Sample records for multi-device knob utility

  1. Instrument adjustment knob locks to prevent accidental maladjustment

    NASA Technical Reports Server (NTRS)

    1964-01-01

    A device, incorporating a collar with a hexagonal opening which fits snugly over a hexagonal nut used to engage instrument panel components, keeps the adjustment knob locked. A quick release mechanism frees the knob for rotational adjustment.

  2. Self-actuating grapple automatically engages and releases loads from overhead cranes

    NASA Technical Reports Server (NTRS)

    Froehlich, J. A.; Karastas, G. A.

    1966-01-01

    Two-piece grapple mechanism consisting of a lift knob secured to the load and a grapple member connected to the crane or lift automatically disengages the load from the overhead lifting device when the load contacts the ground. The key feature is the sliding collar under the lift knob which enables the grapple latch to be stripped off over the lift knob.

  3. 70. DETAIL OF TRACTION CABLE ENGAGEMENT DEVICE. SMALL, KNOBBED LEVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. DETAIL OF TRACTION CABLE ENGAGEMENT DEVICE. SMALL, KNOBBED LEVER ON BUCKET HANGER WAS PULLED DOWN BY A CAMEL (FIXED CAM RAIL AT CENTER) AS BUCKET ROLLED PAST IT, CAUSING A CLAMP TO CLOSE AGAINST TRACTION CABLE. A SIMILAR CAMEL (NO LONGER EXTANT) DISENGAGED CLAMP ON RECEIVING SIDE. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  4. Visual accommodation trainer-tester

    NASA Technical Reports Server (NTRS)

    Randle, Robert J. (Inventor)

    1988-01-01

    An apparatus for training the human visual accommodation system is described. Specifically, the apparatus is useful for training personnel to volitionally control focus to the far point (normally infinity) from a position of myopia due to functional causes. The functional causes could be due, for example, to a behavioral accommodative spasm or the effects of an empty field. The device may also be used to measure accommodation, the accommodation resting position and the near and far points of vision. The device comprises a number of optical elements arranged on a single optical axis. Several of the elements are arranged in order on a movable stage in fixed relationship to each other: a light source, a lens, a target, an aperture and/or a second lens. On a base and in fixed relationship to each other are eyepiece and third lens. A stage generates an image of the target and the stage is movable with respect to the base by means of a knob. The device is utilized for the various training and test functions by following a series of procedural steps, and interchanging the apertures as necessary for the selected procedure.

  5. A subunit vaccine against the adenovirus egg-drop syndrome using part of its fiber protein.

    PubMed

    Fingerut, E; Gutter, B; Gallili, G; Michael, A; Pitcovski, J

    2003-06-20

    In this study, the effectiveness of antibodies against the hexon, fiber or a fiber fragment of an avian adenovirus egg-drop syndrome (EDS), in neutralizing the virus was tested. The fiber protein is responsible for binding the virus to the target cell. The fiber fragment knob-s comprises the carboxy-terminal knob domain and 34 amino acids of the immediately adjacent shaft domain of the adenovirus fiber protein. The hexon, fiber capsid protein and knob-s were produced in E. coli and injected into chickens. Antibodies that were produced against the whole fiber protein showed some hemagglutination inhibition (HI) activity. Antibodies produced against the knob-s protein showed HI activity and serum neutralization (SN) activity similar to the positive control-whole virus vaccine. We assume that production of only part of the fiber enables the protein produced in E. coli to fold correctly. Antibodies produced against the hexon protein showed no SN activity. In summary, knob-s induced SN and HI antibodies against EDS virus at a rate similar to the whole virus and were significantly more efficient than the full-length fiber. The recombinant knob-s protein may be used as a vaccine against pathogenic adenovirus infections.

  6. Selective association of a fragment of the knob protein with spectrin, actin and the red cell membrane.

    PubMed

    Kilejian, A; Rashid, M A; Aikawa, M; Aji, T; Yang, Y F

    1991-02-01

    The knob protein of Plasmodium falciparum is essential for the formation of knob-like protrusions on the host erythrocyte membrane. A functional domain of the knob protein was identified. This peptide formed stable complexes with the two major red cell skeletal proteins, spectrin and actin. When introduced into resealed normal erythrocytes, the peptide associated selectively with the cytoplasmic surface of the membrane and formed knob-like electron dense deposits. Knobs are thought to play an important role in the immunopathology of P. falciparum infections. Our findings provide a first step towards understanding the molecular basis for selective membrane changes at knobs.

  7. Active control of magnetoresistance of organic spin valves using ferroelectricity

    PubMed Central

    Sun, Dali; Fang, Mei; Xu, Xiaoshan; Jiang, Lu; Guo, Hangwen; Wang, Yanmei; Yang, Wenting; Yin, Lifeng; Snijders, Paul C.; Ward, T. Z.; Gai, Zheng; Zhang, X.-G.; Lee, Ho Nyung; Shen, Jian

    2014-01-01

    Organic spintronic devices have been appealing because of the long spin lifetime of the charge carriers in the organic materials and their low cost, flexibility and chemical diversity. In previous studies, the control of resistance of organic spin valves is generally achieved by the alignment of the magnetization directions of the two ferromagnetic electrodes, generating magnetoresistance. Here we employ a new knob to tune the resistance of organic spin valves by adding a thin ferroelectric interfacial layer between the ferromagnetic electrode and the organic spacer: the magnetoresistance of the spin valve depends strongly on the history of the bias voltage, which is correlated with the polarization of the ferroelectric layer; the magnetoresistance even changes sign when the electric polarization of the ferroelectric layer is reversed. These findings enable active control of resistance using both electric and magnetic fields, opening up possibility for multi-state organic spin valves. PMID:25008155

  8. Multi-reflective acoustic wave device

    DOEpatents

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  9. An Automated Test of Rat Forelimb Supination Quantifies Motor Function Loss and Recovery After Corticospinal Injury.

    PubMed

    Sindhurakar, Anil; Butensky, Samuel D; Meyers, Eric; Santos, Joshua; Bethea, Thelma; Khalili, Ashley; Sloan, Andrew P; Rennaker, Robert L; Carmel, Jason B

    2017-02-01

    Rodents are the primary animal model of corticospinal injury and repair, yet current behavioral tests do not show the large deficits after injury observed in humans. Forearm supination is critical for hand function and is highly impaired by corticospinal injury in both humans and rats. Current tests of rodent forelimb function do not measure this movement. To determine if quantification of forelimb supination in rats reveals large-scale functional loss and partial recovery after corticospinal injury. We developed a knob supination device that quantifies supination using automated and objective methods. Rats in a reaching box have to grasp and turn a knob in supination in order to receive a food reward. Performance on this task and the single pellet reaching task were measured before and after 2 manipulations of the pyramidal tract: a cut lesion of 1 pyramid and inactivation of motor cortex using 2 different drug doses. A cut lesion of the corticospinal tract produced a large deficit in supination. In contrast, there was no change in pellet retrieval success. Supination function recovered partially over 6 weeks after injury, and a large deficit remained. Motor cortex inactivation produced a dose-dependent loss of knob supination; the effect on pellet reaching was more subtle. The knob supination task reveals in rodents 3 signature hand function changes observed in humans with corticospinal injury: (1) large-scale loss with injury, (2) partial recovery in the weeks after injury, and (3) loss proportional to degree of dysfunction.

  10. Geomorphic knobs of Candor Chasma, Mars: New Mars Reconnaissance Orbiter data and comparisons to terrestrial analogs

    USGS Publications Warehouse

    Chan, M.A.; Ormo, J.; Murchie, S.; Okubo, C.H.; Komatsu, G.; Wray, J.J.; McGuire, P.; McGovern, J.A.

    2010-01-01

    High Resolution Imaging Science Experiment (HiRISE) imagery and digital elevation models of the Candor Chasma region of Valles Marineris, Mars, reveal prominent and distinctive positive-relief knobs amidst light-toned layers. Three classifications of knobs, Types 1, 2, and 3, are distinguished from a combination of HiRISE and Thermal Emission Imaging System (THEMIS) images based on physical expressions (geometries, spatial relationships), and spectral data from Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Type 1 knobs are abundant, concentrated, topographically resistant features with their highest frequency in West Candor, which have consistent stratigraphic correlations of the peak altitude (height). These Type 1 knobs could be erosional remnants of a simple dissected terrain, possibly derived from a more continuous, resistant, capping layer of pre-existing material diagenetically altered through recrystallization or cementation. Types 2 and 3 knobs are not linked to a single stratigraphic layer and are generally solitary to isolated, with variable heights. Type 3 are the largest knobs at nearly an order of magnitude larger than Type 1 knobs. The variable sizes and occasional pits on the tops of Type 2 and 3 knobs suggest a different origin, possibly related to more developed erosion, preferential cementation, or textural differences from sediment/water injection or intrusion, or from a buried impact crater. Enhanced color HiRISE images show a brown coloration of the knob peak crests that is attributable to processing and photometric effects; CRISM data do not show any detectable spectral differences between the knobs and the host rock layers, other than albedo. These intriguing knobs hold important clues to deducing relative rock properties, timing of events, and weathering conditions of Mars history. ?? 2009 Elsevier Inc. All rights reserved.

  11. Knob manager (KM) operators guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-10-08

    KM, Knob Manager, is a tool which enables the user to use the SUNDIALS knob box to adjust the settings of the control system. The followings are some features of KM: dynamic knob assignments with the user friendly interface; user-defined gain for individual knob; graphical displays for operating range and status of each process variable is assigned; backup and restore one or multiple process variable; save current settings to a file and recall the settings from that file in future.

  12. Maize chromosomal knobs are located in gene-dense areas and suppress local recombination

    USDA-ARS?s Scientific Manuscript database

    Knobs are conspicuous heterochromatic regions found on the chromosomes of maize and its relatives. The number, locations, and sizes vary dramatically, with most lines containing between four and eight knobs in mid-arm positions. Prior data suggest that some knobs may reduce recombination, but prev...

  13. Localization of neutralization epitopes on adenovirus fiber knob from species C.

    PubMed

    Lang, Shuai; Wang, Lizheng; Wang, Zixuan; Zhu, Rui; Yan, Jingyi; Wang, Baoming; Wu, Jiaxin; Zhang, Haihong; Wu, Hui; Zhou, Yan; Kong, Wei; Yu, Bin; Yu, Xianghui

    2016-04-01

    Although potential neutralization epitopes on the fiber knob of adenovirus (AdV) serotype 2 (Ad2) and Ad5 have been revealed, few studies have been carried out to identify neutralization epitopes on the knob from a broader panel of AdV serotypes. In this study, based on sequence and structural analysis of knobs from Ad1, Ad2, Ad5 and Ad6 (all from species C), several trimeric chimeric knob proteins were expressed in Escherichia coli to identify the locations of neutralization epitopes on the knobs by analysing their reactivity with mouse and rabbit polyclonal sera raised against AdVs and human sera with natural AdV infection. The dominant neutralization epitopes were located mainly in the N-terminal part of knobs from Ad1, Ad2 and Ad5, but they seemed to be located in the C-terminal part of the Ad6 knob, with some individual differences in rabbit and human populations. Our study adds to our understanding of humoral immune responses to AdVs and will facilitate the construction of more desirable capsid-modified recombinant Ad5 vectors.

  14. Structural differences between glycosylated, disulfide-linked heterodimeric Knob-into-Hole Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products.

    PubMed

    Kuglstatter, A; Stihle, M; Neumann, C; Müller, C; Schaefer, W; Klein, C; Benz, J

    2017-09-01

    An increasing number of bispecific therapeutic antibodies are progressing through clinical development. The Knob-into-Hole (KiH) technology uses complementary mutations in the CH3 region of the antibody Fc fragment to achieve heavy chain heterodimerization. Here we describe the X-ray crystal structures of glycosylated and disulfide-engineered heterodimeric KiH Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products. The heterodimer structure confirms the KiH design principle and supports the hypothesis that glycosylation stabilizes a closed Fc conformation. Both homodimer structures show parallel Fc fragment architectures, in contrast to recently reported crystal structures of the corresponding aglycosylated Fc fragments which in the absence of disulfide mutations show an unexpected antiparallel arrangement. The glycosylated Knob-Knob Fc fragment is destabilized as indicated by variability in the relative orientation of its CH3 domains. The glycosylated Hole-Hole Fc fragment shows an unexpected intermolecular disulfide bond via the introduced Y349C Hole mutation which results in a large CH3 domain shift and a new CH3-CH3 interface. The crystal structures of glycosylated, disulfide-linked KiH Fc fragment and its Knob-Knob and Hole-Hole side products reported here will facilitate further design of highly efficient antibody heterodimerization strategies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Molecular Mechanisms, Thermodynamics, and Dissociation Kinetics of Knob-Hole Interactions in Fibrin*

    PubMed Central

    Kononova, Olga; Litvinov, Rustem I.; Zhmurov, Artem; Alekseenko, Andrey; Cheng, Chia Ho; Agarwal, Silvi; Marx, Kenneth A.; Weisel, John W.; Barsegov, Valeri

    2013-01-01

    Polymerization of fibrin, the primary structural protein of blood clots and thrombi, occurs through binding of knobs ‘A’ and ‘B’ in the central nodule of fibrin monomer to complementary holes ‘a’ and ‘b’ in the γ- and β-nodules, respectively, of another monomer. We characterized the A:a and B:b knob-hole interactions under varying solution conditions using molecular dynamics simulations of the structural models of fibrin(ogen) fragment D complexed with synthetic peptides GPRP (knob ‘A’ mimetic) and GHRP (knob ‘B’ mimetic). The strength of A:a and B:b knob-hole complexes was roughly equal, decreasing with pulling force; however, the dissociation kinetics were sensitive to variations in acidity (pH 5–7) and temperature (T = 25–37 °C). There were similar structural changes in holes ‘a’ and ‘b’ during forced dissociation of the knob-hole complexes: elongation of loop I, stretching of the interior region, and translocation of the moveable flap. The disruption of the knob-hole interactions was not an “all-or-none” transition as it occurred through distinct two-step or single step pathways with or without intermediate states. The knob-hole bonds were stronger, tighter, and more brittle at pH 7 than at pH 5. The B:b knob-hole bonds were weaker, looser, and more compliant than the A:a knob-hole bonds at pH 7 but stronger, tighter, and less compliant at pH 5. Surprisingly, the knob-hole bonds were stronger, not weaker, at elevated temperature (T = 37 °C) compared with T = 25 °C due to the helix-to-coil transition in loop I that helps stabilize the bonds. These results provide detailed qualitative and quantitative characteristics underlying the most significant non-covalent interactions involved in fibrin polymerization. PMID:23720752

  16. An Amino Acid Code for Irregular and Mixed Protein Packing

    PubMed Central

    Joo, Hyun; Chavan, Archana; Fraga, Keith; Tsai, Jerry

    2015-01-01

    To advance our understanding of protein tertiary structure, the development of the knob-socket model is completed in an analysis of the packing in irregular coil and turn secondary structure packing as well as between mixed secondary structure. The knob-socket model simplifies packing based on repeated patterns of 2 motifs: a 3 residue socket for packing within 2° structure and a 4 residue knob-socket for 3° packing. For coil and turn secondary structure, knob-sockets allow identification of a correlation between amino acid composition and tertiary arrangements in space. Coil contributes almost as much as α-helices to tertiary packing. Irregular secondary structure involves 3 residue cliques of consecutive contacting residues or XYZ sockets. In irregular sockets, Gly, Pro, Asp and Ser are favored, while Cys, His, Met and Trp are not. For irregular knobs, the preference order is Arg, Asp, Pro, Asn, Thr, Leu, and Gly, while Cys, His, Met and Trp are not. In mixed packing, the knob amino acid preferences are a function of the socket that they are packing into, whereas the amino acid composition of the sockets does not depend on the secondary structure of the knob. A unique motif of a coil knob with an XYZ β-sheet socket may potentially function to inhibit β-sheet extension. In addition, analysis of the preferred crossing angles for strands within a β-sheet and mixed α-helices/β-sheets identifies canonical packing patterns useful in protein design. Lastly, the knob-socket model abstracts the complexity of protein tertiary structure into an intuitive packing surface topology map. PMID:26370334

  17. Role of 'B-b' knob-hole interactions in fibrin binding to adsorbed fibrinogen.

    PubMed

    Geer, C B; Tripathy, A; Schoenfisch, M H; Lord, S T; Gorkun, O V

    2007-12-01

    The formation of a fibrin clot is supported by multiple interactions, including those between polymerization knobs 'A' and 'B' exposed by thrombin cleavage and polymerization holes 'a' and 'b' present in fibrinogen and fibrin. Although structural studies have defined the 'A-a' and 'B-b' interactions in part, it has not been possible to measure the affinities of individual knob-hole interactions in the absence of the other interactions occurring in fibrin. We designed experiments to determine the affinities of knob-hole interactions, either 'A-a' alone or 'A-a' and 'B-b' together. We used surface plasmon resonance to measure binding between adsorbed fibrinogen and soluble fibrin fragments containing 'A' knobs, desA-NDSK, or both 'A' and 'B' knobs, desAB-NDSK. The desA- and desAB-NDSK fragments bound to fibrinogen with statistically similar K(d)'s of 5.8 +/- 1.1 microm and 3.7 +/- 0.7 microm (P = 0.14), respectively. This binding was specific, as we saw no significant binding of NDSK, which has no exposed knobs. Moreover, the synthetic 'A' knob peptide GPRP and synthetic 'B' knob peptides GHRP and AHRPY, inhibited the binding of desA- and/or desAB-NDSK. The peptide inhibition findings show both 'A-a' and 'B-b' interactions participate in desAB-NDSK binding to fibrinogen, indicating 'B-b' interactions can occur simultaneously with 'A-a'. Furthermore, 'A-a' interactions are much stronger than 'B-b' because the affinity of desA-NDSK was not markedly different from desAB-NDSK.

  18. Development of a frequency-separated knob with variable change rates by rotation speed.

    PubMed

    Kim, Huhn; Ham, Dong-Han

    2014-11-01

    The principle of frequency separation is a design method to display different information or feedback in accordance with the frequency of interaction between users and systems. This principle can be usefully applied to the design of knobs. Particularly, their rotation speed can be a meaningful criterion for applying the principle. Hence a knob can be developed, which shows change rates varying depending on its rotation speed. Such a knob would be more efficient than conventional knobs with constant change rate. We developed a prototype of frequency-separated knobs that has different combinations of the number of rotation speed steps and the size of the variation of change rate. With this prototype, we conducted an experiment to examine whether a speed frequency-separated knob enhances users' task performance. The results showed that the newly designed knob was effective in enhancing task performance, and that task efficiency was the best when its change rate increases exponentially and its rotation speed has three steps. We conducted another experiment to investigate how a more rapid exponential increase of change rate and a more number of steps of rotation speed influence users' task performance. The results showed that merely increasing both the size of the variation of change rates and the number of speed steps did not result in better task performance. Although two experimental results cannot easily be generalized to other contexts, they still offer practical information useful for designing a speed frequency-separated knob in various consumer electronics and control panels of industrial systems. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. Anatomic Location of Tumor Predicts the Accuracy of Motor Function Localization in Diffuse Lower-Grade Gliomas Involving the Hand Knob Area.

    PubMed

    Fang, S; Liang, J; Qian, T; Wang, Y; Liu, X; Fan, X; Li, S; Wang, Y; Jiang, T

    2017-10-01

    The accuracy of preoperative blood oxygen level-dependent fMRI remains controversial. This study assessed the association between the anatomic location of a tumor and the accuracy of fMRI-based motor function mapping in diffuse lower-grade gliomas. Thirty-five patients with lower-grade gliomas involving motor areas underwent preoperative blood oxygen level-dependent fMRI scans with grasping tasks and received intraoperative direct cortical stimulation. Patients were classified into an overlapping group and a nonoverlapping group, depending on the extent to which blood oxygen level-dependent fMRI and direct cortical stimulation results concurred. Tumor location was quantitatively measured, including the shortest distance from the tumor to the hand knob and the deviation distance of the midpoint of the hand knob in the lesion hemisphere relative to the midline compared with the normal contralateral hemisphere. A 4-mm shortest distance from the tumor to the hand knob value was identified as optimal for differentiating the overlapping and nonoverlapping group with the receiver operating characteristic curve (sensitivity, 84.6%; specificity, 77.8%). The shortest distances from the tumor to the hand knob of ≤4 mm were associated with inaccurate fMRI-based localizations of the hand motor cortex. The shortest distances from the tumor to the hand knob were larger ( P = .002), and the deviation distances for the midpoint of the hand knob in the lesion hemisphere were smaller ( P = .003) in the overlapping group than in the nonoverlapping group. This study suggests that the shortest distance from the tumor to the hand knob and the deviation distance for the midpoint of the hand knob on the lesion hemisphere are predictive of the accuracy of blood oxygen level-dependent fMRI results. Smaller shortest distances from the tumor to the hand knob and larger deviation distances for the midpoint of hand knob on the lesion hemisphere are associated with less accuracy of motor cortex localization with blood oxygen level-dependent fMRI. Preoperative fMRI data for surgical planning should be used cautiously when the shortest distance from the tumor to the hand knob is ≤4 mm, especially for lower-grade gliomas anterior to the central sulcus. © 2017 by American Journal of Neuroradiology.

  20. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    DTIC Science & Technology

    2017-06-27

    realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based

  1. Ultra-long-period fiber grating cascaded to a knob-taper for simultaneous measurement of strain and temperature

    NASA Astrophysics Data System (ADS)

    Tong, Chengguo; Chen, Xudong; Zhou, Yu; He, Jiang; Yang, Wenlei; Geng, Tao; Sun, Weimin; Yuan, Libo

    2018-06-01

    This study presents a simple Mach-Zehnder interferometer (MZI) to obtain the bimodal characteristics that realize simultaneous measurement of strain and temperature through cascading an ultra-long-period fiber grating and a knob-shaped taper. We obtain the multi-dip feature from the MZI, and the Dips 2 and 5 are selected from 11 interference dips. Experimental results indicated that the wavelength sensitivities of Dips 2 and 5 are - 0.54 nm mɛ-1 and 0.058 nm °C-1, and - 0.53 nm mɛ-1 and 0.055 nm °C-1 to strain and temperature, respectively. The depth sensitivities are - 3.3 dB mɛ- 1, - 0.015 dB °C-1 and -5.8 dB mɛ-1, and 0.06 dB °C-1 for Dips 2 and 5, respectively. It is concluded that the proposed structure is suitable for simultaneous strain and temperature measurements.

  2. Ultra-long-period fiber grating cascaded to a knob-taper for simultaneous measurement of strain and temperature

    NASA Astrophysics Data System (ADS)

    Tong, Chengguo; Chen, Xudong; Zhou, Yu; He, Jiang; Yang, Wenlei; Geng, Tao; Sun, Weimin; Yuan, Libo

    2018-03-01

    This study presents a simple Mach-Zehnder interferometer (MZI) to obtain the bimodal characteristics that realize simultaneous measurement of strain and temperature through cascading an ultra-long-period fiber grating and a knob-shaped taper. We obtain the multi-dip feature from the MZI, and the Dips 2 and 5 are selected from 11 interference dips. Experimental results indicated that the wavelength sensitivities of Dips 2 and 5 are - 0.54 nm mɛ-1 and 0.058 nm °C-1, and - 0.53 nm mɛ-1 and 0.055 nm °C-1 to strain and temperature, respectively. The depth sensitivities are - 3.3 dB mɛ- 1, - 0.015 dB °C-1 and -5.8 dB mɛ-1, and 0.06 dB °C-1 for Dips 2 and 5, respectively. It is concluded that the proposed structure is suitable for simultaneous strain and temperature measurements.

  3. 78 FR 47317 - Ore Knob Mine Superfund Site; Laurel Springs, Ashe County, North Carolina; Notice of Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9843-3; CERCLA-04-2013-3759] Ore Knob Mine Superfund Site; Laurel Springs, Ashe County, North Carolina; Notice of Settlement AGENCY: Environmental Protection Agency... settlement with Herbert N. Francis concerning the Ore Knob Mine Superfund Site located in Laurel Springs...

  4. An Amino Acid Packing Code for α-helical Structure and Protein Design

    PubMed Central

    Joo, Hyun; Chavan, Archana G.; Phan, Jamie; Day, Ryan; Tsai, Jerry

    2012-01-01

    This work demonstrates that all packing in α-helices can be simplified to repetitive patterns of a single motif: the knob-socket. Using the precision of Voronoi Polyhedra/Deluaney Tessellations to identify contacts, the knob-socket is a 4 residue tetrahedral motif: a knob residue on one α-helix packs into the 3 residue socket on another α-helix. The principle of the knob-socket model relates the packing between levels of protein structure: the intra-helical packing arrangements within secondary structure that permit inter-helix tertiary packing interactions. Within an α-helix, the 3 residue sockets arrange residues into a uniform packing lattice. Inter-helix packing results from a definable pattern of interdigitated knob-socket motifs between 2 α-helices. Furthermore, the knob-socket model classifies 3 types of sockets: 1) free: favoring only intra-helical packing, 2) filled: favoring inter-helical interactions and 3) non: disfavoring α-helical structure. The amino acid propensities in these 3 socket classes essentially represent an amino acid code for structure in α-helical packing. Using this code, a novel yet straightforward approach for the design of α-helical structure was used to validate the knob-socket model. Unique sequences for 3 peptides were created to produce a predicted amount of α-helical structure: mostly helical, some helical, and no-helix. These 3 peptides were synthesized and helical content assessed using CD spectroscopy. The measured α-helicity of each peptide was consistent with the expected predictions. These results and analysis demonstrate that the knob-socket motif functions as the basic unit of packing and presents an intuitive tool to decipher the rules governing packing in protein structure. PMID:22426125

  5. Designing for Feel: Contrasts between Human and Automated Parametric Capture of Knob Physics.

    PubMed

    Swindells, C; MacLean, K E; Booth, K S

    2009-01-01

    We examine a crucial aspect of a tool intended to support designing for feel: the ability of an objective physical-model identification method to capture perceptually relevant parameters, relative to human identification performance. The feel of manual controls, such as knobs, sliders, and buttons, becomes critical when these controls are used in certain settings. Appropriate feel enables designers to create consistent control behaviors that lead to improved usability and safety. For example, a heavy knob with stiff detents for a power plant boiler setting may afford better feedback and safer operations, whereas subtle detents in an automobile radio volume knob may afford improved ergonomics and driver attention to the road. To assess the quality of our identification method, we compared previously reported automated model captures for five real mechanical reference knobs with captures by novice and expert human participants who were asked to adjust four parameters of a rendered knob model to match the feel of each reference knob. Participants indicated their satisfaction with the matches their renderings produced. We observed similar relative inertia, friction, detent strength, and detent spacing parameterizations by human experts and our automatic estimation methods. Qualitative results provided insight on users' strategies and confidence. While experts (but not novices) were better able to ascertain an underlying model in the presence of unmodeled dynamics, the objective algorithm outperformed all humans when an appropriate physical model was used. Our studies demonstrate that automated model identification can capture knob dynamics as perceived by a human, and they also establish limits to that ability; they comprise a step towards pragmatic design guidelines for embedded physical interfaces in which methodological expedience is informed by human perceptual requirements.

  6. Knobology in use: an experimental evaluation of ergonomics recommendations.

    PubMed

    Overgård, Kjell Ivar; Fostervold, Knut Inge; Bjelland, Hans Vanhauwaert; Hoff, Thomas

    2007-05-01

    The scientific basis for ergonomics recommendations for controls has usually not been related to active goal-directed use. The present experiment tests how different knob sizes and torques affect operator performance. The task employed is to control a pointer by the use of a control knob, and is as such an experimentally defined goal-directed task relevant to machine systems in general. Duration of use, error associated with use (overshooting of the goal area) and movement reproduction were used as performance measures. Significant differences between knob sizes were found for movement reproduction. High torques led to less overshooting as opposed to low torques. The results from duration of use showed a tendency that the differences between knob sizes were reduced from the first iteration to the second iteration. The present results indicate that the ergonomically recommended ranges of knob sizes might differently affect operator performance.

  7. Superconducting Rebalance Accelerometer

    NASA Technical Reports Server (NTRS)

    Torti, R. P.; Gerver, M.; Leary, K. J.; Jagannathan, S.; Dozer, D. M.

    1996-01-01

    A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described.

  8. Knob detail, southfacing exterior door, west wing. The crest depicted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Knob detail, south-facing exterior door, west wing. The crest depicted on the knob is that of the U. S. Department of Treasury. It was presumably salvaged from a former U. S. customs facility once located on an adjacent plot to the south of the Lazaretto. - Lazaretto Quarantine Station, Wanamaker Avenue and East Second Street, Essington, Delaware County, PA

  9. 75 FR 68788 - Ore Knob Mine Superfund Site; Jefferson, Ashe County, North Carolina; Notice of Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... ENVIRONMENTAL PROTECTION AGENCY [Docket EPA-RO4-SFUND-2010-0893, FRL-9223-8] Ore Knob Mine... Agency has entered into a settlement for reimbursement of past response costs concerning the Ore Knobe..., identified by Docket ID No. EPA-RO4- SFUND-2010-0893 or Site name Ore Knob Mine Superfund Site by one of the...

  10. Infectivity of Plasmodium falciparum in Malaria-Naive Individuals Is Related to Knob Expression and Cytoadherence of the Parasite

    PubMed Central

    Stanisic, Danielle I.; Gerrard, John; Fink, James; Griffin, Paul M.; Liu, Xue Q.; Sundac, Lana; Sekuloski, Silvana; Rodriguez, Ingrid B.; Pingnet, Jolien; Yang, Yuedong; Zhou, Yaoqi; Trenholme, Katharine R.; Wang, Claire Y. T.; Hackett, Hazel; Chan, Jo-Anne A.; Langer, Christine; Hanssen, Eric; Hoffman, Stephen L.; Beeson, James G.; McCarthy, James S.

    2016-01-01

    Plasmodium falciparum is the most virulent human malaria parasite because of its ability to cytoadhere in the microvasculature. Nonhuman primate studies demonstrated relationships among knob expression, cytoadherence, and infectivity. This has not been examined in humans. Cultured clinical-grade P. falciparum parasites (NF54, 7G8, and 3D7B) and ex vivo-derived cell banks were characterized. Knob and knob-associated histidine-rich protein expression, CD36 adhesion, and antibody recognition of parasitized erythrocytes (PEs) were evaluated. Parasites from the cell banks were administered to malaria-naive human volunteers to explore infectivity. For the NF54 and 3D7B cell banks, blood was collected from the study participants for in vitro characterization. All parasites were infective in vivo. However, infectivity of NF54 was dramatically reduced. In vitro characterization revealed that unlike other cell bank parasites, NF54 PEs lacked knobs and did not cytoadhere. Recognition of NF54 PEs by immune sera was observed, suggesting P. falciparum erythrocyte membrane protein 1 expression. Subsequent recovery of knob expression and CD36-mediated adhesion were observed in PEs derived from participants infected with NF54. Knobless cell bank parasites have a dramatic reduction in infectivity and the ability to adhere to CD36. Subsequent infection of malaria-naive volunteers restored knob expression and CD36-mediated cytoadherence, thereby showing that the human environment can modulate virulence. PMID:27382019

  11. Phyllosilcates in the Knob Fields around Ariadnes Colles on Mars: Stratigraphy, Mineralogy and Morphology

    NASA Astrophysics Data System (ADS)

    Wendt, L.; Bishop, J. L.; Neukum, G.

    2012-04-01

    The region between Terra Cimmeria and Terra Sirenum contains several fields of enigmatic knobs, in-cluding Ariadnes Colles, Atlantis Chaos and Gorgo-num Chaos. They have been mapped as Hesperian or Amazonian units [1,2] and are located within the shoreline of the Eridania Lake, which might have formed Ma'adim Vallis [3]. The knob fields contain Mg/Fe-rich and locally Al-rich phyllosilicates [5,6, this study]. Following the stratigraphic placement by [1,2], the knobs are younger than the Noachian, in a possible disagreement to [4]. The region also features chloride deposits [7] and valley networks younger than the Hesperian ridged plains (Hr unit [1,2]), named Mid-Latitude Valleys (MLV) by [8], and has been proposed as an MSL landing site by [9]. The knob fields have been mapped by [10] as "surface type 4" of a possible airfall deposit informally named "Electris deposit", which covers the Hesperian ridged plains and cratered uplands. A recent study by [6], suggested that the knob fields are not part of, but postdate the "Electris deposit", yet possibly contain reworked "Electris" material. Our geological mapping shows that the knob fields are indeed one morphological expression consistent with the "Electris deposit" model [10]. However, the "Electris" deposit does not stratigraphically overlay the Hesperian ridged plains (Hr unit) and is eroded back to the level of the ridged plains, as proposed by [6,10]. Instead, the "Electris" deposit, including the knob fields, is covered or embayed by the ridged plains, and thus is older. This results in a late Noachian age for the "Electris deposit", in agreement with [11]. This also reconciles the apparent contradiction of the stratigraphy suggested by [1,2,6,10] to [4], as the clays would then indeed have formed in the "phyllosian" period, as "sedimentary clays" of [12]. Wide valley networks cut into the "Electris" deposit and may have filled the Eridania lake. The knob fields and clays within are observed at varying total eleva-tions, suggesting separated local basins rather than a single large lake at the time of their formation. A second generation of valley networks crosscut the light-toned mounds, knobs and patches as well as the ridged plains. They correspond to the MLV described in the Gorgonum and nearby Newton basins [8]. The water locally ponded and formed chlorides. In all knob fields except Gorgonum, the aqueous activities predate the formation of Sirenum Fossae. In the Gorgonum basin, valleys fed a lake [8], which post-dates Sirenum Fossae. Acknowledgment: This work has been supported by the German Space Agency (DLR Bonn) grant 50QM1001 HRSC on Mars Express on behalf of the German Federal Ministry of Economics and Technology.

  12. Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin.

    PubMed Central

    Ananiev, E V; Phillips, R L; Rines, H W

    1998-01-01

    The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of specific regions, such as knobs, of individual maize chromosomes. A DNA hybridization blot panel of eight individual maize chromosome addition lines revealed that 180-bp repeats found in knobs are present in each of these maize chromosomes, but the copy number varies from approximately 100 to 25, 000. Cosmid clones with knob DNA segments were isolated from a genomic library of an oat-maize chromosome 9 addition line with the help of the 180-bp knob-associated repeated DNA sequence used as a probe. Cloned knob DNA segments revealed a complex organization in which blocks of tandemly arranged 180-bp repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. Sequence microheterogeneity including point mutations and duplications was found in copies of 180-bp repeats. The 180-bp repeats within an array all had the same polarity. Restriction maps constructed for 23 cloned knob DNA fragments revealed the positions of polymorphic sites and sites of integration of insertion elements. Discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes. PMID:9691055

  13. Simple force feedback for small virtual environments

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Albert, Oliver; van Lier, Volker; Huschka, Carsten

    1998-08-01

    In today's civil flight training simulators only the cockpit and all its interaction devices exist as physical mockups. All other elements such as flight behavior, motion, sound, and the visual system are virtual. As an extension to this approach `Virtual Flight Simulation' tries to subsidize the cockpit mockup by a 3D computer generated image. The complete cockpit including the exterior view is displayed on a Head Mounted Display (HMD), a BOOM, or a Cave Animated Virtual Environment. In most applications a dataglove or virtual pointers are used as input devices. A basic problem of such a Virtual Cockpit simulation is missing force feedback. A pilot cannot touch and feel buttons, knobs, dials, etc. he tries to manipulate. As a result, it is very difficult to generate realistic inputs into VC systems. `Seating Bucks' are used in automotive industry to overcome the problem of missing force feedback. Only a seat, steering wheel, pedal, stick shift, and radio panel are physically available. All other geometry is virtual and therefore untouchable but visible in the output device. In extension to this concept a `Seating Buck' for commercial transport aircraft cockpits was developed. Pilot seat, side stick, pedals, thrust-levers, and flaps lever are physically available. All other panels are simulated by simple flat plastic panels. They are located at the same location as their real counterparts only lacking the real input devices. A pilot sees the entire photorealistic cockpit in a HMD as 3D geometry but can only touch the physical parts and plastic panels. In order to determine task performance with the developed Seating Buck, a test series was conducted. Users press buttons, adapt dials, and turn knobs. In a first test, a complete virtual environment was used. The second setting had a plastic panel replacing all input devices. Finally, as cross reference the participants had to repeat the test with a complete physical mockup of the input devices. All panels and physical devices can be easily relocated to simulate a different type of cockpit. Maximal 30 minutes are needed for a complete adaptation. So far, an Airbus A340 and a generic cockpit are supported.

  14. A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface

    PubMed Central

    Oberli, Alexander; Slater, Leanne M.; Cutts, Erin; Brand, Françoise; Mundwiler-Pachlatko, Esther; Rusch, Sebastian; Masik, Martin F. G.; Erat, Michèle C.; Beck, Hans-Peter; Vakonakis, Ioannis

    2014-01-01

    Uniquely among malaria parasites, Plasmodium falciparum-infected erythrocytes (iRBCs) develop membrane protrusions, known as knobs, where the parasite adhesion receptor P. falciparum erythrocyte membrane protein 1 (PfEMP1) clusters. Knob formation and the associated iRBC adherence to host endothelium are directly linked to the severity of malaria and are functional manifestations of protein export from the parasite to the iRBC. A family of exported proteins featuring Plasmodium helical interspersed subtelomeric (PHIST) domains has attracted attention, with members being implicated in host-parasite protein interactions and differentially regulated in severe disease and among parasite isolates. Here, we show that PHIST member PFE1605w binds the PfEMP1 intracellular segment directly with Kd = 5 ± 0.6 μM, comigrates with PfEMP1 during export, and locates in knobs. PHIST variants that do not locate in knobs (MAL8P1.4) or bind PfEMP1 30 times more weakly (PFI1780w) used as controls did not display the same pattern. We resolved the first crystallographic structure of a PHIST protein and derived a partial model of the PHIST-PfEMP1 interaction from nuclear magnetic resonance. We propose that PFE1605w reinforces the PfEMP1-cytoskeletal connection in knobs and discuss the possible role of PHIST proteins as interaction hubs in the parasite exportome.—Oberli, A., Slater, L. M., Cutts, E., Brand, F., Mundwiler-Pachlatko, E., Rusch, S., Masik, M. F. G., Erat, M. C., Beck, H.-P., Vakonakis, I. A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. PMID:24983468

  15. Molecular interference of fibrin’s divalent polymerization mechanism enables modulation of multiscale material properties

    PubMed Central

    Brown, Ashley C.; Baker, Stephen; Douglas, Alison; Keating, Mark; Alvarez-Elizondo, Martha; Botvinick, Elliot; Guthold, Martin; Barker, Thomas H.

    2015-01-01

    Protein based polymers provide an exciting and complex landscape for tunable natural biomaterials through modulation of molecular level interactions. Here we demonstrate the ability to modify protein polymer structural and mechanical properties at multiple length scales by molecular ‘interference’ of fibrin’s native polymerization mechanism. We have previously reported that engagement of fibrin’s polymerization ‘hole b’, also known as ‘b-pockets’, through PEGylated complimentary ‘knob B’ mimics can increase fibrin network porosity but also, somewhat paradoxically, increase network stiffness. Here, we explore the possible mechanistic underpinning of this phenomenon through characterization of the effects of knob B-fibrin interaction at multiple length scales from molecular to bulk polymer. Despite its weak monovalent binding affinity for fibrin, addition of both knob B and PEGylated knob B at concentrations near the binding coefficient, Kd, increased fibrin network porosity, consistent with the reported role of knob B-hole b interactions in promoting lateral growth of fibrin fibers. Addition of PEGylated knob B decreases the extensibility of single fibrin fibers at concentrations near its Kd but increases extensibility of fibers at concentrations above its Kd. The data suggest this bimodal behavior is due to the individual contributions knob B, which decreases fiber extensibility, and PEG, which increase fiber extensibility. Taken together with laser trap-based microrheological and bulk rheological analyses of fibrin polymers, our data strongly suggests that hole b engagement increases in single fiber stiffness that translates to higher storage moduli of fibrin polymers despite their increased porosity. These data point to possible strategies for tuning fibrin polymer mechanical properties through modulation of single fiber mechanics. PMID:25725552

  16. An Amino Acid Code to Define a Protein’s Tertiary Packing Surface

    PubMed Central

    Fraga, Keith J.; Joo, Hyun; Tsai, Jerry

    2015-01-01

    One difficult aspect of the protein-folding problem is characterizing the non-specific interactions that define packing in protein tertiary structure. To better understand tertiary structure, this work extends the knob-socket model by classifying the interactions of a single knob residue packed into a set of contiguous sockets, or a pocket made up of 4 or more residues. The knob-socket construct allows for a symbolic two-dimensional mapping of pockets. The two-dimensional mapping of pockets provides a simple method to investigate the variety of pocket shapes in order to understand the geometry of protein tertiary surfaces. The diversity of pocket geometries can be organized into groups of pockets that share a common core, which suggests that some interactions in pockets are ancillary to packing. Further analysis of pocket geometries displays a preferred configuration that is right-handed in α-helices and left-handed in β-sheets. The amino acid composition of pockets illustrates the importance of non-polar amino acids in packing as well as position specificity. As expected, all pocket shapes prefer to pack with hydrophobic knobs; however, knobs are not selective for the pockets they pack. Investigating side-chain rotamer preferences for certain pocket shapes uncovers no strong correlations. These findings allow a simple vocabulary based on knobs and sockets to describe protein tertiary packing that supports improved analysis, design and prediction of protein structure. PMID:26575337

  17. Infertility in a Ram Associated with a Knobbed Acrosome Abnormality of the Spermatozoa

    PubMed Central

    Savage, N. C.

    1984-01-01

    A yearling Rambouillet ram with an asymmetrical scrotum was examined for potential breeding soundness prior to use in a synchronized mating program in a purebred flock of 20 ewes. Initial sperm cell evaluation revealed 78% knobbed acrosomes associated with few other abnormalities of the head and midpiece. Use of the ram resulted in no conception in one group of ten synchronized ewes. One month later, the proportion of sperm cells with knobbed acrosomes was 80%. ImagesFigure 1.Figure 2. PMID:17422370

  18. Quantum Zeno Blockade for Next Generation Optical Switching in Fiber Systems

    DTIC Science & Technology

    2013-09-01

    and utilized a self - referential quantum process tomography method to observe the Zeno effect in optical fiber using the ultrafast all- optical switch...controllable and can be used as a knob to study the core physics behind the Zeno-based switching. For this experiment, we developed a self - referential ...efficient optical communications. The quantum Zeno effect can be used to induce or inhibit optical switching through a variety of processes , all of

  19. An innovative and multi-functional smart vibration platform

    NASA Astrophysics Data System (ADS)

    Olmi, C.; Song, G.; Mo, Y. L.

    2007-08-01

    Recently, there has been increasing efforts to incorporate vibration damping or energy dissipation mechanisms into civil structures, particularly by using smart materials technologies. Although papers about structural vibration control using smart materials have been published for more than two decades, there has been little research in developing teaching equipment to introduce smart materials to students via in-classroom demonstration or hands-on experiments. In this paper, an innovative and multi-functional smart vibration platform (SVP) has been developed by the Smart Materials and Structures Laboratory at the University of Houston to demonstrate vibration control techniques using multiple smart materials for educational and research purposes. The vibration is generated by a motor with a mass imbalance mounted on top of the frame. Shape memory alloys (SMA) and magneto-rheological (MR) fluid are used to increase the stiffness and damping ratio, respectively, while a piezoceramic sensor (lead zirconate titanate, or PZT) is used as a vibration sensing device. An electrical circuit has been designed to control the platform in computer-control or manual mode through the use of knobs. The former mode allows for an automated demonstration, while the latter requires the user to manually adjust the stiffness and damping ratio of the frame. In addition, the system accepts network connections and can be used in a remote experiment via the internet. This platform has great potential to become an effective tool for teaching vibration control and smart materials technologies to students in civil, mechanical and electrical engineering for both education and research purposes.

  20. Study of multi-LLID technology to support multi-services carring in EPONS

    NASA Astrophysics Data System (ADS)

    Li, Wang; Yi, Benshun; Cheng, Chuanqing

    2006-09-01

    The Ethernet Passive Optical Network (EPON) has recently attracted more and more research attentions since it could be a perfect candidate for next generation access networks. EPON utilizes pon structure to carry ethernet data, having the both advantages of pon and ethernet devices. From traditional view, EPON is considered to only be a Ethernet services access platform and wake in supporting multi-services especially real-time service. It is obvious that if epon designed only to aim to carrying data service, it is difficult for epon devices to fulfill service provider's command of taking EPON as a integrated service access platform. So discussing the multi-services carrying technology in EPONs is a significative task. This paper deploy a novel method of multi-llid to support multi-services carrying in EPONs.

  1. Parametrics for Molecular Deuterium Concentrations in the Source Region of the UW-IEC Device Using an Ion Acoustic Wave Diagnostic

    NASA Astrophysics Data System (ADS)

    Boris, D. R.; Emmert, G. A.

    2007-11-01

    The ion source region of the UW-Inertial Electrostatic Confinement device is comprised of a filament assisted DC discharge plasma that exists between the wall of the IEC vacuum chamber and the grounded spherical steel grid that makes up the anode of the IEC device. A 0-dimensional rate equation calculation of the molecular deuterium ion species concentration has been applied utilizing varying primary electron energy, and neutral gas pressure. By propagating ion acoustic waves in the source region of the IEC device the concentrations of molecular deuterium ion species have been determined for these varying plasma conditions, and high D3^+ concentrations have been verified. This was done by utilizing the multi-species ion acoustic wave dispersion relation, which relates the phase speed of the multi-species ion acoustic wave, vph, to the sum in quadrature of the concentration weighted ion acoustic sound speeds of the individual ion species.

  2. An Amino Acid Code for β-sheet Packing Structure

    PubMed Central

    Joo, Hyun; Tsai, Jerry

    2014-01-01

    To understand the relationship between protein sequence and structure, this work extends the knob-socket model in an investigation of β-sheet packing. Over a comprehensive set of β-sheet folds, the contacts between residues were used to identify packing cliques: sets of residues that all contact each other. These packing cliques were then classified based on size and contact order. From this analysis, the 2 types of 4 residue packing cliques necessary to describe β-sheet packing were characterized. Both occur between 2 adjacent hydrogen bonded β-strands. First, defining the secondary structure packing within β-sheets, the combined socket or XY:HG pocket consists of 4 residues i,i+2 on one strand and j,j+2 on the other. Second, characterizing the tertiary packing between β-sheets, the knob-socket XY:H+B consists of a 3 residue XY:H socket (i,i+2 on one strand and j on the other) packed against a knob B residue (residue k distant in sequence). Depending on the packing depth of the knob B residue, 2 types of knob-sockets are found: side-chain and main-chain sockets. The amino acid composition of the pockets and knob-sockets reveal the sequence specificity of β-sheet packing. For β-sheet formation, the XY:HG pocket clearly shows sequence specificity of amino acids. For tertiary packing, the XY:H+B side-chain and main-chain sockets exhibit distinct amino acid preferences at each position. These relationships define an amino acid code for β-sheet structure and provide an intuitive topological mapping of β-sheet packing. PMID:24668690

  3. Knop's Solution Is Not What It Seems.

    ERIC Educational Resources Information Center

    Hershey, David R.

    2001-01-01

    Discusses Knob's solution, which was considered the ideal plant growth solution in 1865, and recommends eliminating Knob's solution from active teaching. Describes solution culture basics including nutrient solutions, containers and aeration, and plants and light. (Contains 12 references.) (YDS)

  4. Ariadnes Colles Chaos

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 18 June 2002) Among the many varied landscapes on Mars the term chaos is applied to those places that have a jumbled, blocky appearance. Most of the better known chaotic terrain occurs in the northern hemisphere but there are other occurrences in the southern hemisphere, three of which are centered on 180 degrees west longitude. Ariadnes Colles, Atlantis, and Gorgonum Chaos all share similar features: relatively bright, irregularly shaped knobs and mesas that rise above a dark, sand-covered, hummocky floor. Close inspection of this THEMIS image shows that the darker material tends to lap up to the base of the knobs and stops where the slopes are steep. On some of the lowest knobs, the dark material appears to overtop them. The knobs themselves are highly eroded, many having a pitted appearance. Images from the camera on Mars Global Surveyor clearly show that the dark material is sand, based on its mantling appearance and the presence of dunes. It looks as though the material that composes the knobs was probably a continuous layer that was subsequently heavily eroded. While it is likely that the dark sand is responsible for some of the erosion it is also possible that the this landscape was eroded by some other process and the sand was emplaced at a later time.

  5. Recombinant egg drop syndrome subunit vaccine offers an alternative to virus propagation in duck eggs.

    PubMed

    Gutter, B; Fingerut, E; Gallili, G; Eliahu, D; Perelman, B; Finger, A; Pitcovski, J

    2008-02-01

    Egg drop syndrome (EDS) virus vaccines are routinely produced in embryonated duck eggs (Solyom et al., 1982). This procedure poses the risk of dissemination of pathogens, such as avian influenza virus, as the eggs used are not from specific pathogen free birds. To address this problem, the knob and part of the shaft domain of the fibre protein of the EDS virus (termed knob-s) were expressed in Escherichia coli and assessed as a subunit vaccine. A single vaccination with the recombinant protein induced the production of anti-EDS virus antibodies, as detected by haemagglutination inhibition, enzyme-linked immunosorbent assay and virus neutralization tests, for at least 20 weeks. A positive correlation was demonstrated between these three assays. A dose-response assessment showed that the vaccine was effective over the range of 2 to 64 microg protein per dose. Two vaccinations with the recombinant protein, administered before the onset of lay, induced high haemagglutination inhibition antibody titres, comparable with those induced by an inactivated whole-virus vaccine. The vaccine did not have any adverse effects on egg production, quality or weight. The present study has shown that two vaccinations with the recombinant knob-s protein elicited high neutralizing antibody titres that persisted for more than 50 weeks of lay.

  6. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2004-05-18

    Disclosed is a mutant adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have significantly weakened binding affinity for CARD1 relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type. In the method, residues of the adenovirus fiber protein knob domain which are predicted to alter D1 binding when mutated, are identified from the crystal structure coordinates of the AD12knob:CAR-D1 complex. A mutation which alters one or more of the identified residues is introduced into the genome of the adenovirus to generate a mutant adenovirus. Whether or not the mutant produced exhibits altered adenovirus-CAR binding properties is then determined.

  7. Manual Torque Data Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundt, Mark Osroe; Martinez, Matthew Ronald; Varela, Jeanette Judith

    At the Pantex Plant in Amarillo, TX, Production Technicians (PTs) build and disassemble nuclear weapon systems. The weapons are held in an integrated work stand for stability and to increase the safety environment for the workers and for the materials being processed. There are many occasions in which a knob must be turned to tighten an assembly part. This can help to secure or manipulate pieces of the system. As there are so many knobs to turn, the instructions given to the PTs are to twist the knob to a hand-tight setting, without the aid of a torque wrench. Theremore » are inherent risks in this procedure as the knobs can be tightened too loosely such that the apparatus falls apart or too tightly such that the force can crush or pinch components in the system that contain energetic materials. We want to study these operations at Pantex. Our goal is to collect torque data to assess the safety and reliability of humantooling interfaces.« less

  8. Experimental results from an X-ray imaging crystal spectrometer utilizing multi-wire proportional counter for KSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. G., E-mail: sglee@nfri.re.kr; Kim, Y. S.; Yoo, J. W.

    2016-11-15

    The inconsistency of the first experimental results from the X-ray imaging crystal spectrometer for the Korea Superconducting Tokamak Advanced Research device utilizing a multi-wire proportional counter (MWPC) is clarified after improving the photon-count rate of the data acquisition system for the MWPC and ground loop isolator for the whole spectrometer system. The improved MWPC is successfully applied to pure Ohmic plasmas as well as plasmas with high confinement modes.

  9. Iron and oxygen isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, southeast Missouri, USA

    USGS Publications Warehouse

    Childress, Tristan; Simon, Adam C.; Day, Warren C.; Lundstrom, Craig C.; Bindeman, Ilya N.

    2016-01-01

    New O and Fe stable isotope ratios are reported for magnetite samples from high-grade massive magnetite of the Mesoproterozoic Pea Ridge and Pilot Knob magnetite-apatite ore deposits and these results are compared with data for other iron oxide-apatite deposits to shed light on the origin of the southeast Missouri deposits. The δ18O values of magnetite from Pea Ridge (n = 12) and Pilot Knob (n = 3) range from 1.0 to 7.0 and 3.3 to 6.7‰, respectively. The δ56Fe values of magnetite from Pea Ridge (n = 10) and Pilot Knob (n = 6) are 0.03 to 0.35 and 0.06 to 0.27‰, respectively. These δ18O and the δ56Fe values suggest that magnetite crystallized from a silicate melt (typical igneous δ56Fe ranges 0.06–0.49‰) and grew in equilibrium with a magmatic-hydrothermal aqueous fluid. We propose that the δ18O and δ56Fe data for the Pea Ridge and Pilot Knob magnetite-apatite deposits are consistent with the flotation model recently proposed by Knipping et al. (2015a), which invokes flotation of a magmatic magnetite-fluid suspension and offers a plausible explanation for the igneous (i.e., up to ~15.9 wt % TiO2 in magnetite) and hydrothermal features of the deposits.

