtained accuracy is satisfactory at design point conditions. Improvements have also been made to the inverse method to increase robustness and design fidelity. These include the possibility to exclude spanwise sections of the blade near the endwalls from the design process, and a scheme that adjusts the specified loading area for changes resulting from the leading and trailing edge treatment. Furthermore, a pressure loading manager has been developed. Its function is to automatically adjust the pressure loading area distribution during the design calculation in order to achieve a specified design objective. Possible objectives are overall mass flow and compression ratio, and radial distribution of exit flow angle. To supplement the loading manager, mass flow inlet and exit boundary conditions have been implemented. Through appropriate combination of pressure or mass flow inflow/outflow boundary conditions and loading manager objectives, increased control over the design intent can be obtained. The three-dimensional multistage inverse design method with pressure loading manager was demonstrated to offer greatly enhanced blade row matching capabilities. Multistage design allows for simultaneous design of blade rows in a mutually interacting environment, which permits the redesigned blading to adapt to changing aerodynamic conditions resulting from the redesign. This ensures that the obtained blading geometry and performance implied by the prescribed pressure loading distribution are consistent with operation in the multi-blade row environment. The developed methodology offers high aerodynamic design quality and productivity, and constitutes a significant improvement over existing approaches used to address design-point aerodynamic matching.

  7. High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography.

    PubMed

    Min, James K; Swaminathan, Rajesh V; Vass, Melissa; Gallagher, Scott; Weinsaft, Jonathan W

    2009-01-01

    The assessment of coronary stents with present-generation 64-detector row computed tomography scanners that use filtered backprojection and operating at standard definition of 0.5-0.75 mm (standard definition, SDCT) is limited by imaging artifacts and noise. We evaluated the performance of a novel, high-definition 64-slice CT scanner (HDCT), with improved spatial resolution (0.23 mm) and applied statistical iterative reconstruction (ASIR) for evaluation of coronary artery stents. HDCT and SDCT stent imaging was performed with the use of an ex vivo phantom. HDCT was compared with SDCT with both smooth and sharp kernels for stent intraluminal diameter, intraluminal area, and image noise. Intrastent visualization was assessed with an ASIR algorithm on HDCT scans, compared with the filtered backprojection algorithms by SDCT. Six coronary stents (2.5, 2.5, 2.75, 3.0, 3.5, 4.0mm) were analyzed by 2 independent readers. Interobserver correlation was high for both HDCT and SDCT. HDCT yielded substantially larger luminal area visualization compared with SDCT, both for smooth (29.4+/-14.5 versus 20.1+/-13.0; P<0.001) and sharp (32.0+/-15.2 versus 25.5+/-12.0; P<0.001) kernels. Stent diameter was higher with HDCT compared with SDCT, for both smooth (1.54+/-0.59 versus1.00+/-0.50; P<0.0001) and detailed (1.47+/-0.65 versus 1.08+/-0.54; P<0.0001) kernels. With detailed kernels, HDCT scans that used algorithms showed a trend toward decreased image noise compared with SDCT-filtered backprojection algorithms. On the basis of this ex vivo study, HDCT provides superior detection of intrastent luminal area and diameter visualization, compared with SDCT. ASIR image reconstruction techniques for HDCT scans enhance the in-stent assessment while decreasing image noise.

  8. Assessment of bronchial wall thickness and lumen diameter in human adults using multi-detector computed tomography: comparison with theoretical models

    PubMed Central

    Montaudon, M; Desbarats, P; Berger, P; de Dietrich, G; Marthan, R; Laurent, F

    2007-01-01

    A thickened bronchial wall is the morphological substratum of most diseases of the airway. Theoretical and clinical models of bronchial morphometry have so far focused on bronchial lumen diameter, and bronchial length and angles, mainly assessed from bronchial casts. However, these models do not provide information on bronchial wall thickness. This paper reports in vivo values of cross-sectional wall area, lumen area, wall thickness and lumen diameter in ten healthy subjects as assessed by multi-detector computed tomography. A validated dedicated software package was used to measure these morphometric parameters up to the 14th bronchial generation, with respect to Weibel's model of bronchial morphometry, and up to the 12th according to Boyden's classification. Measured lumen diameters and homothety ratios were compared with theoretical values obtained from previously published studies, and no difference was found when considering dichotomic division of the bronchial tree. Mean wall area, lumen area, wall thickness and lumen diameter were then provided according to bronchial generation order, and mean homothety ratios were computed for wall area, lumen area and wall thickness as well as equations giving the mean value of each parameter for a given bronchial generation with respect to its value in generation 0 (trachea). Multi-detector computed tomography measurements of bronchial morphometric parameters may help to improve our knowledge of bronchial anatomy in vivo, our understanding of the pathophysiology of bronchial diseases and the evaluation of pharmacological effects on the bronchial wall. PMID:17919291

  9. Targeted post-mortem computed tomography cardiac angiography: proof of concept.

    PubMed

    Saunders, Sarah L; Morgan, Bruno; Raj, Vimal; Robinson, Claire E; Rutty, Guy N

    2011-07-01

    With the increasing use and availability of multi-detector computed tomography and magnetic resonance imaging in autopsy practice, there has been an international push towards the development of the so-called near virtual autopsy. However, currently, a significant obstacle to the consideration as to whether or not near virtual autopsies could one day replace the conventional invasive autopsy is the failure of post-mortem imaging to yield detailed information concerning the coronary arteries. To date, a cost-effective, practical solution to allow high throughput imaging has not been presented within the forensic literature. We present a proof of concept paper describing a simple, quick, cost-effective, manual, targeted in situ post-mortem cardiac angiography method using a minimally invasive approach, to be used with multi-detector computed tomography for high throughput cadaveric imaging which can be used in permanent or temporary mortuaries.

  10. Fiber optic crossbar switch for automatically patching optical signals

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1983-01-01

    A system for automatically optically switching fiber optic data signals between a plurality of input optical fibers and selective ones of a plurality of output fibers is described. The system includes optical detectors which are connected to each of the input fibers for converting the optic data signals appearing at the respective input fibers to an RF signal. A plurality of RF to optical signal converters are arranged in rows and columns. The output of each of the optical detectors are each applied to a respective row of optical signal converted for being converters back to an optical signal when the particular optical signal converter is selectively activated by a dc voltage.

  11. Association of Dyslipidemia and Sex With Coronary Artery Calcium Assessed by Coronary Computed Tomography Angiography.

    PubMed

    Asami, Masahiko; Yamaji, Kyohei; Aoki, Jiro; Tanimoto, Shuzou; Watanabe, Mika; Horiuchi, Yu; Furui, Koichi; Kato, Nahoko; Hara, Kazuhiro; Tanabe, Kengo

    2017-10-21

    Previous studies reporting that statin increases coronary artery calcium (CAC) were conducted exclusively on patients with statin as a prevention, regardless of the presence or absence of dyslipidemia. The impact of sex on CAC has not been fully evaluated. We aimed to determine the association of dyslipidemia and sex with CAC using 320-row multi-detector computed tomography (MDCT).Of the 356 consecutive patients who underwent coronary MDCT, 251 patients were enrolled, after excluding those with prior stenting and/or coronary bypass grafting or images showing motion artifacts. The primary outcome measures were the percent calcium volume (PCV) and percent atheroma volume (PAV) per coronary vessel.Multivariable analyses indicated that PCV was significantly higher in dyslipidemia patients without statins than in the subjects without dyslipidemia [partial regression coefficient (PRC): 2.59, 95% confidence interval (CI): 0.83 to 4.34, P = 0.004]. In contrast, PCV was similar in dyslipidemia patients taking statins and those without dyslipidemia (PRC: -1.09, 95% CI: -2.82 to 0.65, P = 0.22). There was no significant difference in PCV between men and women, although women exhibited a significantly lower PAV (PRC: -2.87, 95% CI: -4.54 to -1.20, P = 0.001).In low-risk patients, these results could be translated into hypotheses, which should be tested in future prospective studies. Furthermore, there was no significant difference in CAC between men and women, but women had lower PAV than men.

  12. Assessing vertebral fracture risk on volumetric quantitative computed tomography by geometric characterization of trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Checefsky, Walter A.; Abidin, Anas Z.; Nagarajan, Mahesh B.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2016-03-01

    The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray absorptiometry, however more recently BMD derived from volumetric quantitative computed tomography has been shown to demonstrate a high association with spinal fracture susceptibility. In this study, we propose a method of fracture risk assessment using structural properties of trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT (MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. Common image processing methods were used to annotate the trabecular compartment in the vertebral slices creating a circular region of interest (ROI) that excluded cortical bone for each slice. The pixels inside the ROI were converted to values indicative of BMD. High dimensional geometrical features were derived using the scaling index method (SIM) at different radii and scaling factors (SF). The mean BMD values within the ROI were then extracted and used in conjunction with a support vector machine to predict the failure load of the specimens. Prediction performance was measured using the root-mean-square error (RMSE) metric and determined that SIM combined with mean BMD features (RMSE = 0.82 +/- 0.37) outperformed MDCT-measured mean BMD (RMSE = 1.11 +/- 0.33) (p < 10-4). These results demonstrate that biomechanical strength prediction in vertebrae can be significantly improved through the use of SIM-derived texture features from trabecular bone.

  13. [Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT].

    PubMed

    Kimura, Mikio; Usui, Junshi; Nozawa, Takeo

    2007-03-20

    In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT) . We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography (3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image.

  14. A MAPS Based Micro-Vertex Detector for the STAR Experiment

    DOE PAGES

    Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; ...

    2015-06-18

    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensormore » (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m 2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm 2. This sensor architecture features 185.6 μs readout time and 170 mW/cm 2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.« less

  15. Pulmonary arterial hypertension in children: diagnosis using ratio of main pulmonary artery to ascending aorta diameter as determined by multi-detector computed tomography.

    PubMed

    Caro-Domínguez, Pablo; Compton, Gregory; Humpl, Tilman; Manson, David E

    2016-09-01

    The ratio of the transverse diameter of the main pulmonary artery (MPA) to ascending aorta as determined at multi-detector CT is a tool that can be used to assess the pulmonary arterial size in cases of pulmonary arterial hypertension in children. To establish a ratio of MPA to ascending aorta diameter using multi-detector CT imaging suggestive of pulmonary arterial hypertension in children. We hypothesize that a defined ratio of MPA to ascending aorta is identifiable on multi-detector CT and that higher ratios can be used to reliably diagnose the presence of pulmonary arterial hypertension in children. We calculated the multi-detector CT ratio of MPA to ascending aorta diameter in 44 children with documented pulmonary arterial hypertension by right heart catheterization and in 44 age- and gender-matched control children with no predisposing factors for pulmonary arterial hypertension. We compared this multi-detector-CT-determined ratio with the MPA pressure in the study group, as well as with the ratio of MPA to ascending aorta in the control group. A threshold ratio value was calculated to accurately identify children with pulmonary arterial hypertension. Children with documented primary pulmonary arterial hypertension have a significantly higher ratio of MPA to ascending aorta (1.46) than children without pulmonary arterial hypertension (1.11). A ratio of 1.3 carries a positive likelihood of 34 and a positive predictive value of 97% for the diagnosis of pulmonary arterial hypertension. The pulmonary arteries were larger in children with pulmonary arterial hypertension than in a control group of normal children. A CT-measured ratio of MPA to ascending aorta of 1.3 should raise the suspicion of pulmonary arterial hypertension in children.

  16. Postmortem dynamic cerebral angiography for detecting aneurysm and bleeding sites in cases of subarachnoid hemorrhage.

    PubMed

    Inokuchi, Go; Yajima, Daisuke; Hayakawa, Mutsumi; Motomura, Ayumi; Chiba, Fumiko; Torimitsu, Suguru; Makino, Yohsuke; Iwase, Hirotaro

    2014-12-01

    One of the advantages of postmortem imaging is its ability to obtain diagnostic findings in a non-destructive manner when autopsy is either difficult or may destroy forensic evidence. In recent years, efforts have been made to incorporate computed tomography (CT) based postmortem angiography into forensic pathology; however, it is not currently clear how well the modality can determine sites of bleeding in cases of subarachnoid hemorrhage. Therefore, in this study, we investigated the utility of postmortem cerebral angiography using multi-detector row CT (MDCT) by injecting a contrast medium through a catheter inserted into the internal carotid and vertebral arteries of 10 subarachnoid hemorrhage cases. While postmortem MDCT angiography (PMCTA) was capable of detecting aneurysms in a non-destructive manner, it was sometimes difficult to identify the aneurysm and bleeding sites because of a large amount of contrast medium leaking into the extravascular space. To overcome this problem, we developed the novel contrast imaging method "dynamic cerebral angiography," which involves scanning the same area multiple times while injecting contrast medium to enable real-time observation of the contrasted vasculature. Using multiphase contrast images acquired by this method, we successfully captured the moment when contrast medium leaked from the hemorrhage site. This method will be useful for identifying exact bleeding sites on PMCTA.

  17. Contour variations of the body and tail of the pancreas: evaluation with MDCT.

    PubMed

    Omeri, Ahmad Khalid; Matsumoto, Shunro; Kiyonaga, Maki; Takaji, Ryo; Yamada, Yasunari; Kosen, Kazuhisa; Mori, Hiromu; Miyake, Hidetoshi

    2017-06-01

    To analyze morphology/contour variations of the pancreatic body and tail in subjects free of pancreatic disease. We retrospectively reviewed triple-phase, contrast-enhanced multi-detector row computed tomography (3P-CE-MDCT) examinations of 449 patients who had no clinical or CT evidence of pancreatic diseases. These patients were evaluated for morphologic/contour variations of the pancreatic body and tail, which were classified into two types. In Type I, a portion of normal pancreatic parenchyma protrudes >1 cm in maximum diameter from the body or tail (Ia-anteriorly; Ib-posteriorly). Type II was defined as a morphologic anomaly of the pancreatic tail (IIa-globular; IIb-lobulated; IIc-tapered; IId-bifid). Thirty-eight (8.5%) out of 449 patients had body or tail variations. Of those, 23 patients showed Type I variant: Ia in 21 and Ib in two. Type II variant was identified in 15 patients: IIa in eight, IIb in two, IIc in two and IId in three. Protrusion of the anterior surface of the normal pancreas, especially in the tail, was the most frequently occurring variant. Recognizing the types and subtypes of morphology/contour variations of the pancreatic body and tail could help prevent misinterpretation of normal variants as pancreatic tumors on unenhanced MDCT.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schambach, Joachim; Anderssen, Eric; Contin, Giacomo

    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensormore » (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m 2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm 2. This sensor architecture features 185.6 μs readout time and 170 mW/cm 2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.« less

  19. Image quality and artefact generation post-cerebral aneurysm clipping using a 64-row multislice computer tomography angiography (MSCTA) technology: A retrospective study and review of the literature.

    PubMed

    Zachenhofer, Iris; Cejna, Manfred; Schuster, Antonius; Donat, Markus; Roessler, Karl

    2010-06-01

    Computed tomography angiography (CTA) is a time and cost saving investigation for postoperative evaluation of clipped cerebral aneurysm patients. A retrospective study was conducted to analyse image quality and artefact generation due to implanted aneurysm clips using a new technology. MSCTA was performed pre- and postoperatively using a Philips Brilliance 64-detector-row CT scanner. Altogether, 32 clipping sites were analysed in 27 patients (11 female and 16 male, mean ages 52a, from 24 to 72 years). Clip number per aneurysm was 2.3 mean (from 1 to 4), 54 clips were made of titanium alloy and 5 of cobalt alloy. Altogether, image quality was rated 1.8 mean, using a scale from 1 (very good) to 5 (unserviceable) and clip artefacts were rated 2.4 mean, using a 5 point rating scale (1 no artefacts, 5 unserviceable due to artefacts). A significant loss of image quality and rise of artefacts was found when using cobalt alloy clips (1.4 versus 4.2 and 2.1 versus 4.0). In 72% of all investigations, an excellent image quality was found. Excluding the cobalt clip group, 85% of scans showed excellent image quality. Artefacts were absent or minimal (grade 1 or 2) in 69% of all investigations and in 81% in the pure titanium clip group. In 64-row MSCTA of good image quality with low artefacts, it was possible to detect small aneurysm remnants of 2mm size in individual patients. By using titanium alloy clips, in our study up to 85% of postoperative CTA images were of excellent quality with absent or minimal artefacts in 81% and seem adequate to detect small aneurysm remnants. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Heat Transfer on a Film-Cooled Rotating Blade

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.

    1999-01-01

    A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox's k-omega model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and omega distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.

  1. Fast Confocal Raman Imaging Using a 2-D Multifocal Array for Parallel Hyperspectral Detection.

    PubMed

    Kong, Lingbo; Navas-Moreno, Maria; Chan, James W

    2016-01-19

    We present the development of a novel confocal hyperspectral Raman microscope capable of imaging at speeds up to 100 times faster than conventional point-scan Raman microscopy under high noise conditions. The microscope utilizes scanning galvomirrors to generate a two-dimensional (2-D) multifocal array at the sample plane, generating Raman signals simultaneously at each focus of the array pattern. The signals are combined into a single beam and delivered through a confocal pinhole before being focused through the slit of a spectrometer. To separate the signals from each row of the array, a synchronized scan mirror placed in front of the spectrometer slit positions the Raman signals onto different pixel rows of the detector. We devised an approach to deconvolve the superimposed signals and retrieve the individual spectra at each focal position within a given row. The galvomirrors were programmed to scan different focal arrays following Hadamard encoding patterns. A key feature of the Hadamard detection is the reconstruction of individual spectra with improved signal-to-noise ratio. Using polystyrene beads as test samples, we demonstrated not only that our system images faster than a conventional point-scan method but that it is especially advantageous under noisy conditions, such as when the CCD detector operates at fast read-out rates and high temperatures. This is the first demonstration of multifocal confocal Raman imaging in which parallel spectral detection is implemented along both axes of the CCD detector chip. We envision this novel 2-D multifocal spectral detection technique can be used to develop faster imaging spontaneous Raman microscopes with lower cost detectors.

  2. On Convergence of Development Costs and Cost Models for Complex Spaceflight Instrument Electronics

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar D.; Kasa, Robert L.; Hestnes, Phyllis; Brown, Tammy; Vootukuru, Madhavi

    2008-01-01

    Development costs of a few recent spaceflight instrument electrical and electronics subsystems have diverged from respective heritage cost model predictions. The cost models used are Grass Roots, Price-H and Parametric Model. These cost models originated in the military and industry around 1970 and were successfully adopted and patched by NASA on a mission-by-mission basis for years. However, the complexity of new instruments recently changed rapidly by orders of magnitude. This is most obvious in the complexity of representative spaceflight instrument electronics' data system. It is now required to perform intermediate processing of digitized data apart from conventional processing of science phenomenon signals from multiple detectors. This involves on-board instrument formatting of computational operands from row data for example, images), multi-million operations per second on large volumes of data in reconfigurable hardware (in addition to processing on a general purpose imbedded or standalone instrument flight computer), as well as making decisions for on-board system adaptation and resource reconfiguration. The instrument data system is now tasked to perform more functions, such as forming packets and instrument-level data compression of more than one data stream, which are traditionally performed by the spacecraft command and data handling system. It is furthermore required that the electronics box for new complex instruments is developed for one-digit watt power consumption, small size and that it is light-weight, and delivers super-computing capabilities. The conflict between the actual development cost of newer complex instruments and its electronics components' heritage cost model predictions seems to be irreconcilable. This conflict and an approach to its resolution are addressed in this paper by determining the complexity parameters, complexity index, and their use in enhanced cost model.

  3. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    PubMed Central

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-01-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749

  4. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  5. A three-dimensional Navier-Stokes stage analysis of the flow through a compact radial turbine

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    1991-01-01

    A steady, three dimensional Navier-Stokes average passage computer code is used to analyze the flow through a compact radial turbine stage. The code is based upon the average passage set of equations for turbomachinery, whereby the flow fields for all passages in a given blade row are assumed to be identical while retaining their three-dimensionality. A stage solution is achieved by alternating between stator and rotor calculations, while coupling the two solutions by means of a set of axisymmetric body forces which model the absent blade row. Results from the stage calculation are compared with experimental data and with results from an isolated rotor solution having axisymmetric inlet flow quantities upstream of the vacated stator space. Although the mass-averaged loss through the rotor is comparable for both solutions, the details of the loss distribution differ due to stator effects. The stage calculation predicts smaller spanwise variations in efficiency, in closer agreement with the data. The results of the study indicate that stage analyses hold promise for improved prediction of loss mechanisms in multi-blade row turbomachinery, which could lead to improved designs through the reduction of these losses.

  6. A three-dimensional Navier-Stokes stage analysis of the flow through a compact radial turbine

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    1991-01-01

    A steady, three-dimensional Navier-Stokes average passage computer code is used to analyze the flow through a compact radial turbine stage. The code is based upon the average passage set of equations for turbomachinery, whereby the flow fields for all passages in a given blade row are assumed to be identical while retaining their three-dimensionality. A stage solution is achieved by alternating between stator and rotor calculations, while coupling the two solutions by means of a set of axisymmetric body forces which model the absent blade row. Results from the stage calculation are compared with experimental data and with results from an isolated rotor solution having axisymmetric inlet flow quantities upstream of the vacated stator space. Although the mass-averaged loss through the rotor is comparable for both solutions, the details of the loss distribution differ due to stator effects. The stage calculation predicts smaller spanwise variations in efficiency, in closer agreement with the data. The results of the study indicate that stage analyses hold promise for improved prediction of loss mechanisms in multi-blade row turbomachinery, which could lead to improved designs through the reduction of these losses.

  7. Geometric correction methods for Timepix based large area detectors

    NASA Astrophysics Data System (ADS)

    Zemlicka, J.; Dudak, J.; Karch, J.; Krejci, F.

    2017-01-01

    X-ray micro radiography with the hybrid pixel detectors provides versatile tool for the object inspection in various fields of science. It has proven itself especially suitable for the samples with low intrinsic attenuation contrast (e.g. soft tissue in biology, plastics in material sciences, thin paint layers in cultural heritage, etc.). The limited size of single Medipix type detector (1.96 cm2) was recently overcome by the construction of large area detectors WidePIX assembled of Timepix chips equipped with edgeless silicon sensors. The largest already built device consists of 100 chips and provides fully sensitive area of 14.3 × 14.3 cm2 without any physical gaps between sensors. The pixel resolution of this device is 2560 × 2560 pixels (6.5 Mpix). The unique modular detector layout requires special processing of acquired data to avoid occurring image distortions. It is necessary to use several geometric compensations after standard corrections methods typical for this type of pixel detectors (i.e. flat-field, beam hardening correction). The proposed geometric compensations cover both concept features and particular detector assembly misalignment of individual chip rows of large area detectors based on Timepix assemblies. The former deals with larger border pixels in individual edgeless sensors and their behaviour while the latter grapple with shifts, tilts and steps between detector rows. The real position of all pixels is defined in Cartesian coordinate system and together with non-binary reliability mask it is used for the final image interpolation. The results of geometric corrections for test wire phantoms and paleo botanic material are presented in this article.

  8. Image Based Mango Fruit Detection, Localisation and Yield Estimation Using Multiple View Geometry

    PubMed Central

    Stein, Madeleine; Bargoti, Suchet; Underwood, James

    2016-01-01

    This paper presents a novel multi-sensor framework to efficiently identify, track, localise and map every piece of fruit in a commercial mango orchard. A multiple viewpoint approach is used to solve the problem of occlusion, thus avoiding the need for labour-intensive field calibration to estimate actual yield. Fruit are detected in images using a state-of-the-art faster R-CNN detector, and pair-wise correspondences are established between images using trajectory data provided by a navigation system. A novel LiDAR component automatically generates image masks for each canopy, allowing each fruit to be associated with the corresponding tree. The tracked fruit are triangulated to locate them in 3D, enabling a number of spatial statistics per tree, row or orchard block. A total of 522 trees and 71,609 mangoes were scanned on a Calypso mango orchard near Bundaberg, Queensland, Australia, with 16 trees counted by hand for validation, both on the tree and after harvest. The results show that single, dual and multi-view methods can all provide precise yield estimates, but only the proposed multi-view approach can do so without calibration, with an error rate of only 1.36% for individual trees. PMID:27854271

  9. Overview of aerothermodynamic loads definition study

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    1991-01-01

    The objective of the Aerothermodynamic Loads Definition Study is to develop methods of accurately predicting the operating environment in advanced Earth-to-Orbit (ETO) propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. Development of time averaged and time dependent three dimensional viscous computer codes as well as experimental verification and engine diagnostic testing are considered to be essential in achieving that objective. Time-averaged, nonsteady, and transient operating loads must all be well defined in order to accurately predict powerhead life. Described here is work in unsteady heat flow analysis, improved modeling of preburner flow, turbulence modeling for turbomachinery, computation of three dimensional flow with heat transfer, and unsteady viscous multi-blade row turbine analysis.

  10. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  11. Characterisation of a neutron diffraction detector prototype based on the Trench-MWPC technology

    NASA Astrophysics Data System (ADS)

    Buffet, J. C.; Clergeau, J. F.; Cuccaro, S.; Guérard, B.; Mandaroux, N.; Marchal, J.; Pentenero, J.; Platz, M.; Van Esch, P.

    2017-12-01

    The Trench Multi-Wire-Proportional-Chamber is a new type of MWPC which has been designed to fulfill the requirements of the 2D curved neutron detector under development for the XtremeD neutron diffractometer, under construction at ILL. In this design, anode wires are mounted orthogonally to a stack of metallic cathode plates which are insulated from each other by ceramic spacers. A row of teeth is spark-eroded along the edge of the cathode plates so that anode wires appear to be stretched along trenches machined across a segmented cathode plane. This design was tested on a prototype detector module mounted in a vessel filled with a mixture of 3He-Ar-CO2 at 7 bar. The detector configuration as well as measurements performed on this prototype at ILL neutron test beam line are presented. Results show that the Trench-MWPC design provides uniform amplification gain across the detection area despite the absence of the top cathode wires used to balance the electric field in standard Cathode-Anode-Cathode MWPC configurations. The presence of cathode trench side-walls surrounding anode wires minimises the spread of neutron-induced charge across electrodes, allowing for detector operation at reduced amplification gain without compromising the signal to noise per electrode. Pulse-height spectra acquired under various neutron flux conditions demonstrated that the Trench-MWPC design minimises space-charge effects, thanks to its low amplification gain combined with the fast collection of ions by cathode trench side-walls surrounding anode wires. Measurements also showed that this space-charge effect reduction results in a high local count-rate of ~100 kHz at 10% count loss when irradiating the detector with a small 5 mm × 5 mm neutron beam.

  12. An Evaluation of a Phase-Lag Boundary Condition for Francis Hydroturbine Simulations Using a Pressure-Based Solver

    NASA Astrophysics Data System (ADS)

    Wouden, Alex; Cimbala, John; Lewis, Bryan

    2014-11-01

    While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.

  13. Characterizing trabecular bone structure for assessing vertebral fracture risk on volumetric quantitative computed tomography

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; Checefsky, Walter A.; Abidin, Anas Z.; Tsai, Halley; Wang, Xixi; Hobbs, Susan K.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2015-03-01

    While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature `correlation' (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p < 0.01). GLCM feature correlation also significantly outperformed MDCTmeasured mean BMD (RMSE = 1.11 ± 0.17) (p< 10-4). These results suggest that biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.

  14. Effects of pure and hybrid iterative reconstruction algorithms on high-resolution computed tomography in the evaluation of interstitial lung disease.

    PubMed

    Katsura, Masaki; Sato, Jiro; Akahane, Masaaki; Mise, Yoko; Sumida, Kaoru; Abe, Osamu

    2017-08-01

    To compare image quality characteristics of high-resolution computed tomography (HRCT) in the evaluation of interstitial lung disease using three different reconstruction methods: model-based iterative reconstruction (MBIR), adaptive statistical iterative reconstruction (ASIR), and filtered back projection (FBP). Eighty-nine consecutive patients with interstitial lung disease underwent standard-of-care chest CT with 64-row multi-detector CT. HRCT images were reconstructed in 0.625-mm contiguous axial slices using FBP, ASIR, and MBIR. Two radiologists independently assessed the images in a blinded manner for subjective image noise, streak artifacts, and visualization of normal and pathologic structures. Objective image noise was measured in the lung parenchyma. Spatial resolution was assessed by measuring the modulation transfer function (MTF). MBIR offered significantly lower objective image noise (22.24±4.53, P<0.01 among all pairs, Student's t-test) compared with ASIR (39.76±7.41) and FBP (51.91±9.71). MTF (spatial resolution) was increased using MBIR compared with ASIR and FBP. MBIR showed improvements in visualization of normal and pathologic structures over ASIR and FBP, while ASIR was rated quite similarly to FBP. MBIR significantly improved subjective image noise (P<0.01 among all pairs, the sign test), and streak artifacts (P<0.01 each for MBIR vs. the other 2 image data sets). MBIR provides high-quality HRCT images for interstitial lung disease by reducing image noise and streak artifacts and improving spatial resolution compared with ASIR and FBP. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A modular solid state detector for measuring high energy heavy ion fragmentation near the beam axis

    NASA Technical Reports Server (NTRS)

    Zeitlin, C. J.; Frankel, K. A.; Gong, W.; Heilbronn, L.; Lampo, E. J.; Leres, R.; Miller, J.; Schimmerling, W.

    1994-01-01

    A multi-element solid state detector has been designed to measure fluences of fragments produced near the beam axis by high energy heavy ion beams in thick targets. The detector is compact and modular, so as to be readily reconfigured according to the range of fragment charges and energies to be measured. Preamplifier gain settings and detector calibrations are adjustable remotely under computer control. We describe the central detector, its associated detectors and electronics, triggering scheme, data acquisition and particle identification techniques, illustrated by data taken with 600 MeV/u 56Fe beams and thick polyethylene targets at the LBL Bevalac. The applications of this work to space radiation protection are discussed.

  16. [Evaluation of Dose Reduction of the Active Collimator in Multi Detector Row CT].

    PubMed

    Ueno, Hiroyuki; Matsubara, Kosuke

    The purpose of this study was to evaluate the performance of active collimator by changing acquisition parameters and obtaining dose profiles in z-axis direction. Dose profiles along z-axis were obtained using XRQA2 Gafchromic film. As a result, the active collimator reduced overranging about 55% compared to that without the active collimator. In addition, by changing the combination of X-ray beam width (32 mm, 40 mm), pitch factor (1.4, 0.6), and the X-ray tube rotation time (0.5 s/rot, 1.0 s/rot), the overranging changed from 19.4 to 34.9 mm. Although the active collimator is effective for reducing overranging, it is necessary to adjust acquisition parameters by taking the properties of the active collimator for acquisition parameters, especially setting beam width, into consideration.

  17. MT3825BA: a 384×288-25µm ROIC for uncooled microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Gulden, M. Ali; Bayhan, Nusret; Incedere, O. Samet; Soyer, S. Tuncer; Ustundag, Cem M. B.; Isikhan, Murat; Kocak, Serhat; Turan, Ozge; Yalcin, Cem; Akin, Tayfun

    2014-06-01

    This paper reports the development of a new microbolometer Readout Integrated Circuit (ROIC) called MT3825BA. It has a format of 384 × 288 and a pixel pitch of 25μm. MT3825BA is Mikro-Tasarim's second microbolometer ROIC product, which is developed specifically for resistive surface micro-machined microbolometer detector arrays using high-TCR pixel materials, such as VOx and a-Si. MT3825BA has a system-on-chip architecture, where all the timing, biasing, and pixel non-uniformity correction (NUC) operations in the ROIC are applied using on-chip circuitry simplifying the use and system integration of this ROIC. The ROIC is designed to support pixel resistance values ranging from 30 KΩ to 100 KΩ. MT3825BA is operated using conventional row based readout method, where pixels in the array are read out in a row-by-row basis, where the applied bias for each pixel in a given row is updated at the beginning of each line period according to the applied line based NUC data. The NUC data is applied continuously in a row-by-row basis using the serial programming interface, which is also used to program user configurable features of the ROIC, such as readout gain, integration time, and number of analog video outputs. MT3825BA has a total of 4 analog video outputs and 2 analog reference outputs, placed at the top and bottom of the ROIC, which can be programmed to operate in the 1, 2, and 4-output modes, supporting frames rates well above 60 fps at a 3 MHz pixel output rate. The pixels in the array are read out with respect to reference pixels implemented above and below actual array pixels. The bias voltage of the pixels can be programmed over a 1.0 V range to compensate for the changes in the detector resistance values due to the variations coming from the manufacturing process or changes in the operating temperature. The ROIC has an on-chip integrated temperature sensor with a sensitivity of better than 5 mV / K, and the output of the temperature sensor can be read out the output as part of the analog video stream. MT3825BA can be used to build a microbolometer FPAs with an NETD value below 100 mK using a microbolometer detector array fabrication technology with a detector resistance value up to 100 KΩ, a high TCR value (< 2 % / K), and a sufficiently low pixel thermal conductance (Gth ≤ 20 nW / K). MT3825BA measures 13.0 mm × 13.5 mm and is fabricated on 200 mm CMOS wafers. The microbolometer ROIC wafers are engineered to have flat surface finish to simplify the wafer level detector fabrication and wafer level vacuum packaging (WLVP). The ROIC runs on 3.3 V analog and 1.8 V digital supplies, and dissipates less than 85 mW in the 2-output mode at 30 fps. Mikro-Tasarim provides tested ROIC wafers and offers compact test electronics and software for its ROIC customers to shorten their FPA and camera development cycles.

  18. Circuit for high resolution decoding of multi-anode microchannel array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B. (Inventor)

    1995-01-01

    A circuit for high resolution decoding of multi-anode microchannel array detectors consisting of input registers accepting transient inputs from the anode array; anode encoding logic circuits connected to the input registers; midpoint pipeline registers connected to the anode encoding logic circuits; and pixel decoding logic circuits connected to the midpoint pipeline registers is described. A high resolution algorithm circuit operates in parallel with the pixel decoding logic circuit and computes a high resolution least significant bit to enhance the multianode microchannel array detector's spatial resolution by halving the pixel size and doubling the number of pixels in each axis of the anode array. A multiplexer is connected to the pixel decoding logic circuit and allows a user selectable pixel address output according to the actual multi-anode microchannel array detector anode array size. An output register concatenates the high resolution least significant bit onto the standard ten bit pixel address location to provide an eleven bit pixel address, and also stores the full eleven bit pixel address. A timing and control state machine is connected to the input registers, the anode encoding logic circuits, and the output register for managing the overall operation of the circuit.

  19. Review of Fusion Systems and Contributing Technologies for SIHS-TD (Examen des Systemes de Fusion et des Technologies d’Appui pour la DT SIHS)

    DTIC Science & Technology

    2007-03-31

    Unlimited, Nivisys, Insight technology, Elcan, FLIR Systems, Stanford photonics Hardware Sensor fusion processors Video processing boards Image, video...Engineering The SPIE Digital Library is a resource for optics and photonics information. It contains more than 70,000 full-text papers from SPIE...conditions Top row: Stanford Photonics XR-Mega-10 Extreme 1400 x 1024 pixels ICCD detector, 33 msec exposure, no binning. Middle row: Andor EEV iXon

  20. Computing row and column counts for sparse QR and LU factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, John R.; Li, Xiaoye S.; Ng, Esmond G.

    2001-01-01

    We present algorithms to determine the number of nonzeros in each row and column of the factors of a sparse matrix, for both the QR factorization and the LU factorization with partial pivoting. The algorithms use only the nonzero structure of the input matrix, and run in time nearly linear in the number of nonzeros in that matrix. They may be used to set up data structures or schedule parallel operations in advance of the numerical factorization. The row and column counts we compute are upper bounds on the actual counts. If the input matrix is strong Hall and theremore » is no coincidental numerical cancellation, the counts are exact for QR factorization and are the tightest bounds possible for LU factorization. These algorithms are based on our earlier work on computing row and column counts for sparse Cholesky factorization, plus an efficient method to compute the column elimination tree of a sparse matrix without explicitly forming the product of the matrix and its transpose.« less

  1. Ames Women's Influence Network (WIN) Hidden Figures talk with "Computers" Carolyn Hofstetter and Carol Mead co-sponsored by the AAAG.

    NASA Image and Video Library

    2017-02-01

    Ames Women's Influence Network (WIN) Hidden Figures talk with "Computers" Carolyn Hofstetter and Carol Mead co-sponsored by the AAAG. Group photo Front Row left to right; Carolyn Hofstetter, Jack Boyd, Carol Mead Middle Row: Kathy Lee, Annette Randall, Trincella Lewis, Ann Mead (daughter to Carol Mead), Vanessa Kuroda, Netti Halcomb Roozeboom Back Row; Dr Barbara Miller, Dr Wendy Okolo, Denise Snow, Leedjia Svec, Erika Rodriquez, Rhonda Baker, Ray Gilstrap, Glenn Bugos

  2. A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors

    NASA Astrophysics Data System (ADS)

    Bose, Sukanta; Dayanga, Thilina; Ghosh, Shaon; Talukder, Dipongkar

    2011-07-01

    We describe a hierarchical data analysis pipeline for coherently searching for gravitational-wave signals from non-spinning compact binary coalescences (CBCs) in the data of multiple earth-based detectors. This search assumes no prior information on the sky position of the source or the time of occurrence of its transient signals and, hence, is termed 'blind'. The pipeline computes the coherent network search statistic that is optimal in stationary, Gaussian noise. More importantly, it allows for the computation of a suite of alternative multi-detector coherent search statistics and signal-based discriminators that can improve the performance of CBC searches in real data, which can be both non-stationary and non-Gaussian. Also, unlike the coincident multi-detector search statistics that have been employed so far, the coherent statistics are different in the sense that they check for the consistency of the signal amplitudes and phases in the different detectors with their different orientations and with the signal arrival times in them. Since the computation of coherent statistics entails searching in the sky, it is more expensive than that of the coincident statistics that do not require it. To reduce computational costs, the first stage of the hierarchical pipeline constructs coincidences of triggers from the multiple interferometers, by requiring their proximity in time and component masses. The second stage follows up on these coincident triggers by computing the coherent statistics. Here, we compare the performances of this hierarchical pipeline with and without the second (or coherent) stage in Gaussian noise. Although introducing hierarchy can be expected to cause some degradation in the detection efficiency compared to that of a single-stage coherent pipeline, nevertheless it improves the computational speed of the search considerably. The two main results of this work are as follows: (1) the performance of the hierarchical coherent pipeline on Gaussian data is shown to be better than the pipeline with just the coincident stage; (2) the three-site network of LIGO detectors, in Hanford and Livingston (USA), and Virgo detector in Cascina (Italy) cannot resolve the polarization of waves arriving from certain parts of the sky. This can cause the three-site coherent statistic at those sky positions to become singular. Regularized versions of the statistic can avoid that problem, but can be expected to be sub-optimal. The aforementioned improvement in the pipeline's performance due to the coherent stage is in spite of this handicap.

  3. Method and structure for skewed block-cyclic distribution of lower-dimensional data arrays in higher-dimensional processor grids

    DOEpatents

    Chatterjee, Siddhartha [Yorktown Heights, NY; Gunnels, John A [Brewster, NY

    2011-11-08

    A method and structure of distributing elements of an array of data in a computer memory to a specific processor of a multi-dimensional mesh of parallel processors includes designating a distribution of elements of at least a portion of the array to be executed by specific processors in the multi-dimensional mesh of parallel processors. The pattern of the designating includes a cyclical repetitive pattern of the parallel processor mesh, as modified to have a skew in at least one dimension so that both a row of data in the array and a column of data in the array map to respective contiguous groupings of the processors such that a dimension of the contiguous groupings is greater than one.

  4. A Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade Rows

    NASA Technical Reports Server (NTRS)

    Chuang, H. Andrew; Verdon, Joseph M.

    1998-01-01

    The three-dimensional, multi-stage, unsteady, turbomachinery analysis, TURBO, has been extended to predict the aeroelastic and aeroacoustic response behaviors of a single blade row operating within a cylindrical annular duct. In particular, a blade vibration capability has been incorporated so that the TURBO analysis can be applied over a solution domain that deforms with a vibratory blade motion. Also, unsteady far-field conditions have been implemented to render the computational boundaries at inlet and exit transparent to outgoing unsteady disturbances. The modified TURBO analysis is applied herein to predict unsteady subsonic and transonic flows. The intent is to partially validate this nonlinear analysis for blade flutter applications, via numerical results for benchmark unsteady flows, and to demonstrate the analysis for a realistic fan rotor. For these purposes, we have considered unsteady subsonic flows through a 3D version of the 10th Standard Cascade, and unsteady transonic flows through the first stage rotor of the NASA Lewis, Rotor 67, two-stage fan.

  5. Calculation and Correlation of the Unsteady Flowfield in a High Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Liu, Jong S.; Panovsky, Josef; Keith, Theo G., Jr.; Mehmed, Oral

    2002-01-01

    Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.

  6. Effects of dose reduction on multi-detector computed tomographic images in evaluating the maxilla and mandible for pre-surgical implant planning: a cadaveric study.

    PubMed

    Koizumi, Hiroshi; Sur, Jaideep; Seki, Kenji; Nakajima, Koh; Sano, Tsukasa; Okano, Tomohiro

    2010-08-01

    To assess effects of dose reduction on image quality in evaluating maxilla and mandible for pre-surgical implant planning using cadavers. Six cadavers were used for the study using multi-detector computed tomography (CT) operated at 120 kV and the variable tube current of 80, 40, 20 and 10 mA. A slice thickness of 0.625 mm and pitch 1 were used. Multi-planar images perpendicular and parallel to dentitions were created. The images were evaluated by five oral radiologists in terms of visibility of the anatomical landmarks including alveolar crest, mandibular canal, floors of the maxillary sinus and nasal cavity, contours/cortical layer of jaw bones and the details of trabecular bone. Observers were asked to determine the quality of the images in comparison with 80 mA images based on the criteria: excellent, good, fair or non-diagnostic. The average scores of all observers were calculated for each specimen in all exposure conditions. The 40 mA images could visualize such landmarks and were evaluated to be same or almost equivalent in quality to the 80 mA images. Even the 20 mA images could be accepted just for diagnostic purpose for implant with substantial deterioration of the image quality. The 10 mA images may not be accepted because of the obscured contour caused by image noise. Significant dose reduction by lowering mA can be utilized for pre-surgical implant planning in multi-detector CT.

  7. Multi-detector CT angiography of the aortic valve—Part 2: disease specific findings

    PubMed Central

    Ganeshan, Arul

    2014-01-01

    The aortic valve and adjacent structures should be routinely evaluated on all thoracic cross-sectional imaging studies. Echocardiography and magnetic resonance imaging (MRI) are the main imaging techniques used for assessment of the aortic valve and related pathology but multi-detector computed tomography (MDCT) can offer valuable complimentary information in some clinical scenarios. MDCT is the definite means of assessing aortic valvular calcification, acute aortic syndrome and for non-invasive assessment of the coronary arteries. MDCT also has an emerging role in the planning and follow-up of trans-catheter aortic valve replacement. This article reviews the spectrum of aortic valve disease highlighting the key MDCT imaging features. PMID:25202663

  8. Parallel 3D Multi-Stage Simulation of a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Topp, David A.

    1998-01-01

    A 3D multistage simulation of each component of a modern GE Turbofan engine has been made. An axisymmetric view of this engine is presented in the document. This includes a fan, booster rig, high pressure compressor rig, high pressure turbine rig and a low pressure turbine rig. In the near future, all components will be run in a single calculation for a solution of 49 blade rows. The simulation exploits the use of parallel computations by using two levels of parallelism. Each blade row is run in parallel and each blade row grid is decomposed into several domains and run in parallel. 20 processors are used for the 4 blade row analysis. The average passage approach developed by John Adamczyk at NASA Lewis Research Center has been further developed and parallelized. This is APNASA Version A. It is a Navier-Stokes solver using a 4-stage explicit Runge-Kutta time marching scheme with variable time steps and residual smoothing for convergence acceleration. It has an implicit K-E turbulence model which uses an ADI solver to factor the matrix. Between 50 and 100 explicit time steps are solved before a blade row body force is calculated and exchanged with the other blade rows. This outer iteration has been coined a "flip." Efforts have been made to make the solver linearly scaleable with the number of blade rows. Enough flips are run (between 50 and 200) so the solution in the entire machine is not changing. The K-E equations are generally solved every other explicit time step. One of the key requirements in the development of the parallel code was to make the parallel solution exactly (bit for bit) match the serial solution. This has helped isolate many small parallel bugs and guarantee the parallelization was done correctly. The domain decomposition is done only in the axial direction since the number of points axially is much larger than the other two directions. This code uses MPI for message passing. The parallel speed up of the solver portion (no 1/0 or body force calculation) for a grid which has 227 points axially.

  9. Time-multiplexed, optically-addressed, gigabit optical crossbar switch

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor); Cheng, Li-Jen (Inventor); Maserjian, Joseph (Inventor)

    1994-01-01

    A time-multiplexed, optically-addressed, crossbar switch (38) is provided using a two-dimensional, optically-addressed, reflective spatial light modulator (O-SLM) (20). Since the optical addressing is time-multiplexed, only N addressing lines are required for an N.times.N crossbar, rather than the N.sup.2 lines needed in the prior art. This reduction in addressing lines makes possible the development of enormous crossbar switches, such as 100.times.100, for the first time. In addition, since data paths remain entirely in the optics domain, data speeds can reach the multi-gigabit level. In the switch, a row (40) of N inputs (42) at the read wavelength is spread over one axis of the O-SLM. The light is refocused along the other axis to an output array (48) of detectors (50), so that each input has the potential to talk to any one output. The O-SLM is normally off, i.e., non-reflective, so that the output is, in the absence of an input signal, zero. A one-dimensional array (52) of lasers (54) at the write wavelength is imaged onto the O-SLM. Each laser scans across an entire row of the O-SLM; where the laser is on, it turns on a portion of the O-SLM and establishes a connection between a particular input and a particular output. A full row is scanned in a time much shorter than the response time of the O-SLM, so that state of the O-SLM is capacitively stored and dynamically refreshed. The scanning is accomplished by tuning the wavelength of the laser and passing it through a grating, which sweeps the beam in space.

  10. A preliminary study for conducting a rational assessment of radon exposure levels.

    PubMed

    Jeon, Hyung-Jin; Kang, Dae-Ryoung; Go, Sang-Baek; Park, Tae-Hyun; Park, Si-Hyun; Kwak, Jung-Eun; Lee, Cheol-Min

    2017-06-01

    The aim of this study was to determine the factors that go into a highly reliable estimate of radon exposure levels for use in setting up the case-control study. To this end, the present study conducted a multi-faceted investigation of the distribution of radon concentrations in the bedrooms and living rooms of 400 households in the target areas during the winter months from December 2014 to February 2015. We determined that taking the mean value of the radon concentration levels detected in the bedroom and living room as the representative value of residential concentration is appropriate, given the usability of previous research data and the difference in the concentration levels between the two. In terms of detector placement, we found that detectors should not inconvenience residents or be affected by an air current. Further, we found that housing type should distinguish between regular housing (single-detached, row, and multiplex housing) and apartments but that the building type was not a key factor in the assessment of radon exposure levels. Houses should be classified into those constructed with soil (red clay) and those with constructed with general building materials for the assessment of radon exposure levels.

  11. Multivariate analysis of stripe rust assessment and reactions of barley in multi-location nurseries

    USDA-ARS?s Scientific Manuscript database

    A total of 1357 entries, mainly consisting of hulled two-row, hulled six-row and hulless barley, were evaluated in stripe rust nurseries at Toluca, Mexico during 2007, Quito, Ecuador during 2007 and 2008, and Pullman and Mt. Vernon, USA [Pacific Northwest (PNW)] during 2007_2009. Disease screening d...

  12. Radiometer footprint model to estimate sunlit and shaded components for row crops

    USDA-ARS?s Scientific Manuscript database

    This paper describes a geometric model for computing the relative proportion of sunlit vegetation, shaded vegetation, sunlit soil, and shaded soil appearing in a circular or elliptical radiometer footprint for row crops, where the crop rows were modeled as continuous ellipses. The model was validate...

  13. High Information Capacity Quantum Imaging

    DTIC Science & Technology

    2014-09-19

    single-pixel camera [41, 75]. An object is imaged onto a Digital Micromirror device ( DMD ), a 2D binary array of individually-addressable mirrors that...reflect light either to a single detector or a dump. Rows of the sensing matrix A consist of random, binary patterns placed sequentially on the DMD ...The single-pixel camera concept naturally adapts to imaging correlations by adding a second detector. Consider placing separate DMDs in the near-field

  14. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.

    PubMed

    Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2012-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs).

  15. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems

    PubMed Central

    Dey, Samrat; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.

