Science.gov

Sample records for multi-dimensional project evaluation

  1. Perceptual evaluation of multi-dimensional spatial audio reproduction

    NASA Astrophysics Data System (ADS)

    Guastavino, Catherine; Katz, Brian F. G.

    2004-08-01

    Perceptual differences between sound reproduction systems with multiple spatial dimensions have been investigated. Two blind studies were performed using system configurations involving 1-D, 2-D, and 3-D loudspeaker arrays. Various types of source material were used, ranging from urban soundscapes to musical passages. Experiment I consisted in collecting subjects' perceptions in a free-response format to identify relevant criteria for multi-dimensional spatial sound reproduction of complex auditory scenes by means of linguistic analysis. Experiment II utilized both free response and scale judgments for seven parameters derived form Experiment I. Results indicated a strong correlation between the source material (sound scene) and the subjective evaluation of the parameters, making the notion of an ``optimal'' reproduction method difficult for arbitrary source material.

  2. Developing Multi-Dimensional Evaluation Criteria for English Learning Websites with University Students and Professors

    ERIC Educational Resources Information Center

    Liu, Gi-Zen; Liu, Zih-Hui; Hwang, Gwo-Jen

    2011-01-01

    Many English learning websites have been developed worldwide, but little research has been conducted concerning the development of comprehensive evaluation criteria. The main purpose of this study is thus to construct a multi-dimensional set of criteria to help learners and teachers evaluate the quality of English learning websites. These…

  3. Developing Multi-Dimensional Evaluation Criteria for English Learning Websites with University Students and Professors

    ERIC Educational Resources Information Center

    Liu, Gi-Zen; Liu, Zih-Hui; Hwang, Gwo-Jen

    2011-01-01

    Many English learning websites have been developed worldwide, but little research has been conducted concerning the development of comprehensive evaluation criteria. The main purpose of this study is thus to construct a multi-dimensional set of criteria to help learners and teachers evaluate the quality of English learning websites. These…

  4. Statistical Projections for Multi-resolution, Multi-dimensional Visual Data Exploration and Analysis

    SciTech Connect

    Hoa T. Nguyen; Stone, Daithi; E. Wes Bethel

    2016-01-01

    An ongoing challenge in visual exploration and analysis of large, multi-dimensional datasets is how to present useful, concise information to a user for some specific visualization tasks. Typical approaches to this problem have proposed either reduced-resolution versions of data, or projections of data, or both. These approaches still have some limitations such as consuming high computation or suffering from errors. In this work, we explore the use of a statistical metric as the basis for both projections and reduced-resolution versions of data, with a particular focus on preserving one key trait in data, namely variation. We use two different case studies to explore this idea, one that uses a synthetic dataset, and another that uses a large ensemble collection produced by an atmospheric modeling code to study long-term changes in global precipitation. The primary findings of our work are that in terms of preserving the variation signal inherent in data, that using a statistical measure more faithfully preserves this key characteristic across both multi-dimensional projections and multi-resolution representations than a methodology based upon averaging.

  5. Multi-Dimensional Planning/Evaluation Schema for Community Education.

    ERIC Educational Resources Information Center

    Merkel-Keller, Claudia; Herr, Audrey

    A model for planning and evaluating community education programs--Stufflebeam's context, input, process, product (CIPP) evaluation model--was described and field-tested with the community education programs in Lakewood, New Jersey. Community education was defined as a concern for everything that affects the well-being of all citizens within a…

  6. Future CAD in multi-dimensional medical images--project on multi-organ, multi-disease CAD system.

    PubMed

    Kobatake, Hidefumi

    2007-01-01

    A large research project on the subject of computer-aided diagnosis (CAD) entitled "Intelligent Assistance in Diagnosis of Multi-dimensional Medical Images" was initiated in Japan in 2003. The objective of this research project is to develop a multi-organ, multi-disease CAD system that incorporates anatomical knowledge of the human body and diagnostic knowledge of various types of diseases. The present paper provides an overview of the project and clarifies the trend of future CAD technologies in Japan.

  7. Pharmacy Information Systems in Teaching Hospitals: A Multi-dimensional Evaluation Study.

    PubMed

    Kazemi, Alireza; Rabiei, Reza; Moghaddasi, Hamid; Deimazar, Ghasem

    2016-07-01

    In hospitals, the pharmacy information system (PIS) is usually a sub-system of the hospital information system (HIS). The PIS supports the distribution and management of drugs, shows drug and medical device inventory, and facilitates preparing needed reports. In this study, pharmacy information systems implemented in general teaching hospitals affiliated to medical universities in Tehran (Iran) were evaluated using a multi-dimensional tool. This was an evaluation study conducted in 2015. To collect data, a checklist was developed by reviewing the relevant literature; this checklist included both general and specific criteria to evaluate pharmacy information systems. The checklist was then validated by medical informatics experts and pharmacists. The sample of the study included five PIS in general-teaching hospitals affiliated to three medical universities in Tehran (Iran). Data were collected using the checklist and through observing the systems. The findings were presented as tables. Five PIS were evaluated in the five general-teaching hospitals that had the highest bed numbers. The findings showed that the evaluated pharmacy information systems lacked some important general and specific criteria. Among the general evaluation criteria, it was found that only two of the PIS studied were capable of restricting repeated attempts made for unauthorized access to the systems. With respect to the specific evaluation criteria, no attention was paid to the patient safety aspect. The PIS studied were mainly designed to support financial tasks; little attention was paid to clinical and patient safety features.

  8. Multi-dimensional evaluation and ranking of coastal areas using GIS and multiple criteria choice methods.

    PubMed

    Kitsiou, Dimitra; Coccossis, Harry; Karydis, Michael

    2002-02-04

    Coastal ecosystems are increasingly threatened by short-sighted management policies that focus on human activities rather than the systems that sustain them. The early assessment of the impacts of human activities on the quality of the environment in coastal areas is important for decision-making, particularly in cases of environment/development conflicts, such as environmental degradation and saturation in tourist areas. In the present study, a methodology was developed for the multi-dimensional evaluation and ranking of coastal areas using a set of criteria and based on the combination of multiple criteria choice methods and Geographical Information Systems (GIS). The northeastern part of the island of Rhodes in the Aegean Sea, Greece was the case study area. A distinction in sub-areas was performed and they were ranked according to socio-economic and environmental parameters. The robustness of the proposed methodology was assessed using different configurations of the initial criteria and reapplication of the process. The advantages and disadvantages, as well as the usefulness of this methodology for comparing the status of coastal areas and evaluating their potential for further development based on various criteria, is further discussed.

  9. Psychometric evaluation of a multi-dimensional measure of satisfaction with behavioral interventions.

    PubMed

    Sidani, Souraya; Epstein, Dana R; Fox, Mary

    2017-10-01

    Treatment satisfaction is recognized as an essential aspect in the evaluation of an intervention's effectiveness, but there is no measure that provides for its comprehensive assessment with regard to behavioral interventions. Informed by a conceptualization generated from a literature review, we developed a measure that covers several domains of satisfaction with behavioral interventions. In this paper, we briefly review its conceptualization and describe the Multi-Dimensional Treatment Satisfaction Measure (MDTSM) subscales. Satisfaction refers to the appraisal of the treatment's process and outcome attributes. The MDTSM has 11 subscales assessing treatment process and outcome attributes: treatment components' suitability and utility, attitude toward treatment, desire for continued treatment use, therapist competence and interpersonal style, format and dose, perceived benefits of the health problem and everyday functioning, discomfort, and attribution of outcomes to treatment. The MDTSM was completed by persons (N = 213) in the intervention group in a large trial of a multi-component behavioral intervention for insomnia within 1 week following treatment completion. The MDTSM's subscales demonstrated internal consistency reliability (α: .65 - .93) and validity (correlated with self-reported adherence and perceived insomnia severity at post-test). The MDTSM subscales can be used to assess satisfaction with behavioral interventions and point to aspects of treatments that are viewed favorably or unfavorably. © 2017 Wiley Periodicals, Inc.

  10. Developing a Multi-Dimensional Evaluation Framework for Faculty Teaching and Service Performance

    ERIC Educational Resources Information Center

    Baker, Diane F.; Neely, Walter P.; Prenshaw, Penelope J.; Taylor, Patrick A.

    2015-01-01

    A task force was created in a small, AACSB-accredited business school to develop a more comprehensive set of standards for faculty performance. The task force relied heavily on faculty input to identify and describe key dimensions that capture effective teaching and service performance. The result is a multi-dimensional framework that will be used…

  11. Reconstruction of accurate 3-D surfaces with sharp edges using digital structured light projection and multi-dimensional image fusion

    NASA Astrophysics Data System (ADS)

    Le, Manh-Trung; Chen, Liang-Chia; Lin, Chih-Jer

    2017-09-01

    The study presents a novel method that uses structured illumination imaging and data fusion to address one of the most difficult problems in 3-D optical measurement where an accurate 3-D sharp edge must be reconstructed, to allow automated inspection and reconstruction of a 3-D object. An innovative algorithm for reconstructing a 3-D surface profile with a sharp-edge boundary using multi-dimensional data fusion is proposed. An accurate 2-D surface edge is extracted from an image with high spatial-resolution, that is reconstructed using structured illumination imaging (SIM), so the projected edge contour of 2-D contour along the optical imaging axis can be accurately determined. The neighboring surface between the 2-D detected edge and the identified 3-D surface contour is reconstructed by extrapolating the surface using NURBS surface fitting to detect the intersecting edges. Experiments are performed to confirm the feasibility, effectiveness and accuracy of the developed method and there is a comparison between the results for a reconstructed 3-D sharp edge and a pre-calibrated high precision instrument. The proposed method ensures that a maximum deviation between the reference target and the reconstructed critical dimension is 3 μm so a resolution for the optical imaging system of less than 0.5 pixel can be achieved. The experimental results demonstrate that the proposed method is both effective and accurate.

  12. A Multi-dimensional Program Evaluation Model: Considerations of Cost-Effectiveness, Equity, Quality, and Sustainability.

    ERIC Educational Resources Information Center

    Reinke, William A.

    1999-01-01

    Presents an algorithm for integrating evaluative concerns of cost effectiveness, equity, quality, and sustainability in program evaluation and offers suggestions for refining the system of measurement and analysis. (SLD)

  13. The INTERGROWTH-21st Project Neurodevelopment Package: A Novel Method for the Multi-Dimensional Assessment of Neurodevelopment in Pre-School Age Children

    PubMed Central

    Fernandes, Michelle; Stein, Alan; Newton, Charles R.; Cheikh-Ismail, Leila; Kihara, Michael; Wulff, Katharina; de León Quintana, Enrique; Aranzeta, Luis; Soria-Frisch, Aureli; Acedo, Javier; Ibanez, David; Abubakar, Amina; Giuliani, Francesca; Lewis, Tamsin; Kennedy, Stephen; Villar, Jose

    2014-01-01

    Background The International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st) Project is a population-based, longitudinal study describing early growth and development in an optimally healthy cohort of 4607 mothers and newborns. At 24 months, children are assessed for neurodevelopmental outcomes with the INTERGROWTH-21st Neurodevelopment Package. This paper describes neurodevelopment tools for preschoolers and the systematic approach leading to the development of the Package. Methods An advisory panel shortlisted project-specific criteria (such as multi-dimensional assessments and suitability for international populations) to be fulfilled by a neurodevelopment instrument. A literature review of well-established tools for preschoolers revealed 47 candidates, none of which fulfilled all the project's criteria. A multi-dimensional assessment was, therefore, compiled using a package-based approach by: (i) categorizing desired outcomes into domains, (ii) devising domain-specific criteria for tool selection, and (iii) selecting the most appropriate measure for each domain. Results The Package measures vision (Cardiff tests); cortical auditory processing (auditory evoked potentials to a novelty oddball paradigm); and cognition, language skills, behavior, motor skills and attention (the INTERGROWTH-21st Neurodevelopment Assessment) in 35–45 minutes. Sleep-wake patterns (actigraphy) are also assessed. Tablet-based applications with integrated quality checks and automated, wireless electroencephalography make the Package easy to administer in the field by non-specialist staff. The Package is in use in Brazil, India, Italy, Kenya and the United Kingdom. Conclusions The INTERGROWTH-21st Neurodevelopment Package is a multi-dimensional instrument measuring early child development (ECD). Its developmental approach may be useful to those involved in large-scale ECD research and surveillance efforts. PMID:25423589

  14. Multi-Dimensional Evaluation for Module Improvement: A Mathematics-Based Case Study

    ERIC Educational Resources Information Center

    Ellery, Karen

    2006-01-01

    Due to a poor module evaluation, mediocre student grades and a difficult teaching experience in lectures, the Data Analysis section of a first year core module, Research Methods for Social Sciences (RMSS), offered at the University of KwaZulu-Natal in South Africa, was completely revised. In order to review the effectiveness of these changes in…

  15. Transverse Position Reconstruction in a Liquid Argon Time Projection Chamber using Principal Component Analysis and Multi-Dimensional Fitting

    NASA Astrophysics Data System (ADS)

    Watson, Andrew William

    2017-08-01

    pocket above the liquid region, respectively. One of the lingering challenges in this experiment, however, is the determination of an event's position along the other two spatial dimensions, that is, its transverse or "xy" position. Some liquid noble element TPCs have achieved remarkably accurate event position reconstructions, typically using the relative amounts of S2 light collected by Photo-Multiplier Tubes ("PMTs") as the input data to their reconstruction algorithms. This approach has been partic- ularly challenging in DarkSide-50, partly due to unexpected asymmetries in the detector, and partly due to the design of the detector itself. A variety of xy-Reconstruction methods ("xy methods" for short) have come and gone in DS- 50, with only a few of them providing useful results. The xy method described in this dissertation is a two-step Principal Component Analysis / Multi-Dimensional Fit (PCAMDF) reconstruction. In a nutshell, this method develops a functional mapping from the 19-dimensional space of the signal received by the PMTs at the "top" (or the "anode" end) of the DarkSide-50 TPC to each of the transverse coordinates, x and y. PCAMDF is a low-level "machine learning" algorithm, and as such, needs to be "trained" with a sample of representative events; in this case, these are provided by the DarkSide geant4-based Monte Carlo, g4ds. In this work, a thorough description of the PCAMDF xy-Reconstruction method is provided along with an analysis of its performance on MC events and data. The method is applied to several classes of data events, including coincident decays, external gamma rays from calibration sources, and both atmospheric argon "AAr" and underground argon "UAr". Discrepancies between the MC and data are explored, and fiducial volume cuts are calculated. Finally, a novel method is proposed for finding the accuracy of the PCAMDF reconstruction on data by using the asymmetry of the S2 light collected on the anode and cathode PMT arrays as a function

  16. Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present new, efficient central schemes for multi-dimensional Hamilton-Jacobi equations. These non-oscillatory, non-staggered schemes are first- and second-order accurate and are designed to scale well with an increasing dimension. Efficiency is obtained by carefully choosing the location of the evolution points and by using a one-dimensional projection step. First-and second-order accuracy is verified for a variety of multi-dimensional, convex and non-convex problems.

  17. e-Learning Indicators: A Multi-Dimensional Model for Planning and Evaluating e-Learning Software Solutions

    ERIC Educational Resources Information Center

    Fetaji, Bekim; Fetaji, Majlinda

    2009-01-01

    As a number of recent studies suggest applications of networked computers in education have very inconsistent results ranging from success stories to complete failures. Literally, thousands of e-learning projects have been carried out that greatly differ in their outcomes. Until now, however, there is no systematic or a standardized way of…

  18. Multi Dimensional Phase Only Filter

    SciTech Connect

    Gudmundsson, K; Awwal, A

    2004-07-13

    Today's sensor networks provide a wide variety of application domain for high-speed pattern classification systems. Such high-speed systems can be achieved by the use of optical implementation of specialized POF correlator. In this research we discuss the modeling and simulation of the phase only filter (POF) in the task of pattern classification of multi-dimensional data.

  19. A Multi-Dimensional Instrument for Evaluating Taiwanese High School Students' Science Learning Self-Efficacy in Relation to Their Approaches to Learning Science

    ERIC Educational Resources Information Center

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2013-01-01

    In the past, students' science learning self-efficacy (SLSE) was usually measured by questionnaires that consisted of only a single scale, which might be insufficient to fully understand their SLSE. In this study, a multi-dimensional instrument, the SLSE instrument, was developed and validated to assess students' SLSE based on the previous…

  20. A Multi-Dimensional Instrument for Evaluating Taiwanese High School Students' Science Learning Self-Efficacy in Relation to Their Approaches to Learning Science

    ERIC Educational Resources Information Center

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2013-01-01

    In the past, students' science learning self-efficacy (SLSE) was usually measured by questionnaires that consisted of only a single scale, which might be insufficient to fully understand their SLSE. In this study, a multi-dimensional instrument, the SLSE instrument, was developed and validated to assess students' SLSE based on the previous…

  1. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  2. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  3. Progress in multi-dimensional upwind differencing

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1992-01-01

    Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.

  4. Multi-dimensional edge detection operators

    NASA Astrophysics Data System (ADS)

    Youn, Sungwook; Lee, Chulhee

    2014-05-01

    In remote sensing, modern sensors produce multi-dimensional images. For example, hyperspectral images contain hundreds of spectral images. In many image processing applications, segmentation is an important step. Traditionally, most image segmentation and edge detection methods have been developed for one-dimensional images. For multidimensional images, the output images of spectral band images are typically combined under certain rules or using decision fusions. In this paper, we proposed a new edge detection algorithm for multi-dimensional images using secondorder statistics. First, we reduce the dimension of input images using the principal component analysis. Then we applied multi-dimensional edge detection operators that utilize second-order statistics. Experimental results show promising results compared to conventional one-dimensional edge detectors such as Sobel filter.

  5. Multi-Dimensional Program Management.

    DTIC Science & Technology

    1982-12-01

    111[. MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS -I963-A - R.. -- f W ______ES W mc"i 2- 0 UNCLAS I SECURITY CLASIFICATION OF THIS...let’s pass them out. * A good idea for teaching interface in Project/Program Management. * Hard to keep program objectives foremost in PM’s mind

  6. Efficient Subtorus Processor Allocation in a Multi-Dimensional Torus

    SciTech Connect

    Weizhen Mao; Jie Chen; William Watson

    2005-11-30

    Processor allocation in a mesh or torus connected multicomputer system with up to three dimensions is a hard problem that has received some research attention in the past decade. With the recent deployment of multicomputer systems with a torus topology of dimensions higher than three, which are used to solve complex problems arising in scientific computing, it becomes imminent to study the problem of allocating processors of the configuration of a torus in a multi-dimensional torus connected system. In this paper, we first define the concept of a semitorus. We present two partition schemes, the Equal Partition (EP) and the Non-Equal Partition (NEP), that partition a multi-dimensional semitorus into a set of sub-semitori. We then propose two processor allocation algorithms based on these partition schemes. We evaluate our algorithms by incorporating them in commonly used FCFS and backfilling scheduling policies and conducting simulation using workload traces from the Parallel Workloads Archive. Specifically, our simulation experiments compare four algorithm combinations, FCFS/EP, FCFS/NEP, backfilling/EP, and backfilling/NEP, for two existing multi-dimensional torus connected systems. The simulation results show that our algorithms (especially the backfilling/NEP combination) are capable of producing schedules with system utilization and mean job bounded slowdowns comparable to those in a fully connected multicomputer.

  7. Project Pride Evaluation Report.

    ERIC Educational Resources Information Center

    Jennewein, Marilyn; And Others

    Project PRIDE (Probe, Research, Inquire, Discover, and Evaluate) is evaluated in this report to provide data to be used as a learning tool for project staff and student participants. Major objectives of the project are to provide an inter-disciplinary, objective approach to the study of the American heritage, and to incorporate methods and…

  8. Progress in Multi-Dimensional Upwind Differencing

    DTIC Science & Technology

    1992-09-01

    advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results ...as 1983 by Phil Roe [1]. A study of discrete multi-dimensional wave models by Roe followed in 1985 (ICASE Report 85-18, also [21), but it took until...consider the numerical results shown in Figure :3 and 4, taken from [:34] and [35], respectively. In Figure 3a the exact and discrete Mach-number

  9. Multi-dimensional MHD simple waves

    SciTech Connect

    Webb, G. M.; Ratkiewicz, R.; Brio, M.; Zank, G. P.

    1996-07-20

    In this paper we consider a formalism for multi-dimensional simple MHD waves using ideas developed by Boillat. For simple wave solutions one assumes that all the physical variables (the density {rho}, gas pressure p, fluid velocity u, gas entropy S, and magnetic induction B in the MHD case) depend on a single phase function {phi}(r,t). The simple wave solution ansatz and the MHD equations then require that the phase function {phi} satisfies an implicit equation of the form f({phi})=r{center_dot}n({phi})-{lambda}({phi})t, where n({phi})={nabla}{phi}/|{nabla}{phi}| is the wave normal, {lambda}({phi})={omega}/k=-{phi}{sub t}/|{nabla}{phi}| is the normal speed of the wave front, and f({phi}) is an arbitrary differentiable function of {phi}. The formalism allows for more general simple waves than that usually dealt with in which n({phi}) is a constant unit vector that does not vary along the wave front. The formalism has implications for shock formation and wave breaking for multi-dimensional waves.

  10. Multi-dimensional MHD simple waves

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Ratkiewicz, R.; Brio, M.; Zank, G. P.

    1995-01-01

    In this paper we consider a formalism for multi-dimensional simple MHD waves using ideas developed by Boillat. For simple wave solutions one assumes that all the physical variables (the density rho, gas pressure p, fluid velocity V, gas entropy S, and magnetic induction B in the MHD case) depend on a single phase function phi(r,t). The simple wave solution ansatz and the MHD equations then require that the phase function has the form phi = r x n(phi) - lambda(phi)t, where = n(phi) = Delta phi / (absolute value of Delta phi) is the wave normal and lambda(phi) = omega/k = -phi t / (absolute value of Delta phi) is the normal speed of the wave front. The formalism allows for more general simple waves than that usually dealt with in which n(phi) is a constant unit vector that does not vary along the wave front. The formalism has implications for shock formation for multi-dimensional waves.

  11. Towards Optimal Multi-Dimensional Query Processing with BitmapIndices

    SciTech Connect

    Rotem, Doron; Stockinger, Kurt; Wu, Kesheng

    2005-09-30

    Bitmap indices have been widely used in scientific applications and commercial systems for processing complex, multi-dimensional queries where traditional tree-based indices would not work efficiently. This paper studies strategies for minimizing the access costs for processing multi-dimensional queries using bitmap indices with binning. Innovative features of our algorithm include (a) optimally placing the bin boundaries and (b) dynamically reordering the evaluation of the query terms. In addition, we derive several analytical results concerning optimal bin allocation for a probabilistic query model. Our experimental evaluation with real life data shows an average I/O cost improvement of at least a factor of 10 for multi-dimensional queries on datasets from two different applications. Our experiments also indicate that the speedup increases with the number of query dimensions.

  12. Spatial Indexing and Visualization of Large Multi-Dimensional Databases

    NASA Astrophysics Data System (ADS)

    Dobos, L.; Csabai, I.; Trencséni, M.; Herczegh, G.; Józsa, P.; Purger, N.

    2007-10-01

    Scientific endeavors such as large astronomical surveys generate databases on the terabyte scale. These usually multi-dimensional databases must be visualized and mined in order to find interesting objects or to extract meaningful and qualitatively new relationships. Many statistical algorithms required for these tasks run reasonably fast when operating on small sets of in-memory data, but take noticeable performance hits when operating on large databases that do not fit into memory. We utilize new software technologies to develop and evaluate fast multi-dimensional, spatial indexing schemes that inherently follow the underlying highly non-uniform distribution of the data: one of them is hierarchical binary space partitioning; the other is sampled flat Voronoi partitioning of the data. Our working database is the 5-dimensional magnitude space of the Sloan Digital Sky Survey with more than 250 million data points. We show that these techniques can dramatically speed up data mining operations such as finding similar objects by example, classifying objects or comparing extensive simulation sets with observations. We are also developing tools to interact with the spatial database and visualize the data real-time at multiple resolutions at different zoom levels in an adaptive manner.

  13. Extended Darknet: Multi-Dimensional Internet Threat Monitoring System

    NASA Astrophysics Data System (ADS)

    Shimoda, Akihiro; Mori, Tatsuya; Goto, Shigeki

    Internet threats caused by botnets/worms are one of the most important security issues to be addressed. Darknet, also called a dark IP address space, is one of the best solutions for monitoring anomalous packets sent by malicious software. However, since darknet is deployed only on an inactive IP address space, it is an inefficient way for monitoring a working network that has a considerable number of active IP addresses. The present paper addresses this problem. We propose a scalable, light-weight malicious packet monitoring system based on a multi-dimensional IP/port analysis. Our system significantly extends the monitoring scope of darknet. In order to extend the capacity of darknet, our approach leverages the active IP address space without affecting legitimate traffic. Multi-dimensional monitoring enables the monitoring of TCP ports with firewalls enabled on each of the IP addresses. We focus on delays of TCP syn/ack responses in the traffic. We locate syn/ack delayed packets and forward them to sensors or honeypots for further analysis. We also propose a policy-based flow classification and forwarding mechanism and develop a prototype of a monitoring system that implements our proposed architecture. We deploy our system on a campus network and perform several experiments for the evaluation of our system. We verify that our system can cover 89% of the IP addresses while darknet-based monitoring only covers 46%. On our campus network, our system monitors twice as many IP addresses as darknet.

  14. Xarray: multi-dimensional data analysis in Python

    NASA Astrophysics Data System (ADS)

    Hoyer, Stephan; Hamman, Joe; Maussion, Fabien

    2017-04-01

    xarray (http://xarray.pydata.org) is an open source project and Python package that provides a toolkit and data structures for N-dimensional labeled arrays, which are the bread and butter of modern geoscientific data analysis. Key features of the package include label-based indexing and arithmetic, interoperability with the core scientific Python packages (e.g., pandas, NumPy, Matplotlib, Cartopy), out-of-core computation on datasets that don't fit into memory, a wide range of input/output options, and advanced multi-dimensional data manipulation tools such as group-by and resampling. In this contribution we will present the key features of the library and demonstrate its great potential for a wide range of applications, from (big-)data processing on super computers to data exploration in front of a classroom.

  15. Anonymous voting for multi-dimensional CV quantum system

    NASA Astrophysics Data System (ADS)

    Rong-Hua, Shi; Yi, Xiao; Jin-Jing, Shi; Ying, Guo; Moon-Ho, Lee

    2016-06-01

    We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012), and the MEST-NRF of Korea (Grant No. 2012-002521).

  16. Statistical Downscaling in Multi-dimensional Wave Climate Forecast

    NASA Astrophysics Data System (ADS)

    Camus, P.; Méndez, F. J.; Medina, R.; Losada, I. J.; Cofiño, A. S.; Gutiérrez, J. M.

    2009-04-01

    Wave climate at a particular site is defined by the statistical distribution of sea state parameters, such as significant wave height, mean wave period, mean wave direction, wind velocity, wind direction and storm surge. Nowadays, long-term time series of these parameters are available from reanalysis databases obtained by numerical models. The Self-Organizing Map (SOM) technique is applied to characterize multi-dimensional wave climate, obtaining the relevant "wave types" spanning the historical variability. This technique summarizes multi-dimension of wave climate in terms of a set of clusters projected in low-dimensional lattice with a spatial organization, providing Probability Density Functions (PDFs) on the lattice. On the other hand, wind and storm surge depend on instantaneous local large-scale sea level pressure (SLP) fields while waves depend on the recent history of these fields (say, 1 to 5 days). Thus, these variables are associated with large-scale atmospheric circulation patterns. In this work, a nearest-neighbors analog method is used to predict monthly multi-dimensional wave climate. This method establishes relationships between the large-scale atmospheric circulation patterns from numerical models (SLP fields as predictors) with local wave databases of observations (monthly wave climate SOM PDFs as predictand) to set up statistical models. A wave reanalysis database, developed by Puertos del Estado (Ministerio de Fomento), is considered as historical time series of local variables. The simultaneous SLP fields calculated by NCEP atmospheric reanalysis are used as predictors. Several applications with different size of sea level pressure grid and with different temporal domain resolution are compared to obtain the optimal statistical model that better represents the monthly wave climate at a particular site. In this work we examine the potential skill of this downscaling approach considering perfect-model conditions, but we will also analyze the

  17. Vlasov multi-dimensional model dispersion relation

    SciTech Connect

    Lushnikov, Pavel M.; Rose, Harvey A.; Silantyev, Denis A.; Vladimirova, Natalia

    2014-07-15

    A hybrid model of the Vlasov equation in multiple spatial dimension D > 1 [H. A. Rose and W. Daughton, Phys. Plasmas 18, 122109 (2011)], the Vlasov multi dimensional model (VMD), consists of standard Vlasov dynamics along a preferred direction, the z direction, and N flows. At each z, these flows are in the plane perpendicular to the z axis. They satisfy Eulerian-type hydrodynamics with coupling by self-consistent electric and magnetic fields. Every solution of the VMD is an exact solution of the original Vlasov equation. We show approximate convergence of the VMD Langmuir wave dispersion relation in thermal plasma to that of Vlasov-Landau as N increases. Departure from strict rotational invariance about the z axis for small perpendicular wavenumber Langmuir fluctuations in 3D goes to zero like θ{sup N}, where θ is the polar angle and flows are arranged uniformly over the azimuthal angle.

  18. Evaluation of microfinance projects.

    PubMed

    Johnson, S

    1999-08-01

    This paper criticizes the quick system proposed by Henk Moll for evaluating microfinance projects in the article ¿How to Pre-Evaluate Credit Projects in Ten Minutes¿. The author contended that there is a need to emphasize the objectives of the project. The procedure used by Moll, he contended, is applicable only to projects that have only two key objectives, such as credit operations, and the provision of services. Arguments are presented on the three specific questions proposed by Moll, ranging from the availability of externally audited financial reports, the performance of interest rate on loans vis-a-vis the inflation rate, and the provision of loans according to the individual requirements of the borrowers. Lastly, the author emphasizes that the overall approach is not useful and suggests that careful considerations should be observed in the use or abuse of a simple scoring system or checklist such as the one proposed by Moll.

  19. The use of multi-dimensional flow and morphodynamic models for restoration design analysis

    NASA Astrophysics Data System (ADS)

    McDonald, R.; Nelson, J. M.

    2013-12-01

    River restoration projects with the goal of restoring a wide range of morphologic and ecologic channel processes and functions have become common. The complex interactions between flow and sediment-transport make it challenging to design river channels that are both self-sustaining and improve ecosystem function. The relative immaturity of the field of river restoration and shortcomings in existing methodologies for evaluating channel designs contribute to this problem, often leading to project failures. The call for increased monitoring of constructed channels to evaluate which restoration techniques do and do not work is ubiquitous and may lead to improved channel restoration projects. However, an alternative approach is to detect project flaws before the channels are built by using numerical models to simulate hydraulic and sediment-transport processes and habitat in the proposed channel (Restoration Design Analysis). Multi-dimensional models provide spatially distributed quantities throughout the project domain that may be used to quantitatively evaluate restoration designs for such important metrics as (1) the change in water-surface elevation which can affect the extent and duration of floodplain reconnection, (2) sediment-transport and morphologic change which can affect the channel stability and long-term maintenance of the design; and (3) habitat changes. These models also provide an efficient way to evaluate such quantities over a range of appropriate discharges including low-probability events which often prove the greatest risk to the long-term stability of restored channels. Currently there are many free and open-source modeling frameworks available for such analysis including iRIC, Delft3D, and TELEMAC. In this presentation we give examples of Restoration Design Analysis for each of the metrics above from projects on the Russian River, CA and the Kootenai River, ID. These examples demonstrate how detailed Restoration Design Analysis can be used to

  20. Evaluation of Project Trend.

    ERIC Educational Resources Information Center

    Unco, Inc., Washington, DC.

    This report is a descriptive evaluation of the five pilot sites of Project TREND (Targeting Resources on the Educational Needs of the Disadvantaged). The five Local Education Agency (LEA) pilot sites are the educational systems of: (1) Akron, Ohio; (2) El Paso, Texas; (3) Newark, New Jersey; (4) Portland, Oregon; and, (5) San Jose (Unified),…

  1. Overview of Computer-Aided Engineering of Batteries and Introduction to Multi-Scale, Multi-Dimensional Modeling of Li-Ion Batteries (Presentation)

    SciTech Connect

    Pesaran, A.; Kim, G. H.; Smith, K.; Santhanagopalan, S.; Lee, K. J.

    2012-05-01

    This 2012 Annual Merit Review presentation gives an overview of the Computer-Aided Engineering of Batteries (CAEBAT) project and introduces the Multi-Scale, Multi-Dimensional model for modeling lithium-ion batteries for electric vehicles.

  2. Zero Range Process and Multi-Dimensional Random Walks

    NASA Astrophysics Data System (ADS)

    Bogoliubov, Nicolay M.; Malyshev, Cyril

    2017-07-01

    The special limit of the totally asymmetric zero range process of the low-dimensional non-equilibrium statistical mechanics described by the non-Hermitian Hamiltonian is considered. The calculation of the conditional probabilities of the model are based on the algebraic Bethe ansatz approach. We demonstrate that the conditional probabilities may be considered as the generating functions of the random multi-dimensional lattice walks bounded by a hyperplane. This type of walks we call the walks over the multi-dimensional simplicial lattices. The answers for the conditional probability and for the number of random walks in the multi-dimensional simplicial lattice are expressed through the symmetric functions.

  3. Towards a genuinely multi-dimensional upwind scheme

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.; Vanleer, Bram; Roe, Philip L.

    1990-01-01

    Methods of incorporating multi-dimensional ideas into algorithms for the solution of Euler equations are presented. Three schemes are developed and tested: a scheme based on a downwind distribution, a scheme based on a rotated Riemann solver and a scheme based on a generalized Riemann solver. The schemes show an improvement over first-order, grid-aligned upwind schemes, but the higher-order performance is less impressive. An outlook for the future of multi-dimensional upwind schemes is given.

  4. Processing And Display Of Multi-Dimensional Thunderstorm Measurements.

    NASA Astrophysics Data System (ADS)

    Mohr, Carl G.; Vaughan, Robin L.

    1984-10-01

    During the 1981 summer season within a 70,000 km2 area surrounding Miles City, Montana, the meteorological community conducted the Cooperative Convective Precipitation Experiment (CCOPE). The measurements collected during this project comprise the largest and most com-prehensive data set ever acquired in and around individual thunderstorms on the high plains of North America. The resultant archive contains approximately 300 billion bits of informa-tion compiled by state-of-the-art instrumentation in a field setting. The principal data systems utilized during CCOPC included 8 ground-based radars (7 of which had Doppler capability), 13 instrumented research aircraft, 6 sites from which balloon-borne instruments were launched, and a network of 123 surface stations. Our data processing goal has been to integrate all of these measurements into an accurate and com-plete three-dimensional description of any thunderstorm observed at any point throughout its history. Furthermore, this three-dimensional storm description must be embodied in a digi-tal structure that can be easily manipulated, altered, and displayed. Our presentation will focus on the procedures employed in reducing these diverse measurements to common spatial and temporal scales. The final product is a regularly spaced multi-dimensional Cartesian coordinate system at a discrete analysis time where each grid location contains the set of relevant meteorological parameters. A recently developed soft-ware package for analyzing the information in these data structures will also be discussed.

  5. Multi-dimensional assessment of soccer coaching course effectiveness.

    PubMed

    Hammond, J; Perry, J

    The purpose of this study was to determine the relationship between the aims of course providers and events during the delivery of two soccer coaching accreditation courses. A secondary purpose was to evaluate performance-analysis methods for assessing the course instructor's performance. A case analysis approach was developed to evaluate the courses and the data-gathering process. This research approach was chosen to amalgamate the sources of evidence, providing a multi-dimensional view of course delivery. Data collection methods included simple hand notation and computer logging of events, together with video analysis. The hand notation and video analysis were employed for the first course with the hand notation being replaced with computer event logging for the second course. Questionnaires, focusing on course quality, were administered to participants. Interviews and document analysis provided the researchers with the instructors' main aims and priorities for course delivery. Results of the video analysis suggest a difference between these aims and the events of the courses. Analysis of the questionnaires indicated favourable perceptions of course content and delivery. This evidence is discussed in relation to intent and practice in coach education and the efficiency of employing performance-analysis techniques in logging instructional events.

  6. Evaluation methods for hospital projects.

    PubMed

    Buelow, Janet R; Zuckweiler, Kathryn M; Rosacker, Kirsten M

    2010-01-01

    The authors report the findings of a survey of hospital managers on the utilization of various project selection and evaluation methodologies. The focus of the analysis was the empirical relationship between a portfolio of project evaluation(1) methods actually utilized for a given project and several measures of perceived project success. The analysis revealed that cost-benefit analysis and top management support were the two project evaluation methods used most often by the hospital managers. The authors' empirical assessment provides evidence that top management support is associated with overall project success.

  7. Exploring perceptually similar cases with multi-dimensional scaling

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Yang, Yongyi; Wernick, Miles N.; Nishikawa, Robert M.

    2014-03-01

    Retrieving a set of known lesions similar to the one being evaluated might be of value for assisting radiologists to distinguish between benign and malignant clustered microcalcifications (MCs) in mammograms. In this work, we investigate how perceptually similar cases with clustered MCs may relate to one another in terms of their underlying characteristics (from disease condition to image features). We first conduct an observer study to collect similarity scores from a group of readers (five radiologists and five non-radiologists) on a set of 2,000 image pairs, which were selected from 222 cases based on their images features. We then explore the potential relationship among the different cases as revealed by their similarity ratings. We apply the multi-dimensional scaling (MDS) technique to embed all the cases in a 2-D plot, in which perceptually similar cases are placed in close vicinity of one another based on their level of similarity. Our results show that cases having different characteristics in their clustered MCs are accordingly placed in different regions in the plot. Moreover, cases of same pathology tend to be clustered together locally, and neighboring cases (which are more similar) tend to be also similar in their clustered MCs (e.g., cluster size and shape). These results indicate that subjective similarity ratings from the readers are well correlated with the image features of the underlying MCs of the cases, and that perceptually similar cases could be of diagnostic value for discriminating between malignant and benign cases.

  8. ICM: a web server for integrated clustering of multi-dimensional biomedical data

    PubMed Central

    He, Song; He, Haochen; Xu, Wenjian; Huang, Xin; Jiang, Shuai; Li, Fei; He, Fuchu; Bo, Xiaochen

    2016-01-01

    Large-scale efforts for parallel acquisition of multi-omics profiling continue to generate extensive amounts of multi-dimensional biomedical data. Thus, integrated clustering of multiple types of omics data is essential for developing individual-based treatments and precision medicine. However, while rapid progress has been made, methods for integrated clustering are lacking an intuitive web interface that facilitates the biomedical researchers without sufficient programming skills. Here, we present a web tool, named Integrated Clustering of Multi-dimensional biomedical data (ICM), that provides an interface from which to fuse, cluster and visualize multi-dimensional biomedical data and knowledge. With ICM, users can explore the heterogeneity of a disease or a biological process by identifying subgroups of patients. The results obtained can then be interactively modified by using an intuitive user interface. Researchers can also exchange the results from ICM with collaborators via a web link containing a Project ID number that will directly pull up the analysis results being shared. ICM also support incremental clustering that allows users to add new sample data into the data of a previous study to obtain a clustering result. Currently, the ICM web server is available with no login requirement and at no cost at http://biotech.bmi.ac.cn/icm/. PMID:27131784

  9. ICM: a web server for integrated clustering of multi-dimensional biomedical data.

    PubMed

    He, Song; He, Haochen; Xu, Wenjian; Huang, Xin; Jiang, Shuai; Li, Fei; He, Fuchu; Bo, Xiaochen

    2016-07-08

    Large-scale efforts for parallel acquisition of multi-omics profiling continue to generate extensive amounts of multi-dimensional biomedical data. Thus, integrated clustering of multiple types of omics data is essential for developing individual-based treatments and precision medicine. However, while rapid progress has been made, methods for integrated clustering are lacking an intuitive web interface that facilitates the biomedical researchers without sufficient programming skills. Here, we present a web tool, named Integrated Clustering of Multi-dimensional biomedical data (ICM), that provides an interface from which to fuse, cluster and visualize multi-dimensional biomedical data and knowledge. With ICM, users can explore the heterogeneity of a disease or a biological process by identifying subgroups of patients. The results obtained can then be interactively modified by using an intuitive user interface. Researchers can also exchange the results from ICM with collaborators via a web link containing a Project ID number that will directly pull up the analysis results being shared. ICM also support incremental clustering that allows users to add new sample data into the data of a previous study to obtain a clustering result. Currently, the ICM web server is available with no login requirement and at no cost at http://biotech.bmi.ac.cn/icm/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Fast Packet Classification Using Multi-Dimensional Encoding

    NASA Astrophysics Data System (ADS)

    Huang, Chi Jia; Chen, Chien

    Internet routers need to classify incoming packets quickly into flows in order to support features such as Internet security, virtual private networks and Quality of Service (QoS). Packet classification uses information contained in the packet header, and a predefined rule table in the routers. Packet classification of multiple fields is generally a difficult problem. Hence, researchers have proposed various algorithms. This study proposes a multi-dimensional encoding method in which parameters such as the source IP address, destination IP address, source port, destination port and protocol type are placed in a multi-dimensional space. Similar to the previously best known algorithm, i.e., bitmap intersection, multi-dimensional encoding is based on the multi-dimensional range lookup approach, in which rules are divided into several multi-dimensional collision-free rule sets. These sets are then used to form the new coding vector to replace the bit vector of the bitmap intersection algorithm. The average memory storage of this encoding is Θ (L · N · log N) for each dimension, where L denotes the number of collision-free rule sets, and N represents the number of rules. The multi-dimensional encoding practically requires much less memory than bitmap intersection algorithm. Additionally, the computation needed for this encoding is as simple as bitmap intersection algorithm. The low memory requirement of the proposed scheme means that it not only decreases the cost of packet classification engine, but also increases the classification performance, since memory represents the performance bottleneck in the packet classification engine implementation using a network processor.

  11. External Evaluation of Project ACT.

    ERIC Educational Resources Information Center

    Kreitlow, Burton W.; Kreitlow, Doris J.

    Third party evaluation of Project ACT (Adult Competency Training), a United States Office of Education staff development project in Region 8, has examined the achievement of the project's goal of developing a self-generating and self-supporting adult staff development system, thus helping adult educators to become better prepared to serve their…

  12. Gifted Science Project: Evaluation Report.

    ERIC Educational Resources Information Center

    Ott, Susan L.; Emanuel, Elizabeth, Ed.

    The document contains the evaluation report on the Gifted Science Project in Montgomery County, Maryland, a program to identify resources for students in grades 3-8 who are motivated in science. The Project's primary product is a Project Resource File (PRF) listing people, places, and published materials that can be used by individual students. An…

  13. Minimizing I/O Costs of Multi-Dimensional Queries with BitmapIndices

    SciTech Connect

    Rotem, Doron; Stockinger, Kurt; Wu, Kesheng

    2006-03-30

    Bitmap indices have been widely used in scientific applications and commercial systems for processing complex,multi-dimensional queries where traditional tree-based indices would not work efficiently. A common approach for reducing the size of a bitmap index for high cardinality attributes is to group ranges of values of an attribute into bins and then build a bitmap for each bin rather than a bitmap for each value of the attribute. Binning reduces storage costs,however, results of queries based on bins often require additional filtering for discarding it false positives, i.e., records in the result that do not satisfy the query constraints. This additional filtering,also known as ''candidate checking,'' requires access to the base data on disk and involves significant I/O costs. This paper studies strategies for minimizing the I/O costs for ''candidate checking'' for multi-dimensional queries. This is done by determining the number of bins allocated for each dimension and then placing bin boundaries in optimal locations. Our algorithms use knowledge of data distribution and query workload. We derive several analytical results concerning optimal bin allocation for a probabilistic query model. Our experimental evaluation with real life data shows an average I/O cost improvement of at least a factor of 10 for multi-dimensional queries on datasets from two different applications. Our experiments also indicate that the speedup increases with the number of query dimensions.

  14. The Multi-Dimensional Demands of Reading in the Disciplines

    ERIC Educational Resources Information Center

    Lee, Carol D.

    2014-01-01

    This commentary addresses the complexities of reading comprehension with an explicit focus on reading in the disciplines. The author proposes reading as entailing multi-dimensional demands of the reader and posing complex challenges for teachers. These challenges are intensified by restrictive conceptions of relevant prior knowledge and experience…

  15. The Multi-Dimensional Demands of Reading in the Disciplines

    ERIC Educational Resources Information Center

    Lee, Carol D.

    2014-01-01

    This commentary addresses the complexities of reading comprehension with an explicit focus on reading in the disciplines. The author proposes reading as entailing multi-dimensional demands of the reader and posing complex challenges for teachers. These challenges are intensified by restrictive conceptions of relevant prior knowledge and experience…

  16. Team Projects and Peer Evaluations

    ERIC Educational Resources Information Center

    Doyle, John Kevin; Meeker, Ralph D.

    2008-01-01

    The authors assign semester- or quarter-long team-based projects in several Computer Science and Finance courses. This paper reports on our experience in designing, managing, and evaluating such projects. In particular, we discuss the effects of team size and of various peer evaluation schemes on team performance and student learning. We report…

  17. Team Projects and Peer Evaluations

    ERIC Educational Resources Information Center

    Doyle, John Kevin; Meeker, Ralph D.

    2008-01-01

    The authors assign semester- or quarter-long team-based projects in several Computer Science and Finance courses. This paper reports on our experience in designing, managing, and evaluating such projects. In particular, we discuss the effects of team size and of various peer evaluation schemes on team performance and student learning. We report…

  18. Project Change Evaluation Research Brief.

    ERIC Educational Resources Information Center

    Leiderman, Sally A.; Dupree, David M.

    Project Change is a community-driven anti-racism initiative operating in four communities: Albuquerque, New Mexico; El Paso, Texas; Knoxville, Tennessee; and Valdosta, Georgia. The formative evaluation of Project Change began in 1994 when all of the sites were still in planning or early action phases. Findings from the summative evaluation will be…

  19. Project financial evaluation

    SciTech Connect

    None, None

    2009-01-18

    The project financial section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  20. Chemistry and Transport in a Multi-Dimensional Model

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    2004-01-01

    Our work has two primary scientific goals, the interannual variability (IAV) of stratospheric ozone and the hydrological cycle of the upper troposphere and lower stratosphere. Our efforts are aimed at integrating new information obtained by spacecraft and aircraft measurements to achieve a better understanding of the chemical and dynamical processes that are needed for realistic evaluations of human impact on the global environment. A primary motivation for studying the ozone layer is to separate the anthropogenic perturbations of the ozone layer from natural variability. Using the recently available merged ozone data (MOD), we have carried out an empirical orthogonal function EOF) study of the temporal and spatial patterns of the IAV of total column ozone in the tropics. The outstanding problem about water in the stratosphere is its secular increase in the last few decades. The Caltech/PL multi-dimensional chemical transport model (CTM) photochemical model is used to simulate the processes that control the water vapor and its isotopic composition in the stratosphere. Datasets we will use for comparison with model results include those obtained by the Total Ozone Mapping Spectrometer (TOMS), the Solar Backscatter Ultraviolet (SBUV and SBUV/2), Stratosphere Aerosol and Gas Experiment (SAGE I and II), the Halogen Occultation Experiment (HALOE), the Atmospheric Trace Molecular Spectroscopy (ATMOS) and those soon to be obtained by the Cirrus Regional Study of Tropical Anvils and Cirrus Layers Florida Area Cirrus Experiment (CRYSTAL-FACE) mission. The focus of the investigations is the exchange between the stratosphere and the troposphere, and between the troposphere and the biosphere.

  1. Project OUTREACH Evaluation.

    ERIC Educational Resources Information Center

    Hollis, Patricia A.; Newton, Josephine K.

    Described is a 4-week summer workshop, Project OUTREACH, designed to train Head Start personnel in the knowledge and skills necessary to identify handicapped or potentially handicapped children and to develop specific teaching strategies for the preschool handicapped child. It is explained that a unique aspect of the workshop was the coordination…

  2. The DLESE Evaluation Toolkit Project

    NASA Astrophysics Data System (ADS)

    Buhr, S. M.; Barker, L. J.; Marlino, M.