  10. Fibrinogen variant B[beta]D432A has normal polymerization but does not bind knob 'B'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowley, Sheryl R.; Lord, Susan T.; UNC)

    2009-10-23

    Fibrinogen residue B{beta}432Asp is part of hole 'b' that interacts with knob 'B,' whose sequence starts with Gly-His-Arg-Pro-amide (GHRP). Because previous studies showed B{beta}D432A has normal polymerization, we hypothesized that B{beta}432Asp is not critical for knob 'B' binding and that new knob-hole interactions would compensate for the loss of this Asp residue. To test this hypothesis, we solved the crystal structure of fragment D from B{beta}D432A. Surprisingly, the structure (rfD-B{beta}D432A+GH) showed the peptide GHRP was not bound to hole 'b.' We then re-evaluated the polymerization of this variant by examining clot turbidity, clot structure, and the rate of FXIIIa cross-linking.more » The turbidity and the rate of - dimer formation for B{beta}D432A were indistinguishable compared with normal fibrinogen. Scanning electron microscopy showed no significant differences between the clots of B{beta}D432A and normal, but the thrombin-derived clots had thicker fibers than clots obtained from batroxobin, suggesting that cleavage of FpB is more important than 'B:b' interactions. We conclude that hole 'b' and 'B:b' knob-hole binding per se have no influence on fibrin polymerization.« less

  11. Push/Push Fastener

    NASA Technical Reports Server (NTRS)

    Jackson, Steven A.

    1996-01-01

    Modified version of Nylatch (or equivalent) commerical quick-connect/quick-disconnect fastener for joining flat panels. Fastener tightened by pushing on knob on one side and loosened by pushing on knob on other side. Push/push operation of fastener advantageous in cold or otherwise hostile environments where gloves worn, in underwater operations, or if person handicapped.

  12. 97. Cumberland knob recreation area. The visitor contact center originally ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    97. Cumberland knob recreation area. The visitor contact center originally opened in 1941 as a combined sandwich shop, picnic area, and comfort station, the central building of the first recreation area to open looking north. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  13. Multi-output differential technologies

    NASA Astrophysics Data System (ADS)

    Bidare, Srinivas R.

    1997-01-01

    A differential is a very old and proven mechanical device that allows a single input to be split into two outputs having equal torque irrespective of the output speeds. A standard differential is capable of providing only two outputs from a single input. A recently patented multi-output differential technology known as `Plural-Output Differential' allows a single input to be split into many outputs. This new technology is the outcome of a systematic study of complex gear trains (Bidare 1992). The unique feature of a differential (equal torque at different speeds) can be applied to simplify the construction and operation of many complex mechanical devices that require equal torque's or forces at multiple outputs. It is now possible to design a mechanical hand with three or more fingers with equal torque. Since these finger are powered via a differential they are `mechanically intelligent'. A prototype device is operational and has been used to demonstrate the utility and flexibility of the design. In this paper we shall review two devices that utilize the new technology resulting in increased performance, robustness with reduced complexity and cost.

  14. Improving a scissor-action couch for conformal arc radiotherapy and radiosurgery.

    PubMed

    Li, Kaile; Yu, Cedric X; Ma, Lijun

    2004-01-01

    We have developed a method to improve the setup accuracy of a Varian Clinac 6/100 couch for delivering conformal arc therapy using a tertiary micro multileaf collimator (MLC) system. Several immobilization devices have been developed to improve the mechanical stability and isocenter alignment of the couch: turn-knob harnesses, double-track alignment plates, and a drop-in rod that attaches the couch to the concrete floor. These add-on components minimize the intercomponent motion of the couch's scissor elevator, which allows consistent treatment setup. The accuracy of our isocenter couch alignment is an improvement over the above devices, within 1 mm of their accuracy. The couch has been used with over 15 patients and with over 50 modulated conformal arc treatment deliveries at our institution.

  15. 27 CFR 9.43 - Rocky Knob.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Name. The name of the viticultural area described in this section is “Rocky Knob.” (b) Approved maps... Route No. 779 south and east to the Blue Ridge Parkway. (3) Then south on the parkway to its first... with State Route No. 710 and the Blue Ridge Parkway. (8) Then follow the Parkway southwest to the...

  16. 27 CFR 9.43 - Rocky Knob.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Name. The name of the viticultural area described in this section is “Rocky Knob.” (b) Approved maps... Route No. 799 south and east to the Blue Ridge Parkway. (3) Then south on the parkway to its first... with State Route No. 710 and the Blue Ridge Parkway. (8) Then follow the Parkway southwest to the...

  17. Timber resource of the Indiana Knobs Unit, 1986.

    Treesearch

    Mark H. Hansen; Mark F. Golitz

    1988-01-01

    The third inventory of Indiana's timber resource shows that commercial forest area in the Knobs Unit decreased less than 2% between 1967 and 1986, from 1,769 to 1,741 thousand acres. During the same period growing-stock volume increased 33%. Highlights and statistics are presented on area, volume, growth, mortality, and removals.

  18. Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection.

    PubMed

    Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2015-11-01

    The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv. Published by Elsevier B.V.

  19. Fiber knob domain lacking the shaft sequence but fused to a coiled coil is a candidate subunit vaccine against egg-drop syndrome.

    PubMed

    Harakuni, Tetsuya; Andoh, Kiyohiko; Sakamoto, Ryu-Ichi; Tamaki, Yukihiro; Miyata, Takeshi; Uefuji, Hirotaka; Yamazaki, Ken-Ichi; Arakawa, Takeshi

    2016-06-08

    Egg-drop syndrome (EDS) virus is an avian adenovirus that causes a sudden drop in egg production and in the quality of the eggs when it infects chickens, leading to substantial economic losses in the poultry industry. Inactivated EDS vaccines produced in embryonated duck eggs or cell culture systems are available for the prophylaxis of EDS. However, recombinant subunit vaccines that are efficacious and inexpensive are a desirable alternative. In this study, we engineered chimeric fusion proteins in which the trimeric fiber knob domain lacking the triple β-spiral motif in the fiber shaft region was genetically fused to trimeric coiled coils, such as those of the engineered form of the GCN4 leucine zipper peptide or chicken cartilage matrix protein (CMP). The fusion proteins were expressed predominantly as soluble trimeric proteins in Escherichia coli at levels of 15-80mg/L of bacterial culture. The single immunization of chickens with the purified fusion proteins, at a dose equivalent to 10μg of the knob moiety, elicited serum antibodies with high hemagglutination inhibition (HI) activities, similar to those induced by an inactivated EDS vaccine. A dose-response analysis indicated that a single immunization with as little as 1μg of the knob moiety of the CMP-knob fusion protein was as effective as the inactivated vaccine in inducing antibodies with HI activity. The immunization of laying hens had no apparent adverse effects on egg production and effectively prevented clinical symptoms of EDS when the chickens were challenged with pathogenic EDS virus. This study demonstrates that the knob domain lacking the shaft sequence but fused to a trimeric coiled coil is a promising candidate subunit vaccine for the prophylaxis of EDS in chickens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Multi-layer holographic bifurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Huang, K. S.; Diep, J.

    1993-01-01

    Optical data processing techniques have the inherent advantage of high data throughout, low weight and low power requirements. These features are particularly desirable for onboard spacecraft in-situ real-time data analysis and data compression applications. the proposed multi-layer optical holographic neural net pattern recognition technique will utilize the nonlinear photorefractive devices for real-time adaptive learning to classify input data content and recognize unexpected features. Information can be stored either in analog or digital form in a nonlinear photofractive device. The recording can be accomplished in time scales ranging from milliseconds to microseconds. When a system consisting of these devices is organized in a multi-layer structure, a feedforward neural net with bifurcating data classification capability is formed. The interdisciplinary research will involve the collaboration with top digital computer architecture experts at the University of Southern California.

  1. Methods of measuring water levels in deep wells

    USGS Publications Warehouse

    Garber, M.S.; Koopman, F. C.

    1968-01-01

    Accurate measurement of water levels deeper than 1,000 feet in wells requires specialized equipment. Corrections for stretch and thermal expansion of measuring tapes must be considered, and other measuring devices must be calibrated periodically. Bore-hole deviation corrections also must be made. Devices for recording fluctuation of fluid level usually require mechanical modification for use at these depths. A multichannel recording device utilizing pressure transducers has been constructed. This device was originally designed to record aquifer response to nearby underground nuclear explosions but can also be used for recording data from multi-well pumping tests. Bottom-hole recording devices designed for oil-field use have been utilized in a limited manner. These devices were generally found to lack the precision required, in ground-water investigations at the Nevada Test Site but may be applicable in other areas. A newly developed bottom-hole recording pressure gauge of improved accuracy has been used with satisfactory results.

  2. Trinary flip-flops using Savart plate and spatial light modulator for optical computation in multivalued logic

    NASA Astrophysics Data System (ADS)

    Ghosh, Amal K.; Basuray, Amitabha

    2008-11-01

    The memory devices in multi-valued logic are of most significance in modern research. This paper deals with the implementation of basic memory devices in multi-valued logic using Savart plate and spatial light modulator (SLM) based optoelectronic circuits. Photons are used here as the carrier to speed up the operations. Optical tree architecture (OTA) has been also utilized in the optical interconnection network. We have exploited the advantages of Savart plates, SLMs and OTA and proposed the SLM based high speed JK, D-type and T-type flip-flops in a trinary system.

  3. Multi-state time-varying reliability evaluation of smart grid with flexible demand resources utilizing Lz transform

    NASA Astrophysics Data System (ADS)

    Jia, Heping; Jin, Wende; Ding, Yi; Song, Yonghua; Yu, Dezhao

    2017-01-01

    With the expanding proportion of renewable energy generation and development of smart grid technologies, flexible demand resources (FDRs) have been utilized as an approach to accommodating renewable energies. However, multiple uncertainties of FDRs may influence reliable and secure operation of smart grid. Multi-state reliability models for a single FDR and aggregating FDRs have been proposed in this paper with regard to responsive abilities for FDRs and random failures for both FDR devices and information system. The proposed reliability evaluation technique is based on Lz transform method which can formulate time-varying reliability indices. A modified IEEE-RTS has been utilized as an illustration of the proposed technique.

  4. Multi-agent systems and their applications

    DOE PAGES

    Xie, Jing; Liu, Chen-Ching

    2017-07-14

    The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less

  5. Multi-agent systems and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Liu, Chen-Ching

    The number of distributed energy components and devices continues to increase globally. As a result, distributed control schemes are desirable for managing and utilizing these devices, together with the large amount of data. In recent years, agent-based technology becomes a powerful tool for engineering applications. As a computational paradigm, multi agent systems (MASs) provide a good solution for distributed control. Here in this paper, MASs and applications are discussed. A state-of-the-art literature survey is conducted on the system architecture, consensus algorithm, and multi-agent platform, framework, and simulator. In addition, a distributed under-frequency load shedding (UFLS) scheme is proposed using themore » MAS. Simulation results for a case study are presented. The future of MASs is discussed in the conclusion.« less

  6. Bedrock knobs, San Francisco Bay: Do navigation hazards outweigh other environment problems?

    USGS Publications Warehouse

    Carlson, P.R.; Chin, J.L.; Wong, F.L.

    2000-01-01

    Three bedrock knobs (Arch, Harding, and Shag rocks) rise above the unconsolidated sediment of central San Francisco Bay to a water depth of less than -12 m (<-39.4 ft MLLW). These rocks are within the westbound vessel traffic area, and the northernmost, Harding Rock, is ~300 m (984 ft) from the two-way deep water traffic lane. The rocks pose a hazard to deep-draft vessels. Large ships with drafts deeper than -17 m (-55.8 ft) cross central San Francisco Bay bound for and returning from major port cities of the Bay estuary. Acoustic profiling data show that bedrock extends at a gentle to moderate slope away from the knobs. These data also show that two of the knobs, Harding and Shag, may be part of a bedrock ridge that extends to Alcatraz Island and perhaps southeast to Blossom Rock. The tops of these rocks should be lowered to a depth of -17 m (-55.8 ft), with a total volume of as much as 245,000 m3 (320,460 yd3), at an estimated cost of nearly 27 million dollars, to eliminate the possibility that a tanker would strike one and rupture. A resulting large oil spill would likely cost many times more than the 10 million dollars needed to clean up a small 1996 spill. If the rocks were removed, local habitat for striped bass and other game fish would be altered, with potential negative impact on sport fishing. Currently, public officials are studying the benefits to the Bay environment of lowering the rock knobs.

  7. IP3-gated channels and their occurrence relative to CNG channels in the soma and dendritic knob of rat olfactory receptor neurons.

    PubMed

    Kaur, R; Zhu, X O; Moorhouse, A J; Barry, P H

    2001-05-15

    Olfactory receptor neurons respond to odorants with G protein-mediated increases in the concentrations of cyclic adenosine 3',5'-monophosphate (cAMP) and/or inositol-1,4,5-trisphosphate (IP3). This study provides evidence that both second messengers can directly activate distinct ion channels in excised inside-out patches from the dendritic knob and soma membrane of rat olfactory receptor neurons (ORNs). The IP3-gated channels in the dendritic knob and soma membranes could be classified into two types, with conductances of 40 +/- 7 pS (n = 5) and 14 +/- 3 pS (n = 4), with the former having longer open dwell times. Estimated values of the densities of both channels from the same inside-out membrane patches were very much smaller for IP3-gated than for CNG channels. For example, in the dendritic knob membrane there were about 1000 CNG channels x microm(-2) compared to about 85 IP3-gated channels x microm(-2). Furthermore, only about 36% of the dendritic knob patches responded to IP3, whereas 83% of the same patches responded to cAMP. In the soma, both channel densities were lower, with the CNG channel density again being larger ( approximately 57 channels x microm(-2)) than that of the IP3-gated channels ( approximately 13 channels x microm(-2)), with again a much smaller fraction of patches responding to IP3 than to cAMP. These results were consistent with other evidence suggesting that the cAMP-pathway dominates the IP3 pathway in mammalian olfactory transduction.

  8. Soil properties and soil nitrogen dynamics of prairie-like forest openings and surrounding forests in Kentucky's Knobs Region

    Treesearch

    C.C. Rhoades; S.P. Miller; M.M. Shea

    2004-01-01

    Herbaceous communities located within forest openings increase plant species diversity of forests in the Knobs Region of Kentucky. Although these grass-dominated communities are protected and managed for rare plant species conservation, it is unclear how soil conditions may delineate the grassland-forest boundary. We compared soil chemical and physical properties and...

  9. Ultra-Low Power Dynamic Knob in Adaptive Compressed Sensing Towards Biosignal Dynamics.

    PubMed

    Wang, Aosen; Lin, Feng; Jin, Zhanpeng; Xu, Wenyao

    2016-06-01

    Compressed sensing (CS) is an emerging sampling paradigm in data acquisition. Its integrated analog-to-information structure can perform simultaneous data sensing and compression with low-complexity hardware. To date, most of the existing CS implementations have a fixed architectural setup, which lacks flexibility and adaptivity for efficient dynamic data sensing. In this paper, we propose a dynamic knob (DK) design to effectively reconfigure the CS architecture by recognizing the biosignals. Specifically, the dynamic knob design is a template-based structure that comprises a supervised learning module and a look-up table module. We model the DK performance in a closed analytic form and optimize the design via a dynamic programming formulation. We present the design on a 130 nm process, with a 0.058 mm (2) fingerprint and a 187.88 nJ/event energy-consumption. Furthermore, we benchmark the design performance using a publicly available dataset. Given the energy constraint in wireless sensing, the adaptive CS architecture can consistently improve the signal reconstruction quality by more than 70%, compared with the traditional CS. The experimental results indicate that the ultra-low power dynamic knob can provide an effective adaptivity and improve the signal quality in compressed sensing towards biosignal dynamics.

  10. The So-Called 'Face on Mars' in Infrared

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] (Released 24 July 2002) This set of THEMIS infrared images shows the so-called 'face on Mars' landform located in the northern plains of Mars near 40o N, 10o W (350 o E). The 'face' is located near the center of the image approximately 1/6 of the way down from the top, and is one of a large number of knobs, mesas, hills, and buttes that are visible in this THEMIS image. The THEMIS infrared camera has ten different filters between 6.2 and 15 micrometers - nine view the surface and one views the CO2 atmosphere. The calibrated and geometrically projected data from all of the nine surface-viewing filters are shown in this figure. The major differences seen in this region are due to temperature effects -- sunlit slopes are warm (bright), whereas those in shadow are cold (dark), The temperature in this scene ranges from 50 oC (darkest) to 15 oC (brightest). The major differences between the different filters are due to the expected variation in the amount of energy emitted from the surface at different wavelengths. Minor spectral differences (infrared 'color') also exist between the different filters, but these differences are small in this region due to the uniform composition of the rocks and soils exposed at the surface. The THEMIS infrared camera provides an excellent regional view of Mars - this image covers an area 32 kilometers (20 miles) by approximately 200 kilometers (125 miles) at a resolution of 100 meters per picture element ('pixel'). This image provides a broad perspective of the landscape and geology of the Cydonia region, showing numerous knobs and hills that have been eroded into a remarkable array of different shapes. In this 'big picture' view the Cydonia region is seen to be covered with dozens of interesting knobs and mesas that are similar in many ways to the knob named the 'face' - so many in fact that it requires care to discover the 'face' among this jumble of knobs and hills. The 3-km long 'face' knob was first imaged by the Viking spacecraft in the 1970's and was seen by some to resemble a face carved into the rocks of Mars. Since that time the Mars Orbiter Camera on the Mars Global Surveyor spacecraft has provided detailed views of this hill that clearly show that it is a normal geologic feature with slopes and ridges carved by eons of wind and downslope motion due to gravity. Many of the knobs in Cydonia, including the 'face', have several flat ledges partway up the hill slopes. These ledges are made of more resistant layers of rock and are the last remnants of layers that once were continuous across this entire region. Erosion has completely removed these layers in most places, leaving behind only the small isolated hills and knobs seen today.

  11. Gene Transduction and Cell Entry Pathway of Fiber-Modified Adenovirus Type 5 Vectors Carrying Novel Endocytic Peptide Ligands Selected on Human Tracheal Glandular Cells

    PubMed Central

    Gaden, Florence; Franqueville, Laure; Magnusson, Maria K.; Hong, Saw See; Merten, Marc D.; Lindholm, Leif; Boulanger, Pierre

    2004-01-01

    Monolayers of cystic fibrosis transmembrane conductance regulator (CFTR)-deficient human tracheal glandular cells (CF-KM4) were subjected to phage biopanning, and cell-internalized phages were isolated and sequenced, in order to identify CF-KM4-specific peptide ligands that would confer upon adenovirus type 5 (Ad5) vector a novel cell target specificity and/or higher efficiency of gene delivery into airway cells of patients with cystic fibrosis (CF). Three different ligands, corresponding to prototypes of the most represented families of phagotopes recovered from intracellular phages, were designed and individually inserted into Ad5-green fluorescent protein (GFP) (AdGFP) vectors at the extremities of short fiber shafts (seven repeats [R7]) terminated by scissile knobs. Only one vector, carrying the decapeptide GHPRQMSHVY (abbreviated as QM10), showed an enhanced gene transduction of CF-KM4 cells compared to control nonliganded vector with fibers of the same length (AdGFP-R7-knob). The enhancement in gene transfer efficiency was not specific to CF-KM4 cells but was observed in other mammalian cell lines tested. The QM10-liganded vector was referred to as AdGFP-QM10-knob in its knobbed version and as AdGFP-QM10 in its proteolytically deknobbed version. AdGFP-QM10 was found to transduce cells with a higher efficiency than its knob-bearing version, AdGFP-QM10-knob. Consistent with this, competition experiments indicated that the presence of knob domains was not an absolute requirement for cell attachment of the QM10-liganded vector and that the knobless AdGFP-QM10 used alternative cell-binding domains on its capsid, including penton base capsomer, via a site(s) different from its RGD motifs. The QM10-mediated effect on gene transduction seemed to take place at the step of endocytosis in both quantitative and qualitative manners. Virions of AdGFP-QM10 were endocytosed in higher numbers than virions of the control vector and were directed to a compartment different from the early endosomes targeted by members of species C Ad. AdGFP-QM10 was found to accumulate in late endosomal and low-pH compartments, suggesting that QM10 acted as an endocytic ligand of the lysosomal pathway. These results validated the concept of detargeting and retargeting Ad vectors via our deknobbing system and redirecting Ad vectors to an alternative endocytic pathway via a peptide ligand inserted in the fiber shaft domain. PMID:15194799

  12. Forest vegetation and soil patterns across glade-forest ecotones in the Knobs region of northeastern Kentucky, USA

    Treesearch

    Charles Rhoades; S. P. Miller; D. L. Skinner

    2005-01-01

    The Crooked Creek Barrens Preserve in the northeastern Knobs region of Kentucky contains an aggregation of species-rich grass and forb-dominated glade openings surrounded by secondary forest. Encroachment of woody species and invasion by non-native species threaten the rare forbs and sedges of the glades. The locations of these plant assemblages are commonly...

  13. A demonstration of nesting in two antarctic icefish (genus Chionodraco) using a fin dimorphism analysis and ex situ videos.

    PubMed

    Ferrando, Sara; Castellano, Laura; Gallus, Lorenzo; Ghigliotti, Laura; Masini, Maria Angela; Pisano, Eva; Vacchi, Marino

    2014-01-01

    Visual observations and videos of Chionodraco hamatus icefish at the "Acquario di Genova" and histological analyses of congeneric species C. hamatus and C. rastrospinosus adults sampled in the field provided new anatomical and behavioral information on the reproductive biology of these white blooded species that are endemic to the High-Antarctic region. During the reproductive season, mature males of both species, which are different from females and immature males, display fleshy, club-like knob modifications of their anal fin that consisted of a much thicker epithelium. Histology indicated that the knobs were without any specialized glandular or sensorial organization, thus suggesting a mechanical and/or ornamental role of the modified anal fin. In addition, the occurrence of necrotic regions at the base of the thickened epithelium and the detachment of the knobs in post-spawning C. hamatus males indicated the temporary nature of the knobs. The role of these structures was confirmed as mechanical and was clarified using visual observations and videos of the behavior of two C. hamatus during a reproductive event that occurred in an exhibit tank at the "Acquario di Genova". The reproductive process included pre-spawning activity, preparation of the nest, egg guarding and successfully ended with egg hatching. When the spawning event approached, the male prepared the nest. The nest was constructed on an accurately selected bottom surface, which was flattened and maintained free from sand or debris by a combination of radial body movements and continuous anal fin sweeping, thus demonstrating the important mechanical/abrasive function of the anal fin knobs. The present data are the first records of active nesting in icefish and clarify the meaning of dimorphic temporary structures, whose function would have been difficult to obtain in the field.

  14. Use of Vacuum Bagging for Fabricating Thermoplastic Microfluidic Devices

    PubMed Central

    Cassano, Christopher L.; Simon, Andrew J.; Liu, Wei; Fredrickson, Carl; Fan, Z. Hugh

    2014-01-01

    In this work we present a novel thermal bonding method for thermoplastic microfluidic devices. This simple method employs a modified vacuum bagging technique, a concept borrowed from the aerospace industry, to produce conventional thick substrate microfluidic devices, as well as multi-layer film devices. The bonds produced using this method are superior to those obtained using conventional thermal bonding methods, including thermal lamination, and are capable of sustaining burst pressures in excess of 550 kPa. To illustrate the utility of this method, thick substrate devices were produced, as well as a six-layer film device that incorporated several complex features. PMID:25329244

  15. Inorganic Photovoltaics Materials and Devices: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.

    2005-01-01

    This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.

  16. An integrated analog O/E/O link for multi-channel laser neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahmias, Mitchell A., E-mail: mnahmias@princeton.edu; Tait, Alexander N.; Tolias, Leonidas

    2016-04-11

    We demonstrate an analog O/E/O electronic link to allow integrated laser neurons to accept many distinguishable, high bandwidth input signals simultaneously. This device utilizes wavelength division multiplexing to achieve multi-channel fan-in, a photodetector to sum signals together, and a laser cavity to perform a nonlinear operation. Its speed outpaces accelerated-time neuromorphic electronics, and it represents a viable direction towards scalable networking approaches.

  17. Stakeholders' relationships with the USDA Forest Service at the Spruce Knob-Seneca Rocks National Recreation Area, West Virginia

    Treesearch

    Katherine A. Thompson; Chad D. Pierskalla; Steven W. Selin

    2007-01-01

    The Spruce Knob-Seneca Rocks National Recreation Area (NRA) is developing a collaborative management plan. To develop a public involvement strategy, it is necessary to assess the social conditions in the area. The purpose of this study was to determine the relationship local stakeholders in the NRA have with the USDA Forest Service (USFS) with regard to the...

  18. Optimum resonance control knobs for sextupoles

    NASA Astrophysics Data System (ADS)

    Ögren, J.; Ziemann, V.

    2018-06-01

    We discuss the placement of extra sextupoles in a magnet lattice that allows to correct third-order geometric resonances, driven by the chromaticity-compensating sextupoles, in a way that requires the least excitation of the correction sextupoles. We consider a simplified case, without momentum-dependent effects or other imperfections, where suitably chosen phase advances between the correction sextupoles leads to orthogonal knobs with equal treatment of the different resonance driving terms.

  19. The most basal ankylosaurine dinosaur from the Albian-Cenomanian of China, with implications for the evolution of the tail club.

    PubMed

    Zheng, Wenjie; Jin, Xingsheng; Azuma, Yoichi; Wang, Qiongying; Miyata, Kazunori; Xu, Xing

    2018-02-27

    The tail club knob is a highly specialized structure thought to characterize a subgroup of the ankylosaurine ankylosaurians, and the oldest documented tail club knob in the fossil record occurred in the Campanian ankylosaurine Pinacosaurus. Here we report a new ankylosaurid Jinyunpelta sinensis, gen. et sp. nov., from the Albian-Cenomanian Liangtoutang Formation, Jinyun County, Zhejiang, China. This is the first definitive and the best preserved ankylosaurid dinosaur ever found in southern China. Jinyunpelta possesses unique cranial features differs from other ankylosaurs including two paranasal apertures level with and posterior to the external naris, a triangular fossa on the anterodorsal edge of the maxilla, an antorbital fossa in the junction between the maxilla, lacrimal and jugal, and an anterior process of the prearticular that lies ventral to the splenial. Our phylogenetic analysis suggests Jinyunpelta as the most basal ankylosaurine dinosaur. Jinyunpelta has a tail club with interlocking caudal vertebrae and a well-developed tail club knob, it represents the oldest and the most basal ankylosaurian known to have a well-developed tail club knob. The new discovery thus demonstrates that a large and highly modified tail club evolved at the base of the ankylosaurine ankylosaurs at least about 100 million years ago.

  20. Processes for multi-layer devices utilizing layer transfer

    DOEpatents

    Nielson, Gregory N; Sanchez, Carlos Anthony; Tauke-Pedretti, Anna; Kim, Bongsang; Cederberg, Jeffrey; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2015-02-03

    A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.

  1. Full-color, large area, transmissive holograms enabled by multi-level diffractive optics.

    PubMed

    Mohammad, Nabil; Meem, Monjurul; Wan, Xiaowen; Menon, Rajesh

    2017-07-19

    We show that multi-level diffractive microstructures can enable broadband, on-axis transmissive holograms that can project complex full-color images, which are invariant to viewing angle. Compared to alternatives like metaholograms, diffractive holograms utilize much larger minimum features (>10 µm), much smaller aspect ratios (<0.2) and thereby, can be fabricated in a single lithography step over relatively large areas (>30 mm ×30 mm). We designed, fabricated and characterized holograms that encode various full-color images. Our devices demonstrate absolute transmission efficiencies of >86% across the visible spectrum from 405 nm to 633 nm (peak value of about 92%), and excellent color fidelity. Furthermore, these devices do not exhibit polarization dependence. Finally, we emphasize that our devices exhibit negligible absorption and are phase-only holograms with high diffraction efficiency.

  2. Methods and devices for high-throughput dielectrophoretic concentration

    DOEpatents

    Simmons, Blake A.; Cummings, Eric B.; Fiechtner, Gregory J.; Fintschenko, Yolanda; McGraw, Gregory J.; Salmi, Allen

    2010-02-23

    Disclosed herein are methods and devices for assaying and concentrating analytes in a fluid sample using dielectrophoresis. As disclosed, the methods and devices utilize substrates having a plurality of pores through which analytes can be selectively prevented from passing, or inhibited, on application of an appropriate electric field waveform. The pores of the substrate produce nonuniform electric field having local extrema located near the pores. These nonuniform fields drive dielectrophoresis, which produces the inhibition. Arrangements of electrodes and porous substrates support continuous, bulk, multi-dimensional, and staged selective concentration.

  3. Limited Human Factors Assessment of the QuadGard Limb Protection System: U.S. Marine Corps Systems Command Limb Protection Program Overview (QuadGard Phases 4 and 5 Production Designs)

    DTIC Science & Technology

    2011-09-01

    in calculating the ergonomics associated with ballistic protection. MARCORSYSCOM established three design requirements: (1) system compatibility...knob. The Velcro disengaged, as designed , to allow the wearer unimpeded leg movement. The control knob is used to adjust the driver’s seat height...QuadGard Phases IV and V Production Designs ) by Richard S. Bruno ARL-TR-5656 September 2011

  4. Saylorville Stage 3 Contract Completion Report: Testing of Priority 1 Archaeological Sites 1980-1981.

    DTIC Science & Technology

    1982-02-01

    ware porcelain vessel fragments 26 23 3 25 1 - - Porcelain "china" doll fragments 3 3 - 3 - - Porcelain door knob A insulator fraqments 6 6 - 6...34 doll fragments 3 3 - 3 - Porcelain door knob & insulator fraqments 6 6 - 6 - Decorated & white ware ironstone vessel fragments 85 82 3 85 - Stoneware...77 - - - - Stoneware or kaolin pipe fragments 2 2 - - 2 - - - - Porcelain insulator fragment 1 1 - - I - - - - Glazed brick fraqment I I - - I

  5. Low-cost electrodes for stable perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Bastos, João P.; Manghooli, Sara; Jaysankar, Manoj; Tait, Jeffrey G.; Qiu, Weiming; Gehlhaar, Robert; De Volder, Michael; Uytterhoeven, Griet; Poortmans, Jef; Paetzold, Ulrich W.

    2017-06-01

    Cost-effective production of perovskite solar cells on an industrial scale requires the utilization of exclusively inexpensive materials. However, to date, highly efficient and stable perovskite solar cells rely on expensive gold electrodes since other metal electrodes are known to cause degradation of the devices. Finding a low-cost electrode that can replace gold and ensure both efficiency and long-term stability is essential for the success of the perovskite-based solar cell technology. In this work, we systematically compare three types of electrode materials: multi-walled carbon nanotubes (MWCNTs), alternative metals (silver, aluminum, and copper), and transparent oxides [indium tin oxide (ITO)] in terms of efficiency, stability, and cost. We show that multi-walled carbon nanotubes are the only electrode that is both more cost-effective and stable than gold. Devices with multi-walled carbon nanotube electrodes present remarkable shelf-life stability, with no decrease in the efficiency even after 180 h of storage in 77% relative humidity (RH). Furthermore, we demonstrate the potential of devices with multi-walled carbon nanotube electrodes to achieve high efficiencies. These developments are an important step forward to mass produce perovskite photovoltaics in a commercially viable way.

  6. Some aspects of adaptive transform coding of multispectral data

    NASA Technical Reports Server (NTRS)

    Ahmed, N.; Natarajan, T.

    1977-01-01

    This paper concerns a data compression study pertaining to multi-spectral scanner (MSS) data. The motivation for this undertaking is the need for securing data compression of images obtained in connection with the Landsat Follow-On Mission, where a compression of at least 6:1 is required. The MSS data used in this study consisted of four scenes: Tristate, consisting of 256 pels per row and a total of 512 rows - i.e., (256x512), (2) Sacramento (256x512), (3) Portland (256x512), and (4) Bald Knob (200x256). All these scenes were on digital tape at 6 bits/pel. The corresponding reconstructed scenes of 1 bit/pel (i.e., a 6:1 compression) are included.

  7. Resonant tunneling based graphene quantum dot memristors.

    PubMed

    Pan, Xuan; Skafidas, Efstratios

    2016-12-08

    In this paper, we model two-terminal all graphene quantum dot (GQD) based resistor-type memory devices (memristors). The resistive switching is achieved by resonant electron tunneling. We show that parallel GQDs can be used to create multi-state memory circuits. The number of states can be optimised with additional voltage sources, whilst the noise margin for each state can be controlled by appropriately choosing the branch resistance. A three-terminal GQD device configuration is also studied. The addition of an isolated gate terminal can be used to add further or modify the states of the memory device. The proposed devices provide a promising route towards volatile memory devices utilizing only atomically thin two-dimensional graphene.

  8. Historical review: another 50th anniversary--new periodicities in coiled coils.

    PubMed

    Gruber, Markus; Lupas, Andrei N

    2003-12-01

    In 1953, Francis Crick and Linus Pauling both proposed models of supercoiled alpha helices ('coiled coils') for the structure of keratin. These were the first attempts at modelling the tertiary structure of a protein. Crick emphasized the packing mode of the side-chains ('knobs-into-holes'), which required a periodicity of seven residues over two helical turns (7/2) and a supercoil in the opposite sense of the constituent helices. By contrast, Pauling envisaged a broader set of periodicities (4/1, 7/2, 18/5, 15/4, 11/3) and supercoils of both senses. Crick's model became canonical and the 'heptad repeat' essentially synonymous with coiled coils, but 50 years later new crystal structures and protein sequences show that the less common periodicities envisaged by Pauling also occur in coiled coils, adding a variant packing mode ('knobs-to-knobs') to the standard model. Pauling's laboratory notebooks suggest that he searched unsuccessfully for this packing mode in 1953.

  9. Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.

    PubMed

    Shi, Hui; Liu, Zhuo; Li, Ang; Yin, Jing; Chong, Alvin G L; Tan, Kevin S W; Zhang, Yong; Lim, Chwee Teck

    2013-01-01

    Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.

  10. Tunable plasmonic dual wavelength multi/demultiplexer based on graphene sheets and cylindrical resonator

    NASA Astrophysics Data System (ADS)

    Asgari, Somayyeh; Granpayeh, Nosrat

    2017-06-01

    Two parallel graphene sheet waveguides and a graphene cylindrical resonator between them is proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. One end of each graphene waveguide is the input and output port. The resonance and the prominent mid-infrared band-pass filtering effect are achieved. The transmittance spectrum is tuned by varying the radius of the graphene cylindrical resonator, the dielectric inside it, and also the chemical potential of graphene utilizing gate voltage. Simulation results are in good agreement with theoretical calculations. As an application, a multi/demultiplexer is proposed and analyzed. Our studies demonstrate that graphene based ultra-compact, nano-scale devices can be designed for optical processing and photonic integrated devices.

  11. Are cytological parameters of maize landraces (Zea mays ssp. mays) adapted along an altitudinal cline?

    PubMed

    Fourastié, María Florencia; Gottlieb, Alexandra Marina; Poggio, Lidia; González, Graciela Esther

    2018-03-01

    The Northwestern Argentina (NWA) highland region is one of the southernmost areas of native maize cultivation. We studied variations of different cytological parameters, such as DNA contents, presence/absence of B chromosomes (Bs), and number and sequence composition of heterochromatic knobs in ten accessions of four maize landraces growing along a broad altitudinal cline in NWA. The aim of this work was to assess variations in cytological parameters and their relationship with the crop altitude of cultivation, in an adaptive context. The A-DNA content of the A chromosome complements showed 40% of difference between the lowest (4.5 pg) and the highest (6.3 pg) 2C value. This variation could be attributed to differences in number and size of heterochromatic knobs. Fluorescent in situ hybridization studies revealed the sequence composition of each knob, with a higher proportion of knobs composed of 180-bp repeats rather than TR-1 repeats, in all accessions. We also found numerical polymorphisms and the highest frequency of Bs reported in maize to this date. These results lead us to propose that the frequencies and doses of Bs are influenced by the landrace genotypical make-up. The Bs might be maintained in higher frequencies in those accessions having lower heterochromatin content, so as to preserve an optimal nucleotype. Furthermore, selective forces acting along the altitudinal gradient might be modulating the cytological parameters studied, as suggested by the significant correlations found among them.

  12. A dynamically reconfigurable multi-functional PLL for SRAM-based FPGA in 65nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Yang, Mingqian; Chen, Lei; Li, Xuewu; Zhang, Yanlong

    2018-04-01

    Phase-locked loops (PLL) have been widely utilized in FPGA as an important module for clock management. PLL with dynamic reconfiguration capability is always welcomed in FPGA design as it is able to decrease power consumption and simultaneously improve flexibility. In this paper, a multi-functional PLL with dynamic reconfiguration capability for 65nm SRAM-based FPGA is proposed. Firstly, configurable charge pump and loop filter are utilized to optimize the loop bandwidth. Secondly, the PLL incorporates a VCO with dual control voltages to accelerate the adjustment of oscillation frequency. Thirdly, three configurable dividers are presented for flexible frequency synthesis. Lastly, a configuration block with dynamic reconfiguration function is proposed. Simulation results demonstrate that the proposed multi-functional PLL can output clocks with configurable division ratio, phase shift and duty cycle. The PLL can also be dynamically reconfigured without affecting other parts' running or halting the FPGA device.

  13. Management of Large-Scale Wireless Sensor Networks Utilizing Multi-Parent Recursive Area Hierarchies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cree, Johnathan V.; Delgado-Frias, Jose

    2013-04-19

    Autonomously configuring and self-healing a largescale wireless sensor network requires a light-weight maintenance protocol that is scalable. Further, in a battery powered wireless sensor network duty-cycling a node’s radio can reduce the power consumption of a device and extend the lifetime of a network. With duty-cycled nodes the power consumption of a node’s radio depends on the amount of communication is must perform and by reducing the communication the power consumption can also be reduced. Multi-parent hierarchies can be used to reduce the communication cost when constructing a recursive area clustering hierarchy when compared to singleparent solutions that utilize inefficientmore » communication methods such as flooding and information propagation via single-hop broadcasts. The multi-parent hierarchies remain scalable and provides a level of redundancy for the hierarchy.« less

  14. Big Crater as Viewed by Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The 'Big Crater' is actually a relatively small Martian crater to the southeast of the Mars Pathfinder landing site. It is 1500 meters (4900 feet) in diameter, or about the same size as Meteor Crater in Arizona. Superimposed on the rim of Big Crater (the central part of the rim as seen here) is a smaller crater nicknamed 'Rimshot Crater.' The distance to this smaller crater, and the nearest portion of the rim of Big Crater, is 2200 meters (7200 feet). To the right of Big Crater, south from the spacecraft, almost lost in the atmospheric dust 'haze,' is the large streamlined mountain nicknamed 'Far Knob.' This mountain is over 450 meters (1480 feet) tall, and is over 30 kilometers (19 miles) from the spacecraft. Another, smaller and closer knob, nicknamed 'Southeast Knob' can be seen as a triangular peak to the left of the flanks of the Big Crater rim. This knob is 21 kilometers (13 miles) southeast from the spacecraft.

    The larger features visible in this scene - Big Crater, Far Knob, and Southeast Knob - were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The scene includes rocky ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of South Twin Peak. The largest rock in the nearfield, just left of center in the foreground, nicknamed 'Otter', is about 1.5 meters (4.9 feet) long and 10 meters (33 feet) from the spacecraft.

    This view of Big Crater was produced by combining 6 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  15. Notch-Boosted Domain Wall Propagation in Magnetic Nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Xiang Rong; Yuan, Hauiyang

    Magnetic domain wall (DW) motion along a nanowire underpins many proposals of spintronic devices. High DW propagation velocity is obviously important because it determines the device speed. Thus it is interesting to search for effective control knobs of DW dynamics. We report a counter-intuitive finding that notches in an otherwise homogeneous magnetic nanowire can boost current-induced domain wall (DW) propagation. DW motion in notch-modulated wires can be classified into three phases: 1) A DW is pinned around a notch when the current density is below the depinning current density. 2) DW propagation velocity above the depinning current density is boosted by notches when non-adiabatic spin-transfer torque strength is smaller than the Gilbert damping constant. The boost can be many-fold. 3) DW propagation velocity is hindered when non-adiabatic spin-transfer torque strength is larger than the Gilbert damping constant. This work was supported by Hong Kong GRF Grants (Nos. 163011151 and 605413) and the Grant from NNSF of China (No. 11374249).

  16. A PC based time domain reflectometer for space station cable fault isolation

    NASA Technical Reports Server (NTRS)

    Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken

    1994-01-01

    Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).

  17. 2016 Energy Awareness Day

    NASA Image and Video Library

    2016-10-20

    Shown are some of the devices from Lutron Electronics Co., a lighting control company, during Energy Awareness Day at the Multi-Function Facility on Oct. 20. Every third Thursday of October, civil servants, contractors and several energy utilities promote the awareness of our sustainability goals at Kennedy Space Center and at home. Photo credit: Cory Huston

  18. Maisotsenko cycle applications in multi-stage ejector recycling module for chemical production

    NASA Astrophysics Data System (ADS)

    Levchenko, D. O.; Artyukhov, A. E.; Yurko, I. V.

    2017-08-01

    The article is devoted to the theoretical bases of multistage (multi-level) utilization modules as part of chemical plants (on the example of the technological line for obtaining nitrogen fertilizers). The possibility of recycling production waste (ammonia vapors, dust and substandard nitrogen fertilizers) using ejection devices and waste heat using Maisotsenko cycle technology (Maisotsenko heat and mass exchanger (HMX), Maisotsenko power cycles and recuperators, etc.) is substantiated. The principle of operation of studied recycling module and prospects for its implementation are presented. An improved technological scheme for obtaining granular fertilizers and granules with porous structure with multistage (multi-level) recycling module is proposed.

  19. Multimerization of Adenovirus Serotype 3 Fiber Knob Domains Is Required for Efficient Binding of Virus to Desmoglein 2 and Subsequent Opening of Epithelial Junctions▿

    PubMed Central

    Wang, Hongjie; Li, ZongYi; Yumul, Roma; Lara, Stephanie; Hemminki, Akseli; Fender, Pascal; Lieber, André

    2011-01-01

    Recently, we identified desmoglein 2 (DSG2) as the main receptor for a group of species B adenoviruses (Ads), including Ad3, a serotype that is widely distributed in the human population (H. Wang et al., Nat. Med. 17:96–104, 2011). In this study, we have attempted to delineate structural details of the Ad3 interaction with DSG2. For CAR- and CD46-interacting Ad serotypes, attachment to cells can be completely blocked by an excess of recombinant fiber knob protein, while soluble Ad3 fiber knob only inefficiently blocks Ad3 infection. We found that the DSG2-interacting domain(s) within Ad3 is formed by several fiber knob domains that have to be in the spatial constellation that is present in viral particles. Based on this finding, we generated a small recombinant, self-dimerizing protein containing the Ad3 fiber knob (Ad3-K/S/Kn). Ad3-K/S/Kn bound to DSG2 with high affinity and blocked Ad3 infection. We demonstrated by confocal immunofluorescence and transmission electron microscopy analyses that Ad3-K/S/Kn, through its binding to DSG2, triggered the transient opening of intercellular junctions in epithelial cells. The pretreatment of epithelial cells with Ad3-K/S/Kn resulted in increased access to receptors that are localized in or masked by epithelial junctions, e.g., CAR or Her2/neu. Ad3-K/S/Kn treatment released CAR from tight junctions and thus increased the transduction of epithelial cells by a serotype Ad5-based vector. Furthermore, the pretreatment of Her2/neu-positive breast cancer cells with Ad3-K/S/Kn increased the killing of cancer cells by the Her2/neu-targeting monoclonal antibody trastuzumab (Herceptin). This study widens our understanding of how Ads achieve high avidity to their receptors and the infection of epithelial tissue. The small recombinant protein Ad3-K/S/Kn has practical implications for the therapy of epithelial cancer and gene/drug delivery to normal epithelial tissues. PMID:21525338

  20. Deep learning for classification of islanding and grid disturbance based on multi-resolution singular spectrum entropy

    NASA Astrophysics Data System (ADS)

    Li, Tie; He, Xiaoyang; Tang, Junci; Zeng, Hui; Zhou, Chunying; Zhang, Nan; Liu, Hui; Lu, Zhuoxin; Kong, Xiangrui; Yan, Zheng

    2018-02-01

    Forasmuch as the distinguishment of islanding is easy to be interfered by grid disturbance, island detection device may make misjudgment thus causing the consequence of photovoltaic out of service. The detection device must provide with the ability to differ islanding from grid disturbance. In this paper, the concept of deep learning is introduced into classification of islanding and grid disturbance for the first time. A novel deep learning framework is proposed to detect and classify islanding or grid disturbance. The framework is a hybrid of wavelet transformation, multi-resolution singular spectrum entropy, and deep learning architecture. As a signal processing method after wavelet transformation, multi-resolution singular spectrum entropy combines multi-resolution analysis and spectrum analysis with entropy as output, from which we can extract the intrinsic different features between islanding and grid disturbance. With the features extracted, deep learning is utilized to classify islanding and grid disturbance. Simulation results indicate that the method can achieve its goal while being highly accurate, so the photovoltaic system mistakenly withdrawing from power grids can be avoided.

  1. High voltage DC switchgear development for multi-kW space power system: Aerospace technology development of three types of solid state power controllers for 200-1100VDC with current ratings of 25, 50, and 80 amperes with one type utilizing an electromechanical device

    NASA Technical Reports Server (NTRS)

    Billings, W. W.

    1981-01-01

    Three types of solid state power controllers (SSPC's) for high voltage, high power DC system applications were developed. The first type utilizes a SCR power switch. The second type employes an electromechanical power switch element with solid state commutation. The third type utilizes a transistor power switch. Significant accomplishments include high operating efficiencies, fault clearing, high/low temperature performance and vacuum operation.

  2. Radar-visible wind streaks in the Altiplano of Bolivia

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Christensen, P.

    1984-01-01

    Isolated knobs that are erosional remnants of central volcanoes or of folded rocks occur in several areas of the Altiplano are visible on both optical and images. The optically visible streaks occur in the immediate lee of the knobs, whereas the radar visible streaks occur in the zone downwind between the knobs. Aerial reconnaissance and field studies showed that the optically visible streaks consist of a series of small ( 100 m wide) barchan and barchanoid dunes, intradune sand sheets, and sand hummocks (large shrub coppice dunes) up to 15 m across and 5 m high. On LANDSAT images these features are poorly resolved but combine to form a bright streak. On the radar image, this area also appears brighter than the zone of the radar dark streak; evidently, the dunes and hummocks serve as radar reflectors. The radar dark streak consists of a relatively flat, smooth sand sheet which lacks organized aerolian bedforms, other than occasional ripples. Wind velocity profiles show a greater U value in the optically bright streak zone than in the radar dark streak.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantagesmore » of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.« less

  4. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  5. Shopping Survey of the Military Consumer at Whiteman Air Force Base

    DTIC Science & Technology

    1991-02-21

    hours (4) 1 Good prices and good hours 1. Knob Noster, MO (1) 5 Need more facilities to shop (Wal-Mart, K-Mart) and eat ( McDonalds , Burger King , or Taco...shop (Wal-Mart, K-Mart) and eat ( McDonalds , Burger King , or Taco Bell) (2) 4 Need to expand hours (3) 2 Needs a face lift (4) 1 Need a drug store (5) 1...Knob Noster, MO (1) 5 Need more facilities to shop (Wal-Mart, K-Mart) and eat ( McDonalds , Burger King , or Taco Bell) (2) .. _ Need to expand hours N

  6. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2007-01-02

    Disclosed is a mutant CAR-DI-binding adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have a significantly weakened binding affinity for CAR-DI relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type.

  7. High performance multi-finger MOSFET on SOI for RF amplifiers

    NASA Astrophysics Data System (ADS)

    Adhikari, M. Singh; Singh, Y.

    2017-10-01

    In this paper, we propose structural modifications in the conventional planar metal-oxide-semiconductor field-effect transistor (MOSFET) on silicon-on-insulator by utilizing trenches in the epitaxial layer. The proposed multi-finger MOSFET (MF-MOSFET) has dual vertical-gates placed in separate trenches to form multiple channels in the p-base which carry the drain current in parallel. The proposed device uses TaN as gate electrode and SiO2 as gate dielectric. Simultaneous conduction of multiple channels enhances the drain current (ID) and provides higher transconductance (gm) leading to significant improvement in cut-off frequency (ft). Two-dimensional simulations are performed to evaluate and compare the performance of the MF-MOSFET with the conventional MOSFET. At a gate length of 60 nm, the proposed device provides 4 times higher ID, 3 times improvement in gm and 1.25 times increase in ft with better control over the short channel effects as compared with the conventional device.

  8. An Energy-Aware Runtime Management of Multi-Core Sensory Swarms.

    PubMed

    Kim, Sungchan; Yang, Hoeseok

    2017-08-24

    In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today's sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique.

  9. An Energy-Aware Runtime Management of Multi-Core Sensory Swarms

    PubMed Central

    Kim, Sungchan

    2017-01-01

    In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today’s sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique. PMID:28837094

  10. Two-dimensional molybdenum disulphide nanosheet-covered metal nanoparticle array as a floating gate in multi-functional flash memories

    NASA Astrophysics Data System (ADS)

    Han, Su-Ting; Zhou, Ye; Chen, Bo; Zhou, Li; Yan, Yan; Zhang, Hua; Roy, V. A. L.

    2015-10-01

    Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure.Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure. Electronic supplementary information (ESI) available: Energy-dispersive X-ray spectroscopy (EDS) spectra of the metal NPs, SEM image of MoS2 on Au NPs, erasing operations of the metal NPs-MoS2 memory device, transfer characteristics of the standard FET devices and Ag NP devices under programming operation, tapping-mode AFM height image of the fabricated MoS2 film for pristine MoS2 flash memory, gate signals used for programming the Au NPs-MoS2 and Pt NPs-MoS2 flash memories, and data levels recorded for 100 sequential cycles. See DOI: 10.1039/c5nr05054e

  11. High flux solar energy transformation

    DOEpatents

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  12. High flux solar energy transformation

    DOEpatents

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  13. Surface geology of the Jeptha Knob cryptoexplosion structure, Shelby County, Kentucky

    USGS Publications Warehouse

    Cressman, Earle Rupert

    1981-01-01

    The Jeptha Knob crytoexplosion structure, described by Bucher in 1925, was remapped in 1973 as part of the U.S. Geological Survey and the Kentucky Geological Survey cooperative mapping program. The knob is in the western part of the Blue Grass region. Hilltops in the rolling farmland adjacent to the knob are underlain by the nearly flat-lying Grant Lake and Callaway Creek Limestones of middle Late Ordovician age, and the valleys are cut in interbedded limestone and shale of the Clays Ferry Formation of late Middle and early Late Ordovician age. Precambrian basement is estimated to be 4,000 ft below the surface. The mapped area is 50 miles west of the crest of the Cincinnati arch; the regional dip is westward 16 ft per mile. The 38th parallel lineament is 50 miles to the south. The structure, about 14,000 ft in diameter, consists of a central area 6,300 ft in diameter of uplifted Clays Ferry Formation surrounded by a belt of annular faults that are divided into segments by radial faults. The grass structure of the Clays Ferry Formation is that of a broad dame, but same evidence indicates that, in detail, the beds are complexly folded. The limestone of the Clays Ferry is brecciated and infiltrated by limonite. The brecciation is confined to single beds, and there is no mixing of fragments from different beds. A small plug of the Logana Member of the Lexington Limestone (Middle Ordovician) has been upfaulted at least 700 ft and emplaced within the Clays Ferry. The central uplift is separated by high-angle and, in places, reverse faults from the belt of annular faulting. The concentric faults in the zone of annular faults are extensional, and the general aspect is of collapse and inward movement. Lenses of breccia are present along many of the concentric faults, but not along the radial faults. At least same of the breccia was injected from below. The youngest beds involved in the faulting are in the Bardstown Member of the Drakes Formation of late Late Ordovician age. The faulted and brecciated beds are overlain by nearly horizontal dolomite and shale of Early and Middle Silurian age. The basal 5 ft of the oldest Silurian unit, the Brassfield Formation, contains calcarenite and calcirudite composed, in large part, of locally derived fragments from the Upper Ordovician formations. The Jeptha Knob structure was formed in latest Late Ordovician or earliest Early Silurian time. At the time of formation, the area was either very slightly above or very slightly below sea level; the sediments were already largely indurated. At the onset of Silurian deposition, the area of the central uplift was probably a broad shallow depression not more than about 15 ft deep, possibly surrounded by a rim of Upper Ordovician rocks or rock fragments. The origin of the Jeptha Knob structure cannot be determined from the available data. Shatter cones and coesite, considered by many to be definitive criteria far origin by impact, have not been found. On the other hand, geophysical studies indicate that there is no coincident uplift of the basement, and there is no certain relation of Jeptha Knob to any obvious structural trend.

  14. Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-06-01

    53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.

  15. A multi-core fiber based interferometer for high temperature sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Song; Huang, Bo; Shu, Xuewen

    2017-04-01

    In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.

