Sample records for multi-dimensional sparse time

  1. Defect-Repairable Latent Feature Extraction of Driving Behavior via a Deep Sparse Autoencoder

    PubMed Central

    Taniguchi, Tadahiro; Takenaka, Kazuhito; Bando, Takashi

    2018-01-01

    Data representing driving behavior, as measured by various sensors installed in a vehicle, are collected as multi-dimensional sensor time-series data. These data often include redundant information, e.g., both the speed of wheels and the engine speed represent the velocity of the vehicle. Redundant information can be expected to complicate the data analysis, e.g., more factors need to be analyzed; even varying the levels of redundancy can influence the results of the analysis. We assume that the measured multi-dimensional sensor time-series data of driving behavior are generated from low-dimensional data shared by the many types of one-dimensional data of which multi-dimensional time-series data are composed. Meanwhile, sensor time-series data may be defective because of sensor failure. Therefore, another important function is to reduce the negative effect of defective data when extracting low-dimensional time-series data. This study proposes a defect-repairable feature extraction method based on a deep sparse autoencoder (DSAE) to extract low-dimensional time-series data. In the experiments, we show that DSAE provides high-performance latent feature extraction for driving behavior, even for defective sensor time-series data. In addition, we show that the negative effect of defects on the driving behavior segmentation task could be reduced using the latent features extracted by DSAE. PMID:29462931

  2. Semi-implicit integration factor methods on sparse grids for high-dimensional systems

    NASA Astrophysics Data System (ADS)

    Wang, Dongyong; Chen, Weitao; Nie, Qing

    2015-07-01

    Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.

  3. Accessing Multi-Dimensional Images and Data Cubes in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Tody, Douglas; Plante, R. L.; Berriman, G. B.; Cresitello-Dittmar, M.; Good, J.; Graham, M.; Greene, G.; Hanisch, R. J.; Jenness, T.; Lazio, J.; Norris, P.; Pevunova, O.; Rots, A. H.

    2014-01-01

    Telescopes across the spectrum are routinely producing multi-dimensional images and datasets, such as Doppler velocity cubes, polarization datasets, and time-resolved “movies.” Examples of current telescopes producing such multi-dimensional images include the JVLA, ALMA, and the IFU instruments on large optical and near-infrared wavelength telescopes. In the near future, both the LSST and JWST will also produce such multi-dimensional images routinely. High-energy instruments such as Chandra produce event datasets that are also a form of multi-dimensional data, in effect being a very sparse multi-dimensional image. Ensuring that the data sets produced by these telescopes can be both discovered and accessed by the community is essential and is part of the mission of the Virtual Observatory (VO). The Virtual Astronomical Observatory (VAO, http://www.usvao.org/), in conjunction with its international partners in the International Virtual Observatory Alliance (IVOA), has developed a protocol and an initial demonstration service designed for the publication, discovery, and access of arbitrarily large multi-dimensional images. The protocol describing multi-dimensional images is the Simple Image Access Protocol, version 2, which provides the minimal set of metadata required to characterize a multi-dimensional image for its discovery and access. A companion Image Data Model formally defines the semantics and structure of multi-dimensional images independently of how they are serialized, while providing capabilities such as support for sparse data that are essential to deal effectively with large cubes. A prototype data access service has been deployed and tested, using a suite of multi-dimensional images from a variety of telescopes. The prototype has demonstrated the capability to discover and remotely access multi-dimensional data via standard VO protocols. The prototype informs the specification of a protocol that will be submitted to the IVOA for approval, with an operational data cube service to be delivered in mid-2014. An associated user-installable VO data service framework will provide the capabilities required to publish VO-compatible multi-dimensional images or data cubes.

  4. Detecting Shielded Special Nuclear Materials Using Multi-Dimensional Neutron Source and Detector Geometries

    NASA Astrophysics Data System (ADS)

    Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard

    2016-10-01

    A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.

  5. Sparse representation of multi parametric DCE-MRI features using K-SVD for classifying gene expression based breast cancer recurrence risk

    NASA Astrophysics Data System (ADS)

    Mahrooghy, Majid; Ashraf, Ahmed B.; Daye, Dania; Mies, Carolyn; Rosen, Mark; Feldman, Michael; Kontos, Despina

    2014-03-01

    We evaluate the prognostic value of sparse representation-based features by applying the K-SVD algorithm on multiparametric kinetic, textural, and morphologic features in breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). K-SVD is an iterative dimensionality reduction method that optimally reduces the initial feature space by updating the dictionary columns jointly with the sparse representation coefficients. Therefore, by using K-SVD, we not only provide sparse representation of the features and condense the information in a few coefficients but also we reduce the dimensionality. The extracted K-SVD features are evaluated by a machine learning algorithm including a logistic regression classifier for the task of classifying high versus low breast cancer recurrence risk as determined by a validated gene expression assay. The features are evaluated using ROC curve analysis and leave one-out cross validation for different sparse representation and dimensionality reduction numbers. Optimal sparse representation is obtained when the number of dictionary elements is 4 (K=4) and maximum non-zero coefficients is 2 (L=2). We compare K-SVD with ANOVA based feature selection for the same prognostic features. The ROC results show that the AUC of the K-SVD based (K=4, L=2), the ANOVA based, and the original features (i.e., no dimensionality reduction) are 0.78, 0.71. and 0.68, respectively. From the results, it can be inferred that by using sparse representation of the originally extracted multi-parametric, high-dimensional data, we can condense the information on a few coefficients with the highest predictive value. In addition, the dimensionality reduction introduced by K-SVD can prevent models from over-fitting.

  6. Sparse grid techniques for particle-in-cell schemes

    NASA Astrophysics Data System (ADS)

    Ricketson, L. F.; Cerfon, A. J.

    2017-02-01

    We propose the use of sparse grids to accelerate particle-in-cell (PIC) schemes. By using the so-called ‘combination technique’ from the sparse grids literature, we are able to dramatically increase the size of the spatial cells in multi-dimensional PIC schemes while paying only a slight penalty in grid-based error. The resulting increase in cell size allows us to reduce the statistical noise in the simulation without increasing total particle number. We present initial proof-of-principle results from test cases in two and three dimensions that demonstrate the new scheme’s efficiency, both in terms of computation time and memory usage.

  7. Two-dimensional sparse wavenumber recovery for guided wavefields

    NASA Astrophysics Data System (ADS)

    Sabeti, Soroosh; Harley, Joel B.

    2018-04-01

    The multi-modal and dispersive behavior of guided waves is often characterized by their dispersion curves, which describe their frequency-wavenumber behavior. In prior work, compressive sensing based techniques, such as sparse wavenumber analysis (SWA), have been capable of recovering dispersion curves from limited data samples. A major limitation of SWA, however, is the assumption that the structure is isotropic. As a result, SWA fails when applied to composites and other anisotropic structures. There have been efforts to address this issue in the literature, but they either are not easily generalizable or do not sufficiently express the data. In this paper, we enhance the existing approaches by employing a two-dimensional wavenumber model to account for direction-dependent velocities in anisotropic media. We integrate this model with tools from compressive sensing to reconstruct a wavefield from incomplete data. Specifically, we create a modified two-dimensional orthogonal matching pursuit algorithm that takes an undersampled wavefield image, with specified unknown elements, and determines its sparse wavenumber characteristics. We then recover the entire wavefield from the sparse representations obtained with our small number of data samples.

  8. A Performance Comparison of the Parallel Preconditioners for Iterative Methods for Large Sparse Linear Systems Arising from Partial Differential Equations on Structured Grids

    NASA Astrophysics Data System (ADS)

    Ma, Sangback

    In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wave-fronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i. e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The results show that in general ILU(0) in the Multi-Color ordering ahd ILU(0) in the Wavefront ordering outperform the other methods but for symmetric and nearly symmetric 5-point matrices Multi-Color Block SOR gives the best performance, except for a few cases with a small number of processors.

  9. Compressive sensing for sparse time-frequency representation of nonstationary signals in the presence of impulsive noise

    NASA Astrophysics Data System (ADS)

    Orović, Irena; Stanković, Srdjan; Amin, Moeness

    2013-05-01

    A modified robust two-dimensional compressive sensing algorithm for reconstruction of sparse time-frequency representation (TFR) is proposed. The ambiguity function domain is assumed to be the domain of observations. The two-dimensional Fourier bases are used to linearly relate the observations to the sparse TFR, in lieu of the Wigner distribution. We assume that a set of available samples in the ambiguity domain is heavily corrupted by an impulsive type of noise. Consequently, the problem of sparse TFR reconstruction cannot be tackled using standard compressive sensing optimization algorithms. We introduce a two-dimensional L-statistics based modification into the transform domain representation. It provides suitable initial conditions that will produce efficient convergence of the reconstruction algorithm. This approach applies sorting and weighting operations to discard an expected amount of samples corrupted by noise. The remaining samples serve as observations used in sparse reconstruction of the time-frequency signal representation. The efficiency of the proposed approach is demonstrated on numerical examples that comprise both cases of monocomponent and multicomponent signals.

  10. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.

    PubMed

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2014-12-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  11. Multi-dimensional Fokker-Planck equation analysis using the modified finite element method

    NASA Astrophysics Data System (ADS)

    Náprstek, J.; Král, R.

    2016-09-01

    The Fokker-Planck equation (FPE) is a frequently used tool for the solution of cross probability density function (PDF) of a dynamic system response excited by a vector of random processes. FEM represents a very effective solution possibility, particularly when transition processes are investigated or a more detailed solution is needed. Actual papers deal with single degree of freedom (SDOF) systems only. So the respective FPE includes two independent space variables only. Stepping over this limit into MDOF systems a number of specific problems related to a true multi-dimensionality must be overcome. Unlike earlier studies, multi-dimensional simplex elements in any arbitrary dimension should be deployed and rectangular (multi-brick) elements abandoned. Simple closed formulae of integration in multi-dimension domain have been derived. Another specific problem represents the generation of multi-dimensional finite element mesh. Assembling of system global matrices should be subjected to newly composed algorithms due to multi-dimensionality. The system matrices are quite full and no advantages following from their sparse character can be profited from, as is commonly used in conventional FEM applications in 2D/3D problems. After verification of partial algorithms, an illustrative example dealing with a 2DOF non-linear aeroelastic system in combination with random and deterministic excitations is discussed.

  12. SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression *

    PubMed Central

    Sun, Qiang; Zhu, Hongtu; Liu, Yufeng; Ibrahim, Joseph G.

    2014-01-01

    The aim of this paper is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling’s T2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPREM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multi-rank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM out-performs other state-of-the-art methods. PMID:26527844

  13. Duke Workshop on High-Dimensional Data Sensing and Analysis

    DTIC Science & Technology

    2015-05-06

    Bayesian sparse factor analysis formulation of Chen et al . ( 2011 ) this work develops multi-label PCA (MLPCA), a generative dimension reduction...version of this problem was recently treated by Banerjee et al . [1], Ravikumar et al . [2], Kolar and Xing [3], and Ho ̈fling and Tibshirani [4]. As...Not applicable. Final Report Duke Workshop on High-Dimensional Data Sensing and Analysis Workshop Dates: July 26-28, 2011

  14. Feature extraction based on extended multi-attribute profiles and sparse autoencoder for remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman

    2018-02-01

    The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.

  15. Parsimony and goodness-of-fit in multi-dimensional NMR inversion

    NASA Astrophysics Data System (ADS)

    Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos

    2017-01-01

    Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.

  16. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    PubMed Central

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2015-01-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs. PMID:26146475

  17. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis.

    PubMed

    Kim, Hyunsoo; Park, Haesun

    2007-06-15

    Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Sparse non-negative matrix factorizations (NMFs) are useful when the degree of sparseness in the non-negative basis matrix or the non-negative coefficient matrix in an NMF needs to be controlled in approximating high-dimensional data in a lower dimensional space. In this article, we introduce a novel formulation of sparse NMF and show how the new formulation leads to a convergent sparse NMF algorithm via alternating non-negativity-constrained least squares. We apply our sparse NMF algorithm to cancer-class discovery and gene expression data analysis and offer biological analysis of the results obtained. Our experimental results illustrate that the proposed sparse NMF algorithm often achieves better clustering performance with shorter computing time compared to other existing NMF algorithms. The software is available as supplementary material.

  18. A General Sparse Tensor Framework for Electronic Structure Theory

    DOE PAGES

    Manzer, Samuel; Epifanovsky, Evgeny; Krylov, Anna I.; ...

    2017-01-24

    Linear-scaling algorithms must be developed in order to extend the domain of applicability of electronic structure theory to molecules of any desired size. But, the increasing complexity of modern linear-scaling methods makes code development and maintenance a significant challenge. A major contributor to this difficulty is the lack of robust software abstractions for handling block-sparse tensor operations. We therefore report the development of a highly efficient symbolic block-sparse tensor library in order to provide access to high-level software constructs to treat such problems. Our implementation supports arbitrary multi-dimensional sparsity in all input and output tensors. We then avoid cumbersome machine-generatedmore » code by implementing all functionality as a high-level symbolic C++ language library and demonstrate that our implementation attains very high performance for linear-scaling sparse tensor contractions.« less

  19. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  20. Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification

    NASA Astrophysics Data System (ADS)

    Cao, Faxian; Yang, Zhijing; Ren, Jinchang; Ling, Wing-Kuen; Zhao, Huimin; Marshall, Stephen

    2017-12-01

    Although the sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework.

  1. Iteration and superposition encryption scheme for image sequences based on multi-dimensional keys

    NASA Astrophysics Data System (ADS)

    Han, Chao; Shen, Yuzhen; Ma, Wenlin

    2017-12-01

    An iteration and superposition encryption scheme for image sequences based on multi-dimensional keys is proposed for high security, big capacity and low noise information transmission. Multiple images to be encrypted are transformed into phase-only images with the iterative algorithm and then are encrypted by different random phase, respectively. The encrypted phase-only images are performed by inverse Fourier transform, respectively, thus new object functions are generated. The new functions are located in different blocks and padded zero for a sparse distribution, then they propagate to a specific region at different distances by angular spectrum diffraction, respectively and are superposed in order to form a single image. The single image is multiplied with a random phase in the frequency domain and then the phase part of the frequency spectrums is truncated and the amplitude information is reserved. The random phase, propagation distances, truncated phase information in frequency domain are employed as multiple dimensional keys. The iteration processing and sparse distribution greatly reduce the crosstalk among the multiple encryption images. The superposition of image sequences greatly improves the capacity of encrypted information. Several numerical experiments based on a designed optical system demonstrate that the proposed scheme can enhance encrypted information capacity and make image transmission at a highly desired security level.

  2. Accelerated High-Dimensional MR Imaging with Sparse Sampling Using Low-Rank Tensors

    PubMed Central

    He, Jingfei; Liu, Qiegen; Christodoulou, Anthony G.; Ma, Chao; Lam, Fan

    2017-01-01

    High-dimensional MR imaging often requires long data acquisition time, thereby limiting its practical applications. This paper presents a low-rank tensor based method for accelerated high-dimensional MR imaging using sparse sampling. This method represents high-dimensional images as low-rank tensors (or partially separable functions) and uses this mathematical structure for sparse sampling of the data space and for image reconstruction from highly undersampled data. More specifically, the proposed method acquires two datasets with complementary sampling patterns, one for subspace estimation and the other for image reconstruction; image reconstruction from highly undersampled data is accomplished by fitting the measured data with a sparsity constraint on the core tensor and a group sparsity constraint on the spatial coefficients jointly using the alternating direction method of multipliers. The usefulness of the proposed method is demonstrated in MRI applications; it may also have applications beyond MRI. PMID:27093543

  3. Sparse High Dimensional Models in Economics

    PubMed Central

    Fan, Jianqing; Lv, Jinchi; Qi, Lei

    2010-01-01

    This paper reviews the literature on sparse high dimensional models and discusses some applications in economics and finance. Recent developments of theory, methods, and implementations in penalized least squares and penalized likelihood methods are highlighted. These variable selection methods are proved to be effective in high dimensional sparse modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse modeling are also briefly discussed. PMID:22022635

  4. Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation

    PubMed Central

    Li, Shutao; McNabb, Ryan P.; Nie, Qing; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.; Farsiu, Sina

    2014-01-01

    In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our method is a major improvement and generalization of the multi-scale sparsity based tomographic denoising (MSBTD) algorithm we recently introduced for reducing speckle noise. Our new technique exhibits several advantages over MSBTD, including its capability to simultaneously reduce noise and interpolate missing data. Unlike MSBTD, our new method does not require an a priori high-quality image from the target imaging subject and thus offers the potential to shorten clinical imaging sessions. This novel image restoration method, which we termed sparsity based simultaneous denoising and interpolation (SBSDI), utilizes sparse representation dictionaries constructed from previously collected datasets. We tested the SBSDI algorithm on retinal spectral domain optical coherence tomography images captured in the clinic. Experiments showed that the SBSDI algorithm qualitatively and quantitatively outperforms other state-of-the-art methods. PMID:23846467

  5. Joint analysis of multiple high-dimensional data types using sparse matrix approximations of rank-1 with applications to ovarian and liver cancer.

    PubMed

    Okimoto, Gordon; Zeinalzadeh, Ashkan; Wenska, Tom; Loomis, Michael; Nation, James B; Fabre, Tiphaine; Tiirikainen, Maarit; Hernandez, Brenda; Chan, Owen; Wong, Linda; Kwee, Sandi

    2016-01-01

    Technological advances enable the cost-effective acquisition of Multi-Modal Data Sets (MMDS) composed of measurements for multiple, high-dimensional data types obtained from a common set of bio-samples. The joint analysis of the data matrices associated with the different data types of a MMDS should provide a more focused view of the biology underlying complex diseases such as cancer that would not be apparent from the analysis of a single data type alone. As multi-modal data rapidly accumulate in research laboratories and public databases such as The Cancer Genome Atlas (TCGA), the translation of such data into clinically actionable knowledge has been slowed by the lack of computational tools capable of analyzing MMDSs. Here, we describe the Joint Analysis of Many Matrices by ITeration (JAMMIT) algorithm that jointly analyzes the data matrices of a MMDS using sparse matrix approximations of rank-1. The JAMMIT algorithm jointly approximates an arbitrary number of data matrices by rank-1 outer-products composed of "sparse" left-singular vectors (eigen-arrays) that are unique to each matrix and a right-singular vector (eigen-signal) that is common to all the matrices. The non-zero coefficients of the eigen-arrays identify small subsets of variables for each data type (i.e., signatures) that in aggregate, or individually, best explain a dominant eigen-signal defined on the columns of the data matrices. The approximation is specified by a single "sparsity" parameter that is selected based on false discovery rate estimated by permutation testing. Multiple signals of interest in a given MDDS are sequentially detected and modeled by iterating JAMMIT on "residual" data matrices that result from a given sparse approximation. We show that JAMMIT outperforms other joint analysis algorithms in the detection of multiple signatures embedded in simulated MDDS. On real multimodal data for ovarian and liver cancer we show that JAMMIT identified multi-modal signatures that were clinically informative and enriched for cancer-related biology. Sparse matrix approximations of rank-1 provide a simple yet effective means of jointly reducing multiple, big data types to a small subset of variables that characterize important clinical and/or biological attributes of the bio-samples from which the data were acquired.

  6. Study on Data Clustering and Intelligent Decision Algorithm of Indoor Localization

    NASA Astrophysics Data System (ADS)

    Liu, Zexi

    2018-01-01

    Indoor positioning technology enables the human beings to have the ability of positional perception in architectural space, and there is a shortage of single network coverage and the problem of location data redundancy. So this article puts forward the indoor positioning data clustering algorithm and intelligent decision-making research, design the basic ideas of multi-source indoor positioning technology, analyzes the fingerprint localization algorithm based on distance measurement, position and orientation of inertial device integration. By optimizing the clustering processing of massive indoor location data, the data normalization pretreatment, multi-dimensional controllable clustering center and multi-factor clustering are realized, and the redundancy of locating data is reduced. In addition, the path is proposed based on neural network inference and decision, design the sparse data input layer, the dynamic feedback hidden layer and output layer, low dimensional results improve the intelligent navigation path planning.

  7. Civil Engineering Applications of Ground Penetrating Radar Recent Advances @ the ELEDIA Research Center

    NASA Astrophysics Data System (ADS)

    Salucci, Marco; Tenuti, Lorenza; Nardin, Cristina; Oliveri, Giacomo; Viani, Federico; Rocca, Paolo; Massa, Andrea

    2014-05-01

    The application of non-destructive testing and evaluation (NDT/NDE) methodologies in civil engineering has raised a growing interest during the last years because of its potential impact in several different scenarios. As a consequence, Ground Penetrating Radar (GPR) technologies have been widely adopted as an instrument for the inspection of the structural stability of buildings and for the detection of cracks and voids. In this framework, the development and validation of GPR algorithms and methodologies represents one of the most active research areas within the ELEDIA Research Center of the University of Trento. More in detail, great efforts have been devoted towards the development of inversion techniques based on the integration of deterministic and stochastic search algorithms with multi-focusing strategies. These approaches proved to be effective in mitigating the effects of both nonlinearity and ill-posedness of microwave imaging problems, which represent the well-known issues arising in GPR inverse scattering formulations. More in detail, a regularized multi-resolution approach based on the Inexact Newton Method (INM) has been recently applied to subsurface prospecting, showing a remarkable advantage over a single-resolution implementation [1]. Moreover, the use of multi-frequency or frequency-hopping strategies to exploit the information coming from GPR data collected in time domain and transformed into its frequency components has been proposed as well. In this framework, the effectiveness of the multi-resolution multi-frequency techniques has been proven on synthetic data generated with numerical models such as GprMax [2]. The application of inversion algorithms based on Bayesian Compressive Sampling (BCS) [3][4] to GPR is currently under investigation, as well, in order to exploit their capability to provide satisfactory reconstructions in presence of single and multiple sparse scatterers [3][4]. Furthermore, multi-scaling approaches exploiting level-set-based optimization have been developed for the qualitative reconstruction of multiple and disconnected homogeneous scatterers [5]. Finally, the real-time detection and classification of subsurface scatterers has been investigated by means of learning-by-examples (LBE) techniques, such as Support Vector Machines (SVM) [6]. Acknowledgment - This work was partially supported by COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' References [1] M. Salucci, D. Sartori, N. Anselmi, A. Randazzo, G. Oliveri, and A. Massa, 'Imaging Buried Objects within the Second-Order Born Approximation through a Multiresolution Regularized Inexact-Newton Method', 2013 International Symposium on Electromagnetic Theory (EMTS), (Hiroshima, Japan), May 20-24 2013 (invited). [2] A. Giannopoulos, 'Modelling ground penetrating radar by GprMax', Construct. Build. Mater., vol. 19, no. 10, pp.755 -762 2005 [3] L. Poli, G. Oliveri, P. Rocca, and A. Massa, "Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illumination," IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 5, pp. 2920-2936, May. 2013. [4] L. Poli, G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a Local Shape Function Bayesian Compressive Sensing approach," Journal of Optical Society of America A, vol. 30, no. 6, pp. 1261-1272, 2013. [5] M. Benedetti, D. Lesselier, M. Lambert, and A. Massa, "Multiple shapes reconstruction by means of multi-region level sets," IEEE Trans. Geosci. Remote Sensing, vol. 48, no. 5, pp. 2330-2342, May 2010. [6] L. Lizzi, F. Viani, P. Rocca, G. Oliveri, M. Benedetti and A. Massa, "Three-dimensional real-time localization of subsurface objects - From theory to experimental validation," 2009 IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. II-121-II-124, 12-17 July 2009.

  8. Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.

    PubMed

    Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen

    2015-04-01

    In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.

  9. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline.

    PubMed

    Zhang, Jie; Li, Qingyang; Caselli, Richard J; Thompson, Paul M; Ye, Jieping; Wang, Yalin

    2017-06-01

    Alzheimer's Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms.

  10. Combining DCQGMP-Based Sparse Decomposition and MPDR Beamformer for Multi-Type Interferences Mitigation for GNSS Receivers.

    PubMed

    Guo, Qiang; Qi, Liangang

    2017-04-10

    In the coexistence of multiple types of interfering signals, the performance of interference suppression methods based on time and frequency domains is degraded seriously, and the technique using an antenna array requires a large enough size and huge hardware costs. To combat multi-type interferences better for GNSS receivers, this paper proposes a cascaded multi-type interferences mitigation method combining improved double chain quantum genetic matching pursuit (DCQGMP)-based sparse decomposition and an MPDR beamformer. The key idea behind the proposed method is that the multiple types of interfering signals can be excised by taking advantage of their sparse features in different domains. In the first stage, the single-tone (multi-tone) and linear chirp interfering signals are canceled by sparse decomposition according to their sparsity in the over-complete dictionary. In order to improve the timeliness of matching pursuit (MP)-based sparse decomposition, a DCQGMP is introduced by combining an improved double chain quantum genetic algorithm (DCQGA) and the MP algorithm, and the DCQGMP algorithm is extended to handle the multi-channel signals according to the correlation among the signals in different channels. In the second stage, the minimum power distortionless response (MPDR) beamformer is utilized to nullify the residuary interferences (e.g., wideband Gaussian noise interferences). Several simulation results show that the proposed method can not only improve the interference mitigation degree of freedom (DoF) of the array antenna, but also effectively deal with the interference arriving from the same direction with the GNSS signal, which can be sparse represented in the over-complete dictionary. Moreover, it does not bring serious distortions into the navigation signal.

  11. Combining DCQGMP-Based Sparse Decomposition and MPDR Beamformer for Multi-Type Interferences Mitigation for GNSS Receivers

    PubMed Central

    Guo, Qiang; Qi, Liangang

    2017-01-01

    In the coexistence of multiple types of interfering signals, the performance of interference suppression methods based on time and frequency domains is degraded seriously, and the technique using an antenna array requires a large enough size and huge hardware costs. To combat multi-type interferences better for GNSS receivers, this paper proposes a cascaded multi-type interferences mitigation method combining improved double chain quantum genetic matching pursuit (DCQGMP)-based sparse decomposition and an MPDR beamformer. The key idea behind the proposed method is that the multiple types of interfering signals can be excised by taking advantage of their sparse features in different domains. In the first stage, the single-tone (multi-tone) and linear chirp interfering signals are canceled by sparse decomposition according to their sparsity in the over-complete dictionary. In order to improve the timeliness of matching pursuit (MP)-based sparse decomposition, a DCQGMP is introduced by combining an improved double chain quantum genetic algorithm (DCQGA) and the MP algorithm, and the DCQGMP algorithm is extended to handle the multi-channel signals according to the correlation among the signals in different channels. In the second stage, the minimum power distortionless response (MPDR) beamformer is utilized to nullify the residuary interferences (e.g., wideband Gaussian noise interferences). Several simulation results show that the proposed method can not only improve the interference mitigation degree of freedom (DoF) of the array antenna, but also effectively deal with the interference arriving from the same direction with the GNSS signal, which can be sparse represented in the over-complete dictionary. Moreover, it does not bring serious distortions into the navigation signal. PMID:28394290

  12. The Use of Sparse Direct Solver in Vector Finite Element Modeling for Calculating Two Dimensional (2-D) Magnetotelluric Responses in Transverse Electric (TE) Mode

    NASA Astrophysics Data System (ADS)

    Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.

    2018-04-01

    The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.

  13. Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction

    NASA Technical Reports Server (NTRS)

    Li, Zhijin; Chao, Yi; Li, P. Peggy

    2012-01-01

    A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.

  14. Sparse Representation Based Frequency Detection and Uncertainty Reduction in Blade Tip Timing Measurement for Multi-Mode Blade Vibration Monitoring

    PubMed Central

    Pan, Minghao; Yang, Yongmin; Guan, Fengjiao; Hu, Haifeng; Xu, Hailong

    2017-01-01

    The accurate monitoring of blade vibration under operating conditions is essential in turbo-machinery testing. Blade tip timing (BTT) is a promising non-contact technique for the measurement of blade vibrations. However, the BTT sampling data are inherently under-sampled and contaminated with several measurement uncertainties. How to recover frequency spectra of blade vibrations though processing these under-sampled biased signals is a bottleneck problem. A novel method of BTT signal processing for alleviating measurement uncertainties in recovery of multi-mode blade vibration frequency spectrum is proposed in this paper. The method can be divided into four phases. First, a single measurement vector model is built by exploiting that the blade vibration signals are sparse in frequency spectra. Secondly, the uniqueness of the nonnegative sparse solution is studied to achieve the vibration frequency spectrum. Thirdly, typical sources of BTT measurement uncertainties are quantitatively analyzed. Finally, an improved vibration frequency spectra recovery method is proposed to get a guaranteed level of sparse solution when measurement results are biased. Simulations and experiments are performed to prove the feasibility of the proposed method. The most outstanding advantage is that this method can prevent the recovered multi-mode vibration spectra from being affected by BTT measurement uncertainties without increasing the probe number. PMID:28758952

  15. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2015-04-29

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  16. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, J.; Lee, J.; Yadav, V.

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  17. Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method

    NASA Technical Reports Server (NTRS)

    Whitaker, David L.

    1993-01-01

    A method has been developed to solve the Euler equations on a three-dimensional unstructured grid composed of tetrahedra. The method uses an upwind flow solver with a linearized, backward-Euler time integration scheme. Each time step results in a sparse linear system of equations which is solved by an iterative, sparse matrix solver. Local-time stepping, switched evolution relaxation (SER), preconditioning and reuse of the Jacobian are employed to accelerate the convergence rate. Implicit boundary conditions were found to be extremely important for fast convergence. Numerical experiments have shown that convergence rates comparable to that of a multigrid, central-difference scheme are achievable on the same mesh. Results are presented for several grids about an ONERA M6 wing.

  18. Multi-Source Multi-Target Dictionary Learning for Prediction of Cognitive Decline

    PubMed Central

    Zhang, Jie; Li, Qingyang; Caselli, Richard J.; Thompson, Paul M.; Ye, Jieping; Wang, Yalin

    2017-01-01

    Alzheimer’s Disease (AD) is the most common type of dementia. Identifying correct biomarkers may determine pre-symptomatic AD subjects and enable early intervention. Recently, Multi-task sparse feature learning has been successfully applied to many computer vision and biomedical informatics researches. It aims to improve the generalization performance by exploiting the shared features among different tasks. However, most of the existing algorithms are formulated as a supervised learning scheme. Its drawback is with either insufficient feature numbers or missing label information. To address these challenges, we formulate an unsupervised framework for multi-task sparse feature learning based on a novel dictionary learning algorithm. To solve the unsupervised learning problem, we propose a two-stage Multi-Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, we propose a multi-source dictionary learning method to utilize the common and individual sparse features in different time slots. In stage 2, supported by a rigorous theoretical analysis, we develop a multi-task learning method to solve the missing label problem. Empirical studies on an N = 3970 longitudinal brain image data set, which involves 2 sources and 5 targets, demonstrate the improved prediction accuracy and speed efficiency of MMDL in comparison with other state-of-the-art algorithms. PMID:28943731

  19. Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data

    PubMed Central

    Ran, Bin; Song, Li; Cheng, Yang; Tan, Huachun

    2016-01-01

    Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%. PMID:27448326

  20. Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data.

    PubMed

    Ran, Bin; Song, Li; Zhang, Jian; Cheng, Yang; Tan, Huachun

    2016-01-01

    Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%.

  1. Multiphysics Simulations of Hot-Spot Initiation in Shocked Insensitive High-Explosive

    NASA Astrophysics Data System (ADS)

    Najjar, Fady; Howard, W. M.; Fried, L. E.

    2010-11-01

    Solid plastic-bonded high-explosive materials consist of crystals with micron-sized pores embedded. Under mechanical or thermal insults, these voids increase the ease of shock initiation by generating high-temperature regions during their collapse that might lead to ignition. Understanding the mechanisms of hot-spot initiation has significant research interest due to safety, reliability and development of new insensitive munitions. Multi-dimensional high-resolution meso-scale simulations are performed using the multiphysics software, ALE3D, to understand the hot-spot initiation. The Cheetah code is coupled to ALE3D, creating multi-dimensional sparse tables for the HE properties. The reaction rates were obtained from MD Quantum computations. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a "secondary" jet. We will discuss the results obtained with hydro-thermo-chemical processes leading to ignition growth for various pore sizes and different shock pressures.

  2. Facilitating Learning in SPI through Co-design

    NASA Astrophysics Data System (ADS)

    Seigerroth, Ulf; Lind, Mikael

    Information system development (ISD) is not a stable discipline. On the contrary, ISD must constantly cope with rapidly changing and diversifying technologies, application domains, and organizational contexts [14]. ISD is a complex and a multi dimensional phenomenon [5, 15]. As a consequence of this. Software Process Improvement (SPI) can also be regarded as a complex and multi dimensional phenomenon [16]. Problems that are accentuated in relation to SPI are: SPI is in its current shape a quite young discipline [15], there is a sparse amount of SPI-theories that can guide SPI initiatives [19], SPI-initiatives often focus on the system development (SD)-process, methods and tools which is a narrow focus that leave out important aspects such as business orientation [6], organization and social factors [4, 5] and the learning process [19]. Arguments have therefore been raised that there is a need for both researchers and practitioners to better understand SD-organisations and their practice [5].

  3. A New Time-varying Concept of Risk in a Changing Climate.

    PubMed

    Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P

    2016-10-20

    In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.

  4. Algorithms and Application of Sparse Matrix Assembly and Equation Solvers for Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Nguyen, D. T.; Reddy, C. J.; Vatsa, V. N.; Tang, W. H.

    2001-01-01

    An algorithm for symmetric sparse equation solutions on an unstructured grid is described. Efficient, sequential sparse algorithms for degree-of-freedom reordering, supernodes, symbolic/numerical factorization, and forward backward solution phases are reviewed. Three sparse algorithms for the generation and assembly of symmetric systems of matrix equations are presented. The accuracy and numerical performance of the sequential version of the sparse algorithms are evaluated over the frequency range of interest in a three-dimensional aeroacoustics application. Results show that the solver solutions are accurate using a discretization of 12 points per wavelength. Results also show that the first assembly algorithm is impractical for high-frequency noise calculations. The second and third assembly algorithms have nearly equal performance at low values of source frequencies, but at higher values of source frequencies the third algorithm saves CPU time and RAM. The CPU time and the RAM required by the second and third assembly algorithms are two orders of magnitude smaller than that required by the sparse equation solver. A sequential version of these sparse algorithms can, therefore, be conveniently incorporated into a substructuring for domain decomposition formulation to achieve parallel computation, where different substructures are handles by different parallel processors.

  5. Spatio-temporal Event Classification using Time-series Kernel based Structured Sparsity

    PubMed Central

    Jeni, László A.; Lőrincz, András; Szabó, Zoltán; Cohn, Jeffrey F.; Kanade, Takeo

    2016-01-01

    In many behavioral domains, such as facial expression and gesture, sparse structure is prevalent. This sparsity would be well suited for event detection but for one problem. Features typically are confounded by alignment error in space and time. As a consequence, high-dimensional representations such as SIFT and Gabor features have been favored despite their much greater computational cost and potential loss of information. We propose a Kernel Structured Sparsity (KSS) method that can handle both the temporal alignment problem and the structured sparse reconstruction within a common framework, and it can rely on simple features. We characterize spatio-temporal events as time-series of motion patterns and by utilizing time-series kernels we apply standard structured-sparse coding techniques to tackle this important problem. We evaluated the KSS method using both gesture and facial expression datasets that include spontaneous behavior and differ in degree of difficulty and type of ground truth coding. KSS outperformed both sparse and non-sparse methods that utilize complex image features and their temporal extensions. In the case of early facial event classification KSS had 10% higher accuracy as measured by F1 score over kernel SVM methods1. PMID:27830214

  6. A novel framework to alleviate the sparsity problem in context-aware recommender systems

    NASA Astrophysics Data System (ADS)

    Yu, Penghua; Lin, Lanfen; Wang, Jing

    2017-04-01

    Recommender systems have become indispensable for services in the era of big data. To improve accuracy and satisfaction, context-aware recommender systems (CARSs) attempt to incorporate contextual information into recommendations. Typically, valid and influential contexts are determined in advance by domain experts or feature selection approaches. Most studies have focused on utilizing the unitary context due to the differences between various contexts. Meanwhile, multi-dimensional contexts will aggravate the sparsity problem, which means that the user preference matrix would become extremely sparse. Consequently, there are not enough or even no preferences in most multi-dimensional conditions. In this paper, we propose a novel framework to alleviate the sparsity issue for CARSs, especially when multi-dimensional contextual variables are adopted. Motivated by the intuition that the overall preferences tend to show similarities among specific groups of users and conditions, we first explore to construct one contextual profile for each contextual condition. In order to further identify those user and context subgroups automatically and simultaneously, we apply a co-clustering algorithm. Furthermore, we expand user preferences in a given contextual condition with the identified user and context clusters. Finally, we perform recommendations based on expanded preferences. Extensive experiments demonstrate the effectiveness of the proposed framework.

  7. Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform.

    PubMed

    Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo

    2018-05-03

    Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.

  8. Braid Entropy of Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-12-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data.

  9. Braid Entropy of Two-Dimensional Turbulence

    PubMed Central

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-01-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data. PMID:26689261

  10. Research on segmentation based on multi-atlas in brain MR image

    NASA Astrophysics Data System (ADS)

    Qian, Yuejing

    2018-03-01

    Accurate segmentation of specific tissues in brain MR image can be effectively achieved with the multi-atlas-based segmentation method, and the accuracy mainly depends on the image registration accuracy and fusion scheme. This paper proposes an automatic segmentation method based on the multi-atlas for brain MR image. Firstly, to improve the registration accuracy in the area to be segmented, we employ a target-oriented image registration method for the refinement. Then In the label fusion, we proposed a new algorithm to detect the abnormal sparse patch and simultaneously abandon the corresponding abnormal sparse coefficients, this method is made based on the remaining sparse coefficients combined with the multipoint label estimator strategy. The performance of the proposed method was compared with those of the nonlocal patch-based label fusion method (Nonlocal-PBM), the sparse patch-based label fusion method (Sparse-PBM) and majority voting method (MV). Based on our experimental results, the proposed method is efficient in the brain MR images segmentation compared with MV, Nonlocal-PBM, and Sparse-PBM methods.

  11. Medical image classification based on multi-scale non-negative sparse coding.

    PubMed

    Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar

    2017-11-01

    With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High-frame-rate full-vocal-tract 3D dynamic speech imaging.

    PubMed

    Fu, Maojing; Barlaz, Marissa S; Holtrop, Joseph L; Perry, Jamie L; Kuehn, David P; Shosted, Ryan K; Liang, Zhi-Pei; Sutton, Bradley P

    2017-04-01

    To achieve high temporal frame rate, high spatial resolution and full-vocal-tract coverage for three-dimensional dynamic speech MRI by using low-rank modeling and sparse sampling. Three-dimensional dynamic speech MRI is enabled by integrating a novel data acquisition strategy and an image reconstruction method with the partial separability model: (a) a self-navigated sparse sampling strategy that accelerates data acquisition by collecting high-nominal-frame-rate cone navigator sand imaging data within a single repetition time, and (b) are construction method that recovers high-quality speech dynamics from sparse (k,t)-space data by enforcing joint low-rank and spatiotemporal total variation constraints. The proposed method has been evaluated through in vivo experiments. A nominal temporal frame rate of 166 frames per second (defined based on a repetition time of 5.99 ms) was achieved for an imaging volume covering the entire vocal tract with a spatial resolution of 2.2 × 2.2 × 5.0 mm 3 . Practical utility of the proposed method was demonstrated via both validation experiments and a phonetics investigation. Three-dimensional dynamic speech imaging is possible with full-vocal-tract coverage, high spatial resolution and high nominal frame rate to provide dynamic speech data useful for phonetic studies. Magn Reson Med 77:1619-1629, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Multi-layer sparse representation for weighted LBP-patches based facial expression recognition.

    PubMed

    Jia, Qi; Gao, Xinkai; Guo, He; Luo, Zhongxuan; Wang, Yi

    2015-03-19

    In this paper, a novel facial expression recognition method based on sparse representation is proposed. Most contemporary facial expression recognition systems suffer from limited ability to handle image nuisances such as low resolution and noise. Especially for low intensity expression, most of the existing training methods have quite low recognition rates. Motivated by sparse representation, the problem can be solved by finding sparse coefficients of the test image by the whole training set. Deriving an effective facial representation from original face images is a vital step for successful facial expression recognition. We evaluate facial representation based on weighted local binary patterns, and Fisher separation criterion is used to calculate the weighs of patches. A multi-layer sparse representation framework is proposed for multi-intensity facial expression recognition, especially for low-intensity expressions and noisy expressions in reality, which is a critical problem but seldom addressed in the existing works. To this end, several experiments based on low-resolution and multi-intensity expressions are carried out. Promising results on publicly available databases demonstrate the potential of the proposed approach.

  14. Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning.

    PubMed

    Li, Bing; Yuan, Chunfeng; Xiong, Weihua; Hu, Weiming; Peng, Houwen; Ding, Xinmiao; Maybank, Steve

    2017-12-01

    In multi-instance learning (MIL), the relations among instances in a bag convey important contextual information in many applications. Previous studies on MIL either ignore such relations or simply model them with a fixed graph structure so that the overall performance inevitably degrades in complex environments. To address this problem, this paper proposes a novel multi-view multi-instance learning algorithm (MIL) that combines multiple context structures in a bag into a unified framework. The novel aspects are: (i) we propose a sparse -graph model that can generate different graphs with different parameters to represent various context relations in a bag, (ii) we propose a multi-view joint sparse representation that integrates these graphs into a unified framework for bag classification, and (iii) we propose a multi-view dictionary learning algorithm to obtain a multi-view graph dictionary that considers cues from all views simultaneously to improve the discrimination of the MIL. Experiments and analyses in many practical applications prove the effectiveness of the M IL.

  15. 3D deblending of simultaneous source data based on 3D multi-scale shaping operator

    NASA Astrophysics Data System (ADS)

    Zu, Shaohuan; Zhou, Hui; Mao, Weijian; Gong, Fei; Huang, Weilin

    2018-04-01

    We propose an iterative three-dimensional (3D) deblending scheme using 3D multi-scale shaping operator to separate 3D simultaneous source data. The proposed scheme is based on the property that signal is coherent, whereas interference is incoherent in some domains, e.g., common receiver domain and common midpoint domain. In two-dimensional (2D) blended record, the coherency difference of signal and interference is in only one spatial direction. Compared with 2D deblending, the 3D deblending can take more sparse constraints into consideration to obtain better performance, e.g., in 3D common receiver gather, the coherency difference is in two spatial directions. Furthermore, with different levels of coherency, signal and interference distribute in different scale curvelet domains. In both 2D and 3D blended records, most coherent signal locates in coarse scale curvelet domain, while most incoherent interference distributes in fine scale curvelet domain. The scale difference is larger in 3D deblending, thus, we apply the multi-scale shaping scheme to further improve the 3D deblending performance. We evaluate the performance of 3D and 2D deblending with the multi-scale and global shaping operators, respectively. One synthetic and one field data examples demonstrate the advantage of the 3D deblending with 3D multi-scale shaping operator.

  16. A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection

    DOE PAGES

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; ...

    2015-06-24

    This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the newmore » technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less

  17. A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.

    This work proposes and analyzes a hyper-spherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of themore » hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less

  18. Improved Sparse Multi-Class SVM and Its Application for Gene Selection in Cancer Classification

    PubMed Central

    Huang, Lingkang; Zhang, Hao Helen; Zeng, Zhao-Bang; Bushel, Pierre R.

    2013-01-01

    Background Microarray techniques provide promising tools for cancer diagnosis using gene expression profiles. However, molecular diagnosis based on high-throughput platforms presents great challenges due to the overwhelming number of variables versus the small sample size and the complex nature of multi-type tumors. Support vector machines (SVMs) have shown superior performance in cancer classification due to their ability to handle high dimensional low sample size data. The multi-class SVM algorithm of Crammer and Singer provides a natural framework for multi-class learning. Despite its effective performance, the procedure utilizes all variables without selection. In this paper, we propose to improve the procedure by imposing shrinkage penalties in learning to enforce solution sparsity. Results The original multi-class SVM of Crammer and Singer is effective for multi-class classification but does not conduct variable selection. We improved the method by introducing soft-thresholding type penalties to incorporate variable selection into multi-class classification for high dimensional data. The new methods were applied to simulated data and two cancer gene expression data sets. The results demonstrate that the new methods can select a small number of genes for building accurate multi-class classification rules. Furthermore, the important genes selected by the methods overlap significantly, suggesting general agreement among different variable selection schemes. Conclusions High accuracy and sparsity make the new methods attractive for cancer diagnostics with gene expression data and defining targets of therapeutic intervention. Availability: The source MATLAB code are available from http://math.arizona.edu/~hzhang/software.html. PMID:23966761

  19. On the development of efficient algorithms for three dimensional fluid flow

    NASA Technical Reports Server (NTRS)

    Maccormack, R. W.

    1988-01-01

    The difficulties of constructing efficient algorithms for three-dimensional flow are discussed. Reasonable candidates are analyzed and tested, and most are found to have obvious shortcomings. Yet, there is promise that an efficient class of algorithms exist between the severely time-step sized-limited explicit or approximately factored algorithms and the computationally intensive direct inversion of large sparse matrices by Gaussian elimination.

  20. Leveraging EAP-Sparsity for Compressed Sensing of MS-HARDI in (k, q)-Space.

    PubMed

    Sun, Jiaqi; Sakhaee, Elham; Entezari, Alireza; Vemuri, Baba C

    2015-01-01

    Compressed Sensing (CS) for the acceleration of MR scans has been widely investigated in the past decade. Lately, considerable progress has been made in achieving similar speed ups in acquiring multi-shell high angular resolution diffusion imaging (MS-HARDI) scans. Existing approaches in this context were primarily concerned with sparse reconstruction of the diffusion MR signal S(q) in the q-space. More recently, methods have been developed to apply the compressed sensing framework to the 6-dimensional joint (k, q)-space, thereby exploiting the redundancy in this 6D space. To guarantee accurate reconstruction from partial MS-HARDI data, the key ingredients of compressed sensing that need to be brought together are: (1) the function to be reconstructed needs to have a sparse representation, and (2) the data for reconstruction ought to be acquired in the dual domain (i.e., incoherent sensing) and (3) the reconstruction process involves a (convex) optimization. In this paper, we present a novel approach that uses partial Fourier sensing in the 6D space of (k, q) for the reconstruction of P(x, r). The distinct feature of our approach is a sparsity model that leverages surfacelets in conjunction with total variation for the joint sparse representation of P(x, r). Thus, our method stands to benefit from the practical guarantees for accurate reconstruction from partial (k, q)-space data. Further, we demonstrate significant savings in acquisition time over diffusion spectral imaging (DSI) which is commonly used as the benchmark for comparisons in reported literature. To demonstrate the benefits of this approach,.we present several synthetic and real data examples.

  1. High-speed optical coherence tomography by circular interferometric ranging

    NASA Astrophysics Data System (ADS)

    Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.

    2018-02-01

    Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.

  2. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    PubMed

    Qi, Jin; Yang, Zhiyong

    2014-01-01

    Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications.

  3. Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band Data: The PS1 Sample

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir; Hernitschek, Nina; Mitrović, Sandra; Ivezić, Željko; Rix, Hans-Walter; Cohen, Judith G.; Bernard, Edouard J.; Grebel, Eva K.; Martin, Nicolas F.; Schlafly, Edward F.; Burgett, William S.; Draper, Peter W.; Flewelling, Heather; Kaiser, Nick; Kudritzki, Rolf P.; Magnier, Eugene A.; Metcalfe, Nigel; Tonry, John L.; Waters, Christopher

    2017-05-01

    RR Lyrae stars may be the best practical tracers of Galactic halo (sub-)structure and kinematics. The PanSTARRS1 (PS1) 3π survey offers multi-band, multi-epoch, precise photometry across much of the sky, but a robust identification of RR Lyrae stars in this data set poses a challenge, given PS1's sparse, asynchronous multi-band light curves (≲ 12 epochs in each of five bands, taken over a 4.5 year period). We present a novel template fitting technique that uses well-defined and physically motivated multi-band light curves of RR Lyrae stars, and demonstrate that we get accurate period estimates, precise to 2 s in > 80 % of cases. We augment these light-curve fits with other features from photometric time-series and provide them to progressively more detailed machine-learned classification models. From these models, we are able to select the widest (three-fourths of the sky) and deepest (reaching 120 kpc) sample of RR Lyrae stars to date. The PS1 sample of ˜45,000 RRab stars is pure (90%) and complete (80% at 80 kpc) at high galactic latitudes. It also provides distances that are precise to 3%, measured with newly derived period-luminosity relations for optical/near-infrared PS1 bands. With the addition of proper motions from Gaia and radial velocity measurements from multi-object spectroscopic surveys, we expect the PS1 sample of RR Lyrae stars to become the premier source for studying the structure, kinematics, and the gravitational potential of the Galactic halo. The techniques presented in this study should translate well to other sparse, multi-band data sets, such as those produced by the Dark Energy Survey and the upcoming Large Synoptic Survey Telescope Galactic plane sub-survey.

  4. Some applications of the multi-dimensional fractional order for the Riemann-Liouville derivative

    NASA Astrophysics Data System (ADS)

    Ahmood, Wasan Ajeel; Kiliçman, Adem

    2017-01-01

    In this paper, the aim of this work is to study theorem for the one-dimensional space-time fractional deriative, generalize some function for the one-dimensional fractional by table represents the fractional Laplace transforms of some elementary functions to be valid for the multi-dimensional fractional Laplace transform and give the definition of the multi-dimensional fractional Laplace transform. This study includes that, dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable and develop of the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform based on the modified Riemann-Liouville derivative.

  5. Compressive Sensing with Cross-Validation and Stop-Sampling for Sparse Polynomial Chaos Expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huan, Xun; Safta, Cosmin; Sargsyan, Khachik

    Compressive sensing is a powerful technique for recovering sparse solutions of underdetermined linear systems, which is often encountered in uncertainty quanti cation analysis of expensive and high-dimensional physical models. We perform numerical investigations employing several com- pressive sensing solvers that target the unconstrained LASSO formulation, with a focus on linear systems that arise in the construction of polynomial chaos expansions. With core solvers of l1 ls, SpaRSA, CGIST, FPC AS, and ADMM, we develop techniques to mitigate over tting through an automated selection of regularization constant based on cross-validation, and a heuristic strategy to guide the stop-sampling decision. Practical recommendationsmore » on parameter settings for these tech- niques are provided and discussed. The overall method is applied to a series of numerical examples of increasing complexity, including large eddy simulations of supersonic turbulent jet-in-cross flow involving a 24-dimensional input. Through empirical phase-transition diagrams and convergence plots, we illustrate sparse recovery performance under structures induced by polynomial chaos, accuracy and computational tradeoffs between polynomial bases of different degrees, and practi- cability of conducting compressive sensing for a realistic, high-dimensional physical application. Across test cases studied in this paper, we find ADMM to have demonstrated empirical advantages through consistent lower errors and faster computational times.« less

  6. Hyperspherical Sparse Approximation Techniques for High-Dimensional Discontinuity Detection

    DOE PAGES

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max; ...

    2016-08-04

    This work proposes a hyperspherical sparse approximation framework for detecting jump discontinuities in functions in high-dimensional spaces. The need for a novel approach results from the theoretical and computational inefficiencies of well-known approaches, such as adaptive sparse grids, for discontinuity detection. Our approach constructs the hyperspherical coordinate representation of the discontinuity surface of a function. Then sparse approximations of the transformed function are built in the hyperspherical coordinate system, with values at each point estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computationalmore » cost, compared to existing methods. Several approaches are used to approximate the transformed discontinuity surface in the hyperspherical system, including adaptive sparse grid and radial basis function interpolation, discrete least squares projection, and compressed sensing approximation. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. In conclusion, rigorous complexity analyses of the new methods are provided, as are several numerical examples that illustrate the effectiveness of our approach.« less

  7. Bi Sparsity Pursuit: A Paradigm for Robust Subspace Recovery

    DTIC Science & Technology

    2016-09-27

    16. SECURITY CLASSIFICATION OF: The success of sparse models in computer vision and machine learning is due to the fact that, high dimensional data...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Signal recovery, Sparse learning , Subspace modeling REPORT DOCUMENTATION PAGE 11...vision and machine learning is due to the fact that, high dimensional data is distributed in a union of low dimensional subspaces in many real-world

  8. ℓ0 -based sparse hyperspectral unmixing using spectral information and a multi-objectives formulation

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Shi, Zhenwei; Pan, Bin

    2018-07-01

    Sparse unmixing aims at recovering pure materials from hyperpspectral images and estimating their abundance fractions. Sparse unmixing is actually ℓ0 problem which is NP-h ard, and a relaxation is often used. In this paper, we attempt to deal with ℓ0 problem directly via a multi-objective based method, which is a non-convex manner. The characteristics of hyperspectral images are integrated into the proposed method, which leads to a new spectra and multi-objective based sparse unmixing method (SMoSU). In order to solve the ℓ0 norm optimization problem, the spectral library is encoded in a binary vector, and a bit-wise flipping strategy is used to generate new individuals in the evolution process. However, a multi-objective method usually produces a number of non-dominated solutions, while sparse unmixing requires a single solution. How to make the final decision for sparse unmixing is challenging. To handle this problem, we integrate the spectral characteristic of hyperspectral images into SMoSU. By considering the spectral correlation in hyperspectral data, we improve the Tchebycheff decomposition function in SMoSU via a new regularization item. This regularization item is able to enforce the individual divergence in the evolution process of SMoSU. In this way, the diversity and convergence of population is further balanced, which is beneficial to the concentration of individuals. In the experiments part, three synthetic datasets and one real-world data are used to analyse the effectiveness of SMoSU, and several state-of-art sparse unmixing algorithms are compared.

  9. Enhanced spectral resolution by high-dimensional NMR using the filter diagonalization method and "hidden" dimensions.

    PubMed

    Meng, Xi; Nguyen, Bao D; Ridge, Clark; Shaka, A J

    2009-01-01

    High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to "reduced-dimensionality" strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the filter diagonalization method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra-dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths.

  10. Neural network analysis of Charpy transition temperature of irradiated low-activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Cottrell, G. A.; Kemp, R.; Bhadeshia, H. K. D. H.; Odette, G. R.; Yamamoto, T.

    2007-08-01

    We have constructed a Bayesian neural network model that predicts the change, due to neutron irradiation, of the Charpy ductile-brittle transition temperature (ΔDBTT) of low-activation martensitic steels given a set of multi-dimensional published data with doses <100 displacements per atom (dpa). Results show the high significance of irradiation temperature and (dpa) 1/2 in determining ΔDBTT. Sparse data regions were identified by the size of the modelling uncertainties, indicating areas where further experimental data are needed. The method has promise for selecting and ranking experiments on future irradiation materials test facilities.

  11. BI-sparsity pursuit for robust subspace recovery

    DOE PAGES

    Bian, Xiao; Krim, Hamid

    2015-09-01

    Here, the success of sparse models in computer vision and machine learning in many real-world applications, may be attributed in large part, to the fact that many high dimensional data are distributed in a union of low dimensional subspaces. The underlying structure may, however, be adversely affected by sparse errors, thus inducing additional complexity in recovering it. In this paper, we propose a bi-sparse model as a framework to investigate and analyze this problem, and provide as a result , a novel algorithm to recover the union of subspaces in presence of sparse corruptions. We additionally demonstrate the effectiveness ofmore » our method by experiments on real-world vision data.« less

  12. Joint sparsity based heterogeneous data-level fusion for target detection and estimation

    NASA Astrophysics Data System (ADS)

    Niu, Ruixin; Zulch, Peter; Distasio, Marcello; Blasch, Erik; Shen, Dan; Chen, Genshe

    2017-05-01

    Typical surveillance systems employ decision- or feature-level fusion approaches to integrate heterogeneous sensor data, which are sub-optimal and incur information loss. In this paper, we investigate data-level heterogeneous sensor fusion. Since the sensors monitor the common targets of interest, whose states can be determined by only a few parameters, it is reasonable to assume that the measurement domain has a low intrinsic dimensionality. For heterogeneous sensor data, we develop a joint-sparse data-level fusion (JSDLF) approach based on the emerging joint sparse signal recovery techniques by discretizing the target state space. This approach is applied to fuse signals from multiple distributed radio frequency (RF) signal sensors and a video camera for joint target detection and state estimation. The JSDLF approach is data-driven and requires minimum prior information, since there is no need to know the time-varying RF signal amplitudes, or the image intensity of the targets. It can handle non-linearity in the sensor data due to state space discretization and the use of frequency/pixel selection matrices. Furthermore, for a multi-target case with J targets, the JSDLF approach only requires discretization in a single-target state space, instead of discretization in a J-target state space, as in the case of the generalized likelihood ratio test (GLRT) or the maximum likelihood estimator (MLE). Numerical examples are provided to demonstrate that the proposed JSDLF approach achieves excellent performance with near real-time accurate target position and velocity estimates.

  13. Sloped terrain segmentation for autonomous drive using sparse 3D point cloud.

    PubMed

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Jeong, Young-Sik; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame.

  14. Multi-objective based spectral unmixing for hyperspectral images

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Shi, Zhenwei

    2017-02-01

    Sparse hyperspectral unmixing assumes that each observed pixel can be expressed by a linear combination of several pure spectra in a priori library. Sparse unmixing is challenging, since it is usually transformed to a NP-hard l0 norm based optimization problem. Existing methods usually utilize a relaxation to the original l0 norm. However, the relaxation may bring in sensitive weighted parameters and additional calculation error. In this paper, we propose a novel multi-objective based algorithm to solve the sparse unmixing problem without any relaxation. We transform sparse unmixing to a multi-objective optimization problem, which contains two correlative objectives: minimizing the reconstruction error and controlling the endmember sparsity. To improve the efficiency of multi-objective optimization, a population-based randomly flipping strategy is designed. Moreover, we theoretically prove that the proposed method is able to recover a guaranteed approximate solution from the spectral library within limited iterations. The proposed method can directly deal with l0 norm via binary coding for the spectral signatures in the library. Experiments on both synthetic and real hyperspectral datasets demonstrate the effectiveness of the proposed method.

  15. Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Ming

    In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with respect to the dictionary comprising its Laplacian eigenbasis, and it is then possible to recover this sparse representation from partial measurements of the original shape. Taking advantage of the sparsity cue, we advocate a novel variational approach for surface inpainting, integrating data fidelity constraints on the shape domain with coefficient sparsity constraints on the transformed domain. Because of the powerful properties of Laplacian eigenbasis, the inpainting results of our method tend to be globally coherent with the remaining shape. Informative and discriminative feature descriptors are vital in qualitative and quantitative shape analysis for a large variety of graphics applications. We advocate novel strategies to define generalized, user-specified features on shapes. Our new region descriptors are primarily built upon the coefficients of spectral graph wavelets that are both multi-scale and multi-level in nature, consisting of both local and global information. Based on our novel spectral feature descriptor, we developed a user-specified feature detection framework and a tensor-based shape matching algorithm. Through various experiments, we demonstrate the competitive performance