    2002-12-01

    The Evaluation Toolkit and Community project is a new Digital Library for Earth System Education (DLESE) collection designed to raise awareness of project evaluation within the geoscience education community, and to enable principal investigators, teachers, and evaluators to implement project evaluation more readily. This new resource is grounded in the needs of geoscience educators, and will provide a virtual home for a geoscience education evaluation community. The goals of the project are to 1) provide a robust collection of evaluation resources useful for Earth systems educators, 2) establish a forum and community for evaluation dialogue within DLESE, and 3) disseminate the resources through the DLESE infrastructure and through professional society workshops and proceedings. Collaboration and expertise in education, geoscience and evaluation are necessary if we are to conduct the best possible geoscience education. The Toolkit allows users to engage in evaluation at whichever level best suits their needs, get more evaluation professional development if desired, and access the expertise of other segments of the community. To date, a test web site has been built and populated, initial community feedback from the DLESE and broader community is being garnered, and we have begun to heighten awareness of geoscience education evaluation within our community. The web site contains features that allow users to access professional development about evaluation, search and find evaluation resources, submit resources, find or offer evaluation services, sign up for upcoming workshops, take the user survey, and submit calendar items. The evaluation resource matrix currently contains resources that have met our initial review. The resources are currently organized by type; they will become searchable on multiple dimensions of project type, audience, objectives and evaluation resource type as efforts to develop a collection-specific search engine mature. The peer review

  3. Project Proposals Evaluation

    NASA Astrophysics Data System (ADS)

    Encheva, Sylvia; Tumin, Sharil

    2009-08-01

    Collaboration among various firms has been traditionally used trough single project joint ventures for bonding purposes. Eventhough the performed work is usually beneficial to some extend to all participants, the type of collaboration option to be adapted is strongly influenced by overall purposes and goals that can be achieved. In order to facilitate a choice of collaboration option best suited to a firm's need a computer based model is proposed.

  4. Surfactant EOR project evaluated

    SciTech Connect

    Holm, L.W.

    1984-07-16

    The Union Oil Co.'s Uniflood process has successfully mobilized and produced tertiary oil from a micellar-polymer pilot project on the Hegberg lease in the El Dorado field, Kansas. This half-completed EOR flood has recovered over 11% of the waterflood residual oil and is currently producing at an oil cut of 10%. Oil recovery has been limited by (1) the presence of gypsum in portions of the reservoir which adversly affects injected chemicals, (2) poor quality reservoir rock in one quadrant of the pilot, and (3) a substantial fluid drift (30 ft/year) which causes a portion of the injected chemicals to flow out of the pilot pattern. The El Dorado demonstration project is a joint experiment covered by a cost-sharing contract between the U.S. Department of Energy and Cities Service Company. It was proposed as a micellar-polymer process in a highly saline (10 wt % salts) reservoir that had been waterflooded to residual oil. Despite the extended project life, and indications that total recovery efficiency will be less than originally predicted, oil response in the Hegberg pattern is encouraging for application of the micellar-polymer process in high brine reservoirs.

  5. GEAR UP Aspirations Project Evaluation

    ERIC Educational Resources Information Center

    Trimble, Brad A.

    2013-01-01

    The purpose of this study was to conduct a formative evaluation of the first two years of the Gaining Early Awareness and Readiness for Undergraduate Programs (GEAR UP) Aspirations Project (Aspirations) using a Context, Input, Process, and Product (CIPP) model so as to gain an in-depth understanding of the project during the middle school…

  6. GEAR UP Aspirations Project Evaluation

    ERIC Educational Resources Information Center

    Trimble, Brad A.

    2013-01-01

    The purpose of this study was to conduct a formative evaluation of the first two years of the Gaining Early Awareness and Readiness for Undergraduate Programs (GEAR UP) Aspirations Project (Aspirations) using a Context, Input, Process, and Product (CIPP) model so as to gain an in-depth understanding of the project during the middle school…

  7. Advanced numerics for multi-dimensional fluid flow calculations

    NASA Technical Reports Server (NTRS)

    Vanka, S. P.

    1984-01-01

    In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.

  8. Advanced numerics for multi-dimensional fluid flow calculations

    SciTech Connect

    Vanka, S.P.

    1984-04-01

    In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.

  9. Grass Roots Project Evaluation.

    ERIC Educational Resources Information Center

    Wick, John W.

    Some aspects of a grass roots evaluation training program are presented. The program consists of two elements: (1) a series of 11 slide/tape individualized self-paced units, and (2) a six-week summer program. Three points of view on this program are: (1) University graduate programs in quantitative areas are usually consumed by specialists; (2)…

  10. NASA PC software evaluation project

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kuan, Julie C.

    1986-01-01

    The USL NASA PC software evaluation project is intended to provide a structured framework for facilitating the development of quality NASA PC software products. The project will assist NASA PC development staff to understand the characteristics and functions of NASA PC software products. Based on the results of the project teams' evaluations and recommendations, users can judge the reliability, usability, acceptability, maintainability and customizability of all the PC software products. The objective here is to provide initial, high-level specifications and guidelines for NASA PC software evaluation. The primary tasks to be addressed in this project are as follows: to gain a strong understanding of what software evaluation entails and how to organize a structured software evaluation process; to define a structured methodology for conducting the software evaluation process; to develop a set of PC software evaluation criteria and evaluation rating scales; and to conduct PC software evaluations in accordance with the identified methodology. Communication Packages, Network System Software, Graphics Support Software, Environment Management Software, General Utilities. This report represents one of the 72 attachment reports to the University of Southwestern Louisiana's Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in using this report out of context of the full Final Report.

  11. Detecting Shielded Special Nuclear Materials Using Multi-Dimensional Neutron Source and Detector Geometries

    NASA Astrophysics Data System (ADS)

    Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard

    2016-10-01

    A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.

  12. [Chest pain evaluation project].

    PubMed

    Filippo, Ottani; Nicola, Binetti; Casagranda, Ivo; Cassin, Matteo; Cavazza, Mario; Grifoni, Stefano; Lenzi, Tiziano; Lorenzoni, Roberto; Sbrojavacca, Rodolfo; Tanzi, Pietro; Vergara, Giuseppe

    2009-01-01

    The evaluation of acute chest pain remains challenging, despite many insights and innovations over the past two decades. The percentage of patients presenting at the emergency department with acute chest pain who are subsequently admitted to the hospital appears to be increasing. Patients with acute coronary syndromes who are inadvertently discharged from the emergency department have an adverse short-term prognosis. However, the admission of a patient with chest pain who is at low risk for acute coronary syndrome can lead to unnecessary tests and procedures, with their burden of costs and complications. Therefore, with increasing economic pressures on health care, physicians and administrators are interested in improving the efficiency of care for patients with acute chest pain. Since the emergency department organization (i.e. the availability of an intensive observational area) and integration of care and treatment between emergency physicians and cardiologists greatly differ over the national territory, the purpose of the present position paper is two-fold: first, to review the evidence-based efficacy and utility of various diagnostic tools, and, second, to delineate the basic critical pathways (describing key steps for care and treatment) that need to be implemented in order to standardize and expedite the evaluation of chest pain patients, making their diagnosis and treatment as uniform as possible across the country.

  13. Multi-Dimensional Gastrointestinal Symptom Severity Index: Validation of a Brief GI Symptom Assessment Tool.

    PubMed

    Crowell, Michael D; Umar, Sarah B; Lacy, Brian E; Jones, Michael P; DiBaise, John K; Talley, Nicholas J

    2015-08-01

    Few instruments have been developed and validated for the evaluation of multi-dimensional GI symptoms. The Gastrointestinal Symptoms Severity Index (GISSI), a multi-dimensional, self-report instrument, was designed as a brief measure of the frequency, severity, and bothersomeness of individual GI and pelvic floor/urogynecologic symptoms. To report the psychometric properties of the GISSI subscales, including factorial structure, validity, and internal consistency. The GISSI included 32 items that assessed upper and lower GI symptoms and seven items related to pelvic floor/urogynecologic symptoms. A total of 934 patients presenting for upper and lower GI complaints completed the questionnaire between January 2013 and December 2013. The sample was randomly split into derivation (n = 466) and validation datasets (n = 468). A non-patient sample of 200 was collected separately. Exploratory factor analysis supported a six-factor model for the derivation sample that accounted for 69.3 % of the total variance. The six GI symptom clusters were labeled as constipation/difficult defecation (five items), abdominal pain/discomfort (four items), dyspepsia (four items), diarrhea/anal incontinence (four items), GERD/chest symptoms (four items), and nausea/vomiting (two items). Inclusion of additional items related to female pelvic floor/urogynecologic symptoms resulted in a separate factor. Confirmatory factor analysis of the validation dataset supported the a priori hypothesized six-factor measurement model (Χ (2)(428) = 1462.98; P < 0.001; GFI = .88; RMSEA = .051). The GISSI demonstrated good to excellent psychometric properties and provided multi-dimensional scaling of prominent GI symptom clusters. Further validation may provide an efficient, valid, and reliable measure of patient-reported clinical outcomes.

  14. Parsimony and goodness-of-fit in multi-dimensional NMR inversion

    NASA Astrophysics Data System (ADS)

    Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos

    2017-01-01

    Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.

  15. A multi-dimensional sampling method for locating small scatterers

    NASA Astrophysics Data System (ADS)

    Song, Rencheng; Zhong, Yu; Chen, Xudong

    2012-11-01

    A multiple signal classification (MUSIC)-like multi-dimensional sampling method (MDSM) is introduced to locate small three-dimensional scatterers using electromagnetic waves. The indicator is built with the most stable part of signal subspace of the multi-static response matrix on a set of combinatorial sampling nodes inside the domain of interest. It has two main advantages compared to the conventional MUSIC methods. First, the MDSM is more robust against noise. Second, it can work with a single incidence even for multi-scatterers. Numerical simulations are presented to show the good performance of the proposed method.

  16. Strong relaxation limit of multi-dimensional isentropic Euler equations

    NASA Astrophysics Data System (ADS)

    Xu, Jiang

    2010-06-01

    This paper is devoted to study the strong relaxation limit of multi-dimensional isentropic Euler equations with relaxation. Motivated by the Maxwell iteration, we generalize the analysis of Yong (SIAM J Appl Math 64:1737-1748, 2004) and show that, as the relaxation time tends to zero, the density of a certain scaled isentropic Euler equations with relaxation strongly converges towards the smooth solution to the porous medium equation in the framework of Besov spaces with relatively lower regularity. The main analysis tool used is the Littlewood-Paley decomposition.

  17. Block Transfer Agreement Evaluation Project

    ERIC Educational Resources Information Center

    Bastedo, Helena

    2010-01-01

    The objective of this project is to evaluate for the British Columbia Council on Admissions and Transfer (BCCAT) the effectiveness of block transfer agreements (BTAs) in the BC Transfer System and recommend steps to be taken to improve their effectiveness. Findings of this study revealed that institutions want to expand block credit transfer;…

  18. Flexible multi-dimensional modulation method for elastic optical networks

    NASA Astrophysics Data System (ADS)

    He, Zilong; Liu, Wentao; Shi, Sheping; Shen, Bailin; Chen, Xue; Gao, Xiqing; Zhang, Qi; Shang, Dongdong; Ji, Yongning; Liu, Yingfeng

    2016-01-01

    We demonstrate a flexible multi-dimensional modulation method for elastic optical networks. We compare the flexible multi-dimensional modulation formats PM-kSC-mQAM with traditional modulation formats PM-mQAM using numerical simulations in back-to-back and wavelength division multiplexed (WDM) transmission (50 GHz-spaced) scenarios at the same symbol rate of 32 Gbaud. The simulation results show that PM-kSC-QPSK and PM-kSC-16QAM can achieve obvious back-to-back sensitivity gain with respect to PM-QPSK and PM-16QAM at the expense of spectral efficiency reduction. And the WDM transmission simulation results show that PM-2SC-QPSK can achieve 57.5% increase in transmission reach compared to PM-QPSK, and 48.5% increase for PM-2SC-16QAM over PM-16QAM. Furthermore, we also experimentally investigate the back to back performance of PM-2SC-QPSK, PM-4SC-QPSK, PM-2SC-16QAM and PM-3SC-16QAM, and the experimental results agree well with the numerical simulations.

  19. A lock-free priority queue design based on multi-dimensional linked lists

    SciTech Connect

    Dechev, Damian; Zhang, Deli

    2015-04-03

    The throughput of concurrent priority queues is pivotal to multiprocessor applications such as discrete event simulation, best-first search and task scheduling. Existing lock-free priority queues are mostly based on skiplists, which probabilistically create shortcuts in an ordered list for fast insertion of elements. The use of skiplists eliminates the need of global rebalancing in balanced search trees and ensures logarithmic sequential search time on average, but the worst-case performance is linear with respect to the input size. In this paper, we propose a quiescently consistent lock-free priority queue based on a multi-dimensional list that guarantees worst-case search time of O(logN) for key universe of size N. The novel multi-dimensional list (MDList) is composed of nodes that contain multiple links to child nodes arranged by their dimensionality. The insertion operation works by first injectively mapping the scalar key to a high-dimensional vector, then uniquely locating the target position by using the vector as coordinates. Nodes in MDList are ordered by their coordinate prefixes and the ordering property of the data structure is readily maintained during insertion without rebalancing nor randomization. Furthermore, in our experimental evaluation using a micro-benchmark, our priority queue achieves an average of 50% speedup over the state of the art approaches under high concurrency.

  20. A lock-free priority queue design based on multi-dimensional linked lists

    DOE PAGES

    Dechev, Damian; Zhang, Deli

    2015-04-03

    The throughput of concurrent priority queues is pivotal to multiprocessor applications such as discrete event simulation, best-first search and task scheduling. Existing lock-free priority queues are mostly based on skiplists, which probabilistically create shortcuts in an ordered list for fast insertion of elements. The use of skiplists eliminates the need of global rebalancing in balanced search trees and ensures logarithmic sequential search time on average, but the worst-case performance is linear with respect to the input size. In this paper, we propose a quiescently consistent lock-free priority queue based on a multi-dimensional list that guarantees worst-case search time of O(logN)more » for key universe of size N. The novel multi-dimensional list (MDList) is composed of nodes that contain multiple links to child nodes arranged by their dimensionality. The insertion operation works by first injectively mapping the scalar key to a high-dimensional vector, then uniquely locating the target position by using the vector as coordinates. Nodes in MDList are ordered by their coordinate prefixes and the ordering property of the data structure is readily maintained during insertion without rebalancing nor randomization. Furthermore, in our experimental evaluation using a micro-benchmark, our priority queue achieves an average of 50% speedup over the state of the art approaches under high concurrency.« less

  1. Multi-Dimensional Structure of Crystalline Chiral Condensates in Quark Matter

    NASA Astrophysics Data System (ADS)

    Lee, Tong-Gyu; Nishiyama, Kazuya; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka

    We explore the multi-dimensional structure of inhomogeneous chiral condensates in quark matter. For a one-dimensional structure, the system becomes unstable at finite temperature due to the Nambu-Goldstone excitations. However, inhomogeneous chiral condensates with multi-dimensional modulations may be realized as a true long-range order at any temperature, as inferred from the Landau-Peierls theorem. We here present some possible strategies for searching the multi-dimensional structure of chiral crystals.

  2. 5 CFR 470.317 - Project evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Project evaluation. 470.317 Section 470... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.317 Project evaluation. (a) Compliance evaluation. OPM will review the operation of...

  3. 5 CFR 470.317 - Project evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Project evaluation. 470.317 Section 470... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.317 Project evaluation. (a) Compliance evaluation. OPM will review the operation of...

  4. Evaluating multi-dimensional aspects of postnatal hospital care.

    PubMed

    Rudman, Ann; El-Khouri, Bassam; Waldenström, Ulla

    2008-12-01

    to investigate women's experiences of postnatal hospital care in relation to four different aspects: (1) interpersonal care; (2) time spent on physical check-ups; (3) time spent on information and support; and (4) time spent on assistance with breast feeding. More specifically, we aimed to establish whether typical clusters of women could be identified, and if so, whether these clusters could be related to specific outcomes of care, to the way in which care is organised, and to the individual's psychological health and socio-demographic background. longitudinal population-based survey, including three questionnaires completed in early pregnancy, at 2 months and 1 year after birth. all postnatal wards in Sweden. women (n=2338) recruited at their first booking visit at 593 antenatal clinics, who responded to questions relating to postnatal hospital care 2 months after birth. eight cluster profiles defined by the four aspects of postnatal care were identified. About half of the women were found in clusters that were satisfied with most aspects of care, and half in clusters that were dissatisfied with one aspect or more. Only 32% were very satisfied with all four dimensions. Specific groups of women, such as first-time mothers, migrants, young mothers and those with a short length of stay, were dissatisfied with different assessments of postnatal care. Psychological health in early pregnancy was associated with high ratings of all aspects of care, whereas emergency caesarean section and instrumental vaginal delivery was associated with dissatisfaction with breast feeding support and time spent on health check-ups. women's individual appraisal of specific aspects of hospital postnatal care could be grouped into response patterns that were shared by smaller or larger groups. These patterns were related to maternal characteristics, labour outcomes and the way in which care was organised. The multi-faceted approach used in this study provided details about who was dissatisfied with what, and showed that women are not necessarily either satisfied or dissatisfied with care in a general sense. In order to provide individualised care, the carer needs to be aware of these differences.

  5. Multi-dimensional structure of accreting young stars

    NASA Astrophysics Data System (ADS)

    Geroux, C.; Baraffe, I.; Viallet, M.; Goffrey, T.; Pratt, J.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.

    2016-04-01

    This work is the first attempt to describe the multi-dimensional structure of accreting young stars based on fully compressible time implicit multi-dimensional hydrodynamics simulations. One major motivation is to analyse the validity of accretion treatment used in previous 1D stellar evolution studies. We analyse the effect of accretion on the structure of a realistic stellar model of the young Sun. Our work is inspired by the numerical work of Kley & Lin (1996, ApJ, 461, 933) devoted to the structure of the boundary layer in accretion disks, which provides the outer boundary conditions for our simulations. We analyse the redistribution of accreted material with a range of values of specific entropy relative to the bulk specific entropy of the material in the accreting object's convective envelope. Low specific entropy accreted material characterises the so-called cold accretion process, whereas high specific entropy is relevant to hot accretion. A primary goal is to understand whether and how accreted energy deposited onto a stellar surface is redistributed in the interior. This study focusses on the high accretion rates characteristic of FU Ori systems. We find that the highest entropy cases produce a distinctive behaviour in the mass redistribution, rms velocities, and enthalpy flux in the convective envelope. This change in behaviour is characterised by the formation of a hot layer on the surface of the accreting object, which tends to suppress convection in the envelope. We analyse the long-term effect of such a hot buffer zone on the structure and evolution of the accreting object with 1D stellar evolution calculations. We study the relevance of the assumption of redistribution of accreted energy into the stellar interior used in the literature. We compare results obtained with the latter treatment and those obtained with a more physical accretion boundary condition based on the formation of a hot surface layer suggested by present multi-dimensional

  6. Multi-dimensional hydrodynamics of core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremiah W.

    Core-collapse supernovae are some of the most energetic events in the Universe, they herald the birth of neutron stars and black holes, are a major site for nucleosynthesis, influence galactic hydrodynamics, and trigger further star formation. As such, it is important to understand the mechanism of explosion. Moreover, observations imply that asymmetries are, in the least, a feature of the mechanism, and theory suggests that multi-dimensional hydrodynamics may be crucial for successful explosions. In this dissertation, we present theoretical investigations into the multi-dimensional nature of the supernova mechanism. It had been suggested that nuclear reactions might excite non-radial g-modes (the [straight epsilon]-mechanism) in the cores of progenitors, leading to asymmetric explosions. We calculate the eigenmodes for a large suite of progenitors including excitation by nuclear reactions and damping by neutrino and acoustic losses. Without exception, we find unstable g-modes for each progenitor. However, the timescales for growth are at least an order of magnitude longer than the time until collapse. Thus, the [straight epsilon]- mechanism does not provide appreciable amplification of non-radial modes before the core undergoes collapse. Regardless, neutrino-driven convection, the standing accretion shock instability, and other instabilities during the explosion provide ample asymmetry. To adequately simulate these, we have developed a new hydrodynamics code, BETHE-hydro that uses the Arbitrary Lagrangian-Eulerian (ALE) approach, includes rotational terms, solves Poisson's equation for gravity on arbitrary grids, and conserves energy and momentum in its basic implementation. By using time-dependent arbitrary grids that can adapt to the numerical challenges of the problem, this code offers unique flexibility in simulating astrophysical phenomena. Finally, we use BETHE-hydro to investigate the conditions and criteria for supernova explosions by the neutrino

  7. Multi-dimensional reliability assessment of fractal signature analysis in an outpatient sports medicine population.

    PubMed

    Jarraya, Mohamed; Guermazi, Ali; Niu, Jingbo; Duryea, Jeffrey; Lynch, John A; Roemer, Frank W

    2015-11-01

    The aim of this study has been to test reproducibility of fractal signature analysis (FSA) in a young, active patient population taking into account several parameters including intra- and inter-reader placement of regions of interest (ROIs) as well as various aspects of projection geometry. In total, 685 patients were included (135 athletes and 550 non-athletes, 18-36 years old). Regions of interest (ROI) were situated beneath the medial tibial plateau. The reproducibility of texture parameters was evaluated using intraclass correlation coefficients (ICC). Multi-dimensional assessment included: (1) anterior-posterior (A.P.) vs. posterior-anterior (P.A.) (Lyon-Schuss technique) views on 102 knees; (2) unilateral (single knee) vs. bilateral (both knees) acquisition on 27 knees (acquisition technique otherwise identical; same A.P. or P.A. view); (3) repetition of the same image acquisition on 46 knees (same A.P. or P.A. view, and same unitlateral or bilateral acquisition); and (4) intra- and inter-reader reliability with repeated placement of the ROIs in the subchondral bone area on 99 randomly chosen knees. ICC values on the reproducibility of texture parameters for A.P. vs. P.A. image acquisitions for horizontal and vertical dimensions combined were 0.72 (95% confidence interval (CI) 0.70-0.74) ranging from 0.47 to 0.81 for the different dimensions. For unilateral vs. bilateral image acquisitions, the ICCs were 0.79 (95% CI 0.76-0.82) ranging from 0.55 to 0.88. For the repetition of the identical view, the ICCs were 0.82 (95% CI 0.80-0.84) ranging from 0.67 to 0.85. Intra-reader reliability was 0.93 (95% CI 0.92-0.94) and inter-observer reliability was 0.96 (95% CI 0.88-0.99). A decrease in reliability was observed with increasing voxel sizes. Our study confirms excellent intra- and inter-reader reliability for FSA, however, results seem to be affected by acquisition technique, which has not been previously recognized.

  8. The Multi-dimensional Character of Core-collapse Supernovae

    SciTech Connect

    Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; Mezzacappa, A.; Messer, O. E. B.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Marronetti, P.; Yakunin, K. N.

    2016-03-01

    Core-collapse supernovae, the culmination of massive stellar evolution, are spectacular astronomical events and the principle actors in the story of our elemental origins. Our understanding of these events, while still incomplete, centers around a neutrino-driven central engine that is highly hydrodynamically unstable. Increasingly sophisticated simulations reveal a shock that stalls for hundreds of milliseconds before reviving. Though brought back to life by neutrino heating, the development of the supernova explosion is inextricably linked to multi-dimensional fluid flows. In this paper, the outcomes of three-dimensional simulations that include sophisticated nuclear physics and spectral neutrino transport are juxtaposed to learn about the nature of the three-dimensional fluid flow that shapes the explosion. Comparison is also made between the results of simulations in spherical symmetry from several groups, to give ourselves confidence in the understanding derived from this juxtaposition.

  9. Advanced Concepts in Multi-Dimensional Radiation Detection and Imaging

    NASA Astrophysics Data System (ADS)

    Vetter, Kai; Haefner, Andy; Barnowski, Ross; Pavlovsky, Ryan; Torii, Tatsuo; Sanada, Yukihisa; Shikaze, Yoshiaki

    Recent developments in the detector fabrication, signal readout, and data processing enable new concepts in radiation detection that are relevant for applications ranging from fundamental physics to medicine as well as nuclear security and safety. We present recent progress in multi-dimensional radiation detection and imaging in the Berkeley Applied Nuclear Physics program. It is based on the ability to reconstruct scenes in three dimensions and fuse it with gamma-ray image information. We are using the High-Efficiency Multimode Imager HEMI in its Compton imaging mode and combining it with contextual sensors such as the Microsoft Kinect or visual cameras. This new concept of volumetric imaging or scene data fusion provides unprecedented capabilities in radiation detection and imaging relevant for the detection and mapping of radiological and nuclear materials. This concept brings us one step closer to the seeing the world with gamma-ray eyes.

  10. The Multi-Dimensional Character of Core-Collapse Supernovae

    SciTech Connect

    Hix, William Raphael; Lentz, E. J.; Bruenn, S. W.; Mezzacappa, Anthony; Messer, Bronson; Endeve, Eirik; Blondin, J. M.; Harris, James Austin; Marronetti, Pedro; Yakunin, Konstantin N

    2016-01-01

    Core-collapse supernovae, the culmination of massive stellar evolution, are spectacular astronomical events and the principle actors in the story of our elemental origins. Our understanding of these events, while still incomplete, centers around a neutrino-driven central engine that is highly hydrodynamically unstable. Increasingly sophisticated simulations reveal a shock that stalls for hundreds of milliseconds before reviving. Though brought back to life by neutrino heating, the development of the supernova explosion is inextricably linked to multi-dimensional fluid flows. In this paper, the outcomes of three-dimensional simulations that include sophisticated nuclear physics and spectral neutrino transport are juxtaposed to learn about the nature of the three dimensional fluid flow that shapes the explosion. Comparison is also made between the results of simulations in spherical symmetry from several groups, to give ourselves confidence in the understanding derived from this juxtaposition.

  11. Active control of multi-dimensional random sound in ducts

    NASA Technical Reports Server (NTRS)

    Silcox, R. J.; Elliott, S. J.

    1990-01-01

    Previous work has demonstrated how active control may be applied to the control of random noise in ducts. These implementations, however, have been restricted to frequencies where only plane waves are propagating in the duct. In spite of this, the need for this technology at low frequencies has progressed to the point where commercial products that apply these concepts are currently available. Extending the frequency range of this technology requires the extension of current single channel controllers to multi-variate control systems as well as addressing the problems inherent in controlling higher order modes. The application of active control in the multi-dimensional propagation of random noise in waveguides is examined. An adaptive system is implemented using measured system frequency response functions. Experimental results are presented illustrating attained suppressions of 15 to 30 dB for random noise propagating in multiple modes.

  12. The Multi-dimensional Character of Core-collapse Supernovae

    DOE PAGES

    Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; ...

    2016-03-01

    Core-collapse supernovae, the culmination of massive stellar evolution, are spectacular astronomical events and the principle actors in the story of our elemental origins. Our understanding of these events, while still incomplete, centers around a neutrino-driven central engine that is highly hydrodynamically unstable. Increasingly sophisticated simulations reveal a shock that stalls for hundreds of milliseconds before reviving. Though brought back to life by neutrino heating, the development of the supernova explosion is inextricably linked to multi-dimensional fluid flows. In this paper, the outcomes of three-dimensional simulations that include sophisticated nuclear physics and spectral neutrino transport are juxtaposed to learn about themore » nature of the three-dimensional fluid flow that shapes the explosion. Comparison is also made between the results of simulations in spherical symmetry from several groups, to give ourselves confidence in the understanding derived from this juxtaposition.« less

  13. A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

    SciTech Connect

    Ramakrishnan, Lavanya; Plale, Beth

    2010-04-05

    Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.

  14. Acceleration of multi-dimensional propagator measurements with compressed sensing.

    PubMed

    Paulsen, Jeffrey L; Cho, HyungJoon; Cho, Gyunggoo; Song, Yi-Qiao

    2011-12-01

    NMR can probe the microstructures of anisotropic materials such as liquid crystals, stretched polymers and biological tissues through measurement of the diffusion propagator, where internal structures are indicated by restricted diffusion. Multi-dimensional measurements can probe the microscopic anisotropy, but full sampling can then quickly become prohibitively time consuming. However, for incompletely sampled data, compressed sensing is an effective reconstruction technique to enable accelerated acquisition. We demonstrate that with a compressed sensing scheme, one can greatly reduce the sampling and the experimental time with minimal effect on the reconstruction of the diffusion propagator with an example of anisotropic diffusion. We compare full sampling down to 64× sub-sampling for the 2D propagator measurement and reduce the acquisition time for the 3D experiment by a factor of 32 from ∼80 days to ∼2.5 days. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Using a Project Portfolio: Empowerment Evaluation for Model Demonstration Projects.

    ERIC Educational Resources Information Center

    Baggett, David

    For model postsecondary demonstration projects serving individuals with disabilities, a portfolio of project activities may serve as a method for program evaluation, program replication, and program planning. Using a portfolio for collecting, describing, and documenting a project's successes, efforts, and failures enables project staff to take…

  16. Extending the Implicit Association Test (IAT): Assessing Consumer Attitudes Based on Multi-Dimensional Implicit Associations

    PubMed Central

    Gattol, Valentin; Sääksjärvi, Maria; Carbon, Claus-Christian

    2011-01-01

    Background The authors present a procedural extension of the popular Implicit Association Test (IAT; [1]) that allows for indirect measurement of attitudes on multiple dimensions (e.g., safe–unsafe; young–old; innovative–conventional, etc.) rather than on a single evaluative dimension only (e.g., good–bad). Methodology/Principal Findings In two within-subjects studies, attitudes toward three automobile brands were measured on six attribute dimensions. Emphasis was placed on evaluating the methodological appropriateness of the new procedure, providing strong evidence for its reliability, validity, and sensitivity. Conclusions/Significance This new procedure yields detailed information on the multifaceted nature of brand associations that can add up to a more abstract overall attitude. Just as the IAT, its multi-dimensional extension/application (dubbed md-IAT) is suited for reliably measuring attitudes consumers may not be consciously aware of, able to express, or willing to share with the researcher [2], [3]. PMID:21246037

  17. A Heterogeneous Network Based Method for Identifying GBM-Related Genes by Integrating Multi-Dimensional Data.

    PubMed

    Chen Peng; Ao Li

    2017-01-01

    The emergence of multi-dimensional data offers opportunities for more comprehensive analysis of the molecular characteristics of human diseases and therefore improving diagnosis, treatment, and prevention. In this study, we proposed a heterogeneous network based method by integrating multi-dimensional data (HNMD) to identify GBM-related genes. The novelty of the method lies in that the multi-dimensional data of GBM from TCGA dataset that provide comprehensive information of genes, are combined with protein-protein interactions to construct a weighted heterogeneous network, which reflects both the general and disease-specific relationships between genes. In addition, a propagation algorithm with resistance is introduced to precisely score and rank GBM-related genes. The results of comprehensive performance evaluation show that the proposed method significantly outperforms the network based methods with single-dimensional data and other existing approaches. Subsequent analysis of the top ranked genes suggests they may be functionally implicated in GBM, which further corroborates the superiority of the proposed method. The source code and the results of HNMD can be downloaded from the following URL: http://bioinformatics.ustc.edu.cn/hnmd/ .

  18. Towards Semantic Web Services on Large, Multi-Dimensional Coverages

    NASA Astrophysics Data System (ADS)

    Baumann, P.

    2009-04-01

    Observed and simulated data in the Earth Sciences often come as coverages, the general term for space-time varying phenomena as set forth by standardization bodies like the Open GeoSpatial Consortium (OGC) and ISO. Among such data are 1-d time series, 2-D surface data, 3-D surface data time series as well as x/y/z geophysical and oceanographic data, and 4-D metocean simulation results. With increasing dimensionality the data sizes grow exponentially, up to Petabyte object sizes. Open standards for exploiting coverage archives over the Web are available to a varying extent. The OGC Web Coverage Service (WCS) standard defines basic extraction operations: spatio-temporal and band subsetting, scaling, reprojection, and data format encoding of the result - a simple interoperable interface for coverage access. More processing functionality is available with products like Matlab, Grid-type interfaces, and the OGC Web Processing Service (WPS). However, these often lack properties known as advantageous from databases: declarativeness (describe results rather than the algorithms), safe in evaluation (no request can keep a server busy infinitely), and optimizable (enable the server to rearrange the request so as to produce the same result faster). WPS defines a geo-enabled SOAP interface for remote procedure calls. This allows to webify any program, but does not allow for semantic interoperability: a function is identified only by its function name and parameters while the semantics is encoded in the (only human readable) title and abstract. Hence, another desirable property is missing, namely an explicit semantics which allows for machine-machine communication and reasoning a la Semantic Web. The OGC Web Coverage Processing Service (WCPS) language, which has been adopted as an international standard by OGC in December 2008, defines a flexible interface for the navigation, extraction, and ad-hoc analysis of large, multi-dimensional raster coverages. It is abstract in that it

  19. On Multi-Dimensional Vocabulary Teaching Mode for College English Teaching

    ERIC Educational Resources Information Center

    Zhou, Li-na

    2010-01-01

    This paper analyses the major approaches in EFL (English as a Foreign Language) vocabulary teaching from historical perspective and puts forward multi-dimensional vocabulary teaching mode for college English. The author stresses that multi-dimensional approaches of communicative vocabulary teaching, lexical phrase teaching method, the grammar…

  20. Multi-dimensional multi-species modeling of transient electrodeposition in LIGA microfabrication.

    SciTech Connect

    Evans, Gregory Herbert; Chen, Ken Shuang

    2004-06-01

    This report documents the efforts and accomplishments of the LIGA electrodeposition modeling project which was headed by the ASCI Materials and Physics Modeling Program. A multi-dimensional framework based on GOMA was developed for modeling time-dependent diffusion and migration of multiple charged species in a dilute electrolyte solution with reduction electro-chemical reactions on moving deposition surfaces. By combining the species mass conservation equations with the electroneutrality constraint, a Poisson equation that explicitly describes the electrolyte potential was derived. The set of coupled, nonlinear equations governing species transport, electric potential, velocity, hydrodynamic pressure, and mesh motion were solved in GOMA, using the finite-element method and a fully-coupled implicit solution scheme via Newton's method. By treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and by repeatedly performing re-meshing with CUBIT and re-mapping with MAPVAR, the moving deposition surfaces were tracked explicitly from start of deposition until the trenches were filled with metal, thus enabling the computation of local current densities that potentially influence the microstructure and frictional/mechanical properties of the deposit. The multi-dimensional, multi-species, transient computational framework was demonstrated in case studies of two-dimensional nickel electrodeposition in single and multiple trenches, without and with bath stirring or forced flow. Effects of buoyancy-induced convection on deposition were also investigated. To further illustrate its utility, the framework was employed to simulate deposition in microscreen-based LIGA molds. Lastly, future needs for modeling LIGA electrodeposition are discussed.

  1. Multi-dimensional knowledge translation: enabling health informatics capacity audits using patient journey models.

    PubMed

    Catley, Christina; McGregor, Carolyn; Percival, Jennifer; Curry, Joanne; James, Andrew

    2008-01-01

    This paper presents a multi-dimensional approach to knowledge translation, enabling results obtained from a survey evaluating the uptake of Information Technology within Neonatal Intensive Care Units to be translated into knowledge, in the form of health informatics capacity audits. Survey data, having multiple roles, patient care scenarios, levels, and hospitals, is translated using a structured data modeling approach, into patient journey models. The data model is defined such that users can develop queries to generate patient journey models based on a pre-defined Patient Journey Model architecture (PaJMa). PaJMa models are then analyzed to build capacity audits. Capacity audits offer a sophisticated view of health informatics usage, providing not only details of what IT solutions a hospital utilizes, but also answering the questions: when, how and why, by determining when the IT solutions are integrated into the patient journey, how they support the patient information flow, and why they improve the patient journey.

  2. Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption

    NASA Astrophysics Data System (ADS)

    Saritha, R.; Vinod Chandra, S. S.

    2017-08-01

    In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.

  3. Wildfire Detection using by Multi Dimensional Histogram in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Honda, K.; Kimura, K.; Honma, T.

    2008-12-01

    forest in Kalimantan, Indonesia and around Chiang Mai, Thailand. But the ground truth data in these areas is lesser than the one in Alaska. Our method needs lots of accurate observed data to make multi-dimensional histogram in the same area. In this study, we can show the system to select wildfire data efficiently from satellite imagery. Furthermore, the development of multi-dimensional histogram from past fire data makes it possible to detect wildfires accurately.

  4. Helical screw expander evaluation project

    NASA Technical Reports Server (NTRS)

    Mckay, R.

    1982-01-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  5. Helical screw expander evaluation project

    NASA Astrophysics Data System (ADS)

    McKay, R.

    1982-03-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  6. Creating Robust Evaluation of ATE Projects

    ERIC Educational Resources Information Center

    Eddy, Pamela L.

    2017-01-01

    Funded grant projects all involve some form of evaluation, and Advanced Technological Education (ATE) grants are no exception. Program evaluation serves as a critical component not only for evaluating if a project has met its intended and desired outcomes, but the evaluation process is also a central feature of the grant application itself.…

  7. Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression.

    PubMed

    Riaz, Nadeem; Shanker, Piyush; Wiersma, Rodney; Gudmundsson, Olafur; Mao, Weihua; Widrow, Bernard; Xing, Lei

    2009-10-07

    Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.

  8. The development of a multi-dimensional gambling accessibility scale.

    PubMed

    Hing, Nerilee; Haw, John

    2009-12-01

    The aim of the current study was to develop a scale of gambling accessibility that would have theoretical significance to exposure theory and also serve to highlight the accessibility risk factors for problem gambling. Scale items were generated from the Productivity Commission's (Australia's Gambling Industries: Report No. 10. AusInfo, Canberra, 1999) recommendations and tested on a group with high exposure to the gambling environment. In total, 533 gaming venue employees (aged 18-70 years; 67% women) completed a questionnaire that included six 13-item scales measuring accessibility across a range of gambling forms (gaming machines, keno, casino table games, lotteries, horse and dog racing, sports betting). Also included in the questionnaire was the Problem Gambling Severity Index (PGSI) along with measures of gambling frequency and expenditure. Principal components analysis indicated that a common three factor structure existed across all forms of gambling and these were labelled social accessibility, physical accessibility and cognitive accessibility. However, convergent validity was not demonstrated with inconsistent correlations between each subscale and measures of gambling behaviour. These results are discussed in light of exposure theory and the further development of a multi-dimensional measure of gambling accessibility.

  9. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity.

    PubMed

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2015-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain.

  10. Multi-Dimensional Dynamics of Human Electromagnetic Brain Activity

    PubMed Central

    Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke

    2016-01-01

    Magnetoencephalography (MEG) and electroencephalography (EEG) are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency), which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory) analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain. PMID:26834608

  11. Multi-Dimensional Calibration of Impact Dynamic Models

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Annett, Martin S.; Jackson, Karen E.

    2011-01-01

    NASA Langley, under the Subsonic Rotary Wing Program, recently completed two helicopter tests in support of an in-house effort to study crashworthiness. As part of this effort, work is on-going to investigate model calibration approaches and calibration metrics for impact dynamics models. Model calibration of impact dynamics problems has traditionally assessed model adequacy by comparing time histories from analytical predictions to test at only a few critical locations. Although this approach provides for a direct measure of the model predictive capability, overall system behavior is only qualitatively assessed using full vehicle animations. In order to understand the spatial and temporal relationships of impact loads as they migrate throughout the structure, a more quantitative approach is needed. In this work impact shapes derived from simulated time history data are used to recommend sensor placement and to assess model adequacy using time based metrics and orthogonality multi-dimensional metrics. An approach for model calibration is presented that includes metric definitions, uncertainty bounds, parameter sensitivity, and numerical optimization to estimate parameters to reconcile test with analysis. The process is illustrated using simulated experiment data.

  12. QED multi-dimensional vacuum polarization finite-difference solver

    NASA Astrophysics Data System (ADS)

    Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo

    2015-11-01

    The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph

  13. Multi-dimensional Radiation Transport in Rapidly Expanding Envelopes

    NASA Astrophysics Data System (ADS)

    Höflich, P.

    2009-09-01

    We discuss the current status of our HYDrodynamical RAdiation (Hydra) code for rapidly expanding, low density envelopes commonly found in core collapse and thermonuclear supernovae (+ novae and WR stars). We focus on our current implementation of multi-dimensional, non-relativistic radiation transport neglecting all terms of higher order than 0(v/c). Line opacities are treated in the narrow line limit and consistency with the rate equations, radiation field and hydrodynamics is achieved iteratively in each time step via 'accelerated lambda iteration'. The solution of the transport is based on a hybrid scheme between a grid-based Variable Eddington Tensor and a Monte-Carlo method which is used for the auxiliary calculation to determine the Tensor elements. The advantages and limitation of our approach are discussed. We use this hybrid approach to reduce problems related to a grid-imposed directional dependence of the speed of light, and problems inherent to methods based on short and long characteristics for the Tensors. For short and long characteristics, the frequency or directional errors increase with the resolution or memory and computational requirements seem to be beyond feasibility, respectively. The limitations and the potential of our current approach is demonstrated by two simulations for thermonuclear supernovae.

  14. The PIE Institute Project: Final Evaluation Report

    ERIC Educational Resources Information Center

    St. John, Mark; Carroll, Becky; Helms, Jen; Smith, Anita

    2008-01-01

    The Playful Invention and Exploration (PIE) Institute project was funded in 2005 by the National Science Foundation (NSF). For the past three years, Inverness Research has served as the external evaluator for the PIE project. The authors' evaluation efforts have included extensive observation and documentation of PIE project activities; ongoing…

  15. Evaluation of Project Symbiosis: An Interdisciplinary Science Education Project.

    ERIC Educational Resources Information Center

    Altschuld, James W.

    1993-01-01

    The goal of this report is to provide a summary of the evaluation of Project Symbiosis which focused on enhancing the teaching of science principles in high school agriculture courses. The project initially involved 15 teams of science and agriculture teachers and was characterized by an extensive evaluation component consisting of six formal…

  16. Multi-scanning mechanism enabled rapid non-mechanical multi-dimensional KTN beam deflector

    NASA Astrophysics Data System (ADS)

    Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Yin, Shizhuo; Hoffman, Robert C.

    2016-09-01

    In this paper, a multi-dimensional KTN beam deflector is presented. The multi-scanning mechanisms, including space-charge- controlled beam deflection, composition gradient-induced beam deflection, and temperature gradient-induced beam deflection are harnessed. Since multi-dimensional scanning can be realized in a single KTN crystal, it represents a compact and cost-effective approach to realize multi-dimensional scanning, which can be very useful for many applications, including high speed, high resolution imaging, and rapid 3D printing.

  17. Project Performance Evaluation Using Deep Belief Networks

    NASA Astrophysics Data System (ADS)

    Nguvulu, Alick; Yamato, Shoso; Honma, Toshihisa

    A Project Assessment Indicator (PAI) Model has recently been applied to evaluate monthly project performance based on 15 project elements derived from the project management (PM) knowledge areas. While the PAI Model comprehensively evaluates project performance, it lacks objectivity and universality. It lacks objectivity because experts assign model weights intuitively based on their PM skills and experience. It lacks universality because the allocation of ceiling scores to project elements is done ad hoc based on the empirical rule without taking into account the interactions between the project elements. This study overcomes these limitations by applying a DBN approach where the model automatically assigns weights and allocates ceiling scores to the project elements based on the DBN weights which capture the interaction between the project elements. We train our DBN on 5 IT projects of 12 months duration and test it on 8 IT projects with less than 12 months duration. We completely eliminate the manual assigning of weights and compute ceiling scores of project elements based on DBN weights. Our trained DBN evaluates monthly project performance of the 8 test projects based on the 15 project elements to within a monthly relative error margin of between ±1.03 and ±3.30%.

  18. Stochastic Modeling of Multi-Dimensional Precipitation Fields.

    NASA Astrophysics Data System (ADS)

    Yoo, Chulsang

    1995-01-01

    A new multi-dimensional stochastic precipitation model is proposed with major emphasis on its spectral structure. As a hyperbolic type of stochastic partial differential equation, this model is characterized by having a small set of parameters, which could be easily estimated. These characteristics are similar to those of the noise forced diffusive precipitation model, but representation of the physics and statistical features of the precipitation field is better as in the WGR precipitation model. The model derivation was based on the AR (Auto Regressive) process considering advection and diffusion, the dominant statistical and physical characteristics of the precipitation field propagation. The model spectrum showed a good match for the GATE spectrum developed by Nakamoto et al. (1990). This model was also compared with the WGR model and the noise forced diffusive precipitation model analytically and through applications such as the sampling error estimation from space-borne sensors and raingages, and the ground-truth problem. The sampling error from space-borne sensors based on the proposed model was similar to that of the noise forced diffusive precipitation model but much smaller than that of the WGR model. Similar result was also obtained in the estimation of the sampling error from raingages. The dimensionless root mean square error of the proposed model in the ground-truth problem was in between those of the WGR model and the noise forced diffusive precipitation model, even though the difference was very small. Simulation study of the realistic precipitation field showed the effect of the variance of the noise forcing term on the life time of a storm event.

  19. Multi-dimensional conversion to the ion-hybrid mode

    SciTech Connect

    Tracy, E.R.; Kaufman, A.N.; Brizard, A.J.; Morehead, J.J.

    1996-12-31

    We first demonstrate that the dispersion matrix for linear conversion of a magnetosonic wave to an ion-hybrid wave (as in a D-T plasma) can be congruently transformed to Friedland`s normal form. As a result, this conversion can be represented as a two-step process of successive linear conversions in phase space. We then proceed to study the multi-dimensional case of tokamak geometry. After fourier transforming the toroidal dependence, we deal with the two-dimensional poloidal xy-plane and the two-dimensional k{sub x}k{sub y}-plane, forming a four-dimensional phase space. The dispersion manifolds for the magnetosonic wave [D{sub M} (x, k) = 0] and the ion-hybrid wave [D{sub H} (x, k) = 0] are each three-dimensional. (Their intersection, on which mode conversion occurs, is two-dimensional.) The incident magnetosonic wave (radiated by an antenna) is a two-dimensional set of rays (a lagrangian manifold): k(x) = {del}{theta}(x), with {theta}(x) the phase of the magnetosonic wave. When these rays pierce the ion-hybrid dispersion manifold, they convert to a set of ion-hybrid rays. Then, when those rays intersect the magnetosonic dispersion manifold, they convert to a set of {open_quotes}reflected{close_quotes} magnetosonic rays. This set of rays is distinct from the set of incident rays that have been reflected by the inner surface of the tokamak plasma. As a result, the total destructive interference that can occur in the one-dimensional case may become only partial. We explore the implications of this startling phenomenon both analytically and geometrically.

  20. Comprehensive multi-dimensional liquid chromatographic separation in biomedical and pharmaceutical analysis: a review.

    PubMed

    Dixon, Steven P; Pitfield, Ian D; Perrett, David

    2006-01-01

    'Multi-dimensional' liquid separations have a history almost as long as chromatography. In multi-dimensional chromatography the sample is subjected to more than one separation mechanism; each mechanism is considered an independent separation dimension. The separations can be carried out either offline via fraction collection, or directly coupled online. Early multi-dimensional separations using combinations of paper chromatography, electrophoresis and gels, in both planar and columnar modes are reviewed. Developments in HPLC have increased the number of measurable analytes in ever more complex matrices, and this has led to the concept of 'global metabolite profiling'. This review focuses on the theory and practice of modern 'comprehensive' multi-dimensional liquid chromatography when applied to biomedical and pharmaceutical analysis.

  1. Femtosecond laser induced surface deformation in multi-dimensional data storage

    NASA Astrophysics Data System (ADS)

    Hu, Yanlei; Chen, Yuhang; Li, Jiawen; Hu, Daqiao; Chu, Jiaru; Zhang, Qijin; Huang, Wenhao

    2012-12-01

    We investigate the surface deformation in two-photon induced multi-dimensional data storage. Both experimental evidence and theoretical analysis are presented to demonstrate the surface characteristics and formation mechanism in azo-containing material. The deformation reveals strong polarization dependence and has a topographic effect on multi-dimensional encoding. Different stages of data storage process are finally discussed taking into consideration the surface deformation formation.

  2. Comprehensive Evaluation Project. Final Report.

    ERIC Educational Resources Information Center

    1969

    This project sought to develop a set of tests for the assessment of the basic literacy and occupational cognizance of pupils in those public elementary and secondary schools, including vocational schools, receiving services through Federally supported educational programs and projects. The assessment is to produce generalizable average scores for…

  3. Multi-dimensional Modeling of Fullerene (C60) Nanoparticle Transport in the Subsurface Environment

    NASA Astrophysics Data System (ADS)

    Bai, C.; Li, Y.