  16. Advanced Grid Simulator for Multi-Megawatt Power Converter Testing and Certification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koralewicz, Przemyslaw; Gevorgian, Vahan; Wallen, Robb

    2017-02-16

    Grid integration testing of inverter-coupled renewable energy technologies is an essential step in the qualification of renewable energy and energy storage systems to ensure the stability of the power system. New types of devices must be thoroughly tested and validated for compliance with relevant grid codes and interconnection requirements. For this purpose, highly specialized custom-made testing equipment is needed to emulate various types of realistic grid conditions that are required by certification bodies or for research purposes. For testing multi-megawatt converters, a high power grid simulator capable of creating controlled grid conditions and meeting both power quality and dynamic characteristicsmore » is needed. This paper describes the new grid simulator concept based on ABB's medium voltage ACS6000 drive technology that utilizes advanced modulation and control techniques to create an unique testing platform for various multi-megawatt power converter systems. Its performance is demonstrated utilizing the test results obtained during commissioning activities at the National Renewable Energy Laboratory in Colorado, USA.« less

  17. Development of Multi-Functional Voltage Restore System

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoshi; Ueda, Yoshinobu; Koganezawa, Takehisa; Ogihara, Yoshinori; Mori, Kenjiro; Fukazu, Naoaki

    Recently, with the dawn of the electric deregulation, the installation of distributed generation with power electronics device has grown. This current causes a greater concern of power quality, primarily voltage disturbance for power companies, and their interest in power quality is peaking. Utilities are also interested in keeping their customers satisfied, as well as keeping them on-line and creating more revenue for the utility. As a countermeasure against the above surroundings, a variety type of devices based on power electronics has been developed to protect customers' load from power line voltage disturbance. One of them is the series type voltage restore. The series device is an active device, designed to provide a pure sinusoidal load voltage at all times, correcting voltage disturbance. Series type device compensates for voltage anomalies by inserting the ‘missing’ voltage onto the line through insertion transformer and inverter. This paper shows the setting guideline of target level to compensate voltage disturbance, that is, voltage dip, voltage harmonics, voltage imbalance and voltage flicker, and the design approach of the prototype of series voltage restores to accomplish the required compensation level. The prototype system gives satisfactory compensation performance through evaluation tests, which confirm the validity and effectiveness of the system.

  18. Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials

    DTIC Science & Technology

    2014-07-28

    particle size of magnetite nanoparticles. The PI will continue to develop composites that could be utilized for developing high- bandwidth radio frequency...to improve the efficiency and decrease the size of the device. High performance stretchable magneto-dielectric materials can be accomplished using...nanoparticles oxidize at dimensions smaller than the critical size for superparamagnetic to ferromagnetic transition, which is essential for minimal

  19. Interferometer for the measurement of plasma density

    DOEpatents

    Jacobson, Abram R.

    1980-01-01

    An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.

  20. On a new species of Pavlova (Prymnesiophyceae) from China

    NASA Astrophysics Data System (ADS)

    Tseng, C. K.; Jiaofen, Chen; Zhefu, Zhang

    1992-03-01

    Pavlova viridis sp. nov. is described on the basis of light and electron microscope observations. The material was collected from the coast of haiyang county of Shandong, China. It is characterized by 1) yellowish green to green chloroplast, 2) rudimentary short flagellum 0.3 μm long and hook-shaped, 3) long flagellum with small spherical knob-scales, 4) absence of pyrenoid and stigma, and 5) marine habitat. This new species and P. salina seem to be most closely related to each other but their colour, the insertion of their three appendages, the shape of their knob scales, and their cell periplasts are quite different from one another.

  1. Age and growth of the knobbed whelk Busycon carica (Gmelin 1791) in South Carolina subtidal waters

    USGS Publications Warehouse

    Eversole, A.G.; Anderson, W.D.; Isely, J.J.

    2008-01-01

    Knobbed whelk, Busycon carica (Gmelin, 1791), age and growth were estimated using tagged and recaptured individuals (n = 396) from areas off South Carolina coastal islands. Recaptured whelks were at large an average of 298 d (4-2,640 d). Growth, an increase in shell length (SL), was evident in 24% of the recaptured whelks, whereas 29% of recaptured individuals were the same size as when released and 47% were smaller than the released size. Mean growth rate was <0.001 mm SL/d and 0.022 mm SL/d if decreases in SL were assumed to be zero. Smaller whelks (???90 mm SL) at large for over one year grew seven times faster than larger whelks. The von Bertalanffy growth model: SL1 = 159.5(1 - e-0.0765(t+0.4162)), was developed from the mark - recapture whelks exhibiting growth. Based on a South Carolina minimum legal size of 102 mm SL, whelks recruit into the fishery at 13 y of age. The longevity, large size at maturity and slow growth suggest the potential for over harvest of knobbed whelk. Future whelk management plans may wish to consider whether economically viable commercial harvest can be sustainable.

  2. Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays.

    PubMed

    Fernandes, Syrena C; Wilson, Daniel J; Mace, Charles R

    2017-03-09

    Paper wicks fluids autonomously due to capillary action. By patterning paper with hydrophobic barriers, the transport of fluids can be controlled and directed within a layer of paper. Moreover, stacking multiple layers of patterned paper creates sophisticated three-dimensional microfluidic networks that can support the development of analytical and bioanalytical assays. Paper-based microfluidic devices are inexpensive, portable, easy to use, and require no external equipment to operate. As a result, they hold great promise as a platform for point-of-care diagnostics. In order to properly evaluate the utility and analytical performance of paper-based devices, suitable methods must be developed to ensure their manufacture is reproducible and at a scale that is appropriate for laboratory settings. In this manuscript, a method to fabricate a general device architecture that can be used for paper-based immunoassays is described. We use a form of additive manufacturing (multi-layer lamination) to prepare devices that comprise multiple layers of patterned paper and patterned adhesive. In addition to demonstrating the proper use of these three-dimensional paper-based microfluidic devices with an immunoassay for human chorionic gonadotropin (hCG), errors in the manufacturing process that may result in device failures are discussed. We expect this approach to manufacturing paper-based devices will find broad utility in the development of analytical applications designed specifically for limited-resource settings.

  3. The So-called 'Face on Mars' at Night

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    This pair of THEMIS infrared images shows the so-called 'face on Mars' landform viewed during both the day and night. The nighttime THEMIS IR image was acquired on Oct. 24, 2002; the daytime image was originally released on July 24, 2002. Both images are of THEMIS's 9th IR band (12.57 microns), and they have been geometrically projected for image registration. The 'face on Mars' is located in the northern plains of Mars near 40o N, 10o W (350 o E). This knob can be seen in the daytime image because of the temperature differences between the sunlit (warm and bright) and shadowed (cold and dark) slopes. The temperature in the daytime scene ranges from -50 oC (darkest) to -15 oC (brightest). At night many of the hills and knobs in this region are difficult to detect because the effects of heating and shadowing on the slopes are no longer present. The temperatures at night vary from approximately -90 oC (darkest) to -75 oC (warmest). The nighttime temperature differences are due primarily to differences in the abundance of rocky materials that retain their heat at night and stay warm. Fine grained dust and sand cools of more rapidly at night. The circular rims and eject of many of the craters in this region are warm at night, showing that rocks are still present on the steep walls inside the craters and in the ejecta material that was blasted out when the craters formed. Some craters have cold (dark) material on their floors in the night IR image, indicating that fine-grained material is accumulating within the craters. Many knobs and hills, including the 'face' have rocky (warm at night) material on their slopes and ridges.

    The THEMIS infrared camera provides an excellent regional view of Mars - these images cover an area 32 kilometers (20 miles) by approximately 50 kilometers (30 miles) at a resolution of 100 meters per picture element ('pixel'). The scenes are tilted differently because the Odyssey orbit is inclined by 3o from the true north-south direction, and the spacecraft is flying from north-to-south on the day side and from south-to-north on the night side of the planet. These images provide a broad perspective of the landscape and geology of the Cydonia region, showing numerous knobs and hills that have been eroded into a remarkable array of different shapes. In these views the Cydonia region is seen to numerous interesting knobs and mesas that are similar in many ways to the knob named the 'face'. The 3-km long 'face' knob was first imaged by the Viking spacecraft in the 1970's and was seen by some to resemble a face carved into the rocks of Mars. Since that time the Mars Orbiter Camera on the Mars Global Surveyor spacecraft and the THEMIS visible and infrared cameras on Mars Odyssey have provided detailed views of this hill that clearly show that it is a normal geologic feature with slopes and ridges carved by eons of wind and downslope motion due to gravity. Many of the knobs in Cydonia, including the 'face', have several flat ledges partway up the hill slopes. These ledges are made of more resistant layers of rock and are the last remnants of layers that once were continuous across this entire region. Erosion has completely removed these layers in most places, leaving behind only the small isolated hills and knobs seen today.

    Note: this THEMIS infrared image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Analysis of vibration characteristics of opening device for deepwater robot cabin door and study of its structural optimization design

    NASA Astrophysics Data System (ADS)

    Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations of key structure locations.

  5. Design of a Multi-Level/Analog Ferroelectric Memory Device

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2006-01-01

    Increasing the memory density and utilizing the dove1 characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used as a reference to determine the amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. It is predicted that each memory cell may be able to store 8 bits or more. The design is based on data taken from actual ferroelectric transistors. Although the circuit has not been fabricated, a prototype circuit is now under construction. The design of this circuit is different than multi-level FLASH or silicon transistor circuits. The differences between these types of circuits are described in this paper. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.

  6. Silk-based delivery systems of bioactive molecules

    PubMed Central

    Numata, Keiji; Kaplan, David L

    2010-01-01

    Silks are biodegradable, biocompatible, self-assemblying proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes are reviewed. PMID:20298729

  7. Scattered light in a DMD based multi-object spectrometer

    NASA Astrophysics Data System (ADS)

    Fourspring, Kenneth D.; Ninkov, Zoran; Kerekes, John P.

    2010-07-01

    The DMD (Digital Micromirror Device) has an important future in both ground and space based multi-object spectrometers. A series of laboratory measurements have been performed to determine the scattered light properties of a DMD. The DMD under test had a 17 μm pitch and 1 μm gap between adjacent mirrors. Prior characterization of this device has focused on its use in DLP (TI Digital Light Processing) projector applications in which a whole pixel is illuminated by a uniform collimated source. The purpose of performing these measurements is to determine the limiting signal to noise ratio when utilizing the DMD as a slit mask in a spectrometer. The DMD pixel was determined to scatter more around the pixel edge and central via, indicating the importance of matching the telescope point spread function to the DMD. Also, the generation of DMD tested here was determined to have a significant mirror curvature. A maximum contrast ratio was determined at several wavelengths. Further measurements are underway on a newer generation DMD device, which has a smaller mirror pitch and likely different scatter characteristics. A previously constructed instrument, RITMOS (RIT Multi-Object Spectrometer) will be used to validate these scatter models and signal to noise ratio predications through imaging a star field.

  8. NASA Tech Briefs, June 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Device for Measuring Low Flow Speed in a Duct, Measuring Thermal Conductivity of a Small Insulation Sample, Alignment Jig for the Precise Measurement of THz Radiation, Autoignition Chamber for Remote Testing of Pyrotechnic Devices, Microwave Power Combiners for Signals of Arbitrary Amplitude, Synthetic Foveal Imaging Technology, Airborne Antenna System for Minimum-Cycle-Slip GPS Reception, Improved Starting Materials for Back-Illuminated Imagers, Multi-Modulator for Bandwidth-Efficient Communication, Some Improvements in Utilization of Flash Memory Devices, GPS/MEMS IMU/Microprocessor Board for Navigation, T/R Multi-Chip MMIC Modules for 150 GHz, Pneumatic Haptic Interfaces, Device Acquires and Retains Rock or Ice Samples, Cryogenic Feedthrough Test Rig, Improved Assembly for Gas Shielding During Welding or Brazing, Two-Step Plasma Process for Cleaning Indium Bonding Bumps, Tool for Crimping Flexible Circuit Leads, Yb14MnSb11 as a High-Efficiency Thermoelectric Material, Polyimide-Foam/Aerogel Composites for Thermal Insulation, Converting CSV Files to RKSML Files, Service Management Database for DSN Equipment, Chemochromic Hydrogen Leak Detectors, Compatibility of Segments of Thermoelectric Generators, Complementary Barrier Infrared Detector, JPL Greenland Moulin Exploration Probe, Ultra-Lightweight Self-Deployable Nanocomposite Structure for Habitat Applications, and Room-Temperature Ionic Liquids for Electrochemical Capacitors.

  9. Hybrid photovoltaic and thermoelectric module for high concentration solar system

    NASA Astrophysics Data System (ADS)

    Tamaki, Ryo; Toyoda, Takeshi; Tamura, Yoichi; Matoba, Akinari; Minamikawa, Toshiharu; Tokuda, Masayuki; Masui, Megumi; Okada, Yoshitaka

    2017-09-01

    A photovoltaic (PV) and thermoelectric (TE) hybrid module was developed for application to high concentration solar systems. The waste heat from the solar cells under concentrated light illumination was utilized to generate additional electricity by assembling TE devices below the multi-junction solar cells (MJSCs). Considering the high operating temperature of the PV and TE hybrid module compared with conventional concentrator PV modules, the TE device could compensate a part of the MJSC efficiency degradation at high temperature. The performance investigation clarified the feasibility of the hybrid PV and TE module under highly concentrated sunlight illumination.

  10. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    NASA Astrophysics Data System (ADS)

    Arneodo, F.; Benabderrahmane, M. L.; Bruno, G.; Conicella, V.; Di Giovanni, A.; Fawwaz, O.; Messina, M.; Candela, A.; Franchi, G.

    2018-06-01

    We present the performances and characterization of an array made of S13370-3050CN (VUV4 generation) Multi-Pixel Photon Counters manufactured by Hamamatsu and equipped with a low power consumption preamplifier operating at liquid xenon temperature (∼ 175 K). The electronics is designed for the readout of a matrix of maximum dimension of 8 × 8 individual photosensors and it is based on a single operational amplifier. The detector prototype presented in this paper utilizes the Analog Devices AD8011 current feedback operational amplifier, but other models can be used depending on the application. A biasing correction circuit has been implemented for the gain equalization of photosensors operating at different voltages. The results show single photon detection capability making this device a promising choice for future generation of large scale dark matter detectors based on liquid xenon, such as DARWIN.

  11. Smart substrates: Making multi-chip modules smarter

    NASA Astrophysics Data System (ADS)

    Wunsch, T. F.; Treece, R. K.

    1995-05-01

    A novel multi-chip module (MCM) design and manufacturing methodology which utilizes active CMOS circuits in what is normally a passive substrate realizes the 'smart substrate' for use in highly testable, high reliability MCMS. The active devices are used to test the bare substrate, diagnose assembly errors or integrated circuit (IC) failures that require rework, and improve the testability of the final MCM assembly. A static random access memory (SRAM) MCM has been designed and fabricated in Sandia Microelectronics Development Laboratory in order to demonstrate the technical feasibility of this concept and to examine design and manufacturing issues which will ultimately determine the economic viability of this approach. The smart substrate memory MCM represents a first in MCM packaging. At the time the first modules were fabricated, no other company or MCM vendor had incorporated active devices in the substrate to improve manufacturability and testability, and thereby improve MCM reliability and reduce cost.

  12. Human Factors Approach to Comparative Usability of Hospital Manual Defibrillators.

    PubMed

    Fidler, Richard; Johnson, Meshell

    2016-04-01

    Equipment-related issues have recently been cited as a significant contributor to the suboptimal outcomes of resuscitation management. A systematic evaluation of the human-device interface was undertaken to evaluate the intuitive nature of three different defibrillators. Devices tested were the Physio-Control LifePak 15, the Zoll R Series Plus, and the Philips MRx. A convenience sample of 73 multidisciplinary health care providers from 5 different hospitals participated in this study. All subjects' performances were evaluated without any training on the devices being studied to assess the intuitiveness of the user interface to perform the functions of delivering an Automated External Defibrillator (AED) shock, a manual defibrillation, pacing to achieve 100% capture, and synchronized cardioversion on a rhythm simulator. Times to deliver an AED shock were fastest with the Zoll, whereas the Philips had the fastest times to deliver a manual defibrillation. Subjects took the least time to attain 100% capture for pacing with the Physio-Control device. No differences in performance times were seen with synchronized cardioversion among the devices. Human factors issues uncovered during this study included a preference for knobs over soft keys and a desire for clarity in control panel design. This study demonstrated no clearly superior defibrillator, as each of the models exhibited strengths in different areas. When asked their defibrillator preference, 67% of subjects chose the Philips. This comparison of user interfaces of defibrillators in simulated situations allows the assessment of usability that can provide manufacturers and educators with feedback about defibrillator implementation for these critical care devices. Published by Elsevier Ireland Ltd.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasheninnikov, Sergei I.; Angus, Justin; Lee, Wonjae

    The goal of the Edge Simulation Laboratory (ESL) multi-institutional project is to advance scientific understanding of the edge plasma region of magnetic fusion devices via a coordinated effort utilizing modern computing resources, advanced algorithms, and ongoing theoretical development. The UCSD team was involved in the development of the COGENT code for kinetic studies across a magnetic separatrix. This work included a kinetic treatment of electrons and multiple ion species (impurities) and accurate collision operators.

  14. Device, Algorithm and Integrated Modeling Research for Performance-Drive Multi-Modal Optical Sensors

    DTIC Science & Technology

    2012-12-17

    to!feature!aided!tracking! using !spectral! information .! ! !iii! •! A!novel!technique!for!spectral!waveband!selection!was!developed!and! used !as! part! of ... of !spectral! information ! using !the!tunable!single;pixel!spectrometer!concept.! •! A! database! was! developed! of ! spectral! reflectance! measurements...exploring! the! utility! of ! spectral! and! polarimetric! information !to!help!with!the!vehicle!tracking!application.!Through!the! use ! of ! both

  15. Advanced X-ray Imaging Crystal Spectrometer for Magnetic Fusion Tokamak Devices

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bog, M. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.

    2008-03-01

    An advanced X-ray imaging crystal spectrometer is currently under development using a segmented position sensitive detector and time-to-digital converter (TDC) based delay-line readout electronics for burning plasma diagnostics. The proposed advanced XICS utilizes an eight-segmented position sensitive multi-wire proportional counter and supporting electronics to increase the spectrometer performance includes the photon count-rate capability and spatial resolution.

  16. Low-cost standalone multi-sensor thermometer for long time measurements

    NASA Astrophysics Data System (ADS)

    Kumchaiseemak, Nakorn; Hormwantha, Tongchai; Wungmool, Piyachat; Suwanatus, Suchat; Kanjai, Supaporn; Lertkitthaworn, Thitima; Jutamanee, Kanapol; Luengviriya, Chaiya

    2017-09-01

    We present a portable device for long-time recording of the temperature at multiple measuring points. Thermocouple wires are utilized as the sensors attached to the objects. To minimize the production cost, the measured voltage signals are relayed via a multiplexer to a set of amplifiers and finally to a single microcontroller. The observed temperature and the corresponding date and time, obtained from a real-time clock circuit, are recorded in a memory card for further analysis. The device is powered by a rechargeable battery and placed in a rainproof container, thus it can operate under outdoor conditions. A demonstration of the device usage in a mandarin orange cultivation field of the Royal project, located in the northern Thailand, is illustrated.

  17. Mineral resource potential map of the Dolly Ann Roadless Area, Alleghany County, Virginia

    USGS Publications Warehouse

    Lesure, Frank G.; Jones, Jay G.

    1983-01-01

    The Dolly Ann Roadless Area comprises 7,900 acres (3,200 ha) in the George Washington National Forest in the Valley and Ridge physiographic province of west-central Virginia. The area is at the southern ·end of Warm Springs Mountain in Alleghany County just northeast of Covington, the county seat (index map). U.S. Highway 220 forms part of the western boundary, and U.S. Forest Service Road 125, which parallels Pounding Mill Creek, forms the eastern boundary. The principal streams draining the area are Pounding Mill Creek, Dry Run, and Roaring Run, all tributaries of the Jackson River. The highest point in the area is Big Knob at the north end, 4,072 ft (1241 m) above sea level; the lowest points, about 1,400 ft (427 m) above sea level, are at the south side, along Dry Run and Pounding Mill Creek. In general, the hill slopes are steep and heavily wooded with second- or third-growth hardwoods and scattered pine and hemlock. Dolly Ann Hollow near the east end of the area is a steep, boulder-strewn gorge, quite picturesque, but containing no good trails. A good trail up Dry Run connects a trail crossing the ridge between Bald Knob and Big Knob. No other trails cross the area.

  18. Silk-based delivery systems of bioactive molecules.

    PubMed

    Numata, Keiji; Kaplan, David L

    2010-12-30

    Silks are biodegradable, biocompatible, self-assembling proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes is reviewed. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Evaluating the bioreducing potential of the leaves, knobs and roots of Zanthoxylum capense (small knobwood) for the synthesis of silver nanoparticles, applicable to in vitro fungal contamination control

    NASA Astrophysics Data System (ADS)

    Bodede, Olusola; Shaik, Shakira; Govinden, Roshini; Moodley, Roshila

    2017-12-01

    In this study we report on the green synthesis of silver nanoparticles using extracts from selected morphological parts of Zanthoxylum capense. UV-vis spectra of the biosynthesised silver nanoparticles (AgNPs) revealed absorption peaks at around 450 nm, indicative of the nanoparticles’ surface plasmon resonance, whilst infrared vibrational frequencies indicated the presence of flavonoids, alkaloids, and free and bonded sugars which could be responsible for the reduction and stabilisation of the AgNPs. 1H-NMR fingerprinting of the aqueous knob extract confirmed the active bio-reducing phytochemical of the knobs to be 6-O-p-coumaroyl-β-D-glucopyranoside. The nature, shape and morphology of the biosynthesised AgNPs were examined using transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) analysis. Z. capense AgNPs were mostly spherical in shape with particle sizes in the range of 4-28 nm, 7-20 nm and 4-32 nm for leaves, knobs and roots, respectively. Leaf extracts were the most efficient in the synthesis of AgNPs with an average yield of 0.027 g AgNPs per g of plant (dry mass). The AgNPs were more effective than sodium hypochlorite (NaOCl) and sodium dichloroisocyanurate (NaDCC) in the control of in vitro fungal contamination in nodal explants of Z. capense up to two weeks. Shoots induced from the surface sterilised explants were further used for shoot multiplication on benzyl aminopurine (BAP) and kinetin (KIN). BAP at 0.5 mg l-1 gave the highest percentage (88.6%) of explants bearing shoots with an average of 4.78 shoots per explant. A total of 15 fungal endophyte strains associated with Z. capense were identified using molecular methods.

  20. Karyotype variability in tropical maize sister inbred lines and hybrids compared with KYS standard line

    PubMed Central

    Mondin, Mateus; Santos-Serejo, Janay A.; Bertäo, Mônica R.; Laborda, Prianda; Pizzaia, Daniel; Aguiar-Perecin, Margarida L. R.

    2014-01-01

    Maize karyotype variability has been extensively investigated. The identification of maize somatic and pachytene chromosomes has improved with the development of fluorescence in situ hybridization (FISH) using tandemly repeated DNA sequences as probes. We identified the somatic chromosomes of sister inbred lines that were derived from a tropical flint maize population (Jac Duro [JD]), and hybrids between them, using FISH probes for the 180-bp knob repeat, centromeric satellite (CentC), centromeric satellite 4 (Cent4), subtelomeric clone 4-12-1, 5S ribosomal DNA and nucleolus organizing region DNA sequences. The observations were integrated with data based on C-banded mitotic metaphases and conventional analysis of pachytene chromosomes. Heterochromatic knobs visible at pachynema were coincident with C-bands and 180-bp FISH signals on somatic chromosomes, and most of them were large. Variation in the presence of some knobs was observed among lines. Small 180-bp knob signals were invariant on the short arms of chromosomes 1, 6, and 9. The subtelomeric 4-12-1 signal was also invariant and useful for identifying some chromosomes. The centromere location of chromosomes 2 and 4 differed from previous reports on standard maize lines. Somatic chromosomes of a JD line and the commonly used KYS line were compared by FISH in a hybrid of these lines. The pairing behavior of chromosomes 2 and 4 at pachytene stage in this hybrid was investigated using FISH with chromosome-specific probes. The homologues were fully synapsed, including the 5S rDNA and CentC sites on chromosome 2, and Cent4 and subtelomeric 4-12-1 sites on chromosome 4. This suggests that homologous chromosomes could pair through differential degrees of chromatin packaging in homologous arms differing in size. The results contribute to current knowledge of maize global diversity and also raise questions concerning the meiotic pairing of homologous chromosomes possibly differing in their amounts of repetitive DNA. PMID:25352856

  1. MULTI-CHANNEL PULSE HEIGHT ANALYZER

    DOEpatents

    Boyer, K.; Johnstone, C.W.

    1958-11-25

    An improved multi-channel pulse height analyzer of the type where the device translates the amplitude of each pulse into a time duration electrical quantity which is utilized to control the length of a train of pulses forwarded to a scaler is described. The final state of the scaler for any one train of pulses selects the appropriate channel in a magnetic memory in which an additional count of one is placed. The improvement consists of a storage feature for storing a signal pulse so that in many instances when two signal pulses occur in rapid succession, the second pulse is preserved and processed at a later time.

  2. Combined pulse-oximeter-NIRS system for biotissue diagnostics

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, Vladimir A.

    2005-08-01

    Multi-wavelength (670, 805, 848 and 905 nm), multi-detector device for non-invasive measurement of biochemical components concentration in human or animal tissues, combining the methods of conventional pulse-oximetry and near infrared spectroscopy, is developed. The portable and clinically applicable system allows to measure heart pulse rate, oxygen saturation of arterial hemoglobin (pulse-oximetry method) and local absolute concentration of oxyhemoglobin, deoxyhemoglobin and oxidized cytochrome aa3 or other IR absorbed compounds (NIRS method). The system can be applied in monitoring of oxygen availability and utilization by the brain in neonatal and adults, neuro- traumatology, intensive care medicine, transplantation and plastic surgery, in sport, high-altitude and aviation medicine.

  3. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.

    PubMed

    Toley, Bhushan J; Wang, Jessica A; Gupta, Mayuri; Buser, Joshua R; Lafleur, Lisa K; Lutz, Barry R; Fu, Elain; Yager, Paul

    2015-03-21

    Failure to utilize valving and automation techniques has restricted the complexity of fluidic operations that can be performed in paper microfluidic devices. We developed a toolkit of paper microfluidic valves and methods for automatic valve actuation using movable paper strips and fluid-triggered expanding elements. To the best of our knowledge, this is the first functional demonstration of this valving strategy in paper microfluidics. After introduction of fluids on devices, valves can actuate automatically after a) a certain period of time, or b) the passage of a certain volume of fluid. Timing of valve actuation can be tuned with greater than 8.5% accuracy by changing lengths of timing wicks, and we present timed on-valves, off-valves, and diversion (channel-switching) valves. The actuators require ~30 μl fluid to actuate and the time required to switch from one state to another ranges from ~5 s for short to ~50 s for longer wicks. For volume-metered actuation, the size of a metering pad can be adjusted to tune actuation volume, and we present two methods - both methods can achieve greater than 9% accuracy. Finally, we demonstrate the use of these valves in a device that conducts a multi-step assay for the detection of the malaria protein PfHRP2. Although slightly more complex than devices that do not have moving parts, this valving and automation toolkit considerably expands the capabilities of paper microfluidic devices. Components of this toolkit can be used to conduct arbitrarily complex, multi-step fluidic operations on paper-based devices, as demonstrated in the malaria assay device.

  4. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices

    PubMed Central

    Toley, Bhushan J.; Wang, Jessica A.; Gupta, Mayuri; Buser, Joshua R.; Lafleur, Lisa K.; Lutz, Barry R.; Fu, Elain; Yager, Paul

    2015-01-01

    Failure to utilize valving and automation techniques has restricted the complexity of fluidic operations that can be performed in paper microfluidic devices. We developed a toolkit of paper microfluidic valves and methods for automatic valve actuation using movable paper strips and fluid-triggered expanding elements. To the best of our knowledge, this is the first functional demonstration of this valving strategy in paper microfluidics. After introduction of fluids on devices, valves can actuate automatically a) after a certain period of time, or b) after the passage of a certain volume of fluid. Timing of valve actuation can be tuned with greater than 8.5% accuracy by changing lengths of timing wicks, and we present timed on-valves, off-valves, and diversion (channel-switching) valves. The actuators require ~30 μl fluid to actuate and the time required to switch from one state to another ranges from ~5 s for short to ~50s for longer wicks. For volume-metered actuation, the size of a metering pad can be adjusted to tune actuation volume, and we present two methods – both methods can achieve greater than 9% accuracy. Finally, we demonstrate the use of these valves in a device that conducts a multi-step assay for the detection of the malaria protein PfHRP2. Although slightly more complex than devices that do not have moving parts, this valving and automation toolkit considerably expands the capabilities of paper microfluidic devices. Components of this toolkit can be used to conduct arbitrarily complex, multi-step fluidic operations on paper-based devices, as demonstrated in the malaria assay device. PMID:25606810

  5. Big Crater as Viewed by Pathfinder Lander - Anaglyph

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The 'Big Crater' is actually a relatively small Martian crater to the southeast of the Mars Pathfinder landing site. It is 1500 meters (4900 feet) in diameter, or about the same size as Meteor Crater in Arizona. Superimposed on the rim of Big Crater (the central part of the rim as seen here) is a smaller crater nicknamed 'Rimshot Crater.' The distance to this smaller crater, and the nearest portion of the rim of Big Crater, is 2200 meters (7200 feet). To the right of Big Crater, south from the spacecraft, almost lost in the atmospheric dust 'haze,' is the large streamlined mountain nicknamed 'Far Knob.' This mountain is over 450 meters (1480 feet) tall, and is over 30 kilometers (19 miles) from the spacecraft. Another, smaller and closer knob, nicknamed 'Southeast Knob' can be seen as a triangular peak to the left of the flanks of the Big Crater rim. This knob is 21 kilometers (13 miles) southeast from the spacecraft.

    The larger features visible in this scene - Big Crater, Far Knob, and Southeast Knob - were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The scene includes rocky ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of South Twin Peak. The largest rock in the nearfield, just left of center in the foreground, nicknamed 'Otter', is about 1.5 meters (4.9 feet) long and 10 meters (33 feet) from the spacecraft.

    This view of Big Crater was produced by combining 6 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    The anaglyph view of Big Crater was produced by combining the left and right eye mosaics (above) by assigning the left eye view to the red color plane and the right eye view to the green and blue color planes (cyan), to produce a stereo anaglyph mosaic. This mosaic can be viewed in 3-D on your computer monitor or in color print form by wearing red-blue 3-D glasses.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  6. Integrated Micro-Optics for Microfluidic Detection.

    PubMed

    Kazama, Yuto; Hibara, Akihide

    2016-01-01

    A method of embedding micro-optics into a microfluidic device was proposed and demonstrated. First, the usefulness of embedded right-angle prisms was demonstrated in microscope observation. Lateral-view microscopic observation of an aqueous dye flow in a 100-μm-sized microchannel was demonstrated. Then, the embedded right-angle prisms were utilized for multi-beam laser spectroscopy. Here, crossed-beam thermal lens detection of a liquid sample was applied to glucose detection.

  7. Gyroharmonic converter as a multi-megawatt RF driver for NLC: Beam source considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.; Hirshfield, J.L.

    1995-06-01

    A multi-megawatt 14.28 GHz gyroharmonic converter under construction at Yale University depends critically on the parameters of an electron beam prepared using a cyclotron autoresonance accelerator (CARA). This paper extends prior analysis of CARA to find an approximate constant-of-the-motion, and to give limits to the beam energy from CARA that can be utilized in a harmonic converter. It is also shown that particles are strongly phase trapped during acceleration in CARA, and thus are insensitive to deviations from exact autoresonance. This fact greatly simplifies construction of the up-tapered guide magnetic field in the device, and augurs well for production ofmore » high-quality multi-megawatt beams using CARA. {copyright} 1995 {ital American Institute of Physics}.« less

  8. Multi-functional Chassis-based Antennas Using Characteristic Mode Theory

    NASA Astrophysics Data System (ADS)

    Kishor, Krishna Kumar

    Designing antennas for handheld devices is quite challenging primarily due to the limited real-estate available, and the fact that internal antennas occupy a large volume. With the need to support a variety of radio systems such as GSM, LTE and WiFi that operate in a wide range of frequency bands, multi-band, wideband and frequency reconfigurable antenna designs have been explored in the literature. Moreover, to support higher data rates, the Long Term Evolution Advanced (LTE-A) standard has been introduced, which requires supporting multiple input multiple output (MIMO) antenna technology and carrier aggregation (CA) on a handheld device. Both of these benefit from the use of multiple antennas or multi-port antennas, but with the limited space available, adding more internal antennas may not be easily possible. Additionally, to realize the benefits of these technologies the multiple antenna ports have to be well isolated from each other. This thesis explores the utilization of the ground plane (or chassis) of a handheld device as an antenna to meet some of these challenges. To achieve this, the theory of characteristic modes (TCM) for conducting bodies is relied upon, to determine the eigen-currents supported on the chassis. The orthogonality properties of these eigencurrents, and their corresponding far-field eigenfields (electric and magnetic) makes TCM a good tool to design multiple antennas with high isolation. This is demonstrated in this thesis via the design of four chassis-based antennas that have different functionalities. The first design is a two port MIMO antenna utilizing a combination of eigenmodes to achieve port isolation. The second design is a pattern reconfigurable MIMO antenna that can operate in two states at 2.28 GHz. The third design is a four port antenna that operates in three frequency bands, with two bands below 1 GHz for CA and the remaining two ports for MIMO communication. The final design is a five port antenna that supports MIMO operation in two frequency bands along with an additional port for CA in the third band. The four designs have been experimentally verified, validating the use of TCM as a versatile tool to design multi-functional chassis-based antennas.

  9. Ankylosaurid dinosaur tail clubs evolved through stepwise acquisition of key features.

    PubMed

    Arbour, Victoria M; Currie, Philip J

    2015-10-01

    Ankylosaurid ankylosaurs were quadrupedal, herbivorous dinosaurs with abundant dermal ossifications. They are best known for their distinctive tail club composed of stiff, interlocking vertebrae (the handle) and large, bulbous osteoderms (the knob), which may have been used as a weapon. However, tail clubs appear relatively late in the evolution of ankylosaurids, and seemed to have been present only in a derived clade of ankylosaurids during the last 20 million years of the Mesozoic Era. New evidence from mid Cretaceous fossils from China suggests that the evolution of the tail club occurred at least 40 million years earlier, and in a stepwise manner, with early ankylosaurids evolving handle-like vertebrae before the distal osteoderms enlarged and coossified to form a knob. © 2015 Anatomical Society.

  10. Performance Measurement of a Multi-Level/Analog Ferroelectric Memory Device Design

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2007-01-01

    Increasing the memory density and utilizing the unique characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes the characterization of a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used a reference to determinethe amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. This paper presents measurements of an actual prototype memory cell. This prototype is not a complete implementation of a device, but instead, a prototype of the storage and retrieval portion of an actual device. The performance of this prototype is presented with the projected performance of the overall device. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.

  11. Step-response of a torsional device with multiple discontinuous non-linearities: Formulation of a vibratory experiment

    NASA Astrophysics Data System (ADS)

    Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra

    2016-03-01

    A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.

  12. Magnetosensitive e-skins with directional perception for augmented reality

    PubMed Central

    Cañón Bermúdez, Gilbert Santiago; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Lebanov, Ana; Bischoff, Lothar; Kaltenbrunner, Martin; Fassbender, Jürgen; Schmidt, Oliver G.; Makarov, Denys

    2018-01-01

    Electronic skins equipped with artificial receptors are able to extend our perception beyond the modalities that have naturally evolved. These synthetic receptors offer complimentary information on our surroundings and endow us with novel means of manipulating physical or even virtual objects. We realize highly compliant magnetosensitive skins with directional perception that enable magnetic cognition, body position tracking, and touchless object manipulation. Transfer printing of eight high-performance spin valve sensors arranged into two Wheatstone bridges onto 1.7-μm-thick polyimide foils ensures mechanical imperceptibility. This resembles a new class of interactive devices extracting information from the surroundings through magnetic tags. We demonstrate this concept in augmented reality systems with virtual knob-turning functions and the operation of virtual dialing pads, based on the interaction with magnetic fields. This technology will enable a cornucopia of applications from navigation, motion tracking in robotics, regenerative medicine, and sports and gaming to interaction in supplemented reality. PMID:29376121

  13. Large Scale Document Inversion using a Multi-threaded Computing System

    PubMed Central

    Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won

    2018-01-01

    Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. CCS Concepts •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations. PMID:29861701

  14. Large Scale Document Inversion using a Multi-threaded Computing System.

    PubMed

    Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won

    2017-06-01

    Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations.

  15. Tomaculocystis corpulenta n. gen., n. sp. (Apicomplexa: Eugregarinorida) parasitizing the little yellow cockroach, Cariblatta lutea (Blattodea: Ectobiidae), in Alabama and Florida with recognition of Tomaculocystis cylindrosa n. comb. and Tomaculocystis mukundai n. comb. parasitizing ectobiid cockroaches in India.

    PubMed

    Clopton, Richard E

    2015-02-01

    Tomaculocystis corpulenta n. gen., n. sp. (Apicomplexa: Eugregarinorida: Septatorina: Gregarinidae) is described from populations of the little yellow cockroach, Cariblatta lutea (Blattodea: Ectobiidae), established in laboratory culture from samples collected in Alabama and Florida. Tomaculocystis n. gen. are differentiated from other members of Gregarina by a markedly elliptoid gametocyst inside a persistent, lomentiform hyaline epicyst; developmental organization and growth of the spore tubes from gametocyst surface tumidi; and dehiscence by extrusion of non-chain forming oocysts through spore tubes that barely extend beyond the epicyst wall. Gregarina cylindrosa, Gregarina discocephala, and Gregarina mukundai are recognized as members of Tomaculocystis, and G. cylindrosa is recognized as the senior synonym of G. discocephala. Thus, Tomaculocystis cylindrosa n. comb. and Tomaculocystis mukundai n. comb. are formed. Species of Tomaculocystis are distinguished based on gamont deutomerite and oocyst shape and size. The oocysts of T. corpulenta are broadly dolioform, lack 4 polar knobs, and possess distinct, unique polar plates. Oocysts of all other known species in the genus are more oblong in shape, possess 4 polar knobs, and lack the distinct polar plates observed in the oocysts of T. corpulenta. Host utilization and geographic distribution among gregarine genera parasitizing the cockroach family Ectobiidae reveal a pattern of host-parasite specificity linking gregarine genera with ectobiidid subfamilies. Overall patterns suggest a hypothesis of European endemicy for Gamocystis, but hypotheses for the origin and radiation of Tomaculocystis or species of Gregarina infecting cockroaches are confounded by the cosmopolitan spread of pest cockroach species among humans.

  16. Multi-factor authentication using quantum communication

    DOEpatents

    Hughes, Richard John; Peterson, Charles Glen; Thrasher, James T.; Nordholt, Jane E.; Yard, Jon T.; Newell, Raymond Thorson; Somma, Rolando D.

    2018-02-06

    Multi-factor authentication using quantum communication ("QC") includes stages for enrollment and identification. For example, a user enrolls for multi-factor authentication that uses QC with a trusted authority. The trusted authority transmits device factor information associated with a user device (such as a hash function) and user factor information associated with the user (such as an encrypted version of a user password). The user device receives and stores the device factor information and user factor information. For multi-factor authentication that uses QC, the user device retrieves its stored device factor information and user factor information, then transmits the user factor information to the trusted authority, which also retrieves its stored device factor information. The user device and trusted authority use the device factor information and user factor information (more specifically, information such as a user password that is the basis of the user factor information) in multi-factor authentication that uses QC.

  17. Nano-array integrated monolithic devices: toward rational materials design and multi-functional performance by scalable nanostructures assembly

    DOE PAGES

    Wang, Sibo; Ren, Zheng; Guo, Yanbing; ...

    2016-03-21

    We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less

  18. Nano-array integrated monolithic devices: toward rational materials design and multi-functional performance by scalable nanostructures assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sibo; Ren, Zheng; Guo, Yanbing

    We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less

  19. Local wall heat flux/temperature meter for convective flow and method of utilizing same

    DOEpatents

    Boyd, Ronald D.; Ekhlassi, Ali; Cofie, Penrose

    2004-11-30

    According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.

  20. Local wall heat flux/temperature meter for convective flow and method of utilizing same

    NASA Technical Reports Server (NTRS)

    Cofie, Penrose (Inventor); Ekhlassi, Ali (Inventor); Boyd, Ronald D. (Inventor)

    2004-01-01

    According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.

  1. Supplementing biomechanical modeling with EMG analysis

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Jagodnik, Kathleen; Crentsil, Lawton; Humphreys, Bradley; Funk, Justin; Gallo, Christopher; Thompson, William; DeWitt, John; Perusek, Gail

    2016-01-01

    It is well established that astronauts experience musculoskeletal deconditioning when exposed to microgravity environments for long periods of time. Spaceflight exercise is used to counteract these effects, and the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS) has been effective in minimizing musculoskeletal losses. However, the exercise devices of the new exploration vehicles will have requirements of limited mass, power and volume. Because of these limitations, there is a concern that the exercise devices will not be as effective as ARED in maintaining astronaut performance. Therefore, biomechanical modeling is being performed to provide insight on whether the small Multi-Purpose Crew Vehicle (MPCV) device, which utilizes a single-strap design, will provide sufficient physiological loading to maintain musculoskeletal performance. Electromyography (EMG) data are used to supplement the biomechanical model results and to explore differences in muscle activation patterns during exercises using different loading configurations.

  2. Control of ITBs in Magnetically Confined Burning Plasmas

    NASA Astrophysics Data System (ADS)

    Panta, S. R.; Newman, D. E.; Terry, P. W.; Sanchez, R.

    2017-10-01

    In the magnetically confined burning plasma devices (in this case Tokamaks), internal transport barriers (ITBs) are those regimes in which the turbulence is suppressed by the E X B velocity shear, reducing the turbulent transport. This often occurs at a critical gradient in the profiles. The change in the transport then modifies the density and temperature profiles feeding back on the system. These transport barriers have to be controlled both to form them for improved confinement and remove them to both prevent global instabilities and to remove the ash and unnecessary impurities in the device. In this work we focus on pellet injection and modulated RF heating as a way to trigger and control the ITBs. These have an immediate consequence on density and temperature and hence pressure profiles acting as a control knob. For example, depending upon pellet size and its radial position of injection, it either helps to form or strengthen the barrier or to get rid of ITBs in the different transport channels of the burning plasmas. This transport model is then used to investigate the control and dynamics of the transport barriers in burning plasmas using pellets and RF addition to the NBI power and alpha power.

  3. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm.

    PubMed

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae; Kim, Tae Il; Yi, Byung Ju

    2017-01-01

    Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site.

  4. Image-aided Suicide Gene Therapy Utilizing Multifunctional hTERT-targeting Adenovirus for Clinical Translation in Hepatocellular Carcinoma.

    PubMed

    Kim, Yun-Hee; Kim, Kyung Tae; Lee, Sang-Jin; Hong, Seung-Hee; Moon, Ju Young; Yoon, Eun Kyung; Kim, Sukyoung; Kim, Eun Ok; Kang, Se Hun; Kim, Seok Ki; Choi, Sun Il; Goh, Sung Ho; Kim, Daehong; Lee, Seong-Wook; Ju, Mi Ha; Jeong, Jin Sook; Kim, In-Hoo

    2016-01-01

    Trans-splicing ribozyme enables to sense and reprogram target RNA into therapeutic transgene and thereby becomes a good sensing device for detection of cancer cells, judging from transgene expression. Previously we proposed PEPCK-Rz-HSVtk (PRT), hTERT targeting trans-splicing ribozyme (Rz) driven by liver-specific promoter phosphoenolpyruvate carboxykinase (PEPCK) with downstream suicide gene, herpes simplex virus thymidine kinase (HSVtk) for hepatocellular carcinoma (HCC) gene therapy. Here, we describe success of a re-engineered adenoviral vector harboring PRT in obtaining greater antitumor activity with less off-target effect for clinical application as a theranostics. We introduced liver-selective apolipoprotein E (ApoE) enhancer to the distal region of PRT unit to augment activity and liver selectivity of PEPCK promoter, and achieved better transduction into liver cancer cells by replacement of serotype 35 fiber knob on additional E4orf1-4 deletion of E1&E3-deleted serotype 5 back bone. We demonstrated that our refined adenovirus harboring PEPCK/ApoE-Rz-HSVtk (Ad-PRT-E) achieved great anti-tumor efficacy and improved ability to specifically target HCC without damaging normal hepatocytes. We also showed noninvasive imaging modalities were successfully employed to monitor both how well a therapeutic gene (HSVtk) was expressed inside tumor and how effectively a gene therapy took an action in terms of tumor growth. Collectively, this study suggests that the advanced therapeutic adenoviruses Ad-PRT-E and its image-aided evaluation system may lead to the powerful strategy for successful clinical translation and the development of clinical protocols for HCC therapy.

  5. Pilot's Desk Flight Station

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1984-01-01

    Aircraft flight station designs have generally evolved through the incorporation of improved or modernized controls and displays. In connection with a continuing increase in the amount of information displayed, this process has produced a complex and cluttered conglomeration of knobs, switches, and electromechanical displays. The result was often high crew workload, missed signals, and misinterpreted information. Advances in electronic technology have now, however, led to new concepts in flight station design. An American aerospace company in cooperation with NASA has utilized these concepts to develop a candidate conceptual design for a 1995 flight station. The obtained Pilot's Desk Flight Station is a unique design which resembles more an operator's console than today's cockpit. Attention is given to configuration, primary flight controllers, front panel displays, flight/navigation display, approach charts and weather display, head-up display, and voice command and response systems.

  6. Heterodera guangdongensis n. sp. (Nematoda: Heteroderinae) from bamboo in Guangdong Province, China--a new cyst nematode in the Cyperi group.

    PubMed

    Zhuo, Kan; Wang, Honghong; Zhang, Hongling; Liao, Jinling

    2014-11-07

    Heterodera guangdongensis n. sp. is described from bamboo (Phyllostachys pubescens Mazel) based on morphology and molecular analyses of rRNA D2D3 expansion domains of large subunit (LSU D2D3) and internal transcribed spacer (ITS) sequences. This new species can be classified in the Cyperi group. Cysts are characterized by a prominent, ambifenestrate vulval cone with weak underbridge, a vulva-anus distance of 28.9-35.9 μm and a vulval slit of 31.1-41.0 μm, but without bullae. Females are characterized by a 25.1-27.6 μm stylet with rounded knobs sloping slightly posteriorly. Males are characterized by a 21.5-23.0 μm stylet with knobs slightly projecting or flat anteriorly, lateral field with four lines, and a 22.0-26.0 μm spicule with bifurcate tip. Second-stage juveniles are characterized by a 19.3-21.3 stylet with slightly projecting or anteriorly flattened knobs, lateral field with three lines, a 41.7-61.3 μm tail with finely rounded terminus and hyaline portion forming 43.0-57.1% of the tail length. Molecular analyses show that the species has unique D2D3 and ITS rRNA sequences and RFLP-ITS-rRNA profiles.

  7. Optimization and inhibition of the adherent ability of Plasmodium falciparum-infected erythrocytes.

    PubMed

    Smith, H; Crandall, I; Prudhomme, J; Sherman, I W

    1992-01-01

    The vast majority of the 1-2 million malaria associated deaths that occur each year are due to anemia and cerebral malaria (the attachment of erythrocytes containing mature forms of Plasmodium falciparum to the endothelial cells that line the vascular beds of the brain). A "model system" for the study of cerebral malaria employs amelanotic melanoma cells as the "target" cells in an in vitro cytoadherence assay. Using this model system we determined that the optimum pH for adherence is 6.6 to 6.8, that high concentrations of Ca2+ (50mM) result in increased levels of binding, and that the type of buffer used influences adherence (Bis Tris > MOPS > HEPES > PIPES). We also observed that the ability of infected erythrocytes to cytoadhere varied from (erythrocyte) donor to donor. We have produced murine monoclonal antibodies against P. falciparum-infected red cells which recognize modified forms of human band 3; these inhibit the adherence of infected erythrocytes to melanoma cells in a dose-responsive fashion. Antimalarials (chloroquine, quinacrine, mefloquine, artemisinin), on the other hand, affected adherence in an indirect fashion i.e. since cytoadherence is due, in part, to the presence of knobs on the surface of the infected erythrocyte, and knob formation is dependent on intracellular parasite growth, when plasmodial development is inhibited so is knob production, and consequently adherence is ablated.

  8. Childproofing

    MedlinePlus

    ... better safety Burns: Replace traditional flame candles with battery-operated candles. Use knob covers on stoves. Turn ... carbon monoxide detectors throughout your home. Change the batteries twice a year when you change your smoke ...

  9. Large-scale quantum transport calculations for electronic devices with over ten thousand atoms

    NASA Astrophysics Data System (ADS)

    Lu, Wenchang; Lu, Yan; Xiao, Zhongcan; Hodak, Miro; Briggs, Emil; Bernholc, Jerry

    The non-equilibrium Green's function method (NEGF) has been implemented in our massively parallel DFT software, the real space multigrid (RMG) code suite. Our implementation employs multi-level parallelization strategies and fully utilizes both multi-core CPUs and GPU accelerators. Since the cost of the calculations increases dramatically with the number of orbitals, an optimal basis set is crucial for including a large number of atoms in the ``active device'' part of the simulations. In our implementation, the localized orbitals are separately optimized for each principal layer of the device region, in order to obtain an accurate and optimal basis set. As a large example, we calculated the transmission characteristics of a Si nanowire p-n junction. The nanowire is along (110) direction in order to minimize the number dangling bonds that are saturated by H atoms. Its diameter is 3 nm. The length of 24 nm is necessary because of the long-range screening length in Si. Our calculations clearly show the I-V characteristics of a diode, i.e., the current increases exponentially with forward bias and is near zero with backward bias. Other examples will also be presented, including three-terminal transistors and large sensor structures.

  10. Predicting the valley physics of silicon quantum dots directly from a device layout

    NASA Astrophysics Data System (ADS)

    Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Bacewski, Andrew D.; Nielsen, Erik; Montaño, Inès; Rudolph, Martin; Carroll, Malcolm S.; Muller, Richard P.

    Qubits made from electrostatically-defined quantum dots in Si-based systems are excellent candidates for quantum information processing applications. However, the multi-valley structure of silicon's band structure provides additional challenges for the few-electron physics critical to qubit manipulation. Here, we present a theory for valley physics that is predictive, in that we take as input the real physical device geometry and experimental voltage operation schedule, and with minimal approximation compute the resulting valley physics. We present both effective mass theory and atomistic tight-binding calculations for two distinct metal-oxide-semiconductor (MOS) quantum dot systems, directly comparing them to experimental measurements of the valley splitting. We conclude by assessing these detailed simulations' utility for engineering desired valley physics in future devices. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program.

  11. Combination Space Station Handrail Clamp and Pointing Device

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J. (Inventor)

    1999-01-01

    A device for attaching an experiment carrier to a space station handrail is provided. The device has two major components, a clamping mechanism for attachment to a space station handrail, and a pointing carrier on which an experiment package can be mounted and oriented. The handrail clamp uses an overcenter mechanism and the carrier mechanism uses an adjustable preload ball and socket for carrier positioning. The handrail clamp uses a stack of disk springs to provide a spring loaded button. This configuration provides consistent clamping force over a range of possible handrail thicknesses. Three load points are incorporated in the clamping mechanism thereby spreading the clamping load onto three separate points on the handrail. A four bar linkage is used to provide for a single actuation lever for all three load points. For additional safety, a secondary lock consisting of a capture plate and push lock keeps the clamp attached to the handrail in the event of main clamp failure. For the carrier positioning mechanism, a ball in a spring loaded socket uses friction to provide locking torque; however. the ball and socket are torque limited so that the ball ran slip under kick loads (125 pounds or greater). A lead screw attached to disk spring stacks is used to provide an adjustable spring force on the socket. A locking knob is attached to the lead screw to allow for hand manipulation of the lead screw.

  12. Multi-PON access network using a coarse AWG for smooth migration from TDM to WDM PON

    NASA Astrophysics Data System (ADS)

    Shachaf, Y.; Chang, C.-H.; Kourtessis, P.; Senior, J. M.

    2007-06-01

    An interoperable access network architecture based on a coarse array waveguide grating (AWG) is described, displaying dynamic wavelength assignment to manage the network load across multiple PONs. The multi-PON architecture utilizes coarse Gaussian channels of an AWG to facilitate scalability and smooth migration path between TDM and WDM PONs. Network simulations of a cross-operational protocol platform confirmed successful routing of individual PON clusters through 7 nm-wide passband windows of the AWG. Furthermore, polarization-dependent wavelength shift and phase errors of the device proved not to impose restrain on the routing performance. Optical transmission tests at 2.5 Gbit/s for distances up to 20 km are demonstrated.

  13. 14 CFR 29.853 - Compartment interiors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... electrical wire and cable insulation, and for small parts (such as knobs, handles, rollers, fasteners, clips... in a common housing, seat belts, shoulder harnesses, and cargo and baggage tiedown equipment...

  14. 14 CFR 29.853 - Compartment interiors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... electrical wire and cable insulation, and for small parts (such as knobs, handles, rollers, fasteners, clips... in a common housing, seat belts, shoulder harnesses, and cargo and baggage tiedown equipment...

  15. 14 CFR 29.853 - Compartment interiors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... electrical wire and cable insulation, and for small parts (such as knobs, handles, rollers, fasteners, clips... in a common housing, seat belts, shoulder harnesses, and cargo and baggage tiedown equipment...

  16. Morphology and molecular analysis of Paratylenchus nanjingensis n. sp. (Nematoda: Paratylenchinae) from the rhizosphere soil of Pinus massoniana in China.