    2013-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs). PMID:24301987

  16. Evaluation of organ doses in CT examinations with an infant anthropomorphic phantom.

    PubMed

    Fujii, K; Akahane, K; Miyazaki, O; Horiuchi, T; Shimada, A; Nagmatsu, H; Yamauchi, M; Yamauchi-Kawaura, C; Kawasaki, T

    2011-09-01

    The aim of this study is to evaluate organ doses in infant CT examinations with multi-detector row CT scanners. Radiation doses were measured with radiophotoluminescence glass dosemeters set in various organ positions within a 1-y-old child anthropomorphic phantom and organ doses were evaluated from the measurement values. Doses for tissues or organs within the scan range were 28-36 mGy in an infant head CT, 3-11 mGy in a chest CT, 5-11 mGy in an abdominal-pelvic CT and 2-14 mGy in a cardiac CT. The doses varied by the differences in the types of CT scanners and scan parameters used at each medical facility. Compared with those for children of various ages, the doses in an infant CT protocol were found to be similar to or slightly smaller than those in a paediatric CT for 5- or 6-y-old children.

  17. Intravenous leiomyomatosis of the uterus with extension to the right heart

    PubMed Central

    2011-01-01

    A 42-year-old woman admitted with debilitation and engorgement both lower extremities. Transthoracic two-dimensional echocardiography, abdominal ultrasound and computerized tomography revealed a lobulated pelvic mass, a mass within right internal iliac vein, both common iliac vein, as well as the inferior vena cava, extending into the right atrium. In addition, echocardiography and abdominal ultrasound showed the tumor of right atrium and inferior vena cave has no stalk and has well-demarcated borders with the wall of right atrium and inferior vena cave. Hence, the presumptive diagnosis of IVL was made by echocardiography and abdominal ultrasound and the presumptive diagnosis of sarcoma with invasion in right internal iliac vein, both common iliac vein, the inferior vena cava, as well as the right atrium was made by multi-detector-row computerized tomography. The patient underwent a one-stage combined multidisciplinary thoraco-abdominal operation under general anaesthetic. Subsequently the pathologic report confirmed IVL. PMID:21943238

  18. Accurate and efficient modeling of the detector response in small animal multi-head PET systems.

    PubMed

    Cecchetti, Matteo; Moehrs, Sascha; Belcari, Nicola; Del Guerra, Alberto

    2013-10-07

    In fully three-dimensional PET imaging, iterative image reconstruction techniques usually outperform analytical algorithms in terms of image quality provided that an appropriate system model is used. In this study we concentrate on the calculation of an accurate system model for the YAP-(S)PET II small animal scanner, with the aim to obtain fully resolution- and contrast-recovered images at low levels of image roughness. For this purpose we calculate the system model by decomposing it into a product of five matrices: (1) a detector response component obtained via Monte Carlo simulations, (2) a geometric component which describes the scanner geometry and which is calculated via a multi-ray method, (3) a detector normalization component derived from the acquisition of a planar source, (4) a photon attenuation component calculated from x-ray computed tomography data, and finally, (5) a positron range component is formally included. This system model factorization allows the optimization of each component in terms of computation time, storage requirements and accuracy. The main contribution of this work is a new, efficient way to calculate the detector response component for rotating, planar detectors, that consists of a GEANT4 based simulation of a subset of lines of flight (LOFs) for a single detector head whereas the missing LOFs are obtained by using intrinsic detector symmetries. Additionally, we introduce and analyze a probability threshold for matrix elements of the detector component to optimize the trade-off between the matrix size in terms of non-zero elements and the resulting quality of the reconstructed images. In order to evaluate our proposed system model we reconstructed various images of objects, acquired according to the NEMA NU 4-2008 standard, and we compared them to the images reconstructed with two other system models: a model that does not include any detector response component and a model that approximates analytically the depth of interaction as detector response component. The comparisons confirm previous research results, showing that the usage of an accurate system model with a realistic detector response leads to reconstructed images with better resolution and contrast recovery at low levels of image roughness.

  19. Accurate and efficient modeling of the detector response in small animal multi-head PET systems

    NASA Astrophysics Data System (ADS)

    Cecchetti, Matteo; Moehrs, Sascha; Belcari, Nicola; Del Guerra, Alberto

    2013-10-01

    In fully three-dimensional PET imaging, iterative image reconstruction techniques usually outperform analytical algorithms in terms of image quality provided that an appropriate system model is used. In this study we concentrate on the calculation of an accurate system model for the YAP-(S)PET II small animal scanner, with the aim to obtain fully resolution- and contrast-recovered images at low levels of image roughness. For this purpose we calculate the system model by decomposing it into a product of five matrices: (1) a detector response component obtained via Monte Carlo simulations, (2) a geometric component which describes the scanner geometry and which is calculated via a multi-ray method, (3) a detector normalization component derived from the acquisition of a planar source, (4) a photon attenuation component calculated from x-ray computed tomography data, and finally, (5) a positron range component is formally included. This system model factorization allows the optimization of each component in terms of computation time, storage requirements and accuracy. The main contribution of this work is a new, efficient way to calculate the detector response component for rotating, planar detectors, that consists of a GEANT4 based simulation of a subset of lines of flight (LOFs) for a single detector head whereas the missing LOFs are obtained by using intrinsic detector symmetries. Additionally, we introduce and analyze a probability threshold for matrix elements of the detector component to optimize the trade-off between the matrix size in terms of non-zero elements and the resulting quality of the reconstructed images. In order to evaluate our proposed system model we reconstructed various images of objects, acquired according to the NEMA NU 4-2008 standard, and we compared them to the images reconstructed with two other system models: a model that does not include any detector response component and a model that approximates analytically the depth of interaction as detector response component. The comparisons confirm previous research results, showing that the usage of an accurate system model with a realistic detector response leads to reconstructed images with better resolution and contrast recovery at low levels of image roughness.

  20. Comparison of CT and MRI in diagnosis of cerebrospinal leak induced by multiple fractures of skull base

    PubMed Central

    Wang, Xuhui; Xu, Minhui; Liang, Hong; Xu, Lunshan

    2011-01-01

    Background Multiple basilar skull fracture and cerebrospinal leak are common complications of traumatic brain injury, which required a surgical repair. But due to the complexity of basilar skull fracture after severe trauma, preoperatively an exact radiological location is always difficult. Multi-row spiral CT and MRI are currently widely applied in the clinical diagnosis. The present study was performed to compare the accuracy of cisternography by multi-row spiral CT and MRI in the diagnosis of cerebrospinal leak. Methods A total of 23 patients with multiple basilar skull fracture after traumatic brain injury were included. The radiological and surgical data were retrospectively analyzed. 64-row CT (mm/row) scan and three-dimensional reconstruction were performed in 12 patients, while MR plain scan and cisternography were performed in another 11 patients. The location of cerebrospinal leak was diagnosed by 2 experienced physicians majoring neurological radiology. Surgery was performed in all patients. The cerebrospinal leak location was confirmed and repaired during surgery. The result was considered as accurate when cerebrospinal leak was absent after surgery. Results According to the surgical exploration, the preoperative diagnosis of the active cerebrospinal leak location was accurate in 9 out of 12 patients with CT scan. The location could not be confirmed by CT because of multiple fractures in 2 patients and the missed diagnosis occurred in 1 patient. The preoperative diagnosis was accurate in 10 out of 11 patients with MRI examination. Conclusions MRI cisternography is more advanced than multi-row CT scan in multiple basilar skull fracture. The combination of the two examinations may increase the diagnostic ratio of active cerebrospinal leak. PMID:22933941

  1. Mechanical performance of aquatic rowing and flying.

    PubMed

    Walker, J A; Westneat, M W

    2000-09-22

    Aquatic flight, performed by rowing or flapping fins, wings or limbs, is a primary locomotor mechanism for many animals. We used a computer simulation to compare the mechanical performance of rowing and flapping appendages across a range of speeds. Flapping appendages proved to be more mechanically efficient than rowing appendages at all swimming speeds, suggesting that animals that frequently engage in locomotor behaviours that require energy conservation should employ a flapping stroke. The lower efficiency of rowing appendages across all speeds begs the question of why rowing occurs at all. One answer lies in the ability of rowing fins to generate more thrust than flapping fins during the power stroke. Large forces are necessary for manoeuvring behaviours such as accelerations, turning and braking, which suggests that rowing should be found in slow-swimming animals that frequently manoeuvre. The predictions of the model are supported by observed patterns of behavioural variation among rowing and flapping vertebrates.

  2. Comparison of the Diagnostic Image Quality of the Canine Maxillary Dentoalveolar Structures Obtained by Cone Beam Computed Tomography and 64-Multidetector Row Computed Tomography.

    PubMed

    Soukup, Jason W; Drees, Randi; Koenig, Lisa J; Snyder, Christopher J; Hetzel, Scott; Miles, Chanda R; Schwarz, Tobias

    2015-01-01

    The objective of this blinded study was to validate the use of cone beam computed tomography (C) for imaging of the canine maxillary dentoalveolar structures by comparing its diagnostic image quality with that of 64-multidetector row CT Sagittal slices of a tooth-bearing segment of the maxilla of a commercially purchased dog skull embedded in methylmethacrylate were obtained along a line parallel with the dental arch using a commercial histology diamond saw. The slice of tooth-bearing bone that best depicted the dentoalveolar structures was chosen and photographed. The maxillary segment was imaged with cone beam CT and 64-multidetector row CT. Four blinded evaluators compared the cone beam CT and 64-multidetector row CT images and image quality was scored as it related to the anatomy of dentoalveolar structures. Trabecular bone, enamel, dentin, pulp cavity, periodontal ligament space, and lamina dura were scored In addition, a score depicting the evaluators overall impression of the image was recorded. Images acquired with cone beam CT were found to be significantly superior in image quality to images acquired with 64-multidetector row CT overall, and in all scored categories. In our study setting cone beam CT was found to be a valid and clinically superior imaging modality for the canine maxillary dentoalveolar structures when compared to 64-multidetector row CT.

  3. Comparison of the Diagnostic Image Quality of the Canine Maxillary Dentoalveolar Structures Obtained by Cone Beam Computed Tomography and 64-Multidetector Row Computed Tomography

    PubMed Central

    Soukup, Jason W.; Drees, Randi; Koenig, Lisa J.; Snyder, Christopher J.; Hetzel, Scott; Miles, Chanda R.; Schwarz, Tobias

    2016-01-01

    Summary The objective of this blinded study was to validate the use of cone beam computed tomography (CT) for imaging of the canine maxillary dentoalveolar structures by comparing its diagnostic image quality with that of 64-multidetector row CT. Sagittal slices of a tooth-bearing segment of the maxilla of a commercially purchased dog skull embedded in methyl methacrylate were obtained along a line parallel with the dental arch using a commercial histology diamond saw. The slice of tooth-bearing bone that best depicted the dentoalveolar structures was chosen and photographed. The maxilla segment was imaged with cone beam CT and 64-multidetector row CT. Four blinded evaluators compared the cone beam CT and 64-multidetector row CT images and image quality was scored as it related to the anatomy of dentoalveolar structures. Trabecular bone, enamel, dentin, pulp cavity, periodontal ligament space, and lamina dura were scored. In addition, a score depicting the evaluators overall impression of the image was recorded. Images acquired with cone beam CT were found to be significantly superior in image quality to images acquired with 64-multidetector row CT overall, and in all scored categories. In our study setting, cone beam CT was found to be a valid and clinically superior imaging modality for the canine maxillary dentoalveolar structures when compared to 64-multidetector row CT. PMID:26415384

  4. Limitations of Airway Dimension Measurement on Images Obtained Using Multi-Detector Row Computed Tomography

    PubMed Central

    Oguma, Tsuyoshi; Hirai, Toyohiro; Niimi, Akio; Matsumoto, Hisako; Muro, Shigeo; Shigematsu, Michio; Nishimura, Takashi; Kubo, Yoshiro; Mishima, Michiaki

    2013-01-01

    Objectives (a) To assess the effects of computed tomography (CT) scanners, scanning conditions, airway size, and phantom composition on airway dimension measurement and (b) to investigate the limitations of accurate quantitative assessment of small airways using CT images. Methods An airway phantom, which was constructed using various types of material and with various tube sizes, was scanned using four CT scanner types under different conditions to calculate airway dimensions, luminal area (Ai), and the wall area percentage (WA%). To investigate the limitations of accurate airway dimension measurement, we then developed a second airway phantom with a thinner tube wall, and compared the clinical CT images of healthy subjects with the phantom images scanned using the same CT scanner. The study using clinical CT images was approved by the local ethics committee, and written informed consent was obtained from all subjects. Data were statistically analyzed using one-way ANOVA. Results Errors noted in airway dimension measurement were greater in the tube of small inner radius made of material with a high CT density and on images reconstructed by body algorithm (p<0.001), and there was some variation in error among CT scanners under different fields of view. Airway wall thickness had the maximum effect on the accuracy of measurements with all CT scanners under all scanning conditions, and the magnitude of errors for WA% and Ai varied depending on wall thickness when airways of <1.0-mm wall thickness were measured. Conclusions The parameters of airway dimensions measured were affected by airway size, reconstruction algorithm, composition of the airway phantom, and CT scanner types. In dimension measurement of small airways with wall thickness of <1.0 mm, the accuracy of measurement according to quantitative CT parameters can decrease as the walls become thinner. PMID:24116105

  5. Analysis of in-plane signal-to-noise ratio in computed tomography

    NASA Astrophysics Data System (ADS)

    Hara, Takanori; Ichikawa, Katsuhiro; Sanada, Shigeru; Ida, Yoshihiro

    2008-03-01

    The purposes of this study are to analyze signal-to-noise ratio (SNR) changes for in-plane (axial plane) position and in-plane direction in X-ray computed tomography (CT) system and to verify those visual effects by using simulated small low-contrast disc objects. Three-models of multi detector-row CT were employed. Modulation transfer function (MTF) was obtained using a thin metal wire. Noise power spectrum (NPSs) was obtained using a cylindrical water phantom. The measurement positions were set to center and off-centered positions of 64mm, 128mm and 192mm. One-dimensional MTFs and NPSs for the x- and y-direction were calculated by means of a numerical slit scanning method. SNRs were then calculated from MTFs and NPSs. The simulated low-contrast disc objects with diameter of 2 to 10mm and contrast to background of 3.0%, 4.5% and 6.0% were superimposed on the water phantom images. Respective simulated objects in the images are then visually evaluated in degree of their recognition, and then the validity of the resultant SNRs are examined. Resultant in-plane SNRs differed between the center and peripheries and indicated a trend that the SNR values increase in accordance with distance from the center. The increasing degree differed between x- and y-direction, and also changed by the CT systems. These results suggested that the peripheries region has higher low-contrast detectability than the center. The properties derived in this study indicated that the depiction abilities at various in-plane positions are not uniform in clinical CT images, and detectability of the low contrast lesion may be influenced.

  6. The side-to-side fashion for individual distal coronary anastomosis using venous conduit.

    PubMed

    Kato, Takayoshi; Tsunekawa, Tomohiro; Motoji, Yusuke; Hirakawa, Akihiro; Okawa, Yasuhide; Tomita, Shinji

    2017-04-01

    Regarding to coronary artery bypass grafting (CABG), the end-to-side anastomosis (ESA) has been performed as a gold standard. Recently, the effectiveness of the distal side-to-side anastomosis (SSA) in CABG using internal mammary artery has been reported. The benefit of SSA comparing to ESA also has been disclosed by computing simulation. However, use of SSA by venous conduit for individual CABG has not been reported. In this study, we investigated feasibility of SSA. From January 2013 to October 2014, we conducted 114 CABGs. There were 92 venous distal anastomoses without sequential anastomotic site (61 SSA and 31 ESA). The anastomosis was evaluated before discharge and at 1 year after the procedure by angiography or multi-detector row computed tomographic coronary angiography. The median values for time to anastomosis were 13 min in the two group (p = 0.89). There was no revision of anastomosis in both groups. Additional stitches for hemostasis were required significantly less in SSA than ESA (18.0 vs 45.2 %, respectively, p < 0.05). Early angiographic patency; 96.6 % for SSA vs 93.5 % for ESA (p = 0.50), and percentage of good anastomotic figure; 91.2 % for SSA vs 87.1 % for ESA (p = 0.54) were similar in both groups. The angiographic patency at 1 year were 92.9 % for SSA and 81.0 % for ESA (p = 0.16). There was no predictive factor for early and late graft failure. Our study showed feasibility of SSA using venous conduit in individual CABG based on early and mid-term angiographic results. This anastomotic fashion is easy to perform and maybe beneficial in blood flow pattern.

  7. A Novel CMOS Multi-band THz Detector with Embedded Ring Antenna

    NASA Astrophysics Data System (ADS)

    Xu, Lei-jun; Guan, Jia-ning; Bai, Xue; Li, Qin; Mao, Han-ping

    2017-10-01

    To overcome the large chip area occupation for the traditional terahertz multi-frequency detector by using the antenna elements in a different frequency, a novel structure for a multi-frequency detector is proposed and studied. Based on the ring antenna detector, an embedded multi-ring antenna with multi-port is proposed for the multi-frequency detector. A single-ring and dual-ring detectors are analyzed and designed in 0.18 μ m CMOS. For the single-ring detector, the best responsivity and NEP is 701 V/W and 261 pW/Hz0.5 at the frequency of 290 GHz. For the dual-ring detector, the best responsivity is 367 V/W and 297 V/W, NEP is 578 pW/Hz0.5 and 713pW/Hz0.5, at the frequency of 600 GHz and 806 GHz, respectively. This embedded multi-ring detector has a simple structure which can be expanded easily in a compact size.

  8. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    NASA Astrophysics Data System (ADS)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  9. Evaluation of the accuracy of linear measurements on multi-slice and cone beam computed tomography scans to detect the mandibular canal during bilateral sagittal split osteotomy of the mandible.

    PubMed

    Freire-Maia, B; Machado, V deC; Valerio, C S; Custódio, A L N; Manzi, F R; Junqueira, J L C

    2017-03-01

    The aim of this study was to compare the accuracy of linear measurements of the distance between the mandibular cortical bone and the mandibular canal using 64-detector multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT). It was sought to evaluate the reliability of these examinations in detecting the mandibular canal for use in bilateral sagittal split osteotomy (BSSO) planning. Eight dry human mandibles were studied. Three sites, corresponding to the lingula, the angle, and the body of the mandible, were selected. After the CT scans had been obtained, the mandibles were sectioned and the bone segments measured to obtain the actual measurements. On analysis, no statistically significant difference was found between the measurements obtained through MSCT and CBCT, or when comparing the measurements from these scans with the actual measurements. It is concluded that the images obtained by CT scan, both 64-detector multi-slice and cone beam, can be used to obtain accurate linear measurements to locate the mandibular canal for preoperative planning of BSSO. The ability to correctly locate the mandibular canal during BSSO will reduce the occurrence of neurosensory disturbances in the postoperative period. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. 30 CFR 75.1714-7 - Multi-gas detectors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Multi-gas detectors. 75.1714-7 Section 75.1714... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1714-7 Multi-gas detectors. (a) Availability. A mine operator shall provide an MSHA-approved, handheld, multi-gas detector that...

  11. 30 CFR 75.1714-7 - Multi-gas detectors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Multi-gas detectors. 75.1714-7 Section 75.1714... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1714-7 Multi-gas detectors. (a) Availability. A mine operator shall provide an MSHA-approved, handheld, multi-gas detector that...

  12. 30 CFR 75.1714-7 - Multi-gas detectors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Multi-gas detectors. 75.1714-7 Section 75.1714... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1714-7 Multi-gas detectors. (a) Availability. A mine operator shall provide an MSHA-approved, handheld, multi-gas detector that...

  13. 30 CFR 75.1714-7 - Multi-gas detectors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Multi-gas detectors. 75.1714-7 Section 75.1714... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1714-7 Multi-gas detectors. (a) Availability. A mine operator shall provide an MSHA-approved, handheld, multi-gas detector that...

  14. 30 CFR 75.1714-7 - Multi-gas detectors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Multi-gas detectors. 75.1714-7 Section 75.1714... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1714-7 Multi-gas detectors. (a) Availability. A mine operator shall provide an MSHA-approved, handheld, multi-gas detector that...

  15. Influence of different length of core suture purchase among suture row on the strength of 6-strand tendon repairs.

    PubMed

    Okubo, Hirotaka; Kusano, Nozomu; Kinjo, Masaki; Kanaya, Fuminori

    2015-01-01

    In multi-strand suture methods consisting of several suture rows, the different length of core suture purchase between each suture row may affect the strength of repairs. We evaluated the influence of the different length of core suture purchase between each suture row on the strength of 6-strand tendon repairs. Rabbit flexor tendons were repaired by using a triple-looped suture technique in which the suture purchase length in each suture row was modified. Group 1, all lengths are 8-mm. Group 2, all lengths are 10-mm. Group 3, two are 10-mm and one is 8-mm. Group 4, one is 10-mm and two are 8-mm. The repaired tendons were subjected to load-to-failure test. The gap strength was significantly greater in Group 1 and Group 2 than in Group 3 and Group 4. This study demonstrates that maintaining equal core suture purchase lengths of each suture row increases the gap resistance.

  16. Multi-dimensional position sensor using range detectors

    DOEpatents

    Vann, Charles S.

    2000-01-01

    A small, non-contact optical sensor uses ranges and images to detect its relative position to an object in up to six degrees of freedom. The sensor has three light emitting range detectors which illuminate a target and can be used to determine distance and two tilt angles. A camera located between the three range detectors senses the three remaining degrees of freedom, two translations and one rotation. Various range detectors, with different light sources, e.g. lasers and LEDs, different collection options, and different detection schemes, e.g. diminishing return and time of flight can be used. This sensor increases the capability and flexibility of computer controlled machines, e.g. it can instruct a robot how to adjust automatically to different positions and orientations of a part.

  17. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOEpatents

    Smither, Robert K [Hinsdale, IL

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  18. Project Report: Active Pipeline Encroachment Detector (Phase I)

    DOT National Transportation Integrated Search

    2008-06-10

    Of the many pipeline accident causes that occur to oil and gas pipelines, approximately 40% of are caused by third-party excavating activities into the buried pipeline right of way (ROW). According to DOT statistics, excavation damage is the second l...

  19. Ectopic Multinodular Goiter: Multidetector Computed Tomography Findings

    PubMed Central

    Karakaya, Afak Durur; Kantarci, Mecit; Yalcin, Ahmet; Demir, Berrin

    2008-01-01

    The thyroid is the first endocrine gland to form during embryogenesis. At this stage, incomplete or anomalous migration of thyroid tissue causes ectopic localization of the gland. In our case, a 55-year-old woman who was evaluated via ultrasonography (USG) and multi-detector computed tomography (MDCT) had no thyroid gland at the normal location, but did have ectopic thyroid tissue in the left submandibular and submental regions. PMID:25610021

  20. Geant4 Computing Performance Benchmarking and Monitoring

    DOE PAGES

    Dotti, Andrea; Elvira, V. Daniel; Folger, Gunter; ...

    2015-12-23

    Performance evaluation and analysis of large scale computing applications is essential for optimal use of resources. As detector simulation is one of the most compute intensive tasks and Geant4 is the simulation toolkit most widely used in contemporary high energy physics (HEP) experiments, it is important to monitor Geant4 through its development cycle for changes in computing performance and to identify problems and opportunities for code improvements. All Geant4 development and public releases are being profiled with a set of applications that utilize different input event samples, physics parameters, and detector configurations. Results from multiple benchmarking runs are compared tomore » previous public and development reference releases to monitor CPU and memory usage. Observed changes are evaluated and correlated with code modifications. Besides the full summary of call stack and memory footprint, a detailed call graph analysis is available to Geant4 developers for further analysis. The set of software tools used in the performance evaluation procedure, both in sequential and multi-threaded modes, include FAST, IgProf and Open|Speedshop. In conclusion, the scalability of the CPU time and memory performance in multi-threaded application is evaluated by measuring event throughput and memory gain as a function of the number of threads for selected event samples.« less

  1. Method and apparatus for reading free falling dosimeter punchcodes

    DOEpatents

    Langsted, James M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is outputted to the operator. The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing.

  2. Image deblurring by motion estimation for remote sensing

    NASA Astrophysics Data System (ADS)

    Chen, Yueting; Wu, Jiagu; Xu, Zhihai; Li, Qi; Feng, Huajun

    2010-08-01

    The imagery resolution of imaging systems for remote sensing is often limited by image degradation resulting from unwanted motion disturbances of the platform during image exposures. Since the form of the platform vibration can be arbitrary, the lack of priori knowledge about the motion function (the PSF) suggests blind restoration approaches. A deblurring method which combines motion estimation and image deconvolution both for area-array and TDI remote sensing has been proposed in this paper. The image motion estimation is accomplished by an auxiliary high-speed detector and a sub-pixel correlation algorithm. The PSF is then reconstructed from estimated image motion vectors. Eventually, the clear image can be recovered by the Richardson-Lucy (RL) iterative deconvolution algorithm from the blurred image of the prime camera with the constructed PSF. The image deconvolution for the area-array detector is direct. While for the TDICCD detector, an integral distortion compensation step and a row-by-row deconvolution scheme are applied. Theoretical analyses and experimental results show that, the performance of the proposed concept is convincing. Blurred and distorted images can be properly recovered not only for visual observation, but also with significant objective evaluation increment.

  3. A portable and autonomous multichannel fluorescence detector for on-line and in situ explosive detection in aqueous phase.

    PubMed

    Xin, Yunhong; Wang, Qi; Liu, Taihong; Wang, Lingling; Li, Jia; Fang, Yu

    2012-11-21

    A multichannel fluorescence detector used to detect nitroaromatic explosives in aqueous phase has been developed, which is composed of a five-channel sample-sensor unit, a measurement and control unit, a microcontroller, and a communication unit. The characteristics of the detector as developed are mainly embedded in the sensor unit, and each sensor consists of a fluorescent sensing film, a light emitting diode (LED), a multi-pixel photon counter (MPPC), and an optical module with special bandpass optical filters. Due to the high sensitivity of the sensing film, the small size and low cost of LED and MPPC, the developed detector not only has a better detecting performance and small size, but also has a very low cost - it is an alternative to the device made with an expensive high power lamp and photomultiplier tube. The wavelengths of the five sensors covered extend from the upper UV through the visible spectrum, 370-640 nm, and thereby it possesses the potential to detect a variety of explosives and other hazardous materials in aqueous phase. An additional function of the detector is its ability to function via a wireless network, by which the data recorded by the detector can be sent to the host computer, and at the same time the instructions can be sent to the detector from the host computer. By means of the powerful computing ability of the host computer, and utilizing the classical principal component analysis (PCA) algorithm, effective classification of the analytes is achieved. Furthermore, the detector has been tested and evaluated using NB, PA, TNT and DNT as the analytes, and toluene, benzene, methanol and ethanol as interferent compounds (concentration various from 10 and 60 μM). It has been shown that the detector can detect the four nitroaromatics with high sensitivity and selectivity.

  4. The LHCb software and computing upgrade for Run 3: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Bozzi, C.; Roiser, S.; LHCb Collaboration

    2017-10-01

    The LHCb detector will be upgraded for the LHC Run 3 and will be readout at 30 MHz, corresponding to the full inelastic collision rate, with major implications on the full software trigger and offline computing. If the current computing model and software framework are kept, the data storage capacity and computing power required to process data at this rate, and to generate and reconstruct equivalent samples of simulated events, will exceed the current capacity by at least one order of magnitude. A redesign of the software framework, including scheduling, the event model, the detector description and the conditions database, is needed to fully exploit the computing power of multi-, many-core architectures, and coprocessors. Data processing and the analysis model will also change towards an early streaming of different data types, in order to limit storage resources, with further implications for the data analysis workflows. Fast simulation options will allow to obtain a reasonable parameterization of the detector response in considerably less computing time. Finally, the upgrade of LHCb will be a good opportunity to review and implement changes in the domains of software design, test and review, and analysis workflow and preservation. In this contribution, activities and recent results in all the above areas are presented.

  5. Computation of flow in radial- and mixed-flow cascades by an inviscid-viscous interaction method

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Hansen, E. C.

    1980-01-01

    The use of inviscid-viscous interaction methods for the case of radial or mixed-flow cascade diffusers is discussed. A literature review of investigations considering cascade flow-field prediction by inviscid-viscous iterative computation is given. Cascade aerodynamics in the third blade row of a multiple-row radial cascade diffuser are specifically investigated.

  6. Solid-state Image Sensor with Focal-plane Digital Photon-counting Pixel Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Pain, Bedabrata

    1997-01-01

    A solid-state focal-plane imaging system comprises an NxN array of high gain. low-noise unit cells. each unit cell being connected to a different one of photovoltaic detector diodes, one for each unit cell, interspersed in the array for ultra low level image detection and a plurality of digital counters coupled to the outputs of the unit cell by a multiplexer(either a separate counter for each unit cell or a row of N of counters time shared with N rows of digital counters). Each unit cell includes two self-biasing cascode amplifiers in cascade for a high charge-to-voltage conversion gain (greater than 1mV/e(-)) and an electronic switch to reset input capacitance to a reference potential in order to be able to discriminate detection of an incident photon by the photoelectron (e(-))generated in the detector diode at the input of the first cascode amplifier in order to count incident photons individually in a digital counter connected to the output of the second cascade amplifier. Reseting the input capacitance and initiating self-biasing of the amplifiers occurs every clock cycle of an integratng period to enable ultralow light level image detection by the may of photovoltaic detector diodes under such ultralow light level conditions that the photon flux will statistically provide only a single photon at a time incident on anyone detector diode during any clock cycle.

  7. Installation for the catalytic afterburning of exhaust gases of a multi-cylinder internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, K.

    1974-04-24

    An installation for the catalytic afterburning of exhaust gases of a multi-cylinder internal combustion engine has two cylinder rows with two exhaust gas lines, each of which includes at least one catalyst. A temperature-responsive control is operable during engine start-up to conduct substantially the entire exhaust gas flow from the internal combustion engine during warmup for a predetermined time by way of only one of the two catalyst and then, after a short period of time, to conduct the exhaust gas flow from each row of cylinders by way of its associated gas line and catalyst.

  8. A multi-channel photometric detector for multi-component analysis in flow injection analysis

    PubMed Central

    Tan, Aimin; Huang, Jialin; Geng, Liudi; Xu, Jinhua; Zhao, Xinna

    1994-01-01

    The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors. PMID:18924688

  9. A multi-channel photometric detector for multi-component analysis in flow injection analysis.

    PubMed

    Tan, A; Huang, J; Geng, L; Xu, J; Zhao, X

    1994-01-01

    The detector, a multi-channel photometric detector, described in this paper was developed using multi-wavelength LEDs (light emitting diode) and phototransistors for absorbance measurement controlled by an Intel 8031 8-bit single chip microcomputer. Up to four flow cells can be attached to the detector. The LEDs and phototransistors are both inexpensive, and reliable. The results given by the detector for simultaneous determination of trace amounts of cobalt and cadmium in zinc sulphate electrolyte are reported. Because of the newly developed detector, this approach employs much less hardware apparatus than by employing conventional photometric detectors.

  10. Single-fiber multi-color pyrometry

    DOEpatents

    Small, IV, Ward; Celliers, Peter

    2004-01-27

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  11. Single-fiber multi-color pyrometry

    DOEpatents

    Small, IV, Ward; Celliers, Peter

    2000-01-01

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  12. Towards a heralded eigenstate-preserving measurement of multi-qubit parity in circuit QED

    NASA Astrophysics Data System (ADS)

    Huembeli, Patrick; Nigg, Simon E.

    2017-07-01

    Eigenstate-preserving multi-qubit parity measurements lie at the heart of stabilizer quantum error correction, which is a promising approach to mitigate the problem of decoherence in quantum computers. In this work we explore a high-fidelity, eigenstate-preserving parity readout for superconducting qubits dispersively coupled to a microwave resonator, where the parity bit is encoded in the amplitude of a coherent state of the resonator. Detecting photons emitted by the resonator via a current biased Josephson junction yields information about the parity bit. We analyze theoretically the measurement back action in the limit of a strongly coupled fast detector and show that in general such a parity measurement, while approximately quantum nondemolition is not eigenstate preserving. To remediate this shortcoming we propose a simple dynamical decoupling technique during photon detection, which greatly reduces decoherence within a given parity subspace. Furthermore, by applying a sequence of fast displacement operations interleaved with the dynamical decoupling pulses, the natural bias of this binary detector can be efficiently suppressed. Finally, we introduce the concept of a heralded parity measurement, where a detector click guarantees successful multi-qubit parity detection even for finite detection efficiency.

  13. Whole brain CT perfusion deficits using 320-detector-row CT scanner in TIA patients are associated with ABCD2 score.

    PubMed

    Mehta, Bijal K; Mustafa, Ghulam; McMurtray, Aaron; Masud, Mohammed W; Gunukula, Sameer K; Kamal, Haris; Kandel, Amit; Beltagy, Abdelrahman; Li, Ping

    2014-01-01

    Transient ischemic attacks (TIA) are cerebral ischemic events without infarction. The uses of CT perfusion (CTP) techniques such as cerebral blood volume (CBV), time to peak (TTP), mean transit time (MTT) and cerebral blood flow (CBF) provide real time data about ischemia. It has been shown that CTP changes occur in less sensitive CTP scanners in patients with TIA. Larger detector row CTP (whole brain perfusion studies) may show that CTP abnormalities are more prevalent than previously noted. It is also unclear if these changes are associated with TIA severity. To demonstrate that TIA patients are associated with perfusion deficits using whole brain 320-detector-row CT perfusion, and to determine an association between ABCD2 score and perfusion deficit using whole brain perfusion. We retrospectively reviewed all TIA patients for CTP deficits from 2008-2010. Perfusion imaging was reviewed at admission; and it was determined if a perfusion deficit was present along with vascular territory involved. Of 364 TIA patients, 62 patients had CTP deficits. The largest group of patients had MCA territory involved with 48 of 62 patients (77.42%). The most common perfusion abnormality was increased TTP with 46 patients (74.19%). The ABCD2 score was reviewed in association with perfusion deficit. Increased age >60, severe hypertension (>180/100 mmHg), patients with speech abnormalities, and duration of symptoms >10 min were associated with a perfusion deficit but history of diabetes or minimal/moderate hypertension (140/90-179/99 mmHg) was not. There was no association between motor deficit and perfusion abnormality. Perfusion deficits are found in TIA patients using whole brain CTP and associated with components of the ABCD2 score.

  14. Respiratory-gated segment reconstruction for radiation treatment planning using 256-slice CT-scanner during free breathing

    NASA Astrophysics Data System (ADS)

    Mori, Shinichiro; Endo, Masahiro; Kohno, Ryosuke; Minohara, Shinichi; Kohno, Kazutoshi; Asakura, Hiroshi; Fujiwara, Hideaki; Murase, Kenya

    2005-04-01

    The conventional respiratory-gated CT scan technique includes anatomic motion induced artifacts due to the low temporal resolution. They are a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Temporal resolution and image quality are important factors to minimize planning target volume margin due to the respiratory motion. To achieve high temporal resolution and high signal-to-noise ratio, we developed a respiratory gated segment reconstruction algorithm and adapted it to Feldkamp-Davis-Kress algorithm (FDK) with a 256-detector row CT. The 256-detector row CT could scan approximately 100 mm in the cranio-caudal direction with 0.5 mm slice thickness in one rotation. Data acquisition for the RS-FDK relies on the assistance of the respiratory sensing system by a cine scan mode (table remains stationary). We evaluated RS-FDK in phantom study with the 256-detector row CT and compared it with full scan (FS-FDK) and HS-FDK results with regard to volume accuracy and image noise, and finally adapted the RS-FDK to an animal study. The RS-FDK gave a more accurate volume than the others and it had the same signal-to-noise ratio as the FS-FDK. In the animal study, the RS-FDK visualized the clearest edges of the liver and pulmonary vessels of all the algorithms. In conclusion, the RS-FDK algorithm has a capability of high temporal resolution and high signal-to-noise ratio. Therefore it will be useful when combined with new radiotherapy techniques including image guided radiation therapy (IGRT) and 4D radiation therapy.

  15. Laser optical appraisal and design of a PRIME/Rover interface

    NASA Technical Reports Server (NTRS)

    Donaldson, J. A.

    1980-01-01

    An appraisal of whether to improve the existing multi-laser/multi detector system was undertaken. Two features of the elevation scanning mast which prevent the system from meeting desired specifications were studied. Then elevation scanning mast has 20 detectors, as opposed to the desired 40. This influences the system's overall resolution. The mirror shaft encoder's finite resolution prevents the laser from being aimed exactly as desired. This influences the system's overall accuracy. It was concluded that the existing system needs no modification at present. The design and construction of a data emulator which allowed testing data transactions with a PRIME computer is described, and theory of operation briefly discussed. A full blown PRIME/Rover Interface was designed and built. The capabilities of this Interface and its operating principles are discussed.

  16. SU-E-T-458: Determining Threshold-Of-Failure for Dead Pixel Rows in EPID-Based Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gersh, J; Wiant, D

    Purpose: A pixel correction map is applied to all EPID-based applications on the TrueBeam (Varian Medical Systems, Palo Alto, CA). When dead pixels are detected, an interpolative smoothing algorithm is applied using neighboring-pixel information to supplement missing-pixel information. The vendor suggests that when the number of dead pixels exceeds 70,000, the panel should be replaced. It is common for entire detector rows to be dead, as well as their neighboring rows. Approximately 70 rows can be dead before the panel reaches this threshold. This study determines the number of neighboring dead-pixel rows that would create a large enough deviation inmore » measured fluence to cause failures in portal dosimetry (PD). Methods: Four clinical two-arc VMAT plans were generated using Eclipse's AXB algorithm and PD plans were created using the PDIP algorithm. These plans were chosen to represent those commonly encountered in the clinic: prostate, lung, abdomen, and neck treatments. During each iteration of this study, an increasing number of dead-pixel rows are artificially applied to the correction map and a fluence QA is performed using the EPID (corrected with this map). To provide a worst-case-scenario, the dead-pixel rows are chosen so that they present artifacts in the highfluence region of the field. Results: For all eight arc-fields deemed acceptable via a 3%/3mm gamma analysis (pass rate greater than 99%), VMAT QA yielded identical results with a 5 pixel-width dead zone. When 10 dead lines were present, half of the fields had pass rates below the 99% pass rate. With increasing dead rows, the pass rates were reduced substantially. Conclusion: While the vendor still suggests to request service at the point where 70,000 dead rows are measured (as recommended by the vendor), the authors suggest that service should be requested when there are greater than 5 consecutive dead rows.« less

  17. Generalization of the Lyot filter and its application to snapshot spectral imaging.

    PubMed

    Gorman, Alistair; Fletcher-Holmes, David William; Harvey, Andrew Robert

    2010-03-15

    A snapshot multi-spectral imaging technique is described which employs multiple cascaded birefringent interferometers to simultaneously spectrally filter and demultiplex multiple spectral images onto a single detector array. Spectral images are recorded directly without the need for inversion and without rejection of light and so the technique offers the potential for high signal-to-noise ratio. An example of an eight-band multi-spectral movie sequence is presented; we believe this is the first such demonstration of a technique able to record multi-spectral movie sequences without the need for computer reconstruction.

  18. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm(3) crystals.

    PubMed

    Yamaya, Taiga; Mitsuhashi, Takayuki; Matsumoto, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Kawai, Hideyuki; Suga, Mikio; Watanabe, Mitsuo

    2011-11-07

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm(3) cubic crystals, in contrast to our previous development using 3.0 mm(3) cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm(3) in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm(2), were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.

  19. Comparison between Carotid Artery Wall Thickness Measured by Multidetector Row Computed Tomography Angiography and Intimae-Media Thickness Measured by Sonography

    PubMed Central

    Savić, Živorad N.; Soldatović, Ivan I.; Brajović, Milan D.; Pavlović, Aleksandra M.; Mladenović, Dušan R.; Škodrić-Trifunović, Vesna D.

    2011-01-01

    The increased thickness of the carotid wall >1 mm is a significant predictor of coronary and cerebrovascular diseases. The purpose of our study was to assess the agreement between multidetector row computed tomography angiography (MDCTA) in measuring carotid artery wall thickness (CAWT) and color Doppler ultrasound (CD-US) in measuring intimae-media thickness (IMT). Eighty-nine patients (aged 35–81) were prospectively analyzed using a 64-detector MDCTA and a CD-US scanner. Continuous data were described as the mean value ± standard deviation, and were compared using the Mann–Whitney U test. A p value <0.05 was considered significant. Bland–Altman statistics were employed to measure the agreement between MDCTA and CD-US. CAWT ranged from 0.62 to 1.60 mm, with a mean value of 1.09 mm. IMT ranged from 0.60 to 1.55 mm, with a mean value of 1.06 mm. We observed an excellent agreement between CD-US and MDCTA in the evaluation of the common carotid artery thickness, with a bias between methods of 0.029 mm (which is a highly statistically important difference of absolute values [t = 43.289; p < 0.01] obtained by paired T test), and limits of agreement from 0.04 to 0.104. Pearson correlation coefficient was 0.9997 (95% CI 0.9996–0.9998; p < 0.01). We conclude that there is an excellent correlation between CAWT and IMT measurements obtained with the MDCTA and CD-US. PMID:22224072

  20. Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahasi, Kiyomi; Sato, Shigehiro; Ogawae, Akira; Onagawa, Jun

    2010-07-01

    An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  1. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M [Albuquerque, NM; Wehlburg, Christine M [Albuquerque, NM; Wehlburg, Joseph C [Albuquerque, NM; Smith, Mark W [Albuquerque, NM; Smith, Jody L [Albuquerque, NM

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  2. Method and apparatus for reading free falling dosimeter punchcodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langsted, J.M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is output to the operator.more » The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing. 8 figs.« less

  3. Method and apparatus for reading free falling dosimeter punchcodes

    DOEpatents

    Langsted, J.M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is output to the operator. The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing. 8 figs.

  4. BIG MAC: A bolometer array for mid-infrared astronomy, Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Telesco, C. M.; Decher, R.; Baugher, C.

    1985-01-01

    The infrared array referred to as Big Mac (for Marshall Array Camera), was designed for ground based astronomical observations in the wavelength range 5 to 35 microns. It contains 20 discrete gallium-doped germanium bolometer detectors at a temperature of 1.4K. Each bolometer is irradiated by a square field mirror constituting a single pixel of the array. The mirrors are arranged contiguously in four columns and five rows, thus defining the array configuration. Big Mac utilized cold reimaging optics and an up looking dewar. The total Big Mac system also contains a telescope interface tube for mounting the dewar and a computer for data acquisition and processing. Initial astronomical observations at a major infrared observatory indicate that Big Mac performance is excellent, having achieved the design specifications and making this instrument an outstanding tool for astrophysics.

  5. The fast algorithm of spark in compressive sensing

    NASA Astrophysics Data System (ADS)

    Xie, Meihua; Yan, Fengxia

    2017-01-01

    Compressed Sensing (CS) is an advanced theory on signal sampling and reconstruction. In CS theory, the reconstruction condition of signal is an important theory problem, and spark is a good index to study this problem. But the computation of spark is NP hard. In this paper, we study the problem of computing spark. For some special matrixes, for example, the Gaussian random matrix and 0-1 random matrix, we obtain some conclusions. Furthermore, for Gaussian random matrix with fewer rows than columns, we prove that its spark equals to the number of its rows plus one with probability 1. For general matrix, two methods are given to compute its spark. One is the method of directly searching and the other is the method of dual-tree searching. By simulating 24 Gaussian random matrixes and 18 0-1 random matrixes, we tested the computation time of these two methods. Numerical results showed that the dual-tree searching method had higher efficiency than directly searching, especially for those matrixes which has as much as rows and columns.

  6. Role of Multi Detector Computed Tomography (MDCT) in Preoperative Staging of Pancreatic Carcinoma.

    PubMed

    Singhal, Soumil; Prabhu, Nirmal Kumar; Sethi, Pulkit; Moorthy, Srikanth

    2017-05-01

    Pancreatic carcinoma is one of the leading causes of cancer related death in advanced countries and has shown rising trends in developing countries like India. Increase in the incidence has been linked to risk factors like lifestyle modification associated with increased alcohol consumption and rapid urbanization. Most patients at the time of diagnosis present with an advanced condition. Surgical resection offers the only chance for cure in them and imaging plays a crucial role in the early diagnosis of the condition. To compare the staging of pancreatic carcinoma by MDCT (Multi Detector Computed Tomography) with surgery in a preoperative setting in a tertiary referral centre in Kerala. A cross-sectional observational study was performed between November 2014 and October 2016, 25 patients (12 men, 13 women), with a mean age of 54.2 years, were evaluated. MDCT was performed using 16 slice, 64 slice and 256 slice multi detector CT machines. The gold standard for diagnosis was histopathology and operative data. All statistical analysis was done using IBM SPSS version 20.0. Validity parameters like sensitivity, specificity, accuracy and Positive Predictive Value (PPV) / Negative Predictive Value (NPV) were computed for MDCT with respect to surgery. Of the 25 patients who were evaluated for surgery, 15 (60%) cases were classified as resectable tumours, 3 (12%) as borderline resectable and 7 (28%) as unresectable tumours. CT showed a sensitivity of 82.3% with a specificity of 87.5%. However, for assessing vascular invasion, CT showed sensitivity and specificity of 100% and 93.3% respectively. Three (12%) patients in the study who were classified as borderline resectable pancreatic tumours underwent surgery. Contrast-enhanced multiphase pancreatic imaging using MDCT plays a pivotal role in diagnosing and assessing resectability and vascular invasion of pancreatic tumours. It is very useful for determining borderline resectable tumours pre-operatively, which aids for better treatment planning.

  7. Muscular performance and body composition changes following multi-joint versus combined multi- and single-joint exercises in aging adults.

    PubMed

    Bezerra, Ewertton de Souza; Moro, Antônio Renato Pereira; Orssatto, Lucas Bet da Rosa; da Silva, Mariane Eichendorf; Willardson, Jeffrey Michael; Simão, Roberto

    2018-06-01

    The aim of the present study was to compare muscular performance and body composition changes following low-volume resistance-training programs consisting of multi-joint (MJ) exercises (cable chest press and seated row) versus a combination of multi- and single-joint (MJ+SJ) exercises (cable chest press, seated row, biceps curl, and triceps extension). Thirty untrained healthy aging adults were randomly assigned to 3 groups: MJ (n = 11), MJ+SJ (n = 11), and control (n = 8). Twelve-repetition maximums (12-RMs) for the cable chest press and seated row, localized muscular endurance for the elbow flexors handgrip strength, and body composition were assessed before and after the 8-week training program. All comparisons were analyzed via a mixed-model analysis with repeated measures (group × time) and the Bonferroni post hoc test (p < 0.05). The MJ and MJ+SJ groups increased performance in the 12-RM cable chest press (MJ = 61.5% ± 24.6% and MJ+SJ = 71.1% ± 25.6%), 12-RM seated row (MJ = 46.4% ± 26.3% and MJ+SJ = 51.5% ± 21.0%), localized muscular endurance (MJ = 24.7% ± 16.7% and MJ+SJ = 37.0% ± 11.4%), and handgrip strength (MJ = 9.3% ± 10.4% and MJ+SJ = 16.6% ± 25.3%) after the intervention. Body composition (i.e., trunk and upper limb fat and lean mass) did not change for any groups. No significant differences were observed between the MJ versus the MJ+SJ protocols after the intervention for any variables. In conclusion, for aging adults, either MJ or MJ+SJ low-volume resistance training resulted in similar increases in 12-RM, localized muscular endurance, and handgrip strength, without changes in body composition after 8 weeks of training.

  8. A low complexity reweighted proportionate affine projection algorithm with memory and row action projection

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Grant, Steven L.; Benesty, Jacob

    2015-12-01

    A new reweighted proportionate affine projection algorithm (RPAPA) with memory and row action projection (MRAP) is proposed in this paper. The reweighted PAPA is derived from a family of sparseness measures, which demonstrate performance similar to mu-law and the l 0 norm PAPA but with lower computational complexity. The sparseness of the channel is taken into account to improve the performance for dispersive system identification. Meanwhile, the memory of the filter's coefficients is combined with row action projections (RAP) to significantly reduce computational complexity. Simulation results demonstrate that the proposed RPAPA MRAP algorithm outperforms both the affine projection algorithm (APA) and PAPA, and has performance similar to l 0 PAPA and mu-law PAPA, in terms of convergence speed and tracking ability. Meanwhile, the proposed RPAPA MRAP has much lower computational complexity than PAPA, mu-law PAPA, and l 0 PAPA, etc., which makes it very appealing for real-time implementation.