    2011-12-01

    The escalating production and consumption of engineered nanomaterials may lead to increased release into groundwater. A number of studies have revealed the potential human health effects and aquatic toxicity of nanomaterials. Understanding the fate and transport of engineered nanomaterials is very important for evaluating their potential risks to human and ecological health. While a lot of efforts have been put forward in this area, limited work has been conducted to evaluate engineered nanomaterial transport in multi-dimension and at field scale. In this work, we simulate the transport of fullerene aggregates (nC60), a widely used engineered nanomaterial, in a multi-dimensional environment. A Modular Three-Dimensional Multispecies Transport Model (MT3DMS) was modified to incorporate the transport and retention of nC60. The modified MT3DMS was validated by comparing with analytical solutions and one-dimensional numerical simulation results. The validated simulator was then used to simulate nC60 transport in two- and three-dimensional field sites. Hypothetical scenarios for nanomaterial entering the subsurface environment, including entering from an injection well and releasing from a waste site were investigated. Influences of injection rate, groundwater velocity, ground water recharge rate, subsurface heterogeneity, and nanomaterial size and surface property were evaluated. Insights gained from this work will be discussed.

  4. Hierarchical multi-dimensional limiting strategy for correction procedure via reconstruction

    NASA Astrophysics Data System (ADS)

    Park, Jin Seok; Kim, Chongam

    2016-03-01

    Hierarchical multi-dimensional limiting process (MLP) is improved and extended for flux reconstruction or correction procedure via reconstruction (FR/CPR) on unstructured grids. MLP was originally developed in finite volume method (FVM) and it provides an accurate, robust and efficient oscillation-control mechanism in multiple dimensions for linear reconstruction. This limiting philosophy can be hierarchically extended into higher-order Pn approximation or reconstruction. The resulting algorithm is referred to as the hierarchical MLP and facilitates detailed capture of flow structures while maintaining formal order-of-accuracy in a smooth region and providing accurate non-oscillatory solutions across a discontinuous region. This algorithm was developed within modal DG framework, but it can also be formulated into a nodal framework, most notably the FR/CPR framework. Troubled-cells are detected by applying the MLP concept, and the final accuracy is determined by a projection procedure and the hierarchical MLP limiting step. Extensive numerical analyses and computations, ranging from two-dimensional to three-dimensional fluid systems, have demonstrated that the proposed limiting approach yields outstanding performances in capturing compressible inviscid and viscous flow features.

  5. Techniques for Project Evaluation. A Selected Bibliography.

    ERIC Educational Resources Information Center

    Boston, Guy D.

    This annotated bibliography of documents discussing program evaluation methodologies was compiled in order to help federal, state, and local law enforcement agencies improve their evaluation activities. The three major categories include: (1) techniques and methodology for evaluation of criminal justice projects, (2) evaluation methods and…

  6. Evaluating Learning: An Action Project.

    ERIC Educational Resources Information Center

    Eiss, Albert F.

    This booklet was developed to help teachers evaluate student courses. It is not intended to provide the basis for a total evaluation, but as a "quick and easy" method to describe the basis of awarding student grades; identify ways in which to evaluate the effectiveness of a course of study; analyze the cognitive levels of test items; list the real…

  7. An Evaluation of Project PLAN.

    ERIC Educational Resources Information Center

    Patterson, Eldon

    Project Plan, a computer managed individualized learning system developed by the Westinghouse Learning Corporation, was introduced into the St. Louis Public Schools under a Title III grant of the Elementary and Secondary Education Act. The program, offering individualized education in reading, language arts, mathematics, science, and social…

  8. Project HEED. Final Evaluation Report.

    ERIC Educational Resources Information Center

    Hughes, Orval D.

    During 1972-73, Project HEED (Heed Ethnic Educational Depolarization) involved 1,350 Indian students in 60 classrooms at Sells, Topowa, San Carlos, Rice, Many Farms, Hotevilla, Peach Springs, and Sacaton. Primary objectives were: (1) improvement in reading skills, (2) development of cultural awareness, and (3) providing for the Special Education…

  9. Multi-Dimensional Damage Detection for Surfaces and Structures

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Roberson, Luke; Medelius, Pedro; Gibson, Tracy; Parks, Steen; Snyder, Sarah

    2013-01-01

    Current designs for inflatable or semi-rigidized structures for habitats and space applications use a multiple-layer construction, alternating thin layers with thicker, stronger layers, which produces a layered composite structure that is much better at resisting damage. Even though such composite structures or layered systems are robust, they can still be susceptible to penetration damage. The ability to detect damage to surfaces of inflatable or semi-rigid habitat structures is of great interest to NASA. Damage caused by impacts of foreign objects such as micrometeorites can rupture the shell of these structures, causing loss of critical hardware and/or the life of the crew. While not all impacts will have a catastrophic result, it will be very important to identify and locate areas of the exterior shell that have been damaged by impacts so that repairs (or other provisions) can be made to reduce the probability of shell wall rupture. This disclosure describes a system that will provide real-time data regarding the health of the inflatable shell or rigidized structures, and information related to the location and depth of impact damage. The innovation described here is a method of determining the size, location, and direction of damage in a multilayered structure. In the multi-dimensional damage detection system, layers of two-dimensional thin film detection layers are used to form a layered composite, with non-detection layers separating the detection layers. The non-detection layers may be either thicker or thinner than the detection layers. The thin-film damage detection layers are thin films of materials with a conductive grid or striped pattern. The conductive pattern may be applied by several methods, including printing, plating, sputtering, photolithography, and etching, and can include as many detection layers that are necessary for the structure construction or to afford the detection detail level required. The damage is detected using a detector or

  10. Evaluating success levels of mega-projects

    NASA Technical Reports Server (NTRS)

    Kumaraswamy, Mohan M.

    1994-01-01

    Today's mega-projects transcend the traditional trajectories traced within national and technological limitations. Powers unleashed by internationalization of initiatives, in for example space exploration and environmental protection, are arguably only temporarily suppressed by narrower national, economic, and professional disagreements as to how best they should be harnessed. While the world gets its act together there is time to develop the technologies of such supra-mega-project management that will synergize truly diverse resources and smoothly mesh their interfaces. Such mega-projects and their management need to be realistically evaluated, when implementing such improvements. This paper examines current approaches to evaluating mega-projects and questions the validity of extrapolations to the supra-mega-projects of the future. Alternatives to improve such evaluations are proposed and described.

  11. The Art of Extracting One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.; Gaffney, R. L.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e:g: thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  12. The Extraction of One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, Robert A.; Gaffney, Richard L., Jr.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e.g. thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  13. Evaluating a Project on Roma Education

    ERIC Educational Resources Information Center

    Georgiadis, Fokion; Nikolajevic, Dragana; van Driel, Barry

    2011-01-01

    This research note is based on the evaluation of the Comenius project Teacher-IN-SErvice-Training-for-Roma-inclusion ("INSETRom"). The project represented an international effort that was undertaken to bridge the gap between Roma and non-Roma communities and to improve the educational attainment of Roma children in the mainstream…

  14. Evaluation Report: The Home Visit Project.

    ERIC Educational Resources Information Center

    Cowan, Geni; Bobby, Kim; St. Roseman, Paul; Echandia, Adriana

    This paper summarizes the "Year 3 Evaluation" of the Home Visit Project currently operating in the Sacramento City Unified School District. The project's purpose is to strengthen the relationship between home and school to enhance and enrich student-teacher interactions and relationships, to improve the frequency and quality of…

  15. Evaluation of the Law Focus Curriculum Project.

    ERIC Educational Resources Information Center

    Watson, Patricia J.; Workman, Eva Mae

    1974-01-01

    This evaluation of the Law Focused Curriculum Project of the Oklahoma Public Schools analyzes the human and nonhuman resources utilized in the project, and the nature and extent of activities. The first part of the document examines the program and its objectives. School-age citizens are to become acquainted with the law, the functions and…

  16. Evaluating a Project on Roma Education

    ERIC Educational Resources Information Center

    Georgiadis, Fokion; Nikolajevic, Dragana; van Driel, Barry

    2011-01-01

    This research note is based on the evaluation of the Comenius project Teacher-IN-SErvice-Training-for-Roma-inclusion ("INSETRom"). The project represented an international effort that was undertaken to bridge the gap between Roma and non-Roma communities and to improve the educational attainment of Roma children in the mainstream…

  17. 5 CFR 470.317 - Project evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Project evaluation. 470.317 Section 470.317 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to...

  18. 5 CFR 470.317 - Project evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Project evaluation. 470.317 Section 470.317 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to...

  19. 5 CFR 470.317 - Project evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Project evaluation. 470.317 Section 470.317 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to...

  20. Semantic Differential Scale Method Can Reveal Multi-Dimensional Aspects of Mind Perception

    PubMed Central

    Takahashi, Hideyuki; Ban, Midori; Asada, Minoru

    2016-01-01

    As humans, we tend to perceive minds in both living and non-living entities, such as robots. From a questionnaire developed in a previous mind perception study, authors found that perceived minds could be located on two dimensions “experience” and “agency.” This questionnaire allowed the assessment of how we perceive minds of various entities from a multi-dimensional point of view. In this questionnaire, subjects had to evaluate explicit mental capacities of target characters (e.g., capacity to feel hunger). However, we sometimes perceive minds in non-living entities, even though we cannot attribute these evidently biological capacities to the entity. In this study, we performed a large-scale web survey to assess mind perception by using the semantic differential scale method. We revealed that two mind dimensions “emotion” and “intelligence,” respectively, corresponded to the two mind dimensions (experience and agency) proposed in a previous mind perception study. We did this without having to ask about specific mental capacities. We believe that the semantic differential scale is a useful method to assess the dimensions of mind perception especially for non-living entities that are hard to be attributed to biological capacities. PMID:27853445

  1. Semantic Differential Scale Method Can Reveal Multi-Dimensional Aspects of Mind Perception.

    PubMed

    Takahashi, Hideyuki; Ban, Midori; Asada, Minoru

    2016-01-01

    As humans, we tend to perceive minds in both living and non-living entities, such as robots. From a questionnaire developed in a previous mind perception study, authors found that perceived minds could be located on two dimensions "experience" and "agency." This questionnaire allowed the assessment of how we perceive minds of various entities from a multi-dimensional point of view. In this questionnaire, subjects had to evaluate explicit mental capacities of target characters (e.g., capacity to feel hunger). However, we sometimes perceive minds in non-living entities, even though we cannot attribute these evidently biological capacities to the entity. In this study, we performed a large-scale web survey to assess mind perception by using the semantic differential scale method. We revealed that two mind dimensions "emotion" and "intelligence," respectively, corresponded to the two mind dimensions (experience and agency) proposed in a previous mind perception study. We did this without having to ask about specific mental capacities. We believe that the semantic differential scale is a useful method to assess the dimensions of mind perception especially for non-living entities that are hard to be attributed to biological capacities.

  2. A Generic multi-dimensional feature extraction method using multiobjective genetic programming.

    PubMed

    Zhang, Yang; Rockett, Peter I

    2009-01-01

    In this paper, we present a generic feature extraction method for pattern classification using multiobjective genetic programming. This not only evolves the (near-)optimal set of mappings from a pattern space to a multi-dimensional decision space, but also simultaneously optimizes the dimensionality of that decision space. The presented framework evolves vector-to-vector feature extractors that maximize class separability. We demonstrate the efficacy of our approach by making statistically-founded comparisons with a wide variety of established classifier paradigms over a range of datasets and find that for most of the pairwise comparisons, our evolutionary method delivers statistically smaller misclassification errors. At very worst, our method displays no statistical difference in a few pairwise comparisons with established classifier/dataset combinations; crucially, none of the misclassification results produced by our method is worse than any comparator classifier. Although principally focused on feature extraction, feature selection is also performed as an implicit side effect; we show that both feature extraction and selection are important to the success of our technique. The presented method has the practical consequence of obviating the need to exhaustively evaluate a large family of conventional classifiers when faced with a new pattern recognition problem in order to attain a good classification accuracy.

  3. Monitoring and Evaluating Nonpoint Source Watershed Projects

    EPA Pesticide Factsheets

    This guide is written primarily for those who develop and implement monitoring plans for watershed management projects. it can also be used evaluate the technical merits of monitoring proposals they might sponsor. It is an update to the 1997 Guide.

  4. Multi-dimensional high-order numerical schemes for Lagrangian hydrodynamics

    SciTech Connect

    Dai, William W; Woodward, Paul R

    2009-01-01

    An approximate solver for multi-dimensional Riemann problems at grid points of unstructured meshes, and a numerical scheme for multi-dimensional hydrodynamics have been developed in this paper. The solver is simple, and is developed only for the use in numerical schemes for hydrodynamics. The scheme is truely multi-dimensional, is second order accurate in both space and time, and satisfies conservation laws exactly for mass, momentum, and total energy. The scheme has been tested through numerical examples involving strong shocks. It has been shown that the scheme offers the principle advantages of high-order Codunov schemes; robust operation in the presence of very strong shocks and thin shock fronts.

  5. Multi-dimensional temporal abstraction and data mining of medical time series data: trends and challenges.

    PubMed

    Catley, Christina; Stratti, Heidi; McGregor, Carolyn

    2008-01-01

    This paper presents emerging trends in the area of temporal abstraction and data mining, as applied to multi-dimensional data. The clinical context is that of Neonatal Intensive Care, an acute care environment distinguished by multi-dimensional and high-frequency data. Six key trends are identified and classified into the following categories: (1) data; (2) results; (3) integration; and (4) knowledge base. These trends form the basis of next-generation knowledge discovery in data systems, which must address challenges associated with supporting multi-dimensional and real-world clinical data, as well as null hypothesis testing. Architectural drivers for frameworks that support data mining and temporal abstraction include: process-level integration (i.e. workflow order); synthesized knowledge bases for temporal abstraction which combine knowledge derived from both data mining and domain experts; and system-level integration.

  6. Data Mining in Multi-Dimensional Functional Data for Manufacturing Fault Diagnosis

    SciTech Connect

    Jeong, Myong K; Kong, Seong G; Omitaomu, Olufemi A

    2008-09-01

    Multi-dimensional functional data, such as time series data and images from manufacturing processes, have been used for fault detection and quality improvement in many engineering applications such as automobile manufacturing, semiconductor manufacturing, and nano-machining systems. Extracting interesting and useful features from multi-dimensional functional data for manufacturing fault diagnosis is more difficult than extracting the corresponding patterns from traditional numeric and categorical data due to the complexity of functional data types, high correlation, and nonstationary nature of the data. This chapter discusses accomplishments and research issues of multi-dimensional functional data mining in the following areas: dimensionality reduction for functional data, multi-scale fault diagnosis, misalignment prediction of rotating machinery, and agricultural product inspection based on hyperspectral image analysis.

  7. Development of multi-dimensional body image scale for malaysian female adolescents.

    PubMed

    Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs.

  8. Development of multi-dimensional body image scale for malaysian female adolescents

    PubMed Central

    Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs. PMID:20126371

  9. The DLESE Evaluation Core Services Project

    NASA Astrophysics Data System (ADS)

    Buhr, S. M.; Barker, L. J.; Reeves, T. C.

    2003-12-01

    The DLESE Evaluation Core Service project will conduct evaluation of DLESE and provide evaluation consultation, resources and services to the DLESE community. Through this work we anticipate that we will learn more about the impact and use of digital libraries, and will promote an evaluation mindset within the geoscience education community. Activities of the DLESE Evaluation Service team include 1) evaluation planning for and of DLESE, 2) conducting formative evaluation of DLESE (user needs, data access, collections, outreach), 3) conducting classroom evaluation of DLESE use on teaching practices and learning outcomes, and 4) collection, synthesis, and reporting of evaluation findings garnered from all core teams and major projects. Many opportunities for community involvement exist. A strand group convened during the 2004 DLESE Annual Meeting took DLESE Evaluation as their topic, provided recommendations and will continue their activities through the year. The related Evaluation Toolkit collection is now discoverable through DLESE, and upcoming activities of all the core teams will provide evaluation opportunities to be described. Other community opportunities include consulting with Evaluation Service for education grant proposals, attending an evaluation workshop,and applying for an Evaluation Minigrant (up to \\$5K per award) Progress to date will be discussed, the Evaluation Core Services team members will be introduced, and plans and opportunities will be described in more detail.

  10. International decay data evaluation project

    SciTech Connect

    Helmer, R.G.

    1996-10-01

    Basic concepts of, and information from, radionuclide decay are used in many applications. The author limits this discussion to the data needed for applied {gamma}-ray spectrometry; this includes applications such as nuclide identification and quantitative assay. Many of these applications require a knowledge of half-lives and radiation energies and emission probabilities. For over 50 years, people have compiled and evaluated measured data with the goal of obtaining the best values of these quantities. This has resulted in numerous sets of recommended values, many of which still have scientific, historical, or national reasons for existing. These sets show varying degrees of agreement and disagreement in the quoted values and varying time lags in incorporating new and improved experimental results. A new informational international group has been formed to carry out evaluations for radionuclides of importance in applications; it is expected that the results will become an authoritative and widely accepted set of decay data.

  11. Project SAVE: Evaluation of Pilot Test Results

    ERIC Educational Resources Information Center

    Bell, Mary Lou; Bliss, Kappie

    The long-term goal of Project SAVE (Stop Alcohol Violations Early) is to reduce underage drinking. When a major revision of the program was initiated, the pilot program was evaluated for statistically measurable changes against short-term goals. The results of that evaluation are presented here. Four elements were included in the evaluation…

  12. Design of a Multi Dimensional Database for the Archimed DataWarehouse.

    PubMed

    Bréant, Claudine; Thurler, Gérald; Borst, François; Geissbuhler, Antoine

    2005-01-01

    The Archimed data warehouse project started in 1993 at the Geneva University Hospital. It has progressively integrated seven data marts (or domains of activity) archiving medical data such as Admission/Discharge/Transfer (ADT) data, laboratory results, radiology exams, diagnoses, and procedure codes. The objective of the Archimed data warehouse is to facilitate the access to an integrated and coherent view of patient medical in order to support analytical activities such as medical statistics, clinical studies, retrieval of similar cases and data mining processes. This paper discusses three principal design aspects relative to the conception of the database of the data warehouse: 1) the granularity of the database, which refers to the level of detail or summarization of data, 2) the database model and architecture, describing how data will be presented to end users and how new data is integrated, 3) the life cycle of the database, in order to ensure long term scalability of the environment. Both, the organization of patient medical data using a standardized elementary fact representation and the use of the multi dimensional model have proved to be powerful design tools to integrate data coming from the multiple heterogeneous database systems part of the transactional Hospital Information System (HIS). Concurrently, the building of the data warehouse in an incremental way has helped to control the evolution of the data content. These three design aspects bring clarity and performance regarding data access. They also provide long term scalability to the system and resilience to further changes that may occur in source systems feeding the data warehouse.

  13. Risk variables in evaluation of transport projects

    NASA Astrophysics Data System (ADS)

    Vařbuchta, Petr; Kovářová, Hana; Hromádka, Vít; Vítková, Eva

    2017-09-01

    Depending on the constantly increasing demands on assessment of investment projects, especially assessment of large-scale projects in transport and important European projects with wide impacts, there is constantly increasing focus on risk management, whether to find mitigations, creating corrective measures or their implementation in assessment, especially in the context of Cost-Benefit analysis. To project assessment is often used implementation of certain risk variables, which can generate negative impacts of project outputs in framework of assess. Especially in case of transportation infrastructure projects is taken much emphasis on the influence of risk variables. However, currently in case of assessment of transportation projects is in Czech Republic used a few risk variables, which occur in the most projects. This leads to certain limitation in framework of impact assessment of risk variables. This papers aims to specify a new risk variables and process of applying them to already executed project assessment. Based on changes generated by new risk variables will be evaluated differences between original and adapted assessment.

  14. Stakeholder approach for evaluating organizational change projects.

    PubMed

    Peltokorpi, Antti; Alho, Antti; Kujala, Jaakko; Aitamurto, Johanna; Parvinen, Petri

    2008-01-01

    This paper aims to create a model for evaluating organizational change initiatives from a stakeholder resistance viewpoint. The paper presents a model to evaluate change projects and their expected benefits. Factors affecting the challenge to implement change were defined based on stakeholder theory literature. The authors test the model's practical validity for screening change initiatives to improve operating room productivity. Change initiatives can be evaluated using six factors: the effect of the planned intervention on stakeholders' actions and position; stakeholders' capability to influence the project's implementation; motivation to participate; capability to change; change complexity; and management capability. The presented model's generalizability should be explored by filtering presented factors through a larger number of historical cases operating in different healthcare contexts. The link between stakeholders, the change challenge and the outcomes of change projects needs to be empirically tested. The proposed model can be used to prioritize change projects, manage stakeholder resistance and establish a better organizational and professional competence for managing healthcare organization change projects. New insights into existing stakeholder-related understanding of change project successes are provided.

  15. Strategic evaluation central to LNG project formation

    SciTech Connect

    Nissen, D.; DiNapoli, R.N.; Yost, C.C.

    1995-07-03

    An efficient-scale, grassroots LNG facility of about 6 million metric tons/year capacity requires a prestart-up outlay of $5 billion or more for the supply facilities--production, feedgas pipeline, liquefaction, and shipping. The demand side of the LNG chain requires a similar outlay, counting the import-regasification terminal and a combination of 5 gigawatts or more of electric power generation or the equivalent in city gas and industrial gas-using facilities. There exist no well-developed commodity markets for free-on-board (fob) or delivered LNG. A new LNG supply project is dedicated to its buyers. Indeed, the buyers` revenue commitment is the project`s only bankable asset. For the buyer to make this commitment, the supply venture`s capability and commitment must be credible: to complete the project and to deliver the LNG reliably over the 20+ years required to recover capital committed on both sides. This requirement has technical, economic, and business dimensions. In this article the authors describe a LNG project evaluation system and show its application to typical tasks: project cost of service and participant shares; LNG project competition; alternative project structures; and market competition for LNG-supplied electric power generation.

  16. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    SciTech Connect

    T. Downar

    2009-03-31

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system.

  17. A Replication Study on the Multi-Dimensionality of Online Social Presence

    ERIC Educational Resources Information Center

    Mykota, David B.

    2015-01-01

    The purpose of the present study is to conduct an external replication into the multi-dimensionality of social presence as measured by the Computer-Mediated Communication Questionnaire (Tu, 2005). Online social presence is one of the more important constructs for determining the level of interaction and effectiveness of learning in an online…

  18. A Multi-dimensional Cognitive Analysis of Undergraduate Physics Students' Understanding of Heat Conduction

    NASA Astrophysics Data System (ADS)

    Chiou, Guo-Li; Anderson, O. Roger

    2010-11-01

    This study proposes a multi-dimensional approach to investigate, represent, and categorize students' in-depth understanding of complex physics concepts. Clinical interviews were conducted with 30 undergraduate physics students to probe their understanding of heat conduction. Based on the data analysis, six aspects of the participants' responses were identified as nominal scales and designated as six dimensions in a multi-axis (star) diagram to represent their in-depth understanding of heat conduction. The results demonstrated a wide diversity of the participants' in-depth understanding of heat conduction. In addition, the proportions of participants' naive ideas in the six dimensions were low, and many of them used some viable, sophisticated rules for explaining relevant phenomena of heat conduction. Furthermore, the patterns of the multi-dimensional diagram illustrated that the participants who, across all dimensions, possessed scientifically accepted understanding performed better in the probes of their scientific explanations. This study also discusses the educational and instructional values of this multi-dimensional analysis, and particularly highlights the importance of investigating students' multi-dimensional understanding to more fully account for the large variance in individual differences likely to be encountered in instructional settings.

  19. A combined discontinuous Galerkin and finite volume scheme for multi-dimensional VPFP system

    SciTech Connect

    Asadzadeh, M.; Bartoszek, K.

    2011-05-20

    We construct a numerical scheme for the multi-dimensional Vlasov-Poisson-Fokker-Planck system based on a combined finite volume (FV) method for the Poisson equation in spatial domain and the streamline diffusion (SD) and discontinuous Galerkin (DG) finite element in time, phase-space variables for the Vlasov-Fokker-Planck equation.

  20. Multi-Dimensional Construct of Self-Esteem: Tools for Developmental Counseling.

    ERIC Educational Resources Information Center

    Norem-Hebeisen, Ardyth A.

    A multi-dimensional construct of self-esteem has been proposed and subjected to initial testing through design of a self-report instrument. Item clusters derived from Rao's canonical and principal axis factor analyses are consistent with the hypothesized construct and have substantial internal reliability. Factor analysis of item clusters produced…

  1. Higher order multi-dimensional extensions of Cesàro theorem

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi; Ji, Un Cig; Saitô, Kimiaki

    2015-12-01

    The Cesàro theorem is extended to the cases: (1) higher order Cesàro mean for sequence (discrete case); and (2) higher order, multi-dimensional and continuous Cesàro mean for functions. Also, we study the Cesàro theorem for the case of positive-order.

  2. A Multi-Dimensional Cognitive Analysis of Undergraduate Physics Students' Understanding of Heat Conduction

    ERIC Educational Resources Information Center

    Chiou, Guo-Li; Anderson, O. Roger

    2010-01-01

    This study proposes a multi-dimensional approach to investigate, represent, and categorize students' in-depth understanding of complex physics concepts. Clinical interviews were conducted with 30 undergraduate physics students to probe their understanding of heat conduction. Based on the data analysis, six aspects of the participants' responses…

  3. Evidencing Learning Outcomes: A Multi-Level, Multi-Dimensional Course Alignment Model

    ERIC Educational Resources Information Center

    Sridharan, Bhavani; Leitch, Shona; Watty, Kim

    2015-01-01

    This conceptual framework proposes a multi-level, multi-dimensional course alignment model to implement a contextualised constructive alignment of rubric design that authentically evidences and assesses learning outcomes. By embedding quality control mechanisms at each level for each dimension, this model facilitates the development of an aligned…

  4. Kullback-Leibler Information and Its Applications in Multi-Dimensional Adaptive Testing

    ERIC Educational Resources Information Center

    Wang, Chun; Chang, Hua-Hua; Boughton, Keith A.

    2011-01-01

    This paper first discusses the relationship between Kullback-Leibler information (KL) and Fisher information in the context of multi-dimensional item response theory and is further interpreted for the two-dimensional case, from a geometric perspective. This explication should allow for a better understanding of the various item selection methods…

  5. Developing a Hypothetical Multi-Dimensional Learning Progression for the Nature of Matter

    ERIC Educational Resources Information Center

    Stevens, Shawn Y.; Delgado, Cesar; Krajcik, Joseph S.

    2010-01-01

    We describe efforts toward the development of a hypothetical learning progression (HLP) for the growth of grade 7-14 students' models of the structure, behavior and properties of matter, as it relates to nanoscale science and engineering (NSE). This multi-dimensional HLP, based on empirical research and standards documents, describes how students…

  6. Impact of Malaysian Polytechnics' Head of Department Multi-Dimensional Leadership Orientation towards Lecturers Work Commitment

    ERIC Educational Resources Information Center

    Ibrahim, Mohammed Sani; Mujir, Siti Junaidah Mohd

    2012-01-01

    The purpose of this study is to determine if the multi-dimensional leadership orientation of the heads of departments in Malaysian polytechnics affects their leadership effectiveness and the lecturers' commitment to work as perceived by the lecturers. The departmental heads' leadership orientation was determined by five leadership dimensions…

  7. Developing a Hypothetical Multi-Dimensional Learning Progression for the Nature of Matter

    ERIC Educational Resources Information Center

    Stevens, Shawn Y.; Delgado, Cesar; Krajcik, Joseph S.

    2010-01-01

    We describe efforts toward the development of a hypothetical learning progression (HLP) for the growth of grade 7-14 students' models of the structure, behavior and properties of matter, as it relates to nanoscale science and engineering (NSE). This multi-dimensional HLP, based on empirical research and standards documents, describes how students…

  8. Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state

    NASA Astrophysics Data System (ADS)

    Li, Hai-Sheng; Zhu, Qingxin; Zhou, Ri-Gui; Song, Lan; Yang, Xing-jiang

    2014-04-01

    Multi-dimensional color image processing has two difficulties: One is that a large number of bits are needed to store multi-dimensional color images, such as, a three-dimensional color image of needs bits. The other one is that the efficiency or accuracy of image segmentation is not high enough for some images to be used in content-based image search. In order to solve the above problems, this paper proposes a new representation for multi-dimensional color image, called a -qubit normal arbitrary quantum superposition state (NAQSS), where qubits represent colors and coordinates of pixels (e.g., represent a three-dimensional color image of only using 30 qubits), and the remaining 1 qubit represents an image segmentation information to improve the accuracy of image segmentation. And then we design a general quantum circuit to create the NAQSS state in order to store a multi-dimensional color image in a quantum system and propose a quantum circuit simplification algorithm to reduce the number of the quantum gates of the general quantum circuit. Finally, different strategies to retrieve a whole image or the target sub-image of an image from a quantum system are studied, including Monte Carlo sampling and improved Grover's algorithm which can search out a coordinate of a target sub-image only running in where and are the numbers of pixels of an image and a target sub-image, respectively.

  9. Kullback-Leibler Information and Its Applications in Multi-Dimensional Adaptive Testing

    ERIC Educational Resources Information Center

    Wang, Chun; Chang, Hua-Hua; Boughton, Keith A.

    2011-01-01

    This paper first discusses the relationship between Kullback-Leibler information (KL) and Fisher information in the context of multi-dimensional item response theory and is further interpreted for the two-dimensional case, from a geometric perspective. This explication should allow for a better understanding of the various item selection methods…

  10. Development of a Multi-Dimensional Scale for PDD and ADHD

    ERIC Educational Resources Information Center

    Funabiki, Yasuko; Kawagishi, Hisaya; Uwatoko, Teruhisa; Yoshimura, Sayaka; Murai, Toshiya

    2011-01-01

    A novel assessment scale, the multi-dimensional scale for pervasive developmental disorder (PDD) and attention-deficit/hyperactivity disorder (ADHD) (MSPA), is reported. Existing assessment scales are intended to establish each diagnosis. However, the diagnosis by itself does not always capture individual characteristics or indicate the level of…

  11. Development of a Multi-Dimensional Scale for PDD and ADHD

    ERIC Educational Resources Information Center

    Funabiki, Yasuko; Kawagishi, Hisaya; Uwatoko, Teruhisa; Yoshimura, Sayaka; Murai, Toshiya

    2011-01-01

    A novel assessment scale, the multi-dimensional scale for pervasive developmental disorder (PDD) and attention-deficit/hyperactivity disorder (ADHD) (MSPA), is reported. Existing assessment scales are intended to establish each diagnosis. However, the diagnosis by itself does not always capture individual characteristics or indicate the level of…

  12. Impact of Malaysian Polytechnics' Head of Department Multi-Dimensional Leadership Orientation towards Lecturers Work Commitment

    ERIC Educational Resources Information Center

    Ibrahim, Mohammed Sani; Mujir, Siti Junaidah Mohd

    2012-01-01

    The purpose of this study is to determine if the multi-dimensional leadership orientation of the heads of departments in Malaysian polytechnics affects their leadership effectiveness and the lecturers' commitment to work as perceived by the lecturers. The departmental heads' leadership orientation was determined by five leadership dimensions…

  13. The Impact of Learner Characteristics on the Multi-Dimensional Construct of Social Presence

    ERIC Educational Resources Information Center

    Mykota, David

    2017-01-01

    This study explored the impact of learner characteristics on the multi-dimensional construct of social presence as measured by the computer-mediated communication questionnaire. Using Multiple Analysis of Variance findings reveal that the number of online courses taken and computer-mediated communication experience significantly affect the…

  14. Methodological Issues in Developing a Multi-Dimensional Coding Procedure for Small-Group Chat Communication

    ERIC Educational Resources Information Center

    Strijbos, Jan-Willem; Stahl, Gerry

    2007-01-01

    In CSCL research, collaboration through chat has primarily been studied in dyadic settings. This article discusses three issues that emerged during the development of a multi-dimensional coding procedure for small-group chat communication: (a) the unit of analysis and unit fragmentation, (b) the reconstruction of the response structure and (c)…

  15. Effects of bathymetric lidar errors on flow properties predicted with a multi-dimensional hydraulic model

    Treesearch

    J. McKean; D. Tonina; C. Bohn; C. W. Wright

    2014-01-01

    New remote sensing technologies and improved computer performance now allow numerical flow modeling over large stream domains. However, there has been limited testing of whether channel topography can be remotely mapped with accuracy necessary for such modeling. We assessed the ability of the Experimental Advanced Airborne Research Lidar, to support a multi-dimensional...

  16. A Multi-Dimensional Cognitive Analysis of Undergraduate Physics Students' Understanding of Heat Conduction

    ERIC Educational Resources Information Center

    Chiou, Guo-Li; Anderson, O. Roger

    2010-01-01

    This study proposes a multi-dimensional approach to investigate, represent, and categorize students' in-depth understanding of complex physics concepts. Clinical interviews were conducted with 30 undergraduate physics students to probe their understanding of heat conduction. Based on the data analysis, six aspects of the participants' responses…

  17. Evidencing Learning Outcomes: A Multi-Level, Multi-Dimensional Course Alignment Model

    ERIC Educational Resources Information Center

    Sridharan, Bhavani; Leitch, Shona; Watty, Kim

    2015-01-01

    This conceptual framework proposes a multi-level, multi-dimensional course alignment model to implement a contextualised constructive alignment of rubric design that authentically evidences and assesses learning outcomes. By embedding quality control mechanisms at each level for each dimension, this model facilitates the development of an aligned…

  18. Pedagogical Factors Stimulating the Self-Development of Students' Multi-Dimensional Thinking in Terms of Subject-Oriented Teaching

    ERIC Educational Resources Information Center

    Andreev, Valentin I.

    2014-01-01

    The main aim of this research is to disclose the essence of students' multi-dimensional thinking, also to reveal the rating of factors which stimulate the raising of effectiveness of self-development of students' multi-dimensional thinking in terms of subject-oriented teaching. Subject-oriented learning is characterized as a type of learning where…

  19. The Importance of a Multi-Dimensional Approach for Studying the Links between Food Access and Consumption1–3

    PubMed Central

    Rose, Donald; Bodor, J. Nicholas; Hutchinson, Paul L.; Swalm, Chris M.

    2010-01-01

    Research on neighborhood food access has focused on documenting disparities in the food environment and on assessing the links between the environment and consumption. Relatively few studies have combined in-store food availability measures with geographic mapping of stores. We review research that has used these multi-dimensional measures of access to explore the links between the neighborhood food environment and consumption or weight status. Early research in California found correlations between red meat, reduced-fat milk, and whole-grain bread consumption and shelf space availability of these products in area stores. Subsequent research in New York confirmed the low-fat milk findings. Recent research in Baltimore has used more sophisticated diet assessment tools and store-based instruments, along with controls for individual characteristics, to show that low availability of healthy food in area stores is associated with low-quality diets of area residents. Our research in southeastern Louisiana has shown that shelf space availability of energy-dense snack foods is positively associated with BMI after controlling for individual socioeconomic characteristics. Most of this research is based on cross-sectional studies. To assess the direction of causality, future research testing the effects of interventions is needed. We suggest that multi-dimensional measures of the neighborhood food environment are important to understanding these links between access and consumption. They provide a more nuanced assessment of the food environment. Moreover, given the typical duration of research project cycles, changes to in-store environments may be more feasible than changes to the overall mix of retail outlets in communities. PMID:20410084

  20. 23 CFR 505.11 - Project evaluation and rating.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... preliminary rating and evaluation at any point in the project development after the project's concept plan is... 23 Highways 1 2011-04-01 2011-04-01 false Project evaluation and rating. 505.11 Section 505.11... MANAGEMENT PROJECTS OF NATIONAL AND REGIONAL SIGNIFICANCE EVALUATION AND RATING § 505.11 Project...

  1. Numerical simulation of multi-dimensional NMR response in tight sandstone

    NASA Astrophysics Data System (ADS)

    Guo, Jiangfeng; Xie, Ranhong; Zou, Youlong; Ding, Yejiao

    2016-06-01

    Conventional logging methods have limitations in the evaluation of tight sandstone reservoirs. The multi-dimensional nuclear magnetic resonance (NMR) logging method has the advantage that it can simultaneously measure transverse relaxation time (T 2), longitudinal relaxation time (T 1) and diffusion coefficient (D). In this paper, we simulate NMR measurements of tight sandstone with different wettability and saturations by the random walk method and obtain the magnetization decays of Carr-Purcell-Meiboom-Gill pulse sequences with different wait times (TW) and echo spacings (TE) under a magnetic field gradient, resulting in D-T 2-T 1 maps by the multiple echo trains joint inversion method. We also study the effects of wettability, saturation, signal-to-noise ratio (SNR) of data and restricted diffusion on the D-T 2-T 1 maps in tight sandstone. The results show that with decreasing wetting fluid saturation, the surface relaxation rate of the wetting fluid gradually increases and the restricted diffusion phenomenon becomes more and more obvious, which leads to the wetting fluid signal moving along the direction of short relaxation and the direction of the diffusion coefficient decreasing in D-T 2-T 1 maps. Meanwhile, the non-wetting fluid position in D-T 2-T 1 maps does not change with saturation variation. With decreasing SNR, the ability to identify water and oil signals based on NMR maps gradually decreases. The wetting fluid D-T 1 and D-T 2 correlations in NMR diffusion-relaxation maps of tight sandstone are obtained through expanding the wetting fluid restricted diffusion models, and are further applied to recognize the wetting fluid in simulated D-T 2 maps and D-T 1 maps.

  2. Project BACSTOP Evaluation Report 1974-1975.

    ERIC Educational Resources Information Center

    Nelson, Neil; Martin, William

    Designed to observe changes in biracial student behavior brought about by Project BACSTOP (a series of structured experiences in a variety of wilderness settings meant to bring students of different races together in stressful adventure activities geared to promote interaction, communication, and cooperation), this evaluation studied five…

  3. The GLAD Project Evaluation Summary: 1994 Report.

    ERIC Educational Resources Information Center

    Boloz, Sigmund A.

    This report evaluates the Ganado Learning Arts Development Project (GLAD), a program implemented at the Ganado Primary School in Arizona. The school serves K-2 students from the Navajo reservation and emphasizes integration of traditional Navajo teachings and culture with Western knowledge. The report covers the following data: (1) student average…

  4. Federal Workplace Literacy Project. Internal Evaluation Report.

    ERIC Educational Resources Information Center

    Matuszak, David J.

    This report describes the following components of the Nestle Workplace Literacy Project: six job task analyses, curricula for six workplace basic skills training programs, delivery of courses using these curricula, and evaluation of the process. These six job categories were targeted for training: forklift loader/checker, BB's processing systems…

  5. Project ALERT. Workplace Education. External Evaluators Reports.

    ERIC Educational Resources Information Center

    Philippi, Jorie W.; Mikulecky, Larry; Lloyd, Paul

    This document contains four evaluations of Project ALERT (Adult Literacy Enhanced & Redefined through Training), a workplace literacy partnership of Wayne State University, the Detroit Public Schools, and several city organizations, unions, and manufacturers in the automobile industry that was formed to meet employees' job-specific basic skills…

  6. An Evaluation of the Connected Mathematics Project.

    ERIC Educational Resources Information Center

    Cain, Judith S.

    2002-01-01

    Evaluated the Connected Mathematics Project (CMP), a middle school reform mathematics curriculum used in Louisiana's Lafayette parish. Analysis of Iowa Test of Basic Skills and Louisiana Education Assessment Program mathematics data indicated that CMP schools significantly outperformed non-CMP schools. Surveys of teachers and students showed that…

  7. Workforce development and effective evaluation of projects.

    PubMed

    Dickerson, Claire; Green, Tess; Blass, Eddie

    The success of a project or programme is typically determined in relation to outputs. However, there is a commitment among UK public services to spending public funds efficiently and on activities that provide the greatest benefit to society. Skills for Health recognised the need for a tool to manage the complex process of evaluating project benefits. An integrated evaluation framework was developed to help practitioners identify, describe, measure and evaluate the benefits of workforce development projects. Practitioners tested the framework on projects within three NHS trusts and provided valuable feedback to support its development. The prospective approach taken to identify benefits and collect baseline data to support evaluation was positively received and the clarity and completeness of the framework, as well as the relevance of the questions, were commended. Users reported that the framework was difficult to complete; an online version could be developed, which might help to improve usability. Effective implementation of this approach will depend on the quality and usability of the framework, the willingness of organisations to implement it, and the presence or establishment of an effective change management culture.

  8. A Multi-Dimensional Measure of Vocational Identity Status

    ERIC Educational Resources Information Center

    Porfeli, Erik J.; Lee, Bora; Vondracek, Fred W.; Weigold, Ingrid K.

    2011-01-01

    Establishing a worker identity is among the most central aspects of the transition from adolescence to adulthood. Despite its importance, few measures with acceptable psychometric and conceptual characteristics exist to assess vocational identity statuses. This study reports the development and evaluation of the Vocational Identity Status…

  9. 23 CFR 505.11 - Project evaluation and rating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Project evaluation and rating. 505.11 Section 505.11... MANAGEMENT PROJECTS OF NATIONAL AND REGIONAL SIGNIFICANCE EVALUATION AND RATING § 505.11 Project evaluation and rating. (a) The Secretary shall evaluate and rate each proposed project as “highly recommended...

  10. A ray-based algorithm for multi-dimensional linearconversion

    SciTech Connect

    Tracy, Eugene R.; Kaufman, Allan N.; Jaun, Andre

    2004-04-19

    A numerical algorithm is proposed for connecting the incoming and outgoing wave fields in studies of linear conversion. This is the first such ray-based algorithm for wave conversion in multiple spatial dimensions. it is demonstrated that, aside from the overall phase of the coupling, one can directly evaluate all quantities needed for the connection coefficients from the ray geometry. The ray dynamics is generated using the determinant of the dispersion matrix as the hamiltonian. Using information available while following an incoming ray, the algorithm automatically detects that the ray has entered a conversion region, evaluates the transmission and conversion coefficients, and launches the transmitted ray. The algorithm does not require any prior knowledge of the geometry of the conversion region. The algorithm is illustrated using a two-dimensional toroidal model with resonant conversion from a magnetosonic to an ion-hybrid wave.

  11. Kenya's Radio Language Arts Project: evaluation results.

    PubMed

    Oxford, R L

    1985-01-01

    The Kenya Radio Language Arts Project (RLAP), which has just been completed, documents the effectiveness of interactive radio-based educational instruction. Analyses in the areas of listening, reading, speaking, and writing show that children in radio classrooms consistently scored better than children in nonradio classrooms in every test. An evaluation of the project was conducted with the assistance of the Center for Applied Linguistics (CAL). Evaluation results came from a variety of sources, including language tests, observations, interviews, demographic and administrative records, and an attitude survey. A large proportion of the project's students were considerably transient. Only 22% of the total student population of 3908 were "normal progression" students -- that is, they advanced regularly through their education during the life of the project. Students who moved from the area, failed a standard (grade), dropped out, or were otherwise untrackable, comprised the remaining 78% of the total. 7 districts were included in the project. Tests were developed for listening and reading in Standards 1, 2, and 3 and in speaking and writing in Standards 2 and 3. The achievement tests were based on the official Kenya curriculum for those standards, so as to measure achievement against the curriculum. Nearly all the differences were highly significant statistically, with a probability of less than 1 in 1000 that the findings could have occurred by chance. Standard 1 radio students scored nearly 8 points higher than did their counterparts in the control group. Standard 2 and 3 radio students outperformed the control students by 4 points. The radio group consistently outperformed the control group in reading, writing, and speaking. Unstructured interviews and observations were conducted by the RLAP field staff. Overwhelmingly positive attitudes about the project prevailed among project teachers and headmasters. The data demonstrate that RLAP works. In fact, it works so

  12. Discriminative Dimensionality Reduction for Multi-dimensional Sequences.

    PubMed

    Su, Bing; Ding, Xiaoqing; Wang, Hao; Wu, Ying

    2017-02-07

    Since the observables at particular time instants in a temporal sequence exhibit dependencies, they are not independent samples. Thus, it is not plausible to apply i.i.d. assumption-based dimensionality reduction methods to sequence data. This paper presents a novel supervised dimensionality reduction approach for sequence data, called Linear Sequence Discriminant Analysis (LSDA). It learns a linear discriminative projection of the feature vectors in sequences to a lower-dimensional subspace by maximizing the separability of the sequence classes such that the entire sequences are holistically discriminated. The sequence class separability is constructed based on the sequence statistics, and the use of different statistics produces different LSDA methods. This paper presents and compares two novel LSDA methods, namely M-LSDA and D-LSDA. M-LSDA extracts model-based statistics by exploiting the dynamical structure of the sequence classes, and D-LSDA extracts the distance-based statistics by computing the pairwise similarity of samples from the same sequence class. Extensive experiments on several different tasks have demonstrated the effectiveness and the general applicability of the proposed methods.

  13. Python Winding Itself Around Datacubes: How to Access Massive Multi-Dimensional Arrays in a Pythonic Way

    NASA Astrophysics Data System (ADS)

    Merticariu, Vlad; Misev, Dimitar; Baumann, Peter

    2017-04-01

    While python has developed into the lingua franca in Data Science there is often a paradigm break when accessing specialized tools. In particular for one of the core data categories in science and engineering, massive multi-dimensional arrays, out-of-memory solutions typically employ their own, different models. We discuss this situation on the example of the scalable open-source array engine, rasdaman ("raster data manager") which offers access to and processing of Petascale multi-dimensional arrays through an SQL-style array query language, rasql. Such queries are executed in the server on a storage engine utilizing adaptive array partitioning and based on a processing engine implementing a "tile streaming" paradigm to allow processing of arrays massively larger than server RAM. The rasdaman QL has acted as blueprint for forthcoming ISO Array SQL and the Open Geospatial Consortium (OGC) geo analytics language, Web Coverage Processing Service, adopted in 2008. Not surprisingly, rasdaman is OGC and INSPIRE Reference Implementation for their "Big Earth Data" standards suite. Recently, rasdaman has been augmented with a python interface which allows to transparently interact with the database (credits go to Siddharth Shukla's Master Thesis at Jacobs University). Programmers do not need to know the rasdaman query language, as the operators are silently transformed, through lazy evaluation, into queries. Arrays delivered are likewise automatically transformed into their python representation. In the talk, the rasdaman concept will be illustrated with the help of large-scale real-life examples of operational satellite image and weather data services, and sample python code.

  14. A multi-dimensional measure of vocational identity status.

    PubMed

    Porfeli, Erik J; Lee, Bora; Vondracek, Fred W; Weigold, Ingrid K

    2011-10-01

    Establishing a worker identity is among the most central aspects of the transition from adolescence to adulthood. Despite its importance, few measures with acceptable psychometric and conceptual characteristics exist to assess vocational identity statuses. This study reports the development and evaluation of the Vocational Identity Status Assessment (VISA), which is derived from established conceptual models and includes career exploration, commitment, and reconsideration dimensions. Results show that the VISA exhibited metric invariance across a high school and university sample. Cluster analyses demonstrated that the VISA consistently resolved six identity statuses across the two samples, supporting the previously established achieved, moratorium, foreclosed, and diffused statuses along with two additional statuses termed searching moratorium and undifferentiated. The identity statuses predicted differences in participants' work valences and well-being with the achieved and diffused statuses respectively exhibiting the most and least favorable characteristics. Implications, limitations, and suggestions for future research based upon these findings are offered.

  15. Small Commercial Program DOE Project: Impact evaluation

    SciTech Connect

    Bathgate, R.; Faust, S. )

    1992-08-12

    In 1991, Washington Electric Cooperative (WEC) implemented a Department of Energy grant to conduct a small commercial energy conservation project. The small commercial Mom, and Pop'' grocery stores within WEC's service territory were selected as the target market for the project. Energy Solid Waste Consultant's (E SWC) Impact Evaluation is documented here. The evaluation was based on data gathered from a variety of sources, including load profile metering, kWh submeters, elapsed time indicators, and billing histories. Five stores were selected to receive measures under this program: Waits River General Store, Joe's Pond Store, Hastings Store, Walden General Store, and Adamant Cooperative. Specific measures installed in each store and description of each are included.