    PubMed

    Wang, K; Xie, H; Li, Y; Wu, W J; Xu, C L

    2016-03-01

    Paratylenchus nanjingensis n. sp. was obtained from Nanjing, Jiangsu Province, China. This new species is characterized by having a female with a slender, vermiform body (243-279 μm), head with distinct submedian lobes, slender and long stylet (64-68 μm), anchor-shaped stylet knobs, excretory pore anterior to the level of the stylet knobs, small lateral vulval flaps and lateral field with four lines; and male with more distinct body annuli, stylet lacking and pharynx degenerate. The internal transcribed spacer sequences of ribosomal RNA (ITS rRNA) gene of the new species were amplified and sequenced in this study. The phylogenetic relationships of the new species with other Paratylenchus species using the ITS rRNA gene sequences are given.

  17. Multi-Center, Community-Based Cardiac Implantable Electronic Devices Registry: Population, Device Utilization, and Outcomes.

    PubMed

    Gupta, Nigel; Kiley, Mary Lou; Anthony, Faith; Young, Charlie; Brar, Somjot; Kwaku, Kevin

    2016-03-09

    The purpose of this study is to describe key elements, clinical outcomes, and potential uses of the Kaiser Permanente-Cardiac Device Registry. This is a cohort study of implantable cardioverter defibrillators (ICD), pacemakers (PM), and cardiac resynchronization therapy (CRT) devices implanted between January 1, 2007 and December 31, 2013 by ≈400 physicians in 6 US geographical regions. Registry data variables, including patient characteristics, comorbidities, indication for procedures, complications, and revisions, were captured using the healthcare system's electronic medical record. Outcomes were identified using electronic screening algorithms and adjudicated via chart review. There were 11 924 ICDs, 33 519 PMs, 4472 CRTs, and 66 067 leads registered. A higher proportion of devices were implanted in males: 75.1% (ICD), 55.0% (PM), and 66.7% (CRT), with mean patient age 63.2 years (ICD), 75.2 (PM), and 67.2 (CRT). The 30-day postoperative incidence of tamponade, hematoma, and pneumothorax were ≤0.3% (ICD), ≤0.6% (PM), and ≤0.4% (CRT). Device failures requiring revision occurred at a rate of 2.17% for ICDs, 0.85% for PMs, and 4.93% for CRTs, per 100 patient observation years. Superficial infection rates were <0.03% for all devices; deep infection rates were 0.6% (ICD), 0.5% (PM), and 1.0% (CRT). Results were used to monitor vendor-specific variations and were systematically shared with individual regions to address potential variations in outcomes, utilization, and to assist with the management of device recalls. The Kaiser Permanente-Cardiac Device Registry is a robust tool to monitor postprocedural patient outcomes and postmarket surveillance of implants and potentially change practice patterns. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  18. Geographic Distribution of CT, MRI and PET Devices in Japan: A Longitudinal Analysis Based on National Census Data.

    PubMed

    Matsumoto, Masatoshi; Koike, Soichi; Kashima, Saori; Awai, Kazuo

    2015-01-01

    Japan has the most CT and MRI scanners per unit population in the world; however, the geographic distribution of these technologies is currently unknown. Moreover, nothing is known of the cause-effect relationship between the number of diagnostic imaging devices and their geographic distribution. Data on the number of CT, MRI and PET devices and that of their utilizations in all 1829 municipalities of Japan was generated, based on the Static Survey of Medical Institutions conducted by the government. The inter-municipality equity of the number of devices or utilizations was evaluated with Gini coefficient. Between 2005 and 2011, the number of CT, MRI and PET devices in Japan increased by 47% (8789 to 12945), 19% (5034 to 5990) and 70% (274 to 466), respectively. Gini coefficient of the number of devices was largest for PET and smallest for CT (p for PET-MRI difference <0.001; MRI-CT difference <0.001). For all three modalities, Gini coefficient steadily decreased (p for 2011-2005 difference: <0.001 for CT; 0.003 for MRI; and <0.001 for PET). The number of devices in old models (single-detector CT, MRI<1.5 tesla, and conventional PET) decreased, while that in new models (multi-detector CT, MRI≥1.5 tesla, and PET-CT) increased. Gini coefficient of the old models increased or remained unchanged (increase rate of 9%, 3%, and -1%; p for 2011-2008 difference <0.001, 0.072, and 0.562, respectively), while Gini coefficient of the new models decreased (-10%, -9%, and -10%; p for 2011-2008 difference <0.001, <0.001, and <0.001 respectively). Similar results were observed in terms of utilizations. The more abundant a modality, the more equal the modality's distribution. Any increase in the modality made its distribution more equal. The geographic distribution of the diagnostic imaging technology in Japan appears to be affected by spatial competition derived from a market force.

  19. Can Carbon Nanomaterials Improve CZTS Photovoltaic Devices? Evaluation of Performance and Impacts Using Integrated Life-Cycle Assessment and Decision Analysis.

    PubMed

    Scott, Ryan P; Cullen, Alison C; Fox-Lent, Cate; Linkov, Igor

    2016-10-01

    In emergent photovoltaics, nanoscale materials hold promise for optimizing device characteristics; however, the related impacts remain uncertain, resulting in challenges to decisions on strategic investment in technology innovation. We integrate multi-criteria decision analysis (MCDA) and life-cycle assessment (LCA) results (LCA-MCDA) as a method of incorporating values of a hypothetical federal acquisition manager into the assessment of risks and benefits of emerging photovoltaic materials. Specifically, we compare adoption of copper zinc tin sulfide (CZTS) devices with molybdenum back contacts to alternative devices employing graphite or graphene instead of molybdenum. LCA impact results are interpreted alongside benefits of substitution including cost reductions and performance improvements through application of multi-attribute utility theory. To assess the role of uncertainty we apply Monte Carlo simulation and sensitivity analysis. We find that graphene or graphite back contacts outperform molybdenum under most scenarios and assumptions. The use of decision analysis clarifies potential advantages of adopting graphite as a back contact while emphasizing the importance of mitigating conventional impacts of graphene production processes if graphene is used in emerging CZTS devices. Our research further demonstrates that a combination of LCA and MCDA increases the usability of LCA in assessing product sustainability. In particular, this approach identifies the most influential assumptions and data gaps in the analysis and the areas in which either engineering controls or further data collection may be necessary. © 2016 Society for Risk Analysis.

  20. Technology-based self-care methods of improving antiretroviral adherence: a systematic review.

    PubMed

    Saberi, Parya; Johnson, Mallory O

    2011-01-01

    As HIV infection has shifted to a chronic condition, self-care practices have emerged as an important topic for HIV-positive individuals in maintaining an optimal level of health. Self-care refers to activities that patients undertake to maintain and improve health, such as strategies to achieve and maintain high levels of antiretroviral adherence. Technology-based methods are increasingly used to enhance antiretroviral adherence; therefore, we systematically reviewed the literature to examine technology-based self-care methods that HIV-positive individuals utilize to improve adherence. Seven electronic databases were searched from 1/1/1980 through 12/31/2010. We included quantitative and qualitative studies. Among quantitative studies, the primary outcomes included ARV adherence, viral load, and CD4+ cell count and secondary outcomes consisted of quality of life, adverse effects, and feasibility/acceptability data. For qualitative/descriptive studies, interview themes, reports of use, and perceptions of use were summarized. Thirty-six publications were included (24 quantitative and 12 qualitative/descriptive). Studies with exclusive utilization of medication reminder devices demonstrated less evidence of enhancing adherence in comparison to multi-component methods. This systematic review offers support for self-care technology-based approaches that may result in improved antiretroviral adherence. There was a clear pattern of results that favored individually-tailored, multi-function technologies, which allowed for periodic communication with health care providers rather than sole reliance on electronic reminder devices.

  1. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  2. Specialized CCDs for high-frame-rate visible imaging and UV imaging applications

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Taylor, Gordon C.; Shallcross, Frank V.; Tower, John R.; Lawler, William B.; Harrison, Lorna J.; Socker, Dennis G.; Marchywka, Mike

    1993-11-01

    This paper reports recent progress by the authors in two distinct charge coupled device (CCD) technology areas. The first technology area is high frame rate, multi-port, frame transfer imagers. A 16-port, 512 X 512, split frame transfer imager and a 32-port, 1024 X 1024, split frame transfer imager are described. The thinned, backside illuminated devices feature on-chip correlated double sampling, buried blooming drains, and a room temperature dark current of less than 50 pA/cm2, without surface accumulation. The second technology area is vacuum ultraviolet (UV) frame transfer imagers. A developmental 1024 X 640 frame transfer imager with 20% quantum efficiency at 140 nm is described. The device is fabricated in a p-channel CCD process, thinned for backside illumination, and utilizes special packaging to achieve stable UV response.

  3. Design of an autonomous Lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Chew, Mason; Dixon, Iain (Editor)

    1990-01-01

    In order to prepare a site for a manned lunar base, an autonomously operated construction vehicle is necessary. A Lunar Construction Utility Vehicle (LCUV), which utilizes interchangeable construction implements, was designed conceptually. Some elements of the machine were studied in greater detail. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device was designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and computer interface. A study of hydrogen-oxygen fuel cells has produced estimates of reactant and product size requirements and identified multi-layer insulation techniques. Research on a 100 kW heat rejection system has determined that it is necessary to house a radiator panel on a utility trailer. The impact of a 720 hr use cycle has produced a very large logistical support lien which requires further study.

  4. A multi-channel clogging-resistant lab-on-a-chip cell counter and analyzer

    NASA Astrophysics Data System (ADS)

    Dai, Jie; Chiu, Yu-Jui; Lian, Ian; Wu, Tsung-Feng; Yang, Kecheng; Lo, Yu-Hwa

    2016-02-01

    Early signs of diseases can be revealed from cell detection in biofluids, such as detection of white blood cells (WBCs) in the peritoneal fluid for peritonitis. A lab-on-a-chip microfluidic device offers an attractive platform for such applications because of its small size, low cost, and ease of use provided the device can meet the performance requirements which many existing LoC devices fail to satisfy. We report an integrated microfluidic device capable of accurately counting low concentration of white blood cells in peritoneal fluid at 150 μl min-1 to offer an accurate (<3% error) and fast (~10 min/run) WBC count. Utilizing the self-regulating hydrodynamic properties and a unique architecture in the design, the device can achieve higher flow rate (500-1000 μl min-1), continuous running for over 5 h without clogging, as well as excellent signal quality for unambiguous WBC count and WBC classification for certain diseases. These properties make the device a promising candidate for point-of-care applications.

  5. Improving overlay control through proper use of multilevel query APC

    NASA Astrophysics Data System (ADS)

    Conway, Timothy H.; Carlson, Alan; Crow, David A.

    2003-06-01

    Many state-of-the-art fabs are operating with increasingly diversified product mixes. For example, at Cypress Semiconductor, it is not unusual to be concurrently running multiple technologies and many devices within each technology. This diverse product mix significantly increases the difficulty of manually controlling overlay process corrections. As a result, automated run-to-run feedforward-feedback control has become a necessary and vital component of manufacturing. However, traditional run-to-run controllers rely on highly correlated historical events to forecast process corrections. For example, the historical process events typically are constrained to match the current event for exposure tool, device, process level and reticle ID. This narrowly defined process stream can result in insufficient data when applied to lowvolume or new-release devices. The run-to-run controller implemented at Cypress utilizes a multi-level query (Level-N) correlation algorithm, where each subsequent level widens the search criteria for available historical data. The paper discusses how best to widen the search criteria and how to determine and apply a known bias to account for tool-to-tool and device-to-device differences. Specific applications include offloading lots from one tool to another when the first tool is down for preventive maintenance, utilizing related devices to determine a default feedback vector for new-release devices, and applying bias values to account for known reticle-to-reticle differences. In this study, we will show how historical data can be leveraged from related devices or tools to overcome the limitations of narrow process streams. In particular, this paper discusses how effectively handling narrow process streams allows Cypress to offload lots from a baseline tool to an alternate tool.

  6. 17. Missile mural, third flight of stairs. Lyon Whiteman ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Missile mural, third flight of stairs. Lyon - Whiteman Air Force Base, Minuteman Missile Launch Facility Trainer T-12, Northeast of Oscar-01 Missile Alert Facility, Knob Noster, Johnson County, MO

  7. 12. Hard HF transmitter antenna, view toward west. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Hard HF transmitter antenna, view toward west. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  8. 11. Hard HF receiver antenna, view towards east. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Hard HF receiver antenna, view towards east. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  9. STS-42 MS Hilmers and Payload Specialist Merbold use IML-1 visual stimulator

    NASA Image and Video Library

    1992-01-30

    STS042-203-024 (22-30 Jan. 1992) --- Astronaut David C. Hilmers (right), STS-42 mission specialist, assists European Space Agency (ESA) payload specialist Ulf Merbold with the visual stimulator experiment on the Space Shuttle Discovery's middeck. This particular test is part of an ongoing study of the Space Adaptation Syndrome (SAS). Seated in a stationary mini-sled, Merbold (or any other subject for this test) stares at an umbrella-shaped rotating dome with a pattern of colored dots on its interior. While observing the rotating dome, the subject turns a knob to indicate his perception of body rotation. The strength of circular vection is calculated by comparing the signals from the dome and the knob. The greater the false sense of circular vection, the more the subject is relying on visual information instead of otolith information.

  10. Liquid-assisted tunable metasurface for simultaneous manipulation of surface elastic and acoustic waves

    NASA Astrophysics Data System (ADS)

    Yuan, Si-Min; Ma, Tian-Xue; Chen, A.-Li; Wang, Yue-Sheng

    2018-03-01

    A tunable and multi-functional one-dimensional metasurface, which is formed by engraving periodic semi-ellipse grooves on the surface of an aluminum half-space, is proposed in this paper. One characteristic of the metasurface is the manipulation of multi-physical fields, i.e. it could be utilized to manipulate surface elastic and acoustic waves simultaneously. The dispersion curves of the elastic and acoustic waves can be effectively tuned by adding liquids into the grooves. Based on the tunability different applications can be realized by adding different volumes of different liquids into the grooves. As an example, simultaneous rainbow trapping of the surface elastic and acoustic waves is demonstrated in the metasurface. Moreover, a resonant cavity where the elastic and acoustic waves are highly confined is reported. The proposed metasurface paves the way to the design of multi-functional devices for simultaneous control of elastic and acoustic waves.

  11. Multicontrol Over Graphene–Molecule Hetereojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yun-Peng; Fry, James N.; Cheng, Hai-Ping

    The vertical configuration is a powerful tool recently developed experimentally to investigate field effects in quasi two-dimensional systems. Prototype graphene-based vertical tunneling transistors can achieve an extraordinary control over current density utilizing gate voltages. In this work, we study theoretically vertical tunneling junctions that consist of a monolayer of photoswitchable aryl azobenzene molecules sandwiched between two sheets of graphene. Azobenzene molecules transform between trans and cis conformations upon photoexcitation, thus adding a second knob that enhances the control over physical properties of the junction. Using first-principles methods within the density functional framework, we perform simulations with the inclusion of fieldmore » effects for both trans and cis configurations. Lastly, we find that the interference of interface states resulting from molecule–graphene interactions at the Fermi energy introduces a dual-peak pattern in the transmission functions and dominates the transport properties of gate junctions, shedding new light on interfacial processes.« less

  12. Multicontrol Over Graphene–Molecule Hetereojunctions

    DOE PAGES

    Wang, Yun-Peng; Fry, James N.; Cheng, Hai-Ping

    2017-09-15

    The vertical configuration is a powerful tool recently developed experimentally to investigate field effects in quasi two-dimensional systems. Prototype graphene-based vertical tunneling transistors can achieve an extraordinary control over current density utilizing gate voltages. In this work, we study theoretically vertical tunneling junctions that consist of a monolayer of photoswitchable aryl azobenzene molecules sandwiched between two sheets of graphene. Azobenzene molecules transform between trans and cis conformations upon photoexcitation, thus adding a second knob that enhances the control over physical properties of the junction. Using first-principles methods within the density functional framework, we perform simulations with the inclusion of fieldmore » effects for both trans and cis configurations. Lastly, we find that the interference of interface states resulting from molecule–graphene interactions at the Fermi energy introduces a dual-peak pattern in the transmission functions and dominates the transport properties of gate junctions, shedding new light on interfacial processes.« less

  13. Multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-16

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  14. Multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-09-14

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  15. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses

    NASA Astrophysics Data System (ADS)

    Serb, Alexander; Bill, Johannes; Khiat, Ali; Berdan, Radu; Legenstein, Robert; Prodromakis, Themis

    2016-09-01

    In an increasingly data-rich world the need for developing computing systems that cannot only process, but ideally also interpret big data is becoming continuously more pressing. Brain-inspired concepts have shown great promise towards addressing this need. Here we demonstrate unsupervised learning in a probabilistic neural network that utilizes metal-oxide memristive devices as multi-state synapses. Our approach can be exploited for processing unlabelled data and can adapt to time-varying clusters that underlie incoming data by supporting the capability of reversible unsupervised learning. The potential of this work is showcased through the demonstration of successful learning in the presence of corrupted input data and probabilistic neurons, thus paving the way towards robust big-data processors.

  16. Microfabrication of low-loss lumped-element Josephson circuits for non-reciprocal and parametric devices

    NASA Astrophysics Data System (ADS)

    Cicak, Katarina; Lecocq, Florent; Ranzani, Leonardo; Peterson, Gabriel A.; Kotler, Shlomi; Teufel, John D.; Simmonds, Raymond W.; Aumentado, Jose

    Recent developments in coupled mode theory have opened the doors to new nonreciprocal amplification techniques that can be directly leveraged to produce high quantum efficiency in current measurements in microwave quantum information. However, taking advantage of these techniques requires flexible multi-mode circuit designs comprised of low-loss materials that can be implemented using common fabrication techniques. In this talk we discuss the design and fabrication of a new class of multi-pole lumped-element superconducting parametric amplifiers based on Nb/Al-AlOx/Nb Josephson junctions on silicon or sapphire. To reduce intrinsic loss in these circuits we utilize PECVD amorphous silicon as a low-loss dielectric (tanδ 5 ×10-4), resulting in nearly quantum-limited directional amplification.

  17. Time-efficient simulations of tight-binding electronic structures with Intel Xeon PhiTM many-core processors

    NASA Astrophysics Data System (ADS)

    Ryu, Hoon; Jeong, Yosang; Kang, Ji-Hoon; Cho, Kyu Nam

    2016-12-01

    Modelling of multi-million atomic semiconductor structures is important as it not only predicts properties of physically realizable novel materials, but can accelerate advanced device designs. This work elaborates a new Technology-Computer-Aided-Design (TCAD) tool for nanoelectronics modelling, which uses a sp3d5s∗ tight-binding approach to describe multi-million atomic structures, and simulate electronic structures with high performance computing (HPC), including atomic effects such as alloy and dopant disorders. Being named as Quantum simulation tool for Advanced Nanoscale Devices (Q-AND), the tool shows nice scalability on traditional multi-core HPC clusters implying the strong capability of large-scale electronic structure simulations, particularly with remarkable performance enhancement on latest clusters of Intel Xeon PhiTM coprocessors. A review of the recent modelling study conducted to understand an experimental work of highly phosphorus-doped silicon nanowires, is presented to demonstrate the utility of Q-AND. Having been developed via Intel Parallel Computing Center project, Q-AND will be open to public to establish a sound framework of nanoelectronics modelling with advanced HPC clusters of a many-core base. With details of the development methodology and exemplary study of dopant electronics, this work will present a practical guideline for TCAD development to researchers in the field of computational nanoelectronics.

  18. 21 CFR 890.5880 - Multi-function physical therapy table.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Multi-function physical therapy table. 890.5880 Section 890.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5880 Multi...

  19. 21 CFR 890.5880 - Multi-function physical therapy table.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Multi-function physical therapy table. 890.5880 Section 890.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5880 Multi...

  20. 21 CFR 890.5880 - Multi-function physical therapy table.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Multi-function physical therapy table. 890.5880 Section 890.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5880 Multi...

  1. 21 CFR 890.5880 - Multi-function physical therapy table.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Multi-function physical therapy table. 890.5880 Section 890.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5880 Multi...

  2. 21 CFR 890.5880 - Multi-function physical therapy table.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Multi-function physical therapy table. 890.5880 Section 890.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5880 Multi...

  3. 39. SIGNATURE BLOCK TO THE RIGHT (SOUTH) OF WEST ENTRACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. SIGNATURE BLOCK TO THE RIGHT (SOUTH) OF WEST ENTRACE DOORWAY, APPROXIMATELY 18 INCHES ABOVE GROUND - Isaac N. Hagan House, Kentuck Knob, U.S. Route 40 vicinity (Stewart Township), Chalkhill, Fayette County, PA

  4. Multi-wavelength mid-IR light source for gas sensing

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Alajoki, Teemu; Cherchi, Matteo; Ollila, Jyrki; Harjanne, Mikko; Heinilehto, Noora; Suomalainen, Soile; Viheriälä, Jukka; Zia, Nouman; Guina, Mircea; Buczyński, Ryszard; Kasztelanic, Rafał; Kujawa, Ireneusz; Salo, Tomi; Virtanen, Sami; Kluczyński, Paweł; Sagberg, Hâkon; Ratajczyk, Marcin; Kalinowski, Przemyslaw

    2017-02-01

    Cost effective multi-wavelength light sources are key enablers for wide-scale penetration of gas sensors at Mid-IR wavelength range. Utilizing novel Mid-IR Si-based photonic integrated circuits (PICs) filter and wide-band Mid-IR Super Luminescent Light Emitting Diodes (SLEDs), we show the concept of a light source that covers 2.5…3.5 μm wavelength range with a resolution of <1nm. The spectral bands are switchable and tunable and they can be modulated. The source allows for the fabrication of an affordable multi-band gas sensor with good selectivity and sensitivity. The unit price can be lowered in high volumes by utilizing tailored molded IR lens technology and automated packaging and assembling technologies. The status of the development of the key components of the light source are reported. The PIC is based on the use of micron-scale SOI technology, SLED is based on AlGaInAsSb materials and the lenses are tailored heavy metal oxide glasses fabricated by the use of hot-embossing. The packaging concept utilizing automated assembly tools is depicted. In safety and security applications, the Mid-IR wavelength range covered by the novel light source allows for detecting several harmful gas components with a single sensor. At the moment, affordable sources are not available. The market impact is expected to be disruptive, since the devices currently in the market are either complicated, expensive and heavy instruments, or the applied measurement principles are inadequate in terms of stability and selectivity.

  5. Methods for making a multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2007-05-29

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  6. 3D printing of tissue-simulating phantoms for calibration of biomedical optical devices

    NASA Astrophysics Data System (ADS)

    Zhao, Zuhua; Zhou, Ximing; Shen, Shuwei; Liu, Guangli; Yuan, Li; Meng, Yuquan; Lv, Xiang; Shao, Pengfei; Dong, Erbao; Xu, Ronald X.

    2016-10-01

    Clinical utility of many biomedical optical devices is limited by the lack of effective and traceable calibration methods. Optical phantoms that simulate biological tissues used for optical device calibration have been explored. However, these phantoms can hardly simulate both structural and optical properties of multi-layered biological tissue. To address this limitation, we develop a 3D printing production line that integrates spin coating, light-cured 3D printing and Fused Deposition Modeling (FDM) for freeform fabrication of optical phantoms with mechanical and optical heterogeneities. With the gel wax Polydimethylsiloxane (PDMS), and colorless light-curable ink as matrix materials, titanium dioxide (TiO2) powder as the scattering ingredient, graphite powder and black carbon as the absorption ingredient, a multilayer phantom with high-precision is fabricated. The absorption and scattering coefficients of each layer are measured by a double integrating sphere system. The results demonstrate that the system has the potential to fabricate reliable tissue-simulating phantoms to calibrate optical imaging devices.

  7. Seebeck effect on a weak link between Fermi and non-Fermi liquids

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. T.; Kiselev, M. N.

    2018-02-01

    We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526, 233 (2015), 10.1038/nature15384] designed for detection of macroscopic quantum charged states in multichannel Kondo systems. We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-dot-quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors. High controllability of the device allows to fine tune the system to different regimes described by multichannel and multi-impurity Kondo models.

  8. Adding Pluggable and Personalized Natural Control Capabilities to Existing Applications

    PubMed Central

    Lamberti, Fabrizio; Sanna, Andrea; Carlevaris, Gilles; Demartini, Claudio

    2015-01-01

    Advancements in input device and sensor technologies led to the evolution of the traditional human-machine interaction paradigm based on the mouse and keyboard. Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications running on consumer devices (e.g., gaming consoles and smartphones). However, to allow existing applications running on desktop computers to utilize natural interaction, significant re-design and re-coding efforts may be required. In this paper, a framework designed to transparently add multi-modal interaction capabilities to applications to which users are accustomed is presented. Experimental observations confirmed the effectiveness of the proposed framework and led to a classification of those applications that could benefit more from the availability of natural interaction modalities. PMID:25635410

  9. Short pulse laser stretcher-compressor using a single common reflective grating

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Telford, Steve

    2004-05-25

    The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.

  10. Flexible barrier film, method of forming same, and organic electronic device including same

    DOEpatents

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  11. Adding pluggable and personalized natural control capabilities to existing applications.

    PubMed

    Lamberti, Fabrizio; Sanna, Andrea; Carlevaris, Gilles; Demartini, Claudio

    2015-01-28

    Advancements in input device and sensor technologies led to the evolution of the traditional human-machine interaction paradigm based on the mouse and keyboard. Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications running on consumer devices (e.g., gaming consoles and smartphones). However, to allow existing applications running on desktop computers to utilize natural interaction, significant re-design and re-coding efforts may be required. In this paper, a framework designed to transparently add multi-modal interaction capabilities to applications to which users are accustomed is presented. Experimental observations confirmed the effectiveness of the proposed framework and led to a classification of those applications that could benefit more from the availability of natural interaction modalities.

  12. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm

    PubMed Central

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae

    2017-01-01

    Purpose Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. Materials and Methods The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. Results A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. Conclusion This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site. PMID:27873506

  13. Tunable Noncollinear Antiferromagnetic Resistive Memory through Oxide Superlattice Design

    NASA Astrophysics Data System (ADS)

    Hoffman, Jason D.; Wu, Stephen M.; Kirby, Brian J.; Bhattacharya, Anand

    2018-04-01

    Antiferromagnets (AFMs) have recently gathered a large amount of attention as a potential replacement for ferromagnets (FMs) in spintronic devices due to their lack of stray magnetic fields, invisibility to external magnetic probes, and faster magnetization dynamics. Their development into a practical technology, however, has been hampered by the small number of materials where the antiferromagnetic state can be both controlled and read out. We show that by relaxing the strict criterion on pure antiferromagnetism, we can engineer an alternative class of magnetic materials that overcome these limitations. This is accomplished by stabilizing a noncollinear magnetic phase in LaNiO3 /La2 /3Sr1 /3MnO3 superlattices. This state can be continuously tuned between AFM and FM coupling through varying the superlattice spacing, strain, applied magnetic field, or temperature. By using this alternative "knob" to tune magnetic ordering, we take a nanoscale materials-by-design approach to engineering ferromagneticlike controllability into antiferromagnetic synthetic magnetic structures. This approach can be used to trade-off between the favorable and unfavorable properties of FMs and AFMs when designing realistic resistive antiferromagnetic memories. We demonstrate a memory device in one such superlattice, where the magnetic state of the noncollinear antiferromagnet is reversibly switched between different orientations using a small magnetic field and read out in real time with anisotropic magnetoresistance measurements.

  14. Web-based monitoring and management system for integrated enterprise-wide imaging networks

    NASA Astrophysics Data System (ADS)

    Ma, Keith; Slik, David; Lam, Alvin; Ng, Won

    2003-05-01

    Mass proliferation of IP networks and the maturity of standards has enabled the creation of sophisticated image distribution networks that operate over Intranets, Extranets, Communities of Interest (CoI) and even the public Internet. Unified monitoring, provisioning and management of such systems at the application and protocol levels represent a challenge. This paper presents a web based monitoring and management tool that employs established telecom standards for the creation of an open system that enables proactive management, provisioning and monitoring of image management systems at the enterprise level and across multi-site geographically distributed deployments. Utilizing established standards including ITU-T M.3100, and web technologies such as XML/XSLT, JSP/JSTL, and J2SE, the system allows for seamless device and protocol adaptation between multiple disparate devices. The goal has been to develop a unified interface that provides network topology views, multi-level customizable alerts, real-time fault detection as well as real-time and historical reporting of all monitored resources, including network connectivity, system load, DICOM transactions and storage capacities.

  15. New sonic shockwave multi-element sensors mounted on a small airfoil flown on F-15B testbed aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An experimental device to pinpoint the location of a shockwave that develops in an aircraft flying at transonic and supersonic speeds was recently flight-tested at NASA's Dryden Flight Research Center, Edwards, California. The shock location sensor, developed by TAO Systems, Hampton, Va., utilizes a multi-element hot-film sensor array along with a constant-voltage anemometer and special diagnostic software to pinpoint the exact location of the shockwave and its characteristics as it develops on an aircraft surface. For this experiment, the 45-element sensor was mounted on the small Dryden-designed airfoil shown in this illustration. The airfoil was attached to the Flight Test Fixture mounted underneath the fuselage of Dryden's F-15B testbed aircraft. Tests were flown at transonic speeds of Mach 0.7 to 0.9, and the device isolated the location of the shock wave to within a half-inch. Application of this technology could assist designers of future supersonic aircraft in improving the efficiency of engine air inlets by controlling the shockwave, with a related improvement in aircraft performance and fuel economy.

  16. Scattering and absorption measurements of cervical tissues measures using low cost multi-spectral imaging

    NASA Astrophysics Data System (ADS)

    Bernat, Amir S.; Bar-Am, Kfir; Cataldo, Leigh; Bolton, Frank J.; Kahn, Bruce S.; Levitz, David

    2018-02-01

    Cervical cancer is a leading cause of death for women in low resource settings. In order to better detect cervical dysplasia, a low cost multi-spectral colposcope was developed utilizing low costs LEDs and an area scan camera. The device is capable of both traditional colposcopic imaging and multi-spectral image capture. Following initial bench testing, the device was deployed to a gynecology clinic where it was used to image patients in a colposcopy setting. Both traditional colposcopic images and spectral data from patients were uploaded to a cloud server for remote analysis. Multi-spectral imaging ( 30 second capture) took place before any clinical procedure; the standard of care was followed thereafter. If acetic acid was used in the standard of care, a post-acetowhitening colposcopic image was also captured. In analyzing the data, normal and abnormal regions were identified in the colposcopic images by an expert clinician. Spectral data were fit to a theoretical model based on diffusion theory, yielding information on scattering and absorption parameters. Data were grouped according to clinician labeling of the tissue, as well as any additional clinical test results available (Pap, HPV, biopsy). Altogether, N=20 patients were imaged in this study, with 9 of them abnormal. In comparing normal and abnormal regions of interest from patients, substantial differences were measured in blood content, while differences in oxygen saturation parameters were more subtle. These results suggest that optical measurements made using low cost spectral imaging systems can distinguish between normal and pathological tissues.

  17. Haptic interface for vehicular touch screens.

    DOT National Transportation Integrated Search

    2013-02-01

    Once the domain of purely physical controls such as knobs, : levers, buttons, and sliders, the vehicle dash is rapidly : transforming into a computer interface. This presents a : challenge for drivers, because the physics-based cues which : make trad...

  18. 18. Topside facility, interior of facility manager's room, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Topside facility, interior of facility manager's room, view towards west. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  19. 5. GENERAL VIEW OF GARAGE AREA FROM WEST; STEPS TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL VIEW OF GARAGE AREA FROM WEST; STEPS TO WEST FRONT ENTRANCE VISABLE TO THE RIGHT - Isaac N. Hagan House, Kentuck Knob, U.S. Route 40 vicinity (Stewart Township), Chalkhill, Fayette County, PA

  20. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling

    NASA Astrophysics Data System (ADS)

    Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.

    2018-01-01

    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

  1. Nematode-Trapping Fungi.

    PubMed

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  2. Fibrin Clots Are Equilibrium Polymers That Can Be Remodeled Without Proteolytic Digestion

    NASA Astrophysics Data System (ADS)

    Chernysh, Irina N.; Nagaswami, Chandrasekaran; Purohit, Prashant K.; Weisel, John W.

    2012-11-01

    Fibrin polymerization is a necessary part of hemostasis but clots can obstruct blood vessels and cause heart attacks and strokes. The polymerization reactions are specific and controlled, involving strong knob-into-hole interactions to convert soluble fibrinogen into insoluble fibrin. It has long been assumed that clots and thrombi are stable structures until proteolytic digestion. On the contrary, using the technique of fluorescence recovery after photobleaching, we demonstrate here that there is turnover of fibrin in an uncrosslinked clot. A peptide representing the knobs involved in fibrin polymerization can compete for the holes and dissolve a preformed fibrin clot, or increase the fraction of soluble oligomers, with striking rearrangements in clot structure. These results imply that in vivo clots or thrombi are more dynamic structures than previously believed that may be remodeled as a result of local environmental conditions, may account for some embolization, and suggest a target for therapeutic intervention.

  3. The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Zhang, Jingzhu; Muz, Barbara; Azab, Abdel K; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Curiel, David T; Arbeit, Jeffrey M

    2014-08-01

    Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.

  4. Performance evaluation of multi-stratum resources integration based on network function virtualization in software defined elastic data center optical interconnect.

    PubMed

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tian, Rui; Han, Jianrui; Lee, Young

    2015-11-30

    Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.

  5. System approach to distributed sensor management

    NASA Astrophysics Data System (ADS)

    Mayott, Gregory; Miller, Gordon; Harrell, John; Hepp, Jared; Self, Mid

    2010-04-01

    Since 2003, the US Army's RDECOM CERDEC Night Vision Electronic Sensor Directorate (NVESD) has been developing a distributed Sensor Management System (SMS) that utilizes a framework which demonstrates application layer, net-centric sensor management. The core principles of the design support distributed and dynamic discovery of sensing devices and processes through a multi-layered implementation. This results in a sensor management layer that acts as a System with defined interfaces for which the characteristics, parameters, and behaviors can be described. Within the framework, the definition of a protocol is required to establish the rules for how distributed sensors should operate. The protocol defines the behaviors, capabilities, and message structures needed to operate within the functional design boundaries. The protocol definition addresses the requirements for a device (sensors or processes) to dynamically join or leave a sensor network, dynamically describe device control and data capabilities, and allow dynamic addressing of publish and subscribe functionality. The message structure is a multi-tiered definition that identifies standard, extended, and payload representations that are specifically designed to accommodate the need for standard representations of common functions, while supporting the need for feature-based functions that are typically vendor specific. The dynamic qualities of the protocol enable a User GUI application the flexibility of mapping widget-level controls to each device based on reported capabilities in real-time. The SMS approach is designed to accommodate scalability and flexibility within a defined architecture. The distributed sensor management framework and its application to a tactical sensor network will be described in this paper.

  6. Polymerization-Defective Fibrinogen Variant gammaD364A Binds Knob “A” Peptide Mimic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowley,S.; Merenbloom, B.; Heroux, A.

    2008-01-01

    Fibrin polymerization is supported in part by interactions called 'A:a'. Crystallographic studies revealed ?364Asp is part of hole 'a' that interacts with knob 'A' peptide mimic, GPRP. Biochemical studies have shown ?364Asp is critical to polymerization, as polymerization of variants ?D364A, ?D364H, and ?D364V is exceptionally impaired. To understand the molecular basis for the aberrant function, we solved the crystal structure of fragment D from ?D364A. Surprisingly, the structure (rfD-?D364A+GP) showed near normal 'A:a' interactions with GPRP bound to hole 'a' and no change in the overall structure of ?D364A. Of note, inspection of the structure showed negative electrostatic potentialmore » inside hole 'a' was diminished by this substitution. We examined GPRP binding to the ?364Asp variants in solution by plasmin protection assay. We found no protection of either ?D364H or ?D364V but partial protection of ?D364A, indicating the peptide does not bind to either ?D364H or ?D364V and binds more weakly than normal to ?D364A. We also examined protection by calcium and found all variants were indistinguishable from normal, suggesting the global structures of the variants are not markedly different from normal. Our data imply that ?364Asp per se is not required for knob 'A' binding to hole 'a'; rather, this residue's negative charge has a critical role in the electrostatic interactions that facilitate the important first step in fibrin polymerization.« less

  7. Movement ecology of five Afrotropical waterfowl species from Malawi, Mali and Nigeria

    USGS Publications Warehouse

    Takekawa, John Y.; Heath, Shane R.; Iverson, S.R.L.; Gaidet, Nicolas; Cappelle, Julien; Dodman, Tim; Hagemeijer, Ward; Eldridge, William D.; Petrie, Scott A.; Yarris, Gregory S.; Manu, Shiiwua; Olsen, Glenn H.; Prosser, Diann J.; Spragens, Kyle A.; Douglas, David C.; Newman, Scott H.

    2015-01-01

    Habitat availability for Afrotropical waterbirds is highly dynamic with unpredictable rainfall patterns and ephemeral wetlands resulting in diverse movement strategies among different species. Movement strategies among waterfowl encompass resident, regional and intercontinental migrants, but little quantitative information exists on their specific movement patterns. We studied the movement ecology of five Afrotropical waterfowl species marked with satellite transmitters in Malawi, Mali and Nigeria. Resident species, including White-faced Whistling Ducks Dendrocygna viduata, Fulvous Whistling Ducks Dendrocygna bicolor and Spur-winged Geese Plectropterus gambensis, remained sedentary during the rainy season and only flew limited distances during other months. In contrast, Knob-billed Ducks Sarkidiornis melanotos made short regional movements >50 km in all months and showed little site fidelity to previously used habitats in subsequent years. Garganey Anas quequedula followed an intercontinental strategy and made long-distance jumps across the Sahara and Mediterranean to their Eurasian breeding grounds. Most species flew farthest during the dry season, as mean daily movements varied from 1.5 to 14.2 km and was greatest in the winter months (January-March). Total distance moved varied from 9.5 km for White-faced Whistling Ducks (October-December) to 45.6 km for Knob-billed Ducks (April-June). Nomadic behaviour by Knob-billed Ducks was evidenced by long exploratory flights, but small mean daily movements suggested that they were relying on previous experience. Improving our understanding of these movement strategies increases our ability to assess connectivity of wetland resources that support waterfowl throughout their annual cycle and focuses conservation efforts on their most important habitats.

  8. The So-Called 'Face on Mars'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 13 April 2002) The Science The so called 'Face on Mars' can be seen slightly above center and to the right in this THEMIS visible image. This 3-km long knob, located near 10o N, 40o W (320o E), was first imaged by the Viking spacecraft in the 1970's and was seen by some to resemble a face carved into the rocks of Mars. Since that time the Mars Orbiter Camera on the Mars Global Surveyor spacecraft has provided detailed views of this hill that clearly show that it is a normal geologic feature with slopes and ridges carved by eons of wind and downslope motion due to gravity. A similar-size hill in Phoenix, Arizona resembles a camel lying on the ground, and Phoenicians whimsically refer to it as Camelback Mountain. Like the hills and knobs of Mars, however, Camelback Mountain was carved into its unusual shape by thousands of years of erosion. The THEMIS image provides a broad perspective of the landscape in this region, showing numerous knobs and hills that have been eroded into a remarkable array of different shapes. Many of these knobs, including the 'Face', have several flat ledges partway up the hill slopes. These ledges are made of more resistant layers of rock and are the last remnants of layers that once were continuous across this entire region. Erosion has completely removed these layers in most places, leaving behind only the small isolated hills and knobs seen today. Many of the hills and ridges in this area also show unusual deposits of material that occur preferentially on the cold, north-facing slopes. It has been suggested that these deposits were 'pasted' on the slopes, with the distinct, rounded boundary on their upslope edges being the highest remaining point of this pasted-on layer. In several locations, such as in the large knob directly south of the 'Face', these deposits occur at several different heights on the hill. This observation suggests the layer once draped the entire knob and has since been removed from all but the north-facing slopes. The presence of water ice in these layers is a likely possibility to account for their preservation only on the colder surfaces. Alternatively, these unique features could be the result of the slow downslope motion of the surface layer, possibly enhanced by the presence of ground ice. One argument against downslope motion is the observation that the uppermost rounded boundary of these layers typically occurs at approximately the same distance below the ridge crest. This would suggest the (seemingly) unlikely possibility that all of these layers had moved downslope the same amount regardless of where they are located. In either case, ground ice likely plays an important role in the formation and preservation of these deposits because they only occur on the cold slopes facing away from the Sun where ground ice is more stable and may still be present today. The Story Nature is an imaginative artist, creating all kinds of wonderful landforms, cloud shapes, and other patterned features that remind people of familiar things in our lives. We see a 'man in the moon' when it is full in the night sky, and dream of a dromedary-dotted desert when coming upon Arizona's Camelback Mountain or Colorado's 'Kissing Camels' in the 'Garden of the Gods.' Near Ludlow, California, a lonely prospector once noticed that the appealing outline of the mountains resembled a reclining woman, and named the place Sleeping Beauty. And this naming delight isn't limited to Earth. The Mars Pathfinder mission team couldn't help but name the rocks at the landing site, including a bear-headed-looking one named Yogi. Part of the fun of exploration is not just visiting a strange world, but relating to it in human terms. On Mars, we've already seen a valentine heart-shaped crater, a happy-faced crater, and even a murky and mysterious 'face' on Mars. This face (seen here about halfway down the image and to the right) is really just a hill with slopes and ridges that are shadowed in a way that can sometimes resemble a face from far away. The first picture of this area was taken by the Viking spacecraft in the 1970s, and people have been intrigued ever since. However, orbiter camera technologies have actually become so good in providing a clear view of the hill that it's almost a disappointment to see how normal an eroded hill this well-liked feature is. Well, disappointing unless you're a geologist, that is! This whole area is, in fact, a geologist's dream. Erosion has been Nature's sculptor throughout the area, and all kinds of remarkably shaped knobs and hills speckle the region. While their shapes are fun to contemplate, it's no mystery to geologists how they formed. Several flat ledges part way up the slopes of these hills are made of layers of rock that stand strong against erosion's relentless carving. Less resistant layers in the region have eroded away completely in most places, leaving behind only the small, isolated hills and knobs we see today. Don?t think everything in this scene is easily understandable, however. What captures the attention of scientists is a bunch of unusual deposits of material on the cold, north-facing slopes of the hills. Did Nature mix some Martian dirt and ice from the planet's 'pallet,' and then 'paste' on a slightly cemented deposit over the northern slopes? Or did an upper layer of material slowly creep downslope over time, carried by the movement of ice? Ground ice, in this case, has probably been more of a preserver than an eroder, keeping a record of the formation and existence of these deposits over time. Geologists are grateful for that peek into the Martian past and the chance to study it in-depth.

  9. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications.

    PubMed

    Krishna, Katla Sai; Li, Yuehao; Li, Shuning; Kumar, Challa S S R

    2013-11-01

    The past two decades have seen a dramatic raise in the number of investigations leading to the development of Lab-on-a-Chip (LOC) devices for synthesis of nanomaterials. A majority of these investigations were focused on inorganic nanomaterials comprising of metals, metal oxides, nanocomposites and quantum dots. Herein, we provide an analysis of these findings, especially, considering the more recent developments in this new decade. We made an attempt to bring out the differences between chip-based as well as tubular continuous flow systems. We also cover, for the first time, various opportunities the tools from the field of computational fluid dynamics provide in designing LOC systems for synthesis inorganic nanomaterials. Particularly, we provide unique examples to demonstrate that there is a need for concerted effort to utilize LOC devices not only for synthesis of inorganic nanomaterials but also for carrying out superior in vitro studies thereby, paving the way for faster clinical translation. Even though LOC devices with the possibility to carry out multi-step syntheses have been designed, surprisingly, such systems have not been utilized for carrying out simultaneous synthesis and bio-functionalization of nanomaterials. While traditionally, LOC devices are primarily based on microfluidic systems, in this review article, we make a case for utilizing millifluidic systems for more efficient synthesis, bio-functionalization and in vitro studies of inorganic nanomaterials tailor-made for biomedical applications. Finally, recent advances in the field clearly point out the possibility for pushing the boundaries of current medical practices towards personalized health care with a vision to develop automated LOC-based instrumentation for carrying out simultaneous synthesis, bio-functionalization and in vitro evaluation of inorganic nanomaterials for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Micropatterned photoalignment for wavefront controlled switchable optical devices

    NASA Astrophysics Data System (ADS)

    Glazar, Nikolaus

    Photoalignment is a well-established technique for surface alignment of the liquid crystal director. Previously, chrome masks were necessary for patterned photoalignment but were difficult to use, costly, and inflexible. To extend the capabilities of photoalignment we built an automated maskless multi-domain photoalignment device based on a DMD (digital multimirror device) projection system. The device is capable of creating arbitrary photoalignment patterns with micron-sized features. Pancharatnam-Berry phase (PB-phase) is a geometric phase that arises from cyclic change of polarization state. By varying the azimuthal anchoring angle in a hybrid-aligned liquid crystal cell we can control the spatial variation of the PB-phase shift. Using our automated photoalignment device to align the liquid crystal arbitrary wave front manipulations are possible. The PB-phase shift effect is maximized when the cell is tuned to have a half-wave retardation and disappears at full-wave retardation, so the cell can be switched on and off by applying a voltage. Two wavefront controlled devices developed using this technique will be discussed: A switchable liquid crystal phase shift mask for creating sub-diffraction sized photolithographic features, and a transparent diffractive display that utilizes a switchable liquid crystal diffraction grating.

  11. 75 FR 30847 - Federal Property Suitable as Facilities To Assist the Homeless

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ...., presence of asbestos/lead paint, off-site use only Belmont Cty Memorial USAR Ctr 5305 Guernsey St. Bellaire... presence of asbestos Land Missouri Annex No. 3 Whiteman AFB Knob Noster MO 65336 Landholding Agency: Air...

  12. A study of speech interfaces for the vehicle environment.

    DOT National Transportation Integrated Search

    2013-05-01

    Over the past few years, there has been a shift in automotive human machine interfaces from : visual-manual interactions (pushing buttons and rotating knobs) to speech interaction. In terms of : distraction, the industry views speech interaction as a...

  13. 10. 351st Missile Wing Maintenance insignia on wall opposite the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. 351st Missile Wing Maintenance insignia on wall opposite the entrance. Lyon - Whiteman Air Force Base, Minuteman Missile Launch Facility Trainer T-12, Northeast of Oscar-01 Missile Alert Facility, Knob Noster, Johnson County, MO

  14. 40 CFR 745.65 - Lead-based paint hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... caused by impact from a related building component (such as a door knob that knocks into a wall or a door that knocks against its door frame. (3) Any chewable lead-based painted surface on which there is...

  15. 40 CFR 745.65 - Lead-based paint hazards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... caused by impact from a related building component (such as a door knob that knocks into a wall or a door that knocks against its door frame. (3) Any chewable lead-based painted surface on which there is...

  16. 24. VIEW FORM NORTHWEST, WHERE HOUSE RECEDES INTO HILL, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW FORM NORTHWEST, WHERE HOUSE RECEDES INTO HILL, SHOWING ROOF, CHIMNEY AND OCTAGONAL SKYLIGHT TO KITCHEN IN CENTER - Isaac N. Hagan House, Kentuck Knob, U.S. Route 40 vicinity (Stewart Township), Chalkhill, Fayette County, PA

  17. 78 FR 45911 - Foreign-Trade Zone (FTZ) 38-Spartanburg County, South Carolina, Notification of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... chargers; magnets; magnetic chucks; lead-acid, power pack, NiMH and lithium ion batteries; SA battery packs...-bags; battery caps; blister packs; shrink-heat tubing; plastic handles and knobs; O- rings; seals...

  18. Construction of physical maps for the sex-specific regions of papaya sex chromosomes.

    PubMed

    Na, Jong-Kuk; Wang, Jianping; Murray, Jan E; Gschwend, Andrea R; Zhang, Wenli; Yu, Qingyi; Navajas-Pérez, Rafael; Feltus, F Alex; Chen, Cuixia; Kubat, Zdenek; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-05-08

    Papaya is a major fruit crop in tropical and subtropical regions worldwide. It is trioecious with three sex forms: male, female, and hermaphrodite. Sex determination is controlled by a pair of nascent sex chromosomes with two slightly different Y chromosomes, Y for male and Yh for hermaphrodite. The sex chromosome genotypes are XY (male), XYh (hermaphrodite), and XX (female). The papaya hermaphrodite-specific Yh chromosome region (HSY) is pericentromeric and heterochromatic. Physical mapping of HSY and its X counterpart is essential for sequencing these regions and uncovering the early events of sex chromosome evolution and to identify the sex determination genes for crop improvement. A reiterate chromosome walking strategy was applied to construct the two physical maps with three bacterial artificial chromosome (BAC) libraries. The HSY physical map consists of 68 overlapped BACs on the minimum tiling path, and covers all four HSY-specific Knobs. One gap remained in the region of Knob 1, the only knob structure shared between HSY and X, due to the lack of HSY-specific sequences. This gap was filled on the physical map of the HSY corresponding region in the X chromosome. The X physical map consists of 44 BACs on the minimum tiling path with one gap remaining in the middle, due to the nature of highly repetitive sequences. This gap was filled on the HSY physical map. The borders of the non-recombining HSY were defined genetically by fine mapping using 1460 F2 individuals. The genetically defined HSY spanned approximately 8.5 Mb, whereas its X counterpart extended about 5.4 Mb including a 900 Kb region containing the Knob 1 shared by the HSY and X. The 8.5 Mb HSY corresponds to 4.5 Mb of its X counterpart, showing 4 Mb (89%) DNA sequence expansion. The 89% increase of DNA sequence in HSY indicates rapid expansion of the Yh chromosome after genetic recombination was suppressed 2-3 million years ago. The genetically defined borders coincide with the common BACs on the minimum tiling paths of HSY and X. The minimum tiling paths of HSY and its X counterpart are being used for sequencing these X and Yh-specific regions.

  19. Perventricular double-device closure of wide-spaced multi-hole perimembranous ventricular septal defect.

    PubMed

    Liang, Fei; Hongxin, Li; Zhang, Hai-Zhou; Wenbin, Guo; Zou, Cheng-Wei; Farhaj, Zeeshan

    2017-04-17

    Device closure of a wide-spaced multi-hole PmVSD is difficult to succeed in percutaneous approach. This study is to evaluate the feasibility, safety and efficacy of perventricular device closure of wide-spaced multi-hole PmVSD using a double-device implanting technique. Sixteen patients with wide-spaced multi-hole PmVSD underwent perventricular closure with two devices through an inferior median sternotomy approach under transesophageal echocardiographic guidance. The largest hole and its adjacent small holes were occluded with an optimal-sized device. The far-away residual hole was occluded with the other device using a probe-assisted delivery system. All patients were followed up for a period of 1 to 4 years to determine the residual shunt, atrioventricular block and the adjacent valvular function. The number of the holes of the PmVSD was 2 to 4. The maximum distance between the holes was 5.0 to 10.0 mm (median, 6.4 mm). The diameter of the largest hole was 2.5 to 7.0 mm (median, 3.6 mm). The success rate of double-device closure was 100%. Immediate residual shunts were found in 6 patients (38%), and incomplete right bundle branch block at discharge occurred in 3 cases (19%). Both complications decreased to 6% at 1-year follow-up. Neither of them had a severe device-related complication. Perventricular closure of a wide-spaced multi-hole PmVSD using a double-device implanting technique is feasible, safe, and efficacious. In multi-hole PmVSDs with the distance between the holes of more than 5 mm, double-device implantation may achieve a complete occlusion.

  20. Proximity matching for ArF and KrF scanners

    NASA Astrophysics Data System (ADS)

    Kim, Young Ki; Pohling, Lua; Hwee, Ng Teng; Kim, Jeong Soo; Benyon, Peter; Depre, Jerome; Hong, Jongkyun; Serebriakov, Alexander

    2009-03-01

    There are many IC-manufacturers over the world that use various exposure systems and work with very high requirements in order to establish and maintain stable lithographic processes of 65 nm, 45 nm and below. Once the process is established, manufacturer desires to be able to run it on different tools that are available. This is why the proximity matching plays a key role to maximize tools utilization in terms of productivity for different types of exposure tools. In this paper, we investigate the source of errors that cause optical proximity mismatch and evaluate several approaches for proximity matching of different types of 193 nm and 248 nm scanner systems such as set-get sigma calibration, contrast adjustment, and, finally, tuning imaging parameters by optimization with Manual Scanner Matcher. First, to monitor the proximity mismatch, we collect CD measurement data for the reference tool and for the tool-to-be-matched. Normally, the measurement is performed for a set of line or space through pitch structures. Secondly, by simulation or experiment, we determine the sensitivity of the critical structures with respect to small adjustment of exposure settings such as NA, sigma inner, sigma outer, dose, focus scan range etc. that are called 'proximity tuning knobs'. Then, with the help of special optimization software, we compute the proximity knob adjustment that has to be applied to the tool-to-be-matched to match the reference tool. Finally, we verify successful matching by exposing on the tool-to-be-matched with tuned exposure settings. This procedure is applicable for inter- and intra scanner type matching, but possibly also for process transfers to the design targets. In order to illustrate the approach we show experimental data as well as results of imaging simulations. The set demonstrate successful matching of critical structures for ArF scanners of different tool generations.

  1. A high-throughput, multi-channel photon-counting detector with picosecond timing

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  2. Design of Compressed Sensing Algorithm for Coal Mine IoT Moving Measurement Data Based on a Multi-Hop Network and Total Variation.