  9. Low-contrast detectability in volume rendering: a phantom study on multidetector-row spiral CT data.

    PubMed

    Shin, Hoen-Oh; Falck, Christian V; Galanski, Michael

    2004-02-01

    To cope with the increasing amount of CT data, there is growing interest in direct volume-rendering techniques (VRT) as a diagnostic tool. The aim of this phantom study was to analyze the low-contrast detectability (LCD) of VRT compared with multi-planar reformations (MPR). Soft tissue lesions were simulated by spheres of different diameters (3-8 mm). The average lesion density was 15 HU compared with a background density of 35 HU. Two different CT protocols with 40 and 150 mAs were performed on a multi-detector row CT. The scanning parameters were as following: 140 kV; 2x0.5-mm slice collimation; pitch 2 (table movement per rotation/single slice collimation), and reconstruction with 0.5-mm slice thickness at 0.5-mm interval. A B30 kernel was used for reconstruction. The VRT was performed by mapping Hounsfield values to gray levels equal to a CT window (center: 60 HU; window: 370 HU ). A linear ramp was applied for the opacity transfer function varying the maximum opacity between 0.1 and 1.0. A statistical method based on the Rose model was used to calculate the detection threshold depending on lesion size and image noise. Additionally, clinical data of 2 patients with three liver lesions of different sizes and density were evaluated. In VRT, LCD was most dependent on object size. Regarding lesions larger than 5 mm, VRT is significantly superior to MPR (p<0.05) for all opacity settings. In lesions sized 3-5 mm a maximum opacity level approximately 40-50% showed a near equivalent detectability in VRT and MPR. For higher opacity levels VRT was superior to MPR. Only for 3-mm lesions MPR performed slightly better in low-contrast detectability (p<0.05). Compared with MPR, VRT shows similar performance in LCD. Due to noise suppression effects, it is suited for visualization of data with high noise content.

  10. Cervical range of motion, cervical and shoulder strength in senior versus age-grade Rugby Union International front-row forwards.

    PubMed

    Davies, Mark; Moore, Isabel S; Moran, Patrick; Mathema, Prabhat; Ranson, Craig A

    2016-05-01

    To provide normative values for cervical range of motion (CROM), isometric cervical and shoulder strength for; International Senior professional, and International Age-grade Rugby Union front-row forwards. Cross-sectional population study. All international level front-row players within a Rugby Union Tier 1 Nation. Nineteen Senior and 21 Age-grade front-row forwards underwent CROM, cervical and shoulder strength testing. CROM was measured using the CROM device and the Gatherer System was used to measure multi-directional isometric cervical and shoulder strength. The Age-grade players had significantly lower; cervical strength (26-57% deficits), cervical flexion to extension strength ratios (0.5 vs. 0.6), and shoulder strength (2-36% deficits) than the Senior players. However, there were no differences between front-row positions within each age group. Additionally, there were no differences between age groups or front-row positions in the CROM measurements. Senior Rugby Union front-row forwards have greater cervical and shoulder strength than Age-grade players, with the biggest differences being in cervical strength, highlighting the need for age specific normative values. Importantly, Age-grade players should be evaluated to ensure they have developed sufficient cervical strength prior to entering professional level Rugby Union. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 4: Advanced fan section aerodynamic analysis computer program user's manual

    NASA Technical Reports Server (NTRS)

    Crook, Andrew J.; Delaney, Robert A.

    1992-01-01

    The computer program user's manual for the ADPACAPES (Advanced Ducted Propfan Analysis Code-Average Passage Engine Simulation) program is included. The objective of the computer program is development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates at the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes meeting the requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. The efficiency of the solution procedure was shown to be the same as the original analysis.

  12. Smisc - A collection of miscellaneous functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon Sego, PNNL

    2015-08-31

    A collection of functions for statistical computing and data manipulation. These include routines for rapidly aggregating heterogeneous matrices, manipulating file names, loading R objects, sourcing multiple R files, formatting datetimes, multi-core parallel computing, stream editing, specialized plotting, etc. Smisc-package A collection of miscellaneous functions allMissing Identifies missing rows or columns in a data frame or matrix as.numericSilent Silent wrapper for coercing a vector to numeric comboList Produces all possible combinations of a set of linear model predictors cumMax Computes the maximum of the vector up to the current index cumsumNA Computes the cummulative sum of a vector without propogating NAsmore » d2binom Probability functions for the sum of two independent binomials dataIn A flexible way to import data into R. dbb The Beta-Binomial Distribution df2list Row-wise conversion of a data frame to a list dfplapply Parallelized single row processing of a data frame dframeEquiv Examines the equivalence of two dataframes or matrices dkbinom Probability functions for the sum of k independent binomials factor2character Converts all factor variables in a dataframe to character variables findDepMat Identify linearly dependent rows or columns in a matrix formatDT Converts date or datetime strings into alternate formats getExtension Filename manipulations: remove the extension or path, extract the extension or path getPath Filename manipulations: remove the extension or path, extract the extension or path grabLast Filename manipulations: remove the extension or path, extract the extension or path ifelse1 Non-vectorized version of ifelse integ Simple numerical integration routine interactionPlot Two-way Interaction Plot with Error Bar linearMap Linear mapping of a numerical vector or scalar list2df Convert a list to a data frame loadObject Loads and returns the object(s) in an ".Rdata" file more Display the contents of a file to the R terminal movAvg2 Calculate the moving average using a 2-sided window openDevice Opens a graphics device based on the filename extension p2binom Probability functions for the sum of two independent binomials padZero Pad a vector of numbers with zeros parseJob Parses a collection of elements into (almost) equal sized groups pbb The Beta-Binomial Distribution pcbinom A continuous version of the binomial cdf pkbinom Probability functions for the sum of k independent binomials plapply Simple parallelization of lapply plotFun Plot one or more functions on a single plot PowerData An example of power data pvar Prints the name and value of one or more objects qbb The Beta-Binomial Distribution rbb And numerous others (space limits reporting).« less

  13. Development and performance evaluation of an experimental fine pitch detector multislice CT scanner.

    PubMed

    Imai, Yasuhiro; Nukui, Masatake; Ishihara, Yotaro; Fujishige, Takashi; Ogata, Kentaro; Moritake, Masahiro; Kurochi, Haruo; Ogata, Tsuyoshi; Yahata, Mitsuru; Tang, Xiangyang

    2009-04-01

    The authors have developed an experimental fine pitch detector multislice CT scanner with an ultrasmall focal spot x-ray tube and a high-density matrix detector through current CT technology. The latitudinal size of the x-ray tube focal spot was 0.4 mm. The detector dimension was 1824 channels (azimuthal direction) x 32 rows (longitudinal direction) at row width of 0.3125 mm, in which a thinner reflected separator surrounds each detector cell coupled with a large active area photodiode. They were mounted on a commercial 64-slice CT scanner gantry while the scan field of view (50 cm) and gantry rotation speed (0.35 s) can be maintained. The experimental CT scanner demonstrated the spatial resolution of 0.21-0.22 mm (23.8-22.7 lp/cm) with the acrylic slit phantom and in-plane 50%-MTF 9.0 lp/cm and 10%-MTF 22.0 lp/cm. In the longitudinal direction, it demonstrated the spatial resolution of 0.24 mm with the high-resolution insert of the CATPHAN phantom and 0.34 mm as the full width at half maximum of the slice sensitivity profile. In low-contrast detectability, 3 mm at 0.3% was visualized at the CTDI(vol) of 47.2 mGy. Two types of 2.75 mm diameter vessel phantoms with in-stent stenosis at 25%, 50%, and 75% stair steps were scanned, and the reconstructed images can clearly resolve the stenosis at each case. The experimental CT scanner provides high-resolution imaging while maintaining low-contrast detectability, demonstrating the potentiality for clinical applications demanding high spatial resolution, such as imaging of inner ear, lung, and bone, or low-contrast detectability, such as imaging of coronary artery.

  14. Sensor-Free or Sensor-Full: A Comparison of Data Modalities in Multi-Channel Affect Detection

    ERIC Educational Resources Information Center

    Paquette, Luc; Rowe, Jonathan; Baker, Ryan; Mott, Bradford; Lester, James; DeFalco, Jeanine; Brawner, Keith; Sottilare, Robert; Georgoulas, Vasiliki

    2016-01-01

    Computational models that automatically detect learners' affective states are powerful tools for investigating the interplay of affect and learning. Over the past decade, affect detectors--which recognize learners' affective states at run-time using behavior logs and sensor data--have advanced substantially across a range of K-12 and postsecondary…

  15. Numerical study of aero-excitation of steam-turbine rotor blade self-oscillations

    NASA Astrophysics Data System (ADS)

    Galaev, S. A.; Makhnov, V. Yu.; Ris, V. V.; Smirnov, E. M.

    2018-05-01

    Blade aero-excitation increment is evaluated by numerical solution of the full 3D unsteady Reynolds-averaged Navier-Stokes equations governing wet steam flow in a powerful steam-turbine last stage. The equilibrium wet steam model was adopted. Blade surfaces oscillations are defined by eigen-modes of a row of blades bounded by a shroud. Grid dependency study was performed with a reduced model being a set of blades multiple an eigen-mode nodal diameter. All other computations were carried out for the entire blade row. Two cases are considered, with an original-blade row and with a row of modified (reinforced) blades. Influence of eigen-mode nodal diameter and blade reinforcing on aero-excitation increment is analyzed. It has been established, in particular, that maximum value of the aero-excitation increment for the reinforced-blade row is two times less as compared with the original-blade row. Generally, results of the study point definitely to less probability of occurrence of blade self-oscillations in case of the reinforced blade-row.

  16. Method and apparatus for optimized processing of sparse matrices

    DOEpatents

    Taylor, Valerie E.

    1993-01-01

    A computer architecture for processing a sparse matrix is disclosed. The apparatus stores a value-row vector corresponding to nonzero values of a sparse matrix. Each of the nonzero values is located at a defined row and column position in the matrix. The value-row vector includes a first vector including nonzero values and delimiting characters indicating a transition from one column to another. The value-row vector also includes a second vector which defines row position values in the matrix corresponding to the nonzero values in the first vector and column position values in the matrix corresponding to the column position of the nonzero values in the first vector. The architecture also includes a circuit for detecting a special character within the value-row vector. Matrix-vector multiplication is executed on the value-row vector. This multiplication is performed by multiplying an index value of the first vector value by a column value from a second matrix to form a matrix-vector product which is added to a previous matrix-vector product.

  17. Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM).

    PubMed

    Gao, Hao; Yu, Hengyong; Osher, Stanley; Wang, Ge

    2011-11-01

    We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations.

  18. Multi-wavelength access gate for WDM-formatted words in optical RAM row architectures

    NASA Astrophysics Data System (ADS)

    Fitsios, D.; Alexoudi, T.; Vagionas, C.; Miliou, A.; Kanellos, G. T.; Pleros, N.

    2013-03-01

    Optical RAM has emerged as a promising solution for overcoming the "Memory Wall" of electronics, indicating the use of light in RAM architectures as the approach towards enabling ps-regime memory access times. Taking a step further towards exploiting the unique wavelength properties of optical signals, we reveal new architectural perspectives in optical RAM structures by introducing WDM principles in the storage area. To this end, we demonstrate a novel SOAbased multi-wavelength Access Gate for utilization in a 4x4 WDM optical RAM bank architecture. The proposed multiwavelength Access Gate can simultaneously control random access to a 4-bit optical word, exploiting Cross-Gain-Modulation (XGM) to process 8 Bit and Bit channels encoded in 8 different wavelengths. It also suggests simpler optical RAM row architectures, allowing for the effective sharing of one multi-wavelength Access Gate for each row, substituting the eight AGs in the case of conventional optical RAM architectures. The scheme is shown to support 10Gbit/s operation for the incoming 4-bit data streams, with a power consumption of 15mW/Gbit/s. All 8 wavelength channels demonstrate error-free operation with a power penalty lower than 3 dB for all channels, compared to Back-to-Back measurements. The proposed optical RAM architecture reveals that exploiting the WDM capabilities of optical components can lead to RAM bank implementations with smarter column/row encoders/decoders, increased circuit simplicity, reduced number of active elements and associated power consumption. Moreover, exploitation of the wavelength entity can release significant potential towards reconfigurable optical cache mapping schemes when using the wavelength dimension for memory addressing.

  19. Computational fluid dynamics simulation of sound propagation through a blade row.

    PubMed

    Zhao, Lei; Qiao, Weiyang; Ji, Liang

    2012-10-01

    The propagation of sound waves through a blade row is investigated numerically. A wave splitting method in a two-dimensional duct with arbitrary mean flow is presented, based on which pressure amplitude of different wave mode can be extracted at an axial plane. The propagation of sound wave through a flat plate blade row has been simulated by solving the unsteady Reynolds average Navier-Stokes equations (URANS). The transmission and reflection coefficients obtained by Computational Fluid Dynamics (CFD) are compared with semi-analytical results. It indicates that the low order URANS scheme will cause large errors if the sound pressure level is lower than -100 dB (with as reference pressure the product of density, main flow velocity, and speed of sound). The CFD code has sufficient precision when solving the interaction of sound wave and blade row providing the boundary reflections have no substantial influence. Finally, the effects of flow Mach number, blade thickness, and blade turning angle on sound propagation are studied.

  20. Unsteady flows in rotor-stator cascades

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Tai; Bein, Thomas W.; Feng, Jin Z.; Merkle, Charles L.

    1991-03-01

    A time-accurate potential-flow calculation method has been developed for unsteady incompressible flows through two-dimensional multi-blade-row linear cascades. The method represents the boundary surfaces by distributing piecewise linear-vortex and constant-source singularities on discrete panels. A local coordinate is assigned to each independently moving object. Blade-shed vorticity is traced at each time step. The unsteady Kutta condition applied is nonlinear and requires zero blade trailing-edge loading at each time. Its influence on the solutions depends on the blade trailing-edge shapes. Steady biplane and cascade solutions are presented and compared to exact solutions and experimental data. Unsteady solutions are validated with the Wagner function for an airfoil moving impulsively from rest and the Theodorsen function for an oscillating airfoil. The shed vortex motion and its interaction with blades are calculated and compared to an analytic solution. For multi-blade-row cascade, the potential effect between blade rows is predicted using steady and quasi unsteady calculations. The accuracy of the predictions is demonstrated using experimental results for a one-stage turbine stator-rotor.

  1. Bolted joints in graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1976-01-01

    All-graphite/epoxy laminates and hybrid graphite-glass/epoxy laminates were tested. The tests encompassed a range of geometries for each laminate pattern to cover the three basic failure modes - net section tension failure through the bolt hole, bearing and shearout. Static tensile and compressive loads were applied. A constant bolt diameter of 6.35 mm (0.25 in.) was used in the tests. The interaction of stress concentrations associated with multi-row bolted joints was investigated by testing single- and double-row bolted joints and open-hole specimens in tension. For tension loading, linear interaction was found to exist between the bearing stress reacted at a given bolt hole and the remaining tension stress running by that hole to be reacted elsewhere. The interaction under compressive loading was found to be non-linear. Comparative tests were run using single-lap bolted joints and double-lap joints with pin connection. Both of these joint types exhibited lower strengths than were demonstrated by the corresponding double-lap joints. The analysis methods developed here for single bolt joints are shown to be capable of predicting the behavior of multi-row joints.

  2. Development and evaluation of a LOR-based image reconstruction with 3D system response modeling for a PET insert with dual-layer offset crystal design.

    PubMed

    Zhang, Xuezhu; Stortz, Greg; Sossi, Vesna; Thompson, Christopher J; Retière, Fabrice; Kozlowski, Piotr; Thiessen, Jonathan D; Goertzen, Andrew L

    2013-12-07

    In this study we present a method of 3D system response calculation for analytical computer simulation and statistical image reconstruction for a magnetic resonance imaging (MRI) compatible positron emission tomography (PET) insert system that uses a dual-layer offset (DLO) crystal design. The general analytical system response functions (SRFs) for detector geometric and inter-crystal penetration of coincident crystal pairs are derived first. We implemented a 3D ray-tracing algorithm with 4π sampling for calculating the SRFs of coincident pairs of individual DLO crystals. The determination of which detector blocks are intersected by a gamma ray is made by calculating the intersection of the ray with virtual cylinders with radii just inside the inner surface and just outside the outer-edge of each crystal layer of the detector ring. For efficient ray-tracing computation, the detector block and ray to be traced are then rotated so that the crystals are aligned along the X-axis, facilitating calculation of ray/crystal boundary intersection points. This algorithm can be applied to any system geometry using either single-layer (SL) or multi-layer array design with or without offset crystals. For effective data organization, a direct lines of response (LOR)-based indexed histogram-mode method is also presented in this work. SRF calculation is performed on-the-fly in both forward and back projection procedures during each iteration of image reconstruction, with acceleration through use of eight-fold geometric symmetry and multi-threaded parallel computation. To validate the proposed methods, we performed a series of analytical and Monte Carlo computer simulations for different system geometry and detector designs. The full-width-at-half-maximum of the numerical SRFs in both radial and tangential directions are calculated and compared for various system designs. By inspecting the sinograms obtained for different detector geometries, it can be seen that the DLO crystal design can provide better sampling density than SL or dual-layer no-offset system designs with the same total crystal length. The results of the image reconstruction with SRFs modeling for phantom studies exhibit promising image recovery capability for crystal widths of 1.27-1.43 mm and top/bottom layer lengths of 4/6 mm. In conclusion, we have developed efficient algorithms for system response modeling of our proposed PET insert with DLO crystal arrays. This provides an effective method for both 3D computer simulation and quantitative image reconstruction, and will aid in the optimization of our PET insert system with various crystal designs.

  3. A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models

    PubMed Central

    Wu, Dan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-01-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography (MDCT)-basedhuman airwayswith minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditionsforthe 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: Nu=3.504(ReDaDt)0.277, R = 0.841 and Sh=3.652(ReDaDt)0.268, R = 0.825, where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, Da is the airway equivalent diameter, and Dt is the tracheal equivalentdiameter. PMID:25081386

  4. Pros and cons of colonoscopy in management of acute lower gastrointestinal bleeding

    PubMed Central

    Lhewa, Dekey Y; Strate, Lisa L

    2012-01-01

    Acute lower gastrointestinal bleeding (LGIB) is a frequent gastrointestinal cause of hospitalization, particularly in the elderly, and its incidence appears to be on the rise. Endoscopic and radiographic measures are available for the evaluation and treatment of LGIB including flexible sigmoidoscopy, colonoscopy, angiography, radionuclide scintigraphy and multi-detector row computed tomography. Although no modality has emerged as the gold standard in the management of LGIB, colonoscopy is the current preferred initial test for the majority of the patients presenting with hematochezia felt to be from a colon source. Colonoscopy has the ability to diagnose all sources of bleeding from the colon and, unlike the radiologic modalities, does not require active bleeding at the time of the examination. In addition, therapeutic interventions such as cautery and endoclips can be applied to achieve hemostasis and prevent recurrent bleeding. Studies suggest that colonoscopy, particularly when performed early in the hospitalization, can decrease hospital length of stay, rebleeding and the need for surgery. However, results from available small trials are conflicting and larger, multicenter studies are needed. Compared to other management options, colonoscopy is a safe procedure with complications reported in less than 2% of patients, including those undergoing urgent examinations. The requirement of bowel preparation (typically 4 or more liters of polyethylene glycol), the logistical complexity of coordinating after-hours colonoscopy, and the low prevalence of stigmata of hemorrhage complicate the use of colonoscopy for LGIB, particularly in urgent situations. This review discusses the above advantages and disadvantages of colonoscopy in the management of acute lower gastrointestinal bleeding in further detail. PMID:22468081

  5. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner.

    PubMed

    Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-Ichi; Sugihara, Naoki; Tsukagoshi, Shinsuke; Saito, Yasuo; Kazama, Masahiro; Ashizawa, Kazuto; Awai, Kazuo; Honda, Osamu; Ishikawa, Hiroyuki; Koizumi, Naoya; Komoto, Daisuke; Moriya, Hiroshi; Oda, Seitaro; Oshiro, Yasuji; Yanagawa, Masahiro; Tomiyama, Noriyuki; Asamura, Hisao

    2015-01-01

    The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner. The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures. Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners.

  6. First measurement with a new setup for low-energy Coulomb excitation studies at INFN LNL

    NASA Astrophysics Data System (ADS)

    Rocchini, M.; Hadyńska-Klȩk, K.; Nannini, A.; Valiente-Dobón, J. J.; Goasduff, A.; Testov, D.; John, P. R.; Mengoni, D.; Zielińska, M.; Bazzacco, D.; Benzoni, G.; Boso, A.; Cocconi, P.; Chiari, M.; Doherty, D. T.; Galtarossa, F.; Jaworski, G.; Komorowska, M.; Matejska-Minda, M.; Melon, B.; Menegazzo, R.; Napiorkowski, P.; Napoli, D. R.; Ottanelli, M.; Perego, A.; Ramina, L.; Rampazzo, M.; Recchia, F.; Riccetto, S.; Rosso, D.; Siciliano, M.; Sona, P.

    2017-07-01

    A new segmented particle detector, SPIDER, has been designed to be used as an ancillary device with the GALILEO γ-ray spectrometer, as well as with other multi-detector γ-ray arrays that will be available at LNL in the future (e.g. AGATA). To commission the SPIDER-GALILEO experimental setup, a multi-step Coulomb excitation experiment was carried out with a 240 MeV beam of 66Zn produced by the Tandem-XTU accelerator at INFN Laboratori Nazionali di Legnaro. The measured particle and γ-ray spectra are compared with the results of detailed GEANT4 simulations which used the Coulomb excitation cross sections, estimated with the computer code GOSIA, as an input. The preliminary results indicate that precise transition probabilities will be obtained which are essential for solving discrepancies reported in the literature for this nucleus.

  7. Multiparameter estimation with single photons—linearly-optically generated quantum entanglement beats the shotnoise limit

    NASA Astrophysics Data System (ADS)

    You, Chenglong; Adhikari, Sushovit; Chi, Yuxi; LaBorde, Margarite L.; Matyas, Corey T.; Zhang, Chenyu; Su, Zuen; Byrnes, Tim; Lu, Chaoyang; Dowling, Jonathan P.; Olson, Jonathan P.

    2017-12-01

    It was suggested in (Motes et al 2015 Phys. Rev. Lett. 114 170802) that optical networks with relatively inexpensive overheads—single photon Fock states, passive optical elements, and single photon detection—can show significant improvements over classical strategies for single-parameter estimation, when the number of modes in the network is small (n< 7). A similar case was made in (Humphreys et al 2013 Phys. Rev. Lett. 111 070403) for multi-parameter estimation, where measurement is instead made using photon-number resolving detectors. In this paper, we analytically compute the quantum Cramér-Rao bound to show these networks can have a constant-factor quantum advantage in multi-parameter estimation for even large number of modes. Additionally, we provide a simplified measurement scheme using only single-photon (on-off) detectors that is capable of approximately obtaining this sensitivity for a small number of modes.

  8. Two-dimensional radiant energy array computers and computing devices

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1976-01-01

    Two dimensional digital computers and computer devices operate in parallel on rectangular arrays of digital radiant energy optical signal elements which are arranged in ordered rows and columns. Logic gate devices receive two input arrays and provide an output array having digital states dependent only on the digital states of the signal elements of the two input arrays at corresponding row and column positions. The logic devices include an array of photoconductors responsive to at least one of the input arrays for either selectively accelerating electrons to a phosphor output surface, applying potentials to an electroluminescent output layer, exciting an array of discrete radiant energy sources, or exciting a liquid crystal to influence crystal transparency or reflectivity.

  9. Some queuing network models of computer systems

    NASA Technical Reports Server (NTRS)

    Herndon, E. S.

    1980-01-01

    Queuing network models of a computer system operating with a single workload type are presented. Program algorithms are adapted for use on the Texas Instruments SR-52 programmable calculator. By slightly altering the algorithm to process the G and H matrices row by row instead of column by column, six devices and an unlimited job/terminal population could be handled on the SR-52. Techniques are also introduced for handling a simple load dependent server and for studying interactive systems with fixed multiprogramming limits.

  10. Enabling Grid Computing resources within the KM3NeT computing model

    NASA Astrophysics Data System (ADS)

    Filippidis, Christos

    2016-04-01

    KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that - located at the bottom of the Mediterranean Sea - will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. International collaborative scientific experiments, like KM3NeT, are generating datasets which are increasing exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st century. These experiments, in their majority, adopt computing models consisting of different Tiers with several computing centres and providing a specific set of services for the different steps of data processing such as detector calibration, simulation and data filtering, reconstruction and analysis. The computing requirements are extremely demanding and, usually, span from serial to multi-parallel or GPU-optimized jobs. The collaborative nature of these experiments demands very frequent WAN data transfers and data sharing among individuals and groups. In order to support the aforementioned demanding computing requirements we enabled Grid Computing resources, operated by EGI, within the KM3NeT computing model. In this study we describe our first advances in this field and the method for the KM3NeT users to utilize the EGI computing resources in a simulation-driven use-case.

  11. Validation of the Australian diagnostic reference levels for paediatric multi detector computed tomography: a comparison of RANZCR QUDI data and subsequent NDRLS data from 2012 to 2015.

    PubMed

    Anna, Hayton; Wallace, Anthony; Thomas, Peter

    2017-03-01

    The national diagnostic reference level service (NDRLS), was launched in 2011, however no paediatric data were submitted during the first calendar year of operation. As such, Australian national diagnostic reference levels (DRLs), for paediatric multi detector computed tomography (MDCT), were established using data obtained from a Royal Australian and New Zealand College of Radiologists (RANZCR), Quality Use of Diagnostic Imaging (QUDI), study. Paediatric data were submitted to the NDRLS in 2012 through 2015. An analysis has been made of the NDRLS paediatric data using the same method as was used to analyse the QUDI data to establish the Australian national paediatric DRLs for MDCT. An analysis of the paediatric NDRLS data has also been made using the method used to calculate the Australian national adult DRLs for MDCT. A comparison between the QUDI data and subsequent NDRLS data shows the NDRLS data to be lower on average for the Head and AbdoPelvis protocol and similar for the chest protocol. Using an average of NDRLS data submitted between 2012 and 2015 implications for updated paediatric DRLS are considered.

  12. Wireless Synchronization of a Multi-Pinhole Small Animal SPECT Collimation Device With a Clinical Scanner

    NASA Astrophysics Data System (ADS)

    DiFilippo, Frank P.; Patel, Sagar

    2009-06-01

    A multi-pinhole collimation device for small animal single photon emission computed tomography (SPECT) uses the gamma camera detectors of a standard clinical SPECT scanner. The collimator and animal bed move independently of the detectors, and therefore their motions must be synchronized. One approach is manual triggering of the SPECT acquisition simultaneously with a programmed motion sequence for the device. However, some data blurring and loss of image quality result, and true electronic synchronization is preferred. An off-the-shelf digital gyroscope with integrated Bluetooth interface provides a wireless solution to device synchronization. The sensor attaches to the SPECT gantry and reports its rotational speed to a notebook computer controlling the device. Software processes the rotation data in real-time, averaging the signal and issuing triggers while compensating for baseline drift. Motion commands are sent to the collimation device with minimal delay, within approximately 0.5 second of the start of SPECT gantry rotation. Test scans of a point source demonstrate an increase in true counts and a reduction in background counts compared to manual synchronization. The wireless rotation sensor provides robust synchronization of the collimation device with the clinical SPECT scanner and enhances image quality.

  13. The development and test of ultra-large-format multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The specific tasks that were accomplished with each of the key elements of the multi-anode microchannel array detector system are described. The modes of operation of position-sensitive electronic readout systems for use with high-gain microchannel plates are described and their performance characteristics compared and contrasted. Multi-anode microchannel array detector systems with formats as large as 256 x 1024 pixels are currently under evaluation. Preliminary performance data for sealed ultraviolet and visible-light detector tubes show that the detector systems have unique characteristics which make them complementary to photoconductive array detectors, such as CCDs, and superior to alternative pulse-counting detector systems employing high-gain MCPs.

  14. Comparison of standard- and low-tube voltage 320-detector row volume CT angiography in detection of intracranial aneurysms with digital subtraction angiography as gold standard.

    PubMed

    Sun, Gang; Ding, Juan; Lu, Yang; Li, Min; Li, Li; Li, Guo-ying; Zhang, Xu-ping

    2012-03-01

    The aim of this study was to prospectively assess the effect of low-tube voltage (80 kVp) 320-detector row volume computed tomographic (CT) angiography (L-VCTA) in the detection of intracranial aneurysms, with three-dimensional (3D) spin digital subtraction angiography (DSA) as the gold standard. Forty-eight patients with clinically suspected subarachnoid hemorrhages were divided into two groups. One group underwent L-VCTA and DSA, while the other group underwent conventional-tube voltage (120 kVp) volume CT angiography (C-VCTA) and DSA. Vascular enhancement, image quality, detection accuracy of aneurysms, and radiation dose were compared between the two groups. For objective image quality, the L-VCTA group had higher mean vessel attenuation, correlated with higher image noise and lower signal-to-noise ratio, than the C-VCTA group. For subjective image quality, there were no significant differences between the two groups regarding scores for arterial enhancement, depiction of small arterial detail, interference of venous structures, and overall image quality scores. The mean effective dose for the L-VCTA group was significantly lower than for the C-VCTA group (0.56 ± 0.25 vs 1.84 ± 0.002 mSv), with a reduction of radiation dose of 69.73%. With 3D DSA as the reference standard, the sensitivity, specificity, and accuracy in the L-VCTA and C-VCTA groups were 94.12%, 100%, 94.4% and 100%, 100%, and 100%, respectively. In both groups, there were significant correlations for maximum aneurysm diameter measurements between volume CT angiography and 3D DSA; no statistical difference in the mean maximum diameter of each aneurysm was measured between volume CT angiography and 3D DSA. L-VCTA is helpful in detecting intracranial aneurysms, with results similar to those of 3D DSA, but at a lower radiation dose than C-VCTA. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  15. Physics considerations in MV-CBCT multi-layer imager design.

    PubMed

    Hu, Yue-Houng; Fueglistaller, Rony; Myronakis, Marios E; Rottmann, Joerg; Wang, Adam; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Huber, Pascal; Star-Lack, Josh M; Berbeco, Ross I

    2018-05-30

    Megavoltage (MV) cone-beam computed tomography (CBCT) using an electronic portal imaging (EPID) offers advantageous features, including 3D mapping, treatment beam registration, high-z artifact suppression, and direct radiation dose calculation. Adoption has been slowed by image quality limitations and concerns about imaging dose. Developments in imager design, including pixelated scintillators, structured phosphors, inexpensive scintillation materials, and multi-layer imager (MLI) architecture have been explored to improve EPID image quality and reduce imaging dose. The present study employs a hybrid Monte Carlo and linear systems model to determine the effect of detector design elements, such as multi-layer architecture and scintillation materials. We follow metrics of image quality including modulation transfer function (MTF) and noise power spectrum (NPS) from projection images to 3D reconstructions to in-plane slices and apply a task based figure-of-merit, the ideal observer signal-to-noise ratio (d') to determine the effect of detector design on object detectability. Generally, detectability was limited by detector noise performance. Deploying an MLI imager with a single scintillation material for all layers yields improvement in noise performance and d' linear with the number of layers. In general, improving x-ray absorption using thicker scintillators results in improved DQE(0). However, if light yield is low, performance will be affected by electronic noise at relatively high doses, resulting in rapid image quality degradation. Maximizing image quality in a heterogenous MLI detector (i.e. multiple different scintillation materials) is most affected by limiting imager noise. However, while a second-order effect, maximizing total spatial resolution of the MLI detector is a balance between the intensity contribution of each layer against its individual MTF. So, while a thinner scintillator may yield a maximal individual-layer MTF, its quantum efficiency will be relatively low in comparison to a thicker scintillator and thus, intensity contribution may be insufficient to noticeably improve the total detector MTF. © 2018 Institute of Physics and Engineering in Medicine.

  16. Real-time correction of beamforming time delay errors in abdominal ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Rigby, K. W.

    2000-04-01

    The speed of sound varies with tissue type, yet commercial ultrasound imagers assume a constant sound speed. Sound speed variation in abdominal fat and muscle layers is widely believed to be largely responsible for poor contrast and resolution in some patients. The simplest model of the abdominal wall assumes that it adds a spatially varying time delay to the ultrasound wavefront. The adequacy of this model is controversial. We describe an adaptive imaging system consisting of a GE LOGIQ 700 imager connected to a multi- processor computer. Arrival time errors for each beamforming channel, estimated by correlating each channel signal with the beamsummed signal, are used to correct the imager's beamforming time delays at the acoustic frame rate. A multi- row transducer provides two-dimensional sampling of arrival time errors. We observe significant improvement in abdominal images of healthy male volunteers: increased contrast of blood vessels, increased visibility of the renal capsule, and increased brightness of the liver.

  17. A microprocessor-based automation test system for the experiment of the multi-stage compressor

    NASA Astrophysics Data System (ADS)

    Zhang, Huisheng; Lin, Chongping

    1991-08-01

    An automation test system that is controlled by the microprocessor and used in the multistage compressor experiment is described. Based on the analysis of the compressor experiment performances, a complete hardware system structure is set up. It is composed of a IBM PC/XT computer, a large scale sampled data system, the moving machine with three directions, the scanners, the digital instrumentation and some output devices. A program structure of real-time software system is described. The testing results show that this test system can take the measure of many parameter magnitudes in the blade row places and on a boundary layer in different states. The automatic extent and the accuracy of experiment is increased and the experimental cost is reduced.

  18. Corrected Position Estimation in PET Detector Modules With Multi-Anode PMTs Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Aliaga, R. J.; Martinez, J. D.; Gadea, R.; Sebastia, A.; Benlloch, J. M.; Sanchez, F.; Pavon, N.; Lerche, Ch.

    2006-06-01

    This paper studies the use of Neural Networks (NNs) for estimating the position of impinging photons in gamma ray detector modules for PET cameras based on continuous scintillators and Multi-Anode Photomultiplier Tubes (MA-PMTs). The detector under study is composed of a 49/spl times/49/spl times/10 mm/sup 3/ continuous slab of LSO coupled to a flat panel H8500 MA-PMT. Four digitized signals from a charge division circuit, which collects currents from the 8/spl times/8 anode matrix of the photomultiplier, are used as inputs to the NN, thus reducing drastically the number of electronic channels required. We have simulated the computation of the position for 511 keV gamma photons impacting perpendicularly to the detector surface. Thus, we have performed a thorough analysis of the NN architecture and training procedures in order to achieve the best results in terms of spatial resolution and bias correction. Results obtained using GEANT4 simulation toolkit show a resolution of 1.3 mm/1.9 mm FWHM at the center/edge of the detector and less than 1 mm of systematic error in the position near the edges of the scintillator. The results confirm that NNs can partially model and correct the non-uniform detector response using only the position-weighted signals from a simple 2D DPC circuit. Linearity degradation for oblique incidence is also investigated. Finally, the NN can be implemented in hardware for parallel real time corrected Line-of-Response (LOR) estimation. Results on resources occupancy and throughput in FPGA are presented.

  19. Facilitating Follow-up of LIGO-Virgo Events Using Rapid Sky Localization

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yu; Holz, Daniel E.

    2017-05-01

    We discuss an algorithm for accurate and very low-latency (<1 s) localization of gravitational-wave (GW) sources using only the relative times of arrival, relative phases, and relative signal-to-noise ratios for pairs of detectors. The algorithm is independent of distances and masses to leading order, and can be generalized to all discrete (as opposed to stochastic and continuous) sources detected by ground-based detector networks. Our approach is similar to that of BAYESTAR with a few modifications, which result in increased computational efficiency. For the LIGO two-detector configuration (Hanford+Livingston) operating in O1 we find a median 50% (90%) localization of 143 deg2 (558 deg2) for binary neutron stars. We use our algorithm to explore the improvement in localization resulting from loud events, finding that the loudest out of the first 4 (or 10) events reduces the median sky-localization area by a factor of 1.9 (3.0) for the case of two GW detectors, and 2.2 (4.0) for three detectors. We also consider the case of multi-messenger joint detections in both the gravitational and the electromagnetic radiation, and show that joint localization can offer significant improvements (e.g., in the case of LIGO and Fermi/GBM joint detections). We show that a prior on the binary inclination, potentially arising from GRB observations, has a negligible effect on GW localization. Our algorithm is simple, fast, and accurate, and may be of particular utility in the development of multi-messenger astronomy.

  20. Effects of stream turbine array configuration on tidal current energy extraction near an island

    NASA Astrophysics Data System (ADS)

    Chen, Yaling; Lin, Binliang; Lin, Jie; Wang, Shujie

    2015-04-01

    Enhanced tidal currents around islands appear to present the potential for power extraction. In this research, a three-dimensional numerical model is applied to investigate the naturally occurring tidal dynamics and the extractable energy from turbines close to Zhaitang Island, located off the east coast of China. In the model, the effect of tidal turbine is represented by a horizontal thrust and added to the momentum equations. To determine a better configuration of turbine array, a detailed work has been undertaken to investigate the combined influences of the topographic features and array arrangement on the performance of power generation. First, three single row arrays are examined with lateral spacing being 2, 3 and 4 times rotor diameters. Then, corresponding to each lateral spacing, three multi-row arrays in a staggered manner with longitudinal spacing being 5, 10 and 15 times rotor diameters are developed. It has been found that single row arrays with higher local blockage outperform arrays with lower blockage. While for multi-row arrays, the performance of inside turbine is significantly experienced the wake influence of upstream turbines, which can be weakened with an increment of turbine spacing. And a remarkable improvement of turbine performance is observed as the longitudinal spacing increases to 10 times rotor diameters. However, the change pattern of power extraction is mainly dependent on that of naturally kinetic energy when the turbine density is further decreasing in the given region.

  1. A multi-channel coronal spectrophotometer.

    NASA Technical Reports Server (NTRS)

    Landman, D. A.; Orrall, F. Q.; Zane, R.

    1973-01-01

    We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.

  2. Radar Ocean Wave Spectrometer (ROWS) preprocessing program (PREROWS2.EXE). User's manual and program description

    NASA Technical Reports Server (NTRS)

    Vaughn, Charles R.

    1993-01-01

    This Technical Memorandum is a user's manual with additional program documentation for the computer program PREROWS2.EXE. PREROWS2 works with data collected by an ocean wave spectrometer that uses radar (ROWS) as an active remote sensor. The original ROWS data acquisition subsystem was replaced with a PC in 1990. PREROWS2.EXE is a compiled QuickBasic 4.5 program that unpacks the recorded data, displays various variables, and provides for copying blocks of data from the original 8mm tape to a PC file.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshima, Masumi; Kin, Tadahiro; Kimura, Atsushi

    Multi-step cascades from the {sup 62}Ni(n{sub cold},{gamma}) {sup 63}Ni reaction were studied via a {gamma}-ray spectroscopy method. With a {gamma}-ray detector array multiple {gamma}-ray coincident events were accumulated. By selecting full cascade events from the capture state to the ground state, we have developed a new computer-based level construction method and it is applied to excited level assignment in {sup 63}Ni.

  4. UBO Detector - A cluster-based, fully automated pipeline for extracting white matter hyperintensities.

    PubMed

    Jiang, Jiyang; Liu, Tao; Zhu, Wanlin; Koncz, Rebecca; Liu, Hao; Lee, Teresa; Sachdev, Perminder S; Wen, Wei

    2018-07-01

    We present 'UBO Detector', a cluster-based, fully automated pipeline for extracting and calculating variables for regions of white matter hyperintensities (WMH) (available for download at https://cheba.unsw.edu.au/group/neuroimaging-pipeline). It takes T1-weighted and fluid attenuated inversion recovery (FLAIR) scans as input, and SPM12 and FSL functions are utilised for pre-processing. The candidate clusters are then generated by FMRIB's Automated Segmentation Tool (FAST). A supervised machine learning algorithm, k-nearest neighbor (k-NN), is applied to determine whether the candidate clusters are WMH or non-WMH. UBO Detector generates both image and text (volumes and the number of WMH clusters) outputs for whole brain, periventricular, deep, and lobar WMH, as well as WMH in arterial territories. The computation time for each brain is approximately 15 min. We validated the performance of UBO Detector by showing a) high segmentation (similarity index (SI) = 0.848) and volumetric (intraclass correlation coefficient (ICC) = 0.985) agreement between the UBO Detector-derived and manually traced WMH; b) highly correlated (r 2  > 0.9) and a steady increase of WMH volumes over time; and c) significant associations of periventricular (t = 22.591, p < 0.001) and deep (t = 14.523, p < 0.001) WMH volumes generated by UBO Detector with Fazekas rating scores. With parallel computing enabled in UBO Detector, the processing can take advantage of multi-core CPU's that are commonly available on workstations. In conclusion, UBO Detector is a reliable, efficient and fully automated WMH segmentation pipeline. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. High density associative memory

    NASA Technical Reports Server (NTRS)

    Moopenn, Alexander W. (Inventor); Thakoor, Anilkumar P. (Inventor); Daud, Taher (Inventor); Lambe, John J. (Inventor)

    1989-01-01

    A multi-layered, thin-film, digital memory having associative recall. There is a first memory matrix and a second memory matrix. Each memory matrix comprises, a first layer comprising a plurality of electrically separated row conductors; a second layer comprising a plurality of electrically separated column conductors intersecting but electrically separated from the row conductors; and, a plurality of resistance elements electrically connected between the row condutors and the column conductors at respective intersections of the row conductors and the column conductors, each resistance element comprising, in series, a first resistor of sufficiently high ohmage to conduct a sensible element current therethrough with virtually no heat-generating power consumption when a low voltage as employed in thin-film applications is applied thereacross and a second resistor of sufficiently high ohmage to conduct no sensible current therethrough when a low voltage as employed in thin-film applications is applied thereacross, the second resistor having the quality of breaking down to create a short therethrough upon the application of a breakdown level voltage across the first and second resistors.

  6. A review of turbomachinery blade-row interaction research

    NASA Technical Reports Server (NTRS)

    Smith, Todd E.

    1988-01-01

    Analytical and experimental research in the area of unsteady aerodynamics of turbomachinery has conventionally been applied to blading which oscillates when placed in a uniformly flowing fluid. Comparatively less effort has been offered for the study of blading which is subjected to nonuniformities within the flow field. The fluid dynamic environment of a blade-row embedded within multi-stage turbomachines is dominated by such highly unsteady fluid flow conditions. The production of wakes and circumferential pressure variations from adjacent blade-rows causes large unsteady energy transfers between the fluid and the blades. Determination of the forced response of a blade requires the ability to predict the unsteady loads which are induced by these aerodynamic sources. A review of research publications was done to determine recent investigations of the response of turbomachinery blading subjected to aerodynamic excitations. Such excitations are a direct result of the blade-row aerodynamic interaction which occurs between adjacent cascades of blades. The reports and papers reviewed have been organized into areas emphasizing experimental or analytical efforts.

  7. A novel digital image sensor with row wise gain compensation for Hyper Spectral Imager (HySI) application

    NASA Astrophysics Data System (ADS)

    Lin, Shengmin; Lin, Chi-Pin; Wang, Weng-Lyang; Hsiao, Feng-Ke; Sikora, Robert

    2009-08-01

    A 256x512 element digital image sensor has been developed which has a large pixel size, slow scan and low power consumption for Hyper Spectral Imager (HySI) applications. The device is a mixed mode, silicon on chip (SOC) IC. It combines analog circuitry, digital circuitry and optical sensor circuitry into a single chip. This chip integrates a 256x512 active pixel sensor array, a programming gain amplifier (PGA) for row wise gain setting, I2C interface, SRAM, 12 bit analog to digital convertor (ADC), voltage regulator, low voltage differential signal (LVDS) and timing generator. The device can be used for 256 pixels of spatial resolution and 512 bands of spectral resolution ranged from 400 nm to 950 nm in wavelength. In row wise gain readout mode, one can set a different gain on each row of the photo detector by storing the gain setting data on the SRAM thru the I2C interface. This unique row wise gain setting can be used to compensate the silicon spectral response non-uniformity problem. Due to this unique function, the device is suitable for hyper-spectral imager applications. The HySI camera located on-board the Chandrayaan-1 satellite, was successfully launched to the moon on Oct. 22, 2008. The device is currently mapping the moon and sending back excellent images of the moon surface. The device design and the moon image data will be presented in the paper.

  8. Development of a multi-element microdosimetric detector based on a thick gas electron multiplier

    NASA Astrophysics Data System (ADS)

    Anjomani, Z.; Hanu, A. R.; Prestwich, W. V.; Byun, S. H.

    2017-03-01

    A prototype multi-element gaseous microdosimetric detector was developed using the Thick Gas Electron Multiplier (THGEM) technique. The detector aims at measuring neutron and gamma-ray dose rates for weak neutron-gamma radiation fields. The multi-element design was employed to increase the neutron detection efficiency. The prototype THGEM multi-element detector consists of three layers of tissue equivalent plastic hexagons and each layer houses a hexagonal array of seven cylindrical gas cavity elements with equal heights and diameters of 17 mm. The final detector structure incorporates 21 gaseous volumes. Owing to the absence of wire electrodes, the THGEM multi-element detector offers flexible and convenient fabrication. The detector responses to neutron and gamma-ray were investigated using the McMaster Tandetron 7Li(p,n) neutron source. The dosimetric performance of the detector is presented in contrast to the response of a commercial tissue equivalent proportional counter. Compared to the standard TEPC response, the detector gave a consistent microdosimetric response with an average discrepancy of 8 % in measured neutron absorbed dose. An improvement of a factor of 3.0 in neutron detection efficiency has been accomplished with only a small degradation in energy resolution. However, its low energy cut off is about 6 keV/μm, which is not sufficient to measure the gamma-ray dose. This problem will be addressed by increasing the electron multiplication gain using double THGEM layers.

  9. Automated Design of Restraint Layer of an Inflatable Vessel

    NASA Technical Reports Server (NTRS)

    Spexarth, Gary

    2007-01-01

    A Mathcad computer program largely automates the design and analysis of the restraint layer (the primary load-bearing layer) of an inflatable vessel that consists of one or more sections having cylindrical, toroidal, and/or spherical shape(s). A restraint layer typically comprises webbing in the form of multiple straps. The design task includes choosing indexing locations along the straps, computing the load at every location in each strap, computing the resulting stretch at each location, and computing the amount of undersizing required of each strap so that, once the vessel is inflated and the straps thus stretched, the vessel can be expected to assume the desired shape. Prior to the development of this program, the design task was performed by use of a difficult-to-use spreadsheet program that required manual addition of rows and columns depending on the numbers of strap rows and columns of a given design. In contrast, this program is completely parametric and includes logic that automatically adds or deletes rows and columns as needed. With minimal input from the user, this program automatically computes indexing locations, strap lengths, undersizing requirements, and all design data required to produce detailed drawings and assembly procedures. It also generates textual comments that help the user understand the calculations.

  10. Investigation on the Accuracy of Superposition Predictions of Film Cooling Effectiveness

    NASA Astrophysics Data System (ADS)

    Meng, Tong; Zhu, Hui-ren; Liu, Cun-liang; Wei, Jian-sheng

    2018-05-01

    Film cooling effectiveness on flat plates with double rows of holes has been studied experimentally and numerically in this paper. This configuration is widely used to simulate the multi-row film cooling on turbine vane. Film cooling effectiveness of double rows of holes and each single row was used to study the accuracy of superposition predictions. Method of stable infrared measurement technique was used to measure the surface temperature on the flat plate. This paper analyzed the factors that affect the film cooling effectiveness including hole shape, hole arrangement, row-to-row spacing and blowing ratio. Numerical simulations were performed to analyze the flow structure and film cooling mechanisms between each film cooling row. Results show that the blowing ratio within the range of 0.5 to 2 has a significant influence on the accuracy of superposition predictions. At low blowing ratios, results obtained by superposition method agree well with the experimental data. While at high blowing ratios, the accuracy of superposition prediction decreases. Another significant factor is hole arrangement. Results obtained by superposition prediction are nearly the same as experimental values of staggered arrangement structures. For in-line configurations, the superposition values of film cooling effectiveness are much higher than experimental data. For different hole shapes, the accuracy of superposition predictions on converging-expanding holes is better than cylinder holes and compound angle holes. For two different hole spacing structures in this paper, predictions show good agreement with the experiment results.

  11. PSF modeling by spikes simulations and wings measurements for the MOONS multi fiber spectrograph

    NASA Astrophysics Data System (ADS)

    Li Causi, G.; Lee, D.; Vitali, F.; Royer, F.; Oliva, E.

    2016-08-01

    The optical design of MOONS, the next generation thousand-fiber NIR spectrograph for the VLT, involves both on-axis reflective collimators and on-axis very fast reflective cameras, which yields both beam obstruction, due to fiber slit and detector support, and image spread, due to propagation within detector substrate. The need to model and control i) the effect of the diffraction spikes produced by these obstructions, ii) the detector-induced shape variation of the Point Spread Function (PSF), and iii) the intensity profile of the PSF wings, leads us to perform both simulations and lab measurements, in order to optimize the spider design and built a reliable PSF model, useful for simulate realistic raw images for testing the data reduction. Starting from the unobstructed PSF variation, as computed with the ZEMAX software, we numerically computed the diffraction spikes for different spider shapes, to which we added the PSF wing profile, as measured on a sample of the MOONS VPH diffraction grating. Finally, we implemented the PSF defocusing due to the thick detector (for the visible channel), we convolved the PSF with the fiber core image, and we added the optical ghosts, so finally obtaining a detailed and realistic PSF model, that we use for spectral extraction testing, cross talk estimation, and sensitivity predictions.