  16. LOPA-based direct laser writing of multi-dimensional and multi-functional photonic submicrostructures

    NASA Astrophysics Data System (ADS)

    Mao, Fei; Tong, Quang Cong; Nguyen, Dam Thuy Trang; Huong, Au Thi; Odessey, Rachel; Saudrais, Florent; Lai, Ngoc Diep

    2017-02-01

    We have recently developed a simple fabrication technique, called low one-photon absorption (LOPA) direct laser writing (DLW), to realize multi-dimensional and multi-functional polymer-based photonic submicrostructures. This technique employs a continuous-wave laser at 532 nm-wavelength with only few milliwatts and a simple optical setup, allowing to decrease the cost of the fabrication system by a factor of ten as compared to a commercial DLW system. In this report, we present various photonic structures, such as 2D and 3D micro- resonators, photonic and magnetic submicrostructures, and nonlinear optical structures fabricated by this LOPA- based DLW method. We also discuss about potential applications of those fabricated multi-dimensional and multi-functional photonic submicrostructures in opto-electronics, bio, as well as in opto-mechanics.

  17. [Research on monitoring mechanical wear state based on oil spectrum multi-dimensional time series model].

    PubMed

    Xu, Chao; Zhang, Pei-lin; Ren, Guo-quan; Li, Bing; Yang, Ning

    2010-11-01

    A new method using oil atomic spectrometric analysis technology to monitor the mechanical wear state was proposed. Multi-dimensional time series model of oil atomic spectrometric data of running-in period was treated as the standard model. Residues remained after new data were processed by the standard model. The residues variance matrix was selected as the features of the corresponding wear state. Then, high dimensional feature vectors were reduced through the principal component analysis and the first three principal components were extracted to represent the wear state. Euclidean distance was computed for feature vectors to classify the testing samples. Thus, the mechanical wear state was identified correctly. The wear state of a specified track vehicle engine was effectively identified, which verified the validity of the proposed method. Experimental results showed that introducing the multi-dimensional time series model to oil spectrometric analysis can fuse the spectrum data and improve the accuracy of monitoring mechanical wear state.

  18. A Shell Multi-dimensional Hierarchical Cubing Approach for High-Dimensional Cube

    NASA Astrophysics Data System (ADS)

    Zou, Shuzhi; Zhao, Li; Hu, Kongfa

    The pre-computation of data cubes is critical for improving the response time of OLAP systems and accelerating data mining tasks in large data warehouses. However, as the sizes of data warehouses grow, the time it takes to perform this pre-computation becomes a significant performance bottleneck. In a high dimensional data warehouse, it might not be practical to build all these cuboids and their indices. In this paper, we propose a shell multi-dimensional hierarchical cubing algorithm, based on an extension of the previous minimal cubing approach. This method partitions the high dimensional data cube into low multi-dimensional hierarchical cube. Experimental results show that the proposed method is significantly more efficient than other existing cubing methods.

  19. Multi-dimensional Quasar Selection from Optical, Near-IR, and Astrometric Data

    NASA Astrophysics Data System (ADS)

    Richards, Gordon T.; Mehta, S. S.; Peters, C. M.; Myers, A. D.; Ross, N. P.

    2012-01-01

    In the future, quasar selection will be much more multi-dimensional than it is today. Algorithms will go far beyond simple optical color or variability selection. Instead quasar selection will rely on simultaneous usage of multi-wavelength photometry, variability, and even astrometry. The SDSS Southern Equatorial Stripe (aka Stripe 82) is an ideal proving ground for such future algorithms. Herein we take the first steps in true multi-dimensional analysis by describing an algorithm that uses multi-epoch optical data from the SDSS, near-IR data from UKIDSS, and astrometric information to select quasars (and determine photometric redshifts). We present the resulting catalog and compare our results to existing spectroscopic surveys.

  20. towards a theory-based multi-dimensional framework for assessment in mathematics: The "SEA" framework

    NASA Astrophysics Data System (ADS)

    Anku, Sitsofe E.

    1997-09-01

    Using the reform documents of the National Council of Teachers of Mathematics (NCTM) (NCTM, 1989, 1991, 1995), a theory-based multi-dimensional assessment framework (the "SEA" framework) which should help expand the scope of assessment in mathematics is proposed. This framework uses a context based on mathematical reasoning and has components that comprise mathematical concepts, mathematical procedures, mathematical communication, mathematical problem solving, and mathematical disposition.

  1. Localization of a multi-dimensional quantum walk with one defect

    NASA Astrophysics Data System (ADS)

    Fuda, Toru; Funakawa, Daiju; Suzuki, Akito

    2017-08-01

    In this paper, we introduce a multi-dimensional generalization of Kitagawa's split-step discrete-time quantum walk, study the spectrum of its evolution operator for the case of one-defect coins, and prove localization of the walk. Using a spectral mapping theorem, we can reduce the spectral analysis of the evolution operator to that of a discrete Schrödinger operator with variable coefficients, which is analyzed using the Feshbach map.

  2. High-value energy storage for the grid: a multi-dimensional look

    SciTech Connect

    Culver, Walter J.

    2010-12-15

    The conceptual attractiveness of energy storage in the electrical power grid has grown in recent years with Smart Grid initiatives. But cost is a problem, interwoven with the complexity of quantifying the benefits of energy storage. This analysis builds toward a multi-dimensional picture of storage that is offered as a step toward identifying and removing the gaps and ''friction'' that permeate the delivery chain from research laboratory to grid deployment. (author)

  3. High-Level Waste Tanks Multi-Dimensional Contaminant Transport Model Development Enhancements for 2000

    SciTech Connect

    Collard, L.B.

    2001-09-21

    A suite of multi-dimensional computer models was developed in 1999 (Collard and Flach) to analyze the transport of residual contamination from high-level waste tanks through the subsurface to seeplines. Enhancements in 2000 to those models include investigate the effect of numerical dispersion, develop a solubility-limited case for U and Pu, and develop a plan for a database as part of the Rapid Screening Tool and start to implement that plan.

  4. Organising multi-dimensional biological image information: the BioImage Database.

    PubMed

    Carazo, J M; Stelzer, E H; Engel, A; Fita, I; Henn, C; Machtynger, J; McNeil, P; Shotton, D M; Chagoyen, M; de Alarcón, P A; Fritsch, R; Heymann, J B; Kalko, S; Pittet, J J; Rodriguez-Tomé, P; Boudier, T

    1999-01-01

    Nowadays it is possible to unravel complex information at all levels of cellular organization by obtaining multi-dimensional image information. At the macromolecular level, three-dimensional (3D) electron microscopy, together with other techniques, is able to reach resolutions at the nanometer or subnanometer level. The information is delivered in the form of 3D volumes containing samples of a given function, for example, the electron density distribution within a given macromolecule. The same situation happens at the cellular level with the new forms of light microscopy, particularly confocal microscopy, all of which produce biological 3D volume information. Furthermore, it is possible to record sequences of images over time (videos), as well as sequences of volumes, bringing key information on the dynamics of living biological systems. It is in this context that work on BioImage started two years ago, and that its first version is now presented here. In essence, BioImage is a database specifically designed to contain multi-dimensional images, perform queries and interactively work with the resulting multi-dimensional information on the World Wide Web, as well as accomplish the required cross-database links. Two sister home pages of BioImage can be accessed at http://www. bioimage.org and http://www-embl.bioimage.org

  5. Dimensionality Reduction on Multi-Dimensional Transfer Functions for Multi-Channel Volume Data Sets

    PubMed Central

    Kim, Han Suk; Schulze, Jürgen P.; Cone, Angela C.; Sosinsky, Gina E.; Martone, Maryann E.

    2011-01-01

    The design of transfer functions for volume rendering is a non-trivial task. This is particularly true for multi-channel data sets, where multiple data values exist for each voxel, which requires multi-dimensional transfer functions. In this paper, we propose a new method for multi-dimensional transfer function design. Our new method provides a framework to combine multiple computational approaches and pushes the boundary of gradient-based multi-dimensional transfer functions to multiple channels, while keeping the dimensionality of transfer functions at a manageable level, i.e., a maximum of three dimensions, which can be displayed visually in a straightforward way. Our approach utilizes channel intensity, gradient, curvature and texture properties of each voxel. Applying recently developed nonlinear dimensionality reduction algorithms reduces the high-dimensional data of the domain. In this paper, we use Isomap and Locally Linear Embedding as well as a traditional algorithm, Principle Component Analysis. Our results show that these dimensionality reduction algorithms significantly improve the transfer function design process without compromising visualization accuracy. We demonstrate the effectiveness of our new dimensionality reduction algorithms with two volumetric confocal microscopy data sets. PMID:21841914

  6. Study on the construction of multi-dimensional Remote Sensing feature space for hydrological drought

    NASA Astrophysics Data System (ADS)

    Xiang, Daxiang; Tan, Debao; Cui, Yuanlai; Wen, Xiongfei; Shen, Shaohong; Li, Zhe

    2014-03-01

    Hydrological drought refers to an abnormal water shortage caused by precipitation and surface water shortages or a groundwater imbalance. Hydrological drought is reflected in a drop of surface water, decrease of vegetation productivity, increase of temperature difference between day and night and so on. Remote sensing permits the observation of surface water, vegetation, temperature and other information from a macro perspective. This paper analyzes the correlation relationship and differentiation of both remote sensing and surface measured indicators, after the selection and extraction a series of representative remote sensing characteristic parameters according to the spectral characterization of surface features in remote sensing imagery, such as vegetation index, surface temperature and surface water from HJ-1A/B CCD/IRS data. Finally, multi-dimensional remote sensing features such as hydrological drought are built on a intelligent collaborative model. Further, for the Dong-ting lake area, two drought events are analyzed for verification of multi-dimensional features using remote sensing data with different phases and field observation data. The experiments results proved that multi-dimensional features are a good method for hydrological drought.

  7. Dimensionality Reduction on Multi-Dimensional Transfer Functions for Multi-Channel Volume Data Sets.

    PubMed

    Kim, Han Suk; Schulze, Jürgen P; Cone, Angela C; Sosinsky, Gina E; Martone, Maryann E

    2010-09-21

    The design of transfer functions for volume rendering is a non-trivial task. This is particularly true for multi-channel data sets, where multiple data values exist for each voxel, which requires multi-dimensional transfer functions. In this paper, we propose a new method for multi-dimensional transfer function design. Our new method provides a framework to combine multiple computational approaches and pushes the boundary of gradient-based multi-dimensional transfer functions to multiple channels, while keeping the dimensionality of transfer functions at a manageable level, i.e., a maximum of three dimensions, which can be displayed visually in a straightforward way. Our approach utilizes channel intensity, gradient, curvature and texture properties of each voxel. Applying recently developed nonlinear dimensionality reduction algorithms reduces the high-dimensional data of the domain. In this paper, we use Isomap and Locally Linear Embedding as well as a traditional algorithm, Principle Component Analysis. Our results show that these dimensionality reduction algorithms significantly improve the transfer function design process without compromising visualization accuracy. We demonstrate the effectiveness of our new dimensionality reduction algorithms with two volumetric confocal microscopy data sets.

  8. The NIEHS Predictive-Toxicology Evaluation Project.

    PubMed Central

    Bristol, D W; Wachsman, J T; Greenwell, A

    1996-01-01

    The Predictive-Toxicology Evaluation (PTE) project conducts collaborative experiments that subject the performance of predictive-toxicology (PT) methods to rigorous, objective evaluation in a uniquely informative manner. Sponsored by the National Institute of Environmental Health Sciences, it takes advantage of the ongoing testing conducted by the U.S. National Toxicology Program (NTP) to estimate the true error of models that have been applied to make prospective predictions on previously untested, noncongeneric-chemical substances. The PTE project first identifies a group of standardized NTP chemical bioassays either scheduled to be conducted or are ongoing, but not yet complete. The project then announces and advertises the evaluation experiment, disseminates information about the chemical bioassays, and encourages researchers from a wide variety of disciplines to publish their predictions in peer-reviewed journals, using whatever approaches and methods they feel are best. A collection of such papers is published in this Environmental Health Perspectives Supplement, providing readers the opportunity to compare and contrast PT approaches and models, within the context of their prospective application to an actual-use situation. This introduction to this collection of papers on predictive toxicology summarizes the predictions made and the final results obtained for the 44 chemical carcinogenesis bioassays of the first PTE experiment (PTE-1) and presents information that identifies the 30 chemical carcinogenesis bioassays of PTE-2, along with a table of prediction sets that have been published to date. It also provides background about the origin and goals of the PTE project, outlines the special challenge associated with estimating the true error of models that aspire to predict open-system behavior, and summarizes what has been learned to date. PMID:8933048

  9. NASA Countermeasures Evaluation and Validation Project

    NASA Technical Reports Server (NTRS)

    Lundquist, Charlie M.; Paloski, William H. (Technical Monitor)

    2000-01-01

    To support its ISS and exploration class mission objectives, NASA has developed a Countermeasure Evaluation and Validation Project (CEVP). The goal of this project is to evaluate and validate the optimal complement of countermeasures required to maintain astronaut health, safety, and functional ability during and after short- and long-duration space flight missions. The CEVP is the final element of the process in which ideas and concepts emerging from basic research evolve into operational countermeasures. The CEVP is accomplishing these objectives by conducting operational/clinical research to evaluate and validate countermeasures to mitigate these maladaptive responses. Evaluation is accomplished by testing in space flight analog facilities, and validation is accomplished by space flight testing. Both will utilize a standardized complement of integrated physiological and psychological tests, termed the Integrated Testing Regimen (ITR) to examine candidate countermeasure efficacy and intersystem effects. The CEVP emphasis is currently placed on validating the initial complement of ISS countermeasures targeting bone, muscle, and aerobic fitness; followed by countermeasures for neurological, psychological, immunological, nutrition and metabolism, and radiation risks associated with space flight. This presentation will review the processes, plans, and procedures that will enable CEVP to play a vital role in transitioning promising research results into operational countermeasures necessary to maintain crew health and performance during long duration space flight.

  10. NASA Countermeasures Evaluation and Validation Project

    NASA Technical Reports Server (NTRS)

    Lundquist, Charlie M.; Paloski, William H. (Technical Monitor)

    2000-01-01

    To support its ISS and exploration class mission objectives, NASA has developed a Countermeasure Evaluation and Validation Project (CEVP). The goal of this project is to evaluate and validate the optimal complement of countermeasures required to maintain astronaut health, safety, and functional ability during and after short- and long-duration space flight missions. The CEVP is the final element of the process in which ideas and concepts emerging from basic research evolve into operational countermeasures. The CEVP is accomplishing these objectives by conducting operational/clinical research to evaluate and validate countermeasures to mitigate these maladaptive responses. Evaluation is accomplished by testing in space flight analog facilities, and validation is accomplished by space flight testing. Both will utilize a standardized complement of integrated physiological and psychological tests, termed the Integrated Testing Regimen (ITR) to examine candidate countermeasure efficacy and intersystem effects. The CEVP emphasis is currently placed on validating the initial complement of ISS countermeasures targeting bone, muscle, and aerobic fitness; followed by countermeasures for neurological, psychological, immunological, nutrition and metabolism, and radiation risks associated with space flight. This presentation will review the processes, plans, and procedures that will enable CEVP to play a vital role in transitioning promising research results into operational countermeasures necessary to maintain crew health and performance during long duration space flight.

  11. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization.

    PubMed

    Kiranyaz, Serkan; Ince, Turker; Yildirim, Alper; Gabbouj, Moncef

    2009-12-01

    In this paper, we propose a novel technique for the automatic design of Artificial Neural Networks (ANNs) by evolving to the optimal network configuration(s) within an architecture space. It is entirely based on a multi-dimensional Particle Swarm Optimization (MD PSO) technique, which re-forms the native structure of swarm particles in such a way that they can make inter-dimensional passes with a dedicated dimensional PSO process. Therefore, in a multidimensional search space where the optimum dimension is unknown, swarm particles can seek both positional and dimensional optima. This eventually removes the necessity of setting a fixed dimension a priori, which is a common drawback for the family of swarm optimizers. With the proper encoding of the network configurations and parameters into particles, MD PSO can then seek the positional optimum in the error space and the dimensional optimum in the architecture space. The optimum dimension converged at the end of a MD PSO process corresponds to a unique ANN configuration where the network parameters (connections, weights and biases) can then be resolved from the positional optimum reached on that dimension. In addition to this, the proposed technique generates a ranked list of network configurations, from the best to the worst. This is indeed a crucial piece of information, indicating what potential configurations can be alternatives to the best one, and which configurations should not be used at all for a particular problem. In this study, the architecture space is defined over feed-forward, fully-connected ANNs so as to use the conventional techniques such as back-propagation and some other evolutionary methods in this field. The proposed technique is applied over the most challenging synthetic problems to test its optimality on evolving networks and over the benchmark problems to test its generalization capability as well as to make comparative evaluations with the several competing techniques. The experimental

  12. Wildlife habitat evaluation demonstration project. [Michigan

    NASA Technical Reports Server (NTRS)

    Burgoyne, G. E., Jr.; Visser, L. G.

    1981-01-01

    To support the deer range improvement project in Michigan, the capability of LANDSAT data in assessing deer habitat in terms of areas and mixes of species and age classes of vegetation is being examined to determine whether such data could substitute for traditional cover type information sources. A second goal of the demonstration project is to determine whether LANDSAT data can be used to supplement and improve the information normally used for making deer habitat management decisions, either by providing vegetative cover for private land or by providing information about the interspersion and juxtaposition of valuable vegetative cover types. The procedure to be used for evaluating in LANDSAT data of the Lake County test site is described.

  13. Wildlife habitat evaluation demonstration project. [Michigan

    NASA Technical Reports Server (NTRS)

    Burgoyne, G. E., Jr.; Visser, L. G.

    1981-01-01

    To support the deer range improvement project in Michigan, the capability of LANDSAT data in assessing deer habitat in terms of areas and mixes of species and age classes of vegetation is being examined to determine whether such data could substitute for traditional cover type information sources. A second goal of the demonstration project is to determine whether LANDSAT data can be used to supplement and improve the information normally used for making deer habitat management decisions, either by providing vegetative cover for private land or by providing information about the interspersion and juxtaposition of valuable vegetative cover types. The procedure to be used for evaluating in LANDSAT data of the Lake County test site is described.

  14. Color back projection for fruit maturity evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Lee, Dah-Jye; Desai, Alok

    2013-12-01

    In general, fruits and vegetables such as tomatoes and dates are harvested before they fully ripen. After harvesting, they continue to ripen and their color changes. Color is a good indicator of fruit maturity. For example, tomatoes change color from dark green to light green and then pink, light red, and dark red. Assessing tomato maturity helps maximize its shelf life. Color is used to determine the length of time the tomatoes can be transported. Medjool dates change color from green to yellow, and the orange, light red and dark red. Assessing date maturity helps determine the length of drying process to help ripen the dates. Color evaluation is an important step in the processing and inventory control of fruits and vegetables that directly affects profitability. This paper presents an efficient color back projection and image processing technique that is designed specifically for real-time maturity evaluation of fruits. This color processing method requires very simple training procedure to obtain the frequencies of colors that appear in each maturity stage. This color statistics is used to back project colors to predefined color indexes. Fruit maturity is then evaluated by analyzing the reprojected color indexes. This method has been implemented and used for commercial production.

  15. Visualization of Multi-dimensional MISR Datasets Using Self-Organizing Map

    NASA Astrophysics Data System (ADS)

    Li, P.; Jacob, J.; Braverman, A.; Block, G.

    2003-12-01

    Many techniques exist for visualization of high dimensional datasets including Parallel Coordinates, Projection Pursuit, and Self-Organizing Map (SOM), but none of these are particularly well suited to satellite data. Remote sensing datasets are typically highly multivariate, but also have spatial structure. In analyzing such data, it is critical to maintain the spatial context within which multivariate relationships exist. Only then can we begin to investigate how those relationships change spatially, and connect observed phenomena to physical processes that may explain them. We present an analysis and visualization system called SOM_VIS that applies an enhanced SOM algorithm proposed by Todd & Kirby [1] to multi-dimensional image datasets in a way that maintains spatial context. We first use SOM to project high-dimensional data into a non-uniform 3D lattice structure. The lattice structure is then mapped to a color space to serve as a colormap for the image. The Voronoi cell refinement algorithm is then used to map the SOM lattice structure to various levels of color resolution. The final result is a false color image with similar colors representing similar characteristics across all its data dimensions. We demonstrate this system using data from JPL's Multi-angle Imaging Spectro-Radiometer (MISR), which looks at Earth and its atmosphere in 36 channels: all combinations of four spectral bands and nine view angles. The SOM_VIS tool consists of a data control panel for users to select a subset from MISR's Level 1B Radiance data products, and a training control panel for users to choose various parameters for SOM training. These include the size of the SOM lattice, the method used to modify the control vectors towards the input training vector, convergence rate, and number of Voronoi regions. Also, the SOM_VIS system contains a multi-window display system allowing users to view false color SOM images and the corresponding color maps for trained SOM lattices. In

  16. Evaluation of Title I ESEA Projects: 1975-76.

    ERIC Educational Resources Information Center

    Philadelphia School District, PA. Office of Research and Evaluation.

    Evaluation services to be provided during 1975-76 to projects funded under the Elementary and Secondary Education Act Title I are listed in this annual booklet. For each project, the following information is provided: goals to be assessed, evaluation techniques (design), and evaluation milestones. Regular term and summer term projects reported on…

  17. Evaluation in Adult Literacy Research. Project ALERT. Phase II.

    ERIC Educational Resources Information Center

    Ntiri, Daphne Williams, Ed.

    This document contains an evaluation handbook for adult literacy programs and feedback from/regarding the evaluation instruments developed during the project titled Adult Literacy and Evaluation Research Team (also known as Project ALERT), a two-phase project initiated by the Detroit Literacy Coalition (DLC) for the purpose of developing and…

  18. Discovering MicroRNA-Regulatory Modules in Multi-Dimensional Cancer Genomic Data: A Survey of Computational Methods

    PubMed Central

    Walsh, Christopher J.; Hu, Pingzhao; Batt, Jane; dos Santos, Claudia C.

    2016-01-01

    MicroRNAs (miRs) are small single-stranded noncoding RNA that function in RNA silencing and post-transcriptional regulation of gene expression. An increasing number of studies have shown that miRs play an important role in tumorigenesis, and understanding the regulatory mechanism of miRs in this gene regulatory network will help elucidate the complex biological processes at play during malignancy. Despite advances, determination of miR–target interactions (MTIs) and identification of functional modules composed of miRs and their specific targets remain a challenge. A large amount of data generated by high-throughput methods from various sources are available to investigate MTIs. The development of data-driven tools to harness these multi-dimensional data has resulted in significant progress over the past decade. In parallel, large-scale cancer genomic projects are allowing new insights into the commonalities and disparities of miR–target regulation across cancers. In the first half of this review, we explore methods for identification of pairwise MTIs, and in the second half, we explore computational tools for discovery of miR-regulatory modules in a cancer-specific and pan-cancer context. We highlight strengths and limitations of each of these tools as a practical guide for the computational biologists. PMID:27721651

  19. Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers.

    PubMed

    Borchani, Hanen; Bielza, Concha; Toro, Carlos; Larrañaga, Pedro

    2013-03-01

    Our aim is to use multi-dimensional Bayesian network classifiers in order to predict the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors given an input set of respective resistance mutations that an HIV patient carries. Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models especially designed to solve multi-dimensional classification problems, where each input instance in the data set has to be assigned simultaneously to multiple output class variables that are not necessarily binary. In this paper, we introduce a new method, named MB-MBC, for learning MBCs from data by determining the Markov blanket around each class variable using the HITON algorithm. Our method is applied to both reverse transcriptase and protease data sets obtained from the Stanford HIV-1 database. Regarding the prediction of antiretroviral combination therapies, the experimental study shows promising results in terms of classification accuracy compared with state-of-the-art MBC learning algorithms. For reverse transcriptase inhibitors, we get 71% and 11% in mean and global accuracy, respectively; while for protease inhibitors, we get more than 84% and 31% in mean and global accuracy, respectively. In addition, the analysis of MBC graphical structures lets us gain insight into both known and novel interactions between reverse transcriptase and protease inhibitors and their respective resistance mutations. MB-MBC algorithm is a valuable tool to analyze the HIV-1 reverse transcriptase and protease inhibitors prediction problem and to discover interactions within and between these two classes of inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Multi-dimensional Simulations of Core Collapse Supernovae employing Ray-by-Ray Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Hix, W. R.; Mezzacappa, A.; Liebendoerfer, M.; Messer, O. E. B.; Blondin, J. M.; Bruenn, S. W.

    2001-12-01

    Decades of research on the mechanism which causes core collapse supernovae has evolved a paradigm wherein the shock that results from the formation of the proto-neutron star stalls, failing to produce an explosion. Only when the shock is re-energized by the tremendous neutrino flux that is carrying off the binding energy of this proto-neutron star can it drive off the star's envelope, creating a supernova. Work in recent years has demonstrated the importance of multi-dimensional hydrodynamic effects like convection to successful simulation of an explosion. Further work has established the necessity of accurately characterizing the distribution of neutrinos in energy and direction. This requires discretizing the neutrino distribution into multiple groups, adding greatly to the computational cost. However, no supernova simulations to date have combined self-consistent multi-group neutrino transport with multi-dimensional hydrodynamics. We present preliminary results of our efforts to combine these important facets of the supernova mechanism by coupling self-consistent ray-by-ray multi-group Boltzmann and flux-limited diffusion neutrino transport schemes to multi-dimensional hydrodynamics. This research is supported by NASA under contract NAG5-8405, by the NSF under contract AST-9877130, and under a SciDAC grant from the DoE Office of Science High Energy and Nuclear Physics Program. Work at Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  1. On-the-fly analysis of multi-dimensional rasters in a GIS

    NASA Astrophysics Data System (ADS)

    Abdul-Kadar, F.; Xu, H.; Gao, P.

    2016-04-01

    Geographic Information Systems and other mapping applications that specialize in image analysis routinely process high-dimensional gridded rasters as multivariate data cubes. Frameworks responsible for processing image data within these applications suffer from a combination of key shortcomings: inefficiencies stemming from intermediate results being stored on disk, the lack of versatility from disparate tools that don't work in unison, or the poor scalability with increasing volume and dimensionality of the data. We present raster functions as a powerful mechanism for processing and analyzing multi-dimensional rasters designed to overcome these crippling issues. A raster function accepts multivariate hypercubes and processing parameters as input and produces one output raster. Function chains and their parameterized form, function templates, represent a complex image processing operation constructed by composing simpler raster functions. We discuss extensibility of the framework via Python, portability of templates via XML, and dynamic filtering of data cubes using SQL. This paper highlights how ArcGIS employs raster functions in its mission to build actionable information from science and geographic data—by shrinking the lag between the acquisition of raw multi-dimensional raster data and the ultimate dissemination of derived image products. ArcGIS has a mature raster I/O pipeline based on GDAL, and it manages gridded multivariate multi-dimensional cubes in mosaic datasets stored within a geodatabase atop an RDBMS. Bundled with raster functions, we show those capabilities make possible up-to-date maps that are driven by distributed geoanalytics and powerful visualizations against large volumes of near real-time gridded data.

  2. How Fitch-Margoliash Algorithm can Benefit from Multi Dimensional Scaling

    PubMed Central

    Lespinats, Sylvain; Grando, Delphine; Maréchal, Eric; Hakimi, Mohamed-Ali; Tenaillon, Olivier; Bastien, Olivier

    2011-01-01

    Whatever the phylogenetic method, genetic sequences are often described as strings of characters, thus molecular sequences can be viewed as elements of a multi-dimensional space. As a consequence, studying motion in this space (ie, the evolutionary process) must deal with the amazing features of high-dimensional spaces like concentration of measured phenomenon. To study how these features might influence phylogeny reconstructions, we examined a particular popular method: the Fitch-Margoliash algorithm, which belongs to the Least Squares methods. We show that the Least Squares methods are closely related to Multi Dimensional Scaling. Indeed, criteria for Fitch-Margoliash and Sammon’s mapping are somewhat similar. However, the prolific research in Multi Dimensional Scaling has definitely allowed outclassing Sammon’s mapping. Least Square methods for tree reconstruction can now take advantage of these improvements. However, “false neighborhood” and “tears” are the two main risks in dimensionality reduction field: “false neighborhood” corresponds to a widely separated data in the original space that are found close in representation space, and neighbor data that are displayed in remote positions constitute a “tear”. To address this problem, we took advantage of the concepts of “continuity” and “trustworthiness” in the tree reconstruction field, which limit the risk of “false neighborhood” and “tears”. We also point out the concentration of measured phenomenon as a source of error and introduce here new criteria to build phylogenies with improved preservation of distances and robustness. The authors and the Evolutionary Bioinformatics Journal dedicate this article to the memory of Professor W.M. Fitch (1929–2011). PMID:21697992

  3. Numerical Solution of Multi-Dimensional Hyperbolic Conservation Laws on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Kwak, Dochan (Technical Monitor)

    1995-01-01

    The lecture material will discuss the application of one-dimensional approximate Riemann solutions and high order accurate data reconstruction as building blocks for solving multi-dimensional hyperbolic equations. This building block procedure is well-documented in the nationally available literature. The relevant stability and convergence theory using positive operator analysis will also be presented. All participants in the minisymposium will be asked to solve one or more generic test problems so that a critical comparison of accuracy can be made among differing approaches.

  4. Real-time monitoring and visualization of the multi-dimensional motion of an anisotropic nanoparticle

    NASA Astrophysics Data System (ADS)

    Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, Minkwan; Park, Chung-Hyun; Cho, Yong-Hoon

    2017-03-01

    As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles.

  5. Multi-dimensional modeling of the application of catalytic combustion to homogeneous charge compression ignition engine

    NASA Astrophysics Data System (ADS)

    Zeng, Wen; Xie, Maozhao

    2006-12-01

    The detailed surface reaction mechanism of methane on rhodium catalyst was analyzed. Comparisons between numerical simulation and experiments showed a basic agreement. The combustion process of homogeneous charge compression ignition (HCCI) engine whose piston surface has been coated with catalyst (rhodium and platinum) was numerically investigated. A multi-dimensional model with detailed chemical kinetics was built. The effects of catalytic combustion on the ignition timing, the temperature and CO concentration fields, and HC, CO and NOx emissions of the HCCI engine were discussed. The results showed the ignition timing of the HCCI engine was advanced and the emissions of HC and CO were decreased by the catalysis.

  6. Coupling Visualization and Data Analysis for Knowledge Discovery from Multi-dimensional Scientific Data

    SciTech Connect

    Rubel, Oliver; Ahern, Sean; Bethel, E. Wes; Biggin, Mark D.; Childs, Hank; Cormier-Michel, Estelle; DePace, Angela; Eisen, Michael B.; Fowlkes, Charless C.; Geddes, Cameron G. R.; Hagen, Hans; Hamann, Bernd; Huang, Min-Yu; Keranen, Soile V. E.; Knowles, David W.; Hendriks, Chris L. Luengo; Malik, Jitendra; Meredith, Jeremy; Messmer, Peter; Prabhat,; Ushizima, Daniela; Weber, Gunther H.; Wu, Kesheng

    2010-06-08

    Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies"such as efficient data management" supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach.

  7. Coupling visualization and data analysis for knowledge discovery from multi-dimensional scientific data

    PubMed Central

    Rübel, Oliver; Ahern, Sean; Bethel, E. Wes; Biggin, Mark D.; Childs, Hank; Cormier-Michel, Estelle; DePace, Angela; Eisen, Michael B.; Fowlkes, Charless C.; Geddes, Cameron G. R.; Hagen, Hans; Hamann, Bernd; Huang, Min-Yu; Keränen, Soile V. E.; Knowles, David W.; Hendriks, Cris L. Luengo; Malik, Jitendra; Meredith, Jeremy; Messmer, Peter; Prabhat; Ushizima, Daniela; Weber, Gunther H.; Wu, Kesheng

    2013-01-01

    Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies —such as efficient data management— supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach. PMID:23762211

  8. Structural diversity: a multi-dimensional approach to assess recreational services in urban parks.

    PubMed

    Voigt, Annette; Kabisch, Nadja; Wurster, Daniel; Haase, Dagmar; Breuste, Jürgen

    2014-05-01

    Urban green spaces provide important recreational services for urban residents. In general, when park visitors enjoy "the green," they are in actuality appreciating a mix of biotic, abiotic, and man-made park infrastructure elements and qualities. We argue that these three dimensions of structural diversity have an influence on how people use and value urban parks. We present a straightforward approach for assessing urban parks that combines multi-dimensional landscape mapping and questionnaire surveys. We discuss the method as well the results from its application to differently sized parks in Berlin and Salzburg.

  9. Study of multi-dimensional radiative energy transfer in molecular gases

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, S. N.

    1993-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical arrow band model with an exponential-tailed inverse intensity distribution. Consideration of spectral correlation results in some distinguishing features of the Monte Carlo formulations. Validation of the Monte Carlo formulations has been conducted by comparing results of this method with other solutions. Extension of a one-dimensional problem to a multi-dimensional problem requires some special treatments in the Monte Carlo analysis. Use of different assumptions results in different sets of Monte Carlo formulations. The nongray narrow band formulations provide the most accurate results.

  10. Multi-Dimensional Asymptotically Stable 4th Order Accurate Schemes for the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Ditkowski, Adi

    1996-01-01

    An algorithm is presented which solves the multi-dimensional diffusion equation on co mplex shapes to 4th-order accuracy and is asymptotically stable in time. This bounded-error result is achieved by constructing, on a rectangular grid, a differentiation matrix whose symmetric part is negative definite. The differentiation matrix accounts for the Dirichlet boundary condition by imposing penalty like terms. Numerical examples in 2-D show that the method is effective even where standard schemes, stable by traditional definitions fail.

  11. Algorithm for loading shot noise microbunching in multi-dimensional, free-electron laser simulation codes

    SciTech Connect

    Fawley, William M.

    2002-03-25

    We discuss the underlying reasoning behind and the details of the numerical algorithm used in the GINGER free-electron laser(FEL) simulation code to load the initial shot noise microbunching on the electron beam. In particular, we point out that there are some additional subtleties which must be followed for multi-dimensional codes which are not necessary for one-dimensional formulations. Moreover, requiring that the higher harmonics of the microbunching also be properly initialized with the correct statistics leads to additional complexities. We present some numerical results including the predicted incoherent, spontaneous emission as tests of the shot noise algorithm's correctness.

  12. Coupling visualization and data analysis for knowledge discovery from multi-dimensional scientific data.

    PubMed

    Rübel, Oliver; Ahern, Sean; Bethel, E Wes; Biggin, Mark D; Childs, Hank; Cormier-Michel, Estelle; Depace, Angela; Eisen, Michael B; Fowlkes, Charless C; Geddes, Cameron G R; Hagen, Hans; Hamann, Bernd; Huang, Min-Yu; Keränen, Soile V E; Knowles, David W; Hendriks, Cris L Luengo; Malik, Jitendra; Meredith, Jeremy; Messmer, Peter; Prabhat; Ushizima, Daniela; Weber, Gunther H; Wu, Kesheng

    2010-05-01

    Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies -such as efficient data management- supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach.

  13. Real-time monitoring and visualization of the multi-dimensional motion of an anisotropic nanoparticle

    PubMed Central

    Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, MinKwan; Park, Chung-Hyun; Cho, Yong-Hoon

    2017-01-01

    As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles. PMID:28272445

  14. Computational multi-dimensional imaging based on compound-eye optics

    NASA Astrophysics Data System (ADS)

    Horisaki, Ryoichi; Nakamura, Tomoya; Tanida, Jun

    2014-11-01

    Artificial compound-eye optics have been used for three-dimensional information acquisition and display. It also enables us to realize a diversity of coded imaging process in each elemental optics. In this talk, we introduce our single-shot compound-eye imaging system to observe multi-dimensional information including depth, spectrum, and polarization based on compressive sensing. Furthermore it is applicable to increase the dynamic range and field-of-view. We also demonstrate an extended depth-of-field (DOF) cameras based on compound-eye optics. These extended DOF cameras physically or computationally implement phase modulations to increase the focusing range.

  15. Method of multi-dimensional moment analysis for the characterization of signal peaks

    DOEpatents

    Pfeifer, Kent B; Yelton, William G; Kerr, Dayle R; Bouchier, Francis A

    2012-10-23

    A method of multi-dimensional moment analysis for the characterization of signal peaks can be used to optimize the operation of an analytical system. With a two-dimensional Peclet analysis, the quality and signal fidelity of peaks in a two-dimensional experimental space can be analyzed and scored. This method is particularly useful in determining optimum operational parameters for an analytical system which requires the automated analysis of large numbers of analyte data peaks. For example, the method can be used to optimize analytical systems including an ion mobility spectrometer that uses a temperature stepped desorption technique for the detection of explosive mixtures.

  16. Real-time monitoring and visualization of the multi-dimensional motion of an anisotropic nanoparticle.

    PubMed

    Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, MinKwan; Park, Chung-Hyun; Cho, Yong-Hoon

    2017-03-08

    As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles.

  17. An optimization approach to multi-dimensional time domain acoustic inverse problems.

    PubMed

    Gustafsson, M; He, S

    2000-10-01

    An optimization approach to a multi-dimensional acoustic inverse problem in the time domain is considered. The density and/or the sound speed are reconstructed by minimizing an objective functional. By introducing dual functions and using the Gauss divergence theorem, the gradient of the objective functional is found as an explicit expression. The parameters are then reconstructed by an iterative algorithm (the conjugate gradient method). The reconstruction algorithm is tested with noisy data, and these tests indicate that the algorithm is stable and robust. The computation time for the reconstruction is greatly improved when the analytic gradient is used.

  18. Portable laser synthesizer for high-speed multi-dimensional spectroscopy

    DOEpatents

    Demos, Stavros G [Livermore, CA; Shverdin, Miroslav Y [Sunnyvale, CA; Shirk, Michael D [Brentwood, CA

    2012-05-29

    Portable, field-deployable laser synthesizer devices designed for multi-dimensional spectrometry and time-resolved and/or hyperspectral imaging include a coherent light source which simultaneously produces a very broad, energetic, discrete spectrum spanning through or within the ultraviolet, visible, and near infrared wavelengths. The light output is spectrally resolved and each wavelength is delayed with respect to each other. A probe enables light delivery to a target. For multidimensional spectroscopy applications, the probe can collect the resulting emission and deliver this radiation to a time gated spectrometer for temporal and spectral analysis.

  19. MUlti-Dimensional Spline-Based Estimator (MUSE) for motion estimation: algorithm development and initial results.

    PubMed

    Viola, Francesco; Coe, Ryan L; Owen, Kevin; Guenther, Drake A; Walker, William F

    2008-12-01

    Image registration and motion estimation play central roles in many fields, including RADAR, SONAR, light microscopy, and medical imaging. Because of its central significance, estimator accuracy, precision, and computational cost are of critical importance. We have previously presented a highly accurate, spline-based time delay estimator that directly determines sub-sample time delay estimates from sampled data. The algorithm uses cubic splines to produce a continuous representation of a reference signal and then computes an analytical matching function between this reference and a delayed signal. The location of the minima of this function yields estimates of the time delay. In this paper we describe the MUlti-dimensional Spline-based Estimator (MUSE) that allows accurate and precise estimation of multi-dimensional displacements/strain components from multi-dimensional data sets. We describe the mathematical formulation for two- and three-dimensional motion/strain estimation and present simulation results to assess the intrinsic bias and standard deviation of this algorithm and compare it to currently available multi-dimensional estimators. In 1000 noise-free simulations of ultrasound data we found that 2D MUSE exhibits maximum bias of 2.6 x 10(-4) samples in range and 2.2 x 10(-3) samples in azimuth (corresponding to 4.8 and 297 nm, respectively). The maximum simulated standard deviation of estimates in both dimensions was comparable at roughly 2.8 x 10(-3) samples (corresponding to 54 nm axially and 378 nm laterally). These results are between two and three orders of magnitude better than currently used 2D tracking methods. Simulation of performance in 3D yielded similar results to those observed in 2D. We also present experimental results obtained using 2D MUSE on data acquired by an Ultrasonix Sonix RP imaging system with an L14-5/38 linear array transducer operating at 6.6 MHz. While our validation of the algorithm was performed using ultrasound data, MUSE is

  20. Airway Science Curriculum Demonstration Project: Summary of Initial Evaluation Findings

    DTIC Science & Technology

    1988-10-01

    DEMONSTRATION PROJECT: Or C988 SUMMARY OF INITIAL EVALUATION FINDINGS 8. Performn 9 Organ zaton Report No. 7. Author’ s$ Debora L. Clough 9...Airway Science project objectives for which data were available. Two limitations associated with the project evaluation at this time were described... EVALUATION FINDINGS INTRODUCTION The Airway Science Curriculum Demonstration Project was designed to investigate the effectiveness of an alternative approach

  1. TIME-DEPENDENT MULTI-GROUP MULTI-DIMENSIONAL RELATIVISTIC RADIATIVE TRANSFER CODE BASED ON SPHERICAL HARMONIC DISCRETE ORDINATE METHOD

    SciTech Connect

    Tominaga, Nozomu; Shibata, Sanshiro; Blinnikov, Sergei I. E-mail: sshibata@post.kek.jp

    2015-08-15

    We develop a time-dependent, multi-group, multi-dimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids that are involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) which evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed-frame approach; the source function is evaluated in the comoving frame, whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated using various test problems and comparisons with the results from a relativistic Monte Carlo code. These validations confirm that the code correctly calculates the intensity and its evolution in the computational domain. The code enables us to obtain an Eddington tensor that relates the first and third moments of intensity (energy density and radiation pressure) and is frequently used as a closure relation in radiation hydrodynamics calculations.

  2. Project Tomorrow. Special Project Performance Evaluation. Final Report.

    ERIC Educational Resources Information Center

    Northern Nevada Community Coll., Elko.

    In August 1984, Northern Nevada Community College (NNCC) began a project to develop a practical plan for a program in personal literacy to be incorporated into its Adult Basic Education Program. The first months of the project were spent in structuring the test model, developing intake procedures, research, interagency networking, and coordinating…

  3. Framework for the Evaluation of an IT Project Portfolio

    ERIC Educational Resources Information Center

    Tai, W. T.

    2010-01-01

    The basis for evaluating projects in an organizational IT project portfolio includes complexity factors, arguments/criteria, and procedures, with various implications. The purpose of this research was to develop a conceptual framework for IT project proposal evaluation. The research involved using a heuristic roadmap and the mind-mapping method to…

  4. Framework for the Evaluation of an IT Project Portfolio

    ERIC Educational Resources Information Center

    Tai, W. T.

    2010-01-01

    The basis for evaluating projects in an organizational IT project portfolio includes complexity factors, arguments/criteria, and procedures, with various implications. The purpose of this research was to develop a conceptual framework for IT project proposal evaluation. The research involved using a heuristic roadmap and the mind-mapping method to…

  5. Modelling in Evaluating a Working Life Project in Higher Education

    ERIC Educational Resources Information Center

    Sarja, Anneli; Janhonen, Sirpa; Havukainen, Pirjo; Vesterinen, Anne

    2012-01-01

    This article describes an evaluation method based on collaboration between the higher education, a care home and university, in a R&D project. The aim of the project was to elaborate modelling as a tool of developmental evaluation for innovation and competence in project cooperation. The approach was based on activity theory. Modelling enabled a…

  6. Modelling in Evaluating a Working Life Project in Higher Education

    ERIC Educational Resources Information Center

    Sarja, Anneli; Janhonen, Sirpa; Havukainen, Pirjo; Vesterinen, Anne

    2012-01-01

    This article describes an evaluation method based on collaboration between the higher education, a care home and university, in a R&D project. The aim of the project was to elaborate modelling as a tool of developmental evaluation for innovation and competence in project cooperation. The approach was based on activity theory. Modelling enabled a…

  7. The National Mapping of Teacher Professional Learning Project: A Multi-Dimensional Space?

    ERIC Educational Resources Information Center

    Doecke, Brenton; Parr, Graham

    2011-01-01

    This essay focuses on the "National Mapping of Teacher Professional Learning" (2008), a report that we co-authored along with a number of other researchers on the basis of extensive surveys and interviews relating to the policies and practices of teacher professional learning in Australia. The report is an update of an earlier survey…

  8. The National Mapping of Teacher Professional Learning Project: A Multi-Dimensional Space?

    ERIC Educational Resources Information Center

    Doecke, Brenton; Parr, Graham

    2011-01-01

    This essay focuses on the "National Mapping of Teacher Professional Learning" (2008), a report that we co-authored along with a number of other researchers on the basis of extensive surveys and interviews relating to the policies and practices of teacher professional learning in Australia. The report is an update of an earlier survey…

  9. Meta-modelling, visualization and emulation of multi-dimensional data for virtual production intelligence

    NASA Astrophysics Data System (ADS)

    Schulz, Wolfgang; Hermanns, Torsten; Al Khawli, Toufik

    2017-07-01

    Decision making for competitive production in high-wage countries is a daily challenge where rational and irrational methods are used. The design of decision making processes is an intriguing, discipline spanning science. However, there are gaps in understanding the impact of the known mathematical and procedural methods on the usage of rational choice theory. Following Benjamin Franklin's rule for decision making formulated in London 1772, he called "Prudential Algebra" with the meaning of prudential reasons, one of the major ingredients of Meta-Modelling can be identified finally leading to one algebraic value labelling the results (criteria settings) of alternative decisions (parameter settings). This work describes the advances in Meta-Modelling techniques applied to multi-dimensional and multi-criterial optimization by identifying the persistence level of the corresponding Morse-Smale Complex. Implementations for laser cutting and laser drilling are presented, including the generation of fast and frugal Meta-Models with controlled error based on mathematical model reduction Reduced Models are derived to avoid any unnecessary complexity. Both, model reduction and analysis of multi-dimensional parameter space are used to enable interactive communication between Discovery Finders and Invention Makers. Emulators and visualizations of a metamodel are introduced as components of Virtual Production Intelligence making applicable the methods of Scientific Design Thinking and getting the developer as well as the operator more skilled.

  10. Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration

    NASA Astrophysics Data System (ADS)

    Schaerer, Joël; Fassi, Aurora; Riboldi, Marco; Cerveri, Pietro; Baroni, Guido; Sarrut, David

    2012-01-01

    Real-time optical surface imaging systems offer a non-invasive way to monitor intra-fraction motion of a patient's thorax surface during radiotherapy treatments. Due to lack of point correspondence in dynamic surface acquisition, such systems cannot currently provide 3D motion tracking at specific surface landmarks, as available in optical technologies based on passive markers. We propose to apply deformable mesh registration to extract surface point trajectories from markerless optical imaging, thus yielding multi-dimensional breathing traces. The investigated approach is based on a non-rigid extension of the iterative closest point algorithm, using a locally affine regularization. The accuracy in tracking breathing motion was quantified in a group of healthy volunteers, by pair-wise registering the thoraco-abdominal surfaces acquired at three different respiratory phases using a clinically available optical system. The motion tracking accuracy proved to be maximal in the abdominal region, where breathing motion mostly occurs, with average errors of 1.09 mm. The results demonstrate the feasibility of recovering multi-dimensional breathing motion from markerless optical surface acquisitions by using the implemented deformable registration algorithm. The approach can potentially improve respiratory motion management in radiation therapy, including motion artefact reduction or tumour motion compensation by means of internal/external correlation models.

  11. Multi-dimensional self-esteem and magnitude of change in the treatment of anorexia nervosa.

    PubMed

    Collin, Paula; Karatzias, Thanos; Power, Kevin; Howard, Ruth; Grierson, David; Yellowlees, Alex

    2016-03-30

    Self-esteem improvement is one of the main targets of inpatient eating disorder programmes. The present study sought to examine multi-dimensional self-esteem and magnitude of change in eating psychopathology among adults participating in a specialist inpatient treatment programme for anorexia nervosa. A standardised assessment battery, including multi-dimensional measures of eating psychopathology and self-esteem, was completed pre- and post-treatment for 60 participants (all white Scottish female, mean age=25.63 years). Statistical analyses indicated that self-esteem improved with eating psychopathology and weight over the course of treatment, but that improvements were domain-specific and small in size. Global self-esteem was not predictive of treatment outcome. Dimensions of self-esteem at baseline (Lovability and Moral Self-approval), however, were predictive of magnitude of change in dimensions of eating psychopathology (Shape and Weight Concern). Magnitude of change in Self-Control and Lovability dimensions were predictive of magnitude of change in eating psychopathology (Global, Dietary Restraint, and Shape Concern). The results of this study demonstrate that the relationship between self-esteem and eating disorder is far from straightforward, and suggest that future research and interventions should focus less exclusively on self-esteem as a uni-dimensional psychological construct.