    PubMed

    Wang, Gang; Zhao, Zhikai; Ning, Yongjie

    2018-05-28

    As the application of a coal mine Internet of Things (IoT), mobile measurement devices, such as intelligent mine lamps, cause moving measurement data to be increased. How to transmit these large amounts of mobile measurement data effectively has become an urgent problem. This paper presents a compressed sensing algorithm for the large amount of coal mine IoT moving measurement data based on a multi-hop network and total variation. By taking gas data in mobile measurement data as an example, two network models for the transmission of gas data flow, namely single-hop and multi-hop transmission modes, are investigated in depth, and a gas data compressed sensing collection model is built based on a multi-hop network. To utilize the sparse characteristics of gas data, the concept of total variation is introduced and a high-efficiency gas data compression and reconstruction method based on Total Variation Sparsity based on Multi-Hop (TVS-MH) is proposed. According to the simulation results, by using the proposed method, the moving measurement data flow from an underground distributed mobile network can be acquired and transmitted efficiently.

  3. 27 CFR 9.98 - Monterey.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., 1956; (5) Thompson Canyon, CA, 1949, photo-revised 1979; (6) Cosio Knob, CA, 1948, photoinspected 1976...) Mt. Harlan Quadrangle, CA, 1968; (22) Natividad Quadrangle, CA, 1947, photo-revised 1968, photoinspected 1974; (23) San Juan Bautista Quadrangle, CA, 1955, photo-revised 1980; (24) Prunedale Quadrangle...

  4. 27 CFR 9.98 - Monterey.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., 1956; (5) Thompson Canyon, CA, 1949, photo-revised 1979; (6) Cosio Knob, CA, 1948, photoinspected 1976...) Mt. Harlan Quadrangle, CA, 1968; (22) Natividad Quadrangle, CA, 1947, photo-revised 1968, photoinspected 1974; (23) San Juan Bautista Quadrangle, CA, 1955, photo-revised 1980; (24) Prunedale Quadrangle...

  5. 14 CFR 25.777 - Cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... any member of this flight crew, from 5′2″ to 6′3″ in height, is seated with the seat belt and shoulder... belt and shoulder harness (if provided) fastened. (g) Control knobs must be shaped in accordance with...

  6. 14 CFR 25.777 - Cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... any member of this flight crew, from 5′2″ to 6′3″ in height, is seated with the seat belt and shoulder... belt and shoulder harness (if provided) fastened. (g) Control knobs must be shaped in accordance with...

  7. 2. WEST FRONT ENTRANCE, WITH OWNERS MR. & MRS. ISACC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. WEST FRONT ENTRANCE, WITH OWNERS MR. & MRS. ISACC N. HAGAN (WHO CONTRACTED WITH FRANK LLOYD WRIGHT FOR THE DESIGN OF THIS HOUSE) - Isaac N. Hagan House, Kentuck Knob, U.S. Route 40 vicinity (Stewart Township), Chalkhill, Fayette County, PA

  8. Directed Thermal Diffusions through Metamaterial Source Illusion with Homogeneous Natural Media

    PubMed Central

    Xu, Guoqiang; Zhang, Haochun; Jin, Liang

    2018-01-01

    Owing to the utilization of transformation optics, many significant research and development achievements have expanded the applications of illusion devices into thermal fields. However, most of the current studies on relevant thermal illusions used to reshape the thermal fields are dependent of certain pre-designed geometric profiles with complicated conductivity configurations. In this paper, we propose a methodology for designing a new class of thermal source illusion devices for achieving directed thermal diffusions with natural homogeneous media. The employments of the space rotations in the linear transformation processes allow the directed thermal diffusions to be independent of the geometric profiles, and the utilization of natural homogeneous media improve the feasibility. Four schemes, with fewer types of homogeneous media filling the functional regions, are demonstrated in transient states. The expected performances are observed in each scheme. The related performance are analyzed by comparing the thermal distribution characteristics and the illusion effectiveness on the measured lines. The findings obtained in this paper see applications in the development of directed diffusions with minimal thermal loss, used in novel “multi-beam” thermal generation, thermal lenses, solar receivers, and waveguide. PMID:29671833

  9. PAM4 silicon photonic microring resonator-based transceiver circuits

    NASA Astrophysics Data System (ADS)

    Palermo, Samuel; Yu, Kunzhi; Roshan-Zamir, Ashkan; Wang, Binhao; Li, Cheng; Seyedi, M. Ashkan; Fiorentino, Marco; Beausoleil, Raymond

    2017-02-01

    Increased data rates have motivated the investigation of advanced modulation schemes, such as four-level pulseamplitude modulation (PAM4), in optical interconnect systems in order to enable longer transmission distances and operation with reduced circuit bandwidth relative to non-return-to-zero (NRZ) modulation. Employing this modulation scheme in interconnect architectures based on high-Q silicon photonic microring resonator devices, which occupy small area and allow for inherent wavelength-division multiplexing (WDM), offers a promising solution to address the dramatic increase in datacenter and high-performance computing system I/O bandwidth demands. Two ring modulator device structures are proposed for PAM4 modulation, including a single phase shifter segment device driven with a multi-level PAM4 transmitter and a two-segment device driven by two simple NRZ (MSB/LSB) transmitters. Transmitter circuits which utilize segmented pulsed-cascode high swing output stages are presented for both device structures. Output stage segmentation is utilized in the single-segment device design for PAM4 voltage level control, while in the two-segment design it is used for both independent MSB/LSB voltage levels and impedance control for output eye skew compensation. The 65nm CMOS transmitters supply a 4.4Vppd output swing for 40Gb/s operation when driving depletion-mode microring modulators implemented in a 130nm SOI process, with the single- and two-segment designs achieving 3.04 and 4.38mW/Gb/s, respectively. A PAM4 optical receiver front-end is also described which employs a large input-stage feedback resistor transimpedance amplifier (TIA) cascaded with an adaptively-tuned continuous-time linear equalizer (CTLE) for improved sensitivity. Receiver linearity, critical in PAM4 systems, is achieved with a peak-detector-based automatic gain control (AGC) loop.

  10. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic

    NASA Astrophysics Data System (ADS)

    Shim, Jaewoo; Oh, Seyong; Kang, Dong-Ho; Jo, Seo-Hyeon; Ali, Muhammad Hasnain; Choi, Woo-Young; Heo, Keun; Jeon, Jaeho; Lee, Sungjoo; Kim, Minwoo; Song, Young Jae; Park, Jin-Hong

    2016-11-01

    Recently, negative differential resistance devices have attracted considerable attention due to their folded current-voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research.

  11. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic

    PubMed Central

    Shim, Jaewoo; Oh, Seyong; Kang, Dong-Ho; Jo, Seo-Hyeon; Ali, Muhammad Hasnain; Choi, Woo-Young; Heo, Keun; Jeon, Jaeho; Lee, Sungjoo; Kim, Minwoo; Song, Young Jae; Park, Jin-Hong

    2016-01-01

    Recently, negative differential resistance devices have attracted considerable attention due to their folded current–voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research. PMID:27819264

  12. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  13. Realization of spin wave switch for data processing

    NASA Astrophysics Data System (ADS)

    Balinskiy, M.; Chiang, H.; Khitun, A.

    2018-05-01

    In this work, experimental data on a spin wave switch based on spin wave interference is reported. The switch is a three terminal device where spin wave propagation between the source and the drain is modulated by the control spin wave signal. The prototype is a micrometer scale device based on Y3Fe2(FeO4)3 film. The output characteristics show the oscillation of the output spin wave signal as a function of the phase difference between the source and the drain spin wave signals. The On/Off ratio of the prototype exceeds 20 dB at room temperature. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. The advantages and shortcomings of spin wave switches are also discussed.

  14. Three-body Annihilation at the Onset of Anomalous Photocurrent Suppression in Vertical Heterostrucutres of MoTe2

    NASA Astrophysics Data System (ADS)

    Arp, Trevor; Pleskot, Dennis; Gabor, Nathaniel

    We have developed a new photoresponse imaging technique that utilizes extensive data acquisition over a large parameter space. By acquiring a multi-dimensional data set, we fully capture the intrinsic optoelectronic response of two-dimensional heterostructure devices. Using this technique we have investigated the behavior of heterostructures consisting of molybdenum ditelluride (MoTe2) sandwiched between graphene top and bottom contacts. Under near-infrared optical excitation, the ultra-thin heterostructure devices exhibit sub-linear photocurrent response that recovers within several dozen picoseconds. As the optical power increases, the dynamics of the photoresponse, consistent with 3-body annihilation, precede a sudden suppression of photocurrent. The observed dynamics near the threshold to photocurrent suppression may indicate the onset to a strongly interacting population of electrons and holes.

  15. Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei

    2017-02-01

    Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.

  16. Virtually-augmented interfaces for tactical aircraft.

    PubMed

    Haas, M W

    1995-05-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and non-virtual concepts and devices across the visual, auditory and haptic sensory modalities. A fusion interface is a multi-sensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion-interface concepts. One of the virtual concepts to be investigated in the Fusion Interfaces for Tactical Environments facility (FITE) is the application of EEG and other physiological measures for virtual control of functions within the flight environment. FITE is a specialized flight simulator which allows efficient concept development through the use of rapid prototyping followed by direct experience of new fusion concepts. The FITE facility also supports evaluation of fusion concepts by operational fighter pilots in a high fidelity simulated air combat environment. The facility was utilized by a multi-disciplinary team composed of operational pilots, human-factors engineers, electronics engineers, computer scientists, and experimental psychologists to prototype and evaluate the first multi-sensory, virtually-augmented cockpit. The cockpit employed LCD-based head-down displays, a helmet-mounted display, three-dimensionally localized audio displays, and a haptic display. This paper will endeavor to describe the FITE facility architecture, some of the characteristics of the FITE virtual display and control devices, and the potential application of EEG and other physiological measures within the FITE facility.

  17. Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition

    NASA Astrophysics Data System (ADS)

    Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.

    2006-03-01

    As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.

  18. Multi-Directional Environmental Sensors

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Del Castillo, Linda Y. (Inventor); Mojarradi, Mohammed M. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement multi-directional environmental sensors. In one embodiment, a multi-directional environmental sensor includes: an inner conductive element that is substantially symmetrical about three orthogonal planes; an outer conductive element that is substantially symmetrical about three orthogonal planes; and a device that measures the electrical characteristics of the multi-directional environmental sensor, the device having a first terminal and a second terminal; where the inner conductive element is substantially enclosed within the outer conductive element; where the inner conductive element is electrically coupled to the first terminal of the device; and where the outer conductive element is electrically coupled to the second terminal of the device.

  19. Integration of Multiple Components in Polystyrene-based Microfluidic Devices Part 1: Fabrication and Characterization

    PubMed Central

    Johnson, Alicia S.; Anderson, Kari B.; Halpin, Stephen T.; Kirkpatrick, Douglas C.; Spence, Dana M.; Martin, R. Scott

    2012-01-01

    In Part I of a two-part series, we describe a simple, and inexpensive approach to fabricate polystyrene devices that is based upon melting polystyrene (from either a Petri dish or powder form) against PDMS molds or around electrode materials. The ability to incorporate microchannels in polystyrene and integrate the resulting device with standard laboratory equipment such as an optical plate reader for analyte readout and micropipettors for fluid propulsion is first described. A simple approach for sample and reagent delivery to the device channels using a standard, multi-channel micropipette and a PDMS-based injection block is detailed. Integration of the microfluidic device with these off-chip functions (sample delivery and readout) enables high throughput screens and analyses. An approach to fabricate polystyrene-based devices with embedded electrodes is also demonstrated, thereby enabling the integration of microchip electrophoresis with electrochemical detection through the use of a palladium electrode (for a decoupler) and carbon-fiber bundle (for detection). The device was sealed against a PDMS-based microchannel and used for the electrophoretic separation and amperometric detection of dopamine, epinephrine, catechol, and 3,4-dihydroxyphenylacetic acid. Finally, these devices were compared against PDMS-based microchips in terms of their optical transparency and absorption of an anti-platelet drug, clopidogrel. Part I of this series lays the foundation for Part II, where these devices were utilized for various on-chip cellular analysis. PMID:23120747

  20. Multi-junction solar cell device

    DOEpatents

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  1. The “NetBoard”: Network Monitoring Tools Integration for INFN Tier-1 Data Center

    NASA Astrophysics Data System (ADS)

    De Girolamo, D.; dell'Agnello and, L.; Zani, S.

    2012-12-01

    The monitoring and alert system is fundamental for the management and the operation of the network in a large data center such as an LHC Tier-1. The network of the INFN Tier-1 at CNAF is a multi-vendor environment: for its management and monitoring several tools have been adopted and different sensors have been developed. In this paper, after an overview on the different aspects to be monitored and the tools used for them (i.e. MRTG, Nagios, Arpwatch, NetFlow, Syslog, etc), we will describe the “NetBoard”, a monitoring toolkit developed at the INFN Tier-1. NetBoard, developed for a multi-vendor network, is able to install and auto-configure all tools needed for its monitoring, either via network devices discovery mechanism or via configuration file or via wizard. In this way, we are also able to activate different types of sensors and Nagios checks according to the equipment vendor specifications. Moreover, when a new device is connected in the LAN, NetBoard can detect where it is plugged. Finally the NetBoard web interface allows to have the overall status of the entire network “at a glance”, both the local and the geographical (including the LHCOPN and the LHCONE) link utilization, health status of network devices (with active alerts) and flow analysis.

  2. 20. Readiness Crew Building interior, upper level corridor. This corridor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Readiness Crew Building interior, upper level corridor. This corridor runs from northwest to southeast. Photograph taken at the northwest end looking southeast. Lyon - Whiteman Air Force Base, Bomber Alert Facility S-6, 1300 Alert Road, Knob Noster, Johnson County, MO

  3. 2. T12, exterior overall view, view from just outside the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. T-12, exterior overall view, view from just outside the security fence looking southeast. Lyon - Whiteman Air Force Base, Minuteman Missile Launch Facility Trainer T-12, Northeast of Oscar-01 Missile Alert Facility, Knob Noster, Johnson County, MO

  4. Reliability- and performance-based robust design optimization of MEMS structures considering technological uncertainties

    NASA Astrophysics Data System (ADS)

    Martowicz, Adam; Uhl, Tadeusz

    2012-10-01

    The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.

  5. The Role of Long-Lived Greenhouse Gases as Principal LW Control Knob that Governs the Global Surface Temperature for Past and Future Climate Change

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew A.; Hansen, James E.; Russell, Gary L.; Oinas, Valdar; Jonas, Jeffrey

    2013-01-01

    The climate system of the Earth is endowed with a moderately strong greenhouse effect that is characterized by non-condensing greenhouse gases (GHGs) that provide the core radiative forcing. Of these, the most important is atmospheric CO2. There is a strong feedback contribution to the greenhouse effect by water vapor and clouds that is unique in the solar system, exceeding the core radiative forcing due to the non-condensing GHGs by a factor of three. The significance of the non-condensing GHGs is that once they have been injected into the atmosphere, they remain there virtually indefinitely because they do not condense and precipitate from the atmosphere, their chemical removal time ranging from decades to millennia. Water vapor and clouds have only a short lifespan, with their distribution determined by the locally prevailing meteorological conditions, subject to Clausius-Clapeyron constraint. Although solar irradiance is the ultimate energy source that powers the terrestrial greenhouse effect, there has been no discernible long-term trend in solar irradiance since precise monitoring began in the late 1970s. This leaves atmospheric CO2 as the effective control knob driving the current global warming trend. Over geological time scales, volcanoes are the principal source of atmospheric CO2, and the weathering of rocks is the principal sink, with the biosphere participating as both a source and a sink. The problem at hand is that human industrial activity is causing atmospheric CO2, to increase by 2 ppm per year, whereas the interglacial rate has been 0.005 ppm per year. This is a geologically unprecedented rate to turn the CO2 climate control knob. This is causing the global warming that threatens the global environment.

  6. Structural and Functional Characterization of a Hole-Hole Homodimer Variant in a "Knob-Into-Hole" Bispecific Antibody.

    PubMed

    Zhang, Hui-Min; Li, Charlene; Lei, Ming; Lundin, Victor; Lee, Ho Young; Ninonuevo, Milady; Lin, Kevin; Han, Guanghui; Sandoval, Wendy; Lei, Dongsheng; Ren, Gang; Zhang, Jennifer; Liu, Hongbin

    2017-12-19

    Bispecific antibodies have great potential to be the next-generation biotherapeutics due to their ability to simultaneously recognize two different targets. Compared to conventional monoclonal antibodies, knob-into-hole bispecific antibodies face unique challenges in production and characterization due to the increase in variant possibilities, such as homodimerization in covalent and noncovalent forms. In this study, a storage- and pH-sensitive hydrophobic interaction chromatography (HIC) profile change was observed for the hole-hole homodimer, and the multiple HIC peaks were explored and shown to be conformational isomers. We combined traditional analytical methods with hydrogen/deuterium exchange mass spectrometry (HDX MS), native mass spectrometry, and negative-staining electron microscopy to comprehensively characterize the hole-hole homodimer. HDX MS revealed conformational changes at the resolution of a few amino acids overlapping the C H 2-C H 3 domain interface. Conformational heterogeneity was also assessed by HDX MS isotopic distribution. The hole-hole homodimer was demonstrated to adopt a more homogeneous conformational distribution during storage. This conformational change is likely caused by a lack of C H 3 domain dimerization (due to the three "hole" point mutations), resulting in a unique storage- and pH-dependent conformational destabilization and refolding of the hole-hole homodimer Fc. Compared with the hole-hole homodimer under different storage conditions, the bispecific heterodimer, guided by the knob-into-hole assembly, proved to be a stable conformation with homogeneous distribution, confirming its high quality as a desired therapeutic. Functional studies by antigen binding and neonatal Fc receptor (FcRn) binding correlated very well with the structural characterization. Comprehensive interpretation of the results has provided a better understanding of both the homodimer variant and the bispecific molecule.

  7. Human adenovirus serotypes 4p and 11p are efficiently expressed in cell lines of neural tumour origin.

    PubMed

    Skog, Johan; Mei, Ya-Fang; Wadell, Göran

    2002-06-01

    Most currently used adenovirus vectors are based upon adenovirus serotypes 2 and 5 (Ad2 and Ad5), which have limited efficiencies for gene transfer to human neural cells. Both serotypes bind to the known adenovirus receptor, CAR (coxsackievirus and adenovirus receptor), and have restricted cell tropism. The purpose of this study was to find vector candidates that are superior to Ad5 in infecting human neural tumours. Using flow cytometry, the vector candidates Ad4p, Ad11p and Ad17p were compared to the commonly used adenovirus vector Ad5v for their binding capacity to neural cell lines derived from glioblastoma, medulloblastoma and neuroblastoma cell lines. The production of viral structural proteins and the CAR-binding properties of the different serotypes were also assessed in these cells. Computer-based models of the fibre knobs of Ad4p and Ad17 were created based upon the crystallized fibre knob structure of adenoviruses and analysed for putative receptor-interacting regions that differed from the fibre knob of Ad5. The non CAR-binding vector candidate Ad11p showed clearly the best binding capacity to all of the neural cell lines, binding more than 90% of cells of all of the neural cell lines tested, in contrast to 20% or less for the commonly used vector Ad5v. Ad4p and Ad11p were also internalized and produced viral proteins more successfully than Ad5. Ad4p showed a low binding ability but a very efficient capacity for infection in cell culture. Ad17p virions neither bound or efficiently infected any of the neural cell lines studied.

  8. Adenovirus Type 5 Viral Particles Pseudotyped with Mutagenized Fiber Proteins Show Diminished Infectivity of Coxsackie B-Adenovirus Receptor-Bearing Cells

    PubMed Central

    Jakubczak, John L.; Rollence, Michele L.; Stewart, David A.; Jafari, Jonathon D.; Von Seggern, Dan J.; Nemerow, Glen R.; Stevenson, Susan C.; Hallenbeck, Paul L.

    2001-01-01

    A major limitation of adenovirus type 5 (Ad5)-based gene therapy, the inability to target therapeutic genes to selected cell types, is attributable to the natural tropism of the virus for the widely expressed coxsackievirus-adenovirus receptor (CAR) protein. Modifications of the Ad5 fiber knob domain have been shown to alter the tropism of the virus. We have developed a novel system to rapidly evaluate the function of modified fiber proteins in their most relevant context, the adenoviral capsid. This transient transfection/infection system combines transfection of cells with plasmids that express high levels of the modified fiber protein and infection with Ad5.βgal.ΔF, an E1-, E3-, and fiber-deleted adenoviral vector encoding β-galactosidase. We have used this system to test the adenoviral transduction efficiency mediated by a panel of fiber protein mutants that were proposed to influence CAR interaction. A series of amino acid modifications were incorporated via mutagenesis into the fiber expression plasmid, and the resulting fiber proteins were subsequently incorporated onto adenoviral particles. Mutations located in the fiber knob AB and CD loops demonstrated the greatest reduction in fiber-mediated gene transfer in HeLa cells. We also observed effects on transduction efficiency with mutations in the FG loop, indicating that the binding site may extend to the adjacent monomer in the fiber trimer and in the HI loop. These studies support the concept that modification of the fiber knob domain to diminish or ablate CAR interaction should result in a detargeted adenoviral vector that can be combined simultaneously with novel ligands for the development of a systemically administered, targeted adenoviral vector. PMID:11222722

  9. An early record of Meloidogyne fallax from Ireland

    PubMed Central

    Topalović, Olivera; Moore, John F.; Janssen, Toon; Bert, Wim; Karssen, Gerrit

    2017-01-01

    Abstract Root-knot nematodes, Meloidogyne spp., cause huge economic losses worldwide. Currently, three Meloidogyne spp. are present on the quarantine A2 list of EPPO, Meloidogyne chitwoodi, Meloidogyne fallax and Meloidogyne enterolobii. As a quarantine organism, Meloidogyne fallax has been detected in England and Northern Ireland on sport turf in 2011, and in England on leek in 2013. However, its presence in Ireland has probably been overlooked since 1965, when Mr. John F. Moore and Dr. Mary T. Franklin had detected a new Meloidogyne species for that time. While the relevant data was recorded and a preliminary manuscript describing the species was prepared but never submitted for publication, and together with the original slides, pictures and drawings, it was restudied recently. We compared the population of Irish Meloidogyne sp. to other similar Meloidogyne spp. Careful observation and comparison shows that it belongs to Meloidogyne fallax. The characters found to be common for Irish Meloidogyne sp. and Meloidogyne fallax are female stylet length (14.6 μm) with oval to rounded basal knobs, oval shaped perineal pattern with moderately high dorsal arch, slender stylet in males (18.5 μm) with set off and rounded basal knobs, slightly set off male head with one post-labial annule and incomplete transverse incisures, and second-stage juveniles with large and rounded stylet basal knobs, and a gradually tapering tail (46.9 μm) with a broadly rounded tip and a clearly delimitated smooth hyaline part sometimes marked by constrictions (12.9 μm). The host test and gall formation also correspond to Meloidogyne fallax. The identification could not be additionally supported by molecular analysis, as we were unable to extract DNA from the old permanent slides. Nevertheless, our study reveals that the Meloidogyne species detected in Ireland in 1965 belongs to Meloidogyne fallax. PMID:28144174

  10. Intra-specific variation in genome size in maize: cytological and phenotypic correlates

    PubMed Central

    Realini, María Florencia; Poggio, Lidia; Cámara-Hernández, Julián; González, Graciela Esther

    2016-01-01

    Genome size variation accompanies the diversification and evolution of many plant species. Relationships between DNA amount and phenotypic and cytological characteristics form the basis of most hypotheses that ascribe a biological role to genome size. The goal of the present research was to investigate the intra-specific variation in the DNA content in maize populations from Northeastern Argentina and further explore the relationship between genome size and the phenotypic traits seed weight and length of the vegetative cycle. Moreover, cytological parameters such as the percentage of heterochromatin as well as the number, position and sequence composition of knobs were analysed and their relationships with 2C DNA values were explored. The populations analysed presented significant differences in 2C DNA amount, from 4.62 to 6.29 pg, representing 36.15 % of the inter-populational variation. Moreover, intra-populational genome size variation was found, varying from 1.08 to 1.63-fold. The variation in the percentage of knob heterochromatin as well as in the number, chromosome position and sequence composition of the knobs was detected among and within the populations. Although a positive relationship between genome size and the percentage of heterochromatin was observed, a significant correlation was not found. This confirms that other non-coding repetitive DNA sequences are contributing to the genome size variation. A positive relationship between DNA amount and the seed weight has been reported in a large number of species, this relationship was not found in the populations studied here. The length of the vegetative cycle showed a positive correlation with the percentage of heterochromatin. This result allowed attributing an adaptive effect to heterochromatin since the length of this cycle would be optimized via selection for an appropriate percentage of heterochromatin. PMID:26644343

  11. Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link.

    PubMed

    Fang, Yuan; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-01-27

    We experimentally demonstrated full-duplex bidirectional transmission of 10-Gb/s millimeter-wave (mm-wave) quadrature phase shift keying (QPSK) signal in E-band (71-76 GHz and 81-86 GHz) optical wireless link. Single-mode fibers (SMF) are connected at both sides of the antenna for uplink and downlink which realize 40-km SMF and 2-m wireless link for bidirectional transmission simultaneously. We utilized multi-level modulation format and coherent detection in such E-band optical wireless link for the first time. Mm-wave QPSK signal is generated by photonic technique to increase spectrum efficiency and received signal is coherently detected to improve receiver sensitivity. After the coherent detection, digital signal processing is utilized to compensate impairments of devices and transmission link.

  12. Unipolar Barrier Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Soibel, Alexander (Inventor); Khoshakhlagh, Arezou (Inventor); Gunapala, Sarath (Inventor)

    2017-01-01

    Dual-band barrier infrared detectors having structures configured to reduce spectral crosstalk between spectral bands and/or enhance quantum efficiency, and methods of their manufacture are provided. In particular, dual-band device structures are provided for constructing high-performance barrier infrared detectors having reduced crosstalk and/or enhance quantum efficiency using novel multi-segmented absorber regions. The novel absorber regions may comprise both p-type and n-type absorber sections. Utilizing such multi-segmented absorbers it is possible to construct any suitable barrier infrared detector having reduced crosstalk, including npBPN, nBPN, pBPN, npBN, npBP, pBN and nBP structures. The pBPN and pBN detector structures have high quantum efficiency and suppresses dark current, but has a smaller etch depth than conventional detectors and does not require a thick bottom contact layer.

  13. The So-Called Face

    NASA Image and Video Library

    2002-05-21

    The so-called Face on Mars can be seen slightly above center and to the right in this NASA Mars Odyssey image. This 3-km long knob was first imaged by NASA Viking spacecraft in the 1970 and to some resembled a face carved into the rocks of Mars.

  14. Self locking coupling mechanism for engaging and moving a load

    DOEpatents

    Wood, R.L.; Casamajor, A.B.; Parsons, R.E.

    1980-09-12

    A coupling mechanism for engaging and lifting a load has a housing with a guide passage for receiving a knob which is secured to the load through a neck of smaller diameter. A hollow ball in the housing has an opening which receives the knob and the ball is then turned to displace the opening from the housing passage and to cause the neck to enter a slot in the ball thereby securing the load to the coupling mechanism as elements of the housing block travel of the neck back into the opening when the ball is turned to the load holding orientation. As engagement of the load and locking of the coupling mechanism are accomplished simultaneously by the same ball motion, operation is simplified and reliability is greatly increased. The ball is preferably turned by a motor through worm gearing and the coupling mechanism may be controlled from a remote location. Among other uses, the coupling mechanism is adaptable to the handling of spent nuclear reactor fuel elements.

  15. Conformational changes in fragments D and double-D from human fibrin(ogen) upon binding the peptide ligand Gly-His-Arg-Pro-amide.

    PubMed

    Everse, S J; Spraggon, G; Veerapandian, L; Doolittle, R F

    1999-03-09

    The structure of fragment double-D from human fibrin has been solved in the presence and absence of the peptide ligands that simulate the two knobs exposed by the removal of fibrinopeptides A and B, respectively. All told, six crystal structures have been determined, three of which are reported here for the first time: namely, fragments D and double-D with the peptide GHRPam alone and double-D in the absence of any peptide ligand. Comparison of the structures has revealed a series of conformational changes that are brought about by the various knob-hole interactions. Of greatest interest is a moveable "flap" of two negatively charged amino acids (Glubeta397 and Aspbeta398) whose side chains are pinned back to the coiled coil with a calcium atom bridge until GHRPam occupies the beta-chain pocket. Additionally, in the absence of the peptide ligand GPRPam, GHRPam binds to the gamma-chain pocket, a new calcium-binding site being formed concomitantly.

  16. Note: a 4 ns hardware photon correlator based on a general-purpose field-programmable gate array development board implemented in a compact setup for fluorescence correlation spectroscopy.

    PubMed

    Kalinin, Stanislav; Kühnemuth, Ralf; Vardanyan, Hayk; Seidel, Claus A M

    2012-09-01

    We present a fast hardware photon correlator implemented in a field-programmable gate array (FPGA) combined with a compact confocal fluorescence setup. The correlator has two independent units with a time resolution of 4 ns while utilizing less than 15% of a low-end FPGA. The device directly accepts transistor-transistor logic (TTL) signals from two photon counting detectors and calculates two auto- or cross-correlation curves in real time. Test measurements demonstrate that the performance of our correlator is comparable with the current generation of commercial devices. The sensitivity of the optical setup is identical or even superior to current commercial devices. The FPGA design and the optical setup both allow for a straightforward extension to multi-color applications. This inexpensive and compact solution with a very good performance can serve as a versatile platform for uses in education, applied sciences, and basic research.

  17. Assembling programmable FRET-based photonic networks using designer DNA scaffolds

    PubMed Central

    Buckhout-White, Susan; Spillmann, Christopher M; Algar, W. Russ; Khachatrian, Ani; Melinger, Joseph S.; Goldman, Ellen R.; Ancona, Mario G.; Medintz, Igor L.

    2014-01-01

    DNA demonstrates a remarkable capacity for creating designer nanostructures and devices. A growing number of these structures utilize Förster resonance energy transfer (FRET) as part of the device's functionality, readout or characterization, and, as device sophistication increases so do the concomitant FRET requirements. Here we create multi-dye FRET cascades and assess how well DNA can marshal organic dyes into nanoantennae that focus excitonic energy. We evaluate 36 increasingly complex designs including linear, bifurcated, Holliday junction, 8-arm star and dendrimers involving up to five different dyes engaging in four-consecutive FRET steps, while systematically varying fluorophore spacing by Förster distance (R0). Decreasing R0 while augmenting cross-sectional collection area with multiple donors significantly increases terminal exciton delivery efficiency within dendrimers compared with the first linear constructs. Förster modelling confirms that best results are obtained when there are multiple interacting FRET pathways rather than independent channels by which excitons travel from initial donor(s) to final acceptor. PMID:25504073

  18. Transparent Carbon Nanotube layers as cathodes in OLEDs

    NASA Astrophysics Data System (ADS)

    Papadimitratos, Alexios; Nasibulin, Albert; Kauppinen, Esko; Zakhidov, Anvar; Solarno Inc Collaboration; Aalto University Collaboration; UT Dallas Collaboration

    2011-03-01

    Organic Light Emitting diodes (OLEDs) have attracted high interest in recent years due to their potential use in future lighting and display applications. Reported work on OLEDs traditionally utilizes low work function materials as cathodes that are expensive to fabricate because of the high vacuum processing. Transparent carbon nanotube (CNT) sheets have excellent mechanical and electrical properties. We have already shown earlier that multi-wall (MWCNT) as well as single CNT (SWCNT) sheets can be used as effective anodes in bright OLEDs [,]. The true advantage of using the CNT sheets lies in flexible devices and new architectures with CNT sheet as layers in tandem devices with parallel connection. In this work, we are investigating the possibility of using SWCNT as cathodes in OLEDs. SWCNT sheets have been reported to show lower work function compared to MWCNT. Our work attempts to demonstrate transparent OLED devices with CNT anodes and cathodes. In the process, OLEDs with CNT cathodes have been fabricated in normal and inverted configurations using inorganic oxides (MoO3,ZnO) as invertion layers.

  19. Note: A 4 ns hardware photon correlator based on a general-purpose field-programmable gate array development board implemented in a compact setup for fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalinin, Stanislav; Kühnemuth, Ralf; Vardanyan, Hayk; Seidel, Claus A. M.

    2012-09-01

    We present a fast hardware photon correlator implemented in a field-programmable gate array (FPGA) combined with a compact confocal fluorescence setup. The correlator has two independent units with a time resolution of 4 ns while utilizing less than 15% of a low-end FPGA. The device directly accepts transistor-transistor logic (TTL) signals from two photon counting detectors and calculates two auto- or cross-correlation curves in real time. Test measurements demonstrate that the performance of our correlator is comparable with the current generation of commercial devices. The sensitivity of the optical setup is identical or even superior to current commercial devices. The FPGA design and the optical setup both allow for a straightforward extension to multi-color applications. This inexpensive and compact solution with a very good performance can serve as a versatile platform for uses in education, applied sciences, and basic research.

  20. Open Mobile Alliance Secure Content Exchange: Introducing Key Management Constructs and Protocols for Compromise-Resilient Easing of DRM Restrictions

    NASA Astrophysics Data System (ADS)

    Kravitz, David William

    This paper presents an insider's view of the rationale and the cryptographic mechanics of some principal elements of the Open Mobile Alliance (OMA) Secure Content Exchange (SCE) Technical Specifications. A primary goal is to enable implementation of a configurable methodology that quarantines the effects that unknown-compromised entities have on still-compliant entities in the system, while allowing import from upstream protection systems and multi-client reuse of Rights Objects that grant access to plaintext content. This has to be done without breaking compatibility with the underlying legacy OMA DRM v2.0/v2.1 Technical Specifications. It is also required that legacy devices can take at least partial advantage of the new import functionality, and can request the creation of SCE-compatible Rights Objects and utilize Rights Objects created upon request of SCE-conformant devices. This must be done in a way that the roles played by newly defined entities unrecognizable by legacy devices remain hidden.

  1. UNIX programmer`s environment and configuration control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, T.R.; Wyatt, P.W.

    1993-12-31

    A package of UNIX utilities has been developed which unities the advantages of the public domain utility ``imake`` and a configuration control system. The ``imake`` utility is portable It allows a user to make Makefiles on a wide variety of platforms without worrying about the machine-dependent idiosyncracies of the UNIX utility ``make.`` Makefiles are a labor-saving device for compiling and linking complicated programs, and ``imake`` is a labor-saving device for making Makefiles, as well as other useful software (like a program`s internal dependencies on included files). This ``Environment,`` which has been developed around ``imake,`` allows a programmer to manage amore » complicated project consisting of multiple executables which may each link with multiple user-created libraries. The configuration control aspect consists of a directory hierarchy (a baseline) which is mirrored in a developer`s workspace. The workspace includes a minimum of files copied from the baseline; it employs soft links into the baseline wherever possible. The utilities are a multi-tiered suite of Bourne shells to copy or check out sources, check them back in, import new sources (sources which are not in the baseline) and link them appropriately, create new low-level directories and link them, compare with the baseline, update Makefiles with minimal effort, and handle dependencies. The directory hierarchy utilizes a single source repository, which is mirrored in the baseline and in a workspace for a several platform architectures. The system was originally written to support C code on Sun-4`s and RS6000`s. It has now been extended to support FORTRAN as well as C on SGI and Cray YMP platforms as well as Sun-4`s and RS6000`s.« less

  2. Fault-Tolerant Control of ANPC Three-Level Inverter Based on Order-Reduction Optimal Control Strategy under Multi-Device Open-Circuit Fault.

    PubMed

    Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang

    2017-10-31

    The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.

  3. Quantum-engineered interband cascade photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razeghi, Manijeh; Tournié, Eric; Brown, Gail J.

    2013-12-18

    Quantum-engineered multiple stage photovoltaic (PV) devices are explored based on InAs/GaSb/AlSb interband cascade (IC) structures. These ICPV devices employ multiple discrete absorbers that are connected in series by widebandgap unipolar barriers using type-II heterostructure interfaces for facilitating carrier transport between cascade stages similar to IC lasers. The discrete architecture is beneficial for improving the collection efficiency and for spectral splitting by utilizing absorbers with different bandgaps. As such, the photo-voltages from each individual cascade stage in an ICPV device add together, creating a high overall open-circuit voltage, similar to conventional multi-junction tandem solar cells. Furthermore, photo-generated carriers can be collectedmore » with nearly 100% efficiency in each stage. This is because the carriers travel over only a single cascade stage, designed to be shorter than a typical diffusion length. The approach is of significant importance for operation at high temperatures where the diffusion length is reduced. Here, we will present our recent progress in the study of ICPV devices, which includes the demonstration of ICPV devices at room temperature and above with narrow bandgaps (e.g. 0.23 eV) and high open-circuit voltages. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.« less

  4. Multiple utility constrained multi-objective programs using Bayesian theory

    NASA Astrophysics Data System (ADS)

    Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed

    2018-03-01

    A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.

  5. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    PubMed Central

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2015-01-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices. PMID:25466541

  6. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    NASA Astrophysics Data System (ADS)

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2014-12-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.

  7. Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization.

    PubMed

    Dong, Hao-Wen; Wang, Yue-Sheng; Zhang, Chuanzeng

    2017-04-01

    Topology optimization of a waveguide-cavity structure in phononic crystals for designing narrow band filters under the given operating frequencies is presented in this paper. We show that it is possible to obtain an ultra-high-Q filter by only optimizing the cavity topology without introducing any other coupling medium. The optimized cavity with highly symmetric resonance can be utilized as the multi-channel filter, raising filter and T-splitter. In addition, most optimized high-Q filters have the Fano resonances near the resonant frequencies. Furthermore, our filter optimization based on the waveguide and cavity, and our simple illustration of a computational approach to wave control in phononic crystals can be extended and applied to design other acoustic devices or even opto-mechanical devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Carbon Nanotubes as FET Channel: Analog Design Optimization considering CNT Parameter Variability

    NASA Astrophysics Data System (ADS)

    Samar Ansari, Mohd.; Tripathi, S. K.

    2017-08-01

    Carbon nanotubes (CNTs), both single-walled as well as multi-walled, have been employed in a plethora of applications pertinent to semiconductor materials and devices including, but not limited to, biotechnology, material science, nanoelectronics and nano-electro mechanical systems (NEMS). The Carbon Nanotube Field Effect Transistor (CNFET) is one such electronic device which effectively utilizes CNTs to achieve a boost in the channel conduction thereby yielding superior performance over standard MOSFETs. This paper explores the effects of variability in CNT physical parameters viz. nanotube diameter, pitch, and number of CNT in the transistor channel, on the performance of a chosen analog circuit. It is further shown that from the analyses performed, an optimal design of the CNFETs can be derived for optimizing the performance of the analog circuit as per a given specification set.

  9. Overview of the status of the Cheat Mountain salamander

    Treesearch

    Thomas K. Pauley

    2010-01-01

    Plethodon nettingi, the Cheat Mountain salamander, is endemic to the high elevations of the Allegheny Mountains in eastern West Virginia. In 1938, N.B. Green named the species from specimens collected at Barton Knob, Randolph County, in honor of his friend and colleague Graham Netting.

  10. Materials growth and characterization of thermoelectric and resistive switching devices

    NASA Astrophysics Data System (ADS)

    Norris, Kate J.

    In the 74 years since diode rectifier based radar technology helped the allied forces win WWII, semiconductors have transformed the world we live in. From our smart phones to semiconductor-based energy conversion, semiconductors touch every aspect of our lives. With this thesis I hope to expand human knowledge of semiconductor thermoelectric devices and resistive switching devices through experimentation with materials growth and subsequent materials characterization. Metal organic chemical vapor deposition (MOCVD) was the primary method of materials growth utilized in these studies. Additionally, plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD),ion beam sputter deposition, reactive sputter deposition and electron-beam (e-beam) evaporation were also used in this research for device fabrication. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Electron energy loss spectroscopy (EELS) were the primary characterization methods utilized for this research. Additional device and materials characterization techniques employed include: current-voltage measurements, thermoelectric measurements, x-ray diffraction (XRD), reflection absorption infra-red spectroscopy (RAIRS), atomic force microscopy (AFM), photoluminescence (PL), and raman spectroscopy. As society has become more aware of its impact on the planet and its limited resources, there has been a push toward developing technologies to sustainably produce the energy we need. Thermoelectric devices convert heat directly into electricity. Thermoelectric devices have the potential to save huge amounts of energy that we currently waste as heat, if we can make them cost-effective. Semiconducting thin films and nanowires appear to be promising avenues of research to attain this goal. Specifically, in this work we will explore the use of ErSb thin films as well as Si and InP nanowire networks for thermoelectric applications. First we will discuss the growth of erbium monoantimonide (ErSb) thin films with thermal conductivities close to or slightly smaller than the alloy limit of the two ternary alloy hosts. Second we consider an ex-situ monitoring technique based on glancing-angle infrared-absorption used to determine small amounts of erbium antimonide (ErSb) deposited on an indium antimonide (InSb) layer, a concept for thermoelectric devices to scatter phonons. Thirdly we begin our discussion of nanowires with the selective area growth (SAG) of single crystalline indium phosphide (InP) nanopillars on an array of template segments composed of a stack of gold and amorphous silicon. Our approach enables flexible and scalable nanofabrication using industrially proven tools and a wide range of semiconductors on various non-semiconductor substrates. Then we examine the use of graphene to promote the growth of nanowire networks on flexible copper foil leading to the testing of nanowire network devices for thermoelectric applications and the concept of multi-stage devices. We present the ability to tailor current-voltage characteristics to fit a desired application of thermoelectric devices by using nanowire networks as building blocks that can be stacked vertically or laterally. Furthermore, in the study of our flexible nanowire network multi-stage devices, we discovered the presence of nonlinear current-voltage characteristics and discuss how this feature could be utilized to increase efficiency for thermoelectric devices. This work indicates that with sufficient volume and optimized doping, flexible nanowire networks could be a low cost semiconductor solution to our wasted heat challenge. Resistive switching devices are two terminal electrical resistance switches that retain a state of internal resistance based on the history of applied voltage and current. The occurrence of reversible resistance switching has been widely studied in a variety of material systems for applications including nonvolatile memory, logic circuits, and neuromorphic computing. To this end we next we studied devices in each resistance state of a TaOx switch, which has previously shown high endurance and desirable switching behavior, to better understand the system in nanoscale devices. Finally, we will discuss a self-aligned NbO2 nano-cap demonstrated atop a TaO2.2 switching layer. The goal of this device is to create a nanoscale RRAM and selector device in a single stack. These results indicate that ternary resistive switching devices may be a beneficial method of combining behaviors of different material systems and that with proper engineering a self-aligned selector is possible.

  11. Highly efficient blue and warm white organic light-emitting diodes with a simplified structure

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Long; Ouyang, Xinhua; Chen, Dongcheng; Cai, Xinyi; Liu, Ming; Ge, Ziyi; Cao, Yong; Su, Shi-Jian

    2016-03-01

    Two blue fluorescent emitters were utilized to construct simplified organic light-emitting diodes (OLEDs) and the remarkable difference in device performance was carefully illustrated. A maximum current efficiency of 4.84 cd A-1 (corresponding to a quantum efficiency of 4.29%) with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.144, 0.127) was achieved by using N,N-diphenyl-4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1, 1‧:4‧, 1″-terphenyl]-4-amine (BBPI) as a non-doped emission layer of the simplified blue OLEDs without carrier-transport layers. In addition, simplified fluorescent/phosphorescent (F/P) hybrid warm white OLEDs without carrier-transport layers were fabricated by utilizing BBPI as (1) the blue emitter and (2) the host of a complementary yellow phosphorescent emitter (PO-01). A maximum current efficiency of 36.8 cd A-1 and a maximum power efficiency of 38.6 lm W-1 were achieved as a result of efficient energy transfer from the host to the guest and good triplet exciton confinement on the phosphorescent molecules. The blue and white OLEDs are among the most efficient simplified fluorescent blue and F/P hybrid white devices, and their performance is even comparable to that of most previously reported complicated multi-layer devices with carrier-transport layers.

  12. Real-Time Analysis of a Sensor's Data for Automated Decision Making in an IoT-Based Smart Home.

    PubMed

    Khan, Nida Saddaf; Ghani, Sayeed; Haider, Sajjad

    2018-05-25

    IoT devices frequently generate large volumes of streaming data and in order to take advantage of this data, their temporal patterns must be learned and identified. Streaming data analysis has become popular after being successfully used in many applications including forecasting electricity load, stock market prices, weather conditions, etc. Artificial Neural Networks (ANNs) have been successfully utilized in understanding the embedded interesting patterns/behaviors in the data and forecasting the future values based on it. One such pattern is modelled and learned in the present study to identify the occurrence of a specific pattern in a Water Management System (WMS). This prediction aids in making an automatic decision support system, to switch OFF a hydraulic suction pump at the appropriate time. Three types of ANN, namely Multi-Input Multi-Output (MIMO), Multi-Input Single-Output (MISO), and Recurrent Neural Network (RNN) have been compared, for multi-step-ahead forecasting, on a sensor's streaming data. Experiments have shown that RNN has the best performance among three models and based on its prediction, a system can be implemented to make the best decision with 86% accuracy.

  13. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring

    PubMed Central

    He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao

    2018-01-01

    A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa−1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments. PMID:29701643

  14. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring.

    PubMed

    He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao

    2018-04-26

    A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa −1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments.

  15. Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain.

    PubMed

    Song, Chaoyu; Fan, Fengren; Xuan, Ningning; Huang, Shenyang; Zhang, Guowei; Wang, Chong; Sun, Zhengzong; Wu, Hua; Yan, Hugen

    2018-01-31

    Because of the strong quantum confinement effect, few-layer γ-InSe exhibits a layer-dependent band gap, spanning the visible and near infrared regions, and thus recently has been drawing tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structures. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain and observe a salient shift of photoluminescence peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for four- to eight-layer samples, which is much larger than that for the widely studied MoS 2 monolayer. Density functional theory calculations well reproduce the observed layer-dependent band gaps and the strain effect and reveal that the shift rate decreases with the increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile two-dimensional electronic and optoelectronic material, which is suitable for tunable light emitters, photodetectors, and other optoelectronic devices.

  16. Diagnostic for two-mode variable valve activation device

    DOEpatents

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  17. Updated Draft Protocol for the Evaluation of Bactericidal Activity of Hard, Non-porous Copper Containing Surface Products

    EPA Pesticide Factsheets

    This document describes the updated draft testing protocol recommended by the EPA to support the registration of copper-containing surface products (such as door knobs, or other items that are not intended for food contact) that bear sanitizer claims.

  18. Radiolabeled Adenoviral Sub-unit Proteins for Molecular Imaging and Therapeutic Applications in Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, S.; Meinken, G.; Springer, K. Awasthi, V.

    2004-10-06

    The objective of this project was to develop and optimize new ligand systems, based on adenoviral vectors (intact adenovirus, adeno-viral fiber protein, and the knob protein), for delivering suitable radionuclides into tumor cells for molecular imaging and combined gene/radionuclide therapy of cancer.

  19. "Television" Artists

    ERIC Educational Resources Information Center

    Szekely, George

    2010-01-01

    In an art class, children browse through space-age knobs, robot antennas and gyroscopic signal searchers. They extend space needle antennas before turning on an old TV. They discover the sights and sounds of televisions past, hearing the hiss, the gathering power, and seeing the blinking eye, the black-and-white light and blurry images projected…

  20. 4. View of the launch closure. Transporter/erector mounts at center, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of the launch closure. Transporter/erector mounts at center, security antenna at left, access building at right. View towards south. Lyon - Whiteman Air Force Base, Minuteman Missile Launch Facility Trainer T-12, Northeast of Oscar-01 Missile Alert Facility, Knob Noster, Johnson County, MO

  1. 40 CFR 745.227 - Work practice standards for conducting lead-based paint activities: target housing and child...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... impact surface that is cause by impact from a related building component (such as a door knob that knocks into a wall or a door that knocks against its door frame; and (iv) If there is any other deteriorated...

  2. 40 CFR 745.227 - Work practice standards for conducting lead-based paint activities: target housing and child...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... impact surface that is cause by impact from a related building component (such as a door knob that knocks into a wall or a door that knocks against its door frame; and (iv) If there is any other deteriorated...

  3. Morphological and molecular characterization of Pratylenchus lentis n. sp. (Nematoda: Pratylenchidae) from Sicily

    USDA-ARS?s Scientific Manuscript database

    Pratylenchus lentis n. sp. parasitizing roots of lentil in Sicily, Italy, is described and illustrated. The new species is characterized by a high lip region with three annuli, stylet mean length of 16 micrometers with anteriorly flattened knobs, cylindrical body with a relatively anterior vulva, l...

  4. 14 CFR 23.853 - Passenger and crew compartment interiors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... instruments in a common housing, seatbelts, shoulder harnesses, and cargo and baggage tiedown equipment... portions of appendix F of this part or by other approved equivalent methods. (v) Except for electrical wire cable insulation, and for small parts (such as knobs, handles, rollers, fasteners, clips, grommets, rub...

  5. 14 CFR 23.853 - Passenger and crew compartment interiors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... instruments in a common housing, seatbelts, shoulder harnesses, and cargo and baggage tiedown equipment... portions of appendix F of this part or by other approved equivalent methods. (v) Except for electrical wire cable insulation, and for small parts (such as knobs, handles, rollers, fasteners, clips, grommets, rub...

  6. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods

    PubMed Central

    Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.

    2011-01-01

    We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276

  7. Colloidal core-seeded semiconductor nanorods as fluorescent labels for in-vitro diagnostics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chan, YinThai

    2016-03-01

    Colloidal semiconductor nanocrystals are ideal fluorophores for clinical diagnostics, therapeutics, and highly sensitive biochip applications due to their high photostability, size-tunable color of emission and flexible surface chemistry. The relatively recent development of core-seeded semiconductor nanorods showed that the presence of a rod-like shell can confer even more advantageous physicochemical properties than their spherical counterparts, such as large multi-photon absorption cross-sections and facet-specific chemistry that can be exploited to deposit secondary nanoparticles. It may be envisaged that these highly fluorescent nanorods can be integrated with large scale integrated (LSI) microfluidic systems that allow miniaturization and integration of multiple biochemical processes in a single device at the nanoliter scale, resulting in a highly sensitive and automated detection platform. In this talk, I will describe a LSI microfluidic device that integrates RNA extraction, reverse transcription to cDNA, amplification and target pull-down to detect histidine decarboxylase (HDC) gene directly from human white blood cells samples. When anisotropic colloidal semiconductor nanorods (NRs) were used as the fluorescent readout, the detection limit was found to be 0.4 ng of total RNA, which was much lower than that obtained using spherical quantum dots (QDs) or organic dyes. This was attributed to the large action cross-section of NRs and their high probability of target capture in a pull-down detection scheme. The combination of large scale integrated microfluidics with highly fluorescent semiconductor NRs may find widespread utility in point-of-care devices and multi-target diagnostics.

  8. Malthusian Parameters as Estimators of the Fitness of Microbes: A Cautionary Tale about the Low Side of High Throughput.

    PubMed

    Concepción-Acevedo, Jeniffer; Weiss, Howard N; Chaudhry, Waqas Nasir; Levin, Bruce R

    2015-01-01

    The maximum exponential growth rate, the Malthusian parameter (MP), is commonly used as a measure of fitness in experimental studies of adaptive evolution and of the effects of antibiotic resistance and other genes on the fitness of planktonic microbes. Thanks to automated, multi-well optical density plate readers and computers, with little hands-on effort investigators can readily obtain hundreds of estimates of MPs in less than a day. Here we compare estimates of the relative fitness of antibiotic susceptible and resistant strains of E. coli, Pseudomonas aeruginosa and Staphylococcus aureus based on MP data obtained with automated multi-well plate readers with the results from pairwise competition experiments. This leads us to question the reliability of estimates of MP obtained with these high throughput devices and the utility of these estimates of the maximum growth rates to detect fitness differences.

  9. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  10. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutland, Christopher J.

    2009-04-26

    The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less

  11. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities

    PubMed Central

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen; Butt, Julea N.

    2015-01-01

    Multi-haem cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometres. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-haem cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-haem cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward, there are opportunities to engage multi-haem cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence, it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-haem cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-haem cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies. PMID:25411412

  12. Review of multi-layered magnetoelectric composite materials and devices applications

    NASA Astrophysics Data System (ADS)

    Chu, Zhaoqiang; PourhosseiniAsl, MohammadJavad; Dong, Shuxiang

    2018-06-01

    Multiferroic materials with the coexistence of at least two ferroic orders, such as ferroelectricity, ferromagnetism, or ferroelasticity, have recently attracted ever-increasing attention due to their potential for multifunctional device applications, including magnetic and current sensors, energy harvesters, magnetoelectric (ME) random access memory and logic devices, tunable microwave devices, and ME antenna. In this article, we provide a review of the recent and ongoing research efforts in the field of multi-layered ME composites. After a brief introduction to ME composites and ME coupling mechanisms, we review recent advances in multi-layered ME composites as well as their device applications based on the direct ME effect, magnetic sensors in particular. Finally, some remaining challenges and future perspective of ME composites and their engineering applications will be discussed.

  13. How Multi-Organ Microdevices Can Help Foster Drug Development

    PubMed Central

    Esch, Mandy B.; Smith, Alec; Prot, Jean-Matthieu; Sancho, Carlotta Oleaga; Hickman, James; Shuler, Michael L.