  12. Comparison Study of Regularizations in Spectral Computed Tomography Reconstruction

    NASA Astrophysics Data System (ADS)

    Salehjahromi, Morteza; Zhang, Yanbo; Yu, Hengyong

    2018-12-01

    The energy-resolving photon-counting detectors in spectral computed tomography (CT) can acquire projections of an object in different energy channels. In other words, they are able to reliably distinguish the received photon energies. These detectors lead to the emerging spectral CT, which is also called multi-energy CT, energy-selective CT, color CT, etc. Spectral CT can provide additional information in comparison with the conventional CT in which energy integrating detectors are used to acquire polychromatic projections of an object being investigated. The measurements obtained by X-ray CT detectors are noisy in reality, especially in spectral CT where the photon number is low in each energy channel. Therefore, some regularization should be applied to obtain a better image quality for this ill-posed problem in spectral CT image reconstruction. Quadratic-based regularizations are not often satisfactory as they blur the edges in the reconstructed images. As a result, different edge-preserving regularization methods have been adopted for reconstructing high quality images in the last decade. In this work, we numerically evaluate the performance of different regularizers in spectral CT, including total variation, non-local means and anisotropic diffusion. The goal is to provide some practical guidance to accurately reconstruct the attenuation distribution in each energy channel of the spectral CT data.

  13. Picturing Data With Uncertainty

    NASA Technical Reports Server (NTRS)

    Kao, David; Love, Alison; Dungan, Jennifer L.; Pang, Alex

    2004-01-01

    NASA is in the business of creating maps for scientific purposes to represent important biophysical or geophysical quantities over space and time. For example, maps of surface temperature over the globe tell scientists where and when the Earth is heating up; regional maps of the greenness of vegetation tell scientists where and when plants are photosynthesizing. There is always uncertainty associated with each value in any such map due to various factors. When uncertainty is fully modeled, instead of a single value at each map location, there is a distribution expressing a set of possible outcomes at each location. We consider such distribution data as multi-valued data since it consists of a collection of values about a single variable. Thus, a multi-valued data represents both the map and its uncertainty. We have been working on ways to visualize spatial multi-valued data sets effectively for fields with regularly spaced units or grid cells such as those in NASA's Earth science applications. A new way to display distributions at multiple grid locations is to project the distributions from an individual row, column or other user-selectable straight transect from the 2D domain. First at each grid cell in a given slice (row, column or transect), we compute a smooth density estimate from the underlying data. Such a density estimate for the probability density function (PDF) is generally more useful than a histogram, which is a classic density estimate. Then, the collection of PDFs along a given slice are presented vertically above the slice and form a wall. To minimize occlusion of intersecting slices, the corresponding walls are positioned at the far edges of the boundary. The PDF wall depicts the shapes of the distributions very dearly since peaks represent the modes (or bumps) in the PDFs. We've defined roughness as the number of peaks in the distribution. Roughness is another useful summary information for multimodal distributions. The uncertainty of the multi-valued data can also be interpreted by the number of peaks and the widths of the peaks as shown by the PDF walls.

  14. Characterization of a spectroscopic detector for application in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Dooraghi, Alex A.; Fix, Brian J.; Smith, Jerel A.; Brown, William D.; Azevedo, Stephen G.; Martz, Harry E.

    2017-09-01

    Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-location and FWHM measurements are +/- 0.4 and +/- 0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 +/- 5 ns. This is consistent with the manufacturer's quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9 % (typical) and 12 % (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of 20 mm shows an underestimation of attenuation by about 10 % at 60 keV. This error is due to partial energy deposition from higher energy (>60 keV) photons into a lower-energy ( 60 keV) bin, reducing the apparent attenuation. A radiograph of a polytetrafluoroethylene (PTFE) cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is reconstructed using Abel inversion. As no counts are expected in the low energy tail, a first order background correction is applied to the spectrum. The measured linear attenuation coefficient (LAC) is within 10% of the expected value in the 60 to 100 keV range. Below 60 keV, low counts in the corrected spectrum and partial energy deposition from incident photons of energy greater than 60 keV into energy bins below 60 keV impact the LAC measurements. This report ends with a demonstration of the tomographic capability of the system. The quantitative understanding of the detector developed in this report will enable further study in evaluating the system for characterization of an object's chemical make-up for industrial and security purposes.

  15. Characterization of a spectroscopic detector for application in x-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooraghi, A. A.; Fix, B. J.; Smith, J. A.

    Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-locationmore » and FWHM measurements are ±0.4 and ±0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 ± 5 ns. This is consistent with the manufacturer’s quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9% (typical) and 12% (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of about 20 mm shows an underestimation of attenuation by about 10% at 60 keV. This error is due to partial energy deposition from higher-energy (> 60 keV) photons into a lower-energy (~60 keV) bin, reducing the apparent attenuation. A radiograph of a PTFE cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is reconstructed using Abel inversion. As no counts are expected in the low energy tail, a first order background correction is applied to the spectrum. The measured linear attenuation coefficient (LAC) is within 10% of the expected value in the 60 to 100 keV range. Below 60 keV, low counts in the corrected spectrum and partial energy deposition from incident photons of energy greater than 60 keV into energy bins below 60 keV impact the LAC measurements. This report ends with a demonstration of the tomographic capability of the system. The quantitative understanding of the detector developed in this report will enable further study in evaluating the system for characterization of an object’s chemical make-up for industrial and security purposes.« less

  16. Radiation dose of digital tomosynthesis for sinonasal examination: comparison with multi-detector CT.

    PubMed

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Numano, Tomokazu; Abe, Shinji; Sabol, John M; Suzuki, Shigeru; Ueno, Eiko

    2012-06-01

    Using an anthropomorphic phantom, we have investigated the feasibility of digital tomosynthesis (DT) of flat-panel detector (FPD) radiography to reduce radiation dose for sinonasal examination compared to multi-detector computed tomography (MDCT). A female Rando phantom was scanned covering frontal to maxillary sinus using the clinically routine protocol by both 64-detector CT (120 kV, 200 mAs, and 1.375-pitch) and DT radiography (80 kV, 1.0 mAs per projection, 60 projections, 40° sweep, and posterior-anterior projections). Glass dosimeters were used to measure the radiation dose to internal organs including the thyroid gland, brain, submandibular gland, and the surface dose at various sites including the eyes during those scans. We compared the radiation dose to those anatomies between both modalities. In DT radiography, the doses of the thyroid gland, brain, submandibular gland, skin, and eyes were 230 ± 90 μGy, 1770 ± 560 μGy, 1400 ± 80 μGy, 1160 ± 2100 μGy, and 112 ± 6 μGy, respectively. These doses were reduced to approximately 1/5, 1/8, 1/12, 1/17, and 1/290 of the respective MDCT dose. For sinonasal examinations, DT radiography enables dramatic reduction in radiation exposure and dose to the head and neck region, particularly to the lens of the eye. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Optimal design of wind barriers using 3D computational fluid dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fang, H.; Wu, X.; Yang, X.

    2017-12-01

    Desertification is a significant global environmental and ecological problem that requires human-regulated control and management. Wind barriers are commonly used to reduce wind velocity or trap drifting sand in arid or semi-arid areas. Therefore, optimal design of wind barriers becomes critical in Aeolian engineering. In the current study, we perform 3D computational fluid dynamics (CFD) simulations for flow passing through wind barriers with different structural parameters. To validate the simulation results, we first inter-compare the simulated flow field results with those from both wind-tunnel experiments and field measurements. Quantitative analyses of the shelter effect are then conducted based on a series of simulations with different structural parameters (such as wind barrier porosity, row numbers, inter-row spacing and belt schemes). The results show that wind barriers with porosity of 0.35 could provide the longest shelter distance (i.e., where the wind velocity reduction is more than 50%) thus are recommended in engineering designs. To determine the optimal row number and belt scheme, we introduce a cost function that takes both wind-velocity reduction effects and economical expense into account. The calculated cost function show that a 3-row-belt scheme with inter-row spacing of 6h (h as the height of wind barriers) and inter-belt spacing of 12h is the most effective.

  18. A Quasiparticle Detector for Imaging Quantum Turbulence in Superfluid He-B

    NASA Astrophysics Data System (ADS)

    Ahlstrom, S. L.; Bradley, D. I.; Fisher, S. N.; Guénault, A. M.; Guise, E. A.; Haley, R. P.; Holt, S.; Kolosov, O.; McClintock, P. V. E.; Pickett, G. R.; Poole, M.; Schanen, R.; Tsepelin, V.; Woods, A. J.

    2014-06-01

    We describe the development of a two-dimensional quasiparticle detector for use in visualising quantum turbulence in superfluid He-B at ultra-low temperatures. The detector consists of a matrix of pixels, each a 1 mm diameter hole in a copper block containing a miniature quartz tuning fork. The damping on each fork provides a measure of the local quasiparticle flux. The detector is illuminated by a beam of ballistic quasiparticles generated from a nearby black-body radiator. A comparison of the damping on the different forks provides a measure of the cross-sectional profile of the beam. Further, we generate a tangle of vortices (quantum turbulence) in the path of the beam using a vibrating wire resonator. The vortices cast a shadow onto the face of the detector due to the Andreev reflection of quasiparticles in the beam. This allows us to image the vortices and to investigate their dynamics. Here we give details of the design and construction of the detector and show some preliminary results for one row of pixels which demonstrates its successful application to measuring quasiparticle beams and quantum turbulence.

  19. Experimental study of boron-coated straws with a neutron source

    NASA Astrophysics Data System (ADS)

    Xie, Zhaoyang; Zhou, Jianrong; Song, Yushou; Lacy, Jeffrey L.; Sun, Liang; Sun, Zhijia; Hu, Bitao; Chen, Yuanbo

    2018-04-01

    Multiple types of high quality neutron detectors are proposed for the first phase of the China Spallation Neutron Source (CSNS), which will be commissioned in 2018. Considering the shortage of 3He supply, a detector module composed of 49 boron-coated straws (BCS) was developed by Proportional Technologies Inc. (PTI). Each straw has a length of 1000 mm and a diameter of 7.5 mm. Seven straws are tightly packed in a tube, and seven tubes are organized in a row to form a detector module. The charge division method is used for longitudinal positioning. A specific readout system was utilized to output the signal and simultaneously encode each straw. The performance of this detector module was studied using a moderated 252Cf source at the Institute of High Energy Physics (IHEP). The signal amplitude spectrum indicates its n-gamma discrimination capability. Despite the complex readout method, a longitudinal resolution of FWHM=6.1 ± 0.5 mm was obtained. The three-dimensional positioning ability qualifies this BCS detector module as a promising detector for small angle neutron scattering.

  20. Fluid-flow of a row of jets in crossflow - A numerical study

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Benson, T. J.

    1992-01-01

    A detailed computer-visualized flow field of a row of jets in a confined crossflow is presented. The Reynolds averaged Navier-Stokes equations are solved using a finite volume method that incorporates a partial differential equation for incremental pressure to obtain a divergence-free flow field. The turbulence is described by a multiple-time-scale turbulence model. The computational domain includes the upstream region of the circular jet so that the interaction between the jet and the crossflow is simulated accurately. It is shown that the row of jets in the crossflow is characterized by a highly complex flow field that includes a horse-shoe vortex and two helical vortices whose secondary velocity components are co-rotating in space. It is also shown that the horse-shoe vortex is a ring of reversed flows located along the circumference of the jet exit.

  1. Tutorial: simulating chromatography with Microsoft Excel Macros.

    PubMed

    Kadjo, Akinde; Dasgupta, Purnendu K

    2013-04-22

    Chromatography is one of the cornerstones of modern analytical chemistry; developing an instinctive feeling for how chromatography works will be invaluable to future generation of chromatographers. Specialized software programs exist that handle and manipulate chromatographic data; there are also some that simulate chromatograms. However, the algorithm details of such software are not transparent to a beginner. In contrast, how spreadsheet tools like Microsoft Excel™ work is well understood and the software is nearly universally available. We show that the simple repetition of an equilibration process at each plate (a spreadsheet row) followed by discrete movement of the mobile phase down by a row, easily automated by a subroutine (a "Macro" in Excel), readily simulates chromatography. The process is readily understood by a novice. Not only does this permit simulation of isocratic and simple single step gradient elution, linear or multistep gradients are also easily simulated. The versatility of a transparent and easily understandable computational platform further enables the simulation of complex but commonly encountered chromatographic scenarios such as the effects of nonlinear isotherms, active sites, column overloading, on-column analyte degradation, etc. These are not as easily simulated by available software. Views of the separation as it develops on the column and as it is seen by an end-column detector are both available in real time. Excel 2010™ also permits a 16-level (4-bit) color gradation of numerical values in a column/row; this permits visualization of a band migrating down the column, much as Tswett may have originally observed, but in a numerical domain. All parameters of relevance (partition constants, elution conditions, etc.) are readily changed so their effects can be examined. Illustrative Excel spreadsheets are given in the Supporting Information; these are easily modified by the user or the user can write his/her own routine. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS

    NASA Astrophysics Data System (ADS)

    Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.-C.; Clergeau, J.-F.; Deen, P. P.; Ehlers, G.; van Esch, P.; Everett, S. M.; Guerard, B.; Hall-Wilton, R.; Herwig, K.; Hultman, L.; Höglund, C.; Iruretagoiena, I.; Issa, F.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Lopez Higuera, I.; Piscitelli, F.; Robinson, L.; Schmidt, S.; Stefanescu, I.

    2017-04-01

    The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.

  3. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography.

    PubMed

    Dong, Zhi-Hui; Yang, Zhi-Gang; Chen, Tian-Wu; Chu, Zhi-Gang; Deng, Wen; Shao, Heng

    2011-01-01

    Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; p<0.001). Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR=1.2; p<0.05) or flail chest (45/143 vs. 11/66 patients, RR=1.9; p<0.05) were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR= 1.7; p<0.01). Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR= 1.4; p<0.01). Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR=1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001). Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries.

  4. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    PubMed Central

    Dong, Zhi-hui; Yang, Zhi-gang; Chen, Tian-wu; Chu, Zhi-gang; Deng, Wen; Shao, Heng

    2011-01-01

    PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; p<0.001). Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR = 1.2; p<0.05) or flail chest (45/143 vs. 11/66 patients, RR = 1.9; p<0.05) were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR = 1.7; p<0.01). Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR = 1.4; p<0.01). Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR = 1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001). Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. CONCLUSIONS: Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries. PMID:21789386

  5. A tailored 200 parameter VME based data acquisition system for IBA at the Lund Ion Beam Analysis Facility - Hardware and software

    NASA Astrophysics Data System (ADS)

    Elfman, Mikael; Ros, Linus; Kristiansson, Per; Nilsson, E. J. Charlotta; Pallon, Jan

    2016-03-01

    With the recent advances towards modern Ion Beam Analysis (IBA), going from one- or few-parameter detector systems to multi-parameter systems, it has been necessary to expand and replace the more than twenty years old CAMAC based system. A new VME multi-parameter (presently up to 200 channels) data acquisition and control system has been developed and implemented at the Lund Ion Beam Analysis Facility (LIBAF). The system is based on the VX-511 Single Board Computer (SBC), acting as master with arbiter functionality and consists of standard VME modules like Analog to Digital Converters (ADC's), Charge to Digital Converters (QDC's), Time to Digital Converters (TDC's), scaler's, IO-cards, high voltage and waveform units. The modules have been specially selected to support all of the present detector systems in the laboratory, with the option of future expansion. Typically, the detector systems consist of silicon strip detectors, silicon drift detectors and scintillator detectors, for detection of charged particles, X-rays and γ-rays. The data flow of the raw data buffers out from the VME bus to the final storage place on a 16 terabyte network attached storage disc (NAS-disc) is described. The acquisition process, remotely controlled over one of the SBCs ethernet channels, is also discussed. The user interface is written in the Kmax software package, and is used to control the acquisition process as well as for advanced online and offline data analysis through a user-friendly graphical user interface (GUI). In this work the system implementation, layout and performance are presented. The user interface and possibilities for advanced offline analysis are also discussed and illustrated.

  6. Aerodynamics of advanced axial-flow turbomachinery

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.

    1980-01-01

    A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.

  7. Computerized Recruitment and the Staying Power of Print

    ERIC Educational Resources Information Center

    Summer, Matthew

    2012-01-01

    From a data and CRM point of view, computers have drastically changed college admission. No longer are the days of 10 people crammed into an office built for one person, looking at a screen with a green blinking key, typing in thousands of characters an hour. Rows and rows of filing cabinets have been reduced, and putting students on hold to go…

  8. SSME Turbopump Turbine Computations

    NASA Technical Reports Server (NTRS)

    Jorgenson, P. G. E.

    1985-01-01

    A two-dimensional viscous code was developed to be used in the prediction of the flow in the SSME high-pressure turbopump blade passages. The rotor viscous code (RVC) employs a four-step Runge-Kutta scheme to solve the two-dimensional, thin-layer Navier-Stokes equations. The Baldwin-Lomax eddy-viscosity model is used for these turbulent flow calculations. A viable method was developed to use the relative exit conditions from an upstream blade row as the inlet conditions to the next blade row. The blade loading diagrams are compared with the meridional values obtained from an in-house quasithree-dimensional inviscid code. Periodic boundary conditions are imposed on a body-fitted C-grid computed by using the GRAPE GRids about Airfoils using Poisson's Equation (GRAPE) code. Total pressure, total temperature, and flow angle are specified at the inlet. The upstream-running Riemann invariant is extrapolated from the interior. Static pressure is specified at the exit such that mass flow is conserved from blade row to blade row, and the conservative variables are extrapolated from the interior. For viscous flows the noslip condition is imposed at the wall. The normal momentum equation gives the pressure at the wall. The density at the wall is obtained from the wall total temperature.

  9. Lack of Association of Oral Calcium Supplementation with Coronary Artery Calcification in Rheumatoid Arthritis

    PubMed Central

    Giles, Jon T.; Bathon, Joan M.

    2015-01-01

    Objectives To investigate the association between oral calcium supplementation and coronary arterial calcification among rheumatoid arthritis (RA) patients without known cardiovascular disease (CVD). Methods This study was nested in a prospective cohort study of RA patients without known CVD. Daily supplemental calcium dose was ascertained from prescription and over-the-counter medications at baseline and visit 2 (median 20 months post-baseline). Coronary artery calcium (CAC), a measure of coronary atherosclerosis, was assessed by cardiac multi-detector row computed tomography at baseline and visit 3 (median 39 months post-baseline). The association of calcium supplementation with CAC was explored. Results Among the 145 RA patients studied, 42 (28%) took ≥1000mg/day of supplemental calcium at baseline. Forty-four (30%) and 50 (34%) had a CAC score >100 units at baseline and follow-up, respectively. Baseline CAC scores >100 units were significantly less frequent in the higher (≥1000mg/day) supplemental calcium group than in the lower dosed group (<1000mg/day) [OR 0.28 (95% CI 0.11-0.74)]; this remained significant after adjusting for relevant confounders [OR 0.30 (95% CI 0.09-0.93)]. Similarly, at the third study visit, CAC scores >100 units were less frequent in the higher vs. the lower supplemental calcium group [OR 0.41 (95% CI 0.18-0.95)]. When adjusted for relevant confounders, statistical significance was lost [OR 0.39 (95% CI 0.14-1.12)]. No gender interaction and no change in CAC score over time were appreciated. Conclusion Higher levels of oral calcium supplementation were not associated with an increased risk of coronary atherosclerosis as measured by CAC score in this RA cohort. PMID:25808397

  10. The effects of once-weekly teriparatide on hip structure and biomechanical properties assessed by CT.

    PubMed

    Ito, M; Oishi, R; Fukunaga, M; Sone, T; Sugimoto, T; Shiraki, M; Nishizawa, Y; Nakamura, T

    2014-03-01

    Once-weekly administration of 56.5 μg teriparatide improved cortical bone parameters and biomechanical parameters at the proximal femur by CT geometry analysis. The aim of this study was to evaluate the effects of weekly administration of teriparatide [human PTH (1-34)] on bone geometry, volumetric bone mineral density (vBMD), and parameters of bone strength at the proximal femur which were longitudinally investigated using computed tomography (CT). The subjects were a subgroup of a recent, randomly assigned, double-blind study (578 subjects) comparing the anti-fracture efficacy of a once-weekly subcutaneous injection of 56.5 μg teriparatide with placebo (TOWER trial). Sixty-six ambulatory postmenopausal women with osteoporosis were enrolled at 15 study sites having multi-detector row CT, and included women injected with teriparatide (n = 29, 74.2 ± 5.1 years) or with placebo (n = 37, 74.8 ± 5.3 years). CT data were obtained at baseline and follow-up scans were performed at 48 and 72 weeks. The data were analyzed to obtain cross-sectional densitometric, geometric, and biomechanical parameters including the section modulus (SM) and buckling ratio (BR) of the femoral neck, inter-trochanter, and femoral shaft. We found that once-weekly teriparatide increased cortical thickness/cross-sectional area (CSA) and total area, and improved biomechanical properties (i.e., decreasing BR) at the femoral neck and shaft. Teriparatide did not change the cortical perimeter. Our longitudinal analysis of proximal femur geometry by CT revealed that once-weekly administration of 56.5 μg teriparatide improved cortical bone parameters at the femoral neck and shaft and also improved biomechanical parameters.

  11. Electrocardiogram abnormalities and coronary calcification in postmenopausal women.

    PubMed

    Sabour, Siamak; Grobbee, Diederick; Rutten, Annemarieke; Prokop, Mathias; Bartelink, Marie-Louise; van der Schouw, Yvonne; Bots, Michiel

    2010-01-01

    An electrocardiogram (ECG) can provide information on subclinical myocardial damage. The presence, and more importantly, the quantity of coronary artery calcification (CAC), relates well with the overall severity of the atherosclerotic process. A strong relation has been demonstrated between coronary calcium burden and the incidence of myocardial infarction, a relation independent of age. The aim of this study was to assess the relation of left ventricular hypertrophy (LVH) and ECG abnormalities with CAC. The study population comprised 566 postmenopausal women selected from a population-based cohort study. Information on LVH and repolarization abnormalities (T-axis and QRS-T angle) was obtained using electrocardiography. Modular ECG Analysis System (MEANS) was used to assess ECG abnormalities. The women underwent a multi detector-row computed tomography (MDCT) scan (Philips Mx 8000 IDT 16) to assess CAC. The Agatston score was used to quantify CAC; scores greater than zero were considered as the presence of coronary calcium. Logistic regression was used to assess the relation of ECG abnormality with coronary calcification. LVH was found in 2.7% (n = 15) of the women. The prevalence of T-axis abnormality was 6% (n = 34), whereas 8.5% (n = 48) had a QRS-T angle abnormality. CAC was found in 62% of the women. Compared to women with a normal T-axis, women with borderline or abnormal T-axes were 3.8 fold more likely to have CAC (95% CI: 1.4-10.2). Similarly, compared to women with a normal QRS-T angle, in women with borderline or abnormal QRS-T angle, CAC was 2.0 fold more likely to be present (95% CI: 1.0-4.1). Among women with ECG abnormalities reflecting subclinical ischemia, CAC is commonly found and may in part explain the increased coronary heart disease risk associated with these ECG abnormalities.

  12. Methods for radiation detection and characterization using a multiple detector probe

    DOEpatents

    Akers, Douglas William; Roybal, Lyle Gene

    2014-11-04

    Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.

  13. A transport model for the deterministic stresses associated with turbomachinery blade row interactions

    NASA Astrophysics Data System (ADS)

    van de Wall, Allan George

    The unsteady process resulting from the interaction of upstream vortical structures with a downstream blade row in turbomachines can have a significant impact on the machine efficiency. A transport model assuming incompressible flow and using linear theory was developed to take this process into account in the computation of time-average multistage turbomachinery flows. The upstream vortical structures are transported by the mean flow of the downstream blade row, redistributing the time-average unsteady kinetic energy (Uke ) associated with the incoming disturbance. The model was applied to compressor and turbine geometry. For compressors, the Uke associated with upstream 2-D wakes and 3-D tip clearance flows is reduced as a result of the interaction with a downstream blade row. This reduction results from inviscid effects as well as viscous effects and reduces the loss associated with the upstream disturbance. Any disturbance passing through a compressor blade row results in a smaller loss than if the disturbance was mixed-out prior to entering the blade row. For turbines, the Uke associated with upstream 2-D wakes and 3-D tip clearance flows are significantly amplified by inviscid effects as a result of the interaction with a downstream turbine blade row. Viscous effects act to reduce the amplification of the Uke by inviscid effects but results in a substantial loss. Any disturbance passing through a turbine blade row results in a larger loss than if the disturbance was mixedout prior to entering the blade row.

  14. Measuring radiation dose in computed tomography using elliptic phantom and free-in-air, and evaluating iterative metal artifact reduction algorithm

    NASA Astrophysics Data System (ADS)

    Morgan, Ashraf

    The need for an accurate and reliable way for measuring patient dose in multi-row detector computed tomography (MDCT) has increased significantly. This research was focusing on the possibility of measuring CT dose in air to estimate Computed Tomography Dose Index (CTDI) for routine quality control purposes. New elliptic CTDI phantom that better represent human geometry was manufactured for investigating the effect of the subject shape on measured CTDI. Monte Carlo simulation was utilized in order to determine the dose distribution in comparison to the traditional cylindrical CTDI phantom. This research also investigated the effect of Siemens health care newly developed iMAR (iterative metal artifact reduction) algorithm, arthroplasty phantom was designed and manufactured that purpose. The design of new phantoms was part of the research as they mimic the human geometry more than the existing CTDI phantom. The standard CTDI phantom is a right cylinder that does not adequately represent the geometry of the majority of the patient population. Any dose reduction algorithm that is used during patient scan will not be utilized when scanning the CTDI phantom, so a better-designed phantom will allow the use of dose reduction algorithms when measuring dose, which leads to better dose estimation and/or better understanding of dose delivery. Doses from a standard CTDI phantom and the newly-designed phantoms were compared to doses measured in air. Iterative reconstruction is a promising technique in MDCT dose reduction and artifacts correction. Iterative reconstruction algorithms have been developed to address specific imaging tasks as is the case with Iterative Metal Artifact Reduction or iMAR which was developed by Siemens and is to be in use with the companys future computed tomography platform. The goal of iMAR is to reduce metal artifact when imaging patients with metal implants and recover CT number of tissues adjacent to the implant. This research evaluated iMAR capability of recovering CT numbers and reducing noise. Also, the use of iMAR should allow using lower tube voltage instead of 140 KVp which is used frequently to image patients with shoulder implants. The evaluations of image quality and dose reduction were carried out using an arthroplasty phantom.

  15. Patient radiation dose from computed tomography angiography and digital subtraction angiography of the brain

    NASA Astrophysics Data System (ADS)

    Netwong, Y.; Krisanachinda, A.

    2016-03-01

    The 64-row multidetector computed tomography angiography (64-MDCTA) provides vascular image quality of the brain similar to digital subtraction angiography (DSA), but the effective dose of CTA is lower than DSA studied in phantom. The purpose of this study is to evaluate the effective dose from 64-MDCTA and DSA. Effective dose (according to ICRP 103) from 64-MDCTA and DSA flat panel detector for cerebral vessels examination of the brain using standard protocols as recommended by the manufacturer was calculated for 30 cases of MDCTA (15 male and 15 female).The mean patient age was 49.5 (23-89) yrs. 30 cases of DSA (14 male and 16 female), the mean patient age was 46.8 (21-81) yrs. For CTA, the mean effective dose was 3.7 (2.82- 5.19) mSv. For DSA, the mean effective dose was 5.78 (3.3-10.06) mSv. The effective dose of CTA depends on the scanning protocol and scan length. Low tube current can reduce patient dose whereas the number of exposures and number of series in 3D rotational angiography (3D RA) resulted in increasing effective dose in DSA patients.

  16. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-03-01

    A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.

  17. Facilitating Follow-up of LIGO–Virgo Events Using Rapid Sky Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsin-Yu; Holz, Daniel E.

    We discuss an algorithm for accurate and very low-latency (<1 s) localization of gravitational-wave (GW) sources using only the relative times of arrival, relative phases, and relative signal-to-noise ratios for pairs of detectors. The algorithm is independent of distances and masses to leading order, and can be generalized to all discrete (as opposed to stochastic and continuous) sources detected by ground-based detector networks. Our approach is similar to that of BAYESTAR with a few modifications, which result in increased computational efficiency. For the LIGO two-detector configuration (Hanford+Livingston) operating in O1 we find a median 50% (90%) localization of 143 deg{supmore » 2} (558 deg{sup 2}) for binary neutron stars. We use our algorithm to explore the improvement in localization resulting from loud events, finding that the loudest out of the first 4 (or 10) events reduces the median sky-localization area by a factor of 1.9 (3.0) for the case of two GW detectors, and 2.2 (4.0) for three detectors. We also consider the case of multi-messenger joint detections in both the gravitational and the electromagnetic radiation, and show that joint localization can offer significant improvements (e.g., in the case of LIGO and Fermi /GBM joint detections). We show that a prior on the binary inclination, potentially arising from GRB observations, has a negligible effect on GW localization. Our algorithm is simple, fast, and accurate, and may be of particular utility in the development of multi-messenger astronomy.« less

  18. Progressive transmission of road network

    NASA Astrophysics Data System (ADS)

    Ai, Bo; Ai, Tinghua; Tang, Xinming; Li, Zhen

    2009-10-01

    The progressive transmission of vector map data requires efficient multi-scale data model to process the data into hierarchical structure. This paper presents such a data structure of road network without redundancy of geometry for progressive transmission. For a given scale, the road network display has to settle two questions. One is which road objects to be represented and the other is what geometric details to be visualized for the selected roads. This paper combines the Töpfer law and the BLG-tree structure into a multi-scale representation matrix to answer simultaneously the above two questions. In the matrix, rows from top to bottom represent the roads in the sequence of descending classification of traffic and length, which can support the Töpfer law to retrieve the more important roads. In a row, columns record one road by a linear BLG-tree to provide good line graphics.

  19. Does a bout of strength training affect 2,000 m rowing ergometer performance and rowing-specific maximal power 24 h later?

    PubMed

    Gee, Thomas I; French, Duncan N; Howatson, Glyn; Payton, Stephen J; Berger, Nicolas J; Thompson, Kevin G

    2011-11-01

    Rowers regularly undertake rowing training within 24 h of performing bouts of strength training; however, the effect of this practice has not been investigated. This study evaluated the impact of a bout of high-intensity strength training on 2,000 m rowing ergometer performance and rowing-specific maximal power. Eight highly trained male club rowers performed baseline measures of five separate, static squat jumps (SSJ) and countermovement jumps (CMJ), maximal rowing ergometer power strokes (PS) and a single 2,000 m rowing ergometer test (2,000 m). Subsequently, participants performed a high-intensity strength training session consisting of various multi-joint barbell exercises. The 2,000 m test was repeated at 24 and 48 h post-ST, in addition SSJ, CMJ and PS tests were performed at these time points and also at 2 h post-ST. Muscle soreness, serum creatine kinase (CK) and lactate dehydrogenase (LDH) were assessed pre-ST and 2, 24 and 48 h post-ST. Following the ST, there were significant elevations in muscle soreness (2 and 24 h, P < 0.01), CK (2, 24 and 48 h, P < 0.01), and LDH (2 h, P < 0.05) in comparison to baseline values. There were significant decrements across all time points for SSJ, CMJ and PS, which ranged between 3 and 10% (P < 0.05). However, 2,000 m performance and related measurements of heart rate and blood lactate were not significantly affected by ST. In summary, a bout of high-intensity strength training resulted in symptoms of muscle damage and decrements in rowing-specific maximal power, but this did not affect 2,000 m rowing ergometer performance in highly trained rowers.

  20. Cache and energy efficient algorithms for Nussinov's RNA Folding.

    PubMed

    Zhao, Chunchun; Sahni, Sartaj

    2017-12-06

    An RNA folding/RNA secondary structure prediction algorithm determines the non-nested/pseudoknot-free structure by maximizing the number of complementary base pairs and minimizing the energy. Several implementations of Nussinov's classical RNA folding algorithm have been proposed. Our focus is to obtain run time and energy efficiency by reducing the number of cache misses. Three cache-efficient algorithms, ByRow, ByRowSegment and ByBox, for Nussinov's RNA folding are developed. Using a simple LRU cache model, we show that the Classical algorithm of Nussinov has the highest number of cache misses followed by the algorithms Transpose (Li et al.), ByRow, ByRowSegment, and ByBox (in this order). Extensive experiments conducted on four computational platforms-Xeon E5, AMD Athlon 64 X2, Intel I7 and PowerPC A2-using two programming languages-C and Java-show that our cache efficient algorithms are also efficient in terms of run time and energy. Our benchmarking shows that, depending on the computational platform and programming language, either ByRow or ByBox give best run time and energy performance. The C version of these algorithms reduce run time by as much as 97.2% and energy consumption by as much as 88.8% relative to Classical and by as much as 56.3% and 57.8% relative to Transpose. The Java versions reduce run time by as much as 98.3% relative to Classical and by as much as 75.2% relative to Transpose. Transpose achieves run time and energy efficiency at the expense of memory as it takes twice the memory required by Classical. The memory required by ByRow, ByRowSegment, and ByBox is the same as that of Classical. As a result, using the same amount of memory, the algorithms proposed by us can solve problems up to 40% larger than those solvable by Transpose.

  1. Verification of Electromagnetic Physics Models for Parallel Computing Architectures in the GeantV Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amadio, G.; et al.

    An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physicsmore » models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.« less

  2. Reducing the Read Noise of HAWAII-2RG Detector Systems with Improved Reference Sampling and Subtraction (IRS2)

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Arendt, Richard G.; Fixsen, D. J.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, Donna V.; Xenophontos, Christos

    2012-01-01

    IRS2 is a Wiener-optimal approach to using all of the reference information that Teledyne's HAWAII-2RG detector arrays provide. Using a new readout pattern, IRS2 regularly interleaves reference pixels with the normal pixels during readout. This differs from conventional clocking, in which the reference pixels are read out infrequently, and only in a few rows and columns around the outside edges of the detector array. During calibration, the data are processed in Fourier space, which is <;:lose to the noise's eigenspace. Using IRS2, we have reduced the read noise of the James Webb Space Telescope Near Infrared Spectrograph by 15% compared to conventional readout. We are attempting to achieve further gains by calibrating out recently recognized non-stationary noise that appears at the frame rate.

  3. Multi-Point Combustion System: Final Report

    NASA Technical Reports Server (NTRS)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison between Jet- A fuel and a hydrotreated biofuel is made to determine viability of the technology for use with alternative fuels. Finally, the operability of the array and associated nozzles proved to be very stable without requiring additional active or passive control systems. A number of publications have been publish

  4. Multi-GPU implementation of a VMAT treatment plan optimization algorithm.

    PubMed

    Tian, Zhen; Peng, Fei; Folkerts, Michael; Tan, Jun; Jia, Xun; Jiang, Steve B

    2015-06-01

    Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU's relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors' group, on a multi-GPU platform to solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors' method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H&N) cancer case is then used to validate the authors' method. The authors also compare their multi-GPU implementation with three different single GPU implementation strategies, i.e., truncating DDC matrix (S1), repeatedly transferring DDC matrix between CPU and GPU (S2), and porting computations involving DDC matrix to CPU (S3), in terms of both plan quality and computational efficiency. Two more H&N patient cases and three prostate cases are used to demonstrate the advantages of the authors' method. The authors' multi-GPU implementation can finish the optimization process within ∼ 1 min for the H&N patient case. S1 leads to an inferior plan quality although its total time was 10 s shorter than the multi-GPU implementation due to the reduced matrix size. S2 and S3 yield the same plan quality as the multi-GPU implementation but take ∼4 and ∼6 min, respectively. High computational efficiency was consistently achieved for the other five patient cases tested, with VMAT plans of clinically acceptable quality obtained within 23-46 s. Conversely, to obtain clinically comparable or acceptable plans for all six of these VMAT cases that the authors have tested in this paper, the optimization time needed in a commercial TPS system on CPU was found to be in an order of several minutes. The results demonstrate that the multi-GPU implementation of the authors' column-generation-based VMAT optimization can handle the large-scale VMAT optimization problem efficiently without sacrificing plan quality. The authors' study may serve as an example to shed some light on other large-scale medical physics problems that require multi-GPU techniques.

  5. Heat Transfer on a Film-Cooled Blade - Effect of Hole Physics

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Rigby, David L.

    1998-01-01

    A multi-block, three-dimensional Navier-Stokes code has been used to study the within-hole and near-hole physics in relation to heat transfer on a film-cooled blade. The flow domain consists of the coolant flow through the plenum and hole-pipes for the three staggered rows of shower-head holes on the VK1 rotor, and the main flow over the blade. A multi-block grid is generated that is nearly orthogonal to the various surfaces. It may be noted that for the VK1 rotor the shower-head holes are inclined at 30 deg. to the spanwise direction, and are normal to the streamwise direction on the blade. Wilcox's k-omega turbulence model is used. The present study provides a much better comparison for the heat transfer coefficient at the blade mid-span with the experimental data than an earlier analysis wherein coolant velocity and temperature distributions were specified at the hole exits rather than extending the computational domain into the hole-pipe and plenum. Details of the distributions of coolant velocity, temperature, k and omega at the hole exits are also presented.

  6. New schemes for internally contracted multi-reference configuration interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yubin; Han, Huixian; Lei, Yibo; Suo, Bingbing; Zhu, Haiyan; Song, Qi; Wen, Zhenyi

    2014-10-01

    In this work we present a new internally contracted multi-reference configuration interaction (MRCI) scheme by applying the graphical unitary group approach and the hole-particle symmetry. The latter allows a Distinct Row Table (DRT) to split into a number of sub-DRTs in the active space. In the new scheme a contraction is defined as a linear combination of arcs within a sub-DRT, and connected to the head and tail of the DRT through up-steps and down-steps to generate internally contracted configuration functions. The new scheme deals with the closed-shell (hole) orbitals and external orbitals in the same manner and thus greatly simplifies calculations of coupling coefficients and CI matrix elements. As a result, the number of internal orbitals is no longer a bottleneck of MRCI calculations. The validity and efficiency of the new ic-MRCI code are tested by comparing with the corresponding WK code of the MOLPRO package. The energies obtained from the two codes are essentially identical, and the computational efficiencies of the two codes have their own advantages.

  7. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  8. Automatic detection and recognition of multiple macular lesions in retinal optical coherence tomography images with multi-instance multilabel learning

    NASA Astrophysics Data System (ADS)

    Fang, Leyuan; Yang, Liumao; Li, Shutao; Rabbani, Hossein; Liu, Zhimin; Peng, Qinghua; Chen, Xiangdong

    2017-06-01

    Detection and recognition of macular lesions in optical coherence tomography (OCT) are very important for retinal diseases diagnosis and treatment. As one kind of retinal disease (e.g., diabetic retinopathy) may contain multiple lesions (e.g., edema, exudates, and microaneurysms) and eye patients may suffer from multiple retinal diseases, multiple lesions often coexist within one retinal image. Therefore, one single-lesion-based detector may not support the diagnosis of clinical eye diseases. To address this issue, we propose a multi-instance multilabel-based lesions recognition (MIML-LR) method for the simultaneous detection and recognition of multiple lesions. The proposed MIML-LR method consists of the following steps: (1) segment the regions of interest (ROIs) for different lesions, (2) compute descriptive instances (features) for each lesion region, (3) construct multilabel detectors, and (4) recognize each ROI with the detectors. The proposed MIML-LR method was tested on 823 clinically labeled OCT images with normal macular and macular with three common lesions: epiretinal membrane, edema, and drusen. For each input OCT image, our MIML-LR method can automatically identify the number of lesions and assign the class labels, achieving the average accuracy of 88.72% for the cases with multiple lesions, which better assists macular disease diagnosis and treatment.

  9. A study of pile-up in integrated time-correlated single photon counting systems

    NASA Astrophysics Data System (ADS)

    Arlt, Jochen; Tyndall, David; Rae, Bruce R.; Li, David D.-U.; Richardson, Justin A.; Henderson, Robert K.

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  10. A study of pile-up in integrated time-correlated single photon counting systems.

    PubMed

    Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  11. Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: part I. Theory.

    PubMed

    Dubský, Pavel; Müllerová, Ludmila; Dvořák, Martin; Gaš, Bohuslav

    2015-03-06

    The model of electromigration of a multivalent weak acidic/basic/amphoteric analyte that undergoes complexation with a mixture of selectors is introduced. The model provides an extension of the series of models starting with the single-selector model without dissociation by Wren and Rowe in 1992, continuing with the monovalent weak analyte/single-selector model by Rawjee, Williams and Vigh in 1993 and that by Lelièvre in 1994, and ending with the multi-selector overall model without dissociation developed by our group in 2008. The new multivalent analyte multi-selector model shows that the effective mobility of the analyte obeys the original Wren and Row's formula. The overall complexation constant, mobility of the free analyte and mobility of complex can be measured and used in a standard way. The mathematical expressions for the overall parameters are provided. We further demonstrate mathematically that the pH dependent parameters for weak analytes can be simply used as an input into the multi-selector overall model and, in reverse, the multi-selector overall parameters can serve as an input into the pH-dependent models for the weak analytes. These findings can greatly simplify the rationale method development in analytical electrophoresis, specifically enantioseparations. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Multi-energy x-ray detectors to improve air-cargo security

    NASA Astrophysics Data System (ADS)

    Paulus, Caroline; Moulin, Vincent; Perion, Didier; Radisson, Patrick; Verger, Loïck

    2017-05-01

    X-ray based systems have been used for decades to screen luggage or cargo to detect illicit material. The advent of energy-sensitive photon-counting x-ray detectors mainly based on Cd(Zn)Te semi-conductor technology enables to improve discrimination between materials compared to single or dual energy technology. The presented work is part of the EUROSKY European project to develop a Single European Secure Air-Cargo Space. "Cargo" context implies the presence of relatively heavy objects and with potentially high atomic number. All the study is conducted on simulations with three different detectors: a typical dual energy sandwich detector, a realistic model of the commercial ME100 multi-energy detector marketed by MULTIX, and a ME100 "Cargo": a not yet existing modified multi-energy version of the ME100 more suited to air freight cargo inspection. Firstly, a comparison on simulated measurements shows the performances improvement of the new multi-energy detectors compared to the current dual-energy one. The relative performances are evaluated according to different criteria of separability or contrast-to-noise ratio and the impact of different parameters is studied (influence of channel number, type of materials and tube voltage). Secondly, performances of multi-energy detectors for overlaps processing in a dual-view system is accessed: the case of orthogonal projections has been studied, one giving dimensional values, the other one providing spectral data to assess effective atomic number. A method of overlap correction has been proposed and extended to multi-layer objects case. Therefore, Calibration and processing based on bi-material decomposition have been adapted for this purpose.

  13. Characterization of the Multi-Blade 10B-based detector at the CRISP reflectometer at ISIS for neutron reflectometry at ESS

    NASA Astrophysics Data System (ADS)

    Piscitelli, F.; Mauri, G.; Messi, F.; Anastasopoulos, M.; Arnold, T.; Glavic, A.; Höglund, C.; Ilves, T.; Lopez Higuera, I.; Pazmandi, P.; Raspino, D.; Robinson, L.; Schmidt, S.; Svensson, P.; Varga, D.; Hall-Wilton, R.

    2018-05-01

    The Multi-Blade is a Boron-10-based gaseous thermal neutron detector developed to face the challenge arising in neutron reflectometry at neutron sources. Neutron reflectometers are challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed according to the requirements given by the reflectometers at the European Spallation Source (ESS) in Sweden. The Multi-Blade has been installed and tested on the CRISP reflectometer at the ISIS neutron and muon source in U.K.. The results on the detailed detector characterization are discussed in this manuscript.

  14. Analyzing diffuse scattering with supercomputers. Corrigendum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michels-Clark, Tara M.; Lynch, Vickie E.; Hoffmann, Christina M.

    2016-03-01

    The study by Michels-Clark et al. (2013 [Michels-Clark, T. M., Lynch, V. E., Hoffmann, C. M., Hauser, J., Weber, T., Harrison, R. & Bürgi, H. B. (2013). J. Appl. Cryst. 46, 1616-1625.]) contains misleading errors which are corrected here. The numerical results reported in that paper and the conclusions given there are not affected and remain unchanged. The transition probabilities in Table 1 (rows 4, 5, 7, 8) and Fig. 2 (rows 1 and 2) of the original paper were different from those used in the numerical calculations. Corrected transition probabilities as used in the computations are given in Tablemore » 1 and Fig. 1 of this article. The Δ parameter in the stacking model expresses the preference for the fifth layer in a five-layer stack to be eclipsed with respect to the first layer. This statement corrects the original text on p. 1622, lines 4–7. In the original Fig. 2 the helicity of the layer stacks b L and b R in rows 3 and 4 had been given as opposite to those in rows 1, 2 and 5. Fig. 1 of this article shows rows 3 and 4 corrected to correspond to rows 1, 2 and 5.« less

  15. Efficient Fourier-based algorithms for time-periodic unsteady problems

    NASA Astrophysics Data System (ADS)

    Gopinath, Arathi Kamath

    2007-12-01

    This dissertation work proposes two algorithms for the simulation of time-periodic unsteady problems via the solution of Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. These algorithms use a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). In contrast to conventional Fourier-based techniques which solve the governing equations in frequency space, the new algorithms perform all the calculations in the time domain, and hence require minimal modifications to an existing solver. The complete space-time solution is obtained by iterating in a fifth pseudo-time dimension. Various time-periodic problems such as helicopter rotors, wind turbines, turbomachinery and flapping-wings can be simulated using the Time Spectral method. The algorithm is first validated using pitching airfoil/wing test cases. The method is further extended to turbomachinery problems, and computational results verified by comparison with a time-accurate calculation. The technique can be very memory intensive for large problems, since the solution is computed (and hence stored) simultaneously at all time levels. Often, the blade counts of a turbomachine are rescaled such that a periodic fraction of the annulus can be solved. This approximation enables the solution to be obtained at a fraction of the cost of a full-scale time-accurate solution. For a viscous computation over a three-dimensional single-stage rescaled compressor, an order of magnitude savings is achieved. The second algorithm, the reduced-order Harmonic Balance method is applicable only to turbomachinery flows, and offers even larger computational savings than the Time Spectral method. It simulates the true geometry of the turbomachine using only one blade passage per blade row as the computational domain. In each blade row of the turbomachine, only the dominant frequencies are resolved, namely, combinations of neighbor's blade passing. An appropriate set of frequencies can be chosen by the analyst/designer based on a trade-off between accuracy and computational resources available. A cost comparison with a time-accurate computation for an Euler calculation on a two-dimensional multi-stage compressor obtained an order of magnitude savings, and a RANS calculation on a three-dimensional single-stage compressor achieved two orders of magnitude savings, with comparable accuracy.

  16. A Simple Method for Computing Resistance Distance

    NASA Astrophysics Data System (ADS)

    Bapat, Ravindra B.; Gutmana, Ivan; Xiao, Wenjun

    2003-10-01

    The resistance distance ri j between two vertices vi and vj of a (connected, molecular) graph G is equal to the effective resistance between the respective two points of an electrical network, constructed so as to correspond to G, such that the resistance of any edge is unity. We show how rij can be computed from the Laplacian matrix L of the graph G: Let L(i) and L(i, j) be obtained from L by deleting its i-th row and column, and by deleting its i-th and j-th rows and columns, respectively. Then rij = detL(i, j)/detL(i).

  17. Spherical roller bearing analysis. SKF computer program SPHERBEAN. Volume 1: Analysis

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Pirvics, J.

    1980-01-01

    The models and associated mathematics used within the SPHERBEAN computer program for prediction of the thermomechanical performance characteristics of high speed lubricated double row spherical roller bearings are presented. The analysis allows six degrees of freedom for each roller and three for each half of an optionally split cage. Roller skew, free lubricant, inertial loads, appropriate elastic and friction forces, and flexible outer ring are considered. Roller quasidynamic equilibrium is calculated for a bearing with up to 30 rollers per row, and distinct roller and flange geometries are specifiable. The user is referred to the material contained here for formulation assumptions and algorithm detail.