  12. High-frequency stock linkage and multi-dimensional stationary processes

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Bao, Si; Chen, Jingchao

    2017-02-01

    In recent years, China's stock market has experienced dramatic fluctuations; in particular, in the second half of 2014 and 2015, the market rose sharply and fell quickly. Many classical financial phenomena, such as stock plate linkage, appeared repeatedly during this period. In general, these phenomena have usually been studied using daily-level data or minute-level data. Our paper focuses on the linkage phenomenon in Chinese stock 5-second-level data during this extremely volatile period. The method used to select the linkage points and the arbitrage strategy are both based on multi-dimensional stationary processes. A new program method for testing the multi-dimensional stationary process is proposed in our paper, and the detailed program is presented in the paper's appendix. Because of the existence of the stationary process, the strategy's logarithmic cumulative average return will converge under the condition of the strong ergodic theorem, and this ensures the effectiveness of the stocks' linkage points and the more stable statistical arbitrage strategy.

  13. Ion-acoustic solitary waves and their multi-dimensional instability in a magnetized degenerate plasma

    SciTech Connect

    Haider, M. M.; Mamun, A. A.

    2012-10-15

    A rigorous theoretical investigation has been made on Zakharov-Kuznetsov (ZK) equation of ion-acoustic (IA) solitary waves (SWs) and their multi-dimensional instability in a magnetized degenerate plasma which consists of inertialess electrons, inertial ions, negatively, and positively charged stationary heavy ions. The ZK equation is derived by the reductive perturbation method, and multi-dimensional instability of these solitary structures is also studied by the small-k (long wave-length plane wave) perturbation expansion technique. The effects of the external magnetic field are found to significantly modify the basic properties of small but finite-amplitude IA SWs. The external magnetic field and the propagation directions of both the nonlinear waves and their perturbation modes are found to play a very important role in changing the instability criterion and the growth rate of the unstable IA SWs. The basic features (viz., amplitude, width, instability, etc.) and the underlying physics of the IA SWs, which are relevant to space and laboratory plasma situations, are briefly discussed.

  14. Surface extraction from multi-field particle volume data using multi-dimensional cluster visualization.

    PubMed

    Linsen, Lars; Van Long, Tran; Rosenthal, Paul; Rosswog, Stephan

    2008-01-01

    Data sets resulting from physical simulations typically contain a multitude of physical variables. It is, therefore, desirable that visualization methods take into account the entire multi-field volume data rather than concentrating on one variable. We present a visualization approach based on surface extraction from multi-field particle volume data. The surfaces segment the data with respect to the underlying multi-variate function. Decisions on segmentation properties are based on the analysis of the multi-dimensional feature space. The feature space exploration is performed by an automated multi-dimensional hierarchical clustering method, whose resulting density clusters are shown in the form of density level sets in a 3D star coordinate layout. In the star coordinate layout, the user can select clusters of interest. A selected cluster in feature space corresponds to a segmenting surface in object space. Based on the segmentation property induced by the cluster membership, we extract a surface from the volume data. Our driving applications are Smoothed Particle Hydrodynamics (SPH) simulations, where each particle carries multiple properties. The data sets are given in the form of unstructured point-based volume data. We directly extract our surfaces from such data without prior resampling or grid generation. The surface extraction computes individual points on the surface, which is supported by an efficient neighborhood computation. The extracted surface points are rendered using point-based rendering operations. Our approach combines methods in scientific visualization for object-space operations with methods in information visualization for feature-space operations.

  15. Adherence is a multi-dimensional construct in the POUNDS LOST trial.

    PubMed

    Williamson, Donald A; Anton, Stephen D; Han, Hongmei; Champagne, Catherine M; Allen, Ray; LeBlanc, Eric; Ryan, Donna H; McManus, Katherine; Laranjo, Nancy; Carey, Vincent J; Loria, Catherine M; Bray, George A; Sacks, Frank M

    2010-02-01

    Research on the conceptualization of adherence to treatment has not addressed a key question: Is adherence best defined as being a uni-dimensional or multi-dimensional behavioral construct? The primary aim of this study was to test which of these conceptual models best described adherence to a weight management program. This ancillary study was conducted as a part of the POUNDS LOST trial that tested the efficacy of four dietary macronutrient compositions for promoting weight loss. A sample of 811 overweight/obese adults was recruited across two clinical sites, and each participant was randomly assigned to one of four macronutrient prescriptions: (1) Low fat (20% of energy), average protein (15% of energy); (2) High fat (40%), average protein (15%); (3) Low fat (20%), high protein (25%); (4) High fat (40%), high protein (25%). Throughout the first 6 months of the study, a computer tracking system collected data on eight indicators of adherence. Computer tracking data from the initial 6 months of the intervention were analyzed using exploratory and confirmatory analyses. Two factors (accounting for 66% of the variance) were identified and confirmed: (1) behavioral adherence and (2) dietary adherence. Behavioral adherence did not differ across the four interventions, but prescription of a high fat diet (vs. a low fat diet) was found to be associated with higher levels of dietary adherence. The findings of this study indicated that adherence to a weight management program was best conceptualized as being multi-dimensional, with two dimensions: behavioral and dietary adherence.

  16. Multi-Dimensional Nanostructures for Microfluidic Screening of Biomarkers: From Molecular Separation to Cancer Cell Detection.

    PubMed

    Ng, Elaine; Chen, Kaina; Hang, Annie; Syed, Abeer; Zhang, John X J

    2016-04-01

    Rapid screening of biomarkers, with high specificity and accuracy, is critical for many point-of-care diagnostics. Microfluidics, the use of microscale channels to manipulate small liquid samples and carry reactions in parallel, offers tremendous opportunities to address fundamental questions in biology and provide a fast growing set of clinical tools for medicine. Emerging multi-dimensional nanostructures, when coupled with microfluidics, enable effective and efficient screening with high specificity and sensitivity, both of which are important aspects of biological detection systems. In this review, we provide an overview of current research and technologies that utilize nanostructures to facilitate biological separation in microfluidic channels. Various important physical parameters and theoretical equations that characterize and govern flow in nanostructure-integrated microfluidic channels will be introduced and discussed. The application of multi-dimensional nanostructures, including nanoparticles, nanopillars, and nanoporous layers, integrated with microfluidic channels in molecular and cellular separation will also be reviewed. Finally, we will close with insights on the future of nanostructure-integrated microfluidic platforms and their role in biological and biomedical applications.

  17. Multi-dimensional Nanostructures for Microfluidic Screening of Biomarkers: From Molecular Separation to Cancer Cell Detection

    PubMed Central

    Ng, Elaine; Chen, Kaina; Hang, Annie; Syed, Abeer; Zhang, John X.J.

    2016-01-01

    Rapid screening of biomarkers, with high specificity and accuracy, is critical for many point-of-care diagnostics. Microfluidics, the use of microscale channels to manipulate small liquid samples and carry reactions in parallel, offers tremendous opportunities to address fundamental questions in biology and provide a fast growing set of clinical tools for medicine. Emerging multi-dimensional nanostructures, when coupled with microfluidics, enable effective and efficient screening with high specificity and sensitivity, both of which are important aspects of biological detection systems. In this review, we provide an overview of current research and technologies that utilize nanostructures to facilitate biological separation in microfluidic channels. Various important physical parameters and theoretical equations that characterize and govern flow in nanostructure-integrated microfluidic channels will be introduced and discussed. The application of multi-dimensional nanostructures, including nanoparticles, nanopillars, and nanoporous layers, integrated with microfluidic channels in molecular and cellular separation will also be reviewed. Finally, we will close with insights on the future of nanostructure-integrated microfluidic platforms and their role in biological and biomedical applications. PMID:26692080

  18. Identifying associations between pig pathologies using a multi-dimensional machine learning methodology

    PubMed Central

    2012-01-01

    Background Abattoir detected pathologies are of crucial importance to both pig production and food safety. Usually, more than one pathology coexist in a pig herd although it often remains unknown how these different pathologies interrelate to each other. Identification of the associations between different pathologies may facilitate an improved understanding of their underlying biological linkage, and support the veterinarians in encouraging control strategies aimed at reducing the prevalence of not just one, but two or more conditions simultaneously. Results Multi-dimensional machine learning methodology was used to identify associations between ten typical pathologies in 6485 batches of slaughtered finishing pigs, assisting the comprehension of their biological association. Pathologies potentially associated with septicaemia (e.g. pericarditis, peritonitis) appear interrelated, suggesting on-going bacterial challenges by pathogens such as Haemophilus parasuis and Streptococcus suis. Furthermore, hepatic scarring appears interrelated with both milk spot livers (Ascaris suum) and bacteria-related pathologies, suggesting a potential multi-pathogen nature for this pathology. Conclusions The application of novel multi-dimensional machine learning methodology provided new insights into how typical pig pathologies are potentially interrelated at batch level. The methodology presented is a powerful exploratory tool to generate hypotheses, applicable to a wide range of studies in veterinary research. PMID:22937883

  19. Differentially Private Synthesization of Multi-Dimensional Data using Copula Functions

    PubMed Central

    Li, Haoran; Xiong, Li; Jiang, Xiaoqian

    2014-01-01

    Differential privacy has recently emerged in private statistical data release as one of the strongest privacy guarantees. Most of the existing techniques that generate differentially private histograms or synthetic data only work well for single dimensional or low-dimensional histograms. They become problematic for high dimensional and large domain data due to increased perturbation error and computation complexity. In this paper, we propose DPCopula, a differentially private data synthesization technique using Copula functions for multi-dimensional data. The core of our method is to compute a differentially private copula function from which we can sample synthetic data. Copula functions are used to describe the dependence between multivariate random vectors and allow us to build the multivariate joint distribution using one-dimensional marginal distributions. We present two methods for estimating the parameters of the copula functions with differential privacy: maximum likelihood estimation and Kendall’s τ estimation. We present formal proofs for the privacy guarantee as well as the convergence property of our methods. Extensive experiments using both real datasets and synthetic datasets demonstrate that DPCopula generates highly accurate synthetic multi-dimensional data with significantly better utility than state-of-the-art techniques. PMID:25405241

  20. Multi-dimensional NMR without coherence transfer: Minimizing losses in large systems

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Prestegard, James H.

    2011-10-01

    Most multi-dimensional solution NMR experiments connect one dimension to another using coherence transfer steps that involve evolution under scalar couplings. While experiments of this type have been a boon to biomolecular NMR the need to work on ever larger systems pushes the limits of these procedures. Spin relaxation during transfer periods for even the most efficient 15N- 1H HSQC experiments can result in more than an order of magnitude loss in sensitivity for molecules in the 100 kDa range. A relatively unexploited approach to preventing signal loss is to avoid coherence transfer steps entirely. Here we describe a scheme for multi-dimensional NMR spectroscopy that relies on direct frequency encoding of a second dimension by multi-frequency decoupling during acquisition, a technique that we call MD-DIRECT. A substantial improvement in sensitivity of 15N- 1H correlation spectra is illustrated with application to the 21 kDa ADP ribosylation factor (ARF) labeled with 15N in all alanine residues. Operation at 4 °C mimics observation of a 50 kDa protein at 35 °C.

  1. Experimental demonstration of multi-dimensional resources integration for service provisioning in cloud radio over fiber network

    PubMed Central

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young

    2016-01-01

    Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes. PMID:27465296

  2. Parallel adaptive mesh refinement method based on WENO finite difference scheme for the simulation of multi-dimensional detonation

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Dong, XinZhuang; Shu, Chi-Wang

    2015-10-01

    For numerical simulation of detonation, computational cost using uniform meshes is large due to the vast separation in both time and space scales. Adaptive mesh refinement (AMR) is advantageous for problems with vastly different scales. This paper aims to propose an AMR method with high order accuracy for numerical investigation of multi-dimensional detonation. A well-designed AMR method based on finite difference weighted essentially non-oscillatory (WENO) scheme, named as AMR&WENO is proposed. A new cell-based data structure is used to organize the adaptive meshes. The new data structure makes it possible for cells to communicate with each other quickly and easily. In order to develop an AMR method with high order accuracy, high order prolongations in both space and time are utilized in the data prolongation procedure. Based on the message passing interface (MPI) platform, we have developed a workload balancing parallel AMR&WENO code using the Hilbert space-filling curve algorithm. Our numerical experiments with detonation simulations indicate that the AMR&WENO is accurate and has a high resolution. Moreover, we evaluate and compare the performance of the uniform mesh WENO scheme and the parallel AMR&WENO method. The comparison results provide us further insight into the high performance of the parallel AMR&WENO method.

  3. Experimental demonstration of multi-dimensional resources integration for service provisioning in cloud radio over fiber network.

    PubMed

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young

    2016-07-28

    Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.

  4. Experimental demonstration of multi-dimensional resources integration for service provisioning in cloud radio over fiber network

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young

    2016-07-01

    Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.

  5. The multi-dimensional model of Māori identity and cultural engagement: item response theory analysis of scale properties.

    PubMed

    Sibley, Chris G; Houkamau, Carla A

    2013-01-01

    We argue that there is a need for culture-specific measures of identity that delineate the factors that most make sense for specific cultural groups. One such measure, recently developed specifically for Māori peoples, is the Multi-Dimensional Model of Māori Identity and Cultural Engagement (MMM-ICE). Māori are the indigenous peoples of New Zealand. The MMM-ICE is a 6-factor measure that assesses the following aspects of identity and cultural engagement as Māori: (a) group membership evaluation, (b) socio-political consciousness, (c) cultural efficacy and active identity engagement, (d) spirituality, (e) interdependent self-concept, and (f) authenticity beliefs. This article examines the scale properties of the MMM-ICE using item response theory (IRT) analysis in a sample of 492 Māori. The MMM-ICE subscales showed reasonably even levels of measurement precision across the latent trait range. Analysis of age (cohort) effects further indicated that most aspects of Māori identification tended to be higher among older Māori, and these cohort effects were similar for both men and women. This study provides novel support for the reliability and measurement precision of the MMM-ICE. The study also provides a first step in exploring change and stability in Māori identity across the life span. A copy of the scale, along with recommendations for scale scoring, is included.

  6. RESEARCH DESIGN FOR EVALUATING PROJECT MISSION.

    ERIC Educational Resources Information Center

    FURNO, ORLANDO F.; AND OTHERS

    THIS REPORT OUTLINES DESIGNS FOR 8 POSSIBLE RESEARCH STUDIES WHICH COULD BE UNDERTAKEN WITH REGARD TO PROJECT MISSION, A PROGRAM TO PREPARE TEACHERS FOR ASSIGNMENT TO INNER CITY SCHOOLS. THEY ARE (1) A STUDY OF ATTRITION RATES OF STUDENT-INTERN-TEACHER ENROLLEES IN TRAINING IN PROJECT MISSION, (2) TEACHER CHARACTERISTICS OF PROJECT MISSION INTERNS…

  7. Design Alternatives for Evaluating the Impact of Conservation Projects

    ERIC Educational Resources Information Center

    Margoluis, Richard; Stem, Caroline; Salafsky, Nick; Brown, Marcia

    2009-01-01

    Historically, examples of project evaluation in conservation were rare. In recent years, however, conservation professionals have begun to recognize the importance of evaluation both for accountability and for improving project interventions. Even with this growing interest in evaluation, the conservation community has paid little attention to…

  8. Alternate Methods for Assuring Credibility of Research and Evaluation Findings in Project Evaluation.

    ERIC Educational Resources Information Center

    Denton, William T.; Murray, Wayne R.

    This paper describes six existing evaluator-auditor working formats and the conditions which foster credibility of evaluation findings. Evaluators were classified as: (1) member of project developmental team, accountable to project director; (2) independent internal evaluator, accountable to system in general but not to project directors, and (3)…

  9. Criticality safety benchmark evaluation project: Recovering the past

    SciTech Connect

    Trumble, E.F.

    1997-06-01

    A very brief summary of the Criticality Safety Benchmark Evaluation Project of the Westinghouse Savannah River Company is provided in this paper. The purpose of the project is to provide a source of evaluated criticality safety experiments in an easily usable format. Another project goal is to search for any experiments that may have been lost or contain discrepancies, and to determine if they can be used. Results of evaluated experiments are being published as US DOE handbooks.

  10. Continuous energy, multi-dimensional discrete ordinates transport calculations for problem dependent resonance treatment

    NASA Astrophysics Data System (ADS)

    Zhong, Zhaopeng

    In the past twenty 20 years considerable progress has been made in developing new methods for solving the multi-dimensional transport problem. However the effort devoted to the resonance self-shielding calculation has lagged, and much less progress has been made in enhancing resonance-shielding techniques for generating problem-dependent multi-group cross sections (XS) for the multi-dimensional transport calculations. In several applications, the error introduced by self-shielding methods exceeds that due to uncertainties in the basic nuclear data, and often they can be the limiting factor on the accuracy of the final results. This work is to improve the accuracy of the resonance self-shielding calculation by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. A new method has been developed, it can calculate the continuous-energy neutron fluxes for the whole two-dimensional domain, which can be utilized as weighting function to process the self-shielded multi-group cross sections for reactor analysis and criticality calculations, and during this process, the two-dimensional heterogeneous effect in the resonance self-shielding calculation can be fully included. A new code, GEMINEWTRN (Group and Energy-Pointwise Methodology Implemented in NEWT for Resonance Neutronics) has been developed in the developing version of SCALE [1], it combines the energy pointwise (PW) capability of the CENTRM [2] with the two-dimensional discrete ordinates transport capability of lattice physics code NEWT [14]. Considering the large number of energy points in the resonance region (typically more than 30,000), the computational burden and memory requirement for GEMINEWTRN is tremendously large, some efforts have been performed to improve the computational efficiency, parallel computation has been implemented into GEMINEWTRN, which can save the computation and memory requirement a lot; some energy points reducing

  11. Radiative interactions in multi-dimensional chemically reacting flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, Surendra N.

    1994-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The amount and transfer of the emitted radiative energy in a finite volume element within a medium are considered in an exact manner. The spectral correlation between transmittances of two different segments of the same path in a medium makes the statistical relationship different from the conventional relationship, which only provides the non-correlated results for nongray methods is discussed. Validation of the Monte Carlo formulations is conducted by comparing results of this method of other solutions. In order to further establish the validity of the MCM, a relatively simple problem of radiative interactions in laminar parallel plate flows is considered. One-dimensional correlated Monte Carlo formulations are applied to investigate radiative heat transfer. The nongray Monte Carlo solutions are also obtained for the same problem and they also essentially match the available analytical solutions. the exact correlated and non-correlated Monte Carlo formulations are very complicated for multi-dimensional systems. However, by introducing the assumption of an infinitesimal volume element, the approximate correlated and non-correlated formulations are obtained which are much simpler than the exact formulations. Consideration of different problems and comparison of different solutions reveal that the approximate and exact correlated solutions agree very well, and so do the approximate and exact non-correlated solutions. However, the two non-correlated solutions have no physical meaning because they significantly differ from the correlated solutions. An accurate prediction of radiative heat transfer in any nongray and multi-dimensional system is possible by using the approximate correlated formulations. Radiative interactions are investigated in

  12. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM

    PubMed Central

    Singh, Brajesh K.; Srivastava, Vineet K.

    2015-01-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639

  13. Multi-dimensional instability of dust-acoustic solitary waves in a magnetized plasma with opposite polarity dust

    SciTech Connect

    Akhter, T.; Hossain, M. M.; Mamun, A. A.

    2012-09-15

    Dust-acoustic (DA) solitary structures and their multi-dimensional instability in a magnetized dusty plasma (containing inertial negatively and positively charged dust particles, and Boltzmann electrons and ions) have been theoretically investigated by the reductive perturbation method, and the small-k perturbation expansion technique. It has been found that the basic features (polarity, speed, height, thickness, etc.) of such DA solitary structures, and their multi-dimensional instability criterion or growth rate are significantly modified by the presence of opposite polarity dust particles and external magnetic field. The implications of our results in space and laboratory dusty plasma systems have been briefly discussed.

  14. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM.

    PubMed

    Singh, Brajesh K; Srivastava, Vineet K

    2015-04-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.

  15. Evolving Our Evaluation of Lighting Environments Project

    NASA Technical Reports Server (NTRS)

    Terrier, Douglas; Clayton, Ronald; Clark, Toni Anne

    2016-01-01

    Imagine you are an astronaut on their 100th day of your three year exploration mission. During your daily routine to the small hygiene compartment of the spacecraft, you realize that no matter what you do, your body blocks the light from the lamp. You can clearly see your hands or your toes but not both! What were those design engineers thinking! It would have been nice if they could have made the walls glow instead! The reason the designers were not more innovative is that their interpretation of the system lighting requirements didn't allow them to be so! Currently, our interior spacecraft lighting standards and requirements are written around the concept of a quantity of light illuminating a spacecraft surface. The natural interpretation for the engineer is that a lamp that throws light to the surface is required. Because of certification costs, only one lamp is designed and small rooms can wind up with lamps that may be inappropriate for the room architecture. The advances in solid state light emitting technologies and optics for lighting and visual communication necessitates the evaluation of how NASA envisions spacecraft lighting architectures and how NASA uses industry standards for the design and evaluation of lighting system. Current NASA lighting standards and requirements for existing architectures focus on the separate ability of a lighting system to throw light against a surface or the ability of a display system to provide the appropriate visual contrast. Realization that these systems can be integrated is not realized. The result is that the systems are developed independent from one another and potential efficiencies that could be realized from borrowing from the concept of one technology and applying it for the purpose of the other does not occur. This project investigated the possibility of incorporating large luminous surface lamps as an alternative or supplement to overhead lighting. We identified existing industry standards for architectural

  16. MULTI-DIMENSIONAL MASS SPECTROMETRY-BASED SHOTGUN LIPIDOMICS AND NOVEL STRATEGIES FOR LIPIDOMIC ANALYSES

    PubMed Central

    Han, Xianlin; Yang, Kui; Gross, Richard W.

    2011-01-01

    Since our last comprehensive review on multi-dimensional mass spectrometry-based shotgun lipidomics (Mass Spectrom. Rev. 24 (2005), 367), many new developments in the field of lipidomics have occurred. These developments include new strategies and refinements for shotgun lipidomic approaches that use direct infusion, including novel fragmentation strategies, identification of multiple new informative dimensions for mass spectrometric interrogation, and the development of new bioinformatic approaches for enhanced identification and quantitation of the individual molecular constituents that comprise each cell’s lipidome. Concurrently, advances in liquid chromatography-based platforms and novel strategies for quantitative matrix-assisted laser desorption/ionization mass spectrometry for lipidomic analyses have been developed. Through the synergistic use of this repertoire of new mass spectrometric approaches, the power and scope of lipidomics has been greatly expanded to accelerate progress toward the comprehensive understanding of the pleiotropic roles of lipids in biological systems. PMID:21755525

  17. Multi-Dimensional Simulations of Radiative Transfer in Aspherical Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Maeda, Keiichi; Mazzali, Paolo A.; Nomoto, Ken'ichi

    2008-05-01

    We study optical radiation of aspherical supernovae (SNe) and present an approach to verify the asphericity of SNe with optical observations of extragalactic SNe. For this purpose, we have developed a multi-dimensional Monte-Carlo radiative transfer code, SAMURAI (SupernovA Multidimensional RAdIative transfer code). The code can compute the optical light curve and spectra both at early phases (<~40 days after the explosion) and late phases (~1 year after the explosion), based on hydrodynamic and nucleosynthetic models. We show that all the optical observations of SN 1998bw (associated with GRB 980425) are consistent with polar-viewed radiation of the aspherical explosion model with kinetic energy 20×1051 ergs. Properties of off-axis hypernovae are also discussed briefly.

  18. Deadlock-free class routes for collective communications embedded in a multi-dimensional torus network

    DOEpatents

    Chen, Dong; Eisley, Noel A.; Steinmacher-Burow, Burkhard; Heidelberger, Philip

    2013-01-29

    A computer implemented method and a system for routing data packets in a multi-dimensional computer network. The method comprises routing a data packet among nodes along one dimension towards a root node, each node having input and output communication links, said root node not having any outgoing uplinks, and determining at each node if the data packet has reached a predefined coordinate for the dimension or an edge of the subrectangle for the dimension, and if the data packet has reached the predefined coordinate for the dimension or the edge of the subrectangle for the dimension, determining if the data packet has reached the root node, and if the data packet has not reached the root node, routing the data packet among nodes along another dimension towards the root node.

  19. Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches

    SciTech Connect

    Nardin, Gaël; Li, Hebin; Autry, Travis M.; Moody, Galan; Singh, Rohan; Cundiff, Steven T.

    2015-03-21

    We review our recent work on multi-dimensional coherent optical spectroscopy (MDCS) of semiconductor nanostructures. Two approaches, appropriate for the study of semiconductor materials, are presented and compared. A first method is based on a non-collinear geometry, where the Four-Wave-Mixing (FWM) signal is detected in the form of a radiated optical field. This approach works for samples with translational symmetry, such as Quantum Wells (QWs) or large and dense ensembles of Quantum Dots (QDs). A second method detects the FWM in the form of a photocurrent in a collinear geometry. This second approach extends the horizon of MDCS to sub-diffraction nanostructures, such as single QDs, nanowires, or nanotubes, and small ensembles thereof. Examples of experimental results obtained on semiconductor QW structures are given for each method. In particular, it is shown how MDCS can assess coupling between excitons confined in separated QWs.

  20. Multi-Dimensional Simulations of Radiative Transfer in Aspherical Core-Collapse Supernovae

    SciTech Connect

    Tanaka, Masaomi; Maeda, Keiichi; Mazzali, Paolo A.; Nomoto, Ken'ichi

    2008-05-21

    We study optical radiation of aspherical supernovae (SNe) and present an approach to verify the asphericity of SNe with optical observations of extragalactic SNe. For this purpose, we have developed a multi-dimensional Monte-Carlo radiative transfer code, SAMURAI (SupernovA Multidimensional RAdIative transfer code). The code can compute the optical light curve and spectra both at early phases (< or approx. 40 days after the explosion) and late phases ({approx}1 year after the explosion), based on hydrodynamic and nucleosynthetic models. We show that all the optical observations of SN 1998bw (associated with GRB 980425) are consistent with polar-viewed radiation of the aspherical explosion model with kinetic energy 20x10{sup 51} ergs. Properties of off-axis hypernovae are also discussed briefly.

  1. Racial-ethnic self-schemas: Multi-dimensional identity-based motivation

    PubMed Central

    Oyserman, Daphna

    2008-01-01

    Prior self-schema research focuses on benefits of being schematic vs. aschematic in stereotyped domains. The current studies build on this work, examining racial-ethnic self-schemas as multi-dimensional, containing multiple, conflicting, and non-integrated images. A multidimensional perspective captures complexity; examining net effects of dimensions predicts within-group differences in academic engagement and well-being. When racial-ethnicity self-schemas focus attention on membership in both in-group and broader society, engagement with school should increase since school is not seen as out-group defining. When racial-ethnicity self-schemas focus attention on inclusion (not obstacles to inclusion) in broader society, risk of depressive symptoms should decrease. Support for these hypotheses was found in two separate samples (8th graders, n = 213, 9th graders followed to 12th grade n = 141). PMID:19122837

  2. Recent Advances in Fragment-Based QSAR and Multi-Dimensional QSAR Methods

    PubMed Central

    Myint, Kyaw Zeyar; Xie, Xiang-Qun

    2010-01-01

    This paper provides an overview of recently developed two dimensional (2D) fragment-based QSAR methods as well as other multi-dimensional approaches. In particular, we present recent fragment-based QSAR methods such as fragment-similarity-based QSAR (FS-QSAR), fragment-based QSAR (FB-QSAR), Hologram QSAR (HQSAR), and top priority fragment QSAR in addition to 3D- and nD-QSAR methods such as comparative molecular field analysis (CoMFA), comparative molecular similarity analysis (CoMSIA), Topomer CoMFA, self-organizing molecular field analysis (SOMFA), comparative molecular moment analysis (COMMA), autocorrelation of molecular surfaces properties (AMSP), weighted holistic invariant molecular (WHIM) descriptor-based QSAR (WHIM), grid-independent descriptors (GRIND)-based QSAR, 4D-QSAR, 5D-QSAR and 6D-QSAR methods. PMID:21152304

  3. Measurement of Low Level Explosives Reaction in Gauged Multi-Dimensional Steven Impact Tests

    SciTech Connect

    Niles, A M; Garcia, F; Greenwood, D W; Forbes, J W; Tarver, C M; Chidester, S K; Garza, R G; Swizter, L L

    2001-05-31

    The Steven Test was developed to determine relative impact sensitivity of metal encased solid high explosives and also be amenable to two-dimensional modeling. Low level reaction thresholds occur at impact velocities below those required for shock initiation. To assist in understanding this test, multi-dimensional gauge techniques utilizing carbon foil and carbon resistor gauges were used to measure pressure and event times. Carbon resistor gauges indicated late time low level reactions 200-540 {micro}s after projectile impact, creating 0.39-2.00 kb peak shocks centered in PBX 9501 explosives discs and a 0.60 kb peak shock in a LX-04 disk. Steven Test modeling results, based on ignition and growth criteria, are presented for two PBX 9501 scenarios: one with projectile impact velocity just under threshold (51 m/s) and one with projectile impact velocity just over threshold (55 m/s). Modeling results are presented and compared to experimental data.

  4. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping

    NASA Astrophysics Data System (ADS)

    Bongiovanni, Marie N.; Godet, Julien; Horrocks, Mathew H.; Tosatto, Laura; Carr, Alexander R.; Wirthensohn, David C.; Ranasinghe, Rohan T.; Lee, Ji-Eun; Ponjavic, Aleks; Fritz, Joelle V.; Dobson, Christopher M.; Klenerman, David; Lee, Steven F.

    2016-12-01

    Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane.

  5. Boussinesq-like multi-component lattice equations and multi-dimensional consistency

    NASA Astrophysics Data System (ADS)

    Hietarinta, Jarmo

    2011-04-01

    Various classes of one-component lattice equations, defined by a multi-linear relation between values at the vertices of an elementary square, have recently been classified using the requirement of multi-dimensional consistency (consistency-around-the-cube, CAC). Here we consider multi-component equations, with some equations defined on the edges of the consistency cube and others on the faces of the cube. Some examples of this type are already known, including the lattice-modified Boussinesq equation (lmBSQ). We classify the edge equations into three canonical forms and derive the consequences of their CAC-property. This restricts the form of the face equation sufficiently so that its CAC-property can be analyzed. As a result we obtain a number of integrable multi-component lattice equations, some generalizing lmBSQ.

  6. Measurement of Low Level Explosives Reaction in Gauged Multi-dimensional Steven Impact Tests

    NASA Astrophysics Data System (ADS)

    Niles, A. M.; Garcia, F.; Greenwood, D. W.; Forbes, J. W.; Tarver, C. M.; Chidester, S. K.; Garza, R. G.; Swizter, L. L.

    2002-07-01

    The Steven Test was developed to determine relative impact sensitivity of metal encased solid high explosives and also be amenable to two-dimensional modeling. Low level reaction thresholds occur at impact velocities below those required for shock initiation. To assist in understanding this test, multi-dimensional gauge techniques utilizing carbon foil and carbon resistor gauges were used to measure pressure and event times. Carbon resistor gauges indicated late time low level reactions 200-540 mus after projectile impact, creating 0.39-2.00 kb peak shocks centered in PBX 9501 explosives discs and a 0.60 kb peak shock in a LX-04 disk. Steven Test modeling results, based on ignition and growth criteria, are presented for two PBX 9501 scenarios: one with projectile impact velocity just under threshold (51 m/s) and one with projectile impact velocity just over threshold (55 m/s). Modeling results are presented and compared to experimental data.

  7. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    NASA Astrophysics Data System (ADS)

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-03-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here.

  8. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    PubMed Central

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-01-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here. PMID:24671105

  9. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.

  10. High-Order Central WENO Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present new third- and fifth-order Godunov-type central schemes for approximating solutions of the Hamilton-Jacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greater than two. In two space dimensions we present two versions for the third-order scheme: one scheme that is based on a genuinely two-dimensional Central WENO reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruction. The simpler dimension-by-dimension variant is then extended to a multi-dimensional fifth-order scheme. Our numerical examples in one, two and three space dimensions verify the expected order of accuracy of the schemes.

  11. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping

    PubMed Central

    Bongiovanni, Marie N.; Godet, Julien; Horrocks, Mathew H.; Tosatto, Laura; Carr, Alexander R.; Wirthensohn, David C.; Ranasinghe, Rohan T.; Lee, Ji-Eun; Ponjavic, Aleks; Fritz, Joelle V.; Dobson, Christopher M.; Klenerman, David; Lee, Steven F.

    2016-01-01

    Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane. PMID:27929085

  12. Generation and entanglement of multi-dimensional multi-mode coherent fields in cavity QED

    NASA Astrophysics Data System (ADS)

    Maleki, Y.

    2016-11-01

    We introduce generalized multi-mode superposition of multi-dimensional coherent field states and propose a generation scheme of such states in a cavity QED scenario. An appropriate encoding of information on these states is employed, which maps the states to the Hilbert space of some multi-qudit states. The entanglement of these states is characterized based on such proper encodings. A detailed study of entanglement in general multi-qudit coherent states is presented, and in addition to establishing some explicit expressions for quantifying entanglement of such systems, several important features of entanglement in these system states are exposed. Furthermore, the effects of both cavity decay and channel noise on these system states are studied and their properties are illustrated.

  13. Evaluation of the School Administration Manager Project

    ERIC Educational Resources Information Center

    Turnbull, Brenda J.; Haslam, M. Bruce; Arcaira, Erikson R.; Riley, Derek L.; Sinclair, Beth; Coleman, Stephen

    2009-01-01

    The School Administration Manager (SAM) project, supported by The Wallace Foundation as part of its education initiative, focuses on changing the conditions in schools that prevent principals from devoting more time to instructional leadership. In schools participating in the National SAM Project, principals have made a commitment to increase the…

  14. Human Relations Education Project. Final Evaluation Report.

    ERIC Educational Resources Information Center

    Buffalo Board of Education, NY.

    This project did the planning and pilot phases of an effort to improve the teaching of human relations in grades K-12 of public and private schools in the Buffalo-Niagara Falls metropolitan area. In the pilot phase, the project furnished on-the-job training for approximately 70 schools. The training was given by teams of human relations…

  15. Evaluation of the Matrix Project. Interchange 77.

    ERIC Educational Resources Information Center

    McIvor, Gill; Moodie, Kristina

    The Matrix Project is a program that has been established in central Scotland with the aim of reducing the risk of offending and anti-social behavior among vulnerable children. The project provides a range of services to children between eight and 11 years of age who are at risk in the local authority areas of Clackmannanshire, Falkirk and…

  16. Evaluation of the Matrix Project. Interchange 77.

    ERIC Educational Resources Information Center

    McIvor, Gill; Moodie, Kristina

    The Matrix Project is a program that has been established in central Scotland with the aim of reducing the risk of offending and anti-social behavior among vulnerable children. The project provides a range of services to children between eight and 11 years of age who are at risk in the local authority areas of Clackmannanshire, Falkirk and…

  17. Project Aprendizaje. 1990-91 Final Evaluation Profile. OREA Report.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Research, Evaluation, and Assessment.

    An evaluation was done of New York City Public Schools' Project Aprendizaje, which served disadvantaged, immigrant, Spanish-speaking high school students at Seward Park High School in Manhattan. The Project enrolled 290 students in grades 9 through 12, 93.1 percent of whom were eligible for the Free Lunch Program. The Project provided students of…

  18. Project T.E.A.C.H.: An Evaluative Study.

    ERIC Educational Resources Information Center

    Howarth, Les

    A survey of 17 graduates of Project T.E.A.C.H. (Teacher Effectiveness and Classroom Handling), an inservice education program offered through the Ontario (Canada) Public School Men Teacher's Association in conjunction with Lesley College, used closed- and open-ended questions to obtain evaluations of the project's effectiveness. Five project areas…

  19. PLATO across the Curriculum: An Evaluation of a Project.

    ERIC Educational Resources Information Center

    Freer, David

    1986-01-01

    A project at the University of Witwatersrand examined the implications of introducing a centrally controlled system of computer-based learning in which 13 university departments utilized PLATO to supplement teaching programs and encourage computer literacy. Department project descriptions and project evaluations (which reported positive student…

  20. Evaluation of the Appalachian Regional Commission's Educational Projects: Final Report.

    ERIC Educational Resources Information Center

    Silverstein, Gary; Bartfai, Nicole; Plishker, Laurie; Snow, Kyle; Frechtling, Joy

    This report presents findings from an evaluation of 84 educational projects funded by the Appalachian Regional Commission (ARC) during the 1990's. Data were collected via document reviews, interviews, a mail survey completed by 78 projects, and eight site visits. Most projects provided services to rural areas or community segments most in need.…

  1. PLATO across the Curriculum: An Evaluation of a Project.

    ERIC Educational Resources Information Center

    Freer, David

    1986-01-01

    A project at the University of Witwatersrand examined the implications of introducing a centrally controlled system of computer-based learning in which 13 university departments utilized PLATO to supplement teaching programs and encourage computer literacy. Department project descriptions and project evaluations (which reported positive student…

  2. Outside Evaluation Report for the Arlington Federal Workplace Literacy Project.

    ERIC Educational Resources Information Center

    Wrigley, Heide Spruck

    The successes and challenges of the Arlington Education and Employment Program (REEP) Workplace Literacy Project in Virginia are described in this evaluation report. REEP's federal Workplace Literacy Project Consortium is operated as a special project within the Department of Adult, Career and Vocational Education of the Arlington Public Schools.…

  3. Special Education Evaluation Project for University Affiliated Facilities. Final Report.

    ERIC Educational Resources Information Center

    Burrello, Leonard C.; And Others

    The final report of the Special Education Evaluation Project for 16 University Affiliated Facilities (UAF) centers provides a chronological review of the project which focused on the training of persons to work with mentally retarded or other handicapped individuals. Outlined are project objectives including the development of descriptors useful…

  4. Visualizing the sedimentary response through the orogenic cycle using multi-dimensional scaling

    NASA Astrophysics Data System (ADS)

    Spencer, C. J.; Kirkland, C.

    2015-12-01

    Changing patterns in detrital provenance through time have the ability to resolve salient features of an orogenic cycle. Such changes in the age spectrum of detrital minerals can be attributed to fluctuations in the geodynamic regime (e.g. opening of seaways, initiation of subduction and arc magmatism, and transition from subduction to collisional tectonics with arrival of exotic crustal material). These processes manifest themselves through a variety of sedimentary responses due to basin formation, transition from rift to drift sedimentation, or inversion and basement unroofing. This generally is charted by the presence of older detrital zircon populations during basement unroofing events and is followed by a successive younging in the detrital zircon age signature either through arrival of young island arc terranes or the progression of subduction magmatism along a continental margin. The sedimentary response to the aforementioned geodynamic environment can be visualized using a multi-dimensional scaling approach to detrital zircon age spectra. This statistical tool characterizes the "dissimilarity" of age spectra of the various sedimentary successions, but importantly also charts this measure through time. We present three case studies in which multi-dimensional scaling reveals additional useful information on the style of basin evolution within the orogenic cycle. The Albany-Fraser Orogeny in Western Australia and Grenville Orogeny (sensu stricto) in Laurentia demonstrate clear patterns in which detrital zircon age spectra become more dissimilar with time. In stark contrast, sedimentary successions from the Meso- to Neoproterozoic North Atlantic Region reveal no consistent pattern. Rather, the North Atlantic Region reflects a signature consistent with significant zircon age communication due to a distal position from an orogenic front, oblique translation of terranes, and complexity of the continental margin. This statistical approach provides a mechanism to

  5. An information model for managing multi-dimensional gridded data in a GIS

    NASA Astrophysics Data System (ADS)

    Xu, H.; Abdul-Kadar, F.; Gao, P.

    2016-04-01

    Earth observation agencies like NASA and NOAA produce huge volumes of historical, near real-time, and forecasting data representing terrestrial, atmospheric, and oceanic phenomena. The data drives climatological and meteorological studies, and underpins operations ranging from weather pattern prediction and forest fire monitoring to global vegetation analysis. These gridded data sets are distributed mostly as files in HDF, GRIB, or netCDF format and quantify variables like precipitation, soil moisture, or sea surface temperature, along one or more dimensions like time and depth. Although the data cube is a well-studied model for storing and analyzing multi-dimensional data, the GIS community remains in need of a solution that simplifies interactions with the data, and elegantly fits with existing database schemas and dissemination protocols. This paper presents an information model that enables Geographic Information Systems (GIS) to efficiently catalog very large heterogeneous collections of geospatially-referenced multi-dimensional rasters—towards providing unified access to the resulting multivariate hypercubes. We show how the implementation of the model encapsulates format-specific variations and provides unified access to data along any dimension. We discuss how this framework lends itself to familiar GIS concepts like image mosaics, vector field visualization, layer animation, distributed data access via web services, and scientific computing. Global data sources like MODIS from USGS and HYCOM from NOAA illustrate how one would employ this framework for cataloging, querying, and intuitively visualizing such hypercubes. ArcGIS—an established platform for processing, analyzing, and visualizing geospatial data—serves to demonstrate how this integration brings the full power of GIS to the scientific community.

  6. TWO-DIMENSIONAL CORE-COLLAPSE SUPERNOVA MODELS WITH MULTI-DIMENSIONAL TRANSPORT

    SciTech Connect

    Dolence, Joshua C.; Burrows, Adam; Zhang, Weiqun E-mail: burrows@astro.princeton.edu

    2015-02-10

    We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant O(v/c) terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate O(v/c) terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 ms after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying ''ray-by-ray'' approach employed by all other groups may be compromising their results. We show that ''ray-by-ray'' calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion.

  7. Two-dimensional Core-collapse Supernova Models with Multi-dimensional Transport

    NASA Astrophysics Data System (ADS)

    Dolence, Joshua C.; Burrows, Adam; Zhang, Weiqun

    2015-02-01

    We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant {O}(v/c) terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate {O}(v/c) terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 ms after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying "ray-by-ray" approach employed by all other groups may be compromising their results. We show that "ray-by-ray" calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion.

  8. Multi-dimensional validation of a maximum-entropy-based interpolative moment closure

    NASA Astrophysics Data System (ADS)

    Tensuda, Boone R.; McDonald, James G.; Groth, Clinton P. T.

    2016-11-01

    The performance of a novel maximum-entropy-based 14-moment interpolative closure is examined for multi-dimensional flows via validation of the closure for several established benchmark problems. Despite its consideration of heat transfer, this 14-moment closure contains closed-form expressions for the closing fluxes, unlike the maximum-entropy models on which it is based. While still retaining singular behaviour in some regions of realizable moment space, the interpolative closure proves to have a large region of hyperbolicity while remaining computationally tractable. Furthermore, the singular nature has been shown to be advantageous for practical simulations. The multi-dimensional cases considered here include Couette flow, heat transfer between infinite parallel plates, subsonic flow past a circular cylinder, and lid-driven cavity flow. The 14-moment predictions are compared to analytical, DSMC, and experimental results as well the results of other closures. For each case, a range of Knudsen numbers are explored in order to assess the validity and accuracy of the closure in different regimes. For Couette flow and heat transfer between flat plates, it is shown that the closure predictions are consistent with the expected analytical solutions in all regimes. In the cases of flow past a circular cylinder and lid-driven cavity flow, the closure is found to give more accurate results than the related lower-order maximum-entropy Gaussian and maximum-entropy-based regularized Gaussian closures. The ability to predict important non-equilibrium phenomena, such as a counter-gradient heat flux, is also established.

  9. Convergence of a discretized self-adaptive evolutionary algorithm on multi-dimensional problems.

    SciTech Connect

    Hart, William Eugene; DeLaurentis, John Morse

    2003-08-01

    We consider the convergence properties of a non-elitist self-adaptive evolutionary strategy (ES) on multi-dimensional problems. In particular, we apply our recent convergence theory for a discretized (1,{lambda})-ES to design a related (1,{lambda})-ES that converges on a class of seperable, unimodal multi-dimensional problems. The distinguishing feature of self-adaptive evolutionary algorithms (EAs) is that the control parameters (like mutation step lengths) are evolved by the evolutionary algorithm. Thus the control parameters are adapted in an implicit manner that relies on the evolutionary dynamics to ensure that more effective control parameters are propagated during the search. Self-adaptation is a central feature of EAs like evolutionary stategies (ES) and evolutionary programming (EP), which are applied to continuous design spaces. Rudolph summarizes theoretical results concerning self-adaptive EAs and notes that the theoretical underpinnings for these methods are essentially unexplored. In particular, convergence theories that ensure convergence to a limit point on continuous spaces have only been developed by Rudolph, Hart, DeLaurentis and Ferguson, and Auger et al. In this paper, we illustrate how our analysis of a (1,{lambda})-ES for one-dimensional unimodal functions can be used to ensure convergence of a related ES on multidimensional functions. This (1,{lambda})-ES randomly selects a search dimension in each iteration, along which points generated. For a general class of separable functions, our analysis shows that the ES searches along each dimension independently, and thus this ES converges to the (global) minimum.

  10. CTH: A software family for multi-dimensional shock physics analysis

    SciTech Connect

    Hertel, E.S. Jr.; Bell, R.L.; Elrick, M.G.; Farnsworth, A.V.; Kerley, G.I.; McGlaun, J.M.; Petney, S.V.; Silling, S.A.; Taylor, P.A.; Yarrington, L.

    1992-12-31

    CTH is a family of codes developed at Sandia National Laboratories for modeling complex multi-dimensional, multi-material problems that are characterized by large deformations and/or strong shocks. A two-step, second-order accurate Eulerian solution algorithm is used to solve the mass, momentum, and energy conservation equations. CTH includes models for material strength, fracture, porous materials, and high explosive detonation and initiation. Viscoplastic or rate-dependent models of material strength have been added recently. The formulations of Johnson-Cook, Zerilli-Armstrong, and Steinberg-Guinan-Lund are standard options within CTH. These models rely on using an internal state variable to account for the history dependence of material response. The implementation of internal state variable models will be discussed and several sample calculations will be presented. Comparison with experimental data will be made among the various material strength models. The advancements made in modelling material response have significantly improved the ability of CTH to model complex large-deformation, plastic-flow dominated phenomena. Detonation of energetic material under shock loading conditions has been of great interest. A recently developed model of reactive burn for high explosives (HE) has been added to CTH. This model along with newly developed tabular equations-of-state for the HE reaction by-products has been compared to one- and two-dimensional explosive detonation experiments. These comparisons indicate excellent agreement of CTH predictions with experimental results. The new reactive burn model coupled with the advances in equation-of-state modeling make it possible to predict multi-dimensional burn phenomena without modifying the model parameters for different dimensionality. Examples of the features of CTH will be given. The emphasis in simulations shown will be in comparison with well characterized experiments covering key phenomena of shock physics.

  11. Social Studies Project Evaluation: Case Study and Recommendations.

    ERIC Educational Resources Information Center

    Napier, John

    1982-01-01

    Describes the development and application of a model for social studies program evaluations. A case study showing how the model's three-step process was used to evaluate the Improving Citizenship Education Project in Fulton County, Georgia is included. (AM)

  12. Social Studies Project Evaluation: Case Study and Recommendations.

    ERIC Educational Resources Information Center

    Napier, John

    1982-01-01

    Describes the development and application of a model for social studies program evaluations. A case study showing how the model's three-step process was used to evaluate the Improving Citizenship Education Project in Fulton County, Georgia is included. (AM)

  13. Project SEARCH UK--Evaluating Its Employment Outcomes

    ERIC Educational Resources Information Center

    Kaehne, Axel

    2016-01-01

    Background: The study reports the findings of an evaluation of Project SEARCH UK. The programme develops internships for young people with intellectual disabilities who are about to leave school or college. The aim of the evaluation was to investigate at what rate Project SEARCH provided employment opportunities to participants. Methods: The…

  14. Kentucky Migrant Technology Project: External Evaluation Report, 1997-98.

    ERIC Educational Resources Information Center

    Popp, Robert J.

    During its first year of operation (1997-98), the Kentucky Migrant Technology Project successfully implemented its model, used internal and external evaluations to inform improvement of the model, and began plans for expansion into new service areas. This evaluation report is organized around five questions that focus on the project model and its…

  15. Evaluation in Adult Literacy Research. Project ALERT. [Phase I.

    ERIC Educational Resources Information Center

    Ntiri, Daphne Williams, Ed.