    2014-01-01

    Multi-organ microdevices can mimic tissue-tissue interactions that occur as a result of metabolite travel from one tissue to other tissues in vitro. These systems are capable of simulating human metabolism, including the conversion of a pro-drug to its effective metabolite as well as its subsequent therapeutic actions and toxic side effects. Since tissue-tissue interactions in the human body can play a significant role in determining the success of new pharmaceuticals, the development and use of multi-organ microdevices presents an opportunity to improve the drug development process. The goals are to predict potential toxic side effects with higher accuracy before a drug enters the expensive phase of clinical trials as well as to estimate efficacy and dose response. Multi-organ microdevices also have the potential to aid in the development of new therapeutic strategies by providing a platform for testing in the context of human metabolism (as opposed to animal models). Further, when operated with human biopsy samples, the devices could be a gateway for the development of individualized medicine. Here we review studies in which multi-organ microdevices have been developed and used in a ways that demonstrate how the devices’ capabilities can present unique opportunities for the study of drug action. We also discuss the challenges that are inherent in the development of multi-organ microdevices. Among these are how to design the devices, and how to create devices that mimic the human metabolism with high authenticity. Since single organ devices are testing platforms for tissues that can later be combined with other tissues within multi-organ devices, we will also mention single organ devices where appropriate in the discussion. PMID:24412641

  14. A Passive Wireless Multi-Sensor SAW Technology Device and System Perspectives

    PubMed Central

    Malocha, Donald C.; Gallagher, Mark; Fisher, Brian; Humphries, James; Gallagher, Daniel; Kozlovski, Nikolai

    2013-01-01

    This paper will discuss a SAW passive, wireless multi-sensor system under development by our group for the past several years. The device focus is on orthogonal frequency coded (OFC) SAW sensors, which use both frequency diversity and pulse position reflectors to encode the device ID and will be briefly contrasted to other embodiments. A synchronous correlator transceiver is used for the hardware and post processing and correlation techniques of the received signal to extract the sensor information will be presented. Critical device and system parameters addressed include encoding, operational range, SAW device parameters, post-processing, and antenna-SAW device integration. A fully developed 915 MHz OFC SAW multi-sensor system is used to show experimental results. The system is based on a software radio approach that provides great flexibility for future enhancements and diverse sensor applications. Several different sensor types using the OFC SAW platform are shown. PMID:23666124

  15. Multi-transmitter/multi-receiver high-speed measurements of soil resistivity and induced polarization - Hydrological application

    NASA Astrophysics Data System (ADS)

    Gance, Julien; Texier, Benoît; Leite, Orlando; Bernard, Jean; Truffert, Catherine; Lebert, François; Yamashita, Yoshihiro

    2016-04-01

    Electrical resistivity tomography (ERT) is an adapted tool for the monitoring of soil moisture variations in aquifers (Binley et al., 2015). Nevertheless, in some specific cases, like for highly permeable soils or fractured aquifers, the measurements from the device can be slower than the water flow through the entire investigated zone. Therefore, the monitoring of such phenomena cannot be performed with classical devices. In such cases, we require a high-speed measurement of soils resistivity. Since 20 years, the speed of acquisition of the resistivity meters has been improved by the development of multi-channel devices allowing to perform multi-electrode (> 4) measurements. The switching capabilities of the actual devices allow to measure over long profiles up to hundreds of electrodes only using one transmitter. Based on this multi-receiver technology and on previous work from Yamashita et al. (2013), authors have developed a 250 W multi-transmitter device for the high speed measurement of resistivity and induced polarization. Current is therefore injected simultaneously in the soil through six injection electrodes. The injected current is coded for each transmitter using Code Division Multiple Access (CDMA, Yamashita et al., 2014) so that the different voltages induced by each sources can be reconstructed from the total potential measurement signal at each receiver, allowing to save acquisition time. The first operational prototype features 3 transmitters and 6 receivers. Its performances are compared to a mono-transmitter device for different sequences of acquisition in 2D and 3D configurations both in theory and on real field data acquired on a shallow sedimentary aquifer in the Loire valley in France. This device is promising for the accurate monitoring of rapid water flows in heterogeneous aquifers.

  16. Novel technique for fabrication of multi-layered microcoils in microelectromechanical systems (MEMS) applications

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Pin; Qian, Jiangyuan; Bachman, Mark; Congdon, Philip; Li, Guann-pyng

    2002-07-01

    A novel planarization technique, compressive molding planarization (CMP) is developed for implementation of a multi-layered micro coil device. Applying CMP and other micromachining techniques, a multi-layered micro coil device has been designed and fabricated, and its use in the magnetic micro actuators for hard disk drive applications has been demonstrated, showing that it can produce milli-Newton of magnetic force suitable for driving a micro actuator. The novel CMP technique can be equally applicable in other MEMS devices fabrication to ease the process integration for the complicated structure.

  17. On-fiber plasmonic interferometer for multi-parameter sensing

    DOE PAGES

    Zhang, Zhijian; Chen, Yongyao; Liu, Haijun; ...

    2015-01-01

    We demonstrate a novel miniature multi-parameter sensing device based on a plasmonic interferometer fabricated on a fiber facet in the optical communication wavelength range. This device enables the coupling between surface plasmon resonance and plasmonic interference in the structure, which are the two essential mechanisms for multi-parameter sensing. We experimentally show that these two mechanisms have distinctive responses to temperature and refractive index, rendering the device the capability of simultaneous temperature and refractive index measurement on an ultra-miniature form factor. A high refractive index sensitivity of 220 nm per refractive index unit (RIU) and a high temperature sensitivity of –60more » pm/ °C is achieved with our device.« less

  18. Multi-Scale Ordered Cell Structure for Cost Effective Production of Hydrogen by HTWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elangovan, Elango; Rao, Ranjeet; Colella, Whitney

    Production of hydrogen using an electrochemical device provides for large scale, high efficiency conversion and storage of electrical energy. When renewable electricity is used for conversion of steam to hydrogen, a low-cost and low emissions pathway to hydrogen production emerges. This project was intended to demonstrate a high efficiency High Temperature Water Splitting (HTWS) stack for the electrochemical production of low cost H2. The innovations investigated address the limitations of the state of the art through the use of a novel architecture that introduces macro-features to provide mechanical support of a thin electrolyte, and micro-features of the electrodes to lowermore » polarization losses. The approach also utilizes a combination of unique sets of fabrication options that are scalable to achieve manufacturing cost objectives. The development of HTWS process and device is guided by techno-economic and life cycle analyses.« less

  19. 77 FR 30368 - Defense Federal Acquisition Regulation Supplement; Utilization of Domestic Photovoltaic Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... objective of the rule is to promote utilization of domestic photovoltaic devices under energy savings... 0750-AH43 Defense Federal Acquisition Regulation Supplement; Utilization of Domestic Photovoltaic... Authorization Act for Fiscal Year 2011. The section provides that photovoltaic devices to be utilized in...

  20. Detecting early stage pressure ulcer on dark skin using multispectral imager

    NASA Astrophysics Data System (ADS)

    Kong, Linghua; Sprigle, Stephen; Yi, Dingrong; Wang, Chao; Wang, Fengtao; Liu, Fuhan; Wang, Jiwu; Zhao, Futing

    2009-10-01

    This paper introduces a novel idea, innovative technology in building multi spectral imaging based device. The benefit from them is people can have low cost, handheld and standing alone device which makes acquire multi spectral images real time with just a snapshot. The paper for the first time publishes some images got from such prototyped miniaturized multi spectral imager.

  1. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    PubMed

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Evidence for Chemoreception in Squid Olfactory Organ

    DTIC Science & Technology

    1990-05-29

    Positive Responses and Number of Trials Chemical %Positive #of Trials #of Animals 5mM Isethionate 0 (3) 1 5mM Betaine 0 (13) 1 5mM Menthol 0 (2) 1...that the olfactory organ is the site of high chemical sensitivity. Figure 3. Application of the local anesthetic betaine to the olfactory knob

  3. Map showing quarries, mines, prospects, and sample data in and near the James River Face Wilderness, Bedford and Rockbridge counties, Virginia

    USGS Publications Warehouse

    Gazdik, Gertrude C.; Ross, Robert B.

    1982-01-01

    The area, on the crest of the Blue Ridge Mountains, is drained by small tributaries of the James River.  Altitudes range from 600 ft where U.S. Route 501 crosses the James River to 3,073 ft on Highcock Knob.

  4. Fire history from three species on a central Appalachian ridgetop

    Treesearch

    Amy E. Hessl; Tom Saladyga; Thomas Schuler; Peter Clark; Joshua Wixom

    2011-01-01

    The impact of settlement era fires on Appalachian forests was substantial, but whether these fires affected the extent of fire-adapted ridgetop plant communities is poorly understood. Here we present fire history and stand structure of an Appalachian ridgetop (Pike Knob, West Virginia) based on fire scars from three species (Pinus pungens Lamb.,

  5. 49 CFR 176.78 - Use of power-operated industrial trucks on board vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... designation. (c) Description of designations. The recognized testing laboratory type designations are as... mechanism is a type that prevents road reactions from causing the steering handwheel to spin, a mushroom type steering knob must be used to engage the palm of the operator's hand, or the steering mechanism...

  6. 49 CFR 176.78 - Use of power-operated industrial trucks on board vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... designation. (c) Description of designations. The recognized testing laboratory type designations are as... mechanism is a type that prevents road reactions from causing the steering handwheel to spin, a mushroom type steering knob must be used to engage the palm of the operator's hand, or the steering mechanism...

  7. 49 CFR 176.78 - Use of power-operated industrial trucks on board vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... designation. (c) Description of designations. The recognized testing laboratory type designations are as... mechanism is a type that prevents road reactions from causing the steering handwheel to spin, a mushroom type steering knob must be used to engage the palm of the operator's hand, or the steering mechanism...

  8. Handbook for Bombardiers

    DTIC Science & Technology

    1944-02-08

    action of the levelling knobs. Cage gym . h. Test the automatic release through the bomb racks. i. Check telescope motor. (1) Týrn telescope motor switch...154.2 11O00 202.6 20000 150.2 12000 193.9 FIGURE 26. 00 * RESTRICTED 4 4 1 .••• REST.R ICTED -.71- SECTION II HIGH ALTITJDE BOMBING OF MANEJVERING

  9. Dual-gate GaAs FET switches

    NASA Astrophysics Data System (ADS)

    Vorhaus, J. L.; Fabian, W.; Ng, P. B.; Tajima, Y.

    1981-02-01

    A set of multi-pole, multi-throw switch devices consisting of dual-gate GaAs FET's is described. Included are single-pole, single-throw (SPST), double-pole, double-throw (DPDT), and single-pole four-throw (SP4T) switches. Device fabrication and measurement techniques are discussed. The device models for these switches were based on an equivalent circuit of a dual-gate FET. The devices were found to have substantial gain in X-band and low Ku-band.

  10. Applying econometrics to the carbon dioxide "control knob".

    PubMed

    Curtin, Timothy

    2012-01-01

    This paper tests various propositions underlying claims that observed global temperature change is mostly attributable to anthropogenic noncondensing greenhouse gases, and that although water vapour is recognized to be a dominant contributor to the overall greenhouse gas (GHG) effect, that effect is merely a "feedback" from rising temperatures initially resulting only from "non-condensing" GHGs and not at all from variations in preexisting naturally caused atmospheric water vapour (i.e., [H(2)O]). However, this paper shows that "initial radiative forcing" is not exclusively attributable to forcings from noncondensing GHG, both because atmospheric water vapour existed before there were any significant increases in GHG concentrations or temperatures and also because there is no evidence that such increases have produced measurably higher [H(2)O]. The paper distinguishes between forcing and feedback impacts of water vapour and contends that it is the primary forcing agent, at much more than 50% of the total GHG gas effect. That means that controlling atmospheric carbon dioxide is unlikely to be an effective "control knob" as claimed by Lacis et al. (2010).

  11. Curvilinear ridges and related features in southwest Cydonia Mensae, Mars

    NASA Technical Reports Server (NTRS)

    Parker, Timothy J.; Schneeberger, Dale M.; Pieri, David C.; Saunders, R. Stephen

    1987-01-01

    Examined is a region on Mars in southwest Cydonia Mensae (32 deg lat., 17 deg long.) just northwest of the lowland/upland boundary escarpment. The dominant morphological features in this region are the clusters of large massifs and plateau outliers (PI), knobby material (K), and smooth lowland plains (Ps). Surrounding the clusters and linking many isolated knobs is a system of curvilinear ridges and arcuate terrain boundaries which tend to separate the massifs and knobs from the smooth plains. Curvilinear ridges are arcuate to nearly linear and smoother in plan than wrinkle ridges and show no apparent correlation with regional structural grain. They are typically 5 to 10 km long but can range from as little as 2 or 3 km to greater than 50 km long. The widths vary from about 100 m to as much as 2 km. Curvilinear ridges are most numerous within 100 km of the lowland/upland boundary escarpment and are associated with massifs and knobby terrain. Arcuate terrain boundaries appear between units of different apparent albedo or arcuate breaks in slope.

  12. Two families of synthetic peptides that enhance fibrin turbidity and delay fibrinolysis by different mechanisms.

    PubMed

    Pandi, Leela; Kollman, Justin M; Lopez-Lira, Francisco; Burrows, Jason M; Riley, Marcia; Doolittle, Russell F

    2009-08-04

    When fibrin clots are formed in vitro in the presence of certain positively charged peptides, the turbidity is enhanced and fibrinolysis is delayed. Here we show that these two phenomena are not always linked and that different families of peptides bring about the delay of lysis in different ways. In the case of intrinsically adhesive peptides corresponding to certain regions of the fibrinogen gammaC and betaC domains, even though these peptides bind to fibrin(ogen) and enhance turbidity, the delay in lysis is mainly due to direct inhibition of plasminogen activation. In contrast, for certain pentapeptides patterned on fibrin B knobs, the delay in lysis is a consequence of how fibrin units assemble. On their own, these B knob surrogates can induce the gelation of fibrinogen molecules. The likely cause of enhanced clot turbidity and delay in fibrinolysis was revealed by a crystal structure of the D-dimer from human fibrinogen cocrystallized with GHRPYam, the packing of which showed the direct involvement of the ligand tyrosines in antiparallel betaC-betaC interactions.

  13. Device Independent Layout and Style Editing Using Multi-Level Style Sheets

    NASA Astrophysics Data System (ADS)

    Dees, Walter

    This paper describes a layout and styling framework that is based on the multi-level style sheets approach. It shows some of the techniques that can be used to add layout and style information to a UI in a device-independent manner, and how to reuse the layout and style information to create user interfaces for different devices

  14. Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms.

    PubMed

    Lin, Yan-You; Welch, Erin R F; Fair, Richard B

    2012-10-01

    Picoliter droplets actuated on an electrowetting-on-dielectric (EWD) actuator are demonstrated. In this study, the physical scaling of electrodes for 33 μm and 21 μm EWD devices resulted in droplets of 12 pl and 5 pl being dispensed respectively in conjunction with 3 μm SU8 gaskets. The stacked multi-layer insulators in the actuators consisted of 200 nm tantalum pentoxide (Ta 2 O 5 ) and 200 nm parylene C films deposited and coated with 70 nm of CYTOP. The voltages for dispensing droplets on chips without any external pressure sources are 17.1 V rms and 22 V rms for these two sets of devices. A 12 pl droplet can be split into two 6 pl daughter droplets at 18.7 V rms with 33 μm electrode devices. Droplet manipulation is also demonstrated with paramagnetic beads and buffer solutions with proteins. In addition, electrodes with interlocking protrusions and special featured reservoir gasket are designed to facilitate droplet dispensing on these scaled EWD devices. In order to improve sealing of the two-piece sandwich EWD structure, a soft material, Norland Optical Adhesive (NOA), was coated on the top plate along with pressure on top. We demonstrate that based on fundamental theories and experiments, the dimensional scaling of EWD devices has not yet met a limitation as long as the EWD device can be sealed well.

  15. Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms

    PubMed Central

    Lin, Yan-You; Welch, Erin R.F.; Fair, Richard B.

    2012-01-01

    Picoliter droplets actuated on an electrowetting-on-dielectric (EWD) actuator are demonstrated. In this study, the physical scaling of electrodes for 33 μm and 21 μm EWD devices resulted in droplets of 12 pl and 5 pl being dispensed respectively in conjunction with 3 μm SU8 gaskets. The stacked multi-layer insulators in the actuators consisted of 200 nm tantalum pentoxide (Ta2O5) and 200 nm parylene C films deposited and coated with 70 nm of CYTOP. The voltages for dispensing droplets on chips without any external pressure sources are 17.1 Vrms and 22 Vrms for these two sets of devices. A 12 pl droplet can be split into two 6 pl daughter droplets at 18.7 Vrms with 33 μm electrode devices. Droplet manipulation is also demonstrated with paramagnetic beads and buffer solutions with proteins. In addition, electrodes with interlocking protrusions and special featured reservoir gasket are designed to facilitate droplet dispensing on these scaled EWD devices. In order to improve sealing of the two-piece sandwich EWD structure, a soft material, Norland Optical Adhesive (NOA), was coated on the top plate along with pressure on top. We demonstrate that based on fundamental theories and experiments, the dimensional scaling of EWD devices has not yet met a limitation as long as the EWD device can be sealed well. PMID:23559693

  16. Designing Agent Utilities for Coordinated, Scalable and Robust Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan

    2005-01-01

    Coordinating the behavior of a large number of agents to achieve a system level goal poses unique design challenges. In particular, problems of scaling (number of agents in the thousands to tens of thousands), observability (agents have limited sensing capabilities), and robustness (the agents are unreliable) make it impossible to simply apply methods developed for small multi-agent systems composed of reliable agents. To address these problems, we present an approach based on deriving agent goals that are aligned with the overall system goal, and can be computed using information readily available to the agents. Then, each agent uses a simple reinforcement learning algorithm to pursue its own goals. Because of the way in which those goals are derived, there is no need to use difficult to scale external mechanisms to force collaboration or coordination among the agents, or to ensure that agents actively attempt to appropriate the tasks of agents that suffered failures. To present these results in a concrete setting, we focus on the problem of finding the sub-set of a set of imperfect devices that results in the best aggregate device. This is a large distributed agent coordination problem where each agent (e.g., device) needs to determine whether to be part of the aggregate device. Our results show that the approach proposed in this work provides improvements of over an order of magnitude over both traditional search methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents failed midway through the simulation) the system's performance degrades gracefully and still outperforms a failure-free and centralized search algorithm. The results also show that the gains increase as the size of the system (e.g., number of agents) increases. This latter result is particularly encouraging and suggests that this method is ideally suited for domains where the number of agents is currently in the thousands and will reach tens or hundreds of thousands in the near future.

  17. III-Nitride Nanowire Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Jeremy Benjamin

    2014-07-01

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices.more » Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit vertically. By tuning the geometrical properties of the individual lasers across the array, each individual nanowire laser produced a di erent emission wavelength yielding a near continuum of laser wavelengths. I successfully fabricated an array of emitters spanning a bandwidth of 60 nm on a single chip. This was achieved in the blue-violet using III-nitride photonic crystal nanowire lasers.« less

  18. The Pinnacles of Callisto

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Howard, Alan D.; Schenk, Paul M.

    2013-01-01

    Many regions of Callisto feature an unusual landscape consisting of rolling dark plains with interspersed bright knobs (pinnacles) and ridges. In earlier work we interpreted the dark plains as dusty, mass-wasted residue from sublimation from volatile-rich bedrock and the bright knobs (often crater rims) as water ice accumulations at locations sheltered from thermal reradiation from the dusty residue. We simulated evolution of Callisto's craters as a combination of bedrock volatile sublimation, mass wasting of the dark, non-coherent residue, and redeposition of ice, and concluded that the ice pinnacles and ridges might be underlain by tens to hundreds of meters of ice. Here we report the initial work of a new study of pinnacles addressing additional questions: 1) Is there an evolutionary sequence starting, e.g., from a cratered initial surface through growth and formation of a dust mantle and pinnacles, to eventual loss of ice to sublimation resulting in just a dark, dusty surface? 2) What determines the areal density and spatial scale of pinnacles - volatile content of bedrock, crater density, surface age, broad-scale topographic setting? 3) Are pinnacles still forming? Several observations address these questions. In a few places scattered high-albedo blocks approx. 25-60 m in diameter occur in the vicinity of large icy pinnacles. We interpret these blocks to be remnants from the collapse of tall pinnacles that were undermined by mass wasting. Some high-relief icy knobs have developed a skeletonized planform due to mass wasting by avalanching, or perhaps to seeding of new sites of ice deposition on mass-wasted ice blocks. Some areas nearly lack fresh craters with well-defined ejecta and ice-free rims. This may imply rapid transformation of fresh craters by sublimation, mass wasting, and ice reprecipitation. In other areas small sharp-rimmed craters occur which lack ice pinnacles, but the craters nonetheless lack visible ejecta sheets. Our preliminary interpretation is that mass wasting is very efficient on Callisto, or alternatively the dust cover is very thick and lacks competent coarse materials.

  19. Development of the Elastic Rebound Strike-slip (ERS) Fault Model for Teaching Earthquake Science to Non-science Students

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.; Peltzer, G.; Stubailo, I.; Cochran, E. S.; Lawrence, J. F.

    2009-12-01

    The Modeling and Educational Demonstrations Laboratory (MEDL) at the University of California, Los Angeles has developed a fourth version of the Elastic Rebound Strike-slip (ERS) Fault Model to be used to educate students and the general public about the process and mechanics of earthquakes from strike-slip faults. The ERS Fault Model is an interactive hands-on teaching tool which produces failure on a predefined fault embedded in an elastic medium, with adjustable normal stress. With the addition of an accelerometer sensor, called the Joy Warrior, the user can experience what it is like for a field geophysicist to collect and observe ground shaking data from an earthquake without having to experience a real earthquake. Two knobs on the ERS Fault Model control the normal and shear stress on the fault. Adjusting the normal stress knob will increase or decrease the friction on the fault. The shear stress knob displaces one side of the elastic medium parallel to the strike of the fault, resulting in changing shear stress on the fault surface. When the shear stress exceeds the threshold defined by the static friction of the fault, an earthquake on the model occurs. The accelerometer sensor then sends the data to a computer where the shaking of the model due to the sudden slip on the fault can be displayed and analyzed by the student. The experiment clearly illustrates the relationship between earthquakes and seismic waves. One of the major benefits to using the ERS Fault Model in undergraduate courses is that it helps to connect non-science students with the work of scientists. When students that are not accustomed to scientific thought are able to experience the scientific process first hand, a connection is made between the scientists and students. Connections like this might inspire a student to become a scientist, or promote the advancement of scientific research through public policy.

  20. Radiation-hardened MRAM-based LUT for non-volatile FPGA soft error mitigation with multi-node upset tolerance

    NASA Astrophysics Data System (ADS)

    Zand, Ramtin; DeMara, Ronald F.

    2017-12-01

    In this paper, we have developed a radiation-hardened non-volatile lookup table (LUT) circuit utilizing spin Hall effect (SHE)-magnetic random access memory (MRAM) devices. The design is motivated by modeling the effect of radiation particles striking hybrid complementary metal oxide semiconductor/spin based circuits, and the resistive behavior of SHE-MRAM devices via established and precise physics equations. The models developed are leveraged in the SPICE circuit simulator to verify the functionality of the proposed design. The proposed hardening technique is based on using feedback transistors, as well as increasing the radiation capacity of the sensitive nodes. Simulation results show that our proposed LUT circuit can achieve multiple node upset (MNU) tolerance with more than 38% and 60% power-delay product improvement as well as 26% and 50% reduction in device count compared to the previous energy-efficient radiation-hardened LUT designs. Finally, we have performed a process variation analysis showing that the MNU immunity of our proposed circuit is realized at the cost of increased susceptibility to transistor and MRAM variations compared to an unprotected LUT design.

  1. Maskless Lithography and in situ Visualization of Conductivity of Graphene using Helium Ion Microscopy

    DOE PAGES

    Iberi, Vighter O.; Vlassiouk, Ivan V.; Zhang, X. -G.; ...

    2015-07-07

    The remarkable mechanical and electronic properties of graphene make it an ideal candidate for next generation nanoelectronics. With the recent development of commercial-level single-crystal graphene layers, the potential for manufacturing household graphene-based devices has improved, but significant challenges still remain with regards to patterning the graphene into devices. In the case of graphene supported on a substrate, traditional nanofabrication techniques such as e-beam lithography (EBL) are often used in fabricating graphene nanoribbons but the multi-step processes they require can result in contamination of the graphene with resists and solvents. In this letter, we report the utility of scanning helium ionmore » lithography for fabricating functional graphene nanoconductors that are supported directly on a silicon dioxide layer, and we measure the minimum feature size achievable due to limitations imposed by thermal fluctuations and ion scattering during the milling process. Further we demonstrate that ion beams, due to their positive charging nature, may be used to observe and test the conductivity of graphene-based nanoelectronic devices in situ.« less

  2. Two-bit multi-level phase change random access memory with a triple phase change material stack structure

    NASA Astrophysics Data System (ADS)

    Gyanathan, Ashvini; Yeo, Yee-Chia

    2012-11-01

    This work demonstrates a novel two-bit multi-level device structure comprising three phase change material (PCM) layers, separated by SiN thermal barrier layers. This triple PCM stack consisted of (from bottom to top), Ge2Sb2Te5 (GST), an ultrathin SiN barrier, nitrogen-doped GST, another ultrathin SiN barrier, and Ag0.5In0.5Sb3Te6. The PCM layers can selectively amorphize to form 4 different resistance levels ("00," "01," "10," and "11") using respective voltage pulses. Electrical characterization was extensively performed on these devices. Thermal analysis was also done to understand the physics behind the phase changing characteristics of the two-bit memory devices. The melting and crystallization temperatures of the PCMs play important roles in the power consumption of the multi-level devices. The electrical resistivities and thermal conductivities of the PCMs and the SiN thermal barrier are also crucial factors contributing to the phase changing behaviour of the PCMs in the two-bit multi-level PCRAM device.

  3. Multi-Channel Electronically Scanned Cryogenic Pressure Sensor And Method For Making Same

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Holloway, Nancy M. (Inventor)

    2001-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multi-element array. These dies are bonded at specific sites on a glass, pre-patterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  4. High brightness MEMS mirror based head-up display (HUD) modules with wireless data streaming capability

    NASA Astrophysics Data System (ADS)

    Milanovic, Veljko; Kasturi, Abhishek; Hachtel, Volker

    2015-02-01

    A high brightness Head-Up Display (HUD) module was demonstrated with a fast, dual-axis MEMS mirror that displays vector images and text, utilizing its ~8kHz bandwidth on both axes. Two methodologies were evaluated: in one, the mirror steers a laser at wide angles of <48° on transparent multi-color fluorescent emissive film and displays content directly on the windshield, and in the other the mirror displays content on reflective multi-color emissive phosphor plates reflected off the windshield to create a virtual image for the driver. The display module is compact, consisting of a single laser diode, off-the-shelf lenses and a MEMS mirror in combination with a MEMS controller to enable precise movement of the mirror's X- and Y-axis. The MEMS controller offers both USB and wireless streaming capability and we utilize a library of functions on a host computer for creating content and controlling the mirror. Integration with smart phone applications is demonstrated, utilizing the mobile device both for content generation based on various messages or data, and for content streaming to the MEMS controller via Bluetooth interface. The display unit is highly resistant to vibrations and shock, and requires only ~1.5W to operate, even with content readable in sunlit outdoor conditions. The low power requirement is in part due to a vector graphics approach, allowing the efficient use of laser power, and also due to the use of a single, relatively high efficiency laser and simple optics.

  5. Complex Sulfate Deposits in Coprates Chasma

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of layered sulfate-containing deposits in the Coprates Chasma region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 1827UTC (1:27 p.m. EST) on December 12, 2006 near 10.2 degrees south latitude, 68.8 degrees west longitude. The image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The image is about 11 kilometers (6.8 miles) wide at its narrowest point.

    Coprates Chasma forms part of the backbone of the Valles Marineris canyon system. It extends approximately east-west for roughly 966 kilometers (600 miles), and is one of the larger chasmata in the Valles Marineris system.

    The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data covers an area centered on a knob near the chasma's northern wall.

    The center left image, an infrared false color image, shows the knob's layered morphology. The center right image unveils the mineralogical signatures of some of those layers, with yellow representing monohydrated sulfates (sulfates with one water molecule incorporated into each molecule of the mineral) and purple representing polyhydrated sulfates (sulfates with multiple waters per mineral molecule).

    The lower two images are renderings of data draped over topography with 3 times vertical exaggeration. These images provide a view of the topography and reveal how the sulfate deposits relate to that topography. Darker polyhydrated sulfates (purple) lie along the knob's western flank. Brighter, monohydrated sulfates (yellow) appear to be superimposed on polyhydrated sulfate deposits in the southwest corner of the image. These coarsely banded deposits continue along the southeast side of the knob.

    There are two possible explanations for the compositional banding of these sulfates. The first is deposition of mono- and polyhydrated sulfates in alternating layers. The second is deposition of just one sulfate type, and its subsequent alteration by weathering at the exposed, eroded surface. Further observations and analysis will better determine the origin of these complex banded sulfate deposits.

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  6. Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices.

    PubMed

    Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon

    2016-01-21

    Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.

  7. Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Jung, Yei Hwan; Seo, Jung-Hun; Zhang, Huilong; Lee, Juhwan; Cho, Sang June; Chang, Tzu-Hsuan; Ma, Zhenqiang

    2017-05-01

    Successful integration of ultrathin flexible or stretchable systems with new applications, such as medical devices and biodegradable electronics, have intrigued many researchers and industries around the globe to seek materials and processes to create high-performance, non-invasive and cost-effective electronics to match those of state-of-the-art devices. Nevertheless, the crucial concept of transmitting data or power wirelessly for such unconventional devices has been difficult to realize due to limitations of radio-frequency (RF) electronics in individual components that form a wireless circuitry, such as antenna, transmission line, active devices, passive devices etc. To overcome such challenges, these components must be developed in a step-by-step manner, as each component faces a number of different challenges in ultrathin formats. Here, we report on materials and design considerations for fabricating flexible and stretchable electronics systems that operate in the microwave level. High-speed flexible active devices, including cost effective Si-based strained MOSFETs, GaAs-based HBTs and GaN-based HEMTs, performing at multi-gigahertz frequencies are presented. Furthermore, flexible or stretchable passive devices, including capacitors, inductors and transmission lines that are vital parts of a microwave circuitry are also demonstrated. We also present unique applications using the presented flexible or stretchable RF components, including wearable RF electronics and biodegradable RF electronics, which were impossible to achieve using conventional rigid, wafer-based technology. Further opportunities like implantable systems exist utilizing such ultrathin RF components, which are discussed in this report as well.

  8. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, Marcos G.; Boucher, Timothy J.

    1997-01-01

    A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

  9. Compliance Patterns and Utilization of e-Health for Glucose Monitoring: Standalone Internet Gateway and Tablet Device.

    PubMed

    Rho, Mi Jung; Kim, Hun-Sung; Yoon, Kun-Ho; Choi, In Young

    2017-04-01

    Knowledge regarding compliance patterns and service utilization in e-health is important for the development of effective services. To develop proper e-health, the characteristics of compliance patterns and utilization of e-health should be studied. We studied these for glucose monitoring of diabetic patients from primary clinics. Data were collected from 160 outpatients who participated in e-health for glucose monitoring funded by the Korean government. Specifically, this study focused on two device types: a standalone Internet gateway and a tablet device. The SPSS 18.0 software was used for statistical analyses of demographic characteristics, survival data, and Cox proportional hazards regression model. Standalone Internet gateway users demonstrated a more stable compliance pattern than did tablet device users. The compliance rate differed according to the device type. Typically, compliance decreases considerably around 8 months. In these results, standalone Internet gateway users utilized the service for longer periods than tablet device users. Gateway type and location also influenced utilization (p < 0.05). The service should be designed according to the device type to develop appropriate service models. Thus, service designers should understand the different characteristics of service devices. This study provides insight into compliance patterns and utilization to develop appropriate service models and service interventions depending on the device.

  10. Appraising city-scale pollution monitoring capabilities of multi-satellite datasets using portable pollutant monitors

    NASA Astrophysics Data System (ADS)

    Aliyu, Yahaya A.; Botai, Joel O.

    2018-04-01

    The retrieval characteristics for a city-scale satellite experiment was explored over a Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city atmosphere. We utilized the MSA Altair 5× gas detector and CW-HAT200 particulate counter to investigate the city-scale monitoring capabilities of satellite pollution observing instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To achieve this, we employed the Kriging interpolation technique to collocate the satellite pollutant estimations over 19 ground sample sites for the period of 2015-2016. The portable pollutant devices were validated using the WHO air filter sampling model. To determine the city-scale performance of the satellite datasets, performance indicators: correlation coefficient, model efficiency, reliability index and root mean square error, were adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide (CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite measurements for ground equivalents in Zaria, Nigeria. Our findings were within the acceptable limits of similar studies that utilized reference stations. In conclusion, this study offers direction to Nigeria's air quality policy organizers about available alternative air pollution measurements for mitigating air quality effects within its limited resource environment.

  11. Correlation study of actual temperature profile and in-line metrology measurements for within-wafer uniformity improvement and wafer edge yield enhancement (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Vaid, Alok; Vinslava, Alina; Casselberry, Richard; Mishra, Shailendra; Dixit, Dhairya; Timoney, Padraig; Chu, Dinh; Porter, Candice; Song, Da; Ren, Zhou

    2018-03-01

    It is getting more important to monitor all aspects of influencing parameters in critical etch steps and utilize them as tuning knobs for within-wafer uniformity improvement and wafer edge yield enhancement. Meanwhile, we took a dive in pursuing "measuring what matters" and challenged ourselves for more aspects of signals acquired in actual process conditions. Among these factors which are considered subtle previously, we identified Temperature, especially electrostatic chuck (ESC) Temperature measurement in real etch process conditions have direct correlation to in-line measurements. In this work, we used SensArray technique (EtchTemp-SE wafer) to measure ESC temperature profile on a 300mm wafer with plasma turning on to reproduce actual temperature pattern on wafers in real production process conditions. In field applications, we observed substantial correlation between ESC temperature and in-line optical metrology measurements and since temperature is a process factor that can be tuning through set-temperature modulations, we have identified process knobs with known impact on physical profile variations. Furthermore, ESC temperature profile on a 300mm wafer is configured as multiple zones upon radius and SensArray measurements mechanism could catch such zonal distribution as well, which enables detailed temperature modulations targeting edge ring only where most of chips can be harvested and critical zone for yield enhancement. Last but not least, compared with control reference (ESC Temperature in static plasma-off status), we also get additional factors to investigate in chamber-to-chamber matching study and make process tool fleet match on the basis really matters in production. KLA-Tencor EtchTemp-SE wafer enables Plasma On wafer temperature monitoring of silicon etch process. This wafer is wireless and has 65 sensors with measurement range from 20 to 140°C. the wafer is designed to run in real production recipe plasma on condition with maximum RF power up to 7KW. The wafer surface is coated with Yttrium oxide film which allows Silicon Etch chemistry. At Fab-8, we carried investigations in 14 nm FEOL critical etch process which has direct impact on yield, using SensorArray EtchTemp-SE wafer, we measured ESC temperature profile across multiple chambers, for both plasma on and plasma off, promising results achieved on chamber temperature signature identification, guideline for chamber to chamber matching improvement. Correlation between wafer mean temperature and determining criticality-process parameters of recess depth and CD is observed. Furthermore, detail zonal temperature/profile correlation is investigated to identify individual correlation in each chuck zone, and provided unique process knobs corresponding to each chunk. Meanwhile, passive ESC Chuck DOE was done to modulate wafer temperature at different zones, and Sensor Array wafer measurements verified temperature responding well with the ESC set point. Correlation R2 = 0.9979 for outer ring and R2 = 0.9981 for Mid Outer ring is observed, as shown in . Experiments planning to modulate edge zone ESC temperature to tune profile within-wafer uniformity and prove gain in edge yield enhancement and to improve edge yield is underway.

  12. Multi-heme Cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen

    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances inmore » bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.« less

  13. 18. Readiness Crew Building interior, lower level corridor. This corridor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Readiness Crew Building interior, lower level corridor. This corridor is located in the southwest side of the building and runs from southeast to northwest; view looking northwest from the exit door at the southeast end. Lyon - Whiteman Air Force Base, Bomber Alert Facility S-6, 1300 Alert Road, Knob Noster, Johnson County, MO

  14. A Door Is a Big Wooden Thing with a Knob: Getting a Handle on Metaphorical Interface Design.

    ERIC Educational Resources Information Center

    Bishop, M. J.; Cates, Ward Mitchell

    This paper chronicles the evolution of a metaphorical graphical user interface (MGUI) at Lehigh University (Pennsylvania). From its inception, "The Funeral of Edgar" has been a guided exploration of Edgar Allan Poe's poem, "The Raven," aimed at modeling high school students' critical and analytical reading skills. This product…

  15. Voice Controlled Wheelchair

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Michael Condon, a quadraplegic from Pasadena, California, demonstrates the NASA-developed voice-controlled wheelchair and its manipulator, which can pick up packages, open doors, turn a TV knob, and perform a variety of other functions. A possible boon to paralyzed and other severely handicapped persons, the chair-manipulator system responds to 35 one-word voice commands, such as "go," "stop," "up," "down," "right," "left," "forward," "backward." The heart of the system is a voice-command analyzer which utilizes a minicomputer. Commands are taught I to the computer by the patient's repeating them a number of times; thereafter the analyzer recognizes commands only in the patient's particular speech pattern. The computer translates commands into electrical signals which activate appropriate motors and cause the desired motion of chair or manipulator. Based on teleoperator and robot technology for space-related programs, the voice-controlled system was developed by Jet Propulsion Laboratory under the joint sponsorship of NASA and the Veterans Administration. The wheelchair-manipulator has been tested at Rancho Los Amigos Hospital, Downey, California, and is being evaluated at the VA Prosthetics Center in New York City.

  16. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations.

    PubMed

    Pidaparti, Ramana M; Cartin, Charles; Su, Guoguang

    2017-04-25

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.

  17. Stable L-band multi-wavelength SOA fiber laser based on polarization rotation.

    PubMed

    Liu, Tonghui; Jia, Dongfang; Yang, Tianxin; Wang, Zhaoying; Liu, Ying

    2017-04-01

    We propose and experimentally demonstrate a stable multi-wavelength fiber ring laser operating in the L-band with wavelength spacing of 25 GHz. The mechanism is induced by a polarization rotation intensity equalizer consisting of a semiconductor optical amplifier and polarization devices. A Fabry-Perot filter is inserted into the cavity to serve as a multi-wavelength selection device. Stable L-band multi-wavelength lasing with 3 dB uniformity of 21.2 nm, and simultaneous oscillation of 101 lines with wavelength spacing of 25 GHz, is obtained.

  18. Multi-wavelength lenses for terahertz surface wave.

    PubMed

    Wei, Minggui; Yang, Quanlong; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2017-10-16

    Metasurface-based surface wave (SW) devices working at multi-wavelength has been continuously arousing enormous curiosity recently, especially in the terahertz community. In this work, we propose a multi-layer metasurface structure composed of metallic slit pairs to build terahertz SW devices. The slit pair has a narrow bandwidth and its response frequency can be altered by its geometric parameter, thereby suppressing the frequency crosstalk and reducing the difficulty of design. By elaborately tailoring the distribution of the slit pairs, a series of achromatic SW lenses (SWLs) working at 0.6, 0.75 and 1 THz are experimentally demonstrated by the near field scanning terahertz microscope (NSTM) system. In addition, a wavelength-division-multiplexer (WDM) is further designed and implemented, which is promising in building multiplexed devices for plasmonic circuits. The structure proposed here cannot only couple the terahertz wave from free space to SWs, but also control its propagation. Moreover, our findings demonstrate the great potential to design multi-wavelength plasmonic metasurface devices, which can be extended to microwave and visible frequencies as well.

  19. Multi-compartment medication devices and patient compliance.

    PubMed

    McGraw, Caroline

    2004-07-01

    Multi-compartment medication compliance devices are widely used in primary care. The aim of this review is to reveal whether they are effective in promoting adherence among non-adherent adults living at home. Searches were undertaken using two electronic databases (Medline (1966-2003) and International Pharmaceutical Abstracts (1970-2002)). Only randomized controlled trials (including crossover studies) were included in the review. Participants had to be non-institutionalized adults receiving one or more prescription medicines each day and displaying problems with adherence. Studies had to compare multi-compartment medication compliance devices to standard packaging and outcome measures and to include either pill counts, biological assays and/or clinical response. Articles were selected if they described a follow up period of at least three months and demonstrated that over 80% of participants had completed the trial. Two studies were identified that met the criteria, reporting data on a total of 148 patients. The findings from the first study found diabetic patients receiving medication in a compliance device demonstrated better glucose control than patients receiving medication in standard packaging. The second study found compliance devices had no impact on blood pressure control in hypertensive patients. Further research needs to be conducted to assess the effectiveness of multi-compartment medication compliance devices in promoting adherence among non-adherent adults living at home.

  20. Multi-factor authentication

    DOEpatents

    Hamlet, Jason R; Pierson, Lyndon G

    2014-10-21

    Detection and deterrence of spoofing of user authentication may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a user of the hardware device. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a PUF value. Combining logic is coupled to receive the PUF value, combines the PUF value with one or more other authentication factors to generate a multi-factor authentication value. A key generator is coupled to generate a private key and a public key based on the multi-factor authentication value while a decryptor is coupled to receive an authentication challenge posed to the hardware device and encrypted with the public key and coupled to output a response to the authentication challenge decrypted with the private key.

  1. Method and device for measuring single-shot transient signals

    DOEpatents

    Yin, Yan

    2004-05-18

    Methods, apparatus, and systems, including computer program products, implementing and using techniques for measuring multi-channel single-shot transient signals. A signal acquisition unit receives one or more single-shot pulses from a multi-channel source. An optical-fiber recirculating loop reproduces the one or more received single-shot optical pulses to form a first multi-channel pulse train for circulation in the recirculating loop, and a second multi-channel pulse train for display on a display device. The optical-fiber recirculating loop also optically amplifies the first circulating pulse train to compensate for signal losses and performs optical multi-channel noise filtration.

  2. Monolithic multi-color light emission/detection device

    DOEpatents

    Wanlass, Mark W.

    1995-01-01

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber.

  3. Multi-layer micro/nanofluid devices with bio-nanovalves

    DOEpatents

    Li, Hao; Ocola, Leonidas E.; Auciello, Orlando H.; Firestone, Millicent A.

    2013-01-01

    A user-friendly multi-layer micro/nanofluidic flow device and micro/nano fabrication process are provided for numerous uses. The multi-layer micro/nanofluidic flow device can comprise: a substrate, such as indium tin oxide coated glass (ITO glass); a conductive layer of ferroelectric material, preferably comprising a PZT layer of lead zirconate titanate (PZT) positioned on the substrate; electrodes connected to the conductive layer; a nanofluidics layer positioned on the conductive layer and defining nanochannels; a microfluidics layer positioned upon the nanofluidics layer and defining microchannels; and biomolecular nanovalves providing bio-nanovalves which are moveable from a closed position to an open position to control fluid flow at a nanoscale.

  4. Nano and Microparticle-Enhanced Immunosensor Approaches for the Detection of Cancer Biomarker Proteins

    NASA Astrophysics Data System (ADS)

    Mani, Vigneshwaran

    Accurate, sensitive, point-of-care multiplexed protein measurements are critical for early disease detection and monitoring, impacting biomarker and drug discovery, and personalized medicine. Significant application involves monitoring panels of proteins in the blood that are biomarkers for diagnosing cancer. However, measurements of biomarker panels in blood or other bodily fluids have been slow to integrate into current practice of cancer diagnostics partly due to the lack of technically simple, low-cost, sensitive, point-of-care multiplexed measurement devices, as well as the lack of rigorously validated protein panels. The present thesis in part addresses these limitations by the development of electrochemical and surface plasmon resonance (SPR) immunosensors utilizing 1mum superparamagnetic labels for accurate detection of prostate cancer biomarker proteins in patient serum samples. Electrochemical discrete immunosensors featuring nanostructured surface with densely packed 5 nm glutathione-coated gold nanoparticles coupled with multi-enzyme magnetic particle (MP) labels enabled measurement of prostate specific antigen (PSA) with a detection limit (DL) of 0.5 pg mL-1 in undiluted serum. Such low DLs are attributed to high surface area, conductivity of nanostructured surface, and multi-enzyme signal amplification. DLs are further improved by utilizing MP bioconjugated with more than 100,000 antibody labels to offline capture proteins from the serum sample matrix, minimizing nonspecific binding of interfering proteins on sensor surface before detection. This approach provided an unprecedented 10 fg DL mL-1 for PSA in undiluted serum using a flow SPR biosensor. Finally electrochemical microfluidic immunoarrays featuring nanostructured surface and offline protein capture by multi-label MPs enabled multiplexed detection of prostate cancer biomarkers PSA and interleukin-6 (IL-6). These approaches provided up to 1000-fold lower DLs compared to commercial bead based assays. The high sensitivity of these approaches will allow monitoring of biomarker levels in diseases states where proteins are in sub pg mL -1 concentrations that are normally challenging to detect using traditional methods such as enzyme linked immunosorbent assays (ELISA). Further emphases will be on SPR-based fundamental studies on binding affinity enhancement of MP conjugates to protein surfaces. In addition, this thesis describes the assembly of glucose/O2 enzymatic biofuel cells for power generation utilizing layer-by-layer films of osmium redox polymers and enzymes. Towards the end, the present thesis describes a simple, low-cost and accurate paper-based electrochemical device fabrication methods and its applications towards monitoring genotoxic activities in the environmental samples.

  5. Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture.

    PubMed

    Höfle, Stefan; Schienle, Alexander; Bernhard, Christoph; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander

    2014-08-13

    Fully solution processed monochromatic and white-light emitting tandem or multi-photon polymer OLEDs with an inverted device architecture have been realized by employing WO3 /PEDOT:PSS/ZnO/PEI charge carrier generation layers. The luminance of the sub-OLEDs adds up in the stacked device indicating multi-photon emission. The white OLEDs exhibit a CRI of 75. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Multi-beam and single-chip LIDAR with discrete beam steering by digital micromirror device

    NASA Astrophysics Data System (ADS)

    Rodriguez, Joshua; Smith, Braden; Hellman, Brandon; Gin, Adley; Espinoza, Alonzo; Takashima, Yuzuru

    2018-02-01

    A novel Digital Micromirror Device (DMD) based beam steering enables a single chip Light Detection and Ranging (LIDAR) system for discrete scanning points. We present increasing number of scanning point by using multiple laser diodes for Multi-beam and Single-chip DMD-based LIDAR.

  7. Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices

    NASA Astrophysics Data System (ADS)

    Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon

    2016-01-01

    Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07377d

  8. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain.

    PubMed

    Santos, Lucas; Opris, Ioan; Fuqua, Joshua; Hampson, Robert E; Deadwyler, Sam A

    2012-04-15

    A unique custom-made tetrode microdrive for recording from large numbers of neurons in several areas of primate brain is described as a means for assessing simultaneous neural activity in cortical and subcortical structures in nonhuman primates (NHPs) performing behavioral tasks. The microdrive device utilizes tetrode technology with up to six ultra-thin microprobe guide tubes (0.1mm) that can be independently positioned, each containing reduced diameter tetrode and/or hexatrode microwires (0.02 mm) for recording and isolating single neuron activity. The microdrive device is mounted within the standard NHP cranial well and allows traversal of brain depths up to 40.0 mm. The advantages of this technology are demonstrated via simultaneously recorded large populations of neurons with tetrode type probes during task performance from a) primary motor cortex and deep brain structures (caudate-putamen and hippocampus) and b) multiple layers within the prefrontal cortex. The means to characterize interactions of well-isolated ensembles of neurons recorded simultaneously from different regions, as shown with this device, has not been previously available for application in primate brain. The device has extensive application to primate models for the detection and study of inoperative or maladaptive neural circuits related to human neurological disorders. Published by Elsevier B.V.

  9. Modeling and Simulation of Two Wheelchair Accessories for Pushing Doors.

    PubMed

    Abdullah, Soran Jalal; Shaikh Mohammed, Javeed

    2017-03-27

    Independent mobility is vital to individuals of all ages, and wheelchairs have proven to be great personal mobility devices. The tasks of opening and navigating through a door are trivial for healthy people, while the same tasks could be difficult for some wheelchair users. A wide range of intelligent wheelchair controllers and systems, robotic arms, or manipulator attachments integrated with wheelchairs have been developed for various applications, including manipulating door knobs. Unfortunately, the intelligent wheelchairs and robotic attachments are not widely available as commercial products. Therefore, the current manuscript presents the modeling and simulation of a novel but simple technology in the form of a passive wheelchair accessory (straight, arm-like with a single wheel, and arc-shaped with multiple wheels) for pushing doors open from a wheelchair. From the simulations using different wheel shapes and sizes, it was found that the arc-shaped accessory could push open the doors faster and with almost half the required force as compared to the arm-like accessory. Also, smaller spherical wheels were found to be best in terms of reaction forces on the wheels. Prototypes based on the arc-shaped accessory design will be manufactured and evaluated for pushing doors open and dodging or gliding other obstacles.

  10. A cross-platform GUI to control instruments compliant with SCPI through VISA

    NASA Astrophysics Data System (ADS)

    Roach, Eric; Liu, Jing

    2015-10-01

    In nuclear physics experiments, it is necessary and important to control instruments from a PC, which automates many tasks that require human operations otherwise. Not only does this make long term measurements possible, but it also makes repetitive operations less error-prone. We created a graphical user interface (GUI) to control instruments connected to a PC through RS232, USB, LAN, etc. The GUI is developed using Qt Creator, a cross-platform integrated development environment, which makes it portable to various operating systems, including those commonly used in mobile devices. NI-VISA library is used in the back end so that the GUI can be used to control instruments connected through various I/O interfaces without any modification. Commonly used SCPI commands can be sent to different instruments using buttons, sliders, knobs, and other various widgets provided by Qt Creator. As an example, we demonstrate how we set and fetch parameters and how to retrieve and display data from an Agilent Digital Storage Oscilloscope X3034A with the GUI. Our GUI can be easily used for other instruments compliant with SCPI and VISA with little or no modification.

  11. A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury

    PubMed Central

    Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.

    2011-01-01

    Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI. PMID:21083431

  12. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    PubMed

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI.

  13. Control electronics for a multi-laser/multi-detector scanning system

    NASA Technical Reports Server (NTRS)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  14. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations †

    PubMed Central

    Pidaparti, Ramana M.; Cartin, Charles; Su, Guoguang

    2017-01-01

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications. PMID:28952516

  15. GPU-accelerated computing for Lagrangian coherent structures of multi-body gravitational regimes

    NASA Astrophysics Data System (ADS)

    Lin, Mingpei; Xu, Ming; Fu, Xiaoyu

    2017-04-01

    Based on a well-established theoretical foundation, Lagrangian Coherent Structures (LCSs) have elicited widespread research on the intrinsic structures of dynamical systems in many fields, including the field of astrodynamics. Although the application of LCSs in dynamical problems seems straightforward theoretically, its associated computational cost is prohibitive. We propose a block decomposition algorithm developed on Compute Unified Device Architecture (CUDA) platform for the computation of the LCSs of multi-body gravitational regimes. In order to take advantage of GPU's outstanding computing properties, such as Shared Memory, Constant Memory, and Zero-Copy, the algorithm utilizes a block decomposition strategy to facilitate computation of finite-time Lyapunov exponent (FTLE) fields of arbitrary size and timespan. Simulation results demonstrate that this GPU-based algorithm can satisfy double-precision accuracy requirements and greatly decrease the time needed to calculate final results, increasing speed by approximately 13 times. Additionally, this algorithm can be generalized to various large-scale computing problems, such as particle filters, constellation design, and Monte-Carlo simulation.

  16. The role of structure in the physical habitat of anadromous salmonids

    Treesearch

    Thomas E. Lisle

    1983-01-01

    A fundamental difference between a canal and a natural stream is structure. Structure includes all the typical anomalies of natural streams that deflect the general downstream flow, such as bends, bars, bedrock knobs, boulders, landslide deposits, and large woody debris. This results in the storage of watershed products in the channel, and in a great heterogeneity in...

  17. Play Behavior in the Year-Old Infant: Early Sex Differences.

    ERIC Educational Resources Information Center

    Goldberg, Susan; And Others

    The purpose of this study was to determine if sex differences were observable in 1-year-olds in response to their mother and in choice and style of play with toys. Thirty-two boys and thirty-two girls were put in separate rooms with several toys, several nontoys (door knobs, taped sockets, etc.) and their mothers. The infant's mother was to…

  18. Abundance of red spruce regeneration across spruce-hardwood ecotones at Gaudineer Knob, West Virginia

    Treesearch

    Albert E. Mayfield; Ray R. Hicks

    2010-01-01

    The abundance of red spruce (Picea rubens Sarg.) in the Central Appalachian Mountains has been drastically reduced over the past 100 to 150 years. The purpose of this study was to examine the potential for increases in the relative abundance of overstory red spruce in a Central Appalachian, high-elevation forest by measuring the abundance of red...

  19. Pioneer Mothers' Memorial Forest revisited

    Treesearch

    R.C. Schlesinger; D.T. Funk; P.L. Roth; C.C. Myers

    1991-01-01

    The area now known as Pioneer Mothers' Memorial Forest was acquired by Joseph Cox in 1816 from the public domain. In 1944, a portion of that property, including the area referred to as Cox Woods, was established as a National Forest Research Natural Area. This beech-maple forest, located in the Knobs area of southern Indiana, is considered to be one of the few...

  20. Structural attributes of two old-growth Cross Timbers stands in western Arkansas

    Treesearch

    Don C. Bragg; David W. Stahle; K. Chris Cerny

    2012-01-01

    Comprised of largely non-commercial, xeric, oak-dominated forests, the Cross Timbers in Arkansas have been heavily altered over the last two centuries, and thus only scattered parcels of old-growth timber remain. We inventoried and mapped two such stands on Fort Chaffee Military Training Center in Sebastian County, Arkansas. The west-facing Christmas Knob site is...