  18. Multi-step Monte Carlo calculations applied to nuclear reactor instrumentation - source definition and renormalization to physical values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radulovic, Vladimir; Barbot, Loic; Fourmentel, Damien

    Significant efforts have been made over the last few years in the French Alternative Energies and Atomic Energy Commission (CEA) to adopt multi-step Monte Carlo calculation schemes in the investigation and interpretation of the response of nuclear reactor instrumentation detectors (e.g. miniature ionization chambers - MICs and self-powered neutron or gamma detectors - SPNDs and SPGDs). The first step consists of the calculation of the primary data, i.e. evaluation of the neutron and gamma flux levels and spectra in the environment where the detector is located, using a computational model of the complete nuclear reactor core and its surroundings. Thesemore » data are subsequently used to define sources for the following calculation steps, in which only a model of the detector under investigation is used. This approach enables calculations with satisfactory statistical uncertainties (of the order of a few %) within regions which are very small in size (the typical volume of which is of the order of 1 mm{sup 3}). The main drawback of a calculation scheme as described above is that perturbation effects on the radiation conditions caused by the detectors themselves are not taken into account. Depending on the detector, the nuclear reactor and the irradiation position, the perturbation in the neutron flux as primary data may reach 10 to 20%. A further issue is whether the model used in the second step calculations yields physically representative results. This is generally not the case, as significant deviations may arise, depending on the source definition. In particular, as presented in the paper, the injudicious use of special options aimed at increasing the computation efficiency (e.g. reflective boundary conditions) may introduce unphysical bias in the calculated flux levels and distortions in the spectral shapes. This paper presents examples of the issues described above related to a case study on the interpretation of the signal from different types of SPNDs, which were recently irradiated in the Jozef Stefan Institute TRIGA Mark II reactor in Ljubljana, Slovenia, and provides recommendations on how they can be overcome. The paper concludes with a discussion on the renormalization of the results from the second step calculations, to obtain accurate physical values. (authors)« less

  19. Electro-osmotic fluxes in multi-well electro-remediation processes.

    PubMed

    López-Vizcaíno, Rubén; Sáez, Cristina; Mena, Esperanza; Villaseñor, Jose; Cañizares, Pablo; Rodrigo, Manuel A

    2011-01-01

    In recent years, electrokinetic techniques on a laboratory scale have been studied but few applications have been assessed at full-scale. In this work, a mock-up plant with two rows of three electrodes positioned in semipermeable electrolyte wells has been used to study the electro-osmotic flux distribution. Water accumulated in the cathodic wells when an electric voltage gradient was applied between the two electrode-well rows. Likewise, slight differences in the water flux were observed depending on the position and number of electrodes used and on the voltage gradient applied. Results show that the electro-osmotic flow did not increase proportionally with the number of electrodes used. During the start-up of the study, there was an abrupt change in the current density, pH and conductivity of the soil portions closest to electrodic wells due to electrokinetic processes. These differences can be explained in terms of the complex current distributions from anode and cathode rows.

  20. Multi-frame knowledge based text enhancement for mobile phone captured videos

    NASA Astrophysics Data System (ADS)

    Ozarslan, Suleyman; Eren, P. Erhan

    2014-02-01

    In this study, we explore automated text recognition and enhancement using mobile phone captured videos of store receipts. We propose a method which includes Optical Character Resolution (OCR) enhanced by our proposed Row Based Multiple Frame Integration (RB-MFI), and Knowledge Based Correction (KBC) algorithms. In this method, first, the trained OCR engine is used for recognition; then, the RB-MFI algorithm is applied to the output of the OCR. The RB-MFI algorithm determines and combines the most accurate rows of the text outputs extracted by using OCR from multiple frames of the video. After RB-MFI, KBC algorithm is applied to these rows to correct erroneous characters. Results of the experiments show that the proposed video-based approach which includes the RB-MFI and the KBC algorithm increases the word character recognition rate to 95%, and the character recognition rate to 98%.

  1. Blade row dynamic digital compressor program. Volume 1: J85 clean inlet flow and parallel compressor models

    NASA Technical Reports Server (NTRS)

    Tesch, W. A.; Steenken, W. G.

    1976-01-01

    The results are presented of a one-dimensional dynamic digital blade row compressor model study of a J85-13 engine operating with uniform and with circumferentially distorted inlet flow. Details of the geometry and the derived blade row characteristics used to simulate the clean inlet performance are given. A stability criterion based upon the self developing unsteady internal flows near surge provided an accurate determination of the clean inlet surge line. The basic model was modified to include an arbitrary extent multi-sector parallel compressor configuration for investigating 180 deg 1/rev total pressure, total temperature, and combined total pressure and total temperature distortions. The combined distortions included opposed, coincident, and 90 deg overlapped patterns. The predicted losses in surge pressure ratio matched the measured data trends at all speeds and gave accurate predictions at high corrected speeds where the slope of the speed lines approached the vertical.

  2. A high-throughput, multi-channel photon-counting detector with picosecond timing

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  3. Analysis of hydrodynamic force acting on commercialized rowing blades using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Aziz, A. M. Y.; Harun, M. N.; Syahrom, Ardiyansyah; Omar, A. H.

    2017-04-01

    This paper presents a study of the hydrodynamics of several rowing blade designs. The study was done using Computational Fluid Dynamics (CFD) which enabled the investigation to be done similar to the experimental study, but with additional hydrodynamic visualization for further analysis and understanding. The CFD method was validated using quasi-static experimental data from Caplan (2007). Besides that, the proposed CFD analyses have improved the precious CFD results with the percentage of error of 6.58 percent of lift and 0.69 percent of drag force compared to 33.65 and 18.75 percent obtained by Coppel (2010). Consequent to the successful validation, the study then proceeded with the real size of Macon, Big balde and Fat blade. It was found that the hydrodynamic performance of the Fat blade was the highest due to the area, aspect ratio and the shape of the blade. Besides that, distribution of pressure for all models were also investigated which deepened the understanding of the blade fluid mechanics of rowing.

  4. Taguchi Based Regression Analysis of End-Wall Film Cooling in a Gas Turbine Cascade with Single Row of Holes

    NASA Astrophysics Data System (ADS)

    Ravi, D.; Parammasivam, K. M.

    2016-09-01

    Numerical investigations were conducted on a turbine cascade, with end-wall cooling by a single row of cylindrical holes, inclined at 30°. The mainstream fluid was hot air and the coolant was CO2 gas. Based on the Reynolds number, the flow was turbulent at the inlet. The film hole row position, its pitch and blowing ratio was varied with five different values. Taguchi approach was used in designing a L25 orthogonal array (OA) for these parameters. The end-wall averaged film cooling effectiveness (bar η) was chosen as the quality characteristic. CFD analyses were carried out using Ansys Fluent on computational domains designed with inputs from OA. Experiments were conducted for one chosen OA configuration and the computational results were found to correlate well with experimental measurements. The responses from the CFD analyses were fed to the statistical tool to develop a correlation for bar η using regression analysis.

  5. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    PubMed Central

    Neculaes, V. Bogdan; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun; Pelc, Norbert J.; Lounsberry, Brian

    2016-01-01

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent thermal limitations. PMID:27487878

  6. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner

    PubMed Central

    Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-ichi; Sugihara, Naoki; Tsukagoshi, Shinsuke; Saito, Yasuo; Kazama, Masahiro; Ashizawa, Kazuto; Awai, Kazuo; Honda, Osamu; Ishikawa, Hiroyuki; Koizumi, Naoya; Komoto, Daisuke; Moriya, Hiroshi; Oda, Seitaro; Oshiro, Yasuji; Yanagawa, Masahiro; Tomiyama, Noriyuki; Asamura, Hisao

    2015-01-01

    Purpose The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. Materials and Methods This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner. Results The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures. Conclusion Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners. PMID:26352144

  7. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neculaes, V. Bogdan, E-mail: neculaes@ge.com; Caia

    2016-08-15

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode blockmore » per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent thermal limitations.« less

  8. Near Hartree-Fock quality GTO basis sets for the first- and third-row atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry

    1989-01-01

    Energy-optimized Gaussian-type-orbital (GTO) basis sets of accuracy approaching that of numerical Hartree-Fock computations are compiled for the elements of the first and third rows of the periodic table. The methods employed in calculating the sets are explained; the applicability of the sets to electronic-structure calculations is discussed; and the results are presented in tables and briefly characterized.

  9. A Spreadsheet for the Mixing of a Row of Jets with a Confined Crossflow

    NASA Technical Reports Server (NTRS)

    Holderman, J. D.; Smith, T. D.; Clisset, J. R.; Lear, W. E.

    2005-01-01

    An interactive computer code, written with a readily available software program, Microsoft Excel (Microsoft Corporation, Redmond, WA) is presented which displays 3 D oblique plots of a conserved scalar distribution downstream of jets mixing with a confined crossflow, for a single row, double rows, or opposed rows of jets with or without flow area convergence and/or a non-uniform crossflow scalar distribution. This project used a previously developed empirical model of jets mixing in a confined crossflow to create an Microsoft Excel spreadsheet that can output the profiles of a conserved scalar for jets injected into a confined crossflow given several input variables. The program uses multiple spreadsheets in a single Microsoft Excel notebook to carry out the modeling. The first sheet contains the main program, controls for the type of problem to be solved, and convergence criteria. The first sheet also provides for input of the specific geometry and flow conditions. The second sheet presents the results calculated with this routine to show the effects on the mixing of varying flow and geometric parameters. Comparisons are also made between results from the version of the empirical correlations implemented in the spreadsheet and the versions originally written in Applesoft BASIC (Apple Computer, Cupertino, CA) in the 1980's.

  10. A Spreadsheet for the Mixing of a Row of Jets with a Confined Crossflow. Supplement

    NASA Technical Reports Server (NTRS)

    Holderman, J. D.; Smith, T. D.; Clisset, J. R.; Lear, W. E.

    2005-01-01

    An interactive computer code, written with a readily available software program, Microsoft Excel (Microsoft Corporation, Redmond, WA) is presented which displays 3 D oblique plots of a conserved scalar distribution downstream of jets mixing with a confined crossflow, for a single row, double rows, or opposed rows of jets with or without flow area convergence and/or a non-uniform crossflow scalar distribution. This project used a previously developed empirical model of jets mixing in a confined crossflow to create an Microsoft Excel spreadsheet that can output the profiles of a conserved scalar for jets injected into a confined crossflow given several input variables. The program uses multiple spreadsheets in a single Microsoft Excel notebook to carry out the modeling. The first sheet contains the main program, controls for the type of problem to be solved, and convergence criteria. The first sheet also provides for input of the specific geometry and flow conditions. The second sheet presents the results calculated with this routine to show the effects on the mixing of varying flow and geometric parameters. Comparisons are also made between results from the version of the empirical correlations implemented in the spreadsheet and the versions originally written in Applesoft BASIC (Apple Computer, Cupertino, CA) in the 1980's.

  11. Development of Collaborative Research Initiatives to Advance the Aerospace Sciences-via the Communications, Electronics, Information Systems Focus Group

    NASA Technical Reports Server (NTRS)

    Knasel, T. Michael

    1996-01-01

    The primary goal of the Adaptive Vision Laboratory Research project was to develop advanced computer vision systems for automatic target recognition. The approach used in this effort combined several machine learning paradigms including evolutionary learning algorithms, neural networks, and adaptive clustering techniques to develop the E-MOR.PH system. This system is capable of generating pattern recognition systems to solve a wide variety of complex recognition tasks. A series of simulation experiments were conducted using E-MORPH to solve problems in OCR, military target recognition, industrial inspection, and medical image analysis. The bulk of the funds provided through this grant were used to purchase computer hardware and software to support these computationally intensive simulations. The payoff from this effort is the reduced need for human involvement in the design and implementation of recognition systems. We have shown that the techniques used in E-MORPH are generic and readily transition to other problem domains. Specifically, E-MORPH is multi-phase evolutionary leaming system that evolves cooperative sets of features detectors and combines their response using an adaptive classifier to form a complete pattern recognition system. The system can operate on binary or grayscale images. In our most recent experiments, we used multi-resolution images that are formed by applying a Gabor wavelet transform to a set of grayscale input images. To begin the leaming process, candidate chips are extracted from the multi-resolution images to form a training set and a test set. A population of detector sets is randomly initialized to start the evolutionary process. Using a combination of evolutionary programming and genetic algorithms, the feature detectors are enhanced to solve a recognition problem. The design of E-MORPH and recognition results for a complex problem in medical image analysis are described at the end of this report. The specific task involves the identification of vertebrae in x-ray images of human spinal columns. This problem is extremely challenging because the individual vertebra exhibit variation in shape, scale, orientation, and contrast. E-MORPH generated several accurate recognition systems to solve this task. This dual use of this ATR technology clearly demonstrates the flexibility and power of our approach.

  12. Imaging of Combat-Related Thoracic Trauma - Review of Penetrating Trauma.

    PubMed

    Lichtenberger, John P; Kim, Andrew M; Fisher, Dane; Tatum, Peter S; Neubauer, Brian; Peterson, P Gabriel; Carter, Brett W

    2018-03-01

    Combat-related thoracic trauma is a significant contributor to morbidity and mortality of the casualties from Operation Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF). Penetrating, blunt, and blast injuries were the most common mechanisms of trauma. Imaging plays a key role in the management of combat-related thoracic trauma casualties. This review discusses the imaging manifestations of thoracic injuries from penetrating trauma, emphasizing epidemiology and diagnostic clues seen during OEF and OIF. The assessment of radiologic findings in patients who suffer from combat-related thoracic trauma is the basis of this review article. The imaging modalities for this study include multi-detector computed tomography and chest radiography. High-velocity penetrating projectile injuries appear as hemorrhage and re-expansion pulmonary edema from the temporary cavity and a linear, blood-filled track from the permanent cavity. In cases where the projectile passes totally through the body, entrance wounds at the skin surface and tracks through the subcutaneous tissues may be the only indications of penetrating trauma. When assessing vascular injury, special attention should be paid to the right hilum in contrast-enhanced multi-detector computed tomography, as contrast is concentrated in the superior vena cava and superior cavoatrial junction may obscure small fragments. Additionally, CT angiography may show vessel disruption or extravasation of contrast distal to normal vessel location in addition to intraluminal filling defects and pseudo-aneurysms. Tension pneumopericardium may rarely complicate penetrating or blunt chest trauma. On imaging, distension of the pericardial sack by pneumopericardium and compression of the heart support the diagnosis of tension. On multi-detector computed tomography in the acute trauma setting, fluid in the pleural space should be considered hemothorax, particularly when Hounsfield units are above 35. Acutely, extravasated blood will have similar attenuation to the thoracic vasculature, whereas clotted blood will have higher values of 50-90 Hounsfield units. Combat-related thoracic trauma continues to be a significant contributor to the morbidity and mortality of those injured during OEF and OIF. This review of the imaging manifestations of penetrating thoracic injury during OEF and OIF focuses on key diagnostic findings for clinicians caring for combat casualties. The distinct injury pattern and atypical imaging manifestations of penetrating trauma are important to recognize early due to the acuity of this patient population and the influence of accurate diagnosis on clinical management.

  13. SPECT3D - A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output

    NASA Astrophysics Data System (ADS)

    MacFarlane, J. J.; Golovkin, I. E.; Wang, P.; Woodruff, P. R.; Pereyra, N. A.

    2007-05-01

    SPECT3D is a multi-dimensional collisional-radiative code used to post-process the output from radiation-hydrodynamics (RH) and particle-in-cell (PIC) codes to generate diagnostic signatures (e.g. images, spectra) that can be compared directly with experimental measurements. This ability to post-process simulation code output plays a pivotal role in assessing the reliability of RH and PIC simulation codes and their physics models. SPECT3D has the capability to operate on plasmas in 1D, 2D, and 3D geometries. It computes a variety of diagnostic signatures that can be compared with experimental measurements, including: time-resolved and time-integrated spectra, space-resolved spectra and streaked spectra; filtered and monochromatic images; and X-ray diode signals. Simulated images and spectra can include the effects of backlighters, as well as the effects of instrumental broadening and time-gating. SPECT3D also includes a drilldown capability that shows where frequency-dependent radiation is emitted and absorbed as it propagates through the plasma towards the detector, thereby providing insights on where the radiation seen by a detector originates within the plasma. SPECT3D has the capability to model a variety of complex atomic and radiative processes that affect the radiation seen by imaging and spectral detectors in high energy density physics (HEDP) experiments. LTE (local thermodynamic equilibrium) or non-LTE atomic level populations can be computed for plasmas. Photoabsorption rates can be computed using either escape probability models or, for selected 1D and 2D geometries, multi-angle radiative transfer models. The effects of non-thermal (i.e. non-Maxwellian) electron distributions can also be included. To study the influence of energetic particles on spectra and images recorded in intense short-pulse laser experiments, the effects of both relativistic electrons and energetic proton beams can be simulated. SPECT3D is a user-friendly software package that runs on Windows, Linux, and Mac platforms. A parallel version of SPECT3D is supported for Linux clusters for large-scale calculations. We will discuss the major features of SPECT3D, and present example results from simulations and comparisons with experimental data.

  14. Detection and classification of interstitial lung diseases and emphysema using a joint morphological-fuzzy approach

    NASA Astrophysics Data System (ADS)

    Chang Chien, Kuang-Che; Fetita, Catalin; Brillet, Pierre-Yves; Prêteux, Françoise; Chang, Ruey-Feng

    2009-02-01

    Multi-detector computed tomography (MDCT) has high accuracy and specificity on volumetrically capturing serial images of the lung. It increases the capability of computerized classification for lung tissue in medical research. This paper proposes a three-dimensional (3D) automated approach based on mathematical morphology and fuzzy logic for quantifying and classifying interstitial lung diseases (ILDs) and emphysema. The proposed methodology is composed of several stages: (1) an image multi-resolution decomposition scheme based on a 3D morphological filter is used to detect and analyze the different density patterns of the lung texture. Then, (2) for each pattern in the multi-resolution decomposition, six features are computed, for which fuzzy membership functions define a probability of association with a pathology class. Finally, (3) for each pathology class, the probabilities are combined up according to the weight assigned to each membership function and two threshold values are used to decide the final class of the pattern. The proposed approach was tested on 10 MDCT cases and the classification accuracy was: emphysema: 95%, fibrosis/honeycombing: 84% and ground glass: 97%.

  15. Upgrade of the neutral particle analyzers for the TJ-II stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontdecaba, J. M., E-mail: josepmaria.fontdecaba@ciemat.es; Ros, A.; McCarthy, K. J.

    2014-11-15

    The TJ-II stellarator, a magnetically confined plasma device, is equipped with a broad range of diagnostics for plasma characterization. These include 4 neutral particle analyzers (NPAs), consisting of two Acord-12's, to perform poloidal measurements, plus a compact NPA, and an Acord-24, these in tangential viewing positions. The Acord-12's were originally equipped with two rows of 6 channels each, one for hydrogen neutrals and the other for deuterium neutrals but were changed to a single row of 12 detectors for hydrogen, the principal working gas in TJ-II. With this upgrade the resultant improved energy resolution spectrum has allowed more reliable ionmore » temperature estimates to be obtained. Here we present the upgrades undertaken and present results to demonstrate the improved performance of this diagnostic.« less

  16. Image quality and radiation reduction of 320-row area detector CT coronary angiography with optimal tube voltage selection and an automatic exposure control system: comparison with body mass index-adapted protocol.

    PubMed

    Lim, Jiyeon; Park, Eun-Ah; Lee, Whal; Shim, Hackjoon; Chung, Jin Wook

    2015-06-01

    To assess the image quality and radiation exposure of 320-row area detector computed tomography (320-ADCT) coronary angiography with optimal tube voltage selection with the guidance of an automatic exposure control system in comparison with a body mass index (BMI)-adapted protocol. Twenty-two patients (study group) underwent 320-ADCT coronary angiography using an automatic exposure control system with the target standard deviation value of 33 as the image quality index and the lowest possible tube voltage. For comparison, a sex- and BMI-matched group (control group, n = 22) using a BMI-adapted protocol was established. Images of both groups were reconstructed by an iterative reconstruction algorithm. For objective evaluation of the image quality, image noise, vessel density, signal to noise ratio (SNR), and contrast to noise ratio (CNR) were measured. Two blinded readers then subjectively graded the image quality using a four-point scale (1: nondiagnostic to 4: excellent). Radiation exposure was also measured. Although the study group tended to show higher image noise (14.1 ± 3.6 vs. 9.3 ± 2.2 HU, P = 0.111) and higher vessel density (665.5 ± 161 vs. 498 ± 143 HU, P = 0.430) than the control group, the differences were not significant. There was no significant difference between the two groups for SNR (52.5 ± 19.2 vs. 60.6 ± 21.8, P = 0.729), CNR (57.0 ± 19.8 vs. 67.8 ± 23.3, P = 0.531), or subjective image quality scores (3.47 ± 0.55 vs. 3.59 ± 0.56, P = 0.960). However, radiation exposure was significantly reduced by 42 % in the study group (1.9 ± 0.8 vs. 3.6 ± 0.4 mSv, P = 0.003). Optimal tube voltage selection with the guidance of an automatic exposure control system in 320-ADCT coronary angiography allows substantial radiation reduction without significant impairment of image quality, compared to the results obtained using a BMI-based protocol.

  17. Submillisievert median radiation dose for coronary angiography with a second-generation 320-detector row CT scanner in 107 consecutive patients.

    PubMed

    Chen, Marcus Y; Shanbhag, Sujata M; Arai, Andrew E

    2013-04-01

    To (a) use a new second-generation wide-volume 320-detector row computed tomographic (CT) scanner to explore optimization of radiation exposure in coronary CT angiography in an unselected and consecutive cohort of patients referred for clinical purposes and (b) compare estimated radiation exposure and image quality with that from a cohort of similar patients who underwent imaging with a previous first-generation CT system. The study was approved by the institutional review board, and all subjects provided written consent. Coronary CT angiography was performed in 107 consecutive patients with a new second-generation 320-detector row unit. Estimated radiation exposure and image quality were compared with those from 100 consecutive patients who underwent imaging with a previous first-generation scanner. Effective radiation dose was estimated by multiplying the dose-length product by an effective dose conversion factor of 0.014 mSv/mGy ⋅ cm and reported with size-specific dose estimates (SSDEs). Image quality was evaluated by two independent readers. The mean age of the 107 patients was 55.4 years ± 12.0 (standard deviation); 57 patients (53.3%) were men. The median body mass index was 27.3 kg/m(2) (range, 18.1-47.2 kg/m(2)); however, 71 patients (66.4%) were overweight, obese, or morbidly obese. A tube potential of 100 kV was used in 97 patients (90.6%), single-volume acquisition was used in 104 (97.2%), and prospective electrocardiographic gating was used in 106 (99.1%). The mean heart rate was 57.1 beats per minute ± 11.2 (range, 34-96 beats per minute), which enabled single-heartbeat scans in 100 patients (93.4%). The median radiation dose was 0.93 mSv (interquartile range [IQR], 0.58-1.74 mSv) with the second-generation unit and 2.67 mSv (IQR, 1.68-4.00 mSv) with the first-generation unit (P < .0001). The median SSDE was 6.0 mGy (IQR, 4.1-10.0 mGy) with the second-generation unit and 13.2 mGy (IQR, 10.2-18.6 mGy) with the first-generation unit (P < .0001). Overall, the radiation dose was less than 0.5 mSv for 23 of the 107 CT angiography examinations (21.5%), less than 1 mSv for 58 (54.2%), and less than 4 mSv for 103 (96.3%). All studies were of diagnostic quality, with most having excellent image quality. Three of four image quality indexes were significantly better with the second-generation unit compared with the first-generation unit. The combination of a gantry rotation time of 275 msec, wide volume coverage, iterative reconstruction, automated exposure control, and larger x-ray power generator of the second-generation CT scanner provides excellent image quality over a wide range of body sizes and heart rates at low radiation doses. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.13122621/-/DC1. RSNA, 2013

  18. Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Chevallier, M.; Constanzo, J.; Dauvergne, D.; De Rydt, M.; Dedes, G.; Freud, N.; Henriquet, P.; La Tessa, C.; Létang, J. M.; Pleskač, R.; Pinto, M.; Ray, C.; Reithinger, V.; Richard, M. H.; Rinaldi, I.; Roellinghoff, F.; Schuy, C.; Testa, E.; Testa, M.

    2015-01-01

    Longitudinal prompt-gamma ray profiles have been measured with a multi-slit multi-detector configuration at a 75 MeV/u 13C beam and with a PMMA target. Selections in time-of-flight and energy have been applied in order to discriminate prompt-gamma rays produced in the target from background events. The ion ranges which have been extracted from each individual detector module agree amongst each other and are consistent with theoretical expectations. In a separate dedicated experiment with 200 MeV/u 12C ions the fraction of inter-detector scattering has been determined to be on the 10%-level via a combination of experimental results and simulations. At the same experiment different collimator configurations have been tested and the shielding properties of tungsten and lead for prompt-gamma rays have been measured.

  19. Dose profiles for lung and breast regions at prospective and retrospective CT coronary angiography using optically stimulated luminescence dosimeters on a 64-detector CT scanner.

    PubMed

    Funama, Yoshinori; Taguchi, Katsuyuki; Utsunomiya, Daisuke; Oda, Seitaro; Murasaki, Hiroo; Yamashita, Yasuyuki; Awai, Kazuo

    2012-01-01

    The purpose of our study was to acquire dose profiles at critical organs of lung and breast regions using optically stimulated luminescence (OSL) dosimeters; assess the actual radiation dose delivered at retrospective and prospective computed tomography coronary angiography (CTCA). Using a chest CT phantom we applied a prospectively-gated step-and-shoot- and a retrospectively-gated helical mode on a 64-detector row CT scanner. Retrospective scan mode was used with and without electrocardiogram (ECG) based tube current modulation. OSL dosimeters were used to measure dose profiles. In the both scan modes we acquired dose profiles and determined the mean and maximum dose in left lung and in left breast regions. In prospective mode, the mean dose was 21.53 mGy in left lung- and 23.59 mGy in left breast region. With respect to the retrospective mode, the mean dose with tube current modulation was 38.63 mGy for left lung- and 46.02 mGy for left breast region, i.e. 0.56 and 0.55 times lower than the mean dose without modulation. The OSL dosimeter is useful for measurement of the actual radiation dose along z-axis at lung and breast regions in the prospective and the retrospective CTCA. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. What are the potential advantages and disadvantages of volumetric CT scanning?

    PubMed

    Voros, Szilard

    2009-01-01

    After the introduction and dissemination of 64-slice multislice computed tomography systems, cardiovascular CT has arrived at a crossroad, and different philosophies lead down different paths of technologic development. Increased number of detector rows in the z-axis led to the introduction of dynamic, volumetric scanning of the heart and allows for whole-organ imaging. Dynamic, volumetric "whole-organ" scanning significantly reduces image acquisition time; "single-beat whole-heart imaging" results in improved image quality and reduced radiation exposure and reduced contrast dose. It eliminates helical and pitch artifacts and allows for simultaneous imaging of the base and apex of the heart. Beyond coronary arterial luminal imaging, such innovations open up the opportunity for myocardial perfusion and viability imaging and coronary arterial plaque imaging. Dual-source technology with 2 x-ray tubes placed at 90-degree angles provides heart rate-independent temporal resolution and has the potential for tissue characterization on the basis of different attenuation values at different energy levels. Refined detector technology allows for improved low-contrast resolution and may be beneficial for more detailed evaluation of coronary arterial plaque composition. The clinical benefit of each of these technologies will have to be evaluated in carefully designed clinical trials and in everyday clinical practice. Such combined experience will probably show the relative benefit of each of these philosophies in different patient populations and in different clinical scenarios.

  1. A general tool for the evaluation of spiral CT interpolation algorithms: revisiting the effect of pitch in multislice CT.

    PubMed

    Bricault, Ivan; Ferretti, Gilbert

    2005-01-01

    While multislice spiral computed tomography (CT) scanners are provided by all major manufacturers, their specific interpolation algorithms have been rarely evaluated. Because the results published so far relate to distinct particular cases and differ significantly, there are contradictory recommendations about the choice of pitch in clinical practice. In this paper, we present a new tool for the evaluation of multislice spiral CT z-interpolation algorithms, and apply it to the four-slice case. Our software is based on the computation of a "Weighted Radiation Profile" (WRP), and compares WRP to an expected ideal profile in terms of widening and heterogeneity. It provides a unique scheme for analyzing a large variety of spiral CT acquisition procedures. Freely chosen parameters include: number of detector rows, detector collimation, nominal slice width, helical pitch, and interpolation algorithm with any filter shape and width. Moreover, it is possible to study any longitudinal and off-isocenter positions. Theoretical and experimental results show that WRP, more than Slice Sensitivity Profile (SSP), provides a comprehensive characterization of interpolation algorithms. WRP analysis demonstrates that commonly "preferred helical pitches" are actually nonoptimal regarding the formerly distinguished z-sampling gap reduction criterion. It is also shown that "narrow filter" interpolation algorithms do not enable a general preferred pitch discussion, since they present poor properties with large longitudinal and off-center variations. In the more stable case of "wide filter" interpolation algorithms, SSP width or WRP widening are shown to be almost constant. Therefore, optimal properties should no longer be sought in terms of these criteria. On the contrary, WRP heterogeneity is related to variable artifact phenomena and can pertinently characterize optimal pitches. In particular, the exemplary interpolation properties of pitch = 1 "wide filter" mode are demonstrated.

  2. Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faby, Sebastian, E-mail: sebastian.faby@dkfz.de; Kuchenbecker, Stefan; Sawall, Stefan

    2015-07-15

    Purpose: To study the performance of different dual energy computed tomography (DECT) techniques, which are available today, and future multi energy CT (MECT) employing novel photon counting detectors in an image-based material decomposition task. Methods: The material decomposition performance of different energy-resolved CT acquisition techniques is assessed and compared in a simulation study of virtual non-contrast imaging and iodine quantification. The material-specific images are obtained via a statistically optimal image-based material decomposition. A projection-based maximum likelihood approach was used for comparison with the authors’ image-based method. The different dedicated dual energy CT techniques are simulated employing realistic noise models andmore » x-ray spectra. The authors compare dual source DECT with fast kV switching DECT and the dual layer sandwich detector DECT approach. Subsequent scanning and a subtraction method are studied as well. Further, the authors benchmark future MECT with novel photon counting detectors in a dedicated DECT application against the performance of today’s DECT using a realistic model. Additionally, possible dual source concepts employing photon counting detectors are studied. Results: The DECT comparison study shows that dual source DECT has the best performance, followed by the fast kV switching technique and the sandwich detector approach. Comparing DECT with future MECT, the authors found noticeable material image quality improvements for an ideal photon counting detector; however, a realistic detector model with multiple energy bins predicts a performance on the level of dual source DECT at 100 kV/Sn 140 kV. Employing photon counting detectors in dual source concepts can improve the performance again above the level of a single realistic photon counting detector and also above the level of dual source DECT. Conclusions: Substantial differences in the performance of today’s DECT approaches were found for the application of virtual non-contrast and iodine imaging. Future MECT with realistic photon counting detectors currently can only perform comparably to dual source DECT at 100 kV/Sn 140 kV. Dual source concepts with photon counting detectors could be a solution to this problem, promising a better performance.« less

  3. Hilar cholangiocarcinoma: Cross sectional evaluation of disease spectrum

    PubMed Central

    Mahajan, Mangal S; Moorthy, Srikanth; Karumathil, Sreekumar P; Rajeshkannan, R; Pothera, Ramchandran

    2015-01-01

    Although hilar cholangiocarcinoma is relatively rare, it can be diagnosed on imaging by identifying its typical pattern. In most cases, the tumor appears to be centered on the right or left hepatic duct with involvement of the ipsilateral portal vein, atrophy of hepatic lobe on that side, and invasion of adjacent liver parenchyma. Multi-detector computed tomography (MDCT) and magnetic resonance cholangiopancreatography (MRCP) are commonly used imaging modalities to assess the longitudinal and horizontal spread of tumor. PMID:25969643

  4. Study of the renal segmental arterial anatomy with contrast-enhanced multi-detector computed tomography.

    PubMed

    Rocco, Francesco; Cozzi, Luigi Alberto; Cozzi, Gabriele

    2015-07-01

    To use triphasic multi-detector computed tomography (MDCT) to study the renal segmental arterial anatomy and its relationship with the urinary tract to plan nephron-sparing surgery (NSS). One hundred and fifty nine patients underwent abdominal contrast-enhanced MDCT. We evaluated renal arteries and parenchymal vasculature. In 61 patients, the arteries and the urinary tract were represented simultaneously. 86.60% presented a single renal artery; 13.4%, multiple arteries. All single renal arteries divided into anterior and posterior branch before the hilum. The anterior artery branched into a superior, middle, and inferior branch. In 43.14%, the inferior artery arose before the others; in 45.75%, the superior artery arose before the others; in 9.80%, the branches shared a common trunk. In 26.80%, the posterior artery supplies the entire posterior surface; in 73.20%, it ends along the inferior calyx. In 96.73%, the upper pole was vascularized by the anterior superior branch and the posterior artery: the "tuning fork". MDCT showed four vascular segments in 96.73% and five in 3.27%. MDCT showed two avascular areas: the first along the projection of the inferior calyx on the posterior aspect, the second between the branches of the "tuning fork". The arterial phase provides the arterial tree representation; the delayed phase shows arteries and urinary tract simultaneously. MDCT provides a useful representation of the renal anatomy prior to intervascular-intrarenal NSS.

  5. Multi-class geospatial object detection and geographic image classification based on collection of part detectors

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei; Zhou, Peicheng; Guo, Lei

    2014-12-01

    The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.

  6. Mapping Vineyard Leaf Area Using Mobile Terrestrial Laser Scanners: Should Rows be Scanned On-the-Go or Discontinuously Sampled?

    PubMed Central

    del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R.; Company, Joaquim; Sanz, Ricardo; Escolà, Alexandre; Masip, Joan; Martínez-Casasnovas, José A.; Arnó, Jaume

    2016-01-01

    The leaf area index (LAI) is defined as the one-side leaf area per unit ground area, and is probably the most widely used index to characterize grapevine vigor. However, LAI varies spatially within vineyard plots. Mapping and quantifying this variability is very important for improving management decisions and agricultural practices. In this study, a mobile terrestrial laser scanner (MTLS) was used to map the LAI of a vineyard, and then to examine how different scanning methods (on-the-go or discontinuous systematic sampling) may affect the reliability of the resulting raster maps. The use of the MTLS allows calculating the enveloping vegetative area of the canopy, which is the sum of the leaf wall areas for both sides of the row (excluding gaps) and the projected upper area. Obtaining the enveloping areas requires scanning from both sides one meter length section along the row at each systematic sampling point. By converting the enveloping areas into LAI values, a raster map of the latter can be obtained by spatial interpolation (kriging). However, the user can opt for scanning on-the-go in a continuous way and compute 1-m LAI values along the rows, or instead, perform the scanning at discontinuous systematic sampling within the plot. An analysis of correlation between maps indicated that MTLS can be used discontinuously in specific sampling sections separated by up to 15 m along the rows. This capability significantly reduces the amount of data to be acquired at field level, the data storage capacity and the processing power of computers. PMID:26797618

  7. Mapping Vineyard Leaf Area Using Mobile Terrestrial Laser Scanners: Should Rows be Scanned On-the-Go or Discontinuously Sampled?

    PubMed

    del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R; Company, Joaquim; Sanz, Ricardo; Escolà, Alexandre; Masip, Joan; Martínez-Casasnovas, José A; Arnó, Jaume

    2016-01-19

    The leaf area index (LAI) is defined as the one-side leaf area per unit ground area, and is probably the most widely used index to characterize grapevine vigor. However, LAI varies spatially within vineyard plots. Mapping and quantifying this variability is very important for improving management decisions and agricultural practices. In this study, a mobile terrestrial laser scanner (MTLS) was used to map the LAI of a vineyard, and then to examine how different scanning methods (on-the-go or discontinuous systematic sampling) may affect the reliability of the resulting raster maps. The use of the MTLS allows calculating the enveloping vegetative area of the canopy, which is the sum of the leaf wall areas for both sides of the row (excluding gaps) and the projected upper area. Obtaining the enveloping areas requires scanning from both sides one meter length section along the row at each systematic sampling point. By converting the enveloping areas into LAI values, a raster map of the latter can be obtained by spatial interpolation (kriging). However, the user can opt for scanning on-the-go in a continuous way and compute 1-m LAI values along the rows, or instead, perform the scanning at discontinuous systematic sampling within the plot. An analysis of correlation between maps indicated that MTLS can be used discontinuously in specific sampling sections separated by up to 15 m along the rows. This capability significantly reduces the amount of data to be acquired at field level, the data storage capacity and the processing power of computers.

  8. Improving the Raster Scanning Methods used with X-ray Fluorescence to See the Ancient Greek Text of Archimedes (SULI Paper)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Isabella B.; /Norfolk State U. /SLAC, SSRL

    2006-01-04

    X-ray fluorescence is being used to detect the ancient Greek copy of Archimedes work. The copy of Archimedes text was erased with a weak acid and written over to make a prayer book in the Middle Ages. The ancient parchment, made of goat skin, has on it some of Archimedes most valuable writings. The ink in the text contains iron which will fluoresce under x-ray radiation. My research project deals with the scanning and imaging process. The palimpsest is put in a stage that moves in a raster format. As the beam hits the parchment, a germanium detector detects themore » iron atoms and discriminates against other elements. Since the computer scans in both forwards and backwards directions, it is imperative that each row of data lines up exactly on top of the next row. There are several parameters to consider when scanning the parchment. These parameters include: speed, count time, shutter time, x-number of points, and acceleration. Formulas were made to relate these parameters together. During the actual beam time of this project, the scanning was very slow going; it took 30 hours to scan 1/2 of a page. Using the formulas, the scientists doubled distance and speed to scan the parchment faster; however, the grey scaled data was not lined up properly causing the images to look blurred. My project was is to find out why doubling the parameters caused blurred images, and to fix the problem if it is fixable.« less

  9. GPU-based low-level trigger system for the standalone reconstruction of the ring-shaped hit patterns in the RICH Cherenkov detector of NA62 experiment

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-03-01

    This project aims to exploit the parallel computing power of a commercial Graphics Processing Unit (GPU) to implement fast pattern matching in the Ring Imaging Cherenkov (RICH) detector for the level 0 (L0) trigger of the NA62 experiment. In this approach, the ring-fitting algorithm is seedless, being fed with raw RICH data, with no previous information on the ring position from other detectors. Moreover, since the L0 trigger is provided with a more elaborated information than a simple multiplicity number, it results in a higher selection power. Two methods have been studied in order to reduce the data transfer latency from the readout boards of the detector to the GPU, i.e., the use of a dedicated NIC device driver with very low latency and a direct data transfer protocol from a custom FPGA-based NIC to the GPU. The performance of the system, developed through the FPGA approach, for multi-ring Cherenkov online reconstruction obtained during the NA62 physics runs is presented.

  10. Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2017-09-01

    A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.

  11. Multi-detector CT features of acute intestinal ischemia and their prognostic correlations.

    PubMed

    Moschetta, Marco; Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe

    2014-05-28

    Acute intestinal ischemia is an abdominal emergency occurring in nearly 1% of patients presenting with acute abdomen. The causes can be occlusive or non occlusive. Early diagnosis is important to improve survival rates. In most cases of late or missed diagnosis, the mortality rate from intestinal infarction is very high, with a reported value ranging from 60% to 90%. Multi-detector computed tomography (MDCT) is a fundamental imaging technique that must be promptly performed in all patients with suspected bowel ischemia. Thanks to the new dedicated reconstruction program, its diagnostic potential is much improved compared to the past and currently it is superior to that of any other noninvasive technique. The increased spatial and temporal resolution, high-quality multi-planar reconstructions, maximum intensity projections, vessel probe, surface-shaded volume rending and tissue transition projections make MDCT the gold standard for the diagnosis of intestinal ischemia, with reported sensitivity, specificity, positive and negative predictive values of 64%-93%, 92%-100%, 90%-100% and 94%-98%, respectively. MDCT contributes to appropriate treatment planning and provides important prognostic information thanks to its ability to define the nature and extent of the disease. The purpose of this review is to examine the diagnostic and prognostic role of MDCT in bowel ischemia with special regard to the state of art new reconstruction software.

  12. GPU-based optical propagation simulator of a laser-processed crystal block for the X'tal cube PET detector.

    PubMed

    Ogata, Yuma; Ohnishi, Takashi; Moriya, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga; Haneishi, Hideaki

    2014-01-01

    The X'tal cube is a next-generation DOI detector for PET that we are developing to offer higher resolution and higher sensitivity than is available with present detectors. It is constructed from a cubic monolithic scintillation crystal and silicon photomultipliers which are coupled on various positions of the six surfaces of the cube. A laser-processing technique is applied to produce 3D optical boundaries composed of micro-cracks inside the monolithic scintillator crystal. The current configuration is based on an empirical trial of a laser-processed boundary. There is room to improve the spatial resolution by optimizing the setting of the laser-processed boundary. In fact, the laser-processing technique has high freedom in setting the parameters of the boundary such as size, pitch, and angle. Computer simulation can effectively optimize such parameters. In this study, to design optical characteristics properly for the laser-processed crystal, we developed a Monte Carlo simulator which can model arbitrary arrangements of laser-processed optical boundaries (LPBs). The optical characteristics of the LPBs were measured by use of a setup with a laser and a photo-diode, and then modeled in the simulator. The accuracy of the simulator was confirmed by comparison of position histograms obtained from the simulation and from experiments with a prototype detector composed of a cubic LYSO monolithic crystal with 6 × 6 × 6 segments and multi-pixel photon counters. Furthermore, the simulator was accelerated by parallel computing with general-purpose computing on a graphics processing unit. The calculation speed was about 400 times faster than that with a CPU.

  13. Effects of multi-directional vibrotactile feedback on vestibular-deficient postural performance during continuous multi-directional support surface perturbations.

    PubMed

    Sienko, K H; Balkwill, M D; Oddsson, L I E; Wall, C

    2008-01-01

    Single-axis vibrotactile feedback of trunk tilt provided in real-time has previously been shown to significantly reduce the root-mean-square (RMS) trunk sway in subjects with vestibular loss during single-axis perturbation. This research examines the effect of multi-directional vibrotactile feedback on postural sway during continuous multi-directional surface perturbations when the subjects' eyes are closed. Eight subjects with vestibular loss donned a multi-axis feedback device that mapped body tilt estimates onto their torsos with a 3-row by 16-column array of tactile actuators (tactors). Tactor row indicated tilt magnitude and tactor column indicated tilt direction. Root-mean-square trunk tilt, elliptical fits to trunk sway trajectory areas, percentage of time spent outside a no vibrotactile feedback zone, RMS center of pressure, and anchoring index parameters indicating intersegmental coordination were used to assess the efficacy of the multi-directional vibrotactile balance aid. Four tactor display configurations in addition to the tactors off configuration were evaluated. Subjects had significantly reduced RMS trunk sway, significantly smaller elliptical fits of the trajectory area, and spent significantly less time outside of the no feedback zone in the tactors on versus the tactors off configuration. Among the displays evaluated in this study, there was not an optimal tactor column configuration for standing tasks involving continuous surface perturbations. Furthermore, subjects performed worse when erroneous information was displayed. Therefore, a spatial resolution of 90 degrees (4 columns) seems to be as effective as a spatial resolution of 22.5 degrees (16 columns) for control of standing.

  14. GELATIO: a general framework for modular digital analysis of high-purity Ge detector signals

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Pandola, L.; Zavarise, P.; Volynets, O.

    2011-08-01

    GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high purity Ge detectors and photo-multipliers from the veto counters. It is designed to support a multi-channel modular and flexible analysis, widely customizable by the user either via human-readable initialization files or via a graphical interface. The framework organizes the data into a multi-level structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities to handle the data stream between the different levels. GELATIO is implemented in C++. It relies upon ROOT and its extension TAM, which provides compatibility with PROOF, enabling the software to run in parallel on clusters of computers or many-core machines. It was tested on different platforms and benchmarked in several GERDA-related applications. A stable version is presently available for the GERDA Collaboration and it is used to provide the reference analysis of the experiment data.

  15. Vesselness propagation: a fast interactive vessel segmentation method

    NASA Astrophysics Data System (ADS)

    Cai, Wenli; Dachille, Frank; Harris, Gordon J.; Yoshida, Hiroyuki

    2006-03-01

    With the rapid development of multi-detector computed tomography (MDCT), resulting in increasing temporal and spatial resolution of data sets, clinical use of computed tomographic angiography (CTA) is rapidly increasing. Analysis of vascular structures is much needed in CTA images; however, the basis of the analysis, vessel segmentation, can still be a challenging problem. In this paper, we present a fast interactive method for CTA vessel segmentation, called vesselness propagation. This method is a two-step procedure, with a pre-processing step and an interactive step. During the pre-processing step, a vesselness volume is computed by application of a CTA transfer function followed by a multi-scale Hessian filtering. At the interactive stage, the propagation is controlled interactively in terms of the priority of the vesselness. This method was used successfully in many CTA applications such as the carotid artery, coronary artery, and peripheral arteries. It takes less than one minute for a user to segment the entire vascular structure. Thus, the proposed method provides an effective way of obtaining an overview of vascular structures.

  16. Feasibility and accuracy of dual-layer spectral detector computed tomography for quantification of gadolinium: a phantom study.

    PubMed

    van Hamersvelt, Robbert W; Willemink, Martin J; de Jong, Pim A; Milles, Julien; Vlassenbroek, Alain; Schilham, Arnold M R; Leiner, Tim

    2017-09-01

    The aim of this study was to evaluate the feasibility and accuracy of dual-layer spectral detector CT (SDCT) for the quantification of clinically encountered gadolinium concentrations. The cardiac chamber of an anthropomorphic thoracic phantom was equipped with 14 tubular inserts containing different gadolinium concentrations, ranging from 0 to 26.3 mg/mL (0.0, 0.1, 0.2, 0.4, 0.5, 1.0, 2.0, 3.0, 4.0, 5.1, 10.6, 15.7, 20.7 and 26.3 mg/mL). Images were acquired using a novel 64-detector row SDCT system at 120 and 140 kVp. Acquisitions were repeated five times to assess reproducibility. Regions of interest (ROIs) were drawn on three slices per insert. A spectral plot was extracted for every ROI and mean attenuation profiles were fitted to known attenuation profiles of water and pure gadolinium using in-house-developed software to calculate gadolinium concentrations. At both 120 and 140 kVp, excellent correlations between scan repetitions and true and measured gadolinium concentrations were found (R > 0.99, P < 0.001; ICCs > 0.99, CI 0.99-1.00). Relative mean measurement errors stayed below 10% down to 2.0 mg/mL true gadolinium concentration at 120 kVp and below 5% down to 1.0 mg/mL true gadolinium concentration at 140 kVp. SDCT allows for accurate quantification of gadolinium at both 120 and 140 kVp. Lowest measurement errors were found for 140 kVp acquisitions. • Gadolinium quantification may be useful in patients with contraindication to iodine. • Dual-layer spectral detector CT allows for overall accurate quantification of gadolinium. • Interscan variability of gadolinium quantification using SDCT material decomposition is excellent.

  17. Differentiation of benign and malignant ampullary obstruction by multi-row detector CT.

    PubMed

    Angthong, Wirana; Jiarakoop, Kran; Tangtiang, Kaan

    2018-05-21

    To determine useful CT parameters to differentiate ampullary carcinomas from benign ampullary obstruction. This study included 93 patients who underwent abdominal CT, 31 patients with ampullary carcinomas, and 62 patients with benign ampullary obstruction. Two radiologists independently evaluated CT parameters then reached consensus decisions. Statistically significant CT parameters were identified through univariate and multivariate analyses. In univariate analysis, the presence of ampullary mass, asymmetric, abrupt narrowing of distal common bile duct (CBD), dilated intrahepatic bile duct (IHD), dilated pancreatic duct (PD), peripancreatic lymphadenopathy, duodenal wall thickening, and delayed enhancement were more frequently in ampullary carcinomas observed (P < 0.05). Multivariate logistic regression analysis using significant CT parameters and clinical data from univariate analysis, and clinical symptom with jaundice (P = 0.005) was an independent predictor of ampullary carcinomas. For multivariate analysis using only significant CT parameters, abrupt narrowing of distal CBD was an independent predictor of ampullary carcinomas (P = 0.019). Among various CT criteria, abrupt narrowing of distal CBD and dilated IHD had highest sensitivity (77.4%) and highest accuracy (90.3%). The abrupt narrowing of distal CBD and dilated IHD is useful for differentiation of ampullary carcinomas from benign entity in patients without the presence of mass.