    The Adult Literacy and Evaluation Research Team (also known as Project ALERT) was a project conducted by the Detroit Literacy Coalition (DLC) at Wayne State University in 1993-1994 to develop and pilot a user-friendly program model for evaluating literacy operations of community-based organizations throughout Michigan under the provisions of…

  16. The Program Evaluator's Role in Cross-Project Pollination.

    ERIC Educational Resources Information Center

    Yasgur, Bruce J.

    An expanded duties role of the multiple-program evaluator as an integral part of the ongoing decision-making process in all projects served is defended. Assumptions discussed included that need for projects with related objectives to pool resources and avoid duplication of effort and the evaluator's unique ability to provide an objective…

  17. Student Assistance Program Demonstration Project Evaluation. Final Report.

    ERIC Educational Resources Information Center

    Pollard, John A.; Houle, Denise M.

    This document presents the final report on the evaluation of California's model student assistance program (SAP) demonstration projects implemented in five locations across the state from July 1989 through June 1992. The report provides an overall, integrated review of the evaluation of the SAP demonstration projects, summarizes important findings…

  18. Project SEARCH UK--Evaluating Its Employment Outcomes

    ERIC Educational Resources Information Center

    Kaehne, Axel

    2016-01-01

    Background: The study reports the findings of an evaluation of Project SEARCH UK. The programme develops internships for young people with intellectual disabilities who are about to leave school or college. The aim of the evaluation was to investigate at what rate Project SEARCH provided employment opportunities to participants. Methods: The…

  19. Fuzzy Present Value Analysis Model for Evaluating Information System Projects

    SciTech Connect

    Omitaomu, Olufemi A; Badiru, Adedeji B

    2007-01-01

    In this article, the economic evaluation of information system projects using present value is analyzed based on triangular fuzzy numbers. Information system projects usually have numerous uncertainties and several conditions of risk that make their economic evaluation a challenging task. Each year, several information system projects are cancelled before completion as a result of budget overruns at a cost of several billions of dollars to industry. Although engineering economic analysis offers tools and techniques for evaluating risky projects, the tools are not enough to place information system projects on a safe budget/selection track. There is a need for an integrative economic analysis model that will account for the uncertainties in estimating project costs, benefits, and useful lives of uncertain and risky projects. In this study, we propose an approximate method of computing project present value using the concept of fuzzy modeling with special reference to information system projects. This proposed model has the potential of enhancing the project selection process by capturing a better economic picture of the project alternatives. The proposed methodology can also be used for other real-life projects with high degree of uncertainty and risk.

  20. MAI (Multi-Dimensional Activity Based Integrated Approach): A Strategy for Cognitive Development of the Learners at the Elementary Stage

    ERIC Educational Resources Information Center

    Basantia, Tapan Kumar; Panda, B. N.; Sahoo, Dukhabandhu

    2012-01-01

    Cognitive development of the learners is the prime task of each and every stage of our school education and its importance especially in elementary state is quite worth mentioning. Present study investigated the effectiveness of a new and innovative strategy (i.e., MAI (multi-dimensional activity based integrated approach)) for the development of…

  1. Accelerated Multi-Dimensional RF Pulse Design for Parallel Transmission Using Concurrent Computation on Multiple Graphics Processing Units

    PubMed Central

    Deng, Weiran; Yang, Cungeng; Stenger, V. Andrew

    2010-01-01

    Multi-dimensional RF pulses are of current interest due to their promise for improving high field imaging as well as for optimizing parallel transmission methods. One major drawback is that the computation time of numerically designed multi-dimensional RF pulses increases rapidly with their resolution and number of transmitters. This is critical because the construction of multi-dimensional RF pulses often needs to be in real time. The use of graphics processing units for computations is a recent approach for accelerating image reconstruction applications. We propose the use of graphics processing units for the design of multi-dimensional RF pulses including the utilization of parallel transmitters. Using a desktop computer with four NVIDIA Tesla C1060 computing processors, we found acceleration factors on the order of twenty for standard eight-transmitter 2D spiral RF pulses with a 64 × 64 excitation resolution and a ten-microsecond dwell time. We also show that even greater acceleration factors can be achieved for more complex RF pulses. PMID:21264929

  2. Evaluation of direct-use-project drilling costs

    SciTech Connect

    Dolenc, M.R.; Childs, F.W.; Allman, D.W.; Sanders, R.D.

    1983-01-01

    This study evaluates drilling and completion costs from eleven low-to-moderate temperature geothermal projects carried out under the Program Opportunity Notice (PON) and User-Coupled Confirmation Drilling Programs. Several studies have evaluated geothermal drilling costs, particularly with respect to high-temperature-system drilling costs. This study evaluates drilling costs and individual cost elements for low-to-moderate temperature projects. It considers the effect of drilling depth, rock types, remoteness of location, rig size, and unique operating and subsurface conditions on the total drilling cost. This detailed evaluation should provide the investor in direct-use projects with approximate cost projections by which the economics of such projects can be evaluated.

  3. What NSF Expects in Project Evaluations for Educational Innovations.

    ERIC Educational Resources Information Center

    Hannah, Judith L.

    1996-01-01

    The National Science Foundation (NSF) sponsors a range of programs to fund innovative approaches to teaching and learning. Focuses on NSF's expectations for project evaluation beginning with a definition of evaluation and a discussion of why evaluation is needed. Also describes planning, formative, and summative evaluation stages and concludes…

  4. Grey Relational Evaluation on Road Project Delivery Models

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Ching; Chao, Yu; Lee, Gin-Yuan

    2009-08-01

    In this study, four road delivery project models are analyzed by grey relational evaluation. The four models are design-bid-build (DBB), design-build (DB), construction management (CM) and design-build-maintenance (DBM). Evaluating road project delivery models is difficult because the projects differ from road to road, state to state and country to country. Thus, the evaluation data of project delivery systems are poor and lacking. Grey theory is an effective mathematical method, which is a multidisciplinary and generic theory dealing with systems characterized by poor information and/or for which information is lacking. Therefore, grey relational analysis and grey model are employed to compare the efficiency of the four road project delivery models. According to the result, DBM is the best model. DBB is the worst one and DB is better than CM. The results may provide public sectors to employ an adequate model so as to proceed with road construction project.

  5. Tectonomagmatic origin of Precambrian rocks of Mexico and Argentina inferred from multi-dimensional discriminant-function based discrimination diagrams

    NASA Astrophysics Data System (ADS)

    Pandarinath, Kailasa

    2014-12-01

    Several new multi-dimensional tectonomagmatic discrimination diagrams employing log-ratio variables of chemical elements and probability based procedure have been developed during the last 10 years for basic-ultrabasic, intermediate and acid igneous rocks. There are numerous studies on extensive evaluations of these newly developed diagrams which have indicated their successful application to know the original tectonic setting of younger and older as well as sea-water and hydrothermally altered volcanic rocks. In the present study, these diagrams were applied to Precambrian rocks of Mexico (southern and north-eastern) and Argentina. The study indicated the original tectonic setting of Precambrian rocks from the Oaxaca Complex of southern Mexico as follows: (1) dominant rift (within-plate) setting for rocks of 1117-988 Ma age; (2) dominant rift and less-dominant arc setting for rocks of 1157-1130 Ma age; and (3) a combined tectonic setting of collision and rift for Etla Granitoid Pluton (917 Ma age). The diagrams have indicated the original tectonic setting of the Precambrian rocks from the north-eastern Mexico as: (1) a dominant arc tectonic setting for the rocks of 988 Ma age; and (2) an arc and collision setting for the rocks of 1200-1157 Ma age. Similarly, the diagrams have indicated the dominant original tectonic setting for the Precambrian rocks from Argentina as: (1) with-in plate (continental rift-ocean island) and continental rift (CR) setting for the rocks of 800 Ma and 845 Ma age, respectively; and (2) an arc setting for the rocks of 1174-1169 Ma and of 1212-1188 Ma age. The inferred tectonic setting for these Precambrian rocks are, in general, in accordance to the tectonic setting reported in the literature, though there are some inconsistence inference of tectonic settings by some of the diagrams. The present study confirms the importance of these newly developed discriminant-function based diagrams in inferring the original tectonic setting of

  6. Ethnicity, work-related stress and subjective reports of health by migrant workers: a multi-dimensional model.

    PubMed

    Capasso, Roberto; Zurlo, Maria Clelia; Smith, Andrew P

    2016-11-16

    This study integrates different aspects of ethnicity and work-related stress dimensions (based on the Demands-Resources-Individual-Effects model, DRIVE [Mark, G. M., and A. P. Smith. 2008. "Stress Models: A Review and Suggested New Direction." In Occupational Health Psychology, edited by J. Houdmont and S. Leka, 111-144. Nottingham: Nottingham University Press]) and aims to test a multi-dimensional model that combines individual differences, ethnicity dimensions, work characteristics, and perceived job satisfaction/stress as independent variables in the prediction of subjectives reports of health by workers differing in ethnicity. A questionnaire consisting of the following sections was submitted to 900 workers in Southern Italy: for individual and cultural characteristics, coping strategies, personality behaviours, and acculturation strategies; for work characteristics, perceived job demands and job resources/rewards; for appraisals, perceived job stress/satisfaction and racial discrimination; for subjective reports of health, psychological disorders and general health. To test the reliability and construct validity of the extracted factors referred to all dimensions involved in the proposed model and logistic regression analyses to evaluate the main effects of the independent variables on the health outcomes were conducted. Principal component analysis (PCA) yielded seven factors for individual and cultural characteristics (emotional/relational coping, objective coping, Type A behaviour, negative affectivity, social inhibition, affirmation/maintenance culture, and search identity/adoption of the host culture); three factors for work characteristics (work demands, intrinsic/extrinsic rewards, and work resources); three factors for appraisals (perceived job satisfaction, perceived job stress, perceived racial discrimination) and three factors for subjective reports of health (interpersonal disorders, anxious-depressive disorders, and general health). Logistic

  7. Nozzle evaluation for Project W-314

    SciTech Connect

    Galbraith, J.D.

    1998-06-19

    Revisions to the waste transfer system piping to be implemented by Project W-314 will eliminate the need to access a majority of interfarm jumper connections associated with specific process pits. Additionally, connections that formerly facilitated waste transfers from the Plutonium-Uranium Extraction (PUREX) Plant are no longer required. This document identified unneeded process pit jumper connections, describes former designated routing, denotes current status (i.e., open or blanked), and recommends appropriate disposition for all. Blanking of identified nozzles should be accomplished by Project W-314 upon installation of jumpers and acceptance by Tank Waste Remediation System (TWRS) Tank Farm Operations.

  8. Evaluation of Project HAPPIER Survey: Illinois.

    ERIC Educational Resources Information Center

    Haenn, Joseph F.

    As part of Project HAPPIER (Health Awareness Patterns Preventing Illnesses and Encouraging Responsibility), a survey was conducted among teachers and other migrant personnel in Illinois to assess the current health needs of migrants. The availability of educational materials was also investigated in the survey in order to ensure that a proposed…

  9. Project RESPECT. Third Year Program Evaluation Report.

    ERIC Educational Resources Information Center

    Kester, Don; Plakos, John; Santos, Will

    In January 1995, John Marshall High School (Los Angeles, California) implemented a 3-year bilingual special alternative instructional program, Redesign of Educational Services Providing Enhanced Computer Technology (Project RESPECT). The federally funded program was to prepare limited-English-proficient (LEP) high school students for higher…

  10. Evaluating the Peruvian Rural Communication Services Project.

    ERIC Educational Resources Information Center

    Mayo, John

    1988-01-01

    Reviews the Peruvian Rural Communication Services (PRCS) Project and outlines selected findings. Topics discussed include a brief description of Peru's economic and social conditions; satellite communication systems; audio teleconferencing; telephone service; planning and administration; research design features; data collection; and project…

  11. Implementing and Evaluating Online Service Learning Projects

    ERIC Educational Resources Information Center

    Helms, Marilyn M.; Rutti, Raina M.; Hervani, Aref Agahei; LaBonte, Joanne; Sarkarat, Sy

    2015-01-01

    As online learning proliferates, professors must adapt traditional projects for an asynchronous environment. Service learning is an effective teaching style fostering interactive learning through integration of classroom activities into communities. While prior studies have documented the appropriateness of service learning in online courses,…

  12. Project Great Start Biennial Evaluation Report.

    ERIC Educational Resources Information Center

    Rudy, Dennis W.

    Project Great Start is designed to provide non-, limited-, and near-native English proficient students with improved, intensified, and increased learning opportunities for accelerated English acquisition and significant academic achievement. It focuses on three groups: students, parents, and school staff. Students and parents benefit from separate…

  13. Process Evaluation of Nebraska's Team Training Project.

    ERIC Educational Resources Information Center

    Scott, David M.; And Others

    1994-01-01

    This article describes a "system approach" training project which utilizes the formation and implementation of localized strategic (action) plans for targeting substance abuse prevention. Participants surveyed in the program reported positive attitudes about the program due to their training and their ability to resist substance abuse…

  14. Implementing and Evaluating Online Service Learning Projects

    ERIC Educational Resources Information Center

    Helms, Marilyn M.; Rutti, Raina M.; Hervani, Aref Agahei; LaBonte, Joanne; Sarkarat, Sy

    2015-01-01

    As online learning proliferates, professors must adapt traditional projects for an asynchronous environment. Service learning is an effective teaching style fostering interactive learning through integration of classroom activities into communities. While prior studies have documented the appropriateness of service learning in online courses,…

  15. Learning with East Aurora Families. Project Evaluation.

    ERIC Educational Resources Information Center

    Bercovitz, Laura

    The Learning with East Aurora Families (LEAF) Project was a 1-year family literacy program developed and implemented by Waubonsee Community College in Sugar Grove, Illinois. It recruited 51 parents and other significant adults of 4- and 5-year-olds enrolled in at-risk programs. Each of the 4-week sessions were divided into 5 components: adult…

  16. Project SCANS Integration. Formative Evaluation Report.

    ERIC Educational Resources Information Center

    Ryan, Ray D.; Pritz, Sandra G.

    Project SCANS (Secretary's Commission on Achieving Necessary Skills) Integration is a 5-year initiative to explore how well all high school instructors would be able to integrate competency-based instruction in designated work-related competencies into their courses and rate students' mastery of the competencies. Three teachers from each of 14…

  17. Evaluating the Peruvian Rural Communication Services Project.

    ERIC Educational Resources Information Center

    Mayo, John

    1988-01-01

    Reviews the Peruvian Rural Communication Services (PRCS) Project and outlines selected findings. Topics discussed include a brief description of Peru's economic and social conditions; satellite communication systems; audio teleconferencing; telephone service; planning and administration; research design features; data collection; and project…

  18. Food Processors Skills Building Project. Evaluation Report.

    ERIC Educational Resources Information Center

    White, Eileen Casey

    The Food Processors Skills Building project was undertaken by four Oregon community colleges, with funds from the Oregon Economic Development Department and 11 local food processing companies, to address basic skills needs in the food processing industry through the development and implementation of an industry-specific curriculum. Based on…

  19. Quality framework proposal for Component Material Evaluation (CME) projects.

    SciTech Connect

    Christensen, Naomi G.; Arfman, John F.; Limary, Siviengxay

    2008-09-01

    This report proposes the first stage of a Quality Framework approach that can be used to evaluate and document Component Material Evaluation (CME) projects. The first stage of the Quality Framework defines two tools that will be used to evaluate a CME project. The first tool is used to decompose a CME project into its essential elements. These elements can then be evaluated for inherent quality by looking at the subelements that impact their level of quality maturity or rigor. Quality Readiness Levels (QRLs) are used to valuate project elements for inherent quality. The Framework provides guidance for the Principal Investigator (PI) and stakeholders for CME project prerequisites that help to ensure the proper level of confidence in the deliverable given its intended use. The Framework also Provides a roadmap that defined when and how the Framework tools should be applied. Use of these tools allow the Principal Investigator (PI) and stakeholders to understand what elements the project will use to execute the project, the inherent quality of the elements, which of those are critical to the project and why, and the risks associated to the project's elements.

  20. Effective use of metadata in the integration and analysis of multi-dimensional optical data

    NASA Astrophysics Data System (ADS)

    Pastorello, G. Z.; Gamon, J. A.

    2012-12-01

    Data discovery and integration relies on adequate metadata. However, creating and maintaining metadata is time consuming and often poorly addressed or avoided altogether, leading to problems in later data analysis and exchange. This is particularly true for research fields in which metadata standards do not yet exist or are under development, or within smaller research groups without enough resources. Vegetation monitoring using in-situ and remote optical sensing is an example of such a domain. In this area, data are inherently multi-dimensional, with spatial, temporal and spectral dimensions usually being well characterized. Other equally important aspects, however, might be inadequately translated into metadata. Examples include equipment specifications and calibrations, field/lab notes and field/lab protocols (e.g., sampling regimen, spectral calibration, atmospheric correction, sensor view angle, illumination angle), data processing choices (e.g., methods for gap filling, filtering and aggregation of data), quality assurance, and documentation of data sources, ownership and licensing. Each of these aspects can be important as metadata for search and discovery, but they can also be used as key data fields in their own right. If each of these aspects is also understood as an "extra dimension," it is possible to take advantage of them to simplify the data acquisition, integration, analysis, visualization and exchange cycle. Simple examples include selecting data sets of interest early in the integration process (e.g., only data collected according to a specific field sampling protocol) or applying appropriate data processing operations to different parts of a data set (e.g., adaptive processing for data collected under different sky conditions). More interesting scenarios involve guided navigation and visualization of data sets based on these extra dimensions, as well as partitioning data sets to highlight relevant subsets to be made available for exchange. The

  1. Analytic Approximations to the Free Boundary and Multi-dimensional Problems in Financial Derivatives Pricing

    NASA Astrophysics Data System (ADS)

    Lau, Chun Sing

    This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in

  2. MUlti-Dimensional Spline-Based Estimator (MUSE) for Motion Estimation: Algorithm Development and Initial Results

    PubMed Central

    Viola, Francesco; Coe, Ryan L.; Owen, Kevin; Guenther, Drake A.; Walker, William F.

    2008-01-01

    Image registration and motion estimation play central roles in many fields, including RADAR, SONAR, light microscopy, and medical imaging. Because of its central significance, estimator accuracy, precision, and computational cost are of critical importance. We have previously presented a highly accurate, spline-based time delay estimator that directly determines sub-sample time delay estimates from sampled data. The algorithm uses cubic splines to produce a continuous representation of a reference signal and then computes an analytical matching function between this reference and a delayed signal. The location of the minima of this function yields estimates of the time delay. In this paper we describe the MUlti-dimensional Spline-based Estimator (MUSE) that allows accurate and precise estimation of multidimensional displacements/strain components from multidimensional data sets. We describe the mathematical formulation for two- and three-dimensional motion/strain estimation and present simulation results to assess the intrinsic bias and standard deviation of this algorithm and compare it to currently available multi-dimensional estimators. In 1000 noise-free simulations of ultrasound data we found that 2D MUSE exhibits maximum bias of 2.6 × 10−4 samples in range and 2.2 × 10−3 samples in azimuth (corresponding to 4.8 and 297 nm, respectively). The maximum simulated standard deviation of estimates in both dimensions was comparable at roughly 2.8 × 10−3 samples (corresponding to 54 nm axially and 378 nm laterally). These results are between two and three orders of magnitude better than currently used 2D tracking methods. Simulation of performance in 3D yielded similar results to those observed in 2D. We also present experimental results obtained using 2D MUSE on data acquired by an Ultrasonix Sonix RP imaging system with an L14-5/38 linear array transducer operating at 6.6 MHz. While our validation of the algorithm was performed using ultrasound data, MUSE

  3. How is success or failure in river restoration projects evaluated? Feedback from French restoration projects.

    PubMed

    Morandi, Bertrand; Piégay, Hervé; Lamouroux, Nicolas; Vaudor, Lise

    2014-05-01

    Since the 1990s, French operational managers and scientists have been involved in the environmental restoration of rivers. The European Water Framework Directive (2000) highlights the need for feedback from restoration projects and for evidence-based evaluation of success. Based on 44 French pilot projects that included such an evaluation, the present study includes: 1) an introduction to restoration projects based on their general characteristics 2) a description of evaluation strategies and authorities in charge of their implementation, and 3) a focus on the evaluation of results and the links between these results and evaluation strategies. The results show that: 1) the quality of an evaluation strategy often remains too poor to understand well the link between a restoration project and ecological changes; 2) in many cases, the conclusions drawn are contradictory, making it difficult to determine the success or failure of a restoration project; and 3) the projects with the poorest evaluation strategies generally have the most positive conclusions about the effects of restoration. Recommendations are that evaluation strategies should be designed early in the project planning process and be based on clearly-defined objectives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A pilot study to evaluate multi-dimensional effects of dance for people with Parkinson's disease.

    PubMed

    Ventura, Maria I; Barnes, Deborah E; Ross, Jessica M; Lanni, Kimberly E; Sigvardt, Karen A; Disbrow, Elizabeth A

    2016-11-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease associated with deficits in motor, cognitive, and emotion/quality of life (QOL) domains, yet most pharmacologic and behavioral interventions focus only on motor function. Our goal was to perform a pilot study of Dance for Parkinson's-a community-based program that is growing in popularity-in order to compare effect sizes across multiple outcomes and to inform selection of primary and secondary outcomes for a larger trial. Study participants were people with PD who self-enrolled in either Dance for Parkinson's classes (intervention group, N=8) or PD support groups (control group, N=7). Assessments of motor function (Timed-Up-and-Go, Gait Speed, Standing Balance Test), cognitive function (Test of Everyday Attention, Verbal Fluency, Alternate Uses, Digit Span Forward and Backward), and emotion/QOL (Geriatric Depression Scale, Falls Efficacy Scale-International, Parkinson's Disease Questionnaire-39 (total score and Activities of Daily Living subscale)) were performed in both groups at baseline and follow-up. Standardized effect sizes were calculated within each group and between groups for all 12 measures. Effect sizes were positive (suggesting improvement) for all 12 measures within the intervention group and 7 of 12 measures within the control group. The largest between-group differences were observed for the Test of Everyday Attention (a measure of cognitive switching), gait speed and falls efficacy. Our findings suggest that dance has potential to improve multiple outcomes in people with PD. Future trials should consider co-primary outcomes given potential benefits in motor, cognitive and emotion/QOL domains.

  5. Decay Data Evaluation Project (DDEP): evaluation of the main 233Pa decay characteristics.

    PubMed

    Chechev, Valery P; Kuzmenko, Nikolay K

    2006-01-01

    The results of a decay data evaluation are presented for 233Pa (beta-) decay to nuclear levels in 233U. These evaluated data have been obtained within the Decay Data Evaluation Project using information published up to 2005.

  6. Pure Dead Brilliant?: Evaluating the Glasgow Story Digitisation Project

    ERIC Educational Resources Information Center

    Anderson, Ian G.

    2007-01-01

    Purpose: The purpose of this paper is to present an evaluation of The Glasgow Story (TGS) digitisation project, funded by the UK's National Lottery's New Opportunities Fund digitisation (NOF-Digi) programme, and a critique of the evaluation process itself. The paper emphasises the need for user impact evaluation and for results to be brought into…

  7. Multi-dimensional Core-Collapse Supernova Simulations with Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT. Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.

  8. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  9. From electron energy-loss spectroscopy to multi-dimensional and multi-signal electron microscopy.

    PubMed

    Colliex, Christian

    2011-01-01

    This review intends to illustrate how electron energy-loss spectroscopy (EELS) techniques in the electron microscope column have evolved over the past 60 years. Beginning as a physicist tool to measure basic excitations in solid thin foils, EELS techniques have gradually become essential for analytical purposes, nowadays pushed to the identification of individual atoms and their bonding states. The intimate combination of highly performing techniques with quite efficient computational tools for data processing and ab initio modeling has opened the way to a broad range of novel imaging modes with potential impact on many different fields. The combination of Angström-level spatial resolution with an energy resolution down to a few tenths of an electron volt in the core-loss spectral domain has paved the way to atomic-resolved elemental and bonding maps across interfaces and nanostructures. In the low-energy range, improved energy resolution has been quite efficient in recording surface plasmon maps and from them electromagnetic maps across the visible electron microscopy (EM) domain, thus bringing a new view to nanophotonics studies. Recently, spectrum imaging of the emitted photons under the primary electron beam and the spectacular introduction of time-resolved techniques down to the femtosecond time domain, have become innovative keys for the development and use of a brand new multi-dimensional and multi-signal electron microscopy.

  10. Seismic fragility analysis of highway bridges considering multi-dimensional performance limit state

    NASA Astrophysics Data System (ADS)

    Wang, Qi'ang; Wu, Ziyan; Liu, Shukui

    2012-03-01

    Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility that considers multi-dimensional performance limit state parameters and makes a first attempt to develop fragility curves for a multispan continuous (MSC) concrete girder bridge considering two performance limit state parameters: column ductility and transverse deformation in the abutments. The main purpose of this paper is to show that the performance limit states, which are compared with the seismic response parameters in the calculation of fragility, should be properly modeled as randomly interdependent variables instead of deterministic quantities. The sensitivity of fragility curves is also investigated when the dependency between the limit states is different. The results indicate that the proposed method can be used to describe the vulnerable behavior of bridges which are sensitive to multiple response parameters and that the fragility information generated by this method will be more reliable and likely to be implemented into transportation network loss estimation.

  11. Classification of holter registers by dynamic clustering using multi-dimensional particle swarm optimization.

    PubMed

    Kiranyaz, Serkan; Ince, Turker; Pulkkinen, Jenni; Gabbouj, Moncef

    2010-01-01

    In this paper, we address dynamic clustering in high dimensional data or feature spaces as an optimization problem where multi-dimensional particle swarm optimization (MD PSO) is used to find out the true number of clusters, while fractional global best formation (FGBF) is applied to avoid local optima. Based on these techniques we then present a novel and personalized long-term ECG classification system, which addresses the problem of labeling the beats within a long-term ECG signal, known as Holter register, recorded from an individual patient. Due to the massive amount of ECG beats in a Holter register, visual inspection is quite difficult and cumbersome, if not impossible. Therefore the proposed system helps professionals to quickly and accurately diagnose any latent heart disease by examining only the representative beats (the so called master key-beats) each of which is representing a cluster of homogeneous (similar) beats. We tested the system on a benchmark database where the beats of each Holter register have been manually labeled by cardiologists. The selection of the right master key-beats is the key factor for achieving a highly accurate classification and the proposed systematic approach produced results that were consistent with the manual labels with 99.5% average accuracy, which basically shows the efficiency of the system.

  12. An online analytical processing multi-dimensional data warehouse for malaria data

    PubMed Central

    Madey, Gregory R; Vyushkov, Alexander; Raybaud, Benoit; Burkot, Thomas R; Collins, Frank H

    2017-01-01

    Abstract Malaria is a vector-borne disease that contributes substantially to the global burden of morbidity and mortality. The management of malaria-related data from heterogeneous, autonomous, and distributed data sources poses unique challenges and requirements. Although online data storage systems exist that address specific malaria-related issues, a globally integrated online resource to address different aspects of the disease does not exist. In this article, we describe the design, implementation, and applications of a multi-dimensional, online analytical processing data warehouse, named the VecNet Data Warehouse (VecNet-DW). It is the first online, globally-integrated platform that provides efficient search, retrieval and visualization of historical, predictive, and static malaria-related data, organized in data marts. Historical and static data are modelled using star schemas, while predictive data are modelled using a snowflake schema. The major goals, characteristics, and components of the DW are described along with its data taxonomy and ontology, the external data storage systems and the logical modelling and physical design phases. Results are presented as screenshots of a Dimensional Data browser, a Lookup Tables browser, and a Results Viewer interface. The power of the DW emerges from integrated querying of the different data marts and structuring those queries to the desired dimensions, enabling users to search, view, analyse, and store large volumes of aggregated data, and responding better to the increasing demands of users. Database URL https://dw.vecnet.org/datawarehouse/

  13. A multi scale multi-dimensional thermo electrochemical modelling of high capacity lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Tourani, Abbas; White, Peter; Ivey, Paul

    2014-06-01

    Lithium iron phosphate (LFP) and lithium manganese oxide (LMO) are competitive and complementary to each other as cathode materials for lithium-ion batteries, especially for use in electric vehicles. A multi scale multi-dimensional physic-based model is proposed in this paper to study the thermal behaviour of the two lithium-ion chemistries. The model consists of two sub models, a one dimensional (1D) electrochemical sub model and a two dimensional (2D) thermo-electric sub model, which are coupled and solved concurrently. The 1D model predicts the heat generation rate (Qh) and voltage (V) of the battery cell through different load cycles. The 2D model of the battery cell accounts for temperature distribution and current distribution across the surface of the battery cell. The two cells are examined experimentally through 90 h load cycles including high/low charge/discharge rates. The experimental results are compared with the model results and they are in good agreement. The presented results in this paper verify the cells temperature behaviour at different operating conditions which will lead to the design of a cost effective thermal management system for the battery pack.

  14. Effect of a multi-dimensional intervention programme on the motivation of physical education students.

    PubMed

    Amado, Diana; Del Villar, Fernando; Leo, Francisco Miguel; Sánchez-Oliva, David; Sánchez-Miguel, Pedro Antonio; García-Calvo, Tomás

    2014-01-01

    This research study purports to verify the effect produced on the motivation of physical education students of a multi-dimensional programme in dance teaching sessions. This programme incorporates the application of teaching skills directed towards supporting the needs of autonomy, competence and relatedness. A quasi-experimental design was carried out with two natural groups of 4(th) year Secondary Education students--control and experimental -, delivering 12 dance teaching sessions. A prior training programme was carried out with the teacher in the experimental group to support these needs. An initial and final measurement was taken in both groups and the results revealed that the students from the experimental group showed an increase of the perception of autonomy and, in general, of the level of self-determination towards the curricular content of corporal expression focused on dance in physical education. To this end, we highlight the programme's usefulness in increasing the students' motivation towards this content, which is so complicated for teachers of this area to develop.

  15. Efficient multi-dimensional solution of PDEs using Chebyshev spectral methods

    NASA Astrophysics Data System (ADS)

    Julien, Keith; Watson, Mike

    2009-03-01

    A robust methodology is presented for efficiently solving partial differential equations using Chebyshev spectral techniques. It is well known that differential equations in one dimension can be solved efficiently with Chebyshev discretizations, O( N) operations for N unknowns, however this efficiency is lost in higher dimensions due to the coupling between modes. This paper presents the "quasi-inverse" technique (QIT), which combines optimizations of one-dimensional spectral differentiation matrices with Kronecker matrix products to build efficient multi-dimensional operators. This strategy results in O( N2 D-1 ) operations for ND unknowns, independent of the form of the differential operators. QIT is compared to the matrix diagonalization technique (MDT) of Haidvogel and Zang [D.B. Haidvogel, T. Zang, The accurate solution of Poisson's equation by expansion in Chebyshev polynomials, J. Comput. Phys. 30 (1979) 167-180] and Shen [J. Shen, Efficient spectral-Galerkin method. II. Direct solvers of second- and fourth-order equations using Chebyshev polynomials, SIAM J. Sci. Comp. 16 (1) (1995) 74-87]. While the cost for MDT and QIT are the same in two dimensions, there are significant differences. MDT utilizes an eigenvalue/eigenvector decomposition and can only be used for relatively simple differential equations. QIT is based upon intrinsic properties of the Chebyshev polynomials and is adaptable to linear PDEs with constant coefficients in simple domains. We present results for a standard suite of test problems, and discuss of the adaptability of QIT to more complicated problems.

  16. Time efficient design of multi dimensional RF pulses: application of a multi shift CGLS algorithm.

    PubMed

    Sbrizzi, Alessandro; Hoogduin, Hans; Lagendijk, Jan J; Luijten, Peter; Sleijpen, Gerard L G; van den Berg, Cornelis A T

    2011-09-01

    Designing multi dimensional ratio frequency excitation pulses in the small flip angle regime commonly reduces to the solution of a least squares problem, which requires regularization to be solved numerically. Usually, regularization is carried out by the introduction of a penalty, λ, on the solution norm. In most cases, the optimal regularization parameter is not known a priori and the problem needs to be solved for several values of λ. The optimal value can be selected, typically by plotting the L-curve. In this article, a conjugate gradients-based algorithm is applied to design ratio frequency pulses in a time-efficient way without a priori knowledge of the optimal regularization parameter. The computation time is reduced considerably (by a factor 10 in a typical set up) with respect to the standard conjugate gradients for least square since just one run of the algorithm is required. Simulations are shown and the performance is compared to that of conjugate gradients for least square. Copyright © 2011 Wiley-Liss, Inc.

  17. On the use of multi-dimensional scaling and electromagnetic tracking in high dose rate brachytherapy.

    PubMed

    Götz, Theresa Ida; Ermer, Maximilian; Salas-Gonzalez, D; Kellermeier, Markus; Strnad, Vratislav; Bert, Christoph; Hensel, Bernhard; Tome, Ana Maria; Lang, Elmar W

    2017-08-30

    High Dose Rate Brachytherapy (HDR-BT) affords a frequent reassurance of the precise dwell positions of the radiation source. The corresponding dwell position determinations are realized with an electromagnetic tracking system (EMT). Because the treatment extends over several days, repeated dwell position determinations refer to varying coordinate systems centered in the field generator of the EMT system. After surgical implantation of the catheters a computed tomography (CT) X-ray image is taken followed by an immediate dwell position determination by the EMT system. The CT image serves to generate a treatment plan which determines dwell positions and dwell times for the radiation treatment. However, CT - and EMT - coordinates refer to different coordinate systems, hence an external reference is usually employed. The current investigation proposes a multi-dimensional scaling transformation of both data sets to estimate dwell positions without any external reference. Furthermore, the related distributions of dwell positions are characterized by uni - or bi - modal heavy - tailed distributions. The latter are well represented by alpha - stable distributions. The newly proposed data analysis provides dwell position deviations with high accuracy, and, furthermore, offers a convenient visualization of the actual shapes of the catheters which guide the radiation source during the treatment. © 2017 Institute of Physics and Engineering in Medicine.

  18. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  19. An alternative to Rasch analysis using triadic comparisons and multi-dimensional scaling

    NASA Astrophysics Data System (ADS)

    Bradley, C.; Massof, R. W.

    2016-11-01

    Rasch analysis is a principled approach for estimating the magnitude of some shared property of a set of items when a group of people assign ordinal ratings to them. In the general case, Rasch analysis not only estimates person and item measures on the same invariant scale, but also estimates the average thresholds used by the population to define rating categories. However, Rasch analysis fails when there is insufficient variance in the observed responses because it assumes a probabilistic relationship between person measures, item measures and the rating assigned by a person to an item. When only a single person is rating all items, there may be cases where the person assigns the same rating to many items no matter how many times he rates them. We introduce an alternative to Rasch analysis for precisely these situations. Our approach leverages multi-dimensional scaling (MDS) and requires only rank orderings of items and rank orderings of pairs of distances between items to work. Simulations show one variant of this approach - triadic comparisons with non-metric MDS - provides highly accurate estimates of item measures in realistic situations.

  20. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  1. Multi-dimensional self-esteem and substance use among Chinese adolescents.

    PubMed

    Wu, Cynthia S T; Wong, Ho Ting; Shek, Carmen H M; Loke, Alice Yuen

    2014-10-01

    Substance use among adolescents has caused worldwide public health concern in recent years. Overseas studies have demonstrated an association between adolescent self-esteem and substance use, but studies within a Chinese context are limited. A study was therefore initiated to: (1) explore the 30 days prevalence of substance use (smoking, drinking, and drugs) among male and female adolescents in Hong Kong; (2) identify the significant associations between multidimensional self-esteem and gender; and (3) examine the relationship between multi-dimensional self-esteem and substance use. A self-esteem scale and the Chinese version of the global school-based student health survey were adopted. A total of 1,223 students were recruited from two mixed-gender schools and one boys' school. Among females, there was a lower 30-day prevalence of cigarette, alcohol, and drug use. They also had significantly higher peer and family self-esteem but lower sport-related self-esteem. Body image self-esteem was a predictor of alcohol use among females, while peer and school self-esteem were predictors of drug use among males. In summary, the findings demonstrated the influence of self-esteem to the overall well-being of adolescents. Schools could play a role in promoting physical fitness and positive relationships between adolescents and their peers, family, and schools to fulfill their physical and psychological self-esteem needs.

  2. Map Building By Multi-dimensional Scaling of Co-visibility Data

    NASA Astrophysics Data System (ADS)

    Yairi, Takehisa; Maeno, Toshiaki

    Covisibility-based mapping is a paradigm for robotic map building research in which a mobile robot estimates multiple object positions only from ``covisibility'' information, i.e., ``which objects were recognized at a time''. In previous studies on this problem, a solution based on a combination of heuristics - ``closely located objects are likely to be seen simultaneously more often than distant objects'' and Multi-Dimensional Scaling (MDS) was proposed, and it was shown that qualitative spatial relationships among objects are learned with high accuracy by this method. However, theoretical validity of the heuristics has not been sufficiently discussed in these studies. Besides, the existing method has a defect that the quantitative accuracy of built maps is very low. In this paper, we first prove that the heuristics is generally valid in a certain condition, and then present several enhancements to the original method in order to improve the quantitative accuracy of the maps. In the experiments, it was found these enhacements are quite effective.

  3. TimeSpan: Using Visualization to Explore Temporal Multi-dimensional Data of Stroke Patients.

    PubMed

    Loorak, Mona Hosseinkhani; Perin, Charles; Kamal, Noreen; Hill, Michael; Carpendale, Sheelagh

    2016-01-01

    We present TimeSpan, an exploratory visualization tool designed to gain a better understanding of the temporal aspects of the stroke treatment process. Working with stroke experts, we seek to provide a tool to help improve outcomes for stroke victims. Time is of critical importance in the treatment of acute ischemic stroke patients. Every minute that the artery stays blocked, an estimated 1.9 million neurons and 12 km of myelinated axons are destroyed. Consequently, there is a critical need for efficiency of stroke treatment processes. Optimizing time to treatment requires a deep understanding of interval times. Stroke health care professionals must analyze the impact of procedures, events, and patient attributes on time-ultimately, to save lives and improve quality of life after stroke. First, we interviewed eight domain experts, and closely collaborated with two of them to inform the design of TimeSpan. We classify the analytical tasks which a visualization tool should support and extract design goals from the interviews and field observations. Based on these tasks and the understanding gained from the collaboration, we designed TimeSpan, a web-based tool for exploring multi-dimensional and temporal stroke data. We describe how TimeSpan incorporates factors from stacked bar graphs, line charts, histograms, and a matrix visualization to create an interactive hybrid view of temporal data. From feedback collected from domain experts in a focus group session, we reflect on the lessons we learned from abstracting the tasks and iteratively designing TimeSpan.

  4. Feature-guided clustering of multi-dimensional flow cytometry datasets.

    PubMed

    Zeng, Qing T; Pratt, Juan Pablo; Pak, Jane; Ravnic, Dino; Huss, Harold; Mentzer, Steven J

    2007-06-01

    Flow cytometry produces large multi-dimensional datasets of the physical and molecular characteristics of individual cells. The objective of this study was to simplify the cytometry datasets by arranging or clustering "objects" (cells) into a smaller number of relatively homogeneous groups (clusters) on the basis of interobject similarities and dissimilarities. The algorithm was designed to be driven by histogram features; that is, the relevant single parameter histogram features were used to guide multidimensional k-means clustering without an a priori estimate of cluster number. To test this approach, we simulated cell-derived datasets using protein-coated microspheres (artificial "cells"). The microspheres were constructed to provide 119 populations in 40 samples. The feature-guided (FG) approach accurately identified 100% of the predetermined cluster combinations. In contrast, an approach based on the partition index (PI) cluster validity measure accurately identified 83.2% of the clusters. Direct comparisons of the two methods indicated that the FG method was significantly more accurate than PI in identifying both the number of clusters and the number of objects within the clusters (p<.0001). We conclude that parameter feature analysis can be used to effectively guide k-means clustering of flow cytometry datasets.

  5. The multi-dimensional measure of informed choice: a validation study.

    PubMed

    Michie, Susan; Dormandy, Elizabeth; Marteau, Theresa M

    2002-09-01

    The aim of this prospective study is to assess the reliability and validity of a multi-dimensional measure of informed choice (MMIC). Participants were 225 pregnant women in two general hospitals in the UK, women receiving low-risk results following serum screening for Down syndrome. The MMIC was administered before testing and the Ottawa Decisional Conflict Scale was administered 6 weeks later. The component scales of the MMIC, knowledge and attitude, were internally consistent (alpha values of 0.68 and 0.78, respectively). Those who made a choice categorised as informed using the MMIC rated their decision 6 weeks later as being more informed, better supported and of higher quality than women whose choice was categorised as uninformed. This provides evidence of predictive validity, whilst the lack of association between the MMIC and anxiety shows construct (discriminant) validity. Thus, the MMIC has been shown to be psychometrically robust in pregnant women offered the choice to undergo prenatal screening for Down syndrome and receiving a low-risk result. Replication of this finding in other groups, facing other decisions, with other outcomes, should be assessed in future research.

  6. Beyond the continuum: a multi-dimensional phase space for neutral–niche community assembly

    PubMed Central

    Latombe, Guillaume; McGeoch, Melodie A.

    2015-01-01

    Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral–niche community dynamics. The neutral–niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology. PMID:26702047

  7. Off-Center Thawed Gaussian Multi-Dimensional Approximation for Semiclassical Propagation

    NASA Astrophysics Data System (ADS)

    Kocia, Lucas; Heller, Eric

    2014-03-01

    The Off-Center Thawed Gaussian Approximation's (OCTGA) performance in multi-dimensional coupled systems is shown in comparison to Herman-Kluk (HK), the current workhorse of semiclassical propagation in the field. As with the Heller-Huber method and Van Voorhis et al.'s nearly-real method of trajectories, OCTGA requires only a single trajectory and associated stability matrix at every timestep to compute Gaussian wave packet overlaps under any Hamiltonian. This is in sharp contrast to HK which suffers from the necessity of having to propagate thousands or more computationally expensive stability matrices at every timestep. Unlike similar methods, the OCTGA relies upon a single real guiding trajectory, which in general does not start at the center of the initial wave packet. This guiding ``off-center'' trajectory is used to expand the local potential, controlling the propagating ``thawed'' Gaussian wavepacket such that it is led to optimal overlap with a final state. Its simple and efficient performance in any number of dimensions heralds an exciting addition to the semiclassical tools available for quantum propagation.

  8. Opportunities in multi dimensional trace metal imaging: Taking copper associated disease research to the next level

    PubMed Central

    Vogt, Stefan; Ralle, Martina

    2012-01-01

    Copper plays an important role in numerous biological processes across all living systems predominantly because of its versatile redox behavior. Cellular copper homeostasis is tightly regulated and disturbances lead to severe disorders such as Wilson disease (WD) and Menkes disease. Age related changes of copper metabolism have been implicated in other neurodegenerative disorders such as Alzheimer’s disease (AD). The role of copper in these diseases has been topic of mostly bioinorganic research efforts for more than a decade, metal-protein interactions have been characterized and cellular copper pathways have been described. Despite these efforts, crucial aspects of how copper is associated with AD, for example, is still only poorly understood. To take metal related disease research to the next level, emerging multi dimensional imaging techniques are now revealing the copper metallome as the basis to better understand disease mechanisms. This review will describe how recent advances in X-ray fluorescence microscopy and fluorescent copper probes have started to contribute to this field specifically WD and AD. It furthermore provides an overview of current developments and future applications in X-ray microscopic methodologies. PMID:23079951

  9. Multi-dimensional permutation-modulation format for coherent optical communications.

    PubMed

    Ishimura, Shota; Kikuchi, Kazuro

    2015-06-15

    We introduce the multi-dimensional permutation-modulation format in coherent optical communication systems and analyze its performance, focusing on the power efficiency and the spectral efficiency. In the case of four-dimensional (4D) modulation, the polarization-switched quadrature phase-shift keying (PS-QPSK) modulation format and the polarization quadrature-amplitude modulation (POL-QAM) format can be classified into the permutation modulation format. Other than these well-known modulation formats, we find novel modulation formats trading-off between the power efficiency and the spectral efficiency. With the increase in the dimension, the spectral efficiency can more closely approach the channel capacity predicted from the Shannon's theory. We verify these theoretical characteristics through computer simulations of the symbol-error rate (SER) and bit-error rate (BER) performances. For example, the newly-found eight-dimensional (8D) permutation-modulation format can improve the spectral efficiency up to 2.75 bit/s/Hz/pol/channel, while the power penalty against QPSK is about 1 dB at BER=10(-3).

  10. Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout

    NASA Astrophysics Data System (ADS)

    Seiler, Hélène; Palato, Samuel; Kambhampati, Patanjali

    2017-09-01

    Ultrafast coherent multi-dimensional spectroscopies form a powerful set of techniques to unravel complex processes, ranging from light-harvesting, chemical exchange in biological systems to many-body interactions in quantum-confined materials. Yet these spectroscopies remain complex to implement at the high frequencies of vibrational and electronic transitions, thereby limiting their widespread use. Here we demonstrate the feasibility of two-dimensional spectroscopy at optical frequencies in a single beam. Femtosecond optical pulses are spectrally broadened to a relevant bandwidth and subsequently shaped into phase coherent pulse trains. By suitably modulating the phases of the pulses within the beam, we show that it is possible to directly read out the relevant optical signals. This work shows that one needs neither complex beam geometries nor complex detection schemes in order to measure two-dimensional spectra at optical frequencies. Our setup provides not only a simplified experimental design over standard two-dimensional spectrometers but its optical readout also enables novel applications in microscopy.

  11. Effect of a Multi-Dimensional Intervention Programme on the Motivation of Physical Education Students

    PubMed Central

    Amado, Diana; Del Villar, Fernando; Leo, Francisco Miguel; Sánchez-Oliva, David; Sánchez-Miguel, Pedro Antonio; García-Calvo, Tomás

    2014-01-01

    This research study purports to verify the effect produced on the motivation of physical education students of a multi-dimensional programme in dance teaching sessions. This programme incorporates the application of teaching skills directed towards supporting the needs of autonomy, competence and relatedness. A quasi-experimental design was carried out with two natural groups of 4th year Secondary Education students - control and experimental -, delivering 12 dance teaching sessions. A prior training programme was carried out with the teacher in the experimental group to support these needs. An initial and final measurement was taken in both groups and the results revealed that the students from the experimental group showed an increase of the perception of autonomy and, in general, of the level of self-determination towards the curricular content of corporal expression focused on dance in physical education. To this end, we highlight the programme's usefulness in increasing the students' motivation towards this content, which is so complicated for teachers of this area to develop. PMID:24454831

  12. Development of a multi-dimensional measure of resilience in adolescents: the Adolescent Resilience Questionnaire

    PubMed Central

    2011-01-01

    Background The concept of resilience has captured the imagination of researchers and policy makers over the past two decades. However, despite the ever growing body of resilience research, there is a paucity of relevant, comprehensive measurement tools. In this article, the development of a theoretically based, comprehensive multi-dimensional measure of resilience in adolescents is described. Methods Extensive literature review and focus groups with young people living with chronic illness informed the conceptual development of scales and items. Two sequential rounds of factor and scale analyses were undertaken to revise the conceptually developed scales using data collected from young people living with a chronic illness and a general population sample. Results The revised Adolescent Resilience Questionnaire comprises 93 items and 12 scales measuring resilience factors in the domains of self, family, peer, school and community. All scales have acceptable alpha coefficients. Revised scales closely reflect conceptually developed scales. Conclusions It is proposed that, with further psychometric testing, this new measure of resilience will provide researchers and clinicians with a comprehensive and developmentally appropriate instrument to measure a young person's capacity to achieve positive outcomes despite life stressors. PMID:21970409

  13. A multi-dimensional finite volume cell-centered direct ALE solver for hydrodynamics

    NASA Astrophysics Data System (ADS)

    Clair, G.; Ghidaglia, J.-M.; Perlat, J.-P.

    2016-12-01

    In this paper we describe a second order multi-dimensional scheme, belonging to the class of direct Arbitrary Lagrangian-Eulerian (ALE) methods, for the solution of non-linear hyperbolic systems of conservation law. The scheme is constructed upon a cell-centered explicit Lagrangian solver completed with an edge-based upwinded formulation of the numerical fluxes, computed from the MUSCL-Hancock method, to obtain a full ALE formulation. Numerical fluxes depend on nodal grid velocities which are either set or computed to avoid most of the mesh problems typically encountered in purely Lagrangian simulations. In order to assess the robustness of the scheme, most results proposed in this paper have been obtained by computing the grid velocities as a fraction of the Lagrangian nodal velocities, the ratio being set before running the test case. The last part of the paper describes preliminary results about the triple point test case run in the ALE framework by computing the grid velocities with the fully adaptive Large Eddy Limitation (L.E.L.) method proposed in [1]. Such a method automatically computes the grid velocities at each node defining the mesh from the local characteristics of the flow. We eventually discuss the advantages and the drawback of the coupling.

  14. Project Aprendizaje. Final Evaluation Report 1992-93.

    ERIC Educational Resources Information Center

    Clark, Andrew

    This report provides evaluative information regarding the effectiveness of Project Aprendizaje, a New York City program that served 269 Spanish-speaking students of limited English proficiency (LEP). The project promoted parent and community involvement by sponsoring cultural events, such as a large Latin American festival. Students developed…

  15. Project Beacon 1985-86. OEA Evaluation Report.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn. Office of Educational Assessment.

    This report describes and evaluates the first year of Project Beacon, a bilingual program implemented at four high schools in Queens, New York, in 1985-86. Project Beacon provided instruction in English as a second language, in native language arts, in bilingual academic subjects, and in career-oriented subjects. It reached 570 Spanish-, Chinese-,…

  16. A Program Evaluation Manual for Project Initiators. Final Report.

    ERIC Educational Resources Information Center

    Senf, Gerald; Anderson, David

    Intended for directors of special education projects, the manual provides guidelines for program evaluation. It is explained that the manual developed out of the experiences of the staff of the Leadership Training Institute in Learning Disabilities which provided technical assistance to 43 state projects. The manual's eight major sections focus on…

  17. An Evaluation of Project Gifted 1971-1972.

    ERIC Educational Resources Information Center

    Renzulli, Joseph S.

    Evaluated was Project Gifted, a tri-city (Cranston, East Providence, and Warwick, Rhode Island) program which focused on the training of gifted children in grades 4-6 in the creative thinking process. Project goals were identification of gifted students, development of differential experiences, and development of innovative programs. Cranston's…

  18. Evaluation of Career Education Projects, 1976-1977. Report #7829.

    ERIC Educational Resources Information Center

    Chern, Hermine J.; And Others

    Evaluations of thirty career education projects in the school district of Philadelphia, Pennsylvania are contained in this report. Fifteen of the projects concern classroom or shop instruction, six concern development and/or field testing of curriculum materials, and the remainder involve staff development, installation of shop equipment, job…

  19. Portland Public Schools Project Chrysalis: Year 2 Evaluation Report.

    ERIC Educational Resources Information Center

    Mitchell, Stephanie J.; Gabriel, Roy M.; Hahn, Karen J.; Laws, Katherine E.

    In 1994, the Chrysalis Project in Portland Public Schools received funding to prevent or delay the onset of substance abuse among a special target population: high-risk, female adolescents with a history of childhood abuse. Findings from the evaluation of the project's second year of providing assistance to these students are reported here. During…

  20. An Evaluation of Project Gifted 1971-1972.

    ERIC Educational Resources Information Center

    Renzulli, Joseph S.

    Evaluated was Project Gifted, a tri-city (Cranston, East Providence, and Warwick, Rhode Island) program which focused on the training of gifted children in grades 4-6 in the creative thinking process. Project goals were identification of gifted students, development of differential experiences, and development of innovative programs. Cranston's…

  1. TRIM timber projections: an evaluation based on forest inventory measurements.

    Treesearch

    John R. Mills

    1989-01-01

    Two consecutive timberland inventories collected from permanent plots in the natural pine type in North Carolina were used to evaluate the timber resource inventory model (TRIM). This study compares model predictions with field measurements and examines the effect of inventory data aggregation on the accuracy of projections. Projections were repeated for two geographic...

  2. Childhood Obesity Research Demonstration project: Cross-site evaluation method

    USDA-ARS?s Scientific Manuscript database

    The Childhood Obesity Research Demonstration (CORD) project links public health and primary care interventions in three projects described in detail in accompanying articles in this issue of Childhood Obesity. This article describes a comprehensive evaluation plan to determine the extent to which th...

  3. National Evaluation of the PUSH for Excellence Project. Final Report.

    ERIC Educational Resources Information Center

    Murray, Saundra R.; And Others

    This final report for the PUSH-EXCEL project was designed to provide readers with an idea of the major actors and events that shaped the project's history and implementation, and to describe results of a 3-year evaluation of its impact (Chapter 1). Chapter 2 describes the original impetus for PUSH-EXCEL as arising from the Reverend Jesse Jackson's…

  4. Challenges and Realities: Evaluating a School-Based Service Project.

    ERIC Educational Resources Information Center

    Keir, Scott S.; Millea, Susan

    The Hogg Foundation for Mental Health created the School of the Future (SoF) project to enable selected Texas schools to coordinate and implement school-based social and health services on their campuses and to demonstrate the effectiveness of this method of service delivery by evaluating the project to show the process used and the outcomes that…

  5. Evaluating Quality in Educational Spaces: OECD/CELE Pilot Project

    ERIC Educational Resources Information Center

    von Ahlefeld, Hannah

    2009-01-01

    CELE's International Pilot Project on Evaluating Quality in Educational Spaces aims to assist education authorities, schools and others to maximise the use of and investment in learning environments. This article provides an update on the pilot project, which is currently being implemented in Brazil, Mexico, New Zealand, Portugal and the United…

  6. Evaluation of Career Education Projects, 1976-1977. Report #7829.

    ERIC Educational Resources Information Center

    Chern, Hermine J.; And Others

    Evaluations of thirty career education projects in the school district of Philadelphia, Pennsylvania are contained in this report. Fifteen of the projects concern classroom or shop instruction, six concern development and/or field testing of curriculum materials, and the remainder involve staff development, installation of shop equipment, job…

  7. Project Closeout: Guidance for Final Evaluation of Building America Communities

    SciTech Connect

    Norton, P.; Burch, J.; Hendron, B.

    2008-03-01

    This report presents guidelines for Project Closeout. It is used to determine whether the Building America program is successfully facilitating improved design and practices to achieve energy savings goals in production homes. Its objective is to use energy simulations, targeted utility bill analysis, and feedback from project stakeholders to evaluate the performance of occupied BA communities.

  8. Latin American Literacy Partnership Project. Final Formative Evaluation.

    ERIC Educational Resources Information Center

    Watt, David L. E.

    This final evaluation of the 1991-92 program year of the Latin American literacy Project, designed to foster English language literacy in Spanish-speaking families in Canada, is intended as a formative report, American Literacy Project is intended as a formative report, assessing the changes in the students' language proficiency and the progress…

  9. Automobile Mechanic Training Evaluation Project (AMTEP) Final Report.

    ERIC Educational Resources Information Center

    Losh, Charles

    A project was undertaken to identify, develop, and validate those performance, program, and personal standards judged necessary to operate and evaluate a quality automobile mechanic/technician training program. Included among the project activities were the following: (1) a review of existing literature on performance and program standards; (2)…

  10. An Evaluation of the Favorable Alternate Sites Project. Final Report.

    ERIC Educational Resources Information Center

    Kogan, Deborah; Vencill, Mary

    This final report describes and evaluates the Favorable Alternate Sites Project (FASP), developed in response to the oversettlement of refugees (particularly Southeast Asian refugees) in particular areas of the country. The project's goals were to reduce welfare dependency, increase the ability of FASP refugees to be self-supporting, and reduce…

  11. Evaluating Quality in Educational Spaces: OECD/CELE Pilot Project

    ERIC Educational Resources Information Center

    von Ahlefeld, Hannah

    2009-01-01

    CELE's International Pilot Project on Evaluating Quality in Educational Spaces aims to assist education authorities, schools and others to maximise the use of and investment in learning environments. This article provides an update on the pilot project, which is currently being implemented in Brazil, Mexico, New Zealand, Portugal and the United…

  12. A Project for Research, Development, and Evaluation Training. Final Report.

    ERIC Educational Resources Information Center

    Karr, Chadwick; Porter, Bette C.

    This report summarizes and evaluates the 1969-70 Consortium Research Development (CORD) training and dissemination project conducted by Teaching Research, Oregon State System of Higher Education. The project provided a 2-week summer institute to train selected college and university staff from CORD institutions in the use of individualized,…

  13. Project Familia. Final Evaluation Report, 1992-93. OREA Report.

    ERIC Educational Resources Information Center

    Clarke, Candice

    Project Familia was an Elementary and Secondary Education Act Title VII funded project that, in the year covered by this evaluation, served 41 special education students of limited English proficiency (LEP) from 5 schools, with the participation of 54 parents and 33 siblings. Participating students received English language enrichment and…

  14. Rowland Bilingual/Bicultural Education Project. Evaluation Report.

    ERIC Educational Resources Information Center

    Rowland School District, Rowland Heights, CA.

    A bilingual/bicultural project for kindergarten children in Rowland Heights, California, is described in this evaluation report. The project included 2 kindergarten classes with approximately 30 children in each class and a bilingual staff. Parents and other community members served as educational volunteers and resource persons. Pre-service and…

  15. An Evaluation of the Comp-Lab Project. Final Report.

    ERIC Educational Resources Information Center

    Epes, Mary; And Others

    This final report summarizes an extensive evaluation of the COMP-LAB project, a course which integrates carefully defined classroom instruction with an autotutorial writing laboratory for teaching basic writing and rhetoric, particularly to students impaired by foreign language or nonstandard speech. Information on the project background and the…

  16. Evaluation of 60 continuous quality improvement projects in French hospitals.

    PubMed

    Maguerez, G; Erbault, M; Terra, J L; Maisonneuve, H; Matillon, Y

    2001-04-01

    To evaluate the feasibility of implementing continuous quality improvement (CQI) projects in French health care organizations. The French Ministry of Health issued two calls for CQI projects (in 1995 and 1996). ANAES was commissioned to monitor and evaluate the projects, and to provide advice. ANAES in collaboration with French public hospitals. A jury selected 64 projects from 483 submissions. The first series of projects related to safety issues (e.g. blood transfusions), the second related chiefly to patient management. ANAES instructed project leaders in process analysis (modified four-step FOCUS-PDCA model), convened regular meetings between leaders and performed on-site visits. Objective outcomes: goal achievement, extension of projects to other topics and departments, allocation of resources. Subjective outcomes: changes in attitudes. Statistics were obtained from two questionnaires completed by project leaders. Four projects were discontinued; 82% (49 out of 60) met more than half their objectives. The CQI method was adopted by other departments in 65% and 50% (1st and 2nd series respectively) of cases. Hospital management often chose to provide continued support (81%/88%), offer training (59%/80%), create a CQI unit (62%/73%), and allocate a budget (61%/65%). A positive impact on staff attitudes was noted in over 75% of projects. ANAES' co-ordinated initiative to acquaint a hard core of French public hospitals with CQI proved successful. Identification of the factors for success and of potential hurdles helped pave the way for the national hospital accreditation procedure currently underway.

  17. Science Base and Tools for Evaluating Stream Restoration Project Proposals.

    NASA Astrophysics Data System (ADS)

    Cluer, B.; Thorne, C.; Skidmore, P.; Castro, J.; Pess, G.; Beechie, T.; Shea, C.

    2008-12-01

    Stream restoration, stabilization, or enhancement projects typically employ site-specific designs and site- scale habitat improvement projects have become the default solution to many habitat problems and constraints. Such projects are often planned and implemented without thorough consideration of the broader scale problems that may be contributing to habitat degradation, attention to project resiliency to flood events, accounting for possible changes in climate or watershed land use, or ensuring the long term sustainability of the project. To address these issues, NOAA Fisheries and USFWS have collaboratively commissioned research to develop a science document and accompanying tools to support more consistent and comprehensive review of stream management and restoration projects proposals by Service staff responsible for permitting. The science document synthesizes the body of knowledge in fluvial geomorphology and presents it in a way that is accessible to the Services staff biologists, who are not trained experts in this field. Accompanying the science document are two electronic tools: a Project Information Checklist to assist in evaluating whether a proposal includes all the information necessary to allow critical and thorough project evaluation; and a Project Evaluation Tool (in flow chart format) that guides reviewers through the steps necessary to critically evaluate the quality of the information submitted, the goals and objectives of the project, project planning and development, project design, geomorphic-habitat-species relevance, and risks to listed species. Materials for training Services staff and others in the efficient use of the science document and tools have also been developed. The longer term goals of this effort include: enabling consistent and comprehensive reviews that are completed in a timely fashion by regulators; facilitating improved project planning and design by proponents; encouraging projects that are attuned to their watershed

  18. JUPITER PROJECT - JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY

    EPA Science Inventory

    The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project builds on the technology of two widely used codes for sensitivity analysis, data assessment, calibration, and uncertainty analysis of environmental models: PEST and UCODE.

  19. JUPITER PROJECT - JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY

    EPA Science Inventory

    The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project builds on the technology of two widely used codes for sensitivity analysis, data assessment, calibration, and uncertainty analysis of environmental models: PEST and UCODE.

  20. 40 CFR 57.604 - Evaluation of projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PRIMARY NONFERROUS SMELTER ORDERS Research and Development Requirements § 57.604 Evaluation of projects... significant stage of the research and development program, including all relevant information and data...

  1. Evaluation of the Treatment of Diabetic Retinopathy A Research Project

    ERIC Educational Resources Information Center

    Kupfer, Carl

    1973-01-01

    Evaluated is the treatment of diabetic retinopathy (blindness due to ruptured vessels of the retina as a side effect of diabetes), and described is a research project comparing two types of photocoagulation treatment. (DB)

  2. Evaluation on Collaborative Satisfaction for Project Management Team in Integrated Project Delivery Mode

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Li, Y.; Wu, Q.

    2013-05-01

    Integrated Project Delivery (IPD) is a newly-developed project delivery approach for construction projects, and the level of collaboration of project management team is crucial to the success of its implementation. Existing research has shown that collaborative satisfaction is one of the key indicators of team collaboration. By reviewing the literature on team collaborative satisfaction and taking into consideration the characteristics of IPD projects, this paper summarizes the factors that influence collaborative satisfaction of IPD project management team. Based on these factors, this research develops a fuzzy linguistic method to effectively evaluate the level of team collaborative satisfaction, in which the authors adopted the 2-tuple linguistic variables and 2-tuple linguistic hybrid average operators to enhance the objectivity and accuracy of the evaluation. The paper demonstrates the practicality and effectiveness of the method through carrying out a case study with the method.

  3. Issues in evaluating Superfund cleanup projects

    SciTech Connect

    Yun, J.M.

    1996-12-31

    It is the aim of this paper to highlight issues that have potentially serious, but not immediately obvious, implications in assessing the costs and benefits of a Superfund project. Firstly, a serious error would be to overlook, on the cost-side, the welfare loss due to the excessive litigation (i.e., all relevant legal costs including attorney fees and settlement costs) that a Superfund designation creates. secondly, how the EPA rates the funds to pay for Superfund cleanups must be accounted for--namely, the distortionary effects of the EPA`s taxes on insurance and chemical companies. Harberger`s methodology can be adopted to account for this welfare loss. Finally, on the benefits-side, following Kohlhase and Greenberg and Hughes, housing values can give a valuable second-best assessment of the actual benefits of (local) projects. The appeal of using housing values is that it is a market-based approach. The rationale and ramifications of accounting for the litigation accompanying most EPA cleanups are examined in Section 2. In Section 3, the distortionary effects of the taxes are analyzed. section 4 investigates the use of housing values, near Superfund sites, to estimate the benefits of a cleanup. Finally, in Section 5, the implications and conclusions are summarized. Various illustrative cases will be presented where appropriate.

  4. The Design of the IGE Evaluation Project Phase IV Comparative Studies. Comparative Study of Phase IV IGE Evaluation Project. Phase IV, Project Paper 80-2.

    ERIC Educational Resources Information Center

    Romberg, Thomas A.; And Others

    This paper outlines the design of two Comparative Studies of Phase IV of the Individually Guided Education (IGE) Evaluation Project. More than 2,000 elementary schools in 25 states use the IGE system. The Evaluation Project was designed to gain a comprehensive view of the system's operation and effectiveness. Phase IV investigated pupil outcomes,…

  5. National Evaluation of Diversion Projects. Executive Summary.

    ERIC Educational Resources Information Center

    Dunford, Franklyn W.; And Others

    In 1976 the Special Emphasis branch of the Office of Juvenile Justice and Delinquency Prevention made $10 million available for the development of 11 diversion programs. A national evaluation of these programs was promoted in the hope of better understanding the viability of diversion as an alternative to traditional practices. The impact of…

  6. Evaluation of EUREKA Project, 1978-1979.

    ERIC Educational Resources Information Center

    Burke, Paul J., Ed.

    An evaluation for 1978-79 was conducted of EUREKA, a career information system in California. Personal visits were made to sixteen EUREKA sites throughout the state, accounting for over 75% of the high schools and agencies with active programs. Both the directors of the programs and counselors were interviewed for their reactions. It was found…

  7. A portfolio evaluation framework for air transportation improvement projects

    NASA Astrophysics Data System (ADS)

    Baik, Hyeoncheol

    This thesis explores the application of portfolio theory to the Air Transportation System (ATS) improvement. The ATS relies on complexly related resources and different stakeholder groups. Moreover, demand for air travel is significantly increasing relative to capacity of air transportation. In this environment, improving the ATS is challenging. Many projects, which are defined as technologies or initiatives, for improvement have been proposed and some have been demonstrated in practice. However, there is no clear understanding of how well these projects work in different conditions nor of how they interact with each other or with existing systems. These limitations make it difficult to develop good project combinations, or portfolios that maximize improvement. To help address this gap, a framework for identifying good portfolios is proposed. The framework can be applied to individual projects or portfolios of projects. Projects or portfolios are evaluated using four different groups of factors (effectiveness, time-to-implement, scope of applicability, and stakeholder impacts). Portfolios are also evaluated in terms of interaction-determining factors (prerequisites, co-requisites, limiting factors, and amplifying factors) because, while a given project might work well in isolation, interdependencies between projects or with existing systems could result in lower overall performance in combination. Ways to communicate a portfolio to decision makers are also introduced. The framework is unique because (1) it allows using a variety of available data, and (2) it covers diverse benefit metrics. For demonstrating the framework, an application to ground delay management projects serves as a case study. The portfolio evaluation approach introduced in this thesis can aid decision makers and researchers at universities and aviation agencies such as Federal Aviation Administration (FAA), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD), in

  8. Thin Pd membrane prepared on macroporous stainless steel tube filter by an in-situ multi-dimensional plating mechanism.

    PubMed

    Tong, Jianhua; Matsumura, Yasuyuki

    2004-11-07

    The big surface pores of a porous stainless steel (PSS) tube filter with marked roughness were jammed with aluminium hydroxide gel by a combination of ultrasonic vibration and vacuum suction, then a thin dense Pd membrane (6 microm) was plated in-situ on this pre-jammed filter by a multi-dimensional plating mechanism; after recovering the substrate pores by high temperature treatment, higher H2 permeance and complete H2 selectivity were obtained.

  9. Multi-Dimensionality of Synthetic Vision Cockpit Displays: Prevention of Controlled-Flight-Into-Terrain

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.

    2006-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results showed the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed.

  10. Initial-phase investigation of multi-dimensional streamflow simulations in the Colorado River, Moab Valley, Grand County, Utah, 2004

    USGS Publications Warehouse

    Kenney, Terry A.

    2005-01-01

    A multi-dimensional hydrodynamic model was applied to aid in the assessment of the potential hazard posed to the uranium mill tailings near Moab, Utah, by flooding in the Colorado River as it flows through Moab Valley. Discharge estimates for the 100- and 500-year recurrence interval and for the Probable Maximum Flood (PMF) were evaluated with the model for the existing channel geometry. These discharges also were modeled for three other channel-deepening configurations representing hypothetical scour of the channel at the downstream portal of Moab Valley. Water-surface elevation, velocity distribution, and shear-stress distribution were predicted for each simulation.The hydrodynamic model was developed from measured channel topography and over-bank topographic data acquired from several sources. A limited calibration of the hydrodynamic model was conducted. The extensive presence of tamarisk or salt cedar in the over-bank regions of the study reach presented challenges for determining roughness coefficients.Predicted water-surface elevations for the current channel geometry indicated that the toe of the tailings pile would be inundated by about 4 feet by the 100-year discharge and 25 feet by the PMF discharge. A small area at the toe of the tailings pile was characterized by velocities of about 1 to 2 feet per second for the 100-year discharge. Predicted velocities near the toe for the PMF discharge increased to between 2 and 4 feet per second over a somewhat larger area. The manner to which velocities progress from the 100-year discharge to the PMF discharge in the area of the tailings pile indicates that the tailings pile obstructs the over-bank flow of flood discharges. The predicted path of flow for all simulations along the existing Colorado River channel indicates that the current distribution of tamarisk in the over-bank region affects how flood-flow velocities are spatially distributed. Shear-stress distributions were predicted throughout the study reach

  11. Novel methodology for accurate resolution of fluid signatures from multi-dimensional NMR well-logging measurements

    NASA Astrophysics Data System (ADS)

    Anand, Vivek

    2017-03-01

    A novel methodology for accurate fluid characterization from multi-dimensional nuclear magnetic resonance (NMR) well-logging measurements is introduced. This methodology overcomes a fundamental challenge of poor resolution of features in multi-dimensional NMR distributions due to low signal-to-noise ratio (SNR) of well-logging measurements. Based on an unsupervised machine-learning concept of blind source separation, the methodology resolves fluid responses from simultaneous analysis of large quantities of well-logging data. The multi-dimensional NMR distributions from a well log are arranged in a database matrix that is expressed as the product of two non-negative matrices. The first matrix contains the unique fluid signatures, and the second matrix contains the relative contributions of the signatures for each measurement sample. No a priori information or subjective assumptions about the underlying features in the data are required. Furthermore, the dimensionality of the data is reduced by several orders of magnitude, which greatly simplifies the visualization and interpretation of the fluid signatures. Compared to traditional methods of NMR fluid characterization which only use the information content of a single measurement, the new methodology uses the orders-of-magnitude higher information content of the entire well log. Simulations show that the methodology can resolve accurate fluid responses in challenging SNR conditions. The application of the methodology to well-logging data from a heavy oil reservoir shows that individual fluid signatures of heavy oil, water associated with clays and water in interstitial pores can be accurately obtained.

  12. Effect of a Multi-Dimensional and Inter-Sectoral Intervention on the Adherence of Psychiatric Patients

    PubMed Central

    Pauly, Anne; Wolf, Carolin; Mayr, Andreas; Lenz, Bernd; Kornhuber, Johannes; Friedland, Kristina

    2015-01-01

    Background In psychiatry, hospital stays and transitions to the ambulatory sector are susceptible to major changes in drug therapy that lead to complex medication regimens and common non-adherence among psychiatric patients. A multi-dimensional and inter-sectoral intervention is hypothesized to improve the adherence of psychiatric patients to their pharmacotherapy. Methods 269 patients from a German university hospital were included in a prospective, open, clinical trial with consecutive control and intervention groups. Control patients (09/2012-03/2013) received usual care, whereas intervention patients (05/2013-12/2013) underwent a program to enhance adherence during their stay and up to three months after discharge. The program consisted of therapy simplification and individualized patient education (multi-dimensional component) during the stay and at discharge, as well as subsequent phone calls after discharge (inter-sectoral component). Adherence was measured by the “Medication Adherence Report Scale” (MARS) and the “Drug Attitude Inventory” (DAI). Results The improvement in the MARS score between admission and three months after discharge was 1.33 points (95% CI: 0.73–1.93) higher in the intervention group compared to controls. In addition, the DAI score improved 1.93 points (95% CI: 1.15–2.72) more for intervention patients. Conclusion These two findings indicate significantly higher medication adherence following the investigated multi-dimensional and inter-sectoral program. Trial Registration German Clinical Trials Register DRKS00006358 PMID:26437449

  13. Effect of a Multi-Dimensional and Inter-Sectoral Intervention on the Adherence of Psychiatric Patients.

    PubMed

    Pauly, Anne; Wolf, Carolin; Mayr, Andreas; Lenz, Bernd; Kornhuber, Johannes; Friedland, Kristina

    2015-01-01

    In psychiatry, hospital stays and transitions to the ambulatory sector are susceptible to major changes in drug therapy that lead to complex medication regimens and common non-adherence among psychiatric patients. A multi-dimensional and inter-sectoral intervention is hypothesized to improve the adherence of psychiatric patients to their pharmacotherapy. 269 patients from a German university hospital were included in a prospective, open, clinical trial with consecutive control and intervention groups. Control patients (09/2012-03/2013) received usual care, whereas intervention patients (05/2013-12/2013) underwent a program to enhance adherence during their stay and up to three months after discharge. The program consisted of therapy simplification and individualized patient education (multi-dimensional component) during the stay and at discharge, as well as subsequent phone calls after discharge (inter-sectoral component). Adherence was measured by the "Medication Adherence Report Scale" (MARS) and the "Drug Attitude Inventory" (DAI). The improvement in the MARS score between admission and three months after discharge was 1.33 points (95% CI: 0.73-1.93) higher in the intervention group compared to controls. In addition, the DAI score improved 1.93 points (95% CI: 1.15-2.72) more for intervention patients. These two findings indicate significantly higher medication adherence following the investigated multi-dimensional and inter-sectoral program. German Clinical Trials Register DRKS00006358.

  14. Helical Screw Expander Evaluation Project. Final report

    SciTech Connect

    McKay, R.

    1982-03-01

    A functional 1-MW geothermal electric power plant that featured a helical screw expander was produced and then tested in Utah in 1978 to 1979 with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing operation on two-phase geothermal fluids. The Project also produced a computer-equipped data system, an instrumentation and control van, and a 1000-kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Additional testing was performed in Mexico in 1980 under a cooperative test program using the same test array, and machine efficiency was measured at 62% maximum with the rotors partially coated with scale, compared with approximately 54% maximum in Utah with uncoated rotors, confirming the importance of scale deposits within the machine on performance. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  15. Multi-dimensional upwind fluctuation splitting scheme with mesh adaption for hypersonic viscous flow

    NASA Astrophysics Data System (ADS)

    Wood, William Alfred, III

    A multi-dimensional upwind fluctuation splitting scheme is developed and implemented for two dimensional and axisymmetric formulations of the Navier-Stokes equations on unstructured meshes. Key features of the scheme are the compact stencil, full upwinding, and non-linear discretization which allow for second-order accuracy with enforced positivity. Throughout, the fluctuation splitting scheme is compared to a current state-of-the-art finite volume approach, a second-order, dual mesh upwind flux difference splitting scheme (DMFDSFV), and is shown to produce more accurate results using fewer computer resources for a wide range of test cases. The scalar test cases include advected shear, circular advection, non-linear advection with coalescing shock and expansion fans, and advection-diffusion. For all scalar cases the fluctuation splitting scheme is more accurate, and the primary mechanism for the improved fluctuation splitting performance is shown to be the reduced production of artificial dissipation relative to DMFDSFV. The most significant scalar result is for combined advection-diffusion, where the present fluctuation splitting scheme is able to resolve the physical dissipation from the artificial dissipation on a much coarser mesh than DMFDSFV is able to, allowing order-of-magnitude reductions in solution time. Among the inviscid test cases the converging supersonic streams problem is notable in that the fluctuation splitting scheme exhibits superconvergent third-order spatial accuracy. For the inviscid cases of a supersonic diamond airfoil, supersonic slender cone, and incompressible circular bump the fluctuation splitting drag coefficient errors are typically half the DMFDSFV drag errors. However, for the incompressible inviscid sphere the fluctuation splitting drag error is larger than for DMFDSFV. A Blasius flat plate viscous validation case reveals a more accurate v-velocity profile for fluctuation splitting, and the reduced artificial dissipation

  16. Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty.

    PubMed

    Mihaljević, Bojan; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2014-01-01

    Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.

  17. MULTI-DIMENSIONAL FEATURES OF NEUTRINO TRANSFER IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Sumiyoshi, K.; Takiwaki, T.; Matsufuru, H.; Yamada, S. E-mail: takiwaki.tomoya@nao.ac.jp E-mail: shoichi@heap.phys.waseda.ac.jp

    2015-01-01

    We study the multi-dimensional properties of neutrino transfer inside supernova cores by solving the Boltzmann equations for neutrino distribution functions in genuinely six-dimensional phase space. Adopting representative snapshots of the post-bounce core from other supernova simulations in three dimensions, we solve the temporal evolution to stationary states of neutrino distribution functions using our Boltzmann solver. Taking advantage of the multi-angle and multi-energy feature realized by the S {sub n} method in our code, we reveal the genuine characteristics of spatially three-dimensional neutrino transfer, such as nonradial fluxes and nondiagonal Eddington tensors. In addition, we assess the ray-by-ray approximation, turning off the lateral-transport terms in our code. We demonstrate that the ray-by-ray approximation tends to propagate fluctuations in thermodynamical states around the neutrino sphere along each radial ray and overestimate the variations between the neutrino distributions on different radial rays. We find that the difference in the densities and fluxes of neutrinos between the ray-by-ray approximation and the full Boltzmann transport becomes ∼20%, which is also the case for the local heating rate, whereas the volume-integrated heating rate in the Boltzmann transport is found to be only slightly larger (∼2%) than the counterpart in the ray-by-ray approximation due to cancellation among different rays. These results suggest that we should carefully assess the possible influences of various approximations in the neutrino transfer employed in current simulations of supernova dynamics. Detailed information on the angle and energy moments of neutrino distribution functions will be profitable for the future development of numerical methods in neutrino-radiation hydrodynamics.

  18. Fast Multi-dimensional Ensemble Empirical Mode Decomposition for the analysis of Big Spatiotemporal Data Sets

    NASA Astrophysics Data System (ADS)

    Wu, Z.

    2015-12-01

    In this big data era, it is more urgent than ever to solve two major issues: (1) fast data transmission method that can facilitate access to data from non-local sources, and (2) fast and efficient data analysis methods that can reveal the key information from the available data for particular purposes. Although approaches in different fields to address these two questions may differ significantly, the common part must involve data compression techniques and fast algorithm. In this paper, we introduce the recently developed adaptive and spatiotemporally local analysis method, namely the fast multi-dimensional ensemble empirical mode decomposition (MEEMD), for the analysis of large spatiotemporal dataset. The original MEEMD uses ensemble empirical mode decomposition (EEMD) to decompose time series at each spatial grid and then pieces together the temporal-spatial evolution of climate variability and change on naturally separated timescales, which is computationally expensive. By taking the advantage of the high efficiency of the principle component analysis/empirical orthogonal function (PCA/EOF) expression for spatiotemporally coherent data, we design a lossy compression method for climate data to facilitate its non-local transmission. In addition to that, we also explain the basic principles behind the fast MEEMD through decomposing PCs instead of original grid-wise time series to speedup computation of MEEMD. Using a typical climate dataset as an example, we demonstrate that our newly designed methods can (1) compress data with a compression rate of one to two orders; (2) speed up the MEEMD algorithm by one to two orders.

  19. Oceans 2.0: Interactive tools for the Visualization of Multi-dimensional Ocean Sensor Data

    NASA Astrophysics Data System (ADS)

    Biffard, B.; Valenzuela, M.; Conley, P.; MacArthur, M.; Tredger, S.; Guillemot, E.; Pirenne, B.

    2016-12-01

    Ocean Networks Canada (ONC) operates ocean observatories on all three of Canada's coasts. The instruments produce 280 gigabytes of data per day with 1/2 petabyte archived so far. In 2015, 13 terabytes were downloaded by over 500 users from across the world. ONC's data management system is referred to as "Oceans 2.0" owing to its interactive, participative features. A key element of Oceans 2.0 is real time data acquisition and processing: custom device drivers implement the input-output protocol of each instrument. Automatic parsing and calibration takes place on the fly, followed by event detection and quality control. All raw data are stored in a file archive, while the processed data are copied to fast databases. Interactive access to processed data is provided through data download and visualization/quick look features that are adapted to diverse data types (scalar, acoustic, video, multi-dimensional, etc). Data may be post or re-processed to add features, analysis or correct errors, update calibrations, etc. A robust storage structure has been developed consisting of an extensive file system and a no-SQL database (Cassandra). Cassandra is a node-based open source distributed database management system. It is scalable and offers improved performance for big data. A key feature is data summarization. The system has also been integrated with web services and an ERDDAP OPeNDAP server, capable of serving scalar and multidimensional data from Cassandra for fixed or mobile devices.A complex data viewer has been developed making use of the big data capability to interactively display live or historic echo sounder and acoustic Doppler current profiler data, where users can scroll, apply processing filters and zoom through gigabytes of data with simple interactions. This new technology brings scientists one step closer to a comprehensive, web-based data analysis environment in which visual assessment, filtering, event detection and annotation can be integrated.

  20. Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty

    PubMed Central

    Mihaljević, Bojan; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2014-01-01

    Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features

  1. POLARIZED LINE FORMATION IN MULTI-DIMENSIONAL MEDIA. III. HANLE EFFECT WITH PARTIAL FREQUENCY REDISTRIBUTION

    SciTech Connect

    Anusha, L. S.; Nagendra, K. N.

    2011-09-01

    In two previous papers, we solved the polarized radiative transfer (RT) equation in multi-dimensional (multi-D) geometries with partial frequency redistribution as the scattering mechanism. We assumed Rayleigh scattering as the only source of linear polarization (Q/I, U/I) in both these papers. In this paper, we extend these previous works to include the effect of weak oriented magnetic fields (Hanle effect) on line scattering. We generalize the technique of Stokes vector decomposition in terms of the irreducible spherical tensors T{sup K}{sub Q}, developed by Anusha and Nagendra, to the case of RT with Hanle effect. A fast iterative method of solution (based on the Stabilized Preconditioned Bi-Conjugate-Gradient technique), developed by Anusha et al., is now generalized to the case of RT in magnetized three-dimensional media. We use the efficient short-characteristics formal solution method for multi-D media, generalized appropriately to the present context. The main results of this paper are the following: (1) a comparison of emergent (I, Q/I, U/I) profiles formed in one-dimensional (1D) media, with the corresponding emergent, spatially averaged profiles formed in multi-D media, shows that in the spatially resolved structures, the assumption of 1D may lead to large errors in linear polarization, especially in the line wings. (2) The multi-D RT in semi-infinite non-magnetic media causes a strong spatial variation of the emergent (Q/I, U/I) profiles, which is more pronounced in the line wings. (3) The presence of a weak magnetic field modifies the spatial variation of the emergent (Q/I, U/I) profiles in the line core, by producing significant changes in their magnitudes.

  2. Multi-Scale and Multi-Dimensional Mineralogical Mapping using Machine Learning

    NASA Astrophysics Data System (ADS)

    Einsle, J. F.; Harrison, R. J.; Johnstone, D.; Martineau, B.; Collins, S. M.; Buisman, I.; Saghi, Z.; Eggeman, A.; Piotrowski, A. M.; Kirschvink, J. L.; Midgley, P. A.

    2016-12-01

    Modern electron microscopes offer a variety of techniques for mapping chemical and crystallographic information in geological samples from micron to nanometer scales in both two and three dimensions. A typical data set comprises hundreds of thousands of spectra acquired pixel by pixel as the electron beam scans over the specimen. Routine analysis procedures include background subtraction, peak identification and quantification. This work highlights the application and benefits of machine learning to identify and extract the essential features that describe the mineralogical system being examined. Application of data decomposition techniques (similar to principal component analysis (PCA)) and clustering algorithms to multidimensional data sets reveals key and often-overlooked features. Unique sedimentary sources are identified in Southern Ocean cores using decomposition of SEM EDS to identify multiple mineral phases. SEM EDS of the ALH84001 Martian meteorite presents significant challenges due to specimen charging in cross sectional imaging. Using low kV SEM (2 kV) overcomes this challenge, but yields low X-ray counts in EDS spectra. By applying machine learning subtle details in the spectra are elucidated. Application of machine learning to comparative studies of the cloudy zone in the Tazewell IIICD iron meteorite produces a complete chemical and crystallographic characterization. Three-dimensional physical features found in the cloudy zone combine with decomposition of the EDS spectra to produce quantification of the constituent mineral phases that are within 2% of atom probe tomography results. Cluster analysis of the scanning precession electron diffraction maps enables identification of a Fe7Ni structure in the matrix phase of the cloudy zone. These studies demonstrate the potential for multi-scale and multi-dimensional mineralogical characterization using machine learning and electron microscopy.

  3. Multi-dimensional Treatment Foster Care in England: differential effects by level of initial antisocial behaviour.

    PubMed

    Sinclair, Ian; Parry, Elizabeth; Biehal, Nina; Fresen, John; Kay, Catherine; Scott, Stephen; Green, Jonathan

    2016-08-01

    Multi-dimensional Treatment Foster Care (MTFC), recently renamed Treatment Foster Care Oregon for Adolescents (TFCO-A) is an internationally recognised intervention for troubled young people in public care. This paper seeks to explain conflicting results with MTFC by testing the hypotheses that it benefits antisocial young people more than others and does so through its effects on their behaviour. Hard-to-manage young people in English foster or residential homes were assessed at entry to a randomised and case-controlled trial of MTFC (n = 88) and usual care (TAU) (n = 83). Primary outcome was the Children's Global Assessment Scale (CGAS) at 12 months analysed according to high (n = 112) or low (n = 59) baseline level of antisocial behaviour on the Health of the Nation Outcome Scales for Children and Adolescents. After adjusting for covariates, there was no overall treatment effect on CGAS. However, the High Antisocial Group receiving MTFC gained more on the CGAS than the Low group (mean improvement 9.36 points vs. 5.33 points). This difference remained significant (p < 0.05) after adjusting for propensity and covariates and was statistically explained by the reduced antisocial behaviour ratings in MTFC. These analyses support the use of MTFC for youth in public care but only for those with higher levels of antisocial behaviour. Further work is needed on whether such benefits persist, and on possible negative effects of this treatment for those with low antisocial behaviour.Trial Registry Name: ISRCTNRegistry identification number: ISRCTN 68038570Registry URL: www.isrctn.com.

  4. Multi-dimensional phenotyping: towards a new taxonomy for airway disease.

    PubMed

    Wardlaw, A J; Silverman, M; Siva, R; Pavord, I D; Green, R

    2005-10-01

    All the real knowledge which we possess, depends on methods by which we distinguish the similar from the dissimilar. The greater the number of natural distinctions this method comprehends the clearer becomes our idea of things. The more numerous the objects which employ our attention the more difficult it becomes to form such a method and the more necessary. Classification is a fundamental part of medicine. Diseases are often categorized according to pre-20th century descriptions and concepts of disease based on symptoms, signs and functional abnormalities rather than on underlying pathogenesis. Where the aetiology of disease has been revealed (for example in the infectious diseases) a more precise classification has become possible, but in the chronic inflammatory diseases, and in the inflammatory airway diseases in particular, where pathogenesis has been stubbornly difficult to elucidate, we still use broad descriptive terms such as asthma and chronic obstructive pulmonary disease, which defy precise definition because they encompass a wide spectrum of presentations and physiological and cellular abnormalities. It is our contention that these broad-brush terms have outlived their usefulness and that we should be looking to create a new taxonomy of airway disease-a taxonomy that more closely reflects the spectrum of phenotypes that are encompassed within the term airway inflammatory diseases, and that gives full recognition to late 20th and 21st century insights into the disordered physiology and cell biology that characterizes these conditions in the expectation that these will map more closely to both aetiology and response to treatment. Development of this taxonomy will require a much more complete and sophisticated correlation of the many variables that make up a condition than has been usual to employ in an approach that encompasses multi-dimensional phenotyping and uses complex statistical tools such as cluster analysis.

  5. Overview of NASA Multi-Dimensional Stirling Convertor Code Development and Validation Effort

    NASA Astrophysics Data System (ADS)

    Tew, Roy C.; Cairelli, James E.; Ibrahim, Mounir B.; Simon, Terrence W.; Gedeon, David

    2003-01-01

    A NASA grant has been awarded to Cleveland State University (CSU) to develop a multi-dimensional (multi-D) Stirling computer code with the goals of improving loss predictions and identifying component areas for improvements. The University of Minnesota (UMN) and Gedeon Associates are teamed with CSU. Development of test rigs at UMN and CSU and validation of the code against test data are part of the effort. The one-dimensional (1-D) Stirling codes used for design and performance prediction do not rigorously model regions of the working space where abrupt changes in flow area occur (such as manifolds and other transitions between components). Certain hardware experiences have demonstrated large performance gains by varying manifolds and heat exchanger designs to improve flow distributions in the heat exchangers. 1-D codes were not able to predict these performance gains. An accurate multi-D code should improve understanding of the effects of area changes along the main flow axis, sensitivity of performance to slight changes in internal geometry, and, in general, the understanding of various internal thermodynamic losses. The commercial CFD-ACE code has been chosen for development of the multi-D code. This 2-D/3-D code has highly developed pre- and post-processors, and moving boundary capability. Preliminary attempts at validation of CFD-ACE models of MIT gas spring and ``two space'' test rigs were encouraging. Also, CSU's simulations of the UMN oscillating-flow rig compare well with flow visualization results from UMN. A complementary Department of Energy (DOE) Regenerator Research effort is aiding in development of regenerator matrix models that will be used in the multi-D Stirling code. This paper reports on the progress and challenges of this multi-D code development effort.

  6. ALEGRA-HEDP Multi-Dimensional Simulations of Z-pinch Related Physics

    NASA Astrophysics Data System (ADS)

    Garasi, Christopher J.

    2003-10-01

    The marriage of experimental diagnostics and computer simulations continues to enhance our understanding of the physics and dynamics associated with current-driven wire arrays. Early models that assumed the formation of an unstable, cylindrical shell of plasma due to wire merger have been replaced with a more complex picture involving wire material ablating non-uniformly along the wires, creating plasma pre-fill interior to the array before the bulk of the array collapses due to magnetic forces. Non-uniform wire ablation leads to wire breakup, which provides a mechanism for some wire material to be left behind as the bulk of the array stagnates onto the pre-fill. Once the bulk of the material has stagnated, electrical current can then shift back to the material left behind and cause it to stagnate onto the already collapsed bulk array mass. These complex effects impact the total radiation output from the wire array which is very important to application of that radiation for inertial confinement fusion. A detailed understanding of the formation and evolution of wire array perturbations is needed, especially for those which are three-dimensional in nature. Sandia National Laboratories has developed a multi-physics research code tailored to simulate high energy density physics (HEDP) environments. ALEGRA-HEDP has begun to simulate the evolution of wire arrays and has produced the highest fidelity, two-dimensional simulations of wire-array precursor ablation to date. Our three-dimensional code capability now provides us with the ability to solve for the magnetic field and current density distribution associated with the wire array and the evolution of three-dimensional effects seen experimentally. The insight obtained from these multi-dimensional simulations of wire arrays will be presented and specific simulations will be compared to experimental data.

  7. Multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates.

    SciTech Connect

    Chen, Ken Shuang

    2004-11-01

    This report documents the author's efforts in the deterministic modeling of copper-sulfidation corrosion on non-planar substrates such as diodes and electrical connectors. A new framework based on Goma was developed for multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates. In this framework, the moving sulfidation front is explicitly tracked by treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and repeatedly performing re-meshing using CUBIT and re-mapping using MAPVAR. Three one-dimensional studies were performed for verifying the framework in asymptotic regimes. Limited model validation was also carried out by comparing computed copper-sulfide thickness with experimental data. The framework was first demonstrated in modeling one-dimensional copper sulfidation with charge separation. It was found that both the thickness of the space-charge layers and the electrical potential at the sulfidation surface decrease rapidly as the Cu{sub 2}S layer thickens initially but eventually reach equilibrium values as Cu{sub 2}S layer becomes sufficiently thick; it was also found that electroneutrality is a reasonable approximation and that the electro-migration flux may be estimated by using the equilibrium potential difference between the sulfidation and annihilation surfaces when the Cu{sub 2}S layer is sufficiently thick. The framework was then employed to model copper sulfidation in the solid-state-diffusion controlled regime (i.e. stage II sulfidation) on a prototypical diode until a continuous Cu{sub 2}S film was formed on the diode surface. The framework was also applied to model copper sulfidation on an intermittent electrical contact between a gold-plated copper pin and gold-plated copper pad; the presence of Cu{sub 2}S was found to raise the effective electrical resistance drastically. Lastly, future research needs in modeling atmospheric copper sulfidation are discussed.

  8. Overview of NASA Multi-Dimensional Stirling Convertor Code Development and Validation Effort

    NASA Astrophysics Data System (ADS)

    Tew, Roy C.; Cairelli, James E.; Ibrahim, Mounir B.; Simon, Terrence W.; Gedeon, David

    2002-12-01

    A NASA grant has been awarded to Cleveland State University (CSU) to develop a multi-dimensional (multi-D) Stirling computer code with the goals of improving loss predictions and identifying component areas for improvements. The University of Minnesota (UMN) and Gedeon Associates are teamed with CSU. Development of test rigs at UMN and CSU and validation of the code against test data are part of the effort. The one-dimensional (1-D) Stirling codes used for design and performance prediction do not rigorously model regions of the working space where abrupt changes in flow area occur (such as manifolds and other transitions between components). Certain hardware experiences have demonstrated large performance gains by varying manifolds and heat exchanger designs to improve flow distributions in the heat exchangers. 1-D codes were not able to predict these performance gains. An accurate multi-D code should improve understanding of the effects of area changes along the main flow axis, sensitivity of performance to slight changes in internal geometry, and, in general, the understanding of various internal thermodynamic losses. The commercial CFD-ACE code has been chosen for development of the multi-D code. This 2-D/3-D code has highly developed pre- and post-processors, and moving boundary capability. Preliminary attempts at validation of CFD-ACE models of MIT gas spring and "two space" test rigs were encouraging. Also, CSU's simulations of the UMN oscillating-flow fig compare well with flow visualization results from UMN. A complementary Department of Energy (DOE) Regenerator Research effort is aiding in development of regenerator matrix models that will be used in the multi-D Stirling code. This paper reports on the progress and challenges of this

  9. Overview of NASA Multi-dimensional Stirling Convertor Code Development and Validation Effort

    NASA Technical Reports Server (NTRS)

    Tew, Roy C.; Cairelli, James E.; Ibrahim, Mounir B.; Simon, Terrence W.; Gedeon, David

    2002-01-01

    A NASA grant has been awarded to Cleveland State University (CSU) to develop a multi-dimensional (multi-D) Stirling computer code with the goals of improving loss predictions and identifying component areas for improvements. The University of Minnesota (UMN) and Gedeon Associates are teamed with CSU. Development of test rigs at UMN and CSU and validation of the code against test data are part of the effort. The one-dimensional (1-D) Stirling codes used for design and performance prediction do not rigorously model regions of the working space where abrupt changes in flow area occur (such as manifolds and other transitions between components). Certain hardware experiences have demonstrated large performance gains by varying manifolds and heat exchanger designs to improve flow distributions in the heat exchangers. 1-D codes were not able to predict these performance gains. An accurate multi-D code should improve understanding of the effects of area changes along the main flow axis, sensitivity of performance to slight changes in internal geometry, and, in general, the understanding of various internal thermodynamic losses. The commercial CFD-ACE code has been chosen for development of the multi-D code. This 2-D/3-D code has highly developed pre- and post-processors, and moving boundary capability. Preliminary attempts at validation of CFD-ACE models of MIT gas spring and "two space" test rigs were encouraging. Also, CSU's simulations of the UMN oscillating-flow fig compare well with flow visualization results from UMN. A complementary Department of Energy (DOE) Regenerator Research effort is aiding in development of regenerator matrix models that will be used in the multi-D Stirling code. This paper reports on the progress and challenges of this

  10. Robust differential expression analysis by learning discriminant boundary in multi-dimensional space of statistical attributes.

    PubMed

    Bei, Yuanzhe; Hong, Pengyu

    2016-12-19

    Performing statistical tests is an important step in analyzing genome-wide datasets for detecting genomic features differentially expressed between conditions. Each type of statistical test has its own advantages in characterizing certain aspects of differences between population means and often assumes a relatively simple data distribution (e.g., Gaussian, Poisson, negative binomial, etc.), which may not be well met by the datasets of interest. Making insufficient distributional assumptions can lead to inferior results when dealing with complex differential expression patterns. We propose to capture differential expression information more comprehensively by integrating multiple test statistics, each of which has relatively limited capacity to summarize the observed differential expression information. This work addresses a general application scenario, in which users want to detect as many as DEFs while requiring the false discovery rate (FDR) to be lower than a cut-off. We treat each test statistic as a basic attribute, and model the detection of differentially expressed genomic features as learning a discriminant boundary in a multi-dimensional space of basic attributes. We mathematically formulated our goal as a constrained optimization problem aiming to maximize discoveries satisfying a user-defined FDR. An effective algorithm, Discriminant-Cut, has been developed to solve an instantiation of this problem. Extensive comparisons of Discriminant-Cut with 13 existing methods were carried out to demonstrate its robustness and effectiveness. We have developed a novel machine learning methodology for robust differential expression analysis, which can be a new avenue to significantly advance research on large-scale differential expression analysis.

  11. Polarized Line Formation in Multi-dimensional Media. III. Hanle Effect with Partial Frequency Redistribution

    NASA Astrophysics Data System (ADS)

    Anusha, L. S.; Nagendra, K. N.

    2011-09-01

    In two previous papers, we solved the polarized radiative transfer (RT) equation in multi-dimensional (multi-D) geometries with partial frequency redistribution as the scattering mechanism. We assumed Rayleigh scattering as the only source of linear polarization (Q/I, U/I) in both these papers. In this paper, we extend these previous works to include the effect of weak oriented magnetic fields (Hanle effect) on line scattering. We generalize the technique of Stokes vector decomposition in terms of the irreducible spherical tensors {T}^K_Q, developed by Anusha & Nagendra, to the case of RT with Hanle effect. A fast iterative method of solution (based on the Stabilized Preconditioned Bi-Conjugate-Gradient technique), developed by Anusha et al., is now generalized to the case of RT in magnetized three-dimensional media. We use the efficient short-characteristics formal solution method for multi-D media, generalized appropriately to the present context. The main results of this paper are the following: (1) a comparison of emergent (I, Q/I, U/I) profiles formed in one-dimensional (1D) media, with the corresponding emergent, spatially averaged profiles formed in multi-D media, shows that in the spatially resolved structures, the assumption of 1D may lead to large errors in linear polarization, especially in the line wings. (2) The multi-D RT in semi-infinite non-magnetic media causes a strong spatial variation of the emergent (Q/I, U/I) profiles, which is more pronounced in the line wings. (3) The presence of a weak magnetic field modifies the spatial variation of the emergent (Q/I, U/I) profiles in the line core, by producing significant changes in their magnitudes.

  12. Multi-dimensional Conjunctive Operation Rule for the Water Supply System

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Tan, C. A.; CHEN, Y.; Tung, C.

    2011-12-01

    In recent years, with the increment of floods and droughts, not only in numbers but also in intensities, floods were severer during the wet season and the droughts were more serious during the dry season. In order to reduce their impact on agriculture, industry, and even human being, the conjunctive use of surface water and groundwater has been paid much attention and become a new direction for the future research. Traditionally, the reservoir operation usually follows the operation rule curve to satisfy the water demand and considers only water levels at the reservoirs and time series. The strategy used in the conjunctive-use management model is that the water demand is first satisfied with the reservoirs operated based on the rule curves, and the deficit between demand and supply, if exists, is provided by the groundwater. In this study, we propose a new operation rule, named multi-dimensional conjunctive operation rule curve (MCORC), which is extended from the concept of reservoir operation rule curve. The MCORC is a three-dimensional curve and is applied to both surface water and groundwater. Three sets of parameters, water levels and the supply percentage at reservoirs, groundwater levels and the supply percentage, and time series, are considered simultaneously in the curve. The zonation method and heuristic algorithm are applied to optimize the curve subject to the constraints of the reservoir operation rules and the safety yield of groundwater. The proposed conjunctive operation rule was applied to the water supply system which is analogue to the area in northern Taiwan. The results showed that the MCORC could increase the efficiency of water use and reduce the risk of serious water deficits.

  13. Preview: Evaluation of the 1973-1974 Bilingual/Bicultural Project. Formative Evaluation Report.

    ERIC Educational Resources Information Center

    Ligon, Glynn; And Others

    The formative report provided the Austin Independent School District personnel with information useful for planning the remaining activities for the 1973-74 Bilingual/Bicultural Project and the activities for the 1974-75 Project. Emphasis was on what had been done to evaluate the 1973-74 Project, the data which was or would be available for the…

  14. Preview: Evaluation of the 1973-1974 Bilingual/Bicultural Project. Formative Evaluation Report.

    ERIC Educational Resources Information Center

    Ligon, Glynn; And Others

    The formative report provided the Austin Independent School District personnel with information useful for planning the remaining activities for the 1973-74 Bilingual/Bicultural Project and the activities for the 1974-75 Project. Emphasis was on what had been done to evaluate the 1973-74 Project, the data which was or would be available for the…

  15. Evaluation Toolkit: A Tailored Approach to Evaluation for Parenting Projects.

    ERIC Educational Resources Information Center

    Shaw, Catherine

    This toolkit presents a collection of accessible guidelines, measures, and tools to guide and implement evaluation of parenting education and support interventions. Designed primarily for people who are new to evaluation, it contains additional advice and guidance for those with a higher level of understanding or knowledge and it may also be…

  16. Factors Common to High-Utilization Evaluations. Evaluation Productivity Project.

    ERIC Educational Resources Information Center

    Alkin, Marvin; And Others

    This paper reports on the factors that characterize high-utilization evaluations. It is based on materials submitted to an American Educational Research Association (AERA) Division H competition for outstanding examples of evaluation utilization. The paper is organized into three sections. The first section outlines the background of the study:…

  17. Summative Evaluation of the Manukau Family Literacy Project, 2004

    ERIC Educational Resources Information Center

    Benseman, John Robert; Sutton, Alison Joy

    2005-01-01

    This report covers a summative evaluation of a family literacy project in Auckland, New Zealand. The evaluation covered 70 adults and their children over a two year period. Outcomes for the program included literacy skill gains for both adults and children, increased levels of self-confidence and self-efficacy, greater parental involvement in…

  18. Evaluating Injury Prevention Programs: The Oklahoma City Smoke Alarm Project.

    ERIC Educational Resources Information Center

    Mallonee, Sue

    2000-01-01

    Illustrates how evaluating the Oklahoma City Smoke Alarm Project increased its success in reducing residential fire-related injuries and deaths. The program distributed and tested smoke alarms in residential dwellings and offered educational materials on fire prevention and safety. Evaluation provided sound data on program processes and outcomes,…

  19. 40 CFR 57.604 - Evaluation of projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) PRIMARY NONFERROUS SMELTER ORDERS Research and Development Requirements § 57.604 Evaluation of projects. The research and development proposal shall include a provision for the employment of a qualified independent engineering firm to prepare written reports at least annually which evaluate each...

  20. Corrections Education Evaluation System Project. Site Visit Report.

    ERIC Educational Resources Information Center

    Nelson, Orville; And Others

    Site visits to five correctional institutions in Wisconsin were conducted as part of the development of an evaluation model for the competency-based vocational education (CBVE) project for the Wisconsin Correctional System. The evaluators' perceptions of the CBVE system are presented with recommendations for improvement. Site visits were conducted…

  1. Participatory Evaluation with Youth Leads to Community Action Project

    ERIC Educational Resources Information Center

    Ashton, Carolyn; Arnold, Mary E.; Wells, Elissa E.

    2010-01-01

    4-H has long emphasized the importance of civic engagement and community service for positive youth development. One pathway to this ideal is youth action research and evaluation. This article demonstrates how participatory youth research and evaluation can lead to the successful implementation of community action projects. It describes the…

  2. The ASCD Healthy School Communities Project: Formative Evaluation Results

    ERIC Educational Resources Information Center

    Valois, Robert F.; Lewallen, Theresa C.; Slade, Sean; Tasco, Adriane N.

    2015-01-01

    Purpose: The purpose of this paper is to report the formative evaluation results from the Association for Supervision and Curriculum Development Healthy School Communities (HSC) pilot project. Design/methodology/approach: This study utilized 11 HSC pilot sites in the USA (eight sites) and Canada (three sites). The evaluation question was…

  3. The ASCD Healthy School Communities Project: Formative Evaluation Results

    ERIC Educational Resources Information Center

    Valois, Robert F.; Lewallen, Theresa C.; Slade, Sean; Tasco, Adriane N.

    2015-01-01

    Purpose: The purpose of this paper is to report the formative evaluation results from the Association for Supervision and Curriculum Development Healthy School Communities (HSC) pilot project. Design/methodology/approach: This study utilized 11 HSC pilot sites in the USA (eight sites) and Canada (three sites). The evaluation question was…

  4. CENDL project, the chinese evaluated nuclear data library

    NASA Astrophysics Data System (ADS)

    Ge, Zhigang; Wu, Haicheng; Chen, Guochang; Xu, Ruirui

    2017-09-01

    The status of Chinese Evaluated Nuclear Data Library (CENDL) and the relevant CENDL project are introduced in this paper. Recently, a new version CENDL-3.2b0 was being prepared on the basis of the previous CENDL-3.1. The data in the light and actinide nuclide regions are updated from CENDL-3.1, and the new evaluations and calculations are performed mainly around structure and fission product nuclide regions. Covariance was also evaluated for structure and actinide nuclides. At the same time, the methodologies are systematically developed to fulfil the requirements of evaluations for CENDL-3.2b0. The updated nuclear reaction models for light and middle-heavy nuclides, non-model dependent nuclear data evaluation, covariance evaluation approaches, systematics, and integral validation system of nuclear data are incorporated in present CENDL project. The future developments are also planned.

  5. Evaluation in Cross-Cultural Contexts: Proposing a Framework for International Education and Training Project Evaluations.

    ERIC Educational Resources Information Center

    bin Yahya, Ismail; And Others

    This paper focuses on the need for increased sensitivity and responsiveness in international education and training project evaluations, particularly those in Third World countries. A conceptual-theoretical framework for designing and developing models appropriate for evaluating education and training projects in non-Western cultures is presented.…

  6. Final report : PATTON Alliance gazetteer evaluation project.

    SciTech Connect

    Bleakly, Denise Rae

    2007-08-01

    In 2005 the National Ground Intelligence Center (NGIC) proposed that the PATTON Alliance provide assistance in evaluating and obtaining the Integrated Gazetteer Database (IGDB), developed for the Naval Space Warfare Command Research group (SPAWAR) under Advance Research and Development Activity (ARDA) funds by MITRE Inc., fielded to the text-based search tool GeoLocator, currently in use by NGIC. We met with the developers of GeoLocator and identified their requirements for a better gazetteer. We then validated those requirements by reviewing the technical literature, meeting with other members of the intelligence community (IC), and talking with both the United States Geologic Survey (USGS) and the National Geospatial Intelligence Agency (NGA), the authoritative sources for official geographic name information. We thus identified 12 high-level requirements from users and the broader intelligence community. The IGDB satisfies many of these requirements. We identified gaps and proposed ways of closing these gaps. Three important needs have not been addressed but are critical future needs for the broader intelligence community. These needs include standardization of gazetteer data, a web feature service for gazetteer information that is maintained by NGA and USGS but accessible to users, and a common forum that brings together IC stakeholders and federal agency representatives to provide input to these activities over the next several years. Establishing a robust gazetteer web feature service that is available to all IC users may go a long way toward resolving the gazetteer needs within the IC. Without a common forum to provide input and feedback, community adoption may take significantly longer than anticipated with resulting risks to the war fighter.

  7. Evaluation of the El Dorado micellar-polymer demonstration project

    SciTech Connect

    Vanhorn, L.E.

    1983-01-01

    The El Dorado Micellar-Polymer Demonstration Project has been a cooperative venture between Cities Service Co. and the U.S. Department of Energy. The objective of the project was to determine if it was technically and economically feasible to produce commercial volumes of oil using a micellar-polymer process in the El Dorado field. The project was designed to allow a side-by-side comparison of 2 distinctly different micellar-polymer processes in the same field in order that the associated benefits and problems of each could be determined. These are described and evaluated.

  8. Evaluating success of mobile health projects in the developing world.

    PubMed

    Ginige, J Anupama; Maeder, Anthony J; Long, Vanessa

    2014-01-01

    Many mobile health (mHealth) projects, typically deploying pilot or small scale implementations, have been undertaken in developing world settings and reported with a widely varying range of claims being made on their effectiveness and benefits. As a result, there is little evidence for which aspects of such projects lead to successful outcomes. This paper describes a literature review of papers from PubMed undertaken to identify strong contributions to execution and evaluation of mHealth projects in developing world settings, and suggests a template for classifying the main success factors to assist with collating evidence in the future.

  9. A client/server database system for project evaluation

    SciTech Connect

    Brule, M.R.; Fair, W.B.; Jiang, J.; Sanvido, R.D.

    1994-12-31

    PETS (Project Evaluation Tool Set) is a networked client/server system that provides a full set of decision-support tools for evaluating the business potential of onshore and offshore development projects. This distributed workgroup computing system combines and streamlines preliminary design, routine cost estimation, economic evaluation, and risk analysis for conceptual developments as well as for ongoing projects and operations. A flexible and extendible client/server integration framework links in-house and third-party software applications with a database and an expert-system knowledgebase, and, where appropriate, links the applications among themselves. The capability and richness of inexpensive commercial operating systems and off-the-shelf applications have made building a client/server system like PETS possible in a relatively short time and at low cost. We will discuss the object-oriented design of the PETS system, detail its capabilities, and outline the methods used to integrate applications from other domains.

  10. An Overview of the International Reactor Physics Experiment Evaluation Project

    SciTech Connect

    Briggs, J. Blair; Gulliford, Jim

    2014-10-09

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties associated with advanced modeling and simulation accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Data provided by those two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades. An overview of the IRPhEP and a brief update of the ICSBEP are provided in this paper.

  11. Childhood Obesity Research Demonstration Project: Cross-Site Evaluation Methods

    PubMed Central

    Lee, Rebecca E.; Mehta, Paras; Thompson, Debbe; Bhargava, Alok; Carlson, Coleen; Kao, Dennis; Layne, Charles S.; Ledoux, Tracey; O'Connor, Teresia; Rifai, Hanadi; Gulley, Lauren; Hallett, Allen M.; Kudia, Ousswa; Joseph, Sitara; Modelska, Maria; Ortega, Dana; Parker, Nathan; Stevens, Andria

    2015-01-01

    Abstract Introduction: The Childhood Obesity Research Demonstration (CORD) project links public health and primary care interventions in three projects described in detail in accompanying articles in this issue of Childhood Obesity. This article describes a comprehensive evaluation plan to determine the extent to which the CORD model is associated with changes in behavior, body weight, BMI, quality of life, and healthcare satisfaction in children 2–12 years of age. Design/Methods: The CORD Evaluation Center (EC-CORD) will analyze the pooled data from three independent demonstration projects that each integrate public health and primary care childhood obesity interventions. An extensive set of common measures at the family, facility, and community levels were defined by consensus among the CORD projects and EC-CORD. Process evaluation will assess reach, dose delivered, and fidelity of intervention components. Impact evaluation will use a mixed linear models approach to account for heterogeneity among project-site populations and interventions. Sustainability evaluation will assess the potential for replicability, continuation of benefits beyond the funding period, institutionalization of the intervention activities, and community capacity to support ongoing program delivery. Finally, cost analyses will assess how much benefit can potentially be gained per dollar invested in programs based on the CORD model. Conclusions: The keys to combining and analyzing data across multiple projects include the CORD model framework and common measures for the behavioral and health outcomes along with important covariates at the individual, setting, and community levels. The overall objective of the comprehensive evaluation will develop evidence-based recommendations for replicating and disseminating community-wide, integrated public health and primary care programs based on the CORD model. PMID:25679060

  12. New approaches in cataloging and distributing multi-dimensional scientific data: Federal Data Repositories example

    NASA Astrophysics Data System (ADS)

    Devarakonda, R.; Thornton, M.; Wei, Y.; Krishna, B.; Frame, M. T.; Zolly, L.; Records, R.; Palanisamy, G.

    2016-12-01

    Observational data should be collected and stored logical and scalable way. Most of the time, observation data capture variables or measurements at an exact point in time and are thus not reproducible. It is therefore imperative that initial data be captured and stored correctly the first time. In this paper, we will discuss how big federal data centers and repositories such as DOE's Atmospheric Radiation Measurement (ARM), NASA's Distributed Active Archive Center (DAAC) and the USGS's Science Data Catalog (SDC) at Oak Ridge National Laboratory are preparing, storing and distributing huge multi-dimensional scientific data. We will discuss tools and services, including data formats, that are being used within the ORNL DAAC for managing huge data sets such as Daymet, which provides gridded estimates of various daily weather parameters at a 1km x 1km resolution. Recently released, the Daymet version 3[1] data set covers the period from January 1, 1980 to December 31 2015 for North America and Hawaii: including Canada, Mexico, the United States of America, Puerto Rico, and Bermuda. We will also discuss the latest tools and services within ARM and SDC that are built on popular open source software such as Apache Solr 6, Cassandra, Spark, etc. The ARM Data center (http://www.archive.arm.gov/discovery) archives and distributes various data streams, which are collected through the routine operations and scientific field experiments of the ARM Climate Research Facility. The SDC (http://data.usgs.gov/datacatalog/) provides seamless access to USGS research and monitoring data from across the nation. Every month, tens of thousands of users download portions of these datasets totaling to several TBs/month. The popularity of the data result from many characteristics, but at the forefront is the careful consideration of community needs both in terms of data content and accessibility. Fundamental to this is adherence to data archive and distribution best practices providing open

  13. Multi-dimensional forward modeling of frequency-domain helicopter-borne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Miensopust, M.; Siemon, B.; Börner, R.; Ansari, S.

    2013-12-01

    Helicopter-borne frequency-domain electromagnetic (HEM) surveys are used for fast high-resolution, three-dimensional (3-D) resistivity mapping. Nevertheless, 3-D modeling and inversion of an entire HEM data set is in many cases impractical and, therefore, interpretation is commonly based on one-dimensional (1-D) modeling and inversion tools. Such an approach is valid for environments with horizontally layered targets and for groundwater applications but there are areas of higher dimension that are not recovered correctly applying 1-D methods. The focus of this work is the multi-dimensional forward modeling. As there is no analytic solution to verify (or falsify) the obtained numerical solutions, comparison with 1-D values as well as amongst various two-dimensional (2-D) and 3-D codes is essential. At the center of a large structure (a few hundred meters edge length) and above the background structure in some distance to the anomaly 2-D and 3-D values should match the 1-D solution. Higher dimensional conditions are present at the edges of the anomaly and, therefore, only a comparison of different 2-D and 3-D codes gives an indication of the reliability of the solution. The more codes - especially if based on different methods and/or written by different programmers - agree the more reliable is the obtained synthetic data set. Very simple structures such as a conductive or resistive block embedded in a homogeneous or layered half-space without any topography and using a constant sensor height were chosen to calculate synthetic data. For the comparison one finite element 2-D code and numerous 3-D codes, which are based on finite difference, finite element and integral equation approaches, were applied. Preliminary results of the comparison will be shown and discussed. Additionally, challenges that arose from this comparative study will be addressed and further steps to approach more realistic field data settings for forward modeling will be discussed. As the driving

  14. Quantifying multi-dimensional functional trait spaces of trees: empirical versus theoretical approaches

    NASA Astrophysics Data System (ADS)

    Ogle, K.; Fell, M.; Barber, J. J.

    2016-12-01

    Empirical, field studies of plant functional traits have revealed important trade-offs among pairs or triplets of traits, such as the leaf (LES) and wood (WES) economics spectra. Trade-offs include correlations between leaf longevity (LL) vs specific leaf area (SLA), LL vs mass-specific leaf respiration rate (RmL), SLA vs RmL, and resistance to breakage vs wood density. Ordination analyses (e.g., PCA) show groupings of traits that tend to align with different life-history strategies or taxonomic groups. It is unclear, however, what underlies such trade-offs and emergent spectra. Do they arise from inherent physiological constraints on growth, or are they more reflective of environmental filtering? The relative importance of these mechanisms has implications for predicting biogeochemical cycling, which is influenced by trait distributions of the plant community. We address this question using an individual-based model of tree growth (ACGCA) to quantify the theoretical trait space of trees that emerges from physiological constraints. ACGCA's inputs include 32 physiological, anatomical, and allometric traits, many of which are related to the LES and WES. We fit ACGCA to 1.6 million USFS FIA observations of tree diameters and heights to obtain vectors of trait values that produce realistic growth, and we explored the structure of this trait space. No notable correlations emerged among the 496 trait pairs, but stepwise regressions revealed complicated multi-variate structure: e.g., relationships between pairs of traits (e.g., RmL and SLA) are governed by other traits (e.g., LL, radiation-use efficiency [RUE]). We also simulated growth under various canopy gap scenarios that impose varying degrees of environmental filtering to explore the multi-dimensional trait space (hypervolume) of trees that died vs survived. The centroid and volume of the hypervolumes differed among dead and live trees, especially under gap conditions leading to low mortality. Traits most predictive

  15. Importance of multi-dimensional morphodynamics for habitat evolution: Danube River 1715-2006

    NASA Astrophysics Data System (ADS)

    Hohensinner, Severin; Jungwirth, Mathias; Muhar, Susanne; Schmutz, Stefan

    2014-06-01

    Human-unimpaired braided and anabranched river systems are characterized by manifold multi-dimensional exchange processes. The intensity of hydrological surface/subsurface connectivity of riverine habitats depends on more than regular or episodic water level fluctuations due to the hydrological regime. Morphodynamic changes are also a basic underlying factor. In order to provide new insights into the long-term habitat configuration of large rivers prior to channelization, this study discusses the hydromorphological alterations of an alluvial section of the Austrian Danube based on historical records from 1715 to 2006. The study combines the analysis of habitat patterns and intensity of hydrological connectivity over the long term with the reconstruction of short-term morphodynamic processes between 1812 and 1821. The main research questions are (1) whether the intensive morphodynamics prior to channelization are reflected by a marked variation in habitat patterns or whether the variation remained within a small range, and (2) which fluvial processes contributed to the evolution of the habitat configuration identified. The study reveals that the mean variations in the habitat patterns and the intensity of hydrological connectivity were only between 3% and 10% before 1821, although the river landscape was subject to intensive fluvial disturbances. An exception was the expansion of aquatic habitats between low and mean flow, which deviated by 15%. Habitat evolution was affected by morphodynamic processes occurring across different temporal scales. Both gradual channel changes such as incision or migration and sudden processes such as avulsions (cut-offs) contributed to the patterns identified. Locally, sudden channel changes extensively altered the habitat conditions with regard to hydrological surface/subsurface connectivity. Such alterations foster or restrain the potential evolution and the ecological succession of the riparian vegetation at the respective sites

  16. Intermediate evaluation of USAID/Cairo energy policy planning project

    SciTech Connect

    Wilbanks, T.J.; Wright, S.B. ); Barron, W.F. ); Kamel, A.M. ); Santiago, H.T. )

    1992-01-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an intermediate evaluation'' of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  17. Intermediate evaluation of USAID/Cairo energy policy planning project

    SciTech Connect

    Wilbanks, T.J.; Wright, S.B.; Barron, W.F.; Kamel, A.M.; Santiago, H.T.

    1992-09-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an ``intermediate evaluation`` of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  18. An Economic Evaluation Framework for Assessing Renewable Energy Projects

    SciTech Connect

    Omitaomu, Olufemi A; Badiru, Adedeji B

    2012-01-01

    It is becoming increasingly imperative to integrate renewable energy, such as solar and wind, into electricity generation due to increased regulations on air and water pollution and a sociopolitical desire to develop more clean energy sources. This increased spotlight on renewable energy requires evaluating competing projects using either conventional economic analysis techniques or other economics-based models and approaches in order to select a subset of the projects to be funded. Even then, there are reasons to suspect that techniques applied to renewable energy projects may result in decisions that will reject viable projects due to the use of a limited number of quantifiable and tangible attributes about the projects. This paper presents a framework for economic evaluation of renewable energy projects. The framework is based on a systems approach in which the processes within the entire network of the system, from generation to consumption, are accounted for. Furthermore, the framework uses the concept of fuzzy system to calculate the value of information under conditions of uncertainty.

  19. Lay versus expert understandings of workplace risk in the food service industry: a multi-dimensional model with implications for participatory ergonomics.

    PubMed

    Cann, Adam P; MacEachen, Ellen; Vandervoort, Anthony A

    2008-01-01

    The recent trend towards cooperative management and prevention of workplace injuries has introduced numerous health and safety actors to the workplace with varying amounts and types of expertise. The purpose of this qualitative research project was to explore the understandings of risk as experienced by food service workers (FSW) and how these compare with an 'expert' in risk assessment. In total 13 FSW, selected based on age, work location, and gender, and one experienced Ergonomist participated in the study. In-depth semi-structured telephone interviews were conducted with each participant and transcripts of the interviews were analyzed using thematic analysis by drawing on methods closely related to grounded theory. The findings of this study indicated that the risks for occupational injury as experienced by FSW were multi-dimensional in nature representing not only the physical requirements of the individual's job, but also the social interactions of the FSW with their coworkers, management, and the organization. FSW were also found to be a rich source of knowledge and experience concerning occupational risk and may be under-utilized when designing interventions. The results of this study support a cooperative team approach to reduce the risks of injury in the workplace, with a specific emphasis on inclusion of the worker.

  20. Using fish population models in hydro project evaluation

    SciTech Connect

    Power, M.V.; McKinley, R.S.

    1997-04-01

    Technical details of the use of population-level fisheries models in evaluating the environmental impacts of hydroelectric projects are described. Population models are grouped into four types, and evaluated in terms of usefulness of results, prediction uncertainty, and data requirements. The four types of models identified are stock-recruitment, Leslie matrix, life-cycle, and individual-based. Each model is discussed in some detail, with sample results and comparisons between models.

  1. [Evaluation of 12 pilot projects to improve outpatient palliative care].

    PubMed

    Schmidt-Wolf, G; Elsner, F; Lindena, G; Hilgers, R-D; Heussen, N; Rolke, R; Ostgathe, C; Radbruch, L

    2013-12-01

    With a priority programme the German Cancer Aid supported the development of quality-assured outpatient palliative care to cover the whole country. The 12 regional pilot projects funded with the aim to improve outpatient palliative care in different models and different frameworks were concurrently monitored and evaluated. The supported projects, starting and ending individually, documented all patients who were cared for using HOPE (Hospice and palliative care evaluation) and MIDOS (Minimal documentation system for palliative patients). Total data were analyzed for 3239 patients decriptively. In addition to the quantitative data the experiences of the projects were recorded in a number of workshops (2008, 2009, 2010, and 2012). In particular, the experiences reported in the final meeting in July 2012 were considered for this article as well as the final reports for the German Cancer Aid. In the quantitative evaluation 85.6% of 3239 palliative care patients had a cancer diagnosis. In all model projects the goal of a network with close cooperation of primary providers, social support, and outpatient and inpatient specialist services has been achieved. For all projects, the initial financing of the German Cancer Aid was extremely important, because contracts with health insurance funds were negotiated slowly, and could then be built on the experiences with the projects. The participants of the project-completion meeting emphasized the need to carry out a market analysis before starting palliative care organizations considering the different regional structures and target groups of patients. Education, training and continuing education programs contribute significantly to the network. A reliably funded coordination center/case management across all institutions is extremely important. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Final Report on the Evaluation of Project Upswing's First Year.

    ERIC Educational Resources Information Center

    Plantec, P.; And Others

    This technical report describes the evaluation of the first year of Project Upswing, a 2-year experimental study to determine the potential contribution of volunteers in helping young children overcome learning difficulties. The three large groups of first grade children involved received tutoring either from specially trained volunteers,…

  3. Project GET SET, 1985-1986. OEA Evaluation Report.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn. Office of Educational Assessment.

    This report evaluates the achievement of Project GET SET, a Bronx, New York, program designed to provide supportive and peer-tutorial services to Hispanic junior high school students for the following purposes: (1) to reinforce English language skills, especially reading and writing; (2) to reinforce native language arts skills; (3) to offer…

  4. Education North Evaluation Project. The Second Annual Report.

    ERIC Educational Resources Information Center

    Ingram, E. J.; McIntosh, R. G.

    The report and evaluation of Education North (a project designed to encourage parents, community members, and teachers in small, isolated, primarily Native and Metis communities in northern Alberta to work together to meet community educational needs) is comprised of three parts. Part One presents an update of Education North activities and…

  5. Service Learning in Medical Education: Project Description and Evaluation

    ERIC Educational Resources Information Center

    Borges, Nicole J.; Hartung, Paul J.

    2007-01-01

    Although medical education has long recognized the importance of community service, most medical schools have not formally nor fully incorporated service learning into their curricula. To address this problem, we describe the initial design, development, implementation, and evaluation of a service-learning project within a first-year medical…

  6. 40 CFR 57.604 - Evaluation of projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 57.604 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PRIMARY NONFERROUS SMELTER ORDERS Research and Development Requirements § 57.604 Evaluation of projects. The research and development proposal shall include a provision for the employment of a qualified...

  7. 40 CFR 57.604 - Evaluation of projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 57.604 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PRIMARY NONFERROUS SMELTER ORDERS Research and Development Requirements § 57.604 Evaluation of projects. The research and development proposal shall include a provision for the employment of a qualified...

  8. Developing and Evaluating a Cardiovascular Risk Reduction Project.

    ERIC Educational Resources Information Center

    Brownson, Ross C.; Mayer, Jeffrey P.; Dusseault, Patricia; Dabney, Sue; Wright, Kathleen; Jackson-Thompson, Jeannette; Malone, Bernard; Goodman, Robert

    1997-01-01

    Describes the development and baseline evaluation data from the Ozark Heart Health Project, a community-based cardiovascular disease risk reduction program in rural Missouri that targeted smoking, physical inactivity, and poor diet. Several Ozark counties participated in either intervention or control groups, and researchers conducted surveillance…

  9. ESEA Title I Projects Evaluation Report 1967, Volume I.

    ERIC Educational Resources Information Center

    Pittsburgh Public Schools, PA.

    Reports of Pittsburgh's 1967 ESEA Title I projects are presented in two volumes. The 17 reports in Volume I, which adhere to the procedures established in an evaluation model, are of programs in communication skills, camping, vocational education, music, standard English, social development, revised class organization, remedial reading by means of…

  10. In-depth Evaluation of the Associated Schools Project.

    ERIC Educational Resources Information Center

    Churchill, Stacy; Omari, Issa

    1980-01-01

    Describes methods and conclusions of an in-depth evaluation of the UNESCO Associated Schools Project for International Understanding. The report includes suggestions for improving course content, teaching methods, and instructional materials. Improvements in program quality, international coordination, information dissemination, and expansion into…

  11. Resource Sharing and Public Education. Project Evaluation Report.

    ERIC Educational Resources Information Center

    Leton, Donald A.

    Two exemplary projects developed to maximize student options through the sharing of facilities, programs, and options were evaluated. The Remedial-Developmental Program developed a communications network between McKinley and Roosevelt High Schools and Kapiolani Community College to share student information and use it for individual student…

  12. Niagara Falls HEW 309 Project 1974-1975: Evaluation Report.

    ERIC Educational Resources Information Center

    Skeen, Elois M.

    The document reports an outside evaluation of a Niagara Falls Adult Basic Education Program special project entitled "Identification of Preferred Cognitive Styles and Matching Adult Reading Program Alternatives for the 0-4 Grade Levels." It was concerned with (1) research, training in cognitive style mapping, and development of a survey…

  13. Developing and Evaluating a Cardiovascular Risk Reduction Project.

    ERIC Educational Resources Information Center

    Brownson, Ross C.; Mayer, Jeffrey P.; Dusseault, Patricia; Dabney, Sue; Wright, Kathleen; Jackson-Thompson, Jeannette; Malone, Bernard; Goodman, Robert

    1997-01-01

    Describes the development and baseline evaluation data from the Ozark Heart Health Project, a community-based cardiovascular disease risk reduction program in rural Missouri that targeted smoking, physical inactivity, and poor diet. Several Ozark counties participated in either intervention or control groups, and researchers conducted surveillance…

  14. Evaluation of Project TREC: Teaching Respect for Every Culture.

    ERIC Educational Resources Information Center

    Mitchell, Stephanie

    The purpose of Teaching Respect for Every Culture (TREC) was to ensure that racial/ethnic, gender, disability, and other circumstances did not bar student access to alcohol/drug education, prevention, and intervention services. This report describes the implementation and evaluation of the TREC Project. Five objectives of TREC were to: (1)…

  15. Instruments and Scoring Guide of the Experiential Education Evaluation Project.

    ERIC Educational Resources Information Center

    Conrad, Dan; Hedin, Diane

    As a result of the Experiential Education Evaluation Project the publication identifies instruments used to measure and assess experiential learning programs. The following information is given for each instrument: rationale for its inclusion in the study; precise issues or outcomes designed to measure, validity and reliability data; and…

  16. Project "Freestyle": Ad Hoc: Fast-Turn-Around Evaluation.

    ERIC Educational Resources Information Center

    Smith, Karen

    Project "Freestyle" involved the development of prototypical television materials and a comic book intended to combat sex-role stereotyping in career-related attitudes of nine to twelve-year-old children. At various times during the early developmental stages of "Freestyle" materials, "ad hoc fast-turn-around" formative evaluations were conducted.…

  17. Evaluation of the Universal Design for Learning Projects

    ERIC Educational Resources Information Center

    Cooper-Martin, Elizabeth; Wolanin, Natalie

    2014-01-01

    The Office of Shared Accountability evaluated the "Universal Design for Learning" (UDL) projects during spring 2013. UDL is an instructional framework that seeks to give all students equal opportunities to learn, by providing multiple means of representation, of action and expression, and of engagement. To inform future implementation…

  18. Native Speaker Program: Evaluation of a Pilot Project.

    ERIC Educational Resources Information Center

    Westcott, D.B.

    1968-01-01

    With the idea of providing a valid conditioning and testing situation by which the student's self-confidence and effectiveness in communicating in a foreign language could be improved, this study evaluates a pilot project designed to identify and measure the effects of having a native speaker in the classroom for a period of time as opposed to a…

  19. Expedited Permanency Planning: Evaluation of the Kentucky Adoptions Opportunities Project.

    ERIC Educational Resources Information Center

    Martin, Mavin H.; Barbee, Anita P.; Antle, Becky F.; Sar, Bibhuti

    2002-01-01

    Presents evaluation findings of a 3-year Kentucky Adoptions Opportunities Project. Notes that a majority of children had one or both parents coping with multiple risk factors including mental illness, substance abuse, mental retardation, or family violence. Discusses major barriers to permanency, as well as policy and practice implications in the…

  20. Project Achieve Evaluation Report: Year One, 2001-2002.

    ERIC Educational Resources Information Center

    Speas, Carol

    This report is an evaluation of the pilot year of Project Achieve, a major local instructional initiative at six elementary schools and two middle schools in the Wake County Public School System (WCPSS), North Carolina, that was designed to help reach the WCPSS goal of 95% of students at or above grade level. Participating schools had a higher…

  1. Orthographic Projection. Courseware Evaluation for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Turner, Gordon; And Others

    This courseware evaluation rates the Orthographic Projection program developed by Hobar Publications. (The program--not contained in this document--uses computer graphics to present abstract visual concepts such as points, lines, and planes.) Part A describes the program in terms of subject area and hardware requirements (Apple II), indicates its…

  2. Collaborative Partnerships and School Change: Evaluating Project SOBEIT

    ERIC Educational Resources Information Center

    Lacey, Candace H.

    2006-01-01

    This presentation will report on the findings of the evaluation of Project SOBEIT a multi-school initiative focused on building partnerships between schools, law enforcement, and community mental health agencies. Guided by a process, context, outcomes, and sustainability framework and grounded in the understanding of the impact of change theory on…

  3. Expedited Permanency Planning: Evaluation of the Kentucky Adoptions Opportunities Project.

    ERIC Educational Resources Information Center

    Martin, Mavin H.; Barbee, Anita P.; Antle, Becky F.; Sar, Bibhuti

    2002-01-01

    Presents evaluation findings of a 3-year Kentucky Adoptions Opportunities Project. Notes that a majority of children had one or both parents coping with multiple risk factors including mental illness, substance abuse, mental retardation, or family violence. Discusses major barriers to permanency, as well as policy and practice implications in the…

  4. An evaluation of the STEMS tree growth projection system.

    Treesearch

    Margaret R. Holdaway; Gary J. Brand

    1983-01-01

    STEMS (Stand and Tree Evaluation and Modeling System) is a tree growth projection system. This paper (1) compares the performance of the current version of STEMS developed for the Lake States with that of the original model and (2) reports the results of an analysis of the current model over a wide range of conditions and identifies its main strengths and weaknesses...

  5. Parent Services Project Evaluation: Final Report of Findings.

    ERIC Educational Resources Information Center

    Stein, Alan R.; Haggard, Molly

    The Parent Services Project (PSP) is a family resource program which provides supportive activities for highly stressed and socially isolated parents based on the "social support as a stress-buffer" model of primary prevention. A PSP evaluation followed parents as they went through the PSP program and compared them with a matched control…

  6. Evaluation of Fatih Project in the Frame of Digital Divide

    ERIC Educational Resources Information Center

    Karabacak, Kerim

    2016-01-01

    The aim of this research realized at the general survey model is to evaluate "FATIH Project" in the frame of digital divide by determining the effects of the distributed tablets to the students being educated at K-12 schools on digital divide. Sample is taking from the 9th grade students in Sakarya city in the 2013-2014 academic session.…

  7. Novel methodology for accurate resolution of fluid signatures from multi-dimensional NMR well-logging measurements.

    PubMed

    Anand, Vivek

    2017-03-01

    A novel methodology for accurate fluid characterization from multi-dimensional nuclear magnetic resonance (NMR) well-logging measurements is introduced. This methodology overcomes a fundamental challenge of poor resolution of features in multi-dimensional NMR distributions due to low signal-to-noise ratio (SNR) of well-logging measurements. Based on an unsupervised machine-learning concept of blind source separation, the methodology resolves fluid responses from simultaneous analysis of large quantities of well-logging data. The multi-dimensional NMR distributions from a well log are arranged in a database matrix that is expressed as the product of two non-negative matrices. The first matrix contains the unique fluid signatures, and the second matrix contains the relative contributions of the signatures for each measurement sample. No a priori information or subjective assumptions about the underlying features in the data are required. Furthermore, the dimensionality of the data is reduced by several orders of magnitude, which greatly simplifies the visualization and interpretation of the fluid signatures. Compared to traditional methods of NMR fluid characterization which only use the information content of a single measurement, the new methodology uses the orders-of-magnitude higher information content of the entire well log. Simulations show that the methodology can resolve accurate fluid responses in challenging SNR conditions. The application of the methodology to well-logging data from a heavy oil reservoir shows that individual fluid signatures of heavy oil, water associated with clays and water in interstitial pores can be accurately obtained. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The multi-dimensional neighbourhood and health: a cross-sectional analysis of the Scottish Household Survey, 2001.

    PubMed

    Parkes, Alison; Kearns, Ade

    2006-03-01

    Neighbourhoods may influence the health of individual residents in different ways: via the social and physical environment, as well as through facilities and services. Not all factors may be equally important for all population subgroups. A cross-sectional analysis of the Scottish Household Survey 2001 examined a range of neighbourhood factors for links with three health outcomes and two health-related behaviours. The results support the hypothesis that the neighbourhood has a multi-dimensional impact on health. There was also some evidence that the relationship between neighbourhood factors and health varied according to the population subgroup, although not in a consistent manner.

  9. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    SciTech Connect

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  10. Differences of the Voice Parameters Between the Population of Different Hearing Tresholds: Findings by Using the Multi-Dimensional Voice Program

    PubMed Central

    Akil, Ferit; Yollu, Umur; Ozturk, Ozcan; Yener, Murat

    2017-01-01

    Objectives To compare voice parameters in subjects with different hearing level. Methods The evaluation consisted of Multi-Dimensional Voice Program (MDVP) and electroglottography. Group 1 consisted of normal hearing subjects which is bilateral average hearing better than 25 decibels (dB) whereas group 2 consisted of patients who have bilateral average hearing between the 25 and 60 dB and group 3 consisted of patients who have bilateral average hearing between the 60 and 90 dB. The evaluations were performed on males and females separately. Results In female subjects, fundamental frequency (F0), absolute jitter, %jitter and soft phonation index (SPI) were significantly different between the group 1 and group 2. Also, we detected significant difference on maximum phonation time (MPT), fundamental frequency, absolute jitter and %jitter, and variable F0 (vF0) values between group 1 and group 3. Male subjects demonstrated significant difference between the group 1 and group 2 in MPT, absolute jitter, %jitter, vF0, and SPI parameters. Between the group 3 and group 1; differences in absolute jitter, %jitter, shimmer, %shimmer, vF0, and SPI were also significant. Conclusion This study concluded that even mild to moderate hearing losses may affect voice patterns in adults and also females and males react differently to hearing loss in some parameters. PMID:27459200

  11. Self-Evaluation Manual. Wisconsin Department of Public Instruction Secondary Vocational Program Evaluation Project.

    ERIC Educational Resources Information Center

    Klitzke, Elizabeth; And Others

    The purpose of this self-evaluation manual is to provide the procedures and instrumentation through which vocational education program personnel may evaluate or re-evaluate the value and effectiveness of their program. The manual is based upon statewide goals and objectives of vocational education as determined in 1983 by the project advisory…

  12. Six microcomputer programs for population projection: an evaluation.

    PubMed

    Mcgirr, N J; Rutstein, S O

    1987-11-01

    Microcomputer-based population projection software packages were evaluated to determine if all the programs would yield similar results if tested on the same set of data. These included the PROJ5 from Microcomputer Program for Demographic Analysis, converted for microcomputers by Westinghouse; the FIVFIV/SINSIN from The Population Council; the PROJPC-II, developed by Kenneth Hill for the World Bank; and CELADE, developed by Centro Latinamericano de Demographia (CELADE), a Spanish microcomputer version of the population projection program of the United Nations. These were all modified from mainframe programs. The DEMPROJ, developed by the RAPID2 project at the The Futures Group, and ESCAP/POP, developed by the Population Division of the U.N. Economic and Social Commission for Asia and the Pacific (ESCAP) were both specifically developed for microcomputers. A standard set of criteria covering hardware and software and requirements, methodology, projection results, and summary demographic indicators in the output are used in the evaluation. Table 1 gives hardware and software requirements. All the programs can be used on IBM or compatable micros. Table 2 gives data input requirements, which vary widely. All 6 programs use a cohort-component projection, although there is a wide variety in application of methodology. Programs and data sets produced similar results, and choice of a system should based on intended use. Appendices list programs and addresses for obtaining copies as well as other kinds of software available for demogrphic analysis and their sources.

  13. Women and Politics. A Summative Evaluation. Evaluation and Project Research Report No. 8--1988-89.

    ERIC Educational Resources Information Center

    Gillis, Lynette

    This paper reports the summative evaluation of the part-time learning project "Women and Politics," based on a 2-day forum sponsored in November 1986 by the Ryerson Polytechnical Institute (Toronto, Canada) and the Committee for '94. The project consisted of a 6-part series featuring the speeches, workshops, and question periods from the…

  14. An evaluation approach for research project pilot technological applications

    NASA Astrophysics Data System (ADS)

    Marcelino-Jesus, Elsa; Sarraipa, Joao; Jardim-Goncalves, Ricardo

    2013-10-01

    In a world increasingly more competitive and in a constantly development and growth it's important that companies have economic tools, like frameworks to help them to evaluate and validate the technology development to better fits in each company particular needs. The paper presents an evaluation approach for research project pilot applications to stimulate its implementation and deployment, increasing its adequacy and acceptance to their stakeholders and consequently providing new business profit and opportunities. Authors used the DECIDE evaluation framework as a major guide to this approach, which was tested in the iSURF project to support the implementation of an interoperability service utility for collaborative supply chain planning across multiple domains supported by RFID devices.

  15. Analysis and Development of a Project Evaluation Process.

    SciTech Connect

    Coutant, Charles C.; Cada Glenn F.

    1985-01-01

    The Bonneville Power Administration has responsibility, assigned by the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (Public Law 96-501; 16 USC 839), for implementing the Columbia River Basin Fish and Wildlife Program of the Northwest Power Planning Council. One aspect of this responsibility is evaluation of project proposals and ongoing and completed projects. This report recommends formalized procedures for conducting this work in an accurate, professional, and widely respected manner. Recommendations and justifications are based largely on interviews with federal and state agencies and Indian tribes in the Northwest and nationally. Organizations were selected that have evaluation systems of their own, interact with the Fish and Wildlife Program, or have similar objectives or obligations. Perspective on aspects to be considered were obtained from the social science of evaluation planning. Examples of procedures and quantitative criteria are proposed. 1 figure, 2 tables.

  16. The PATH project in eight European countries: an evaluation.

    PubMed

    Veillard, Jeremy Henri Maurice; Schiøtz, Michaela Louise; Guisset, Ann-Lise; Brown, Adalsteinn Davidson; Klazinga, Niek S

    2013-01-01

    This paper's aim is to evaluate the perceived impact and the enabling factors and barriers experienced by hospital staff participating in an international hospital performance measurement project focused on internal quality improvement. Semi-structured interviews involving international hospital performance measurement project coordinators, including 140 hospitals from eight European countries (Belgium, Estonia, France, Germany, Hungary, Poland, Slovakia and Slovenia). Inductively analyzing the interview transcripts was carried out using the grounded theory approach. Even when public reporting is absent, the project was perceived as having stimulated performance measurement and quality improvement initiatives in participating hospitals. Attention should be paid to leadership/ownership, context, content (project intrinsic features) and processes supporting elements. Generalizing the findings is limited by the study's small sample size. Possible implications for the WHO European Regional Office and for participating hospitals would be to assess hospital preparedness to participate in the PATH project, depending on context, process and structural elements; and enhance performance and practice benchmarking through suggested approaches. This research gathered rich and unique material related to an international performance measurement project. It derived actionable findings.

  17. Project 3R. End-of-Project Evaluation Report, July 1, 1969 through June 30, 1972.

    ERIC Educational Resources Information Center

    Mathews, James B.; And Others

    Evaluated was the 3-year (1969-1972) Title III 3R (reeducation, reality, responsibility) intervention program serving over 600 emotionally disturbed elementary level students from four towns (in Connecticut) in a special unit and regular classes. A systems approach used throughout the project analyzed inputs, processes, and effectiveness of the…

  18. Area recommendation report for the crystalline repository project: An evaluation. [Crystalline Repository Project

    SciTech Connect

    Beck, J E; Lowe, H; Yurkovich, S P

    1986-03-28

    An evaluation is given of DOE's recommendation of the Elk River complex in North Carolina for siting the second repository. Twelve recommendations are made including a strong suggestion that the Cherokee Tribe appeal both through political and legal avenues for inclusion as an affected area primarily due to projected impacts upon economy and public health as a consequence of the potential for reduced tourism.

  19. Planning and Evaluating Telecommunications Demonstration Projects and Assessing the Costs of Telecommunications Demonstration Projects. Final Report #146-03.

    ERIC Educational Resources Information Center

    Clippinger, John H.; Fain, Sanford B.

    This two-report volume was prepared to describe approaches for evaluating individual Office of Telecommunications Policy (OTP) demonstration projects in the future and to aid demonstration project directors in project planning and development. The first report focuses on the role of planning and evaluation activities, stressing their importance in…

  20. Simulation of post-impact rotational changes through multi-dimensional parametrization

    NASA Astrophysics Data System (ADS)

    Gauchez, Damien; Souchay, Jean

    2006-11-01

    In this paper we propose firstly a full parametrization of an impact on a target body considered as ellipsoidal, including several geometrical parameters which are generally not included. Then we construct a more detailed and complete theoretical model of the rotational changes of the target body arising from a single impact, by taking into account the various parameters above. Secondly from these theoretical studies we carry out simulations of impacts and then we evaluate the influences of the various parameters on the rotational evolution of a specific target, in particular the angular speed of rotation and the direction of the axis of rotation. For that we consider two cases: in the first one, which we call accretion, the projectile is simply stuck to the target without a significant amount of ejected mass. In the second case, which we call craterization, the target body is eroded with formation of ejecta and a crater. The physical properties of the target are close to those of the Asteroid 21 Lutetia which Rosetta mission would fly in July 2010. We obtain quite different results according to the considered mode of impact (accretion or craterization): in the case of an impact with accretion the results are intuitively foreseeable whereas those corresponding to an impact with craterization are more difficult to interpret. Our work can be applied to obtain information on the rotational effects of an impact on a given target body with well constrained physical characteristics, in particular within the framework of the Don Quijote mission project.