  1. Information Is Bliss: Information Use by School Choice Participants in Denver

    ERIC Educational Resources Information Center

    Yettick, Holly

    2016-01-01

    If school choice programs are to provide any degree of equitable access to educational opportunities, then useful information about academic quality needs to be available to all participants, not just those who hob knob with the school board members or chat with the superintendent over the backyard fence. This study draws upon a unique data set to…

  2. 76 FR 77502 - Intent To Prepare a Draft Environmental Impact Statement Regarding the Wolfpen Knob Development...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... the Clean Water Act, may have related to discharges of dredge and fill material into Waters of the... deep mine, a preparation plant, a refuse disposal site, a water impoundment, and a new rail line. The... water impoundment would provide water for the operation of the preparation plant and dust control at the...

  3. Chemical Fate of a Metamorphic Inducer in Larvae-like Buds of the Cnidarian Cassiopea andromeda.

    PubMed

    Fleck, J

    1998-02-01

    Larvae-like vegetative buds of the scyphozoan Cassiopea andromeda metamorphose into polyps in the presence of oligopeptides that have a well-defined primary structure. Buds were incubated with the hexapeptide 14C-dansyl-GPGGPA, a representative inducer. Autoradiography of longitudinal sections of these buds revealed rapid internalization of peptide by the buds. Silver grain density was highest in the pre-pedal disc region (or aboral knob) of metamorphosing buds. Larvae and buds sporadically explore their habitat with this aboral knob, searching for a suitable solid substrate to which irreversible attachment will be made. Buds were incubated for 3, 8, or 16 h with 14C-dansyl-GPGGPA, then homogenized and the supernatants analyzed to determine the chemical fate of the inducer. The signal molecule was shown to be partly degraded to 14C-dansyl-GP, partly to 14C-dansyl-G, and in part still present in its original structure. These cleavage products were also found in the surrounding medium after an incubation time of 8 h with 14C-dansyl-GPGGPA, but did not induce metamorphosis. This study suggests that exposure of metamorphosis-inducing peptides to buds of Cassiopea andromeda results in signal termination.

  4. Investigations of shot reproducibility for the SMP diode at 4.5 MV.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Nichelle; Crain, Marlon D.; Droemer, Darryl W.

    In experiments conducted on the RITS-6 accelerator, the SMP diode exhibits sig- ni cant shot-to-shot variability. Speci cally, for identical hardware operated at the same voltage, some shots exhibit a catastrophic drop in diode impedance. A study is underway to identify sources of shot-to-shot variations which correlate with diode impedance collapse. To remove knob emission as a source, only data from a shot series conducted with a 4.5-MV peak voltage are considered. The scope of this report is limited to sources of variability which occur away from the diode, such as power ow emission and trajectory changes, variations in pulsedmore » power, dustbin and transmission line alignment, and di erent knob shapes. We nd no changes in the transmission line hardware, alignment, or hardware preparation methods which correlate with impedance collapse. However, in classifying good versus poor shots, we nd that there is not a continuous spectrum of diode impedance behavior but that the good and poor shots can be grouped into two distinct impedance pro les. This result forms the basis of a follow-on study focusing on the variability resulting from diode physics. 3« less

  5. Self locking coupling mechanism for engaging and moving a load

    DOEpatents

    Wood, Richard L.; Casamajor, Alan B.; Parsons, Richard E.

    1982-01-01

    Coupling mechanism (11) for engaging and lifting a load (12) has a housing (19) with a guide passage (18) for receiving a knob (13) which is secured to the load (12) through a neck (15) of smaller diameter. A hollow ball (23) in the housing (19) has an opening (27) which receives the knob (13) and the ball (23) is then turned to displace the opening (27) from the housing passage (18) and to cause the neck (15) to enter a slot (29) in the ball (23) thereby securing the load (12) to the coupling mechanism (11) as elements (49) of the housing (19) block travel of the neck (15) back into the opening (27) when the ball (23) is turned to the load holding orientation. As engagement of the load (12) and locking of the coupling mechanism are accomplished simultaneously by the same ball (23) motion, operation is simplified and reliability is greatly increased. The ball (23) is preferably turned by a motor (32) through worm gearing (36) and the coupling mechanism (11) may be controlled from a remote location. Among other uses, the coupling mechanism (11) is adaptable to the handling of spent nuclear reactor fuel elements (12).

  6. Monolithic multi-color light emission/detection device

    DOEpatents

    Wanlass, M.W.

    1995-02-21

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber. 5 figs.

  7. Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion

    NASA Astrophysics Data System (ADS)

    Qiao, Tiezhu; Chen, Lulu; Pang, Yusong; Yan, Gaowei

    2018-06-01

    Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.

  8. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    PubMed Central

    Guiry, John J.; van de Ven, Pepijn; Nelson, John

    2014-01-01

    In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances. PMID:24662406

  9. Multi-sensor fusion for enhanced contextual awareness of everyday activities with ubiquitous devices.

    PubMed

    Guiry, John J; van de Ven, Pepijn; Nelson, John

    2014-03-21

    In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances.

  10. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    PubMed

    Chowdhury, Enhad A; Western, Max J; Nightingale, Thomas E; Peacock, Oliver J; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices are not yet equivalent to the best research-grade devices or indeed equivalent to each other. We propose independent quality standards and/or accuracy ratings for consumer devices are required.

  11. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors

    PubMed Central

    Chowdhury, Enhad A.; Western, Max J.; Nightingale, Thomas E.; Peacock, Oliver J.; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices are not yet equivalent to the best research-grade devices or indeed equivalent to each other. We propose independent quality standards and/or accuracy ratings for consumer devices are required. PMID:28234979

  12. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABCmore » gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.« less

  13. Control and automation of multilayered integrated microfluidic device fabrication.

    PubMed

    Kipper, Sarit; Frolov, Ludmila; Guy, Ortal; Pellach, Michal; Glick, Yair; Malichi, Asaf; Knisbacher, Binyamin A; Barbiro-Michaely, Efrat; Avrahami, Dorit; Yavets-Chen, Yehuda; Levanon, Erez Y; Gerber, Doron

    2017-01-31

    Integrated microfluidics is a sophisticated three-dimensional (multi layer) solution for high complexity serial or parallel processes. Fabrication of integrated microfluidic devices requires soft lithography and the stacking of thin-patterned PDMS layers. Precise layer alignment and bonding is crucial. There are no previously reported standards for alignment of the layers, which is mostly performed using uncontrolled processes with very low alignment success. As a result, integrated microfluidics is mostly used in academia rather than in the many potential industrial applications. We have designed and manufactured a semiautomatic Microfluidic Device Assembly System (μDAS) for full device production. μDAS comprises an electrooptic mechanical system consisting of four main parts: optical system, smart media holder (for PDMS), a micropositioning xyzθ system and a macropositioning XY mechanism. The use of the μDAS yielded valuable information regarding PDMS as the material for device fabrication, revealed previously unidentified errors, and enabled optimization of a robust fabrication process. In addition, we have demonstrated the utilization of the μDAS technology for fabrication of a complex 3 layered device with over 12 000 micromechanical valves and an array of 64 × 64 DNA spots on a glass substrate with high yield and high accuracy. We increased fabrication yield from 25% to about 85% with an average layer alignment error of just ∼4 μm. It also increased our protein expression yields from 80% to over 90%, allowing us to investigate more proteins per experiment. The μDAS has great potential to become a valuable tool for both advancing integrated microfluidics in academia and producing and applying microfluidic devices in the industry.

  14. Functionalization and Characterization of Nanomaterial Gated Field-Effect Transistor-Based Biosensors and the Design of a Multi-Analyte Implantable Biosensing Platform

    NASA Astrophysics Data System (ADS)

    Croce, Robert A., Jr.

    Advances in semiconductor research and complementary-metal-oxide semiconductor fabrication allow for the design and implementation of miniaturized metabolic monitoring systems, as well as advanced biosensor design. The first part of this dissertation will focus on the design and fabrication of nanomaterial (single-walled carbon nanotube and quantum dot) gated field-effect transistors configured as protein sensors. These novel device structures have been functionalized with single-stranded DNA aptamers, and have shown sensor operation towards the protein Thrombin. Such advanced transistor-based sensing schemes present considerable advantages over traditional sensing methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip. The second part of this dissertation focuses on the design and fabrication of a needle-implantable glucose sensing platform which is based solely on photovoltaic powering and optical communication. By employing these powering and communication schemes, this design negates the need for bulky on-chip RF-based transmitters and batteries in an effort to attain extreme miniaturization required for needle-implantable/extractable applications. A complete single-sensor system coupled with a miniaturized amperometric glucose sensor has been demonstrated to exhibit reality of this technology. Furthermore, an optical selection scheme of multiple potentiostats for four different analytes (glucose, lactate, O 2 and CO2) as well as the optical transmission of sensor data has been designed for multi-analyte applications. The last part of this dissertation will focus on the development of a computational model for the amperometric glucose sensors employed in the aforementioned implantable platform. This model has been applied to single-layer single-enzyme systems, as well as multi-layer (single enzyme) systems utilizing glucose flux limiting layer-by-layer assembled outer membranes. The concentration of glucose and hydrogen peroxide within the sensor geometry, the transient response and the device response time has been simulated for both systems.

  15. Flow control using audio tones in resonant microfluidic networks: towards cell-phone controlled lab-on-a-chip devices.

    PubMed

    Phillips, Reid H; Jain, Rahil; Browning, Yoni; Shah, Rachana; Kauffman, Peter; Dinh, Doan; Lutz, Barry R

    2016-08-16

    Fluid control remains a challenge in development of portable lab-on-a-chip devices. Here, we show that microfluidic networks driven by single-frequency audio tones create resonant oscillating flow that is predicted by equivalent electrical circuit models. We fabricated microfluidic devices with fluidic resistors (R), inductors (L), and capacitors (C) to create RLC networks with band-pass resonance in the audible frequency range available on portable audio devices. Microfluidic devices were fabricated from laser-cut adhesive plastic, and a "buzzer" was glued to a diaphragm (capacitor) to integrate the actuator on the device. The AC flowrate magnitude was measured by imaging oscillation of bead tracers to allow direct comparison to the RLC circuit model across the frequency range. We present a systematic build-up from single-channel systems to multi-channel (3-channel) networks, and show that RLC circuit models predict complex frequency-dependent interactions within multi-channel networks. Finally, we show that adding flow rectifying valves to the network creates pumps that can be driven by amplified and non-amplified audio tones from common audio devices (iPod and iPhone). This work shows that RLC circuit models predict resonant flow responses in multi-channel fluidic networks as a step towards microfluidic devices controlled by audio tones.

  16. Dynamic MEMS devices for multi-axial fatigue and elastic modulus measurement

    NASA Astrophysics Data System (ADS)

    White, Carolyn D.; Xu, Rui; Sun, Xiaotian; Komvopoulos, Kyriakos

    2003-01-01

    For reliable MEMS device fabrication and operation, there is a continued demand for precise characterization of materials at the micron scale. This paper presents a novel material characterization device for fatigue lifetime testing. The fatigue specimen is subjected to multi-axial loading, which is typical of most MEMS devices. Polycrystalline silicon (polysilicon) fatigue devices were fabricated using the MUMPS process with a three layer mask process ground plane, anchor, and structural layer of polysilicon. A fatigue device consists of two or three beams, attached to a rotating ring and anchored to the substrate on each end. In order to generate a sufficiently large stress, the fatigue devices were tested in resonance to produce a von Mises equivalent stress as high as 1 GPa, which is in the fracture strength range reported for polysilicon. A further increase of the stress in the beam specimens was obtained by introducing a notch with a focused ion beam. The notch resulted into a stress concentration factor of about 3.8, thereby producing maximum von Mises equivalent stress in the range of 1 through 4 GPa. This study provides insight into multi-axial fatigue testing under typical MEMS conditions and additional information about micron-scale polysilicon mechanical behavior, which is the current basic building material for MEMS devices.

  17. An adaptive Hidden Markov Model for activity recognition based on a wearable multi-sensor device

    USDA-ARS?s Scientific Manuscript database

    Human activity recognition is important in the study of personal health, wellness and lifestyle. In order to acquire human activity information from the personal space, many wearable multi-sensor devices have been developed. In this paper, a novel technique for automatic activity recognition based o...

  18. Securing Information with Complex Optical Encryption Networks

    DTIC Science & Technology

    2015-08-11

    Network Security, Network Vulnerability , Multi-dimentional Processing, optoelectronic devices 16. SECURITY CLASSIFICATION OF: 17. LIMITATION... optoelectronic devices and systems should be analyzed before the retrieval, any hostile hacker will need to possess multi-disciplinary scientific...sophisticated optoelectronic principles and systems where he/she needs to process the information. However, in the military applications, most military

  19. Designing Multi-Channel Web Frameworks for Cultural Tourism Applications: The MUSE Case Study.

    ERIC Educational Resources Information Center

    Garzotto, Franca; Salmon, Tullio; Pigozzi, Massimiliano

    A framework for the design of multi-channel (MC) applications in the cultural tourism domain is presented. Several heterogeneous interface devices are supported including location-sensitive mobile units, on-site stationary devices, and personalized CDs that extend the on-site experience beyond the visit time thanks to personal memories gathered…

  20. Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)

    2018-01-01

    A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.

  1. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1997-06-24

    A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

  2. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    DOEpatents

    Kaschmitter, J.L.; Sigmon, T.W.

    1995-10-10

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby the amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenation can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  3. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    DOEpatents

    Kaschmitter, James L.; Sigmon, Thomas W.

    1995-01-01

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  4. Multi-functional metal-dielectric photonic structures

    NASA Astrophysics Data System (ADS)

    Smith, Kyle J.

    In RF circuits and integrated photonics, it is important to effectively control an electromagnetic signal. This includes protecting of the network from high power and/or undesired signal flow, which is achieved with device functionalities such as isolation, circulation, switching, and limiting. In an attempt to develop light-weight, small-footprint, better protection devices, new designs have been sought utilizing materials that have been otherwise avoided due to some primary downside. For example, ferromagnetic metals like Iron and Cobalt, despite being powerful magnets, have been completely shunned for uses in nonreciprocal devices due to their overwhelming electric losses and high reflectivity. How could we utilize lossy materials in electromagnetic applications? In this thesis research, we design and fabricate metal-dielectric photonic structures in which metal can be highly transmissive, while the desired response (e.g., magneto-photonic response) is strongly enhanced. Moreover, the metal-dielectric structures can be designed to exhibit a sharp transition from the induced transmission to broadband opacity for oblique incidence and/or due to a tiny alteration of the photonic structure (e.g., because of nonlinearity). Thus, the photonic structures can be tailored to produce collimation and power-limiting effects. In the case of ferromagnetic metals, the metal-dielectric structure can be realized as an omnidirectional isolator passing radiation in a single direction and for a single frequency. The effectiveness of such structures will be verified in microwave measurements. Additionally, metal-dielectric structures including a nonlinear component will be shown to function as a reflective power limiter, thus providing a far superior alternative to absorptive, and often sacrificial, limiters.

  5. EXPERIMENTING WITH MULTI-ATTRIBUTE UTILITY SURVEY METHODS IN A MULTI-DIMENSIONAL VALUATION PROBLEM. (R824699)

    EPA Science Inventory

    Abstract

    The use of willingness-to-pay (WTP) survey techniques based on multi-attribute utility (MAU) approaches has been recommended by some authors as a way to deal simultaneously with two difficulties that increasingly plague environmental valuation. The first of th...

  6. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  7. Multi-color pyrometry imaging system and method of operating the same

    DOEpatents

    Estevadeordal, Jordi; Nirmalan, Nirm Velumylum; Tralshawala, Nilesh; Bailey, Jeremy Clyde

    2017-03-21

    A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.

  8. Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Highstrete, Clark; Scott, Sean Michael; Nordquist, Christopher D.

    2013-11-01

    Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb + hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ionmore » traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.« less

  9. DMDs for multi-object near-infrared spectrographs in astronomy

    NASA Astrophysics Data System (ADS)

    Smee, Stephen A.; Barkhouser, Robert; Hope, Stephen; Conley, Devin; Gray, Aidan; Hope, Gavin; Robberto, Massimo

    2018-02-01

    The Digital Micromirror Device (DMD), typically used in projection screen technology, has utility in instrumentation for astronomy as a digitally programmable slit in a spectrograph. When placed at an imaging focal plane the device can be used to selectively direct light from astronomical targets into the optical path of a spectrograph, while at the same time directing the remaining light into an imaging camera, which can be used for slit alignment, science imaging, or both. To date the use of DMDs in astronomy has been limited, especially for instruments that operate in the near infrared (1 - 2.5 μm). This limitation is due in part to a host of technical challenges with respect to DMDs that, to date, have not been thoroughly explored. Those challenges include operation at cryogenic temperature, control electronics that facilitate DMD use at these temperatures, window coatings properly coated for the near infrared bandpass, and scattered light. This paper discusses these technical challenges and presents progress towards understanding and mitigating them.

  10. Novel Techniques for Millimeter-Wave Packages

    NASA Technical Reports Server (NTRS)

    Herman, Martin I.; Lee, Karen A.; Kolawa, Elzbieta A.; Lowry, Lynn E.; Tulintseff, Ann N.

    1995-01-01

    A new millimeter-wave package architecture with supporting electrical, mechanical and material science experiment and analysis is presented. This package is well suited for discrete devices, monolithic microwave integrated circuits (MMIC's) and multichip module (MCM) applications. It has low-loss wide-band RF transitions which are necessary to overcome manufacturing tolerances leading to lower per unit cost Potential applications of this new packaging architecture which go beyond the standard requirements of device protection include integration of antennas, compatibility to photonic networks and direct transitions to waveguide systems. Techniques for electromagnetic analysis, thermal control and hermetic sealing were explored. Three dimensional electromagnetic analysis was performed using a finite difference time-domain (FDTD) algorithm and experimentally verified for millimeter-wave package input and output transitions. New multi-material system concepts (AlN, Cu, and diamond thin films) which allow excellent surface finishes to be achieved with enhanced thermal management have been investigated. A new approach utilizing block copolymer coatings was employed to hermetically seal packages which met MIL STD-883.

  11. Safety and performance of the second generation EnligHTN™ Renal Denervation System in patients with drug-resistant, uncontrolled hypertension.

    PubMed

    Worthley, Stephen G; Wilkins, Gerard T; Webster, Mark W; Montarello, Joseph K; Delacroix, Sinny; Whitbourn, Robert J; Warren, Roderic J

    2017-07-01

    Catheter-based renal denervation for the treatment of drug-resistant hypertension has been intensively investigated in recent years. To date, only limited data have been published using multi-electrode radiofrequency ablation systems that can deliver lesions with a pre-determined pattern. This study was designed to evaluate the safety and performance of the second generation EnligHTN™ Renal Denervation System. This first-in-human, prospective, multi-center, non-randomized study included 39 patients (62% male, mean age 63 years, and mean baseline office blood pressure 174/93 mmHg) with drug-resistant hypertension. The primary safety and performance objectives were to characterize, from baseline to 6 months post procedure, the rate of serious procedural and device related adverse events, as adjudicated by an independent Clinical Events Committee, and the reduction of office systolic blood pressure. Renal artery denervation, using the second generation EnligHTN multi-electrode system significantly reduced office blood pressure from baseline to 1, 3, 6, 12, 18 and 24 months by 19/7, 26/9, 25/7, 23/7, 25/8 and 27/9 mmHg, respectively (p ≤ 0.0005). No serious device or procedure related adverse events affecting the renal arteries or renal function occurred through 24 months of follow-up. Renal sympathetic denervation using the second generation EnligHTN Renal Denervation System resulted in safe, rapid, and significant mean office blood pressure reduction that was sustained through 24 months. Future studies will need to address the utility of this system against an appropriate sham based comparator. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Surface acoustic wave coding for orthogonal frequency coded devices

    NASA Technical Reports Server (NTRS)

    Malocha, Donald (Inventor); Kozlovski, Nikolai (Inventor)

    2011-01-01

    Methods and systems for coding SAW OFC devices to mitigate code collisions in a wireless multi-tag system. Each device producing plural stepped frequencies as an OFC signal with a chip offset delay to increase code diversity. A method for assigning a different OCF to each device includes using a matrix based on the number of OFCs needed and the number chips per code, populating each matrix cell with OFC chip, and assigning the codes from the matrix to the devices. The asynchronous passive multi-tag system includes plural surface acoustic wave devices each producing a different OFC signal having the same number of chips and including a chip offset time delay, an algorithm for assigning OFCs to each device, and a transceiver to transmit an interrogation signal and receive OFC signals in response with minimal code collisions during transmission.

  13. Loss tolerant speech decoder for telecommunications

    NASA Technical Reports Server (NTRS)

    Prieto, Jr., Jaime L. (Inventor)

    1999-01-01

    A method and device for extrapolating past signal-history data for insertion into missing data segments in order to conceal digital speech frame errors. The extrapolation method uses past-signal history that is stored in a buffer. The method is implemented with a device that utilizes a finite-impulse response (FIR) multi-layer feed-forward artificial neural network that is trained by back-propagation for one-step extrapolation of speech compression algorithm (SCA) parameters. Once a speech connection has been established, the speech compression algorithm device begins sending encoded speech frames. As the speech frames are received, they are decoded and converted back into speech signal voltages. During the normal decoding process, pre-processing of the required SCA parameters will occur and the results stored in the past-history buffer. If a speech frame is detected to be lost or in error, then extrapolation modules are executed and replacement SCA parameters are generated and sent as the parameters required by the SCA. In this way, the information transfer to the SCA is transparent, and the SCA processing continues as usual. The listener will not normally notice that a speech frame has been lost because of the smooth transition between the last-received, lost, and next-received speech frames.

  14. Carbon Nanotube Based Devices for Intracellular Analysis

    NASA Astrophysics Data System (ADS)

    Singhal, Riju Mohan

    Scientific investigations on individual cells have gained increasing attention in recent years as efforts are being made to understand cellular functioning in complex processes, such as cell division during embryonic development, and owing to realization of heterogeneity amongst a population of a single cell type (for instance, certain individual cancer cells being immune to chemotherapy). Therefore devices enabling electrochemical detection, spectroscopy, optical observations, and separation techniques, along with cell piercing and fluid transfer capabilities at the intra-cellular level, are required. Glass pipettes have conventionally been used for single cell interrogation, however their poor mechanical properties and an intrusive conical geometry have led to limited precision and frequent cell damage or death, justifying research efforts to develop novel, non-intrusive cell probes. Carbon nanotubes (CNTs) are known for their superior physical properties and tunable chemical structure. They possess a high aspect ratio and offer minimally invasive thin carbon walls and tubular geometry. Moreover, possibility of chemical functionalization of CNTs enables multi-functional probes. In this dissertation, novel nanofluidic instruments that have nanostructured carbon tips will be presented along with techniques that utilize the exceptional physical properties of carbon nanotubes, to take miniature biomedical instrumentation to the next level. New methods for fabricating the probes were rigorously developed and their operation was extensively studied. The devices were mechanically robust and were used to inject liquids to a single cell, detect electrochemical signals and enable surface enhanced Raman spectroscopy (SERS) while inducing minimal harm to the cell. Particular attention was focused on the CVD process-which was used to deposit carbon, fluid flow through the nanotubes, and separation of chemical species (atto-liter chromatography) at the nanometer scale that would potentially lead to the highly sought after "selective component extraction" and analysis from a single cell. These multi-functional devices therefore provide a picture of the physiological state of a living cell and function as endoscopes for single cell analysis.

  15. NASA Tech Briefs, November 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Computer Program Recognizes Patterns in Time-Series Data; Program for User-Friendly Management of Input and Output Data Sets; Noncoherent Tracking of a Source of a Data-Modulated Signal; Software for Acquiring Image Data for PIV; Detecting Edges in Images by Use of Fuzzy Reasoning; A Timer for Synchronous Digital Systems; Prototype Parts of a Digital Beam-Forming Wide-Band Receiver; High-Voltage Droplet Dispenser; Network Extender for MIL-STD-1553 Bus; MMIC HEMT Power Amplifier for 140 to 170 GHz; Piezoelectric Diffraction-Based Optical Switches; Numerical Modeling of Nanoelectronic Devices; Organizing Diverse, Distributed Project Information; Eigensolver for a Sparse, Large Hermitian Matrix; Modified Polar-Format Software for Processing SAR Data; e-Stars Template Builder; Software for Acoustic Rendering; Functionally Graded Nanophase Beryllium/Carbon Composites; Thin Thermal-Insulation Blankets for Very High Temperatures; Prolonging Microgravity on Parabolic Airplane Flights; Device for Locking a Control Knob; Cable-Dispensing Cart; Foam Sensor Structures Would be Self-Deployable and Survive Hard Landings; Real-Gas Effects on Binary Mixing Layers; Earth-Space Link Attenuation Estimation via Ground Radar Kdp; Wedge Heat-Flux Indicators for Flash Thermography; Measuring Diffusion of Liquids by Common-Path Interferometry; Zero-Shear, Low-Disturbance Optical Delay Line; Whispering-Gallery Mode-Locked Lasers; Spatial Light Modulators as Optical Crossbar Switches; Update on EMD and Hilbert-Spectra Analysis of Time Series; Quad-Tree Visual-Calculus Analysis of Satellite Coverage; Dyakonov-Perel Effect on Spin Dephasing in n-Type GaAs; Update on Area Production in Mixing of Supercritical Fluids; and Quasi-Sun-Pointing of Spacecraft Using Radiation Pressure.

  16. Development and Effectiveness Analysis of a Personalized Ubiquitous Multi-Device Certification Tutoring System Based on Bloom's Taxonomy of Educational Objectives

    ERIC Educational Resources Information Center

    Hwang, Gwo-Haur; Chen, Beyin; Huang, Cin-Wei

    2016-01-01

    In recent years, with the gradual increase in the importance of professional certificates, improvement in certification tutoring systems has become more important. In this study, we have developed a personalized ubiquitous multi-device certification tutoring system (PUMDCTS) based on "Bloom's Taxonomy of Educational Objectives," and…

  17. An Activity-Theoretic Approach to Multi-Touch Tools in Early Mathematics Learning

    ERIC Educational Resources Information Center

    Ladel, Silke; Kortenkamp, Ulrich

    2013-01-01

    In this article we present an activity theory based framework that can capture the complex situations that arise when modern technology like multi-touch devices are introduced in classroom situations. As these devices are able to cover more activities than traditional technologies, even computerbased, media, we have to accept that they now take a…

  18. 19. NORTH STAIRHALL (THERE ARE TWO FIRST FLOOR STAIRHALLS IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. NORTH STAIRHALL (THERE ARE TWO FIRST FLOOR STAIRHALLS IN THE HOUSE, ONE IN THE WEST SECTION AND THE OTHER IN THE NORTH SECTION). NOTE ARTIFICALLY GRAINED DOOR SURROUND. ON THE WALL IS LATE NINETEENTH OR EARLY TWENTIETH CENTURY KNOB AND TUBE WIRING WITH ORIGINAL WOOD FUSE BOX. MODERN JUNCTION BOX IS AT LEFT. - Colonel McNeal House, Union & Bills Streets, Bolivar, Hardeman County, TN

  19. JPRS Report, Science & Technology, USSR: Life Sciences.

    DTIC Science & Technology

    1987-07-28

    relationship between knob polymorphism and pollination system. For the majority of cross- pollinated strain 41 plants , the time of stigma maturation ranges...from four to 12 days. However, with artificial selection achieved with self- pollination of plants for early stigma maturation and delayed anther... pollination . High elimination of female plants was noted in generations I~, I- and I,. In conjunction with previously reported alterations and

  20. Pulling a Door Open by Pushing on It

    ERIC Educational Resources Information Center

    van den Berg, Willem H.

    2007-01-01

    Ordinarily, opening a door by pulling on the knob or handle causes a net torque on the door, and hence an angular acceleration, about a "vertical" axis. However, it may be that the top or bottom of the door sticks to the door frame; this horizontal force perpendicular to the plane of the door causes a torque on the door about a "horizontal" axis.…

  1. Relation between aortic knob width and subclinical left ventricular dysfunction in hypertensive patients.

    PubMed

    Gürbak, İsmail; Yıldız, İbrahim; Panç, Cafer

    2018-01-29

    The assessment of left ventricular (LV) structure and function is important in the evaluation of hypertensive heart disease, as it provides information on the cardiovascular morbidity and mortality. Aortic knob width (AKW) is a measurement of radiographic structure formed by the foreshortened aortic arch and a portion of the descending aorta. The main aim of this study was to investigate the relation between AKW on the routine chest radiography and subclinical LV dysfunction in hypertensive patients. A total of 144 patients with hypertension admitted to the cardiology outpatients clinic were enrolled consecutively. The patients were divided into two groups according to tissue Doppler-derived myocardial performance index (MPI): subclinical LV dysfunction group (abnormal MPI ≥ 0.5, n = 85) and absence of subclinical LV dysfunction group (normal MPI< 0.5, n = 59). Patients with subclinical LV dysfunction were older (60 ± 8 vs. 54 ± 8, p = 0.001). Left ventricular mass index (LVMI) (96 ± 27 vs. 74 ± 24, p < 0.001) and prevalence of LV hypertrophy (28 vs. 8%, p = 0.011) were significantly different between two groups. Patients with subclinical LV dysfunction had higher AKW (42 ± 6 vs. 34 ± 5, p < 0.001) compared with patients without subclinical LV dysfunction. There was a significant correlation between MPI and AKW (r = 0.7, p < 0.001). Multiple logistic regression analysis showed that AKW (β = 0.617, p = 0.001) and posterior wall thickness (PWth) (β = 1.189, p = 0.021) were independently associated with subclinical LV dysfunction. Analysis using the Receiver Operating Characteristic (ROC) curve has demonstrated that aortic knob of 37 mm constitutes the cutoff value for the presence of subclinical LV dysfunction with 85.9% sensitivity and 86.4% specificity (The Area under the Curve ± Standard Error (AUC±SE) = 0.916 ± 0.024, p < 0.001). AKW may provide important predictive information on subclinical LV dysfunction in patients with hypertension.

  2. Cilia in the head of hornets: form and function.

    PubMed

    Ishay, Jacob S; Plotkin, Marian; Ermakov, Natalya; Jongebloed, Willem L; Kalicharan, Dharamdajal; Bergman, David J

    2005-06-01

    In the head of the Oriental hornet, beneath the cuticle, there are plaques of hair cells. These are distributed throughout the upper front part of the head; to wit: in the region of the vertex (i.e., around and behind the ocelli), in the genae around and behind the compound eyes (the ommatidia), and in the region of the forehead or frons. These hair cells are arranged with their thin whip-like part (i.e., cilia) directed outward and morphologically fall into three distinct groups: type (a) thin elongated cilia connected to each other alongside by side-links; type (b) thin elongated cilia of which two or more interconnect at their distal ends via a delicate nerve fiber bearing a knob at its center; and type (c) shorter and thicker cilia that roughly resemble a triangular thorn and are also interconnected by a thin thread, which, however, bears a ball rather then a knob at its center. The knob in the one case and the ball in the other vary in their diameter, but in both instances the interconnecting elements, be they nerve fibers or threads, are seemingly multidirectional. Beneath the frons, in the region of the coronal suture, the hair cells (cilial plaques) are inwardly directed and bear a large trachea at their center. Presumably, the "weighted" cilial cells that are directed toward the exterior of the body aid the hornet in navigation and gravity determination whereas the inwardly directed ciliary cells may possibly serve in acoustic communication. Another element worthy of mention within the hair cells are yellow granules (yg). These yg's originate from the whip-like portion of the ciliary cells that are distributed beneath the frons plate, and also in the yellow stripes of the gastral cuticle. Conceivably, these yellow granules, in both cases, may play a role in the absorption and storage of solar energy. In summary, ciliary structures are involved in the hornet in gravity sensing, in acoustical communication and in light sensing, i.e., with some similarity with what happens in vertebrates in the inner ear and in the photoreceptor. Copyright (c) 2005 Wiley-Liss, Inc.

  3. A Description of Sub-Equatorial Volcanic Structures Consistent with Sub-Ice Magmatism East of Nepenthes Mensae, Mars.

    NASA Astrophysics Data System (ADS)

    Caprarelli, G.; de Pablo Hernandez, M. A.

    2014-12-01

    The Martian region located immediately north of the dichotomy scarp, between latitudes 120°E and 135°E, is covered by fretted terrains, characterised by the presence of knobs and mesas formed by eroded and reworked material of highlands provenance, and the smoother terrains between them [1]. Topographic depressions of oblong shape, generally parallel to the scarp, of rough and chaotic appearance, are also observed. The high resolution (~ 6 m/pixel, [2]) Context Camera (CTX) on board Mars Reconnaissance Orbiter (MRO) makes it possible to examine the morphologies of these topographic depressions in great detail, unveiling their complex geological histories. Here we expand on our earlier work in the adjacent Nepenthes Mensae region [3] and present the results of our observations of morphologies of likely igneous origin. We identified a variety of shapes consistent with magmatic structures and constructs: dikes, collapsed lava tubes, and lava flows are observable in the smoother terrains. Most of the elevated structures in the areas are strongly eroded knobs and mesas covered by dust and debris. In some cases however, the morphological characteristics of 2-10 km-size structures are clear and sharp, which allowed us to identify features consistent with sub-ice volcanic constructs, such as tuyas and tindars [4]. Geological reconstructions involving magma-ice interaction are supported by the presence of lobate aprons around knobs and mesas, and of scalloped ejecta surrounding complex impact craters, suggesting the existence of ice both underground and on the surface of these low elevation areas at the time of formation of these constructs. [1] Tanaka et al. (2005) Geologic Map of the Northern Plains of Mars. USGS SIM 2888. [2] Malin et al. (2007) Context Camera investigation on board the Mars Reconnaissance Orbiter. JGR 112, E05S04, 10.1029/2006JE002808. [3] dePablo and Caprarelli (2010) Possible subglacial volcanoes in Nepenthes Mensae, eastern hemisphere, Mars. LPSC 41, 1584. [4] Jakobsson and Gudmundsson (2008) Subglacial and intraglacial volcanic formations in Iceland. Jökull 58, 179-196.

  4. Experimental Study of an On-board Fuel Tank Inerting System

    NASA Astrophysics Data System (ADS)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  5. A Nonlinear Model for Hippocampal Cognitive Prosthesis: Memory Facilitation by Hippocampal Ensemble Stimulation

    PubMed Central

    Hampson, Robert E.; Song, Dong; Chan, Rosa H.M.; Sweatt, Andrew J.; Riley, Mitchell R.; Gerhardt, Gregory A.; Shin, Dae C.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Samuel A.

    2012-01-01

    Collaborative investigations have characterized how multineuron hippocampal ensembles encode memory necessary for subsequent successful performance by rodents in a delayed nonmatch to sample (DNMS) task and utilized that information to provide the basis for a memory prosthesis to enhance performance. By employing a unique nonlinear dynamic multi-input/multi-output (MIMO) model, developed and adapted to hippocampal neural ensemble firing patterns derived from simultaneous recorded CA1 and CA3 activity, it was possible to extract information encoded in the sample phase necessary for successful performance in the nonmatch phase of the task. The extension of this MIMO model to online delivery of electrical stimulation delivered to the same recording loci that mimicked successful CA1 firing patterns, provided the means to increase levels of performance on a trial-by-trial basis. Inclusion of several control procedures provides evidence for the specificity of effective MIMO model generated patterns of electrical stimulation. Increased utility of the MIMO model as a prosthesis device was exhibited by the demonstration of cumulative increases in DNMS task performance with repeated MIMO stimulation over many sessions on both stimulation and nonstimulation trials, suggesting overall system modification with continued exposure. Results reported here are compatible with and extend prior demonstrations and further support the candidacy of the MIMO model as an effective cortical prosthesis. PMID:22438334

  6. Promises and Challenges in Continuous Tracking Utilizing Amino Acids in Skin Secretions for Active Multi-Factor Biometric Authentication for Cybersecurity.

    PubMed

    Agudelo, Juliana; Privman, Vladimir; Halámek, Jan

    2017-07-05

    We consider a new concept of biometric-based cybersecurity systems for active authentication by continuous tracking, which utilizes biochemical processing of metabolites present in skin secretions. Skin secretions contain a large number of metabolites and small molecules that can be targeted for analysis. Here we argue that amino acids found in sweat can be exploited for the establishment of an amino acid profile capable of identifying an individual user of a mobile or wearable device. Individual and combinations of amino acids processed by biocatalytic cascades yield physical (optical or electronic) signals, providing a time-series of several outputs that, in their entirety, should suffice to authenticate a specific user based on standard statistical criteria. Initial results, motivated by biometrics, indicate that single amino acid levels can provide analog signals that vary according to the individual donor, albeit with limited resolution versus noise. However, some such assays offer digital separation (into well-defined ranges of values) according to groups such as age, biological sex, race, and physiological state of the individual. Multi-input biocatalytic cascades that handle several amino acid signals to yield a single digital-type output, as well as continuous-tracking time-series data rather than a single-instance sample, should enable active authentication at the level of an individual. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Commercial Development Of Ovonic Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Ovshinsky, Stanford R.

    1983-09-01

    One square foot Ovonic amorphous photovoltaic devices are already in commercial production and are manufactured through a continuous web process. The next levels of commercialization required to achieve a large-volume power market will be discussed, and the device specifications correlated with the chemical and electronic properties of the materials that we are developing to achieve even higher efficiencies. It has been long considered a utopian dream to harness the energy of the sun to create electricity that would be competitive in cost to that produced from the conventional sources of energy such as oil, gas, and uranium. The impact on our society of stand-alone power generators without moving parts using the continually available, ubiquitous energy of the sun could certainly lead to a new age with consequences comparable to the first introduction of electricity which greatly accelerated the Industrial Revolution. Low cost, nonpolluting energy not dependent upon or limited by transmission costs could again make DC electricity a realistic option. The relatively young field of photovoltaics suffers from certain dogmas that are just now being questioned. For example, it is thought by many that solar cells utilizing crys-talline materials have inherently higher efficiencies than those using amorphous materials, and that somehow crystalline solar cells, whether fabricated from single crystals or polycrystalline material, in round or rectangular geometries, grown from the melt or by a rib-bon process, can be reduced in cost sufficiently that the economics become attractive enough for large-scale terrestrial generation of power. In this paper, we shall show that amorphous materials can have much higher efficiencies than do crystalline and that the answer to our power generation needs lies not in crystalline but in amorphous technology. At Energy Conversion Devices, Inc. (ECD), we have designed and built a production machine (described by my colleague, Dr. Izu, in a subsequent paper) which has clearly demonstrated that the basic barrier to low-cost production has been broken through and that one can now speak realistically of delivering power directly from the sun for under a dollar per peak watt merely by making larger versions of this basic continuous web, large-area thin-film machine. We have made one square foot amorphous silicon alloy PIN devices with conversion efficiencies in the range of 7%, and in the laboratory, we have reported smaller area PIN de-vices in the 10% conversion efficiency range. In addition, much higher energy conversion efficiencies can be obtained within the same process by using multi-cell layered or tandem thin-film solar cell structures (see Figure 1). These devices exhibit enhanced efficiency by utilizing a wider range of the solar spectrum. Since the theoretical maximum efficiency for multi-cell structures is over 60%, one can certainly realistically anticipate the pro-duction of thin-film amorphous photovoltaic devices with efficiencies as high as 30%. Our production device is already a two-cell tandem, as we have solved not only the problems of interfacing the individual cell components but also the difficulties associated with a one foot square format deposited on a continuous web. Figure 2 shows a continuous roll of Ovonic solar cells. Realistic calculations for a three-cell tandem thin-film device using amorphous semiconductor alloys with 1.8eV, 1.5eV, and 1.0eV optical band gaps indicate that solar energy conversion efficiencies of 20-30% can be achieved.

  8. Improvement of multi-level resistive switching characteristics in solution-processed AlO x -based non-volatile resistive memory using microwave irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Tae; Cho, Won-Ju

    2018-01-01

    We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.

  9. Deep multi-scale convolutional neural network for hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-zhe; Yang, Xia

    2018-04-01

    In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.

  10. Mineralogy and Microbial Diversity of the Microbialites in the Hypersaline Storr's Lake, the Bahamas

    NASA Astrophysics Data System (ADS)

    Paul, Varun G.; Wronkiewicz, David J.; Mormile, Melanie R.; Foster, Jamie S.

    2016-04-01

    Microbialites found in the low-light-intensity, hypersaline waters of Storr's Lake (SL), San Salvador Island, the Bahamas, were investigated with respect to their morphology, mineralogy, and microbial diversity. Previously described microbialite morphologies, as well as a newly identified "multi-cuspate" morphology, were observed at various depths. Electron microscopy analysis revealed the presence of angular, blocky, and needle-shaped crystals with mineralized cyanobacterial filaments and remains of exopolymeric substances. X-ray diffraction studies confirmed the presence of both Mg-calcite and aragonite in the plateau-mushroom and pinnacle mound microbialites, whereas only Mg-calcite was identified in the other microbialite morphotypes. A comprehensive molecular analysis using barcoded pyrosequencing of five different microbial mat communities identified at least 12 dominant bacterial phyla. Cyanobacteria were generally low in abundance and ranged from ˜0.01% in the deeper pinnacle mounds to ˜3.2% in the shallow calcareous knobs. Other photosynthetic members included green nonsulfur bacteria of the phylum Chloroflexi and purple sulfur bacteria of the class Gammaproteobacteria. All mat types contained significant amounts of sulfate-reducing and dehalogenating bacteria. The low light intensity reaching the deeper microbialites, the lack of dominant cyanobacteria, and the abundance of sulfate reducers and Chloroflexi collectively suggest that sulfate reduction and anoxygenic photosynthetic processes influence the carbonate biomineralization process in these systems.

  11. A recombinant chimeric Ad5/3 vector expressing a multi-stage Plasmodium antigen induces protective immunity in mice using heterologous prime-boost immunization regimens1

    PubMed Central

    Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Zhao, Chunxia; Makarova, Natalia; Dmitriev, Igor; Curiel, David T.; Blackwell, Jerry; Moreno, Alberto

    2016-01-01

    An ideal malaria vaccine should target several stages of the parasite life cycle and induce anti-parasite and anti-disease immunity. We have reported a Plasmodium yoelii chimeric multi-stage recombinant protein (PyLPC/RMC), engineered to express several autologous T cell epitopes and sequences derived from the circumsporozoite protein (CSP) and the merozoite surface protein 1 (MSP-1). This chimeric protein elicits protective immunity, mediated by CD4+ T cells and neutralizing antibodies. However, experimental evidence from pre-erythrocytic vaccine candidates and irradiated sporozoites has shown that CD8+ T cells play a significant role in protection. Recombinant viral vectors have been used as a vaccine platform to elicit effective CD8+ T cell responses. The human adenovirus serotype 5 (Ad5) has been tested in malaria vaccine clinical trials with excellent safety profile. Nevertheless, a major concern for the use of Ad5 is the high prevalence of anti-vector neutralizing antibodies in humans, hampering its immunogenicity. To minimize the impact of anti-vector pre-existing immunity we developed a chimeric Ad5/3 vector in which the knob region of Ad5 was replaced with that of Ad3, conferring partial resistance to anti-Ad5 neutralizing antibodies. Furthermore, we implemented heterologous adenovirus/protein immunization regimens which include a single immunization with recombinant Ad vectors. Our data show that immunization with the recombinant Ad5/3 vector induces protective efficacy indistinguishable from that elicited by Ad5. Our study also demonstrate that the dose of the Ad vectors has an impact on the memory profile and protective efficacy. The results support further studies with Ad5/3 for malaria vaccine development. PMID:27574299

  12. Implementation of Basic and Universal Gates In a single Circuit Based On Quantum-dot Cellular Automata Using Multi-Layer Crossbar Wire

    NASA Astrophysics Data System (ADS)

    Bhowmik, Dhrubajyoti; Saha, Apu Kr; Dutta, Paramartha; Nandi, Supratim

    2017-08-01

    Quantum-dot Cellular Automata (QCA) is one of the most substitutes developing nanotechnologies for electronic circuits, as a result of lower force utilization, higher speed and smaller size in correlation with CMOS innovation. The essential devices, a Quantum-dot cell can be utilized to logic gates and wires. As it is the key building block on nanotechnology circuits. By applying simple gates, the hardware requirements for a QCA circuit can be decreased and circuits can be less complex as far as level, delay and cell check. This article exhibits an unobtrusive methodology for actualizing novel upgraded simple and universal gates, which can be connected to outline numerous variations of complex QCA circuits. Proposed gates are straightforward in structure and capable as far as implementing any digital circuits. The main aim is to build all basic and universal gates in a simple circuit with and without crossbar-wire. Simulation results and physical relations affirm its handiness in actualizing each advanced circuit.

  13. Energy harvesting from coupled bending-twisting oscillations in carbon-fibre reinforced polymer laminates

    NASA Astrophysics Data System (ADS)

    Xie, Mengying; Zhang, Yan; Kraśny, Marcin J.; Rhead, Andrew; Bowen, Chris; Arafa, Mustafa

    2018-07-01

    The energy harvesting capability of resonant harvesting structures, such as piezoelectric cantilever beams, can be improved by utilizing coupled oscillations that generate favourable strain mode distributions. In this work, we present the first demonstration of the use of a laminated carbon fibre reinforced polymer to create cantilever beams that undergo coupled bending-twisting oscillations for energy harvesting applications. Piezoelectric layers that operate in bending and shear mode are attached to the bend-twist coupled beam surface at locations of maximum bending and torsional strains in the first mode of vibration to fully exploit the strain distribution along the beam. Modelling of this new bend-twist harvesting system is presented, which compares favourably with experimental results. It is demonstrated that the variety of bend and torsional modes of the harvesters can be utilized to create a harvester that operates over a wider range of frequencies and such multi-modal device architectures provides a unique approach to tune the frequency response of resonant harvesting systems.

  14. Large cooling differentials and high heat flux capability with p-type Bi2Te3/Sb2Te3 and n-type Bi2Te3/Bi2SexTe3-x Superlattice Thermoelectric Devices

    NASA Astrophysics Data System (ADS)

    Bulman, Gary; Siivola, Ed; Wiitala, Ryan; Grant, Brian; Pierce, Jonathan; Venkatasubramanian, Rama

    2007-03-01

    Thin film superlattice (SL) based thermoelectric (TE) devices offer the potential for improved efficiency and high heat flux cooling over conventional bulk materials. Recently, we have demonstrated external cooling of 55K and heat pumping capacity of 128 W/cm^2. These high heat fluxes in thin film devices, while attractive for cooling hot-spots in electronics, also make the device performance sensitive to various thermal resistances in the device structure. We will discuss advances in the cooling performance of Bi2Te3-based SL TE devices and describe a method to extract device material parameters, including thermal resistance, from measurements of their δT-I-V characteristics. These parameters will be compared to values obtained through Hall and Seebeck coefficient measurement on epitaxial materials. Results will be presented for both single couple and multi-couple modules, as well as multi-stage cascaded devices made with these materials. Single stage cooling couples with δTmax of 57.8K (Tc˜242K) and multi-stage modules with δTmax˜92.2K (Tc˜209K) have been measured. G.E. Bulman, E. Siivola, B. Shen and R. Venkatasubramanian, Appl. Phys. Lett. 89, 122117 (2006).

  15. Multi-Level Bitmap Indexes for Flash Memory Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng; Madduri, Kamesh; Canon, Shane

    2010-07-23

    Due to their low access latency, high read speed, and power-efficient operation, flash memory storage devices are rapidly emerging as an attractive alternative to traditional magnetic storage devices. However, tests show that the most efficient indexing methods are not able to take advantage of the flash memory storage devices. In this paper, we present a set of multi-level bitmap indexes that can effectively take advantage of flash storage devices. These indexing methods use coarsely binned indexes to answer queries approximately, and then use finely binned indexes to refine the answers. Our new methods read significantly lower volumes of data atmore » the expense of an increased disk access count, thus taking full advantage of the improved read speed and low access latency of flash devices. To demonstrate the advantage of these new indexes, we measure their performance on a number of storage systems using a standard data warehousing benchmark called the Set Query Benchmark. We observe that multi-level strategies on flash drives are up to 3 times faster than traditional indexing strategies on magnetic disk drives.« less

  16. Novel CAD/CAM rapid prototyping of next-generation biomedical devices

    NASA Astrophysics Data System (ADS)

    Doraiswamy, Anand

    An aging population with growing healthcare needs demands multifaceted tools for diagnosis and treatment of health conditions. In the near-future, drug-administration devices, implantable devices/sensors, enhanced prosthesis, artificial and unique functional tissue constructs will become increasingly significant. Conventional technologies for mass-produced implants do not adequately take individual patient anatomy into consideration. Development of novel CAD/CAM rapid prototyping techniques may significantly accelerate progress of these devices for next-generation patient-care. In this dissertation, several novel rapid prototyping techniques have been introduced for next-generation biomedical applications. Two-photon polymerization was developed to microfabricate scaffolds for tissue engineering, microneedles for drug-delivery and ossicular replacement prostheses. Various photoplymers were evaluated for feasibility, mechanical properties, cytotoxicity, and surface properties. Laser direct write using MDW was utilized for developing microstructures of bioceramics such as hydroxyapatite, and viable mammalian osteosarcoma cells. CAD/CAM laser micromachining (CLM) was developed to engineer biointerfaces as surface recognition regions for differential adherence of cells and growth into tissue-like networks. CLM was also developed for engineering multi-cellular vascular networks. Cytotoxic evaluations and growth studies demonstrated VEGF-induced proliferation of HAAE-1 human aortic endothelial cells with inhibition of HA-VSMC human aortic smooth muscle cells. Finally, piiezoelectric inkjet printing was developed for controlled administration of natural and synthetic adhesives to overcome several problems associated with conventional tissue bonding materials, and greatly improve wound-repair in next generation eye repair, fracture fixation, organ fixation, wound closure, tissue engineering, and drug delivery devices.

  17. Multi-channel electronically scanned cryogenic pressure sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Kruse, Nancy M. H. (Inventor)

    1995-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multielement array. These dies are bonded at specific sites on a glass, prepatterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  18. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’smore » new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.« less

  19. Pipe inspection and repair system

    NASA Technical Reports Server (NTRS)

    Schempf, Hagen (Inventor); Mutschler, Edward (Inventor); Chemel, Brian (Inventor); Boehmke, Scott (Inventor); Crowley, William (Inventor)

    2004-01-01

    A multi-module pipe inspection and repair device. The device includes a base module, a camera module, a sensor module, an MFL module, a brush module, a patch set/test module, and a marker module. Each of the modules may be interconnected to construct one of an inspection device, a preparation device, a marking device, and a repair device.

  20. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    NASA Astrophysics Data System (ADS)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  1. Consumer sleep tracking devices: a review of mechanisms, validity and utility.

    PubMed

    Kolla, Bhanu Prakash; Mansukhani, Subir; Mansukhani, Meghna P

    2016-05-01

    Consumer sleep tracking devices such as fitness trackers and smartphone apps have become increasingly popular. These devices claim to measure the sleep duration of their users and in some cases purport to measure sleep quality and awaken users from light sleep, potentially improving overall sleep. Most of these devices appear to utilize data generated from in-built accelerometers to determine sleep parameters but the exact mechanisms and algorithms are proprietary. The growing literature comparing these devices against polysomnography/actigraphy shows that they tend to underestimate sleep disruptions and overestimate total sleep times and sleep efficiency in normal subjects. In this review, we evaluate the current literature comparing the accuracy of consumer sleep tracking devices against more conventional methods used to measure sleep duration and quality. We discuss the current technology that these devices utilize as well as summarize the value of these devices in clinical evaluations and their potential limitations.

  2. Ways of Telecommunications Interaction Arrangement for Microprocessor Devices of Different Types in Composition of Multi-Motor Electric Drives

    NASA Astrophysics Data System (ADS)

    Shpenst, V. A.; Vasiliev, B. Y.; Kalashnikov, O. V.; Oleynikova, A. M.

    2018-05-01

    The article covers a consideration of various state-of-the-art industrial data transfer protocols, e.g. Modbus, Profibus, Industrial Ethernet and CAN. Their pros and cons are analyzed and conclusions made on advisability of the use of each protocol. It is shown that for the arrangement of effective telecommunication interaction of microprocessor devices of different types in the composition of multi-motor electric drives, it is advisable to use highlevel CAN-protocols, such as CANopen and DeviceNet.

  3. Design and Implementation of Pointer-Type Multi Meters Intelligent Recognition Device Based on ARM Platform

    NASA Astrophysics Data System (ADS)

    Cui, Yang; Luo, Wang; Fan, Qiang; Peng, Qiwei; Cai, Yiting; Yao, Yiyang; Xu, Changfu

    2018-01-01

    This paper adopts a low power consumption ARM Hisilicon mobile processing platform and OV4689 camera, combined with a new skeleton extraction based on distance transform algorithm and the improved Hough algorithm for multi meters real-time reading. The design and implementation of the device were completed. Experimental results shows that The average error of measurement was 0.005MPa, and the average reading time was 5s. The device had good stability and high accuracy which meets the needs of practical application.