  18. Performance of a SiPM based semi-monolithic scintillator PET detector

    NASA Astrophysics Data System (ADS)

    Zhang, Xianming; Wang, Xiaohui; Ren, Ning; Kuang, Zhonghua; Deng, Xinhan; Fu, Xin; Wu, San; Sang, Ziru; Hu, Zhanli; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2017-10-01

    A depth encoding PET detector module using semi-monolithic scintillation crystal single-ended readout by a SiPM array was built and its performance was measured. The semi-monolithic scintillator detector consists of 11 polished LYSO slices measuring 1  ×  11.6  ×  10 mm3. The slices are glued together with enhanced specular reflector (ESR) in between and outside of the slices. The bottom surface of the slices is coupled to a 4  ×  4 SiPM array with a 1 mm light guide and silicon grease between them. No reflector is used on the top surface and two sides of the slices to reduce the scintillation photon reflection. The signals of the 4  ×  4 SiPM array are grouped along rows and columns separately into eight signals. Four SiPM column signals are used to identify the slices according to the center of the gravity of the scintillation photon distribution in the pixelated direction. Four SiPM row signals are used to estimate the y (monolithic direction) and z (depth of interaction) positions according to the center of the gravity and the width of the scintillation photon distribution in the monolithic direction, respectively. The detector was measured with 1 mm sampling interval in both the y and z directions with electronic collimation by using a 0.25 mm diameter 22Na point source and a 1  ×  1  ×  20 mm3 LYSO crystal detector. An average slice based energy resolution of 14.9% was obtained. All slices of 1 mm thick were clearly resolved and a detector with even thinner slices could be used. The y positions calculated with the center of gravity method are different for interactions happening at the same y, but different z positions due to depth dependent edge effects. The least-square minimization and the maximum likelihood positioning algorithms were developed and both methods improved the spatial resolution at the edges of the detector as compared with the center of gravity method. A mean absolute error (MAE) which is defined as the probability-weighted mean of the absolute value of the positioning error is used to evaluate the spatial resolution. An average MAE spatial resolution of ~1.15 mm was obtained in both y and z directions without rejection of the multiple scattering events. The average MAE spatial resolution was ~0.7 mm in both y and z directions after the multiple scattering events were rejected. The timing resolution of the detector is 575 ps. In the next step, long rectangle detector will be built to reduce edge effects and improve the spatial resolution of the semi-monolithic detector. Thick detector up to 20 mm will be explored and the positioning algorithms will be further optimized.

  19. Performance of a SiPM based semi-monolithic scintillator PET detector.

    PubMed

    Zhang, Xianming; Wang, Xiaohui; Ren, Ning; Kuang, Zhonghua; Deng, Xinhan; Fu, Xin; Wu, San; Sang, Ziru; Hu, Zhanli; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2017-09-21

    A depth encoding PET detector module using semi-monolithic scintillation crystal single-ended readout by a SiPM array was built and its performance was measured. The semi-monolithic scintillator detector consists of 11 polished LYSO slices measuring 1  ×  11.6  ×  10 mm 3 . The slices are glued together with enhanced specular reflector (ESR) in between and outside of the slices. The bottom surface of the slices is coupled to a 4  ×  4 SiPM array with a 1 mm light guide and silicon grease between them. No reflector is used on the top surface and two sides of the slices to reduce the scintillation photon reflection. The signals of the 4  ×  4 SiPM array are grouped along rows and columns separately into eight signals. Four SiPM column signals are used to identify the slices according to the center of the gravity of the scintillation photon distribution in the pixelated direction. Four SiPM row signals are used to estimate the y (monolithic direction) and z (depth of interaction) positions according to the center of the gravity and the width of the scintillation photon distribution in the monolithic direction, respectively. The detector was measured with 1 mm sampling interval in both the y and z directions with electronic collimation by using a 0.25 mm diameter 22 Na point source and a 1  ×  1  ×  20 mm 3 LYSO crystal detector. An average slice based energy resolution of 14.9% was obtained. All slices of 1 mm thick were clearly resolved and a detector with even thinner slices could be used. The y positions calculated with the center of gravity method are different for interactions happening at the same y, but different z positions due to depth dependent edge effects. The least-square minimization and the maximum likelihood positioning algorithms were developed and both methods improved the spatial resolution at the edges of the detector as compared with the center of gravity method. A mean absolute error (MAE) which is defined as the probability-weighted mean of the absolute value of the positioning error is used to evaluate the spatial resolution. An average MAE spatial resolution of ~1.15 mm was obtained in both y and z directions without rejection of the multiple scattering events. The average MAE spatial resolution was ~0.7 mm in both y and z directions after the multiple scattering events were rejected. The timing resolution of the detector is 575 ps. In the next step, long rectangle detector will be built to reduce edge effects and improve the spatial resolution of the semi-monolithic detector. Thick detector up to 20 mm will be explored and the positioning algorithms will be further optimized.

  20. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Chris; Daigle, Stephen; Buckner, Matt

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ) 15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  1. ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Šuljić, M.

    2016-11-01

    The upgrade of the ALICE vertex detector, the Inner Tracking System (ITS), is scheduled to be installed during the next long shutdown period (2019-2020) of the CERN Large Hadron Collider (LHC) . The current ITS will be replaced by seven concentric layers of Monolithic Active Pixel Sensors (MAPS) with total active surface of ~10 m2, thus making ALICE the first LHC experiment implementing MAPS detector technology on a large scale. The ALPIDE chip, based on TowerJazz 180 nm CMOS Imaging Process, is being developed for this purpose. A particular process feature, the deep p-well, is exploited so the full CMOS logic can be implemented over the active sensor area without impinging on the deposited charge collection. ALPIDE is implemented on silicon wafers with a high resistivity epitaxial layer. A single chip measures 15 mm by 30 mm and contains half a million pixels distributed in 512 rows and 1024 columns. In-pixel circuitry features amplification, shaping, discrimination and multi-event buffering. The readout is hit driven i.e. only addresses of hit pixels are sent to the periphery. The upgrade of the ITS presents two different sets of requirements for sensors of the inner and of the outer layers due to the significantly different track density, radiation level and active detector surface. The ALPIDE chip fulfils the stringent requirements in both cases. The detection efficiency is higher than 99%, fake-hit probability is orders of magnitude lower than the required 10-6 and spatial resolution within the required 5 μm. This performance is to be maintained even after a total ionising does (TID) of 2.7 Mrad and a non-ionising energy loss (NIEL) fluence of 1.7 × 1013 1 MeV neq/cm2, which is above what is expected during the detector lifetime. Readout rate of 100 kHz is provided and the power density of ALPIDE is less than 40 mW/cm2. This contribution will provide a summary of the ALPIDE features and main test results.

  2. CT colonography: automated measurement of colonic polyps compared with manual techniques--human in vitro study.

    PubMed

    Taylor, Stuart A; Slater, Andrew; Halligan, Steve; Honeyfield, Lesley; Roddie, Mary E; Demeshski, Jamshid; Amin, Hamdam; Burling, David

    2007-01-01

    To prospectively investigate the relative accuracy and reproducibility of manual and automated computer software measurements by using polyps of known size in a human colectomy specimen. Institutional review board approval was obtained for the study; written consent for use of the surgical specimen was obtained. A colectomy specimen containing 27 polyps from a 16-year-old male patient with familial adenomatous polyposis was insufflated, submerged in a container with solution, and scanned at four-section multi-detector row computed tomography (CT). A histopathologist measured the maximum dimension of all polyps in the opened specimen. Digital photographs and line drawings were produced to aid CT-histologic measurement correlation. A novice (radiographic technician) and an experienced (radiologist) observer independently estimated polyp diameter with three methods: manual two-dimensional (2D) and manual three-dimensional (3D) measurement with software calipers and automated measurement with software (automatic). Data were analyzed with paired t tests and Bland-Altman limits of agreement. Seven polyps (

  3. Detection of secondary and backscattered electrons for 3D imaging with multi-detector method in VP/ESEM.

    PubMed

    Slówko, Witold; Wiatrowski, Artur; Krysztof, Michał

    2018-01-01

    The paper considers some major problems of adapting the multi-detector method for three-dimensional (3D) imaging of wet bio-medical samples in Variable Pressure/Environmental Scanning Electron Microscope (VP/ESEM). The described method pertains to "single-view techniques", which to create the 3D surface model utilise a sequence of 2D SEM images captured from a single view point (along the electron beam axis) but illuminated from four directions. The basis of the method and requirements resulting from them are given for the detector systems of secondary (SE) and backscattered electrons (BSE), as well as designs of the systems which could work in variable conditions. The problems of SE detection with application of the Pressure Limiting Aperture (PLA) as the signal collector are discussed with respect to secondary electron backscattering by a gaseous environment. However, the authors' attention is turned mainly to the directional BSE detection, realized in two ways. The high take off angle BSE were captured through PLA with use of the quadruple semiconductor detector placed inside the intermediate chamber, while BSE starting at lower angles were detected by the four-folded ionization device working in the sample chamber environment. The latter relied on a conversion of highly energetic BSE into low energetic SE generated on walls and a gaseous environment of the deep discharge gap oriented along the BSE velocity direction. The converted BSE signal was amplified in an ionising avalanche developed in the electric field arranged transversally to the gap. The detector system operation is illustrated with numerous computer simulations and examples of experiments and 3D images. The latter were conducted in a JSM 840 microscope with its combined detector-vacuum equipment which could extend capabilities of this high vacuum instrument toward elevated pressures (over 1kPa) and environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High-resolution 3D laser imaging based on tunable fiber array link

    NASA Astrophysics Data System (ADS)

    Zhao, Sisi; Ruan, Ningjuan; Yang, Song

    2017-10-01

    Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.

  5. Architecture and Implementation of OpenPET Firmware and Embedded Software

    PubMed Central

    Abu-Nimeh, Faisal T.; Ito, Jennifer; Moses, William W.; Peng, Qiyu; Choong, Woon-Seng

    2016-01-01

    OpenPET is an open source, modular, extendible, and high-performance platform suitable for multi-channel data acquisition and analysis. Due to the flexibility of the hardware, firmware, and software architectures, the platform is capable of interfacing with a wide variety of detector modules not only in medical imaging but also in homeland security applications. Analog signals from radiation detectors share similar characteristics – a pulse whose area is proportional to the deposited energy and whose leading edge is used to extract a timing signal. As a result, a generic design method of the platform is adopted for the hardware, firmware, and software architectures and implementations. The analog front-end is hosted on a module called a Detector Board, where each board can filter, combine, timestamp, and process multiple channels independently. The processed data is formatted and sent through a backplane bus to a module called Support Board, where 1 Support Board can host up to eight Detector Board modules. The data in the Support Board, coming from 8 Detector Board modules, can be aggregated or correlated (if needed) depending on the algorithm implemented or runtime mode selected. It is then sent out to a computer workstation for further processing. The number of channels (detector modules), to be processed, mandates the overall OpenPET System Configuration, which is designed to handle up to 1,024 channels using 16-channel Detector Boards in the Standard System Configuration and 16,384 channels using 32-channel Detector Boards in the Large System Configuration. PMID:27110034

  6. Dose reduction in whole-body computed tomography of multiple injuries (DoReMI): protocol for a prospective cohort study

    PubMed Central

    2014-01-01

    Background Single-pass, contrast-enhanced whole body multidetector computed tomography (MDCT) emerged as the diagnostic standard for evaluating patients with major trauma. Modern iterative image algorithms showed high image quality at a much lower radiation dose in the non-trauma setting. This study aims at investigating whether the radiation dose can safely be reduced in trauma patients without compromising the diagnostic accuracy and image quality. Methods/Design Prospective observational study with two consecutive cohorts of patients. Setting: A high-volume, academic, supra-regional trauma centre in Germany. Study population: Consecutive male and female patients who 1. had been exposed to a high-velocity trauma mechanism, 2. present with clinical evidence or high suspicion of multiple trauma (predicted Injury Severity Score [ISS] ≥16) and 3. are scheduled for primary MDCT based on the decision of the trauma leader on call. Imaging protocols: In a before/after design, a consecutive series of 500 patients will undergo single-pass, whole-body 128-row multi-detector computed tomography (MDCT) with a standard, as low as possible radiation dose. This will be followed by a consecutive series of 500 patients undergoing an approved ultra-low dose MDCT protocol using an image processing algorithm. Data: Routine administrative data and electronic patient records, as well as digital images stored in a picture archiving and communications system will serve as the primary data source. The protocol was approved by the institutional review board. Main outcomes: (1) incidence of delayed diagnoses, (2) diagnostic accuracy, as correlated to the reference standard of a synopsis of all subsequent clinical, imaging, surgical and autopsy findings, (3) patients’ safety, (4) radiation exposure (e.g. effective dose), (5) subjective image quality (assessed independently radiologists and trauma surgeons on a 100-mm visual analogue scale), (6) objective image quality (e.g., contrast-to-noise ratio). Analysis: Multivariate regression will be employed to adjust and correct the findings for time and cohort effects. An exploratory interim analysis halfway after introduction of low-dose MDCT will be conducted to assess whether this protocol is clearly inferior or superior to the current standard. Discussion Although non-experimental, this study will generate first large-scale data on the utility of imaging-enhancing algorithms in whole-body MDCT for major blunt trauma. Trial registration Current Controlled Trials ISRCTN74557102. PMID:24589310

  7. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 5: Unsteady counterrotation ducted propfan analysis. Computer program user's manual

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Adamczyk, John J.; Miller, Christopher J.; Arnone, Andrea; Swanson, Charles

    1993-01-01

    The primary objective of this study was the development of a time-marching three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict steady and unsteady compressible transonic flows about ducted and unducted propfan propulsion systems employing multiple blade rows. The computer codes resulting from this study are referred to as ADPAC-AOACR (Advanced Ducted Propfan Analysis Codes-Angle of Attack Coupled Row). This report is intended to serve as a computer program user's manual for the ADPAC-AOACR codes developed under Task 5 of NASA Contract NAS3-25270, Unsteady Counterrotating Ducted Propfan Analysis. The ADPAC-AOACR program is based on a flexible multiple blocked grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. For convenience, several standard mesh block structures are described for turbomachinery applications. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Numerical calculations are compared with experimental data for several test cases to demonstrate the utility of this approach for predicting the aerodynamics of modern turbomachinery configurations employing multiple blade rows.

  8. Robust x-ray based material identification using multi-energy sinogram decomposition

    NASA Astrophysics Data System (ADS)

    Yuan, Yaoshen; Tracey, Brian; Miller, Eric

    2016-05-01

    There is growing interest in developing X-ray computed tomography (CT) imaging systems with improved ability to discriminate material types, going beyond the attenuation imaging provided by most current systems. Dual- energy CT (DECT) systems can partially address this problem by estimating Compton and photoelectric (PE) coefficients of the materials being imaged, but DECT is greatly degraded by the presence of metal or other materials with high attenuation. Here we explore the advantages of multi-energy CT (MECT) systems based on photon-counting detectors. The utility of MECT has been demonstrated in medical applications where photon- counting detectors allow for the resolution of absorption K-edges. Our primary concern is aviation security applications where K-edges are rare. We simulate phantoms with differing amounts of metal (high, medium and low attenuation), both for switched-source DECT and for MECT systems, and include a realistic model of detector energy 0 resolution. We extend the DECT sinogram decomposition method of Ying et al. to MECT, allowing estimation of separate Compton and photoelectric sinograms. We furthermore introduce a weighting based on a quadratic approximation to the Poisson likelihood function that deemphasizes energy bins with low signal. Simulation results show that the proposed approach succeeds in estimating material properties even in high-attenuation scenarios where the DECT method fails, improving the signal to noise ratio of reconstructions by over 20 dB for the high-attenuation phantom. Our work demonstrates the potential of using photon counting detectors for stably recovering material properties even when high attenuation is present, thus enabling the development of improved scanning systems.

  9. A scalable multi-photon coincidence detector based on superconducting nanowires.

    PubMed

    Zhu, Di; Zhao, Qing-Yuan; Choi, Hyeongrak; Lu, Tsung-Ju; Dane, Andrew E; Englund, Dirk; Berggren, Karl K

    2018-06-04

    Coincidence detection of single photons is crucial in numerous quantum technologies and usually requires multiple time-resolved single-photon detectors. However, the electronic readout becomes a major challenge when the measurement basis scales to large numbers of spatial modes. Here, we address this problem by introducing a two-terminal coincidence detector that enables scalable readout of an array of detector segments based on superconducting nanowire microstrip transmission line. Exploiting timing logic, we demonstrate a sixteen-element detector that resolves all 136 possible single-photon and two-photon coincidence events. We further explore the pulse shapes of the detector output and resolve up to four-photon events in a four-element device, giving the detector photon-number-resolving capability. This new detector architecture and operating scheme will be particularly useful for multi-photon coincidence detection in large-scale photonic integrated circuits.

  10. A Weibull distribution accrual failure detector for cloud computing.

    PubMed

    Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.

  11. A comparative study of Rosenbrock-type and implicit Runge-Kutta time integration for discontinuous Galerkin method for unsteady 3D compressible Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaodong; Xia, Yidong; Luo, Hong

    A comparative study of two classes of third-order implicit time integration schemes is presented for a third-order hierarchical WENO reconstructed discontinuous Galerkin (rDG) method to solve the 3D unsteady compressible Navier-Stokes equations: — 1) the explicit first stage, single diagonally implicit Runge-Kutta (ESDIRK3) scheme, and 2) the Rosenbrock-Wanner (ROW) schemes based on the differential algebraic equations (DAEs) of Index-2. Compared with the ESDIRK3 scheme, a remarkable feature of the ROW schemes is that, they only require one approximate Jacobian matrix calculation every time step, thus considerably reducing the overall computational cost. A variety of test cases, ranging from inviscid flowsmore » to DNS of turbulent flows, are presented to assess the performance of these schemes. Here, numerical experiments demonstrate that the third-order ROW scheme for the DAEs of index-2 can not only achieve the designed formal order of temporal convergence accuracy in a benchmark test, but also require significantly less computing time than its ESDIRK3 counterpart to converge to the same level of discretization errors in all of the flow simulations in this study, indicating that the ROW methods provide an attractive alternative for the higher-order time-accurate integration of the unsteady compressible Navier-Stokes equations.« less

  12. A comparative study of Rosenbrock-type and implicit Runge-Kutta time integration for discontinuous Galerkin method for unsteady 3D compressible Navier-Stokes equations

    DOE PAGES

    Liu, Xiaodong; Xia, Yidong; Luo, Hong; ...

    2016-10-05

    A comparative study of two classes of third-order implicit time integration schemes is presented for a third-order hierarchical WENO reconstructed discontinuous Galerkin (rDG) method to solve the 3D unsteady compressible Navier-Stokes equations: — 1) the explicit first stage, single diagonally implicit Runge-Kutta (ESDIRK3) scheme, and 2) the Rosenbrock-Wanner (ROW) schemes based on the differential algebraic equations (DAEs) of Index-2. Compared with the ESDIRK3 scheme, a remarkable feature of the ROW schemes is that, they only require one approximate Jacobian matrix calculation every time step, thus considerably reducing the overall computational cost. A variety of test cases, ranging from inviscid flowsmore » to DNS of turbulent flows, are presented to assess the performance of these schemes. Here, numerical experiments demonstrate that the third-order ROW scheme for the DAEs of index-2 can not only achieve the designed formal order of temporal convergence accuracy in a benchmark test, but also require significantly less computing time than its ESDIRK3 counterpart to converge to the same level of discretization errors in all of the flow simulations in this study, indicating that the ROW methods provide an attractive alternative for the higher-order time-accurate integration of the unsteady compressible Navier-Stokes equations.« less

  13. Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    2010-01-01

    The aeroelastic characteristics of a compressor stage were analyzed using a computational fluid dynamic (CFD) solver that uses the harmonic balance method to solve the governing equations. The three dimensional solver models the unsteady flow field due to blade vibration using the Reynolds-Averaged Navier-Stokes equations. The formulation enables the study of the effect of blade row interaction through the inclusion of coupling modes between blade rows. It also enables the study of nonlinear effects of high amplitude blade vibration by the inclusion of higher harmonics of the fundamental blade vibration frequency. In the present work, the solver is applied to study in detail the aeroelastic characteristics of a transonic compressor stage. Various parameters were included in the study: number of coupling modes, blade row axial spacing, and operating speeds. Only the first vibration mode is considered with amplitude of oscillation in the linear range. Both aeroelastic stability (flutter) of rotor blade and unsteady loading on the stator are calculated. The study showed that for the stage considered, the rotor aerodynamic damping is not influenced by the presence of the stator even when the axial spacing is reduced by nearly 25 percent. However, the study showed that blade row interaction effects become important for the unsteady loading on the stator when the axial spacing is reduced by the same amount.

  14. A USB-2 based portable data acquisition system for detector development and nuclear research

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Ojaruega, M.; Becchetti, F. D.; Griffin, H. C.; Torres-Isea, R. O.

    2011-10-01

    A highly portable high-speed CAMAC data acquisition system has been developed using Kmax software (Sparrow, Inc.) for Macintosh laptop and tower computers. It uses a USB-2 interface to the CAMAC crate controller with custom-written software drivers. Kmax permits 2D parameter gating and specific algorithms have been developed to facilitate the rapid evaluation of various multi-element nuclear detectors for energy and time-of-flight measurements. This includes tests using neutrons from 252Cf and a 2.5 MeV neutron generator as well as standard gamma calibration sources such as 60Co and 137Cs. In addition, the system has been used to measure gamma-gamma coincidences over extended time periods using radioactive sources (e.g., Ra-228, Pa-233, Np-237, and Am-243).

  15. Cardiac Multi-detector CT Segmentation Based on Multiscale Directional Edge Detector and 3D Level Set.

    PubMed

    Antunes, Sofia; Esposito, Antonio; Palmisano, Anna; Colantoni, Caterina; Cerutti, Sergio; Rizzo, Giovanna

    2016-05-01

    Extraction of the cardiac surfaces of interest from multi-detector computed tomographic (MDCT) data is a pre-requisite step for cardiac analysis, as well as for image guidance procedures. Most of the existing methods need manual corrections, which is time-consuming. We present a fully automatic segmentation technique for the extraction of the right ventricle, left ventricular endocardium and epicardium from MDCT images. The method consists in a 3D level set surface evolution approach coupled to a new stopping function based on a multiscale directional second derivative Gaussian filter, which is able to stop propagation precisely on the real boundary of the structures of interest. We validated the segmentation method on 18 MDCT volumes from healthy and pathologic subjects using manual segmentation performed by a team of expert radiologists as gold standard. Segmentation errors were assessed for each structure resulting in a surface-to-surface mean error below 0.5 mm and a percentage of surface distance with errors less than 1 mm above 80%. Moreover, in comparison to other segmentation approaches, already proposed in previous work, our method presented an improved accuracy (with surface distance errors less than 1 mm increased of 8-20% for all structures). The obtained results suggest that our approach is accurate and effective for the segmentation of ventricular cavities and myocardium from MDCT images.

  16. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials

    PubMed Central

    Ogawa, Shinpei; Kimata, Masafumi

    2017-01-01

    Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs—periodic crystals, metal-insulator-metal and mushroom-type PMAs—to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications. PMID:28772855

  17. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials.

    PubMed

    Ogawa, Shinpei; Kimata, Masafumi

    2017-05-04

    Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs-periodic crystals, metal-insulator-metal and mushroom-type PMAs-to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.

  18. Thermal response of large area high temperature superconducting YBaCuO infrared bolometers

    NASA Technical Reports Server (NTRS)

    Khalil, Ali E.

    1991-01-01

    Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.

  19. Real-time track-less Cherenkov ring fitting trigger system based on Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-12-01

    The parallel computing power of commercial Graphics Processing Units (GPUs) is exploited to perform real-time ring fitting at the lowest trigger level using information coming from the Ring Imaging Cherenkov (RICH) detector of the NA62 experiment at CERN. To this purpose, direct GPU communication with a custom FPGA-based board has been used to reduce the data transmission latency. The GPU-based trigger system is currently integrated in the experimental setup of the RICH detector of the NA62 experiment, in order to reconstruct ring-shaped hit patterns. The ring-fitting algorithm running on GPU is fed with raw RICH data only, with no information coming from other detectors, and is able to provide more complex trigger primitives with respect to the simple photodetector hit multiplicity, resulting in a higher selection efficiency. The performance of the system for multi-ring Cherenkov online reconstruction obtained during the NA62 physics run is presented.

  20. Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1998-01-01

    A multiblock Navier-Stokes analysis code for turbomachinery has been modified to allow analysis of multistage turbomachines. A steady averaging-plane approach was used to pass information between blade rows. Characteristic boundary conditions written in terms of perturbations about the mean flow from the neighboring blade row were used to allow close spacing between the blade rows without forcing the flow to be axisymmetric. In this report the multiblock code is described briefly and the characteristic boundary conditions and the averaging-plane implementation are described in detail. Two approaches for averaging the flow properties are also described. A two-dimensional turbine stator case was used to compare the characteristic boundary conditions with standard axisymmetric boundary conditions. Differences were apparent but small in this low-speed case. The two-stage fuel turbine used on the space shuttle main engines was then analyzed using a three-dimensional averaging-plane approach. Computed surface pressure distributions on the stator blades and endwalls and computed distributions of blade surface heat transfer coefficient on three blades showed very good agreement with experimental data from two tests.

  1. A comparison among several P300 brain-computer interface speller paradigms.

    PubMed

    Fazel-Rezai, Reza; Gavett, Scott; Ahmad, Waqas; Rabbi, Ahmed; Schneider, Eric

    2011-10-01

    Since the brain-computer interface (BCI) speller was first proposed by Farwell and Donchin, there have been modifications in the visual aspects of P300 paradigms. Most of the changes are based on the original matrix format such as changes in the number of rows and columns, font size, flash/ blank time, and flash order. The improvement in the resulting accuracy and speed of such systems has always been the ultimate goal. In this study, we have compared several different speller paradigms including row-column, single character flashing, and two region-based paradigms which are not based on the matrix format. In the first region-based paradigm, at the first level, characters and symbols are distributed over seven regions alphabetically, while in the second region-based paradigm they are distributed in the most frequently used order. At the second level, each one of the regions is further subdivided into seven subsets. The experimental results showed that the average accuracy and user acceptability for two region-based paradigms were higher than those for traditional paradigms such as row/column and single character.

  2. Microwave backscattering from an anisotropic soybean canopy

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Saatchi, S.; Levine, D. M.

    1986-01-01

    Electromagnetic backscattering from a soybean canopy is modeled in the L band region of the spectrum. Mature soybean plants are taken as an ensemble of leaves and stems which are represented by lossy dielectric disks and rods respectively. Field data indicated that leaves and stems are not distributed uniformly in the azimuth coordinate. The plant has a tendency to grow out into the area between the rows. The effects on backscattered radar waves was computed by the distorted Born approximation. Results for look directions along the rows and perpendicular to the rows show that only a modest difference occurs in the L band frequency range. The use of another nonuniform distribution, different from those observed experimentally, results in a significant effect due to vegetation asymmetry.

  3. Lower gastrointestinal bleeding: Role of 64-row computed tomographic angiography in diagnosis and therapeutic planning

    PubMed Central

    Ren, Jian-Zhuang; Zhang, Meng-Fan; Rong, Ai-Mei; Fang, Xiang-Jie; Zhang, Kai; Huang, Guo-Hao; Chen, Peng-Fei; Wang, Zhao-Yang; Duan, Xu-Hua; Han, Xin-Wei; Liu, Yan-Jie

    2015-01-01

    AIM: To determine the value of computed tomographic angiography (CTA) for diagnosis and therapeutic planning in lower gastrointestinal (GI) bleeding. METHODS: Sixty-three consecutive patients with acute lower GI bleeding underwent CTA before endovascular or surgical treatment. CTA was used to determine whether the lower GI bleeding was suitable for endovascular treatment, surgical resection, or conservative treatment in each patient. Treatment planning with CTA was compared with actual treatment decisions or endovascular or surgical treatment that had been carried out in each patient based on CTA findings. RESULTS: 64-row CTA detected active extravasation of contrast material in 57 patients and six patients had no demonstrable active bleeding, resulting in an accuracy of 90.5% in the detection of acute GI bleeding (57 of 63). In three of the six patients with no demonstrable active bleeding, active lower GI bleeding recurred within one week after CTA, and angiography revealed acute bleeding. The overall location-based accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the detection of GI bleeding by 64-row CTA were 98.8% (249 of 252), 95.0% (57 of 60), 100% (192 of 192), 100% (57 of 57), and 98.5% (192 of 195), respectively. Treatment planning was correctly established on the basis of 64-row CTA with an accuracy, sensitivity, specificity, PPV and NPV of 98.4% (248 of 252), 93.3% (56 of 60), 100% (192 of 192), 100% (56 of 56), and 97.5% (192 of 196), respectively, in a location-based evaluation. CONCLUSION: 64-row CTA is safe and effective in making decisions regarding treatment, without performing digital subtraction angiography or surgery, in the majority of patients with lower GI bleeding. PMID:25852291

  4. Inhibitory control and visuo-spatial reversibility in Piaget's seminal number conservation task: a high-density ERP study

    PubMed Central

    Borst, Grégoire; Simon, Grégory; Vidal, Julie; Houdé, Olivier

    2013-01-01

    The present high-density event-related potential (ERP) study on 13 adults aimed to determine whether number conservation relies on the ability to inhibit the overlearned length-equals-number strategy and then imagine the shortening of the row that was lengthened. Participants performed the number-conservation task and, after the EEG session, the mental imagery task. In the number-conservation task, first two rows with the same number of tokens and the same length were presented on a computer screen (COV condition) and then, the tokens in one of the two rows were spread apart (INT condition). Participants were instructed to determine whether the two rows had an identical number of tokens. In the mental imagery task, two rows with different lengths but the same number of tokens were presented and participants were instructed to imagine the tokens in the longer row aligning with the tokens in the shorter row. In the number-conservation task, we found that the amplitudes of the centro-parietal N2 and fronto-central P3 were higher in the INT than in the COV conditions. In addition, the differences in response times between the two conditions were correlated with the differences in the amplitudes of the fronto-central P3. In light of previous results reported on the number-conservation task in adults, the present results suggest that inhibition might be necessary to succeed the number-conservation task in adults even when the transformation of the length of one of the row is displayed. Finally, we also reported correlations between the speed at which participants could imagine the shortening of one of the row in the mental imagery task, the speed at which participants could determine that the two rows had the same number of tokens after the tokens in one of the row were spread apart and the latency of the late positive parietal component in the number-conservation task. Therefore, performing the number-conservation task might involve mental transformation processes in adults. PMID:24409135

  5. Simultaneous delivery time and aperture shape optimization for the volumetric-modulated arc therapy (VMAT) treatment planning problem

    NASA Astrophysics Data System (ADS)

    Mahnam, Mehdi; Gendreau, Michel; Lahrichi, Nadia; Rousseau, Louis-Martin

    2017-07-01

    In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.

  6. A CMOS pixel sensor prototype for the outer layers of linear collider vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Morel, F.; Hu-Guo, C.; Himmi, A.; Dorokhov, A.; Hu, Y.

    2015-01-01

    The International Linear Collider (ILC) expresses a stringent requirement for high precision vertex detectors (VXD). CMOS pixel sensors (CPS) have been considered as an option for the VXD of the International Large Detector (ILD), one of the detector concepts proposed for the ILC. MIMOSA-31 developed at IPHC-Strasbourg is the first CPS integrated with 4-bit column-level ADC for the outer layers of the VXD, adapted to an original concept minimizing the power consumption. It is composed of a matrix of 64 rows and 48 columns. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation in order to reduce the temporal noise and fixed pattern noise (FPN). At the bottom of the pixel array, each column is terminated with a self-triggered analog-to-digital converter (ADC). The ADC design was optimized for power saving at a sampling frequency of 6.25 MS/s. The prototype chip is fabricated in a 0.35 μm CMOS technology. This paper presents the details of the prototype chip and its test results.

  7. A Weibull distribution accrual failure detector for cloud computing

    PubMed Central

    Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin

    2017-01-01

    Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229

  8. Multi-anode microchannel arrays. [for use in ground-based and spaceborne telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Mount, G. H.; Bybee, R. L.

    1979-01-01

    The Multi-Anode Microchannel Arrays (MAMA's) are a family of photoelectric, photon-counting array detectors being developed for use in instruments on both ground-based and space-borne telescopes. These detectors combine high sensitivity and photometric stability with a high-resolution imaging capability. MAMA detectors can be operated in a windowless configuration at extreme-ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. Prototype MAMA detectors with up to 512 x 512 pixels are now being tested in the laboratory and telescope operation of a simple (10 x 10)-pixel visible-light detector has been initiated. The construction and modes-of-operation of the MAMA detectors are briefly described and performance data are presented.

  9. Tuning single-photon sources for telecom multi-photon experiments.

    PubMed

    Greganti, Chiara; Schiansky, Peter; Calafell, Irati Alonso; Procopio, Lorenzo M; Rozema, Lee A; Walther, Philip

    2018-02-05

    Multi-photon state generation is of great interest for near-future quantum simulation and quantum computation experiments. To-date spontaneous parametric down-conversion is still the most promising process, even though two major impediments still exist: accidental photon noise (caused by the probabilistic non-linear process) and imperfect single-photon purity (arising from spectral entanglement between the photon pairs). In this work, we overcome both of these difficulties by (1) exploiting a passive temporal multiplexing scheme and (2) carefully optimizing the spectral properties of the down-converted photons using periodically-poled KTP crystals. We construct two down-conversion sources in the telecom wavelength regime, finding spectral purities of > 91%, while maintaining high four-photon count rates. We use single-photon grating spectrometers together with superconducting nanowire single-photon detectors to perform a detailed characterization of our multi-photon source. Our methods provide practical solutions to produce high-quality multi-photon states, which are in demand for many quantum photonics applications.

  10. Electromagnetic Physics Models for Parallel Computing Architectures

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2016-10-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.

  11. Solid particle dynamic behavior through twisted blade rows

    NASA Technical Reports Server (NTRS)

    Hamed, A.

    1982-01-01

    The particle trajectory calculations provide the essential information which is required for predicting the pattern and intensity of turbomachinery erosion. Consequently, the evaluation of the machine performance deterioration due to erosion is extremely sensitive to the accuracy of the flow field and blade geometry representation in the trajectory computational model. A model is presented that is simple and efficient yet versatile and general to be applicable to axial, radial and mixed flow machines, and to inlets, nozzles, return passages and separators. The results of the computations are presented for the particle trajectories through a row of twisted vanes in the inlet flow field. The effect of the particle size on their trajectories, blade impacts, and on their redistribution and separation are discussed.

  12. Computer program for calculating full potential transonic, quasi-three-dimensional flow through a rotating turbomachinery blade row

    NASA Technical Reports Server (NTRS)

    Farrell, C. A.

    1982-01-01

    A fast, reliable computer code is described for calculating the flow field about a cascade of arbitrary two dimensional airfoils. The method approximates the three dimensional flow in a turbomachinery blade row by correcting for stream tube convergence and radius change in the throughflow direction. A fully conservative solution of the full potential equation is combined with the finite volume technique on a body-fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. The instructions required to set up and use the code are included. The name of the code is QSONIC. A numerical example is also given to illustrate the output of the program.

  13. Leveraging multi-channel x-ray detector technology to improve quality metrics for industrial and security applications

    NASA Astrophysics Data System (ADS)

    Jimenez, Edward S.; Thompson, Kyle R.; Stohn, Adriana; Goodner, Ryan N.

    2017-09-01

    Sandia National Laboratories has recently developed the capability to acquire multi-channel radio- graphs for multiple research and development applications in industry and security. This capability allows for the acquisition of x-ray radiographs or sinogram data to be acquired at up to 300 keV with up to 128 channels per pixel. This work will investigate whether multiple quality metrics for computed tomography can actually benefit from binned projection data compared to traditionally acquired grayscale sinogram data. Features and metrics to be evaluated include the ability to dis- tinguish between two different materials with similar absorption properties, artifact reduction, and signal-to-noise for both raw data and reconstructed volumetric data. The impact of this technology to non-destructive evaluation, national security, and industry is wide-ranging and has to potential to improve upon many inspection methods such as dual-energy methods, material identification, object segmentation, and computer vision on radiographs.

  14. Numerical Investigation on the Effects of Self-Excited Tip Flow Unsteadiness and Blade Row Interactions on the Performance Predictions of Low Speed and Transonic Compressor Rotors

    NASA Astrophysics Data System (ADS)

    Lee, Daniel H.

    The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.

  15. Computation of Flow and Heat Transfer in Flow Around a 180 deg Bend,

    DTIC Science & Technology

    1985-10-01

    LDA explorations have helped provide more extensive mappings of the flow structure. Enayet et al [2] measured the distribution Qf streamwise mean and...appreciated care. Authors are listed alphabetically. References 1. Rowe, M. J. Fluid Mech. 43, 771, 1970. j 2. Enayet , M.M., Gibson, M.M., Taylor...the pressure and yaw contours obtained by Rowe shed no light on the turbulent characteristics of the flow.I .3i - x - - 3. Enayet , et al. [12] have

  16. Image charge multi-role and function detectors

    NASA Astrophysics Data System (ADS)

    Milnes, James; Lapington, Jon S.; Jagutzki, Ottmar; Howorth, Jon

    2009-06-01

    The image charge technique used with microchannel plate imaging tubes provides several operational and practical benefits by serving to isolate the electronic image readout from the detector. The simple dielectric interface between detector and readout provides vacuum isolation and no vacuum electrical feed-throughs are required. Since the readout is mechanically separate from the detector, an image tube of generic design can be simply optimised for various applications by attaching it to different readout devices and electronics. We present imaging performance results using a single image tube with a variety of readout devices suited to differing applications: (a) A four electrode charge division tetra wedge anode, optimised for best spatial resolution in photon counting mode. (b) A cross delay line anode, enabling higher count rate, and the possibility of discriminating near co-incident events, and an event timing resolution of better than 1 ns. (c) A multi-anode readout connected, either to a multi-channel oscilloscope for analogue measurements of fast optical pulses, or alternately, to a multi-channel time correlated single photon counting (TCSPC) card.

  17. SU-E-T-782: Using Light Output From Doped Plastic Scintillators to Resolve the Linear Energy Transfer Spectrum of Clinical Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusrat, H; Pang, G; Ahmad, S

    2015-06-15

    Purpose: This research seeks to develop a portable, clinically-suitable linear energy transfer (LET) detector. In radiotherapy, absorbed dose is commonly used to measure the amount of delivered radiation, though, it is not a good indicator of actual biological damage. LET is the energy absorbed per unit length by a medium along charged particle’s pathway; studies have shown that LET correlates well with relative biological effectiveness (RBE). Methods: According to Birks’ law, light output of plastic scintillators is stopping-power dependent. This dependency can be varied through doping by various high-Z elements. By measuring light output signals of differently doped plastic scintillatorsmore » (represented by column vector S, where each row corresponds to different scintillator material), the fluence of charged particles of a given LET (represented by column vector Φ, where each row corresponds to different LET bins) can be unfolded by S=R*Φ where R is system response matrix (each row represents a different scintillator, each column corresponds to different electron LET). Monte Carlo (MC) GEANT4.10.1 was used to evaluate ideal detector response of BC408 scintillating material doped with various concentrations of several high Z dopants. Measurements were performed to validate MC. Results: Signal for 1%-lead doped BC408 and the non-doped scintillator was measured experimentally by guiding light emitted by the scintillator (via in-house made taper, fiber system) to a PMT and then an electrometer. Simulations of 1%Pb-doped scintillator to non-doped scintillator revealed 9.3% reduction in light output for 6 MeV electrons which compared well (within uncertainty) with measurements showing 10% reduction (6MeV electrons). Conclusion: Measurements were used to validate MC simulation of light output from doped scintillators. The doping of scintillators is a viable technique to induce LET dependence. Our goal is to use this effect to resolve the LET spectrum of an incident beam.« less

  18. Material identification based upon energy-dependent attenuation of neutrons

    DOEpatents

    Marleau, Peter

    2015-10-06

    Various technologies pertaining to identifying a material in a sample and imaging the sample are described herein. The material is identified by computing energy-dependent attenuation of neutrons that is caused by presence of the sample in travel paths of the neutrons. A mono-energetic neutron generator emits the neutron, which is downscattered in energy by a first detector unit. The neutron exits the first detector unit and is detected by a second detector unit subsequent to passing through the sample. Energy-dependent attenuation of neutrons passing through the sample is computed based upon a computed energy of the neutron, wherein such energy can be computed based upon 1) known positions of the neutron generator, the first detector unit, and the second detector unit; or 2) computed time of flight of neutrons between the first detector unit and the second detector unit.

  19. MO-G-17A-02: Computer Simulation Studies for On-Board Functional and Molecular Imaging of the Prostate Using a Robotic Multi-Pinhole SPECT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L; Duke University Medical Center, Durham, NC; Fudan University Shanghai Cancer Center, Shanghai

    Purpose: To investigate prostate imaging onboard radiation therapy machines using a novel robotic, 49-pinhole Single Photon Emission Computed Tomography (SPECT) system. Methods: Computer-simulation studies were performed for region-of-interest (ROI) imaging using a 49-pinhole SPECT collimator and for broad cross-section imaging using a parallel-hole SPECT collimator. A male XCAT phantom was computersimulated in supine position with one 12mm-diameter tumor added in the prostate. A treatment couch was added to the phantom. Four-minute detector trajectories for imaging a 7cm-diameter-sphere ROI encompassing the tumor were investigated with different parameters, including pinhole focal length, pinhole diameter and trajectory starting angle. Pseudo-random Poisson noise wasmore » included in the simulated projection data, and SPECT images were reconstructed by OSEM with 4 subsets and up to 10 iterations. Images were evaluated by visual inspection, profiles, and Root-Mean- Square-Error (RMSE). Results: The tumor was well visualized above background by the 49-pinhole SPECT system with different pinhole parameters while it was not visible with parallel-hole SPECT imaging. Minimum RMSEs were 0.30 for 49-pinhole imaging and 0.41 for parallelhole imaging. For parallel-hole imaging, the detector trajectory from rightto- left yielded slightly lower RMSEs than that from posterior to anterior. For 49-pinhole imaging, near-minimum RMSEs were maintained over a broader range of OSEM iterations with a 5mm pinhole diameter and 21cm focal length versus a 2mm diameter pinhole and 18cm focal length. The detector with 21cm pinhole focal length had the shortest rotation radius averaged over the trajectory. Conclusion: On-board functional and molecular prostate imaging may be feasible in 4-minute scan times by robotic SPECT. A 49-pinhole SPECT system could improve such imaging as compared to broadcross-section parallel-hole collimated SPECT imaging. Multi-pinhole imaging can be improved by considering pinhole focal length, pinhole diameter, and trajectory starting angle. The project is supported by the NIH grant 5R21-CA156390.« less

  20. Coupled-Flow Simulation of HP-LP Turbines Has Resulted in Significant Fuel Savings

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2001-01-01

    Our objective was to create a high-fidelity Navier-Stokes computer simulation of the flow through the turbines of a modern high-bypass-ratio turbofan engine. The simulation would have to capture the aerodynamic interactions between closely coupled high- and low-pressure turbines. A computer simulation of the flow in the GE90 turbofan engine's high-pressure (HP) and low-pressure (LP) turbines was created at GE Aircraft Engines under contract with the NASA Glenn Research Center. The three-dimensional steady-state computer simulation was performed using Glenn's average-passage approach named APNASA. The areas upstream and downstream of each blade row mutually interact with each other during engine operation. The embedded blade row operating conditions are modeled since the average passage equations in APNASA actively include the effects of the adjacent blade rows. The turbine airfoils, platforms, and casing are actively cooled by compressor bleed air. Hot gas leaks around the tips of rotors through labyrinth seals. The flow exiting the high work HP turbines is partially transonic and, therefore, has a strong shock system in the transition region. The simulation was done using 121 processors of a Silicon Graphics Origin 2000 (NAS 02K) cluster at the NASA Ames Research Center, with a parallel efficiency of 87 percent in 15 hr. The typical average-passage analysis mesh size per blade row was 280 by 45 by 55, or approx.700,000 grid points. The total number of blade rows was 18 for a combined HP and LP turbine system including the struts in the transition duct and exit guide vane, which contain 12.6 million grid points. Design cycle turnaround time requirements ran typically from 24 to 48 hr of wall clock time. The number of iterations for convergence was 10,000 at 8.03x10(exp -5) sec/iteration/grid point (NAS O2K). Parallel processing by up to 40 processors is required to meet the design cycle time constraints. This is the first-ever flow simulation of an HP and LP turbine. In addition, it includes the struts in the transition duct and exit guide vanes.

  1. Cochlear Implant Electrode Localization Using an Ultra-High Resolution Scan Mode on Conventional 64-Slice and New Generation 192-Slice Multi-Detector Computed Tomography.

    PubMed

    Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I

    2017-08-01

    A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p < 0.01), superior scalar localization (p < 0.01), and reduced blooming artifact (p < 0.05), compared with conventional 64-slice MDCT. There was no significant difference between platforms when comparing streak or ring artifact. The new generation 192-slice MDCT scanner offers several notable advantages for cochlear implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.

  2. Multi-element germanium detectors for synchrotron applications

    NASA Astrophysics Data System (ADS)

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.; Vernon, E.; Pinelli, D.; Dooryhee, E.; Ghose, S.; Caswell, T.; Siddons, D. P.; Miceli, A.; Baldwin, J.; Almer, J.; Okasinski, J.; Quaranta, O.; Woods, R.; Krings, T.; Stock, S.

    2018-04-01

    We have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. We will discuss the technical details of the systems, and present some of the results from them.

  3. Ring Imaging Cerenkov Detector for CLAS12

    NASA Astrophysics Data System (ADS)

    Muhoza, Mireille; Aaron, Elise; Smoot, Waymond; Benmokhtar, Fatiha

    2017-09-01

    The CLAS12 detector at Thomas Jefferson National Accelerator Facility (TJNAF) is undergoing an upgrade. One of the additions to this detector is a Ring Imaging Cherenkov (RICH) detector to improve particle identification in the 3-8 GeV/c momentum range. Approximately 400 multi anode photomultiplier tubes (MAPMTs) will be used to detect Cherenkov Radiation in the single photoelectron spectra (SPS). Detector tests are taking place at Jefferson Lab, while analysis software development is ongoing at Duquesne. I will be summarizing the work done at Duquesne on the Database development and the analysis of the ADC and TDCs for the Hamamatsu Multi-Anode PMTs that are used for Cerenkov light radiation. National Science Foundation, Award 1615067.

  4. Systems, computer-implemented methods, and tangible computer-readable storage media for wide-field interferometry

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G. (Inventor); Leisawitz, David T. (Inventor); Rinehart, Stephen A. (Inventor); Memarsadeghi, Nargess (Inventor)

    2012-01-01

    Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube.

  5. Multidetector computed tomographic morphology of ovaries in cynomolgus macaques (Macaca fascicularis).

    PubMed

    Jones, Jeryl C; Appt, Susan E; Bourland, J Daniel; Hoyer, Patricia B; Clarkson, Thomas B; Kaplan, Jay R

    2007-09-01

    Macaques are important models for menopause and associated diseases in women. A sensitive, noninvasive technique for quantifying changes in ovarian morphology would facilitate longitudinal studies focused on the health-related sequelae of naturally occurring or experimentally induced alterations in ovarian structure and function. Multidetector computed tomography (MDCT) is a fast, non-invasive imaging technique that uses X-rays, multiple rows of detectors, and computers to generate detailed slice images of structures. The purpose of this study was to describe the utility of MDCT for reliably characterizing ovarian morphology in macaques. Five macaques were scanned using contrast-enhanced MDCT. The following characteristics were described: 1) appearance of ovaries and adjacent landmarks, 2) effects of varying technical protocols on ovarian image quality, 3) radiation doses delivered to the pelvic region during scanning, and 4) MDCT estimates of ovarian volume and antral follicle counts versus those measured directly in ovarian tissue. Ovaries were distinguishable in all MDCT scans and exhibited heterogeneous contrast enhancement. Antral follicles appeared as focal areas of nonenhancement. Ovarian image quality with 5 pediatric scanning protocols was sufficient for discriminating ovarian margins. Pelvic region radiation doses ranged from 0.5 to 0.7 rad. Antral follicles counted using MDCT ranged from 3 to 5 compared with 3 to 4 counted using histology. Ovarian volumes measured using MDCT ranged from 0.41 to 0.67 ml compared with 0.40 to 0.65 ml by water displacement. MDCT is a promising technique for measuring longitudinal changes in macaque ovarian morphology reliably and noninvasively.

  6. Development of the MAMA Detectors for the Hubble Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn

    1997-01-01

    The development of the Multi-Anode Microchannel Array (MAMA) detector systems started in the early 1970's in order to produce multi-element detector arrays for use in spectrographs for solar studies from the Skylab-B mission. Development of the MAMA detectors for spectrographs on the Hubble Space Telescope (HST) began in the late 1970's, and reached its culmination with the successful installation of the Space Telescope Imaging Spectrograph (STIS) on the second HST servicing mission (STS-82 launched 11 February 1997). Under NASA Contract NAS5-29389 from December 1986 through June 1994 we supported the development of the MAMA detectors for STIS, including complementary sounding rocket and ground-based research programs. This final report describes the results of the MAMA detector development program for STIS.

  7. Development of a front-end analog circuit for multi-channel SiPM readout and performance verification for various PET detector designs

    NASA Astrophysics Data System (ADS)

    Ko, Guen Bae; Yoon, Hyun Suk; Kwon, Sun Il; Lee, Chan Mi; Ito, Mikiko; Hong, Seong Jong; Lee, Dong Soo; Lee, Jae Sung

    2013-03-01

    Silicon photomultipliers (SiPMs) are outstanding photosensors for the development of compact imaging devices and hybrid imaging systems such as positron emission tomography (PET)/ magnetic resonance (MR) scanners because of their small size and MR compatibility. The wide use of this sensor for various types of scintillation detector modules is being accelerated by recent developments in tileable multichannel SiPM arrays. In this work, we present the development of a front-end readout module for multi-channel SiPMs. This readout module is easily extendable to yield a wider detection area by the use of a resistive charge division network (RCN). We applied this readout module to various PET detectors designed for use in small animal PET/MR, optical fiber PET/MR, and double layer depth of interaction (DOI) PET. The basic characteristics of these detector modules were also investigated. The results demonstrate that the PET block detectors developed using the readout module and tileable multi-channel SiPMs had reasonable performance.

  8. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    PubMed Central

    Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.

    2015-01-01

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211

  9. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    PubMed

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  10. GADRAS Detector Response Function.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  11. Using the Wiener estimator to determine optimal imaging parameters in a synthetic-collimator SPECT system used for small animal imaging

    NASA Astrophysics Data System (ADS)

    Lin, Alexander; Johnson, Lindsay C.; Shokouhi, Sepideh; Peterson, Todd E.; Kupinski, Matthew A.

    2015-03-01

    In synthetic-collimator SPECT imaging, two detectors are placed at different distances behind a multi-pinhole aperture. This configuration allows for image detection at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. Image multiplexing the undesired overlapping between images due to photon origin uncertainty may occur in both detector planes and is often present in the second detector plane due to greater magnification. However, artifact-free image reconstruction is possible by combining data from both the front detector (little to no multiplexing) and the back detector (noticeable multiplexing). When the two detectors are used in tandem, spatial resolution is increased, allowing for a higher sensitivity-to-detector-area ratio. Due to variability in detector distances and pinhole spacings found in synthetic-collimator SPECT systems, a large parameter space must be examined to determine optimal imaging configurations. We chose to assess image quality based on the task of estimating activity in various regions of a mouse brain. Phantom objects were simulated using mouse brain data from the Magnetic Resonance Microimaging Neurological Atlas (MRM NeAt) and projected at different angles through models of a synthetic-collimator SPECT system, which was developed by collaborators at Vanderbilt University. Uptake in the different brain regions was modeled as being normally distributed about predetermined means and variances. We computed the performance of the Wiener estimator for the task of estimating activity in different regions of the mouse brain. Our results demonstrate the utility of the method for optimizing synthetic-collimator system design.

  12. Architecture and Implementation of OpenPET Firmware and Embedded Software

    DOE PAGES

    Abu-Nimeh, Faisal T.; Ito, Jennifer; Moses, William W.; ...

    2016-01-11

    OpenPET is an open source, modular, extendible, and high-performance platform suitable for multi-channel data acquisition and analysis. Due to the versatility of the hardware, firmware, and software architectures, the platform is capable of interfacing with a wide variety of detector modules not only in medical imaging but also in homeland security applications. Analog signals from radiation detectors share similar characteristics-a pulse whose area is proportional to the deposited energy and whose leading edge is used to extract a timing signal. As a result, a generic design method of the platform is adopted for the hardware, firmware, and software architectures andmore » implementations. The analog front-end is hosted on a module called a Detector Board, where each board can filter, combine, timestamp, and process multiple channels independently. The processed data is formatted and sent through a backplane bus to a module called Support Board, where 1 Support Board can host up to eight Detector Board modules. The data in the Support Board, coming from 8 Detector Board modules, can be aggregated or correlated (if needed) depending on the algorithm implemented or runtime mode selected. It is then sent out to a computer workstation for further processing. The number of channels (detector modules), to be processed, mandates the overall OpenPET System Configuration, which is designed to handle up to 1,024 channels using 16-channel Detector Boards in the Standard System Configuration and 16,384 channels using 32-channel Detector Boards in the Large System Configuration.« less

  13. Multi-GPU implementation of a VMAT treatment plan optimization algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Zhen, E-mail: Zhen.Tian@UTSouthwestern.edu, E-mail: Xun.Jia@UTSouthwestern.edu, E-mail: Steve.Jiang@UTSouthwestern.edu; Folkerts, Michael; Tan, Jun

    Purpose: Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU’s relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors’ group, on a multi-GPU platform tomore » solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. Methods: The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors’ method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H and N) cancer case is then used to validate the authors’ method. The authors also compare their multi-GPU implementation with three different single GPU implementation strategies, i.e., truncating DDC matrix (S1), repeatedly transferring DDC matrix between CPU and GPU (S2), and porting computations involving DDC matrix to CPU (S3), in terms of both plan quality and computational efficiency. Two more H and N patient cases and three prostate cases are used to demonstrate the advantages of the authors’ method. Results: The authors’ multi-GPU implementation can finish the optimization process within ∼1 min for the H and N patient case. S1 leads to an inferior plan quality although its total time was 10 s shorter than the multi-GPU implementation due to the reduced matrix size. S2 and S3 yield the same plan quality as the multi-GPU implementation but take ∼4 and ∼6 min, respectively. High computational efficiency was consistently achieved for the other five patient cases tested, with VMAT plans of clinically acceptable quality obtained within 23–46 s. Conversely, to obtain clinically comparable or acceptable plans for all six of these VMAT cases that the authors have tested in this paper, the optimization time needed in a commercial TPS system on CPU was found to be in an order of several minutes. Conclusions: The results demonstrate that the multi-GPU implementation of the authors’ column-generation-based VMAT optimization can handle the large-scale VMAT optimization problem efficiently without sacrificing plan quality. The authors’ study may serve as an example to shed some light on other large-scale medical physics problems that require multi-GPU techniques.« less

  14. MO detector (MOD): a dual-function optical modulator-detector for on-chip communication

    NASA Astrophysics Data System (ADS)

    Sun, Shuai; Zhang, Ruoyu; Peng, Jiaxin; Narayana, Vikram K.; Dalir, Hamed; El-Ghazawi, Tarek; Sorger, Volker J.

    2018-04-01

    Physical challenges at the device and interconnect level limit both network and computing energy efficiency. While photonics is being considered to address interconnect bottlenecks, optical routing is still limited by electronic circuitry, requiring substantial overhead for optical-electrical-optical conversion. Here we show a novel design of an integrated broadband photonic-plasmonic hybrid device termed MODetector featuring dual light modulation and detection function to act as an optical transceiver in the photonic network-on-chip. With over 10 dB extinction ratio and 0.8 dB insertion loss at the modulation state, this MODetector provides 0.7 W/A responsivity in the detection state with 36 ps response time. This multi-functional device: (i) eliminates OEO conversion, (ii) reduces optical losses from photodetectors when not needed, and (iii) enables cognitive routing strategies for network-on-chips.

  15. SAMI: Sydney-AAO Multi-object Integral field spectrograph pipeline

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Green, A. W.; Fogarty, L. M. R.; Sharp, R.; Nielsen, J.; Konstantopoulos, I.; Taylor, E. N.; Scott, N.; Cortese, L.; Richards, S. N.; Croom, S.; Owers, M. S.; Bauer, A. E.; Sweet, S. M.; Bryant, J. J.

    2014-07-01

    The SAMI (Sydney-AAO Multi-object Integral field spectrograph) pipeline reduces data from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) for the SAMI Galaxy Survey. The python code organizes SAMI data and, along with the AAO 2dfdr package, carries out all steps in the data reduction, from raw data to fully calibrated datacubes. The principal steps are: data management, use of 2dfdr to produce row-stacked spectra, flux calibration, correction for telluric absorption, removal of atmospheric dispersion, alignment of dithered exposures, and drizzling onto a regular output grid. Variance and covariance information is tracked throughout the pipeline. Some quality control routines are also included.

  16. Development of Kilo-Pixel Arrays of Transition-Edge Sensors for X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing kilo-pixel arrays of transition-edge sensor (TES) microcalorimeters for future X-ray astronomy observatories or for use in laboratory astrophysics applications. For example, Athena/XMS (currently under study by the european space agency) would require a close-packed 32x32 pixel array on a 250-micron pitch with < 3.0 eV full-width-half-maximum energy resolution at 6 keV and at count-rates of up to 50 counts/pixel/second. We present characterization of 32x32 arrays. These detectors will be readout using state of the art SQUID based time-domain multiplexing (TDM). We will also present the latest results in integrating these detectors and the TDM readout technology into a 16 row x N column field-able instrument.

  17. Densification and Thermal Properties of Zirconium Diboride Based Ceramics

    DTIC Science & Technology

    2012-01-01

    pulse on the front face and the radiant energy going to an infrared detector on the back face of the specimen...changes going across a row of the periodic table (e.g., Zr, Nb, Mo…) because of the filling of bonding and anti-bonding states in the hybrid orbitals...the relatively small amounts of ZrC (i.e., ə wt%) likely to go into solid solution with the ZrB2, based on the Zr-B-C phase diagram.6 (2

  18. Integrated Miniature Arrays of Optical Biomolecule Detectors

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  19. Environmental sustainability of intercropping switchgrass in a loblolly pine forest

    Treesearch

    George Chescheir; Francois Birgand; Mohamed Youssef; Jami Nettles; Devendra Amatya

    2016-01-01

    A multi-institutional watershed study has been conducted since 2010 to quantify the environmental sustainability of planting switchgrass (Panicum virgatum L.) between wide rows of loblolly pine (Pinus taeda L.). The hypothesized advantage of this intercropping system is the production of biofuel feedstock to provide additional...

  20. Effects of sparse sampling in combination with iterative reconstruction on quantitative bone microstructure assessment

    NASA Astrophysics Data System (ADS)

    Mei, Kai; Kopp, Felix K.; Fehringer, Andreas; Pfeiffer, Franz; Rummeny, Ernst J.; Kirschke, Jan S.; Noël, Peter B.; Baum, Thomas

    2017-03-01

    The trabecular bone microstructure is a key to the early diagnosis and advanced therapy monitoring of osteoporosis. Regularly measuring bone microstructure with conventional multi-detector computer tomography (MDCT) would expose patients with a relatively high radiation dose. One possible solution to reduce exposure to patients is sampling fewer projection angles. This approach can be supported by advanced reconstruction algorithms, with their ability to achieve better image quality under reduced projection angles or high levels of noise. In this work, we investigated the performance of iterative reconstruction from sparse sampled projection data on trabecular bone microstructure in in-vivo MDCT scans of human spines. The computed MDCT images were evaluated by calculating bone microstructure parameters. We demonstrated that bone microstructure parameters were still computationally distinguishable when half or less of the radiation dose was employed.

  1. Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Jakubek, J.; Vavrik, D.

    2015-12-01

    The presumed capabilities of photon counting detectors have aroused major expectations in several fields of research. In the field of nuclear imaging ample benefits over standard detectors are to be expected from photon counting devices. First of all a very high contrast, as has by now been verified in numerous experiments. The spectroscopic capabilities of photon counting detectors further allow material decomposition in computed tomography and therefore inherently adequate beam hardening correction. For these reasons measurement setups featuring standard X-ray tubes combined with photon counting detectors constitute a possible replacement of the much more cost intensive tomographic setups at synchrotron light-sources. The actual application of photon counting detectors in radiographic setups in recent years has been impeded by a number of practical issues, above all by restrictions in the detectors size. Currently two tomographic setups in Czech Republic feature photon counting large-area detectors (LAD) fabricated in Prague. The employed large area hybrid pixel-detector assemblies [1] consisting of 10×10/10×5 Timepix devices have a surface area of 143×143 mm2 / 143×71,5 mm2 respectively, suitable for micro-tomographic applications. In the near future LAD devices featuring the Medipix3 readout chip as well as heavy sensors (CdTe, GaAs) will become available. Data analysis is obtained by a number of in house software tools including iterative multi-energy volume reconstruction.In this paper tomographic analysis of of metallic-organic composites is employed to illustrate the capabilities of our technology. Other than successful material decomposition by spectroscopic tomography we present a method to suppress metal artefacts under certain conditions.

  2. Energy-discrimination X-ray computed tomography system utilizing a silicon-PIN detector and its application to 2.0-keV-width K-edge imaging

    NASA Astrophysics Data System (ADS)

    Hagiwara, Osahiko; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-05-01

    Demonstration of narrow-energy-width computed tomography (CT) was carried out by means of energy-discrimination. An X-ray CT system is of a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a silicon-PIN detector system with amplifiers, a multi-channel analyzer (MCA), a counter card (CC), and a personal computer (PC). CT is accomplished by repeating the translation and the rotation of an object, and projection curves of the object are obtained by the translation of the moving object. Both photon-energy level and energy width are determined by the MCA, and the pulses of the discriminated event signal from the MCA are counted by CC in conjunction with PC. The maximum count rate was approximately 300 cps (counts per second) with energy widths of 2.0 keV, and energy-discrimination CT was carried out with a photon-energy resolution of 0.15 keV. To perform iodine K-edge CT, X-ray photons with an energy range from 33.2 to 35.2 keV were used. Next, to carry out cerium K-edge CT, an energy range from 40.3 to 42.3 keV was selected.

  3. Absolute/convective secondary instabilities and the role of confinement in free shear layers

    NASA Astrophysics Data System (ADS)

    Arratia, Cristóbal; Mowlavi, Saviz; Gallaire, François

    2018-05-01

    We study the linear spatiotemporal stability of an infinite row of equal point vortices under symmetric confinement between parallel walls. These rows of vortices serve to model the secondary instability leading to the merging of consecutive (Kelvin-Helmholtz) vortices in free shear layers, allowing us to study how confinement limits the growth of shear layers through vortex pairings. Using a geometric construction akin to a Legendre transform on the dispersion relation, we compute the growth rate of the instability in different reference frames as a function of the frame velocity with respect to the vortices. This approach is verified and complemented with numerical computations of the linear impulse response, fully characterizing the absolute/convective nature of the instability. Similar to results by Healey on the primary instability of parallel tanh profiles [J. Fluid Mech. 623, 241 (2009), 10.1017/S0022112008005284], we observe a range of confinement in which absolute instability is promoted. For a parallel shear layer with prescribed confinement and mixing length, the threshold for absolute/convective instability of the secondary pairing instability depends on the separation distance between consecutive vortices, which is physically determined by the wavelength selected by the previous (primary or pairing) instability. In the presence of counterflow and moderate to weak confinement, small (large) wavelength of the vortex row leads to absolute (convective) instability. While absolute secondary instabilities in spatially developing flows have been previously related to an abrupt transition to a complex behavior, this secondary pairing instability regenerates the flow with an increased wavelength, eventually leading to a convectively unstable row of vortices. We argue that since the primary instability remains active for large wavelengths, a spatially developing shear layer can directly saturate on the wavelength of such a convectively unstable row, by-passing the smaller wavelengths of absolute secondary instability. This provides a wavelength selection mechanism, according to which the distance between consecutive vortices should be sufficiently large in comparison with the channel width in order for the row of vortices to persist. We argue that the proposed wavelength selection criteria can serve as a guideline for experimentally obtaining plane shear layers with counterflow, which has remained an experimental challenge.

  4. GPU real-time processing in NA62 trigger system

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-01-01

    A commercial Graphics Processing Unit (GPU) is used to build a fast Level 0 (L0) trigger system tested parasitically with the TDAQ (Trigger and Data Acquisition systems) of the NA62 experiment at CERN. In particular, the parallel computing power of the GPU is exploited to perform real-time fitting in the Ring Imaging CHerenkov (RICH) detector. Direct GPU communication using a FPGA-based board has been used to reduce the data transmission latency. The performance of the system for multi-ring reconstrunction obtained during the NA62 physics run will be presented.

  5. Unipolar Barrier Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Soibel, Alexander (Inventor); Khoshakhlagh, Arezou (Inventor); Gunapala, Sarath (Inventor)

    2017-01-01

    Dual-band barrier infrared detectors having structures configured to reduce spectral crosstalk between spectral bands and/or enhance quantum efficiency, and methods of their manufacture are provided. In particular, dual-band device structures are provided for constructing high-performance barrier infrared detectors having reduced crosstalk and/or enhance quantum efficiency using novel multi-segmented absorber regions. The novel absorber regions may comprise both p-type and n-type absorber sections. Utilizing such multi-segmented absorbers it is possible to construct any suitable barrier infrared detector having reduced crosstalk, including npBPN, nBPN, pBPN, npBN, npBP, pBN and nBP structures. The pBPN and pBN detector structures have high quantum efficiency and suppresses dark current, but has a smaller etch depth than conventional detectors and does not require a thick bottom contact layer.

  6. Arrays of Segmented, Tapered Light Guides for Use With Large, Planar Scintillation Detectors

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar

    2015-06-01

    Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector's active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system.

  7. Detector Outline Document for the Fourth Concept Detector ("4th") at the International Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbareschi, Daniele; et al.

    We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less

  8. Predicting Flutter and Forced Response in Turbomachinery

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Adamczyk, John J.; Srivastava, Rakesh; Bakhle, Milind A.; Shabbir, Aamir; Chen, Jen-Ping; Janus, J. Mark; To, Wai-Ming; Barter, John

    2005-01-01

    TURBO-AE is a computer code that enables detailed, high-fidelity modeling of aeroelastic and unsteady aerodynamic characteristics for prediction of flutter, forced response, and blade-row interaction effects in turbomachinery. Flow regimes that can be modeled include subsonic, transonic, and supersonic, with attached and/or separated flow fields. The three-dimensional Reynolds-averaged Navier-Stokes equations are solved numerically to obtain extremely accurate descriptions of unsteady flow fields in multistage turbomachinery configurations. Blade vibration is simulated by use of a dynamic-grid-deformation technique to calculate the energy exchange for determining the aerodynamic damping of vibrations of blades. The aerodynamic damping can be used to assess the stability of a blade row. TURBO-AE also calculates the unsteady blade loading attributable to such external sources of excitation as incoming gusts and blade-row interactions. These blade loadings, along with aerodynamic damping, are used to calculate the forced responses of blades to predict their fatigue lives. Phase-lagged boundary conditions based on the direct-store method are used to calculate nonzero interblade phase-angle oscillations; this practice eliminates the need to model multiple blade passages, and, hence, enables large savings in computational resources.

  9. Some aspects of adaptive transform coding of multispectral data

    NASA Technical Reports Server (NTRS)

    Ahmed, N.; Natarajan, T.

    1977-01-01

    This paper concerns a data compression study pertaining to multi-spectral scanner (MSS) data. The motivation for this undertaking is the need for securing data compression of images obtained in connection with the Landsat Follow-On Mission, where a compression of at least 6:1 is required. The MSS data used in this study consisted of four scenes: Tristate, consisting of 256 pels per row and a total of 512 rows - i.e., (256x512), (2) Sacramento (256x512), (3) Portland (256x512), and (4) Bald Knob (200x256). All these scenes were on digital tape at 6 bits/pel. The corresponding reconstructed scenes of 1 bit/pel (i.e., a 6:1 compression) are included.

  10. Simultaneous multi-headed imager geometry calibration method

    DOEpatents

    Tran, Vi-Hoa [Newport News, VA; Meikle, Steven Richard [Penshurst, AU; Smith, Mark Frederick [Yorktown, VA

    2008-02-19

    A method for calibrating multi-headed high sensitivity and high spatial resolution dynamic imaging systems, especially those useful in the acquisition of tomographic images of small animals. The method of the present invention comprises: simultaneously calibrating two or more detectors to the same coordinate system; and functionally correcting for unwanted detector movement due to gantry flexing.

  11. Assessment of Gd-EOB-DTPA-enhanced MRI for HCC and dysplastic nodules and comparison of detection sensitivity versus MDCT.

    PubMed

    Inoue, Tatsuo; Kudo, Masatoshi; Komuta, Mina; Hayaishi, Sosuke; Ueda, Taisuke; Takita, Masahiro; Kitai, Satoshi; Hatanaka, Kinuyo; Yada, Norihisa; Hagiwara, Satoru; Chung, Hobyung; Sakurai, Toshiharu; Ueshima, Kazuomi; Sakamoto, Michiie; Maenishi, Osamu; Hyodo, Tomoko; Okada, Masahiro; Kumano, Seishi; Murakami, Takamichi

    2012-09-01

    We aimed to evaluate gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for the detection of hepatocellular carcinomas (HCCs) and dysplastic nodules (DNs) compared with dynamic multi-detector row computed tomography (MDCT), and to discriminate between HCCs and DNs. Eighty-six nodules diagnosed as HCC or DNs were retrospectively investigated. Gd-EOB-DTPA-enhanced MRI and dynamic MDCT were compared with respect to their diagnostic ability for hypervascular HCCs and detection sensitivity for hypovascular tumors. The ability of hepatobiliary images of Gd-EOB-DTPA-enhanced MRI to discriminate between these nodules was assessed. We also calculated the EOB enhancement ratio of the tumors. For hypervascular HCCs, the diagnostic ability of Gd-EOB-DTPA-enhanced MRI was significantly higher than that of MDCT for tumors less than 2 cm (p = 0.048). There was no difference in the detection of hypervascular HCCs between hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI (43/45: 96%) and dynamic MDCT (40/45: 89%), whereas the detection sensitivity of hypovascular tumors by Gd-EOB-DTPA-enhanced MRI was significantly higher than that by dynamic MDCT (39/41: 95% vs. 25/41: 61%, p = 0.001). EOB enhancement ratios were decreased in parallel with the degree of differentiation in DNs and HCCs, although there was no difference between DNs and hypovascular well-differentiated HCCs. The diagnostic ability of Gd-EOB-DTPA-enhanced MRI for hypervascular HCCs less than 2 cm was significantly higher than that of MDCT. For hypovascular tumors, the detection sensitivity of hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was significantly higher than that of dynamic Gd-EOB-DTPA-enhanced MRI and dynamic MDCT. It was difficult to distinguish between DNs and hypovascular well-differentiated HCCs based on the EOB enhancement ratio.

  12. Evaluation of simethicone-coated cellulose as a negative oral contrast agent for abdominal CT.

    PubMed

    Sahani, Dushyant V; Jhaveri, Kartik S; D'souza, Roy V; Varghese, Jose C; Halpern, Elkan; Harisinghani, Mukesh G; Hahn, Peter F; Saini, Sanjay

    2003-05-01

    Because of the increased clinical use of computed tomography (CT) for imaging the abdominal vasculature and urinary tract, there is a need for negative contrast agents. The authors undertook this study to assess the suitability of simethicone-coated cellulose (SCC), which is approved for use as an oral contrast agent in sonography, for use as a negative oral contrast agent in abdominal CT. This prospective study involved 40 adult patients scheduled to undergo abdominal CT for the evaluation of hematuria. Prior to scanning, 20 subjects received 800 mL of SCC and 20 received 800 mL of water as an oral contrast agent. Imaging was performed with a multi-detector row helical scanner in two phases, according to the abdominal CT protocol used for hematuria evaluation at the authors' institution. The first, "early" phase began an average of 15 minutes after the ingestion of contrast material; the second, "late" phase began an average of 45 minutes after the ingestion of contrast material. Blinded analysis was performed by three abdominal radiologists separately, using a three-point scale (0 = poor, 1 = acceptable, 2 = excellent) to assess the effectiveness of SCC for marking the proximal, middle, and distal small bowel. Average scores for enhancement with SCC and with water were obtained and compared. Statistical analysis was performed with a Wilcoxon signed-rank test. SCC was assigned higher mean scores than water for enhancement in each segment of the bowel, both on early-phase images (0.8-1.35 for SCC vs 0.6-1.1 for water) and on late-phase images (1.1-1.4 vs 0.81-0.96). Bowel marking with SCC, particularly in the jejunum and ileum, also was rated better than that with water in a high percentage of patients. The differences between the scores for water and for SCC, however, were not statistically significant (P > .05). SCC is effective as a negative oral contrast agent for small bowel marking at CT.

  13. Electrocardiogram Abnormalities and Coronary Calcification in Postmenopausal Women

    PubMed Central

    Sabour, Siamak; Grobbee, Diederick; Rutten, Annemarieke; Prokop, Mathias; Bartelink, Marie-Louise; van der Schouw, Yvonne; Bots, Michiel

    2010-01-01

    Background: An electrocardiogram (ECG) can provide information on subclinical myocardial damage. The presence, and more importantly, the quantity of coronary artery calcification (CAC), relates well with the overall severity of the atherosclerotic process. A strong relation has been demonstrated between coronary calcium burden and the incidence of myocardial infarction, a relation independent of age. The aim of this study was to assess the relation of left ventricular hypertrophy (LVH) and ECG abnormalities with CAC. Methods: The study population comprised 566 postmenopausal women selected from a population-based cohort study. Information on LVH and repolarization abnormalities (T-axis and QRS-T angle) was obtained using electrocardiography. Modular ECG Analysis System (MEANS) was used to assess ECG abnormalities. The women underwent a multi detector-row computed tomography (MDCT) scan (Philips Mx 8000 IDT 16) to assess CAC. The Agatston score was used to quantify CAC; scores greater than zero were considered as the presence of coronary calcium. Logistic regression was used to assess the relation of ECG abnormality with coronary calcification. Results: LVH was found in 2.7% (n = 15) of the women. The prevalence of T-axis abnormality was 6% (n = 34), whereas 8.5% (n = 48) had a QRS-T angle abnormality. CAC was found in 62% of the women. Compared to women with a normal T-axis, women with borderline or abnormal T-axes were 3.8 fold more likely to have CAC (95% CI: 1.4–10.2). Similarly, compared to women with a normal QRS-T angle, in women with borderline or abnormal QRS-T angle, CAC was 2.0 fold more likely to be present (95% CI: 1.0–4.1). Conclusion: Among women with ECG abnormalities reflecting subclinical ischemia, CAC is commonly found and may in part explain the increased coronary heart disease risk associated with these ECG abnormalities. PMID:23074563

  14. A comparison of measured wind park load histories with the WISPER and WISPERX load spectra

    NASA Astrophysics Data System (ADS)

    Kelley, N. D.

    1995-01-01

    The blade-loading histories from two adjacent Micon 65/13 wind turbines are compared with the variable-amplitude test-loading histories known as the WISPER and WISPERX spectra. These standardized loading sequences were developed from blade flapwise load histories taken from nine different horizontal-axis wind turbines operating under a wide range of conditions in Europe. The subject turbines covered a broad spectrum of rotor diameters, materials, and operating environments. The final loading sequences were developed as a joint effort of thirteen different European organizations. The goal was to develop a meaningful loading standard for horizontal-axis wind turbine blades that represents common interaction effects seen in service. In 1990, NREL made extensive load measurements on two adjacent Micon 65/13 wind turbines in simultaneous operation in the very turbulent environment of a large wind park. Further, before and during the collection of the loads data, comprehensive measurements of the statistics of the turbulent environment were obtained at both the turbines under test and at two other locations within the park. The trend to larger but lighter wind turbine structures has made an understanding of the expected lifetime loading history of paramount importance. Experience in the US has shown that the turbulence-induced loads associated with multi-row wind parks in general are much more severe than for turbines operating individually or within widely spaced environments. Multi-row wind parks are much more common in the US than in Europe. In this paper we report on our results in applying the methodology utilized to develop the WISPER and WISPERX standardized loading sequences using the available data from the Micon turbines. While the intended purpose of the WISPER sequences were not to represent a specific operating environment, we believe the exercise is useful, especially when a turbine design is likely to be installed in a multi-row wind park.

  15. Determining Angular Frequency from Video with a Generalized Fast Fourier Transform

    DTIC Science & Technology

    2012-03-22

    depicted in the first row, where n = (0, . . . , 7). It turns out the Mercedes - Benz shape in these images is rotating by a factor of 3(2π 8 ) radians in...a GST rotation example of data length N = 8 applied to the Mercedes - Benz shape. The first row is the original X sequence. Each column under that...rate of rotation by computing the sharpness of the sum. In Figure 2, GST(X[3]) appears to be the sharpest GST image; this confirms that the Mercedes

  16. Report of Test Results: Halon 1301 versus Water Sprinkler Fire Protection for Essential Electronic Equipment.

    DTIC Science & Technology

    1982-07-01

    WE ii-" BOR # 66i596 FUNCTION: PUNCH CMTROLL MUTER MING: H RON: A POSITION-.. 8 PREEST POST TEST RES.LTS CONECTOR VOLTAG RESISTANCE VOLTAG RESISTNCE...O 86=±w RHNCTION. PRINTR CONTROLLER COMPUTER WING: A ROW: A POSITION. U2 PRETEST POST TEST RMlTS CONECTOR YOLTAGI RESISIWICE YOLTAGE RESISTI9ICE...WING: A ROW: A POSITION. 12 PRUEST POST TEST RMJLTS CONECTOR VOLT(iE FIS’IS VOLTAGE RISTFICE VOLTAGE S1INCE (VOLTS) (fILLIOM ) (VOLTS) (MILLIOMS

  17. Development of Computer Program TWTVA for Calculation of 3-D Electron Trajectories in Coupled-Cavity TWTs

    DTIC Science & Technology

    1976-03-10

    ferrule corner radius, which is typically not more than about 20). The radial mesh numbers are denoted NQR for the rf vector potential and Njyro for...the magnetic vector poten- tial matrices. Allowing for tne guard rows, the matrices run from -1 to NQR + 1, and -1 to Nj^ + 1. When the program...CR * 5» an(^ only one row ^or NCR up to 10, which covers most cases; as stated ir. the introduction, we do not expect NQR ever to exceed 20. For n

  18. Electromagnetic physics models for parallel computing architectures

    DOE PAGES

    Amadio, G.; Ananya, A.; Apostolakis, J.; ...

    2016-11-21

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part ofmore » the GeantV project. Finally, the results of preliminary performance evaluation and physics validation are presented as well.« less

  19. Through the Bugscope

    ERIC Educational Resources Information Center

    Hadley, Kathryn; Korb, Michele

    2007-01-01

    The projection screen in the dimly lit auditorium was ready and an online chat window was open on the computer screen. Computer experts and entomologists were ready on the other end. One by one, students filled up the rows of seats eagerly anticipating what was going to happen next. Each student was asked to close their eyes. Ms. Hadley asked…

  20. A multi-view face recognition system based on cascade face detector and improved Dlib

    NASA Astrophysics Data System (ADS)

    Zhou, Hongjun; Chen, Pei; Shen, Wei

    2018-03-01

    In this research, we present a framework for multi-view face detect and recognition system based on cascade face detector and improved Dlib. This method is aimed to solve the problems of low efficiency and low accuracy in multi-view face recognition, to build a multi-view face recognition system, and to discover a suitable monitoring scheme. For face detection, the cascade face detector is used to extracted the Haar-like feature from the training samples, and Haar-like feature is used to train a cascade classifier by combining Adaboost algorithm. Next, for face recognition, we proposed an improved distance model based on Dlib to improve the accuracy of multiview face recognition. Furthermore, we applied this proposed method into recognizing face images taken from different viewing directions, including horizontal view, overlooks view, and looking-up view, and researched a suitable monitoring scheme. This method works well for multi-view face recognition, and it is also simulated and tested, showing satisfactory experimental results.

  1. Study of transient behavior of finned coil heat exchangers

    NASA Technical Reports Server (NTRS)

    Rooke, S. P.; Elissa, M. G.

    1993-01-01

    The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.

  2. Long-term microparticle flux variability indicated by comparison of Interplanetary Dust Experiment (IDE) timed impacts for LDEF's first year in orbit with impact data for the entire 5.77-year orbital lifetime

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Mulholland, J. Derral; Oliver, John P.; Cooke, William J.; Kassel, Philip C., Jr.

    1993-01-01

    The electronic sensors of the Interplanetary Dust Experiment (IDE) recorded precise impact times and approximate directions for submicron to approximately 100 micron size particles on all six primary sides of the spacecraft for the first 346 days of the LDEF orbital mission. Previously-reported analyses of the timed impact data have established their spatio-temporal features, including the demonstration that a preponderance of the particles in this regime are orbital debris and that a large fraction of the debris particles are encountered in megameter-size clouds. Short-term fluxes within such clouds can rise several orders of magnitude above the long-term average. These unexpectedly large short-term variations in debris flux raise the question of how representative an indication of the multi-year average flux is given by the nearly one year of timed data. One of the goals of the IDE was to conduct an optical survey of impact sites on detectors that remained active during the entire LDEF mission, to obtain full-mission fluxes. We present here the comparisons and contrasts among the new IDE optical survey impact data, the IDE first-year timed impact data, and impact data from other LDEF micrometeoroid and debris experiments. The following observations are reported: (1) the 5.77 year long-term integrated microparticle impact fluxes recorded by IDE detectors matched the integrated impact fluxes measured by other LDEF investigators for the same period; (2) IDE integrated microparticle impact fluxes varied by factors from 0.5 to 8.3 for LDEF days 1-346, 347-2106 and 1-2106 (5.77 years) on rows 3 (trailing edge, or West), 6 (South side), 12 (North side), and the Earth and Space ends; and (3) IDE integrated microparticle impact fluxes varied less than 3 percent for LDEF days 1-346, 347-2106 and 1-2106 (5.77 years) on row 9 (leading edge, or East). These results give further evidence of the accuracy and internal consistency of the recorded IDE impact data. This leads to the further conclusion that the utility of long-term ratios for impacts on various sides of a stabilized satellite in low Earth orbit (LEO) is extremely limited. These observations and their consequences highlight the need for continuous, real time monitoring of the dynamic microparticle environment in LEO.

  3. Matrix Interdiction Problem

    NASA Astrophysics Data System (ADS)

    Kasiviswanathan, Shiva Prasad; Pan, Feng

    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove a set of k matrix columns that minimizes in the residual matrix the sum of the row values, where the value of a row is defined to be the largest entry in that row. This combinatorial problem is closely related to bipartite network interdiction problem that can be applied to minimize the probability that an adversary can successfully smuggle weapons. After introducing the matrix interdiction problem, we study the computational complexity of this problem. We show that the matrix interdiction problem is NP-hard and that there exists a constant γ such that it is even NP-hard to approximate this problem within an n γ additive factor. We also present an algorithm for this problem that achieves an (n - k) multiplicative approximation ratio.

  4. Feature-fused SSD: fast detection for small objects

    NASA Astrophysics Data System (ADS)

    Cao, Guimei; Xie, Xuemei; Yang, Wenzhe; Liao, Quan; Shi, Guangming; Wu, Jinjian

    2018-04-01

    Small objects detection is a challenging task in computer vision due to its limited resolution and information. In order to solve this problem, the majority of existing methods sacrifice speed for improvement in accuracy. In this paper, we aim to detect small objects at a fast speed, using the best object detector Single Shot Multibox Detector (SSD) with respect to accuracy-vs-speed trade-off as base architecture. We propose a multi-level feature fusion method for introducing contextual information in SSD, in order to improve the accuracy for small objects. In detailed fusion operation, we design two feature fusion modules, concatenation module and element-sum module, different in the way of adding contextual information. Experimental results show that these two fusion modules obtain higher mAP on PASCAL VOC2007 than baseline SSD by 1.6 and 1.7 points respectively, especially with 2-3 points improvement on some small objects categories. The testing speed of them is 43 and 40 FPS respectively, superior to the state of the art Deconvolutional single shot detector (DSSD) by 29.4 and 26.4 FPS.

  5. CFD simulation of hemodynamics in sequential and individual coronary bypass grafts based on multislice CT scan datasets.

    PubMed

    Hajati, Omid; Zarrabi, Khalil; Karimi, Reza; Hajati, Azadeh

    2012-01-01

    There is still controversy over the differences in the patency rates of the sequential and individual coronary artery bypass grafting (CABG) techniques. The purpose of this paper was to non-invasively evaluate hemodynamic parameters using complete 3D computational fluid dynamics (CFD) simulations of the sequential and the individual methods based on the patient-specific data extracted from computed tomography (CT) angiography. For CFD analysis, the geometric model of coronary arteries was reconstructed using an ECG-gated 64-detector row CT. Modeling the sequential and individual bypass grafting, this study simulates the flow from the aorta to the occluded posterior descending artery (PDA) and the posterior left ventricle (PLV) vessel with six coronary branches based on the physiologically measured inlet flow as the boundary condition. The maximum calculated wall shear stress (WSS) in the sequential and the individual models were estimated to be 35.1 N/m(2) and 36.5 N/m(2), respectively. Compared to the individual bypass method, the sequential graft has shown a higher velocity at the proximal segment and lower spatial wall shear stress gradient (SWSSG) due to the flow splitting caused by the side-to-side anastomosis. Simulated results combined with its surgical benefits including the requirement of shorter vein length and fewer anastomoses advocate the sequential method as a more favorable CABG method.

  6. Novel wearable and wireless ring-type pulse oximeter with multi-detectors.

    PubMed

    Huang, Cheng-Yang; Chan, Ming-Che; Chen, Chien-Yue; Lin, Bor-Shyh

    2014-09-19

    The pulse oximeter is a popular instrument to monitor the arterial oxygen saturation (SPO2). Although a fingertip-type pulse oximeter is the mainstream one on the market at present, it is still inconvenient for long-term monitoring, in particular, with respect to motion. Therefore, the development of a wearable pulse oximeter, such as a finger base-type pulse oximeter, can effectively solve the above issue. However, the tissue structure of the finger base is complex, and there is lack of detailed information on the effect of the light source and detector placement on measuring SPO2. In this study, the practicability of a ring-type pulse oximeter with a multi-detector was investigated by optical human tissue simulation. The optimal design of a ring-type pulse oximeter that can provide the best efficiency of measuring SPO2 was discussed. The efficiency of ring-type pulse oximeters with a single detector and a multi-detector was also discussed. Finally, a wearable and wireless ring-type pulse oximeter was also implemented to validate the simulation results and was compared with the commercial fingertip-type pulse oximeter.

  7. Novel Wearable and Wireless Ring-Type Pulse Oximeter with Multi-Detectors

    PubMed Central

    Huang, Cheng-Yang; Chan, Ming-Che; Chen, Chien-Yue; Lin, Bor-Shyh

    2014-01-01

    The pulse oximeter is a popular instrument to monitor the arterial oxygen saturation (SPO2). Although a fingertip-type pulse oximeter is the mainstream one on the market at present, it is still inconvenient for long-term monitoring, in particular, with respect to motion. Therefore, the development of a wearable pulse oximeter, such as a finger base-type pulse oximeter, can effectively solve the above issue. However, the tissue structure of the finger base is complex, and there is lack of detailed information on the effect of the light source and detector placement on measuring SPO2. In this study, the practicability of a ring-type pulse oximeter with a multi-detector was investigated by optical human tissue simulation. The optimal design of a ring-type pulse oximeter that can provide the best efficiency of measuring SPO2 was discussed. The efficiency of ring-type pulse oximeters with a single detector and a multi-detector was also discussed. Finally, a wearable and wireless ring-type pulse oximeter was also implemented to validate the simulation results and was compared with the commercial fingertip-type pulse oximeter. PMID:25244586

  8. Development of slew-rate-limited time-over-threshold (ToT) ASIC for a multi-channel silicon-based ion detector

    NASA Astrophysics Data System (ADS)

    Uenomachi, M.; Orita, T.; Shimazoe, K.; Takahashi, H.; Ikeda, H.; Tsujita, K.; Sekiba, D.

    2018-01-01

    High-resolution Elastic Recoil Detection Analysis (HERDA), which consists of a 90o sector magnetic spectrometer and a position-sensitive detector (PSD), is a method of quantitative hydrogen analysis. In order to increase sensitivity, a HERDA system using a multi-channel silicon-based ion detector has been developed. Here, as a parallel and fast readout circuit from a multi-channel silicon-based ion detector, a slew-rate-limited time-over-threshold (ToT) application-specific integrated circuit (ASIC) was designed, and a new slew-rate-limited ToT method is proposed. The designed ASIC has 48 channels and each channel consists of a preamplifier, a slew-rate-limited shaping amplifier, which makes ToT response linear, and a comparator. The measured equivalent noise charges (ENCs) of the preamplifier, the shaper, and the ToT on no detector capacitance were 253±21, 343±46, and 560±56 electrons RMS, respectively. The spectra from a 241Am source measured using a slew-rate-limited ToT ASIC are also reported.

  9. An FPGA-Based Real-Time Maximum Likelihood 3D Position Estimation for a Continuous Crystal PET Detector

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Xiao, Yong; Cheng, Xinyi; Li, Deng; Wang, Liwei

    2016-02-01

    For the continuous crystal-based positron emission tomography (PET) detector built in our lab, a maximum likelihood algorithm adapted for implementation on a field programmable gate array (FPGA) is proposed to estimate the three-dimensional (3D) coordinate of interaction position with the single-end detected scintillation light response. The row-sum and column-sum readout scheme organizes the 64 channels of photomultiplier (PMT) into eight row signals and eight column signals to be readout for X- and Y-coordinates estimation independently. By the reference events irradiated in a known oblique angle, the probability density function (PDF) for each depth-of-interaction (DOI) segment is generated, by which the reference events in perpendicular irradiation are assigned to DOI segments for generating the PDFs for X and Y estimation in each DOI layer. Evaluated by the experimental data, the algorithm achieves an average X resolution of 1.69 mm along the central X-axis, and DOI resolution of 3.70 mm over the whole thickness (0-10 mm) of crystal. The performance improvements from 2D estimation to the 3D algorithm are also presented. Benefiting from abundant resources of FPGA and a hierarchical storage arrangement, the whole algorithm can be implemented into a middle-scale FPGA. By a parallel structure in pipelines, the 3D position estimator on the FPGA can achieve a processing throughput of 15 M events/s, which is sufficient for the requirement of real-time PET imaging.

  10. Control electronics for a multi-laser/multi-detector scanning system

    NASA Technical Reports Server (NTRS)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  11. Neutrino-4 experiment on search for sterile neutrino with multi-section model of detector

    NASA Astrophysics Data System (ADS)

    Serebrov, A.; Ivochkin, V.; Samoilov, R.; Fomin, A.; Polyushkin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Chernyj, A.; Zherebtsov, O.; Martemyanov, V.; Tarasenkov, V.; Aleshin, V.; Petelin, A.; Izhutov, A.; Tuzov, A.; Sazontov, S.; Ryazanov, D.; Gromov, M.; Afanasiev, V.; Zaytsev, M.; Chaikovskii, M.

    2017-09-01

    In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. The prototype of a multi-section neutrino detector with liquid scintillator volume of 350 l was installed in the middle of 2015. It is a moveable inside the passive shielding detector, which can be set at distance range from 6 to 11 meters from the reactor core. Measurements of antineutrino flux at such small distances from the reactor core are carried out with moveable detector for the first time. The measurements carried out with detector prototype demonstrated a possibility of measuring a reactor antineutrino flux in difficult conditions of cosmic background at Earth surface.

  12. MPT Prediction of Aircraft-Engine Fan Noise

    NASA Technical Reports Server (NTRS)

    Connell, Stuart D.

    2004-01-01

    A collection of computer programs has been developed that implements a procedure for predicting multiple-pure-tone (MPT) noise generated by fan blades of an aircraft engine (e.g., a turbofan engine). MPT noise arises when the fan is operating with supersonic relative tip Mach No. Under this flow condition, there is a strong upstream running shock. The strength and position of this shock are very sensitive to blade geometry variations. For a fan where all the blades are identical, the primary tone observed upstream of the fan will be the blade passing frequency. If there are small variations in geometry between blades, then tones below the blade passing frequency arise MPTs. Stagger angle differences as small as 0.1 can give rise to significant MPT. It is also noted that MPT noise is more pronounced when the fan is operating in an unstarted mode. Computational results using a three-dimensional flow solver to compute the complete annulus flow with non-uniform fans indicate that MPT noise can be estimated in a relatively simple way. Hence, once the effect of a typical geometry variation of one blade in an otherwise uniform blade row is known, the effect of all the blades being different can be quickly computed via superposition. Two computer programs that were developed as part of this work are used in conjunction with a user s computational fluid dynamics (CFD) code to predict MPT spectra for a fan with a specified set of geometric variations: (1) The first program ROTBLD reads the users CFD solution files for a single blade passage via an API (Application Program Interface). There are options to replicate and perturb the geometry with typical variations stagger, camber, thickness, and pitch. The multi-passage CFD solution files are then written in the user s file format using the API. (2) The second program SUPERPOSE requires two input files: the first is the circumferential upstream pressure distribution extracted from the CFD solution on the multi-passage mesh, the second file defines the geometry variations of each blade in a complete fan. Superposition is used to predict the spectra resulting from the geometric variations.

  13. Multi-element germanium detectors for synchrotron applications

    DOE PAGES

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.; ...

    2018-04-27

    In this paper, we have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. Finally, we will discuss the technical details of the systems,more » and present some of the results from them.« less

  14. Multi-element germanium detectors for synchrotron applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.

    In this paper, we have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. Finally, we will discuss the technical details of the systems,more » and present some of the results from them.« less

  15. Three-Dimensional Aerodynamic Instabilities In Multi-Stage Axial Compressors

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.; Gong, Yifang; Suder, Kenneth L. (Technical Monitor)

    2001-01-01

    This thesis presents the conceptualization and development of a computational model for describing three-dimensional non-linear disturbances associated with instability and inlet distortion in multistage compressors. Specifically, the model is aimed at simulating the non-linear aspects of short wavelength stall inception, part span stall cells, and compressor response to three-dimensional inlet distortions. The computed results demonstrated the first-of-a-kind capability for simulating short wavelength stall inception in multistage compressors. The adequacy of the model is demonstrated by its application to reproduce the following phenomena: (1) response of a compressor to a square-wave total pressure inlet distortion; (2) behavior of long wavelength small amplitude disturbances in compressors; (3) short wavelength stall inception in a multistage compressor and the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic; (4) progressive stalling behavior in the first stage in a mismatched multistage compressor; (5) change of stall inception type (from modal to spike and vice versa) due to IGV stagger angle variation, and "unique rotor tip incidence" at these points where the compressor stalls through short wavelength disturbances. The model has been applied to determine the parametric dependence of instability inception behavior in terms of amplitude and spatial distribution of initial disturbance, and intra-blade-row gaps. It is found that reducing the inter-blade row gaps suppresses the growth of short wavelength disturbances. It is also concluded from these parametric investigations that each local component group (rotor and its two adjacent stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group. For completeness, the methodology has been extended to describe finite amplitude disturbances in high-speed compressors. Results are presented for the response of a transonic compressor subjected to inlet distortions.

  16. Proper Orthogonal Decomposition on Experimental Multi-phase Flow in a Pipe

    NASA Astrophysics Data System (ADS)

    Viggiano, Bianca; Tutkun, Murat; Cal, Raúl Bayoán

    2016-11-01

    Multi-phase flow in a 10 cm diameter pipe is analyzed using proper orthogonal decomposition. The data were obtained using X-ray computed tomography in the Well Flow Loop at the Institute for Energy Technology in Kjeller, Norway. The system consists of two sources and two detectors; one camera records the vertical beams and one camera records the horizontal beams. The X-ray system allows measurement of phase holdup, cross-sectional phase distributions and gas-liquid interface characteristics within the pipe. The mathematical framework in the context of multi-phase flows is developed. Phase fractions of a two-phase (gas-liquid) flow are analyzed and a reduced order description of the flow is generated. Experimental data deepens the complexity of the analysis with limited known quantities for reconstruction. Comparison between the reconstructed fields and the full data set allows observation of the important features. The mathematical description obtained from the decomposition will deepen the understanding of multi-phase flow characteristics and is applicable to fluidized beds, hydroelectric power and nuclear processes to name a few.

  17. Denver screening protocol for blunt cerebrovascular injury reduces the use of multi-detector computed tomography angiography.

    PubMed

    Beliaev, Andrei M; Barber, P Alan; Marshall, Roger J; Civil, Ian

    2014-06-01

    Blunt cerebrovascular injury (BCVI) occurs in 0.2-2.7% of blunt trauma patients and has up to 30% mortality. Conventional screening does not recognize up to 20% of BCVI patients. To improve diagnosis of BCVI, both an expanded battery of screening criteria and a multi-detector computed tomography angiography (CTA) have been suggested. The aim of this study is to investigate whether the use of CTA restricted to the Denver protocol screen-positive patients would reduce the unnecessary use of CTA as a pre-emptive screening tool. This is a registry-based study of blunt trauma patients admitted to Auckland City Hospital from 1998 to 2012. The diagnosis of BCVI was confirmed or excluded with CTA, magnetic resonance angiography and, if these imaging were non-conclusive, four-vessel digital subtraction angiography. Thirty (61%) BCVI and 19 (39%) non-BCVI patients met eligibility criteria. The Denver protocol applied to our cohort of patients had a sensitivity of 97% (95% confidence interval (CI): 83-100%) and a specificity of 42% (95% CI: 20-67%). With a prevalence of BCVI in blunt trauma patients of 0.2% and 2.7%, post-test odds of a screen-positive test were 0.03 (95% CI: 0.002-0.005) and 0.046 (95% CI: 0.314-0.068), respectively. Application of the CTA to the Denver protocol screen-positive trauma patients can decrease the use of CTA as a pre-emptive screening tool by 95-97% and reduces its hazards. © 2013 Royal Australasian College of Surgeons.

  18. Multi-channel infrared thermometer

    DOEpatents

    Ulrickson, Michael A.

    1986-01-01

    A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

  19. Survey of Fire Detection Technologies and System Evaluation/Certification Methodologies and Their Suitability for Aircraft Cargo Compartments

    NASA Technical Reports Server (NTRS)

    Cleary, T.; Grosshandler, W.