  4. W-state Analyzer and Multi-party Measurement-device-independent Quantum Key Distribution

    PubMed Central

    Zhu, Changhua; Xu, Feihu; Pei, Changxing

    2015-01-01

    W-state is an important resource for many quantum information processing tasks. In this paper, we for the first time propose a multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on W-state. With linear optics, we design a W-state analyzer in order to distinguish the four-qubit W-state. This analyzer constructs the measurement device for four-party MDI-QKD. Moreover, we derived a complete security proof of the four-party MDI-QKD, and performed a numerical simulation to study its performance. The results show that four-party MDI-QKD is feasible over 150 km standard telecom fiber with off-the-shelf single photon detectors. This work takes an important step towards multi-party quantum communication and a quantum network. PMID:26644289

  5. Tape underlayment rotary-node (TURN) valves for simple on-chip microfluidic flow control

    PubMed Central

    Markov, Dmitry A.; Manuel, Steven; Shor, Leslie M.; Opalenik, Susan R.; Wikswo, John P.; Samson, Philip C.

    2013-01-01

    We describe a simple and reliable fabrication method for producing multiple, manually activated microfluidic control valves in polydimethylsiloxane (PDMS) devices. These screwdriver-actuated valves reside directly on the microfluidic chip and can provide both simple on/off operation as well as graded control of fluid flow. The fabrication procedure can be easily implemented in any soft lithography lab and requires only two specialized tools – a hot-glue gun and a machined brass mold. To facilitate use in multi-valve fluidic systems, the mold is designed to produce a linear tape that contains a series of plastic rotary nodes with small stainless steel machine screws that form individual valves which can be easily separated for applications when only single valves are required. The tape and its valves are placed on the surface of a partially cured thin PDMS microchannel device while the PDMS is still on the soft-lithographic master, with the master providing alignment marks for the tape. The tape is permanently affixed to the microchannel device by pouring an over-layer of PDMS, to form a full-thickness device with the tape as an enclosed underlayment. The advantages of these Tape Underlayment Rotary-Node (TURN) valves include parallel fabrication of multiple valves, low risk of damaging a microfluidic device during valve installation, high torque, elimination of stripped threads, the capabilities of TURN hydraulic actuators, and facile customization of TURN molds. We have utilized these valves to control microfluidic flow, to control the onset of molecular diffusion, and to manipulate channel connectivity. Practical applications of TURN valves include control of loading and chemokine release in chemotaxis assay devices, flow in microfluidic bioreactors, and channel connectivity in microfluidic devices intended to study competition and predator / prey relationships among microbes. PMID:19859812

  6. Cost minimization analysis of different growth hormone pen devices based on time-and-motion simulations

    PubMed Central

    2010-01-01

    Background Numerous pen devices are available to administer recombinant Human Growth Hormone (rhGH), and both patients and health plans have varying issues to consider when selecting a particular product and device for daily use. Therefore, the present study utilized multi-dimensional product analysis to assess potential time involvement, required weekly administration steps, and utilization costs relative to daily rhGH administration. Methods Study objectives were to conduct 1) Time-and-Motion (TM) simulations in a randomized block design that allowed time and steps comparisons related to rhGH preparation, administration and storage, and 2) a Cost Minimization Analysis (CMA) relative to opportunity and supply costs. Nurses naïve to rhGH administration and devices were recruited to evaluate four rhGH pen devices (2 in liquid form, 2 requiring reconstitution) via TM simulations. Five videotaped and timed trials for each product were evaluated based on: 1) Learning (initial use instructions), 2) Preparation (arrange device for use), 3) Administration (actual simulation manikin injection), and 4) Storage (maintain product viability between doses), in addition to assessment of steps required for weekly use. The CMA applied micro-costing techniques related to opportunity costs for caregivers (categorized as wages), non-drug medical supplies, and drug product costs. Results Norditropin® NordiFlex and Norditropin® NordiPen (NNF and NNP, Novo Nordisk, Inc., Bagsværd, Denmark) took less weekly Total Time (p < 0.05) to use than either of the comparator products, Genotropin® Pen (GTP, Pfizer, Inc, New York, New York) or HumatroPen® (HTP, Eli Lilly and Company, Indianapolis, Indiana). Time savings were directly related to differences in new package Preparation times (NNF (1.35 minutes), NNP (2.48 minutes) GTP (4.11 minutes), HTP (8.64 minutes), p < 0.05)). Administration and Storage times were not statistically different. NNF (15.8 minutes) and NNP (16.2 minutes) also took less time to Learn than HTP (24.0 minutes) and GTP (26.0 minutes), p < 0.05). The number of weekly required administration steps was also least with NNF and NNP. Opportunity cost savings were greater in devices that were easier to prepare for use; GTP represented an 11.8% drug product savings over NNF, NNP and HTP at time of study. Overall supply costs represented <1% of drug costs for all devices. Conclusions Time-and-motion simulation data used to support a micro-cost analysis demonstrated that the pen device with the greater time demand has highest net costs. PMID:20377905

  7. Cost minimization analysis of different growth hormone pen devices based on time-and-motion simulations.

    PubMed

    Nickman, Nancy A; Haak, Sandra W; Kim, Jaewhan

    2010-04-08

    Numerous pen devices are available to administer recombinant Human Growth Hormone (rhGH), and both patients and health plans have varying issues to consider when selecting a particular product and device for daily use. Therefore, the present study utilized multi-dimensional product analysis to assess potential time involvement, required weekly administration steps, and utilization costs relative to daily rhGH administration. Study objectives were to conduct 1) Time-and-Motion (TM) simulations in a randomized block design that allowed time and steps comparisons related to rhGH preparation, administration and storage, and 2) a Cost Minimization Analysis (CMA) relative to opportunity and supply costs. Nurses naïve to rhGH administration and devices were recruited to evaluate four rhGH pen devices (2 in liquid form, 2 requiring reconstitution) via TM simulations. Five videotaped and timed trials for each product were evaluated based on: 1) Learning (initial use instructions), 2) Preparation (arrange device for use), 3) Administration (actual simulation manikin injection), and 4) Storage (maintain product viability between doses), in addition to assessment of steps required for weekly use. The CMA applied micro-costing techniques related to opportunity costs for caregivers (categorized as wages), non-drug medical supplies, and drug product costs. Norditropin(R) NordiFlex and Norditropin(R) NordiPen (NNF and NNP, Novo Nordisk, Inc., Bagsvaerd, Denmark) took less weekly Total Time (p < 0.05) to use than either of the comparator products, Genotropin(R) Pen (GTP, Pfizer, Inc, New York, New York) or HumatroPen(R) (HTP, Eli Lilly and Company, Indianapolis, Indiana). Time savings were directly related to differences in new package Preparation times (NNF (1.35 minutes), NNP (2.48 minutes) GTP (4.11 minutes), HTP (8.64 minutes), p < 0.05)). Administration and Storage times were not statistically different. NNF (15.8 minutes) and NNP (16.2 minutes) also took less time to Learn than HTP (24.0 minutes) and GTP (26.0 minutes), p < 0.05). The number of weekly required administration steps was also least with NNF and NNP. Opportunity cost savings were greater in devices that were easier to prepare for use; GTP represented an 11.8% drug product savings over NNF, NNP and HTP at time of study. Overall supply costs represented <1% of drug costs for all devices. Time-and-motion simulation data used to support a micro-cost analysis demonstrated that the pen device with the greater time demand has highest net costs.

  8. Enhancing Kondo coupling in alkaline-earth-metal atomic gases with confinement-induced resonances in mixed dimensions

    NASA Astrophysics Data System (ADS)

    Cheng, Yanting; Zhang, Ren; Zhang, Peng; Zhai, Hui

    2017-12-01

    The Kondo effect describes the spin-exchange interaction between localized impurities and itinerant fermions. The ultracold alkaline-earth atomic gas provides a natural platform for quantum simulation of the Kondo model, utilizing its long-lived clock state and the nuclear-spin exchange interaction between clock state and ground state. One of the key issue now is whether the Kondo temperature can be high enough to be reached in current experiments, for which we have proposed to use transverse confinement to confine atoms into a one-dimensional tube and to use the confinement-induced resonance to enhance Kondo coupling. In this work, we further consider the (1 +0 ) -dimensional scattering problem when the clock state is further confined by an axial harmonic confinement. We show that this axial confinement for the clock-state atoms not only plays a role for localizing them, but can also act as an additional control knob to reach the confinement-induced resonance. We show that, in the presence of both the transverse and the axial confinements, the confinement-induced resonance can be reached in the practical conditions and the Kondo effect can be attainable in this system.

  9. Contact and Bandgap Engineering in Two Dimensional Crystal

    NASA Astrophysics Data System (ADS)

    Chu, Tao

    At the heart of semiconductor research, bandgap is one of the key parameters for materials and determine their applications in modern technologies. For traditional bulk semiconductors, the bandgap is determined by the chemical composition and specific arrangement of the crystal lattices, and usually invariant during the device operation. Nevertheless, it is highly desirable for many optoelectronic and electronic applications to have materials with continuously tunable bandgap available. In the past decade, 2D layered materials including graphene and transition metal dichalcogenides (TMDs) have sparked interest in the scientific community, owing to their unique material properties and tremendous potential in various applications. Among many newly discovered properties that are non-existent in bulk materials, the strong in-plane bonding and weak van der Waals inter-planar interaction in these 2D layered structures leads to a widely tunable bandgap by electric field. This provides an extra knob to engineer the fundamental material properties and open a new design space for novel device operation. This thesis focuses on this field controlled dynamic bandgap and can be divided into three parts: (1) bilayer graphene is the first known 2D crystal with a bandgap can be continuously tuned by electric field. However, the electrical transport bandgaps is much smaller than both theoretical predictions and extracted bandgaps from optical measurements. In the first part of the thesis, the limiting factors of preventing achieving a large transport bandgap in bilayer graphene are investigated and different strategies to achieve a large transport bandgap are discussed, including the vertically scaling of gate oxide and patterning channel into ribbon structure. With a record large transport bandgap of ~200meV, a dual-gated semiconducting bilayer graphene P/N junction with extremely scaled gap of 20nm in-between is fabricated. A tunable local maxima feature, associated with 1D vHs DOS at the band edge of bilayer graphene, was experimentally observed in transport for the first time. (2) The bandgap of bilayer MoS2 is also predicted to be continuously tuned to zero by applying a perpendicular electric field. Here, the first experimental realization of tuning the bandgap of bilayer MoS2 by a vertical electric field is presented. An analytical approach utilizing the threshold voltages from ambipolar characteristics is employed to quantitatively extract bandgaps, which is further benchmarked by temperature dependent bandgap measurements and photoluminescence measurements. (3) Few layer graphene is employed as an example to demonstrate a novel self-aligned edge contacting scheme for layered material systems.

  10. Corrosion Prevention and Control Applications Guide

    DTIC Science & Technology

    1987-03-31

    to a corrosive environment such as: Chemical fumes, acids , activated solder fluxes, water or moisture intrusion, and, in many cases, moist air...boards, knobs, etc., can emit ammonia and formic acid if not properly baked out. The formic acid vapors react with the 8 lead in solder to form the grey...Moisture, hydrogen sulfide, and hydrochloric and organic acids are the most prevalent. Outgassing is dangerous during storage when the equipment is

  11. Nondestructive Evaluation of Metallized Tape Bonds Formed by Tape Automated Bonding (TAB)

    DTIC Science & Technology

    1989-04-01

    powered by micro-positioning linear actuators. 3) Interchangeable sample-holding fixtures mounted upon top of slide assembly. 4) Coverslip gantry mounted...Controller Unit 1) Motor power supplies 2) Motor output servo driver amplifiers 3) "Macro-language" command Interpreter 4) Two-way cormunications with...adjustments are manual knobs giving approximately one degree of tilt adjustment per turn. The servo controller has self-contained power supplies for

  12. Fire History of a Ridge and Valley Oak Forest

    Treesearch

    Thomas M. Schuler; W. Russ McClain

    2003-01-01

    The fire history of an oak stand located near Pike Knob, Pendleton County, WV is described. A 156-year fire history chronology was developed from 1846 to 2002 and fire intervals ranged from 7 to 32 years for a single forest stand. The Weibull median fire interval was 14.76 years for one or more trees scarred during a single year, and 17.11 years when at least two trees...

  13. Heterodera fengi n. sp. (Nematoda: Heteroderinae) from bamboo in Guangdong Province, China--a new cyst nematode in the Cyperi group.

    PubMed

    Wang, Honghong; Zhuo, Kan; Ye, Weimin; Zhang, Hongling; Peng, Deliang; Liao, Jinling

    2013-01-01

    Heteroderafengi n. sp. is described and illustrated from bamboo (Phyllostachys pubescens Mazel) based on morphology and molecular analyses of rRNA LSU D2D3 region and ITS. This new species belongs to the Cyperi group. Cysts are characterized by prominent vulval cone with ambifenestrate, bifurcate underbridge that is thicker in middle and a 47.0 (40.0-60.0) µm long vulval slit, but without bullae. The second-stage juveniles are characterized by a 23.2 (22.0-24.0) µm long stylet with slightly projected or anteriorly flattened knobs, three incisures in lateral field, a 70.2 (62.5-77.0) µm long tail with bluntly rounded terminus and hyaline portion ca 58.9 (50.0-62.5)% of the tail length. Males are characterized by a 25.1 (24.5-26.3) µm long stylet with rounded knobs sloping posteriorly, four incisures in lateral field, a 29.8 (27.5-31.3) µm long spicule with bifurcate tip. Phylogenetic analysis shows that the species has unique D2D3 and ITS rRNA sequences and RFLP-ITS-rRNA profiles. Heteroderafengi n. sp. is closest to H. elachista in dendrograms inferred from both DNA sequences.

  14. Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range.

    PubMed

    Xue, Peihong; Ye, Shunsheng; Su, Hongyang; Wang, Shuli; Nan, Jingjie; Chen, Xingchi; Ruan, Weidong; Zhang, Junhu; Cui, Zhanchen; Yang, Bai

    2017-05-25

    We present an effective approach for fabricating graded plasmonic arrays based on ordered micro-/nanostructures with a geometric gradient. Ag nanowell arrays with graded geometric parameters were fabricated and systematically investigated. The order of the graded plasmonic arrays is generated by colloidal lithography, while the geometric gradient is the result of inclined reactive ion etching. The surface plasmon resonance (SPR) peaks were measured at different positions, which move gradually along the Ag nanowell arrays with a geometric gradient. Such micro-/nanostructure arrays with graded and integrated SPR peaks can work as a fine plasmonic "library" (FPL), and the spectral range can be controlled using a "coarse adjustment knob" (lattice constant) and a "fine adjustment knob" (pore diameter). Additionally, the spectral resolution of the FPL is high, which benefits from the high value of the full height/full width at half-maximum and the small step size of the wavelength shift (0.5 nm). Meanwhile, the FPL could be effectively applied as a well-defined model to verify the plasmonic enhancement in surface enhanced Raman scattering. As the FPL is an integrated optical material with graded individual SPR peaks, it can not only be a theoretical model for fundamental research, but also has great potential in high-throughput screening of optical materials, multiplex sensors, etc.

  15. FIB-SEM tomography of human skin telocytes and their extracellular vesicles

    PubMed Central

    Cretoiu, Dragos; Gherghiceanu, Mihaela; Hummel, Eric; Zimmermann, Hans; Simionescu, Olga; Popescu, Laurentiu M

    2015-01-01

    We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) – the podoms. FIB-SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc. PMID:25823591

  16. Mechanisms of fibrin polymerization and clinical implications

    PubMed Central

    Litvinov, Rustem I.

    2013-01-01

    Research on all stages of fibrin polymerization, using a variety of approaches including naturally occurring and recombinant variants of fibrinogen, x-ray crystallography, electron and light microscopy, and other biophysical approaches, has revealed aspects of the molecular mechanisms involved. The ordered sequence of fibrinopeptide release is essential for the knob-hole interactions that initiate oligomer formation and the subsequent formation of 2-stranded protofibrils. Calcium ions bound both strongly and weakly to fibrin(ogen) have been localized, and some aspects of their roles are beginning to be discovered. Much less is known about the mechanisms of the lateral aggregation of protofibrils and the subsequent branching to yield a 3-dimensional network, although the αC region and B:b knob-hole binding seem to enhance lateral aggregation. Much information now exists about variations in clot structure and properties because of genetic and acquired molecular variants, environmental factors, effects of various intravascular and extravascular cells, hydrodynamic flow, and some functional consequences. The mechanical and chemical stability of clots and thrombi are affected by both the structure of the fibrin network and cross-linking by plasma transglutaminase. There are important clinical consequences to all of these new findings that are relevant for the pathogenesis of diseases, prophylaxis, diagnosis, and treatment. PMID:23305734

  17. Fiber-based three-dimensional multi-mode interference device as efficient power divider and vector curvature sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Fiebrandt, Julia; Haynes, Dionne; Sun, Kai; Madhav, Kalaga; Stoll, Andreas; Makan, Kirill; Makan, Vadim; Roth, Martin

    2018-03-01

    Three-dimensional multi-mode interference devices are demonstrated using a single-mode fiber (SMF) center-spliced to a section of polygon-shaped core multimode fiber (MMF). This simple structure can effectively generate well-localized self-focusing spots that match to the layout of a chosen multi-core fiber (MCF) as a launcher device. An optimized hexagon-core MMF can provide efficient coupling from a SMF to a 7-core MCF with an insertion loss of 0.6 dB and a power imbalance of 0.5 dB, while a square-core MMF can form a self-imaging pattern with symmetrically distributed 2 × 2, 3 × 3 or 4 × 4 spots. These spots can be directly received by a two-dimensional detector array. The device can work as a vector curvature sensor by comparing the relative power among the spots with a resolution of ∼0.1° over a 1.8 mm-long MMF.

  18. Anti-backlash drive systems for multi-degree freedom devices

    DOEpatents

    Tsai, Lung-Wen; Chang, Sun-Lai

    1993-01-01

    A new and innovative concept for the control of backlash in gear-coupled transmission mechanisms. The concept utilizes redundant unidirectional drives to assure positive coupling of gear meshes at all times. Based on this concept, a methodology for the enumeration of admissible redundant-drive backlash-free robotic mechanisms has been established. Some typical two- and three-DOF mechanisms are disclosed. Furthermore, actuator torques have been derived as functions of either joint torques or end-effector dynamic performance requirements. A redundantly driven gear coupled transmission mechanism manipulator has a fail-safe advantage in that, except of the loss of backlash control, it can continue to function when one of its actuators fails. A two-DOF backlash-free arm has been reduced to practice to demonstrate the principle.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Baker, Kyri; Summers, Tyler

    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative boundsmore » that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.« less

  20. Method of multi-channel data readout and acquisition

    DOEpatents

    Degtiarenko, Pavel V.; Popov, Vladimir E.

    2010-06-15

    A method for dealing with the problem of simultaneous continuous readout of large number of data channels from the set of multiple sensors in instances where the use of multiple amplitude-to-digital converters is not practical or causes undesirable extra noise and distortion in the data. The new method uses sensor front-end s and subsequent electronics to transform the analog input signals and encode them into a series of short pulses that can be transmitted to a long distance via a high frequency transmission line without information loss. Upon arrival at a destination data decoder and analyzer device, the series of short pulses can be decoded and transformed back, to obtain, store, and utilize the sensor information with the required accuracy.

  1. Accelerated Stress Testing of Multi-Source LED Products: Horticulture Lamps and Tunable-White Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Lynn; Rountree, Kelley; Mills, Karmann

    This report discusses the use of accelerated stress testing (AST) to provide insights into the long-term behavior of commercial products utilizing different types of mid-power LEDs (MP-LEDs) integrated into the same LED module. Test results are presented from two commercial lamps intended for use in horticulture applications and one tunable-white LED module intended for use in educational and office lighting applications. Each of these products is designed to provide a custom spectrum for their targeted applications and each achieves this goal in different ways. Consequently, a comparison of the long-term stability of these devices will provide insights regarding approaches thatmore » could be used to possibly lengthen the lifetime of SSL products.« less

  2. Multi-threaded ATLAS simulation on Intel Knights Landing processors

    NASA Astrophysics Data System (ADS)

    Farrell, Steven; Calafiura, Paolo; Leggett, Charles; Tsulaia, Vakhtang; Dotti, Andrea; ATLAS Collaboration

    2017-10-01

    The Knights Landing (KNL) release of the Intel Many Integrated Core (MIC) Xeon Phi line of processors is a potential game changer for HEP computing. With 72 cores and deep vector registers, the KNL cards promise significant performance benefits for highly-parallel, compute-heavy applications. Cori, the newest supercomputer at the National Energy Research Scientific Computing Center (NERSC), was delivered to its users in two phases with the first phase online at the end of 2015 and the second phase now online at the end of 2016. Cori Phase 2 is based on the KNL architecture and contains over 9000 compute nodes with 96GB DDR4 memory. ATLAS simulation with the multithreaded Athena Framework (AthenaMT) is a good potential use-case for the KNL architecture and supercomputers like Cori. ATLAS simulation jobs have a high ratio of CPU computation to disk I/O and have been shown to scale well in multi-threading and across many nodes. In this paper we will give an overview of the ATLAS simulation application with details on its multi-threaded design. Then, we will present a performance analysis of the application on KNL devices and compare it to a traditional x86 platform to demonstrate the capabilities of the architecture and evaluate the benefits of utilizing KNL platforms like Cori for ATLAS production.

  3. MLAOS: A Multi-Point Linear Array of Optical Sensors for Coniferous Foliage Clumping Index Measurement

    PubMed Central

    Qu, Yonghua; Fu, Lizhe; Han, Wenchao; Zhu, Yeqing; Wang, Jindi

    2014-01-01

    The canopy foliage clumping effect is primarily caused by the non-random distribution of canopy foliage. Currently, measurements of clumping index (CI) by handheld instruments is typically time- and labor-intensive. We propose a low-cost and low-power automatic measurement system called Multi-point Linear Array of Optical Sensors (MLAOS), which consists of three above-canopy and nine below-canopy optical sensors that capture plant transmittance at different times of the day. Data communication between the MLAOS node is facilitated by using a ZigBee network, and the data are transmitted from the field MLAOS to a remote data server using the Internet. The choice of the electronic element and design of the MLAOS software is aimed at reducing costs and power consumption. A power consumption test showed that, when a 4000 mAH Li-ion battery is used, a maximum of 8–10 months of work can be achieved. A field experiment on a coniferous forest revealed that the CI of MLAOS may reveal a clumping effect that occurs within the canopy. In further work, measurement of the multi-scale clumping effect can be achieved by utilizing a greater number of MLAOS devices to capture the heterogeneity of the plant canopy. PMID:24859029

  4. Combinatorial techniques to efficiently investigate and optimize organic thin film processing and properties.

    PubMed

    Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner

    2013-04-08

    In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.

  5. Energy Saving Performance Analysis of An Inverter-based Regenerative Power Re-utilization Device for Urban Rail Transit

    NASA Astrophysics Data System (ADS)

    Li, Jin; Qiu, Zhiling; Hu, Leilei

    2018-04-01

    The inverter-based regenerative braking power utilization devices can re-utilize the regenerative energy, thus reduce the energy consumption of urban rail transit. In this paper the power absorption principle of the inverter-based device is introduced, then the key influencing factors of energy saving performance are analyzed based on the absorption model. The field operation data verified that the control DC voltage plays an important role and lower control DC voltage yields more energy saving. Also, the one year energy saving performance data of an inverter-based re-utilization device located in NanJing S8 line is provided, and more than 1.2 million kWh energy is recovered in the one year operation.

  6. High-Speed Isolation Board for Flight Hardware Testing

    NASA Technical Reports Server (NTRS)

    Yamamoto, Clifford K.; Goodpasture, Richard L.

    2011-01-01

    There is a need to provide a portable and cost-effective galvanic isolation between ground support equipment and flight hardware such that any unforeseen voltage differential between ground and power supplies is eliminated. An interface board was designed for use between the ground support equipment and the flight hardware that electrically isolates all input and output signals and faithfully reproduces them on each side of the interface. It utilizes highly integrated multi-channel isolating devices to minimize size and reduce assembly time. This single-board solution provides appropriate connector hardware and breakout of required flight signals to individual connectors as needed for various ground support equipment. The board utilizes multi-channel integrated circuits that contain transformer coupling, thereby allowing input and output signals to be isolated from one another while still providing high-fidelity reproduction of the signal up to 90 MHz. The board also takes in a single-voltage power supply input from the ground support equipment and in turn provides a transformer-derived isolated voltage supply to power the portion of the circuitry that is electrically connected to the flight hardware. Prior designs used expensive opto-isolated couplers that were required for each signal to isolate and were time-consuming to assemble. In addition, these earlier designs were bulky and required a 2U rack-mount enclosure. The new design is smaller than a piece of 8.5 11-in. (.22 28-mm) paper and can be easily hand-carried where needed. The flight hardware in question is based on a lineage of existing software-defined radios (SDRs) that utilize a common interface connector with many similar input-output signals present. There are currently four to five variations of this SDR, and more upcoming versions are planned based on the more recent design.

  7. Planar multi-electrode array sensor for localized electrochemical corrosion detection

    DOEpatents

    Tormoen, Garth William; Brossia, Christopher Sean

    2014-01-07

    A planarized type of coupled multi-electrode corrosion sensing device. Electrode pads are fabricated on a thin backing, such as a thin film. Each pad has an associated electrical lead for connection to auxiliary electronic circuitry, which may include a resistor associated with each electrical pad. The design permits the device to be easily placed in small crevices or under coatings such as paint.

  8. Thermoresponsive light scattering device utilizing surface behavior effects between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation

    NASA Astrophysics Data System (ADS)

    Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto

    2018-06-01

    We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.

  9. Engaging older adults in the visualization of sensor data facilitated by an open platform for connected devices.

    PubMed

    Bock, Christian; Demiris, George; Choi, Yong; Le, Thai; Thompson, Hilaire J; Samuel, Arjmand; Huang, Danny

    2016-03-11

    The use of smart home sensor systems is growing primarily due to the appeal of unobtrusively monitoring older adult health and wellness. However, integrating large-scale sensor systems within residential settings can be challenging when deployment takes place across multiple environments, requiring customization of applications, connection across various devices and effective visualization of complex longitudinal data. The objective of the study was to demonstrate the implementation of a smart home system using an open, extensible platform in a real-world setting and develop an application to visualize data real time. We deployed the open source Lab of Things platform in a house of 11 residents as a demonstration of feasibility over the course of 3 months. The system consisted of Aeon Labs Z-wave Door/Window sensors and an Aeon Labs Multi-sensor that collected data on motion, temperature, luminosity, and humidity. We applied a Rapid Iterative Testing and Evaluation approach towards designing a visualization interface engaging gerontological experts. We then conducted a survey with 19 older adult and caregiver stakeholders to inform further design revisions. Our initial visualization mockups consisted of a bar chart representing activity level over time. Family members felt comfortable using the application. Older adults however, indicated it would be difficult to learn to use the application, and had trouble identifying utility. A key for older adults was ensuring that the data collected could be utilized by their family members, physicians, or caregivers. The approach described in this work is generalizable towards future smart home deployments and can be a valuable guide for researchers to scale a study across multiple homes and connected devices, and to create personalized interfaces for end users.

  10. Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives

    NASA Astrophysics Data System (ADS)

    Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall

    2017-06-01

    Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real-time utilization of self-sensing materials in structural health monitoring.

  11. Multi-step Variable Height Photolithography for Valved Multilayer Microfluidic Devices.

    PubMed

    Brower, Kara; White, Adam K; Fordyce, Polly M

    2017-01-27

    Microfluidic systems have enabled powerful new approaches to high-throughput biochemical and biological analysis. However, there remains a barrier to entry for non-specialists who would benefit greatly from the ability to develop their own microfluidic devices to address research questions. Particularly lacking has been the open dissemination of protocols related to photolithography, a key step in the development of a replica mold for the manufacture of polydimethylsiloxane (PDMS) devices. While the fabrication of single height silicon masters has been explored extensively in literature, fabrication steps for more complicated photolithography features necessary for many interesting device functionalities (such as feature rounding to make valve structures, multi-height single-mold patterning, or high aspect ratio definition) are often not explicitly outlined. Here, we provide a complete protocol for making multilayer microfluidic devices with valves and complex multi-height geometries, tunable for any application. These fabrication procedures are presented in the context of a microfluidic hydrogel bead synthesizer and demonstrate the production of droplets containing polyethylene glycol (PEG diacrylate) and a photoinitiator that can be polymerized into solid beads. This protocol and accompanying discussion provide a foundation of design principles and fabrication methods that enables development of a wide variety of microfluidic devices. The details included here should allow non-specialists to design and fabricate novel devices, thereby bringing a host of recently developed technologies to their most exciting applications in biological laboratories.

  12. Secure content objects

    DOEpatents

    Evans, William D [Cupertino, CA

    2009-02-24

    A secure content object protects electronic documents from unauthorized use. The secure content object includes an encrypted electronic document, a multi-key encryption table having at least one multi-key component, an encrypted header and a user interface device. The encrypted document is encrypted using a document encryption key associated with a multi-key encryption method. The encrypted header includes an encryption marker formed by a random number followed by a derivable variation of the same random number. The user interface device enables a user to input a user authorization. The user authorization is combined with each of the multi-key components in the multi-key encryption key table and used to try to decrypt the encrypted header. If the encryption marker is successfully decrypted, the electronic document may be decrypted. Multiple electronic documents or a document and annotations may be protected by the secure content object.

  13. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture

    PubMed Central

    Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu

    2017-01-01

    In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices. PMID:28926957

  14. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture.

    PubMed

    Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu

    2017-09-16

    In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.

  15. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOEpatents

    Antoniadis,; Homer, Krummacher [Mountain View, CA; Claus, Benjamin [Regensburg, DE

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  16. Multi-stream face recognition on dedicated mobile devices for crime-fighting

    NASA Astrophysics Data System (ADS)

    Jassim, Sabah A.; Sellahewa, Harin

    2006-09-01

    Automatic face recognition is a useful tool in the fight against crime and terrorism. Technological advance in mobile communication systems and multi-application mobile devices enable the creation of hybrid platforms for active and passive surveillance. A dedicated mobile device that incorporates audio-visual sensors would not only complement existing networks of fixed surveillance devices (e.g. CCTV) but could also provide wide geographical coverage in almost any situation and anywhere. Such a device can hold a small portion of a law-enforcing agency biometric database that consist of audio and/or visual data of a number of suspects/wanted or missing persons who are expected to be in a local geographical area. This will assist law-enforcing officers on the ground in identifying persons whose biometric templates are downloaded onto their devices. Biometric data on the device can be regularly updated which will reduce the number of faces an officer has to remember. Such a dedicated device would act as an active/passive mobile surveillance unit that incorporate automatic identification. This paper is concerned with the feasibility of using wavelet-based face recognition schemes on such devices. The proposed schemes extend our recently developed face verification scheme for implementation on a currently available PDA. In particular we will investigate the use of a combination of wavelet frequency channels for multi-stream face recognition. We shall present experimental results on the performance of our proposed schemes for a number of publicly available face databases including a new AV database of videos recorded on a PDA.

  17. Multi-layer waste containment barrier

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Nickelson, David F.

    1999-01-01

    An apparatus for constructing an underground containment barrier for containing an in-situ portion of earth. The apparatus includes an excavating device for simultaneously (i) excavating earthen material from beside the in-situ portion of earth without removing the in-situ portion and thereby forming an open side trench defined by opposing earthen sidewalls, and (ii) excavating earthen material from beneath the in-situ portion of earth without removing the in-situ portion and thereby forming a generally horizontal underground trench beneath the in-situ portion defined by opposing earthen sidewalls. The apparatus further includes a barrier-forming device attached to the excavating device for simultaneously forming a side barrier within the open trench and a generally horizontal, multi-layer barrier within the generally horizontal trench. The multi-layer barrier includes at least a first layer and a second layer.

  18. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Nordholt, Jane Elizabeth; Hughes, Richard John; Peterson, Charles Glen

    2013-07-09

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  19. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOEpatents

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    2015-01-06

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  20. Avoiding Biased-Feeding in the Scheduling of Collaborative Multipath TCP.

    PubMed

    Tsai, Meng-Hsun; Chou, Chien-Ming; Lan, Kun-Chan

    2016-01-01

    Smartphones have become the major communication and portable computing devices that access the Internet through Wi-Fi or mobile networks. Unfortunately, users without a mobile data subscription can only access the Internet at limited locations, such as hotspots. In this paper, we propose a collaborative bandwidth sharing protocol (CBSP) built on top of MultiPath TCP (MPTCP). CBSP enables users to buy bandwidth on demand from neighbors (called Helpers) and uses virtual interfaces to bind the subflows of MPTCP to avoid modifying the implementation of MPTCP. However, although MPTCP provides the required multi-homing functionality for bandwidth sharing, the current packet scheduling in collaborative MPTCP (e.g., Co-MPTCP) leads to the so-called biased-feeding problem. In this problem, the fastest link might always be selected to send packets whenever it has available cwnd, which results in other links not being fully utilized. In this work, we set out to design an algorithm, called Scheduled Window-based Transmission Control (SWTC), to improve the performance of packet scheduling in MPTCP, and we perform extensive simulations to evaluate its performance.

  1. Integration of a Zero-footprint Cloud-based Picture Archiving and Communication System with Customizable Forms for Radiology Research and Education.

    PubMed

    Hostetter, Jason; Khanna, Nishanth; Mandell, Jacob C

    2018-06-01

    The purpose of this study was to integrate web-based forms with a zero-footprint cloud-based Picture Archiving and Communication Systems (PACS) to create a tool of potential benefit to radiology research and education. Web-based forms were created with a front-end and back-end architecture utilizing common programming languages including Vue.js, Node.js and MongoDB, and integrated into an existing zero-footprint cloud-based PACS. The web-based forms application can be accessed in any modern internet browser on desktop or mobile devices and allows the creation of customizable forms consisting of a variety of questions types. Each form can be linked to an individual DICOM examination or a collection of DICOM examinations. Several uses are demonstrated through a series of case studies, including implementation of a research platform for multi-reader multi-case (MRMC) studies and other imaging research, and creation of an online Objective Structure Clinical Examination (OSCE) and an educational case file. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  2. Avoiding Biased-Feeding in the Scheduling of Collaborative Multipath TCP

    PubMed Central

    2016-01-01

    Smartphones have become the major communication and portable computing devices that access the Internet through Wi-Fi or mobile networks. Unfortunately, users without a mobile data subscription can only access the Internet at limited locations, such as hotspots. In this paper, we propose a collaborative bandwidth sharing protocol (CBSP) built on top of MultiPath TCP (MPTCP). CBSP enables users to buy bandwidth on demand from neighbors (called Helpers) and uses virtual interfaces to bind the subflows of MPTCP to avoid modifying the implementation of MPTCP. However, although MPTCP provides the required multi-homing functionality for bandwidth sharing, the current packet scheduling in collaborative MPTCP (e.g., Co-MPTCP) leads to the so-called biased-feeding problem. In this problem, the fastest link might always be selected to send packets whenever it has available cwnd, which results in other links not being fully utilized. In this work, we set out to design an algorithm, called Scheduled Window-based Transmission Control (SWTC), to improve the performance of packet scheduling in MPTCP, and we perform extensive simulations to evaluate its performance. PMID:27529783

  3. Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale

    NASA Astrophysics Data System (ADS)

    Man, Xianfeng; Liu, Tingting; Xia, Baizhan; Luo, Zhen; Xie, Longxiang; Liu, Jian

    2018-06-01

    Acoustic metamaterials are remarkably different from conventional materials, as they can flexibly manipulate and control the propagation of sound waves. Unlike the locally resonant metamaterials introduced in earlier studies, we designed an ultraslow artificial structure with a sound speed much lower than that in air. In this paper, the space-coiling approach is proposed for achieving artificial metamaterial for extremely low-frequency airborne sound. In addition, the self-similar fractal technique is utilized for designing space-coiling Mie-resonance-based metamaterials (MRMMs) to obtain a band-dispersive spectrum. The band structures of two-dimensional (2D) acoustic metamaterials with different fractal levels are illustrated using the finite element method. The low-frequency bandgap can easily be formed, and multi-bandgap properties are observed in high-level fractals. Furthermore, the designed MRMMs with higher order fractal space coiling shows a good robustness against irregular arrangement. Besides, the proposed artificial structure was found to modify and control the radiation field arbitrarily. Thus, this work provides useful guidelines for the design of acoustic filtering devices and acoustic wavefront shaping applications on the subwavelength scale.

  4. Bio-Nanobattery Development and Characterization

    NASA Technical Reports Server (NTRS)

    King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Watt, Gerald D.; Lillehei, Peter T.; Park, Yeonjoon; Elliott, James R.

    2005-01-01

    A bio-nanobattery is an electrical energy storage device that utilizes organic materials and processes on an atomic, or nanometer-scale. The bio-nanobattery under development at NASA s Langley Research Center provides new capabilities for electrical power generation, storage, and distribution as compared to conventional power storage systems. Most currently available electronic systems and devices rely on a single, centralized power source to supply electrical power to a specified location in the circuit. As electronic devices and associated components continue to shrink in size towards the nanometer-scale, a single centralized power source becomes impractical. Small systems, such as these, will require distributed power elements to reduce Joule heating, to minimize wiring quantities, and to allow autonomous operation of the various functions performed by the circuit. Our research involves the development and characterization of a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Synthesis and characterization of the Co-ferritin and Fe-ferritin electrodes were performed, including reducing capability and the half-cell electrical potentials. Electrical output of nearly 0.5 V for the battery cell was measured. Ferritin utilizing other metallic cores were also considered to increase the overall electrical output. Two dimensional ferritin arrays were produced on various substrates to demonstrate the feasibility of a thin-film nano-scaled power storage system for distributed power storage applications. The bio-nanobattery will be ideal for nanometerscaled electronic applications, due to the small size, high energy density, and flexible thin-film structure. A five-cell demonstration article was produced for concept verification and bio-nanobattery characterization. Challenges to be addressed include the development of a multi-layered thin-film, increasing the energy density, dry-cell bionanobattery development, and selection of ferritin core materials to allow the broadest range of applications. The potential applications for the distributed power system include autonomously-operating intelligent chips, flexible thin-film electronic circuits, nanoelectromechanical systems (NEMS), ultra-high density data storage devices, nanoelectromagnetics, quantum electronic devices, biochips, nanorobots for medical applications and mechanical nano-fabrication, etc.

  5. Analysis of the effect of symmetric/asymmetric CUSP magnetic fields on melt/crystal interface during Czochralski silicon growth

    NASA Astrophysics Data System (ADS)

    Daggolu, Parthiv; Ryu, Jae Woo; Galyukov, Alex; Kondratyev, Alexey

    2016-10-01

    With the use of 300 mm silicon wafers for industrial semiconductor device manufacturing, the Czochralski (Cz) crystal growth process has to be optimized to achieve higher quality and productivity. Numerical studies based on 2D global thermal models combined with 3D simulation of melt convection are widely used today to save time and money in the process development. Melt convection in large scale Cz Si growth is controlled by a CUSP or transversal magnetic field (MF) to suppress the melt turbulence. MF can be optimized to meet necessary characteristics of the growing crystal, in terms of point defects, as MF affects the melt/crystal interface geometry and allows adjustment of the pulling rate. Among the different knobs associated with the CUSP magnetic field, the nature of its configuration, going from symmetric to asymmetric, is also reported to be an important tool for the control of crystallization front. Using a 3D unsteady model of the CGSim software, we have studied these effects and compared with several experimental results. In addition, physical mechanisms behind these observations are explored through a detailed modeling analysis of the effect of an asymmetric CUSP MF on convection features governing the heat transport in the silicon melt.

  6. Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2

    NASA Astrophysics Data System (ADS)

    Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude

    2018-03-01

    Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.

  7. "Intact" Carrier Doping by Pump-Pump-Probe Spectroscopy in Combination with Interfacial Charge Transfer: A Case Study of CsPbBr3 Nanocrystals.

    PubMed

    Wang, Junhui; Ding, Tao; Leng, Jing; Jin, Shengye; Wu, Kaifeng

    2018-06-21

    Carrier doping is important for semiconductor nanocrystals (NCs) as it offers a new knob to tune NCs' functionalities, in addition to size and shape control. Also, extensive studies on NC devices have revealed that under operating conditions NCs are often unintentionally doped with electrons or holes. Thus, it is essential to be able to control the doping of NCs and study the carrier dynamics of doped NCs. The extension of previously reported redox-doping methods to chemically sensitive materials, such as recently introduced perovskite NCs, has remained challenging. We introduce an "intact" carrier-doping method by performing pump-pump-probe transient absorption spectroscopy on NC-acceptor complexes. The first pump pulse is used to trigger charge transfer from the NC to the acceptor, leading to NCs doped with a band edge carrier; the following pump-probe pulses measure the dynamics of carrier-doped NCs. We performed this measurement on CsPbBr 3 NCs and deduced positive and negative trion lifetimes of 220 ± 50 and 150 ± 40 ps, respectively, for 10 nm diameter NCs, both dominated by Auger recombination. It also allowed us to identify randomly photocharged excitons in CsPbBr 3 NCs as positive trions.

  8. Development of CMTD (Curved Multi-Tubed Device) -system III and its application to the needle-insertion for liver.

    PubMed

    Furusho, Junji; Kobayashi, Hiroshi; Kikuchi, Takehito; Yamamoto, Tatsuro; Tanaka, Hidekazu; Terayama, Motokazu; Monden, Morito

    2008-01-01

    The purpose of this study is to realize the mechanically-controllable needle-insertion system using the CMTD (Curved Multi-Tube Device) which was developed by Furusho Laboratory. A CMTD, was developed for minimally-invasive surgery and needle insertion. And we use ultrasonograph as a sensing device to detect the position of bible duct or tumor and the orientation and position of the needle which is inserted into liver. This system makes safe minimally-invasive surgery possible, because all complex mechanisms are arranged outside of the body.

  9. The cell engineering construction and function evaluation of multi-layer biochip dialyzer.

    PubMed

    Zhu, Wen; Li, Jiwei; Liu, Jianfeng

    2013-10-01

    We report the fabrication and function evaluation of multi-layer biochip dialyzer. Such device may potentially be applied to the wearable hemodialysis systems. By merging the advantages of microfluidic chip technology with cell engineering, both functions of glomerular filtration and renal tubule physiological activity are integrated in the same device. This device is designed into a laminated structure, in which the chip number of the superimposed layer can be arbitrarily tailored in accordance with the requirements of dialysis capacity. We propose that such structure can overcome the obstacles of large size and detached structure of the traditional hollow fiber dialyzer. To construct this multilayer biochips dialyzer, two types of dialyzer device with two-layered and six-layered chips are assembled, respectively. Cell adhesion and proliferation on three different dialysis membrane materials under static and dynamic conditions are investigated and compared. The filtration capability, re-absorption function and excrete ammonia function of the resulting multi-layer biochip dialyzer are evaluated. The results reveal that the constructed device can perform higher filtration efficiency and also play a role of renal tubule. This methodology may be useful in developing "scaling down" artificial kidneys that can act as wearable or even implantable hemodialysis systems.

  10. Method of multi-mode vibration control for the carbody of high-speed electric multiple unit trains

    NASA Astrophysics Data System (ADS)

    Gong, Dao; Zhou, Jinsong; Sun, Wenjing; Sun, Yu; Xia, Zhanghui

    2017-11-01

    A method of multi-mode vibration control for the carbody of high-speed electric multiple unit (EMU) trains by using the onboard and suspended equipments as dynamic vibration absorbers (DVAs) is proposed. The effect of the multi-mode vibration on the ride quality of a high-speed EMU train was studied, and the target modes of vibration control were determined. An equivalent mass identification method was used to determine the equivalent mass for the target modes at the device installation positions. To optimize the vibration acceleration response of the carbody, the natural frequencies and damping ratios of the lateral and vertical vibration were designed based on the theory of dynamic vibration absorption. In order to realize the optimized design values of the natural frequencies for the lateral and vertical vibrations simultaneously, a new type of vibration absorber was designed in which a belleville spring and conventional rubber parts are connected in parallel. This design utilizes the negative stiffness of the belleville spring. Results show that, as compared to rigid equipment connections, the proposed method effectively reduces the multi-mode vibration of a carbody in a high-speed EMU train, thereby achieving the control objectives. The ride quality in terms of the lateral and vertical vibration of the carbody is considerably improved. Moreover, the optimal value of the damping ratio is effective in dissipating the vibration energy, which reduces the vibration of both the carbody and the equipment.

  11. Multi-color Long Wavelength Infrared Detectors Based On III-V Semiconductors

    DTIC Science & Technology

    2010-07-30

    both interband and intersubband transitions that form the basis of may optoelectronic devices. The research performed under this grant made it...based on interband and intersubband transitions in InAs and InGaAs QDs as a means for room temperature, multi-color photodetection in the visible...AM1.5 standard solar simulator. DOPING EFFECT ON INTERBAND AND INTERSUBBAND MULTICOLOR INFRARED PHOTODETECTORS: First, many samples and devices

  12. Rotational paper-based electrochemiluminescence immunodevices for sensitive and multiplexed detection of cancer biomarkers.

    PubMed

    Sun, Xiange; Li, Bowei; Tian, Chunyuan; Yu, Fabiao; Zhou, Na; Zhan, Yinghua; Chen, Lingxin

    2018-05-12

    This paper describes a novel rotational paper-based analytical device (RPAD) to implement multi-step electrochemiluminescence (ECL) immunoassays. The integrated paper-based rotational valves can be easily controlled by rotating paper discs manually and this advantage makes it user-friendly to untrained users to carry out the multi-step assays. In addition, the rotational valves are reusable and the response time can be shortened to several seconds, which promotes the rotational paper-based device to have great advantages in multi-step operations. Under the control of rotational valves, multi-step ECL immunoassays were conducted on the rotational device for the multiplexed detection of carcinoembryonic antigen (CEA) and prostate specific antigen (PSA). The rotational device exhibited excellent analytical performance for CEA and PSA, and they could be detected in the linear ranges of 0.1-100 ng mL -1 and 0.1-50 ng mL -1 with detection limits down to 0.07 ng mL -1 and 0.03 ng mL -1 , respectively, which were within the ranges of clinical concentrations. We hope this technique will open a new avenue for the fabrication of paper-based valves and provide potential application in clinical diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Computed tomography measurement of the left atrial appendage for optimal sizing of the Watchman device.

    PubMed

    Xu, Bo; Betancor, Jorge; Sato, Kimi; Harb, Serge; Abdur Rehman, Karim; Patel, Kunal; Kumar, Arnav; Cremer, Paul C; Jaber, Wael; Rodriguez, L Leonardo; Schoenhagen, Paul; Wazni, Oussama

    Percutaneous left atrial appendage (LAA) occlusion is an emerging treatment option for patients with non-valvular atrial fibrillation who cannot tolerate oral anticoagulation. The Watchman device (Boston Scientific Corporation, Natick, MA, USA) is deployed at the ostium of the LAA, and an appropriately sized device is critical for successful occlusion. However, standardized imaging protocols for device sizing have not been established. We investigated the clinical utility of a standardized imaging protocol, with pre-procedural multi-detector cardiac computed tomography (MDCT), and intra-procedural transesophageal echocardiography (TEE), for Watchman device sizing. Patients who underwent Watchman device implantation between 2010 and 2016 at our center, and who had pre-procedural MDCT and intra-procedural TEE were included. MDCT measurements (CTmax, CTmin, CTmean), and TEE measurement (TEEmax) of the LAA ostium were determined for each case, and correlated with the final size of the Watchman device implanted. Demographic data and clinical outcomes were collected. The study included 80 patients (mean age: 75 ± 9.6 years; male: 68%; mean CHA2DS2-VASc score: 4.5 ± 1.4). CTmax of the LAA ostium correlated strongly with the final deployed Watchman device size (Spearman's rho: 0.81, p < 0.001), while TEEmax of the LAA ostium showed only moderate correlation with the final deployed Watchman device size (Spearman's rho: 0.61, p < 0.001). Implantation success rate was 100%. At a mean duration of follow-up of 197 days, there were no device-related complications (device embolization, cardiac perforation and pericardial tamponade). At follow-up, the vast majority of patients (76 patients; 95%) had either no or trivial (≤3 mm) residual peri-device leak on TEE. A standardized imaging protocol for assessment of Watchman device implantation incorporating pre-procedural MDCT and intra-procedural TEE, was associated with excellent procedural outcomes at a mean duration of follow-up of 197 days. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  14. Position-sensitive multi-wavelength photon detectors based on epitaxial InGaAs/InAlAs quantum wells

    NASA Astrophysics Data System (ADS)

    Ganbold, T.; Antonelli, M.; Cautero, G.; Menk, R. H.; Cucini, R.; Biasiol, G.

    2015-09-01

    Beam monitoring in synchrotron radiation or free electron laser facilities is extremely important for calibration and diagnostic issues. Here we propose an in-situ detector showing fast response and homogeneity for both diagnostics and calibration purposes. The devices are based on In0.75Ga0.25As/In0.75Al0.25As QWs, which offer several advantages due to their direct, low-energy band gap and high electron mobility at room temperature. A pixelation structure with 4 quadrants was developed on the back surface of the device, in order to fit commercially available readout chips. The QW devices have been tested with collimated monochromatic X-ray beams from synchrotron radiation. A rise in the current noise with positive bias was observed, which could be due to deep traps for hole carriers. Therefore, an optimized negative bias was chosen to minimize dark currents and noise. A decrease in charge collection efficiency was experienced as the beam penetrates into deeper layers, where a dislocation network is present. The prototype samples showed that individual currents obtained from each quadrant allow the position of the beam to be monitored for all the utilized energies. These detectors have a potential to estimate the position of the beam with a precision of about 10 μm.

  15. A portable microscopy system for fluorescence, polarized, and brightfield imaging

    NASA Astrophysics Data System (ADS)

    Gordon, Paul; Wattinger, Rolla; Lewis, Cody; Venancio, Vinicius Paula; Mertens-Talcott, Susanne U.; Coté, Gerard

    2018-02-01

    The use of mobile phones to conduct diagnostic microscopy at the point-of-care presents intriguing possibilities for the advancement of high-quality medical care in remote settings. However, it is challenging to create a single device that can adapt to the ever-varying camera technologies in phones or that can image with the customization that multiple modalities require for applications such as malaria diagnosis. A portable multi-modal microscope system is presented that utilizes a Raspberry Pi to collect and transmit data wirelessly to a myriad of electronic devices for image analysis. The microscopy system is capable of providing to the user correlated brightfield, polarized, and fluorescent images of samples fixed on traditional microscopy slides. The multimodal diagnostic capabilities of the microscope were assessed by measuring parasitemia of Plasmodium falciparum-infected thin blood smears. The device is capable of detecting fluorescently-labeled DNA using FITC excitation (490 nm) and emission (525 nm), the birefringent P. falciparum byproduct hemozoin, and detecting brightfield absorption with a resolution of 0.78 micrometers (element 9-3 of a 1951 Air Force Target). This microscopy system is a novel portable imaging tool that may be a viable candidate for field implementation if challenges of system durability, cost considerations, and full automation can be overcome.

  16. Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries

    DOEpatents

    Ban, Chunmei; Wu, Zhuangchun; Dillon, Anne C.

    2017-01-10

    An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110) also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).

  17. 29. Attic interior showing roof truss system over waiting room; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Attic interior showing roof truss system over waiting room; note knob-and-tube wiring system; brick section at far left is rear of tower, which of brick masonry construction above the first story level, joined to the exterior walls of stone masonry; view to southeast along axis of building, 90mm lens and electronic flash illumination. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  18. Multi-step resistive switching behavior of Li-doped ZnO resistance random access memory device controlled by compliance current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chun-Cheng; Department of Mathematic and Physical Sciences, R.O.C. Air Force Academy, Kaohsiung 820, Taiwan; Tang, Jian-Fu

    2016-06-28

    The multi-step resistive switching (RS) behavior of a unipolar Pt/Li{sub 0.06}Zn{sub 0.94}O/Pt resistive random access memory (RRAM) device is investigated. It is found that the RRAM device exhibits normal, 2-, 3-, and 4-step RESET behaviors under different compliance currents. The transport mechanism within the device is investigated by means of current-voltage curves, in-situ transmission electron microscopy, and electrochemical impedance spectroscopy. It is shown that the ion transport mechanism is dominated by Ohmic behavior under low electric fields and the Poole-Frenkel emission effect (normal RS behavior) or Li{sup +} ion diffusion (2-, 3-, and 4-step RESET behaviors) under high electric fields.

  19. Recent progress in photoactive organic field-effect transistors.

    PubMed

    Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok

    2014-04-01

    Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts.

  20. Scatterometry-based metrology for SAQP pitch walking using virtual reference

    NASA Astrophysics Data System (ADS)

    Kagalwala, Taher; Vaid, Alok; Mahendrakar, Sridhar; Lenahan, Michael; Fang, Fang; Isbester, Paul; Shifrin, Michael; Etzioni, Yoav; Cepler, Aron; Yellai, Naren; Dasari, Prasad; Bozdog, Cornel

    2016-03-01

    Advanced technology nodes, 10nm and beyond, employing multi-patterning techniques for pitch reduction pose new process and metrology challenges in maintaining consistent positioning of structural features. Self-Aligned Quadruple Patterning (SAQP) process is used to create the Fins in FinFET devices with pitch values well below optical lithography limits. The SAQP process bares compounding effects from successive Reactive Ion Etch (RIE) and spacer depositions. These processes induce a shift in the pitch value from one fin compared to another neighboring fin. This is known as pitch walking. Pitch walking affects device performance as well as later processes which work on an assumption that there is consistent spacing between fins. In SAQP there are 3 pitch walking parameters of interest, each linked to specific process steps in the flow. These pitch walking parameters are difficult to discriminate at a specific process step by singular evaluation technique or even with reference metrology such as Transmission Electron Microscopy (TEM). In this paper we will utilize a virtual reference to generate a scatterometry model to measure pitch walk for SAQP process flow.

Top