    1999-01-01

    As part of the National Aeronautics and Space Administration (NASA) initiated program on global civil aviation, NIST is assisting Federal Aviation Administration in its research to improve fire detection in aircraft cargo compartments. Aircraft cargo compartment detection certification methods have been reviewed. The Fire Emulator-Detector Evaluator (FE/DE) has been designed to evaluate fire detection technologies such as new sensors, multi-element detectors, and detectors that employ complex algorithms. The FE/DE is a flow tunnel that can reproduce velocity, temperature, smoke, and Combustion gas levels to which a detector might be exposed during a fire. A scientific literature survey and patent search have been conducted relating to existing and emerging fire detection technologies, and the potential use of new fire detection strategies in cargo compartment areas has been assessed. In the near term, improved detector signal processing and multi-sensor detectors based on combinations of smoke measurements, combustion gases and temperature are envisioned as significantly impacting detector system performance.

  20. Multispectral x-ray CT: multivariate statistical analysis for efficient reconstruction

    NASA Astrophysics Data System (ADS)

    Kheirabadi, Mina; Mustafa, Wail; Lyksborg, Mark; Lund Olsen, Ulrik; Bjorholm Dahl, Anders

    2017-10-01

    Recent developments in multispectral X-ray detectors allow for an efficient identification of materials based on their chemical composition. This has a range of applications including security inspection, which is our motivation. In this paper, we analyze data from a tomographic setup employing the MultiX detector, that records projection data in 128 energy bins covering the range from 20 to 160 keV. Obtaining all information from this data requires reconstructing 128 tomograms, which is computationally expensive. Instead, we propose to reduce the dimensionality of projection data prior to reconstruction and reconstruct from the reduced data. We analyze three linear methods for dimensionality reduction using a dataset with 37 equally-spaced projection angles. Four bottles with different materials are recorded for which we are able to obtain similar discrimination of their content using a very reduced subset of tomograms compared to the 128 tomograms that would otherwise be needed without dimensionality reduction.

  1. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  2. Computer Labs Get Rebooted as Lounges: New Gathering Places for Laptop Users Help Colleges Save on Upkeep

    ERIC Educational Resources Information Center

    Terris, Ben

    2010-01-01

    Colleges are looking for ways to cut costs, and most students now own laptops. As a result, many campus technology leaders are taking a hard look at those brightly lit rooms with rows of networked computers, which cost hundreds of thousands of dollars a year to maintain. More than 11% of colleges and universities are phasing out computer labs or…

  3. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2006-12-12

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  4. Multi-channel detector readout method and integrated circuit

    DOEpatents

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2004-05-18

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  5. Preliminary study on X-ray fluorescence computed tomography imaging of gold nanoparticles: Acceleration of data acquisition by multiple pinholes scheme

    NASA Astrophysics Data System (ADS)

    Sasaya, Tenta; Sunaguchi, Naoki; Seo, Seung-Jum; Hyodo, Kazuyuki; Zeniya, Tsutomu; Kim, Jong-Ki; Yuasa, Tetsuya

    2018-04-01

    Gold nanoparticles (GNPs) have recently attracted attention in nanomedicine as novel contrast agents for cancer imaging. A decisive tomographic imaging technique has not yet been established to depict the 3-D distribution of GNPs in an object. An imaging technique known as pinhole-based X-ray fluorescence computed tomography (XFCT) is a promising method that can be used to reconstruct the distribution of GNPs from the X-ray fluorescence emitted by GNPs. We address the acceleration of data acquisition in pinhole-based XFCT for preclinical use using a multiple pinhole scheme. In this scheme, multiple projections are simultaneously acquired through a multi-pinhole collimator with a 2-D detector and full-field volumetric beam to enhance the signal-to-noise ratio of the projections; this enables fast data acquisition. To demonstrate the efficacy of this method, we performed an imaging experiment using a physical phantom with an actual multi-pinhole XFCT system that was constructed using the beamline AR-NE7A at KEK. The preliminary study showed that the multi-pinhole XFCT achieved a data acquisition time of 20 min at a theoretical detection limit of approximately 0.1 Au mg/ml and at a spatial resolution of 0.4 mm.

  6. Multi-view and 3D deformable part models.

    PubMed

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).

  7. Spherical roller bearing analysis. SKF computer program SPHERBEAN. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Dyba, G. J.

    1980-01-01

    The user's guide for the SPHERBEAN computer program for prediction of the thermomechanical performance characteristics of high speed lubricated double row spherical roller bearings is presented. The material presented is structured to guide the user in the practical and correct implementation of SPHERBEAN. Input and output, guidelines for program use, and sample executions are detailed.

  8. A Branch-and-Bound Algorithm for Fitting Anti-Robinson Structures to Symmetric Dissimilarity Matrices.

    ERIC Educational Resources Information Center

    Brusco, Michael J.

    2002-01-01

    Developed a branch-and-bound algorithm that can be used to seriate a symmetric dissimilarity matrix by identifying a reordering of rows and columns of the matrix optimizing an anti-Robinson criterion. Computational results suggest that with respect to computational efficiency, the approach is generally competitive with dynamic programming. (SLD)

  9. System geometry optimization for molecular breast tomosynthesis with focusing multi-pinhole collimators

    NASA Astrophysics Data System (ADS)

    van Roosmalen, Jarno; Beekman, Freek J.; Goorden, Marlies C.

    2018-01-01

    Imaging of 99mTc-labelled tracers is gaining popularity for detecting breast tumours. Recently, we proposed a novel design for molecular breast tomosynthesis (MBT) based on two sliding focusing multi-pinhole collimators that scan a modestly compressed breast. Simulation studies indicate that MBT has the potential to improve the tumour-to-background contrast-to-noise ratio significantly over state-of-the-art planar molecular breast imaging. The aim of the present paper is to optimize the collimator-detector geometry of MBT. Using analytical models, we first optimized sensitivity at different fixed system resolutions (ranging from 5 to 12 mm) by tuning the pinhole diameters and the distance between breast and detector for a whole series of automatically generated multi-pinhole designs. We evaluated both MBT with a conventional continuous crystal detector with 3.2 mm intrinsic resolution and with a pixelated detector with 1.6 mm pixels. Subsequently, full system simulations of a breast phantom containing several lesions were performed for the optimized geometry at each system resolution for both types of detector. From these simulations, we found that tumour-to-background contrast-to-noise ratio was highest for systems in the 7 mm-10 mm system resolution range over which it hardly varied. No significant differences between the two detector types were found.

  10. High-performance sparse matrix-matrix products on Intel KNL and multicore architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasaka, Y; Matsuoka, S; Azad, A

    Sparse matrix-matrix multiplication (SpGEMM) is a computational primitive that is widely used in areas ranging from traditional numerical applications to recent big data analysis and machine learning. Although many SpGEMM algorithms have been proposed, hardware specific optimizations for multi- and many-core processors are lacking and a detailed analysis of their performance under various use cases and matrices is not available. We firstly identify and mitigate multiple bottlenecks with memory management and thread scheduling on Intel Xeon Phi (Knights Landing or KNL). Specifically targeting multi- and many-core processors, we develop a hash-table-based algorithm and optimize a heap-based shared-memory SpGEMM algorithm. Wemore » examine their performance together with other publicly available codes. Different from the literature, our evaluation also includes use cases that are representative of real graph algorithms, such as multi-source breadth-first search or triangle counting. Our hash-table and heap-based algorithms are showing significant speedups from libraries in the majority of the cases while different algorithms dominate the other scenarios with different matrix size, sparsity, compression factor and operation type. We wrap up in-depth evaluation results and make a recipe to give the best SpGEMM algorithm for target scenario. A critical finding is that hash-table-based SpGEMM gets a significant performance boost if the nonzeros are not required to be sorted within each row of the output matrix.« less

  11. Multi-channel infrared thermometer

    DOEpatents

    Ulrickson, M.A.

    A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and optical means positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The optical means may be a light pipe array having one light pipe for each detector in the detector array.

  12. Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector.

    PubMed

    Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-07-01

    An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  13. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.

    2011-10-27

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m{sup 2} and has 350 palm trees and the second farm is about 7000 m{sup 2} and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samplesmore » were taken from different depths and positions between the trees and from the irrigation reservoir.A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K.The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically.The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m{sup 3}. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.« less

  14. Estimation of Soil Radon Concentration in Al-Qateef's Date Palm Farms, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, S. S.; Al-Garawi, M. S.; Baig, M. R.; Al-Sameen, M.

    2011-10-01

    This study involves the measurement of radon concentrations in agricultural soil from two date Palm farms in Al-Qateef province using CR-39 detector. In each farm the palm trees are arranged in rows separated by the irrigation reservoirs. The first farm is about 10000 m2 and has 350 palm trees and the second farm is about 7000 m2 and has 320 palm trees. The average distance between trees is about 5.5 m. The rows are separated by an irrigation reservoir where fertilizers are added. Sixty soil samples were collected from each farm and classified in paperboard boxes. These samples were taken from different depths and positions between the trees and from the irrigation reservoir. A newly designed tag type dosimeter is used in which the alpha tracks are registered on both sides of the CR-39 detector. The tag dosimeter was calibrated against a cup type dosimeter which was calibrated at the National Radiological Protection Board (NRPB) at the U.K. The detectors were left to count for five months and then chemically treated in the standard way. Finally an optical microscope is used to count alpha tracks and the data are treated statistically. The study is set to test for significant differences in radon concentrations at different positions and depths in the barren and fertilized soils in the two farms. Measured radon concentrations ranged between 42 and 344Bq/m3. No significant difference between the mean concentration values in soil samples taken between the trees and that taken at the depth of 50 cm from the irrigation reservoir. Significant difference was however found between radon concentrations in samples collected directly from the surface of the irrigation reservoir where fertilizers are introduced and those taken from the other two positions. The used fertilizers are found to have higher contents of uranium which is limited to the surface soil of the irrigation reservoir.

  15. A hybrid approach for efficient anomaly detection using metaheuristic methods

    PubMed Central

    Ghanem, Tamer F.; Elkilani, Wail S.; Abdul-kader, Hatem M.

    2014-01-01

    Network intrusion detection based on anomaly detection techniques has a significant role in protecting networks and systems against harmful activities. Different metaheuristic techniques have been used for anomaly detector generation. Yet, reported literature has not studied the use of the multi-start metaheuristic method for detector generation. This paper proposes a hybrid approach for anomaly detection in large scale datasets using detectors generated based on multi-start metaheuristic method and genetic algorithms. The proposed approach has taken some inspiration of negative selection-based detector generation. The evaluation of this approach is performed using NSL-KDD dataset which is a modified version of the widely used KDD CUP 99 dataset. The results show its effectiveness in generating a suitable number of detectors with an accuracy of 96.1% compared to other competitors of machine learning algorithms. PMID:26199752

  16. System and method for assaying a radionuclide

    DOEpatents

    Cadieux, James R; King, III, George S; Fugate, Glenn A

    2014-12-23

    A system for assaying a radionuclide includes a liquid scintillation detector, an analyzer connected to the liquid scintillation detector, and a delay circuit connected to the analyzer. A gamma detector and a multi-channel analyzer are connected to the delay circuit and the gamma detector. The multi-channel analyzer produces a signal reflective of the radionuclide in the sample. A method for assaying a radionuclide includes selecting a sample, detecting alpha or beta emissions from the sample with a liquid scintillation detector, producing a first signal reflective of the alpha or beta emissions, and delaying the first signal a predetermined time. The method further includes detecting gamma emissions from the sample, producing a second signal reflective of the gamma emissions, and combining the delayed first signal with the second signal to produce a third signal reflective of the radionuclide.

  17. A hybrid approach for efficient anomaly detection using metaheuristic methods.

    PubMed

    Ghanem, Tamer F; Elkilani, Wail S; Abdul-Kader, Hatem M

    2015-07-01

    Network intrusion detection based on anomaly detection techniques has a significant role in protecting networks and systems against harmful activities. Different metaheuristic techniques have been used for anomaly detector generation. Yet, reported literature has not studied the use of the multi-start metaheuristic method for detector generation. This paper proposes a hybrid approach for anomaly detection in large scale datasets using detectors generated based on multi-start metaheuristic method and genetic algorithms. The proposed approach has taken some inspiration of negative selection-based detector generation. The evaluation of this approach is performed using NSL-KDD dataset which is a modified version of the widely used KDD CUP 99 dataset. The results show its effectiveness in generating a suitable number of detectors with an accuracy of 96.1% compared to other competitors of machine learning algorithms.

  18. An X-Ray computed tomography/positron emission tomography system designed specifically for breast imaging.

    PubMed

    Boone, John M; Yang, Kai; Burkett, George W; Packard, Nathan J; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D; Lindfors, Karen K

    2010-02-01

    Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging.

  19. Photon counting image sensor development for astronomical applications

    NASA Technical Reports Server (NTRS)

    Jenkins, Edward B.

    1987-01-01

    Specially built intensified CCD (ICCD) detector tubes were purchased and the performance of the electron bombardment process was investigated. In addition to studying the signal characteristics of the photoevents, there was interest in demonstrating that back-illuminated chips were not susceptible to radiation damage to their clocking electrodes. How to perform a centroid analysis for a 2-dimensional Gaussian distribution of charge is described. Measurement of the projection (along columns or rows) of the average charge spread profile is discussed. The development and flight of the Interstellar Medium Absorption Profile Spectrograph (IMAPS) is discussed.

  20. Preliminary performances measured on a CMOS long linear array for space application

    NASA Astrophysics Data System (ADS)

    Renard, Christophe; Artinian, Armand; Dantes, Didier; Lepage, Gérald; Diels, Wim

    2017-11-01

    This paper presents the design and the preliminary performances of a CMOS linear array, resulting from collaboration between Alcatel Alenia Space and Cypress Semiconductor BVBA, which takes advantage of emerging potentialities of CMOS technologies. The design of the sensor is presented: it includes 8000 panchromatic pixels with up to 25 rows used in TDI mode, and 4 lines of 2000 pixels for multispectral imaging. Main system requirements and detector tradeoffs are recalled, and the preliminary test results obtained with a first generation prototype are summarized and compared with predicted performances.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, L.C.

    The Prickett and Lonnquist two-dimensional groundwater model has been programmed for the Apple II minicomputer. Both leaky and nonleaky confined aquifers can be simulated. The model was adapted from the FORTRAN version of Prickett and Lonnquist. In the configuration presented here, the program requires 64 K bits of memory. Because of the large number of arrays used in the program, and memory limitations of the Apple II, the maximum grid size that can be used is 20 rows by 20 columns. Input to the program is interactive, with prompting by the computer. Output consists of predicted lead values at themore » row-column intersections (nodes).« less

  2. Linear systems on balancing chemical reaction problem

    NASA Astrophysics Data System (ADS)

    Kafi, R. A.; Abdillah, B.

    2018-01-01

    The concept of linear systems appears in a variety of applications. This paper presents a small sample of the wide variety of real-world problems regarding our study of linear systems. We show that the problem in balancing chemical reaction can be described by homogeneous linear systems. The solution of the systems is obtained by performing elementary row operations. The obtained solution represents the finding coefficients of chemical reaction. In addition, we present a computational calculation to show that mathematical software such as Matlab can be used to simplify completion of the systems, instead of manually using row operations.

  3. GADRAS-DRF 18.6 User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, Steve M.; Thoreson, Greg G.; Theisen, Lisa A.

    2016-05-01

    The Gamma Detector Response and Analysis Software–Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).

  4. WE-E-18C-01: Multi-Energy CT: Current Status and Recent Innovations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelc, N; McCollough, C; Yu, L

    2014-06-15

    Conventional computed tomography (CT) uses a single polychromatic x-ray spectrum and energy integrating detectors, and produces images whose contrast depends on the effective attenuation coefficient of the broad spectrum beam. This can introduce errors from beam hardening and does not produce the optimal contrast-to-noise ratio. In addition, multiple materials can have the same effective attenuation coefficient, causing different materials to be indistinguishable in conventional CT images. If transmission measurements at two or more energies are obtained, even with polychromatic beams, more specific information about the object can be obtained. If the object does not contain materials with k-edges in themore » spectrum, the x-ray attenuation can be well-approximated by a linear combination of two processes (photoelectric absorption and Compton scattering) or, equivalently, two basis materials. For such cases, two spectral measurements suffice, although additional measurements can provide higher precision. If K-edge materials are present, additional spectral measurements can allow these materials to be isolated. Current commercial implementations use varied approaches, including two sources operating a different kVp, one source whose kVp is rapidly switched in a single scan, and a dual layer detector that can provide spectral information in every reading. Processing of the spectral information can be performed in the raw data domain or in the image domain. The process of calculating the amount of the two basis functions implicitly corrects for beam hardening and therefore can lead to improvements in quantitative accuracy. Information can be extracted to provide material specific information beyond that of conventional CT. This additional information has been shown to be important in several clinical applications, and can also lead to more efficient clinical protocols. Recent innovations in x-ray sources, detectors, and systems have made multi-energy CT much more practical and improved its performance. In addition, this is a very active area of research and further improvements are expected through further technological improvements. Learning Objectives: Basic principles of multi-energy CT Current implementations of mutli-energy CT Data and image analysis methods in multi-energy CT Current clinical applications of dual energy CT5. recent innovations and anticipated advances in multi-energy CT.« less

  5. Twenty years of Landsat data accessible through the national satellite land remote sensing data archive

    USGS Publications Warehouse

    Larsen, Dana M.

    1993-01-01

    The EROS Data Center has managed to National Satellite Land Remote Sensing Data Archive's (NSLRSDA) Landsat data since 1972. The NSLRSDA includes Landsat MSS data from 1972 through 1991 and T M data from 1982 through 1993. In response to many requests from multi-disciplined users for an enhanced insight into the availability and volume of Landsat data over specific worldwide land areas, numerous world plots and corresponding statical overviews have been prepared. These presentations include information related to image quality, cloud cover, various types of data overage (i.e. regions, countries, path, rows), acquisition station coverage areas, various archive media formats (i.e. wide band video tapes, computer compatible tapes, high density tapes, etc.) and acquisition time periods (i.e. years, seasons). Plans are to publish this information in a paper sample booklet at the Pecora 12 Symposium, in a USGS circular and on a Landsat CD-ROM; the data will be also be incorporated into GLIS.

  6. Detecting Unsteady Blade Row Interaction in a Francis Turbine using a Phase-Lag Boundary Condition

    NASA Astrophysics Data System (ADS)

    Wouden, Alex; Cimbala, John; Lewis, Bryan

    2013-11-01

    For CFD simulations in turbomachinery, methods are typically used to reduce the computational cost. For example, the standard periodic assumption reduces the underlying mesh to a single blade passage in axisymmetric applications. If the simulation includes only a single array of blades with an uniform inlet condition, this assumption is adequate. However, to compute the interaction between successive blade rows of differing periodicity in an unsteady simulation, the periodic assumption breaks down and may produce inaccurate results. As a viable alternative the phase-lag boundary condition assumes that the periodicity includes a temporal component which, if considered, allows for a single passage to be modeled per blade row irrespective of differing periodicity. Prominently used in compressible CFD codes for the analysis of gas turbines/compressors, the phase-lag boundary condition is adapted to analyze the interaction between the guide vanes and rotor blades in an incompressible simulation of the 1989 GAMM Workshop Francis turbine using OpenFOAM. The implementation is based on the ``direct-storage'' method proposed in 1977 by Erdos and Alzner. The phase-lag simulation is compared with available data from the GAMM workshop as well as a full-wheel simulation. Funding provided by DOE Award number: DE-EE0002667.

  7. MadDM: Computation of dark matter relic abundance

    NASA Astrophysics Data System (ADS)

    Backović, Mihailo; Kong, Kyoungchul; McCaskey, Mathew

    2017-12-01

    MadDM computes dark matter relic abundance and dark matter nucleus scattering rates in a generic model. The code is based on the existing MadGraph 5 architecture and as such is easily integrable into any MadGraph collider study. A simple Python interface offers a level of user-friendliness characteristic of MadGraph 5 without sacrificing functionality. MadDM is able to calculate the dark matter relic abundance in models which include a multi-component dark sector, resonance annihilation channels and co-annihilations. The direct detection module of MadDM calculates spin independent / spin dependent dark matter-nucleon cross sections and differential recoil rates as a function of recoil energy, angle and time. The code provides a simplified simulation of detector effects for a wide range of target materials and volumes.

  8. Black Hole Mergers, Gravitational Waves, and Multi-Messenger Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2010-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. Although numerical codes designed to simulate black hole mergers were plagued for many years by a host of instabilities, recent breakthroughs have conquered these problems and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, astrophysics, and testing general relativity.

  9. Comparison of multi-arm VRX CT scanners through computer models

    NASA Astrophysics Data System (ADS)

    Rendon, David A.; DiBianca, Frank A.; Keyes, Gary S.

    2007-03-01

    Variable Resolution X-ray (VRX) CT scanners allow imaging of different sized anatomy at the same level of detail using the same device. This is achieved by tilting the x-ray detectors so that the projected size of the detecting elements is varied producing reconstructions of smaller fields of view with higher spatial resolution.1 The detector can be divided in two or more separate segments, called arms, which can be placed at different angles, allowing some flexibility for the scanner design. In particular, several arms can be set at different angles creating a target region of considerably higher resolution that can be used to track the evolution of a previously diagnosed condition, while keeping the patient completely inside the field of view (FOV).2 This work presents newly-developed computer models of single-slice VRX scanners that allow us to study and compare different configurations (that is, various types of detectors arranged in any number of arms arranged in different geometries) in terms of spatial and contrast resolution. In particular, we are interested in comparing the performance of various geometric configurations that would otherwise be considered equivalent (using the same equipment, imaging FOVs of the same sizes, and having a similar overall scanner size). For this, a VRX simulator was developed, along with mathematical phantoms for spatial resolution and contrast analysis. These tools were used to compare scanner configurations that can be reproduced with materials presently available in our lab.

  10. Sensitive spin detection using an on-chip SQUID-waveguide resonator

    NASA Astrophysics Data System (ADS)

    Yue, G.; Chen, L.; Barreda, J.; Bevara, V.; Hu, L.; Wu, L.; Wang, Z.; Andrei, P.; Bertaina, S.; Chiorescu, I.

    2017-11-01

    Precise detection of spin resonance is of paramount importance to achieve coherent spin control in quantum computing. We present a setup for spin resonance measurements, which uses a dc-SQUID flux detector coupled to an antenna from a coplanar waveguide. The SQUID and the waveguide are fabricated from a 20 nm Nb thin film, allowing high magnetic field operation with the field applied parallel to the chip. We observe a resonance signal between the first and third excited states of Gd spins S = 7/2 in a CaWO4 crystal, relevant for state control in multi-level systems.

  11. Monte Carlo simulation of the nuclear-electromagnetic cascade development and the energy response of ionization spectrometers

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1973-01-01

    Modifications to the basic computer program for performing the simulations are reported. The major changes include: (1) extension of the calculations to include the development of cascades initiated by heavy nuclei, (2) improved treatment of the nuclear disintegrations which occur during the interactions of hadrons in heavy absorbers, (3) incorporation of accurate multi-pion final-state cross sections for various interactions at accelerator energies, (4) restructuring of the program logic so that calculations can be made for sandwich-type detectors, and (5) logic modifications related to execution of the program.

  12. LIFTING THE VEIL OF DUST TO REVEAL THE SECRETS OF SPIRAL GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have combined information from the NASA Hubble Space Telescope's visible- and infrared-light cameras to show the hearts of four spiral galaxies peppered with ancient populations of stars. The top row of pictures, taken by a ground-based telescope, represents complete views of each galaxy. The blue boxes outline the regions observed by the Hubble telescope. The bottom row represents composite pictures from Hubble's visible- and infrared-light cameras, the Wide Field and Planetary Camera 2 (WFPC2) and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Astronomers combined views from both cameras to obtain the true ages of the stars surrounding each galaxy's bulge. The Hubble telescope's sharper resolution allows astronomers to study the intricate structure of a galaxy's core. The galaxies are ordered by the size of their bulges. NGC 5838, an 'S0' galaxy, is dominated by a large bulge and has no visible spiral arms; NGC 7537, an 'Sbc' galaxy, has a small bulge and loosely wound spiral arms. Astronomers think that the structure of NGC 7537 is very similar to our Milky Way. The galaxy images are composites made from WFPC2 images taken with blue (4445 Angstroms) and red (8269 Angstroms) filters, and NICMOS images taken in the infrared (16,000 Angstroms). They were taken in June, July, and August of 1997. Credits for the ground-based images: Allan Sandage (The Observatories of the Carnegie Institution of Washington) and John Bedke (Computer Sciences Corporation and the Space Telescope Science Institute) Credits for WFPC2 and NICMOS composites: NASA, ESA, and Reynier Peletier (University of Nottingham, United Kingdom)

  13. International Assessment of Unmanned Ground Vehicles

    DTIC Science & Technology

    2008-02-01

    research relevant to ground robotics include • Multi-sensor data fusion • Stereovision • Dedicated robots, including legged robots, tracked robots...Technology Laboratory has developed several mobile robots with leg - ged, wheeled, rolling, rowing, and hybrid locomotion. Areas of particular emphasis...117 UK Department of Trade and Industry ( DTI ) Global Watch Mission. November 2006. Mechatronics in Russia. 118 CRDI Web Site: http

  14. Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input

    NASA Astrophysics Data System (ADS)

    Kim, Daeik D.; Thomas, Mikkel A.; Brooke, Martin A.; Jokerst, Nan M.

    2004-06-01

    Arrays of embedded bipolar junction transistor (BJT) photo detectors (PD) and a parallel mixed-signal processing system were fabricated as a silicon complementary metal oxide semiconductor (Si-CMOS) circuit for the integration optical sensors on the surface of the chip. The circuit was fabricated with AMI 1.5um n-well CMOS process and the embedded PNP BJT PD has a pixel size of 8um by 8um. BJT PD was chosen to take advantage of its higher gain amplification of photo current than that of PiN type detectors since the target application is a low-speed and high-sensitivity sensor. The photo current generated by BJT PD is manipulated by mixed-signal processing system, which consists of parallel first order low-pass delta-sigma oversampling analog-to-digital converters (ADC). There are 8 parallel ADCs on the chip and a group of 8 BJT PDs are selected with CMOS switches. An array of PD is composed of three or six groups of PDs depending on the number of rows.

  15. Design of Multistage Axial-Flow Compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1983-01-01

    Program developed for computing aerodynamic design of multistage axialflow compressor and associated blading geometry input for internal flow analysis. Aerodynamic solution gives velocity diagrams on selected streamlines of revolution at blade row edges. Program written in FORTRAN IV.

  16. Electronic neural network for dynamic resource allocation

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Eberhardt, S. P.; Daud, T.

    1991-01-01

    A VLSI implementable neural network architecture for dynamic assignment is presented. The resource allocation problems involve assigning members of one set (e.g. resources) to those of another (e.g. consumers) such that the global 'cost' of the associations is minimized. The network consists of a matrix of sigmoidal processing elements (neurons), where the rows of the matrix represent resources and columns represent consumers. Unlike previous neural implementations, however, association costs are applied directly to the neurons, reducing connectivity of the network to VLSI-compatible 0 (number of neurons). Each row (and column) has an additional neuron associated with it to independently oversee activations of all the neurons in each row (and each column), providing a programmable 'k-winner-take-all' function. This function simultaneously enforces blocking (excitatory/inhibitory) constraints during convergence to control the number of active elements in each row and column within desired boundary conditions. Simulations show that the network, when implemented in fully parallel VLSI hardware, offers optimal (or near-optimal) solutions within only a fraction of a millisecond, for problems up to 128 resources and 128 consumers, orders of magnitude faster than conventional computing or heuristic search methods.

  17. Computer program for aerodynamic and blading design of multistage axial-flow compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1981-01-01

    A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. Compressible flow, which is assumed to be steady and axisymmetric, is the basis for a two-dimensional solution in the meridional plane with viscous effects modeled by pressure loss coefficients and boundary layer blockage. The radial equation of motion and the continuity equation are solved with the streamline curvature method on calculation stations outside the blade rows. The annulus profile, mass flow, pressure ratio, and rotative speed are input. A number of other input parameters specify and control the blade row aerodynamics and geometry. In particular, blade element centerlines and thicknesses can be specified with fourth degree polynomials for two segments. The output includes a detailed aerodynamic solution and, if desired, blading coordinates that can be used for internal flow analysis codes.

  18. Importance of preoperative imaging with 64-row three-dimensional multidetector computed tomography for safer video-assisted thoracic surgery in lung cancer.

    PubMed

    Akiba, Tadashi; Marushima, Hideki; Harada, Junta; Kobayashi, Susumu; Morikawa, Toshiaki

    2009-01-01

    Video-assisted thoracic surgery (VATS) has recently been adopted for complicated anatomical lung resections. During these thoracoscopic procedures, surgeons view the operative field on a two-dimensional (2-D) video monitor and cannot palpate the organ directly, thus frequently encountering anatomical difficulties. This study aimed to estimate the usefulness of preoperative three-dimensional (3-D) imaging of thoracic organs. We compared the preoperative 64-row three-dimensional multidetector computed tomography (3DMDCT) findings of lung cancer-affected thoracic organs to the operative findings. In comparison to the operative findings, the branches of pulmonary arteries, veins, and bronchi were well defined in the 3D-MDCT images of 27 patients. 3D-MDCT imaging is useful for preoperatively understanding the individual thoracic anatomy in lung cancer surgery. This modality can therefore contribute to safer anatomical pulmonary operations, especially in VATS.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozano, M.C.; Chalfoun, N.V.

    Bogota, Colombia, is the third highest capital in South America, its location near the equator assures high altitudes over the horizon and almost 5 hours of daily mean sunshine. Since 1981, efforts for using natural energy instead of nonrenewable fuel have been targeted to Colombia`s residential construction industry. This paper focuses on a computer aided design process for passive solar low-income row housing in Bogota. Thermal comfort for this tropical climate has been achieved through employing ``Guadua,`` a strong bamboo specie,as an alternative wall system to the traditional brick, adobe, or concrete structures. Through computer analysis, several energy conservation andmore » passive solar strategies have been optimized for a case study row housing type common to the region. The load savings compared to a 6 inch CMU house totaled 72%, while the operating cost has been reduced by 71%. Furthermore, this lightweight and inexpensive ``Guadua`` material has reduced the construction cost by 30%.« less

  20. ERDDAP - RESTful Web Services

    Science.gov Websites

    , graphs, or information about datasets). A RESTful web service (external link) - a URL that computer to get the same information in a more computer-program-friendly format like JSON (external link .jsonlKVP, where column names are on every row): Each column has a column name and one type of information

  1. A field-shaping multi-well avalanche detector for direct conversion amorphous selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldan, A. H.; Zhao, W.

    2013-01-15

    Purpose: A practical detector structure is proposed to achieve stable avalanche multiplication gain in direct-conversion amorphous selenium radiation detectors. Methods: The detector structure is referred to as a field-shaping multi-well avalanche detector. Stable avalanche multiplication gain is achieved by eliminating field hot spots using high-density avalanche wells with insulated walls and field-shaping inside each well. Results: The authors demonstrate the impact of high-density insulated wells and field-shaping to eliminate the formation of both field hot spots in the avalanche region and high fields at the metal-semiconductor interface. Results show a semi-Gaussian field distribution inside each well using the field-shaping electrodes,more » and the electric field at the metal-semiconductor interface can be one order-of-magnitude lower than the peak value where avalanche occurs. Conclusions: This is the first attempt to design a practical direct-conversion amorphous selenium detector with avalanche gain.« less

  2. Optical modeling of waveguide coupled TES detectors towards the SAFARI instrument for SPICA

    NASA Astrophysics Data System (ADS)

    Trappe, N.; Bracken, C.; Doherty, S.; Gao, J. R.; Glowacka, D.; Goldie, D.; Griffin, D.; Hijmering, R.; Jackson, B.; Khosropanah, P.; Mauskopf, P.; Morozov, D.; Murphy, A.; O'Sullivan, C.; Ridder, M.; Withington, S.

    2012-09-01

    The next generation of space missions targeting far-infrared wavelengths will require large-format arrays of extremely sensitive detectors. The development of Transition Edge Sensor (TES) array technology is being developed for future Far-Infrared (FIR) space applications such as the SAFARI instrument for SPICA where low-noise and high sensitivity is required to achieve ambitious science goals. In this paper we describe a modal analysis of multi-moded horn antennas feeding integrating cavities housing TES detectors with superconducting film absorbers. In high sensitivity TES detector technology the ability to control the electromagnetic and thermo-mechanical environment of the detector is critical. Simulating and understanding optical behaviour of such detectors at far IR wavelengths is difficult and requires development of existing analysis tools. The proposed modal approach offers a computationally efficient technique to describe the partial coherent response of the full pixel in terms of optical efficiency and power leakage between pixels. Initial wok carried out as part of an ESA technical research project on optical analysis is described and a prototype SAFARI pixel design is analyzed where the optical coupling between the incoming field and the pixel containing horn, cavity with an air gap, and thin absorber layer are all included in the model to allow a comprehensive optical characterization. The modal approach described is based on the mode matching technique where the horn and cavity are described in the traditional way while a technique to include the absorber was developed. Radiation leakage between pixels is also included making this a powerful analysis tool.

  3. Building a multi-cathode-gas-filled scintillator detector for fission fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahgoub, M., E-mail: mmahgoub@jazanu.edu.sa; Physics department, Technical University of Munich, D-85748 Garching

    2016-06-10

    Radiation cannot be detected directly by human senses, indeed detecting and identifying the fission products or decay yield with high accuracy is a great challenge for experimental physicist. In this work we are building a Multi-Cathode-Gas-filled Scintillator MCGS detector. The detector consists of two parts. First: anode-wire proportional chamber and cathode strip foil, which measure the energy loss of the particles in the gas, due to the ionization, and identifies the position of the products on the detector plane depending on their energy with the presence of a magnetic field. Second: a 7 mm thick scintillator attached to a photomultipliermore » tube in the back end of the detector. This part measures the rest energy of the particles. A data acquisition system records the events and the particles infonnation. The yields are identified from the energy loss to rest energy ratio.« less

  4. Enhancing the Linear Dynamic Range in Multi-Channel Single Photon Detector beyond 7OD

    PubMed Central

    Gudkov, Dmytro; Gudkov, George; Gorbovitski, Boris; Gorfinkel, Vera

    2015-01-01

    We present design, implementation, and characterization of a single photon detector based on 32-channel PMT sensor [model H7260-20, Hamamatsu]. The developed high speed electronics enables the photon counting with linear dynamic range (LDR) up to 108count/s per detector's channel. The experimental characterization and Monte-Carlo simulations showed that in the single photon counting mode the LDR of the PMT sensor is limited by (i) “photon” pulse width (current pulse) of 900ps and (ii) substantial decrease of amplitudes of current pulses for count rates exceeding 108 count/s. The multi-channel architecture of the detector and the developed firm/software allow further expansion of the dynamic range of the device by 32-fold by using appropriate beam shaping. The developed single photon counting detector was tested for the detection of fluorescence labeled microbeads in capillary flow. PMID:27087788

  5. Advanced Code-Division Multiplexers for Superconducting Detector Arrays

    NASA Astrophysics Data System (ADS)

    Irwin, K. D.; Cho, H. M.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Niemack, M. D.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Vale, L. R.

    2012-06-01

    Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.

  6. Usefulness of multidetector-row CT (MDCT) for the diagnosis of non-occlusive mesenteric ischemia (NOMI): assessment of morphology and diameter of the superior mesenteric artery (SMA) on multi-planar reconstructed (MPR) images.

    PubMed

    Woodhams, Reiko; Nishimaki, Hiroshi; Fujii, Kaoru; Kakita, Satoko; Hayakawa, Kazushige

    2010-10-01

    The purpose of this study was to assess the efficacy of multidetector-row CT (MDCT) for the diagnosis of non-occlusive mesenteric ischemia (NOMI) by analyzing morphology and diameter of superior mesenteric artery (SMA). We assessed whether MDCT was as useful as angiography for the diagnosis of NOMI. Four patients who were diagnosed with NOMI were retrospectively analyzed. All patients had 8-row MDCT followed by laparotomy. Two of them underwent angiography after MDCT. The morphology and diameter of SMA of these cases was analyzed on multi-planar reconstructed (MPR) images. The mean diameter of SMA of NOMI cases was compared to that of 13 control cases. MPR images of all NOMI cases showed irregular narrowing of the SMA, spasm of the arcades of SMA, and poor demonstration of intramural vessels. MPR images of two patients who had angiography were concordant with their angiograms. The mean diameter of SMA of NOMI patients was 3.4±1.1mm, which was statistically smaller than that of 13 control patients, 6.0±1.5mm (P<0.05, Wilcoxon rank sum tests). Angiography has been recognized essential for the diagnosis of NOMI. This study shows the possibility of MDCT to be an equivalently useful modality compared to angiography for the diagnosis of NOMI by interpreting morphologic appearance and diameter of SMA. Introduction of MDCT in the decision tree of NOMI treatment may bring the benefit of prompt diagnosis and subsequent early and efficient initiation of therapy, which may improve the mortality. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Collimator Design for a Brain SPECT/MRI Insert

    NASA Astrophysics Data System (ADS)

    Salvado, Debora; Erlandsson, Kjell; Bousse, Alexandre; Occhipinti, Michele; Busca, Paolo; Fiorini, Carlo; Hutton, Brian F.

    2015-08-01

    This project's goal is to design a SPECT insert for a clinical MRI system for simultaneous brain SPECT/MR imaging, with a high-sensitivity collimator and high-resolution detectors. We have compared eight collimator designs, four multi-pinhole and four multi-slit slit-slat configurations. The collimation was designed for a system with 2 rings of 25 5 × 5 cm detectors. We introduce the concept of 1/2-pinhole and 1/2-slit, which are transaxially shared between two adjacent detectors. Analytical geometric efficiency was calculated for an activity distribution corresponding to a human brain and a range of intrinsic detector resolutions Ri and target resolutions Rt at the centre of the FOV. Noise-free data were simulated with and without depth-of-interaction (DOI) information, 0.8 mm Ri and 10 mm Rt FWHM, and reconstructed for uniform, Defrise, Derenzo, and Zubal brain phantoms. Comparing the multi-pinhole and multi-slit slit-slat collimators, the former gives better reconstructed uniformity and transaxial resolution, while the latter gives better axial resolution. Although the 2 ×2-pinhole and 2-slit designs give the highest sensitivities, they result in a sub-optimal utilisation of the detector FOV. The best options are therefore the 5+ 2 1/2-pinhole and the 1 + 2 1/2-slit systems, with sensitivities of 1.8 ×10-4 and 3.2 ×10-4, respectively. Noiseless brain phantom reconstructions with the multi-pinhole collimator are slightly superior as compared to slit-slat, in terms of symmetry and accuracy of the activity distribution, but the same is not true when noise is included. DOI information reduces artefacts and improves uniformity in geometric phantoms. Further evaluation is needed with prototype collimators.

  8. High-speed on-chip windowed centroiding using photodiode-based CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)

    2003-01-01

    A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.

  9. High-speed on-chip windowed centroiding using photodiode-based CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)

    2004-01-01

    A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.

  10. X-ray metrology of an array of active edge pixel sensors for use at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Plackett, R.; Arndt, K.; Bortoletto, D.; Horswell, I.; Lockwood, G.; Shipsey, I.; Tartoni, N.; Williams, S.

    2018-01-01

    We report on the production and testing of an array of active edge silicon sensors as a prototype of a large array. Four Medipix3RX.1 chips were bump bonded to four single chip sized Advacam active edge n-on-n sensors. These detectors were then mounted into a 2 by 2 array and tested on B16 at Diamond Light Source with an x-ray beam spot of 2um. The results from these tests, compared with optical metrology demonstrate that this type of sensor is sensitive to the physical edge of the silicon, with only a modest loss of efficiency in the final two rows of pixels. We present the efficiency maps recorded with the microfocus beam and a sample powder diffraction measurement. These results give confidence that this sensor technology can be used effectively in larger arrays of detectors at synchrotron light sources.

  11. Multi-energy x-ray detector calibration for Te and impurity density (nZ) measurements of MCF plasmas

    NASA Astrophysics Data System (ADS)

    Maddox, J.; Pablant, N.; Efthimion, P.; Delgado-Aparicio, L.; Hill, K. W.; Bitter, M.; Reinke, M. L.; Rissi, M.; Donath, T.; Luethi, B.; Stratton, B.

    2016-11-01

    Soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, ne 2 Z eff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.

  12. Design and Construction of Detector and Data Acquisition Elements for Proton Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermi Research Alliance; Northern Illinois University

    2015-07-15

    Proton computed tomography (pCT) offers an alternative to x-ray imaging with potential for three-dimensional imaging, reduced radiation exposure, and in-situ imaging. Northern Illinois University (NIU) is developing a second-generation proton computed tomography system with a goal of demonstrating the feasibility of three-dimensional imaging within clinically realistic imaging times. The second-generation pCT system is comprised of a tracking system, a calorimeter, data acquisition, a computing farm, and software algorithms. The proton beam encounters the upstream tracking detectors, the patient or phantom, the downstream tracking detectors, and a calorimeter. The schematic layout of the PCT system is shown. The data acquisition sendsmore » the proton scattering information to an offline computing farm. Major innovations of the second generation pCT project involve an increased data acquisition rate ( MHz range) and development of three-dimensional imaging algorithms. The Fermilab Particle Physics Division and Northern Illinois Center for Accelerator and Detector Development at Northern Illinois University worked together to design and construct the tracking detectors, calorimeter, readout electronics and detector mounting system.« less

  13. Validation of multi-detector computed tomography as a non-invasive method for measuring ovarian volume in macaques (Macaca fascicularis).

    PubMed

    Jones, Jeryl C; Appt, Susan E; Werre, Stephen R; Tan, Joshua C; Kaplan, Jay R

    2010-06-01

    The purpose of this study was to validate low radiation dose, contrast-enhanced, multi-detector computed tomography (MDCT) as a non-invasive method for measuring ovarian volume in macaques. Computed tomography scans of four known-volume phantoms and nine mature female cynomolgus macaques were acquired using a previously described, low radiation dose scanning protocol, intravenous contrast enhancement, and a 32-slice MDCT scanner. Immediately following MDCT, ovaries were surgically removed and the ovarian weights were measured. The ovarian volumes were determined using water displacement. A veterinary radiologist who was unaware of actual volumes measured ovarian CT volumes three times, using a laptop computer, pen display tablet, hand-traced regions of interest, and free image analysis software. A statistician selected and performed all tests comparing the actual and CT data. Ovaries were successfully located in all MDCT scans. The iliac arteries and veins, uterus, fallopian tubes, cervix, ureters, urinary bladder, rectum, and colon were also consistently visualized. Large antral follicles were detected in six ovaries. Phantom mean CT volume was 0.702+/-SD 0.504 cc and the mean actual volume was 0.743+/-SD 0.526 cc. Ovary mean CT volume was 0.258+/-SD 0.159 cc and mean water displacement volume was 0.257+/-SD 0.145 cc. For phantoms, the mean coefficient of variation for CT volumes was 2.5%. For ovaries, the least squares mean coefficient of variation for CT volumes was 5.4%. The ovarian CT volume was significantly associated with actual ovarian volume (ICC coefficient 0.79, regression coefficient 0.5, P=0.0006) and the actual ovarian weight (ICC coefficient 0.62, regression coefficient 0.6, P=0.015). There was no association between the CT volume accuracy and mean ovarian CT density (degree of intravenous contrast enhancement), and there was no proportional or fixed bias in the CT volume measurements. Findings from this study indicate that MDCT is a valid non-invasive technique for measuring the ovarian volume in macaques.

  14. Computer program for analysis of high speed, single row, angular contact, spherical roller bearing, SASHBEAN. Volume 2: Mathematical formulation and analysis

    NASA Technical Reports Server (NTRS)

    Aggarwal, Arun K.

    1993-01-01

    Spherical roller bearings have typically been used in applications with speeds limited to about 5000 rpm and loads limited for operation at less than about 0.25 million DN. However, spherical roller bearings are now being designed for high load and high speed applications including aerospace applications. A computer program, SASHBEAN, was developed to provide an analytical tool to design, analyze, and predict the performance of high speed, single row, angular contact (including zero contact angle), spherical roller bearings. The material presented is the mathematical formulation and analytical methods used to develop computer program SASHBEAN. For a given set of operating conditions, the program calculates the bearings ring deflections (axial and radial), roller deflections, contact areas stresses, depth and magnitude of maximum shear stresses, axial thrust, rolling element and cage rotational speeds, lubrication parameters, fatigue lives, and rates of heat generation. Centrifugal forces and gyroscopic moments are fully considered. The program is also capable of performing steady-state and time-transient thermal analyses of the bearing system.

  15. Modeling of Unsteady Three-dimensional Flows in Multistage Machines

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)

    2003-01-01

    Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.

  16. Probabilistic analysis algorithm for UA slope software program.

    DOT National Transportation Integrated Search

    2013-12-01

    A reliability-based computational algorithm for using a single row and equally spaced drilled shafts to : stabilize an unstable slope has been developed in this research. The Monte-Carlo simulation (MCS) : technique was used in the previously develop...

  17. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  18. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 764

    DTIC Science & Technology

    2006-04-01

    Attainable accuracy of depth (z) ± 0.3 meter Detection performance for ferrous and nonferrous metals : will detect ammunition components 20-mm...ASSOCIATES, INC. 6832 OLD DOMINION DRIVE MCLEAN, VA 22101 TECHNOLOGY TYPE/PLATFORM: MULTI CHANNEL DETECTOR SYSTEM (AMOS)/TOWED PREPARED BY: U.S...Multi Channel Detector System (AMOS)/Towed, MEC 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT Unclassified b. ABSTRACT

  19. Efficient Array Design for Sonotherapy

    PubMed Central

    Stephens, Douglas N.; Kruse, Dustin E.; Ergun, Arif S.; Barnes, Stephen; Ming Lu, X.; Ferrara, Katherine

    2008-01-01

    New linear multi-row, multi-frequency arrays have been designed, constructed and tested as fully operational ultrasound probes to produce confocal imaging and therapeutic acoustic intensities with a standard commercial ultrasound imaging system. The triple-array probes and imaging system produce high quality B-mode images with a center row imaging array at 5.3 MHz, and sufficient acoustic power with dual therapeutic arrays to produce mild hyperthermia at 1.54 MHz. The therapeutic array pair in the first probe design (termed G3) utilizes a high bandwidth and peak pressure, suitable for mechanical therapies. The second multi-array design (termed G4) has a redesigned therapeutic array pair which is optimized for high time-averaged power output suitable for mild hyperthermia applications. The “thermal therapy” design produces more than 4 Watts of acoustic power from the low frequency arrays with only a 10.5 °C internal rise in temperature after 100 seconds of continuous use with an unmodified conventional imaging system, or substantially longer operation at lower acoustic power. The low frequency arrays in both probe designs were examined and contrasted for real power transfer efficiency with a KLM model which includes all lossy contributions in the power delivery path from system transmitters to tissue load. Laboratory verification was successfully performed for the KLM derived estimates of transducer parallel model acoustic resistance and dissipation resistance, which are the critical design factors for acoustic power output and undesired internal heating respectively. PMID:18591737

  20. Development and Validation of a Monte Carlo Simulation Tool for Multi-Pinhole SPECT

    PubMed Central

    Mok, Greta S. P.; Du, Yong; Wang, Yuchuan; Frey, Eric C.; Tsui, Benjamin M. W.

    2011-01-01

    Purpose In this work, we developed and validated a Monte Carlo simulation (MCS) tool for investigation and evaluation of multi-pinhole (MPH) SPECT imaging. Procedures This tool was based on a combination of the SimSET and MCNP codes. Photon attenuation and scatter in the object, as well as penetration and scatter through the collimator detector, are modeled in this tool. It allows accurate and efficient simulation of MPH SPECT with focused pinhole apertures and user-specified photon energy, aperture material, and imaging geometry. The MCS method was validated by comparing the point response function (PRF), detection efficiency (DE), and image profiles obtained from point sources and phantom experiments. A prototype single-pinhole collimator and focused four- and five-pinhole collimators fitted on a small animal imager were used for the experimental validations. We have also compared computational speed among various simulation tools for MPH SPECT, including SimSET-MCNP, MCNP, SimSET-GATE, and GATE for simulating projections of a hot sphere phantom. Results We found good agreement between the MCS and experimental results for PRF, DE, and image profiles, indicating the validity of the simulation method. The relative computational speeds for SimSET-MCNP, MCNP, SimSET-GATE, and GATE are 1: 2.73: 3.54: 7.34, respectively, for 120-view simulations. We also demonstrated the application of this MCS tool in small animal imaging by generating a set of low-noise MPH projection data of a 3D digital mouse whole body phantom. Conclusions The new method is useful for studying MPH collimator designs, data acquisition protocols, image reconstructions, and compensation techniques. It also has great potential to be applied for modeling the collimator-detector response with penetration and scatter effects for MPH in the quantitative reconstruction method. PMID:19779896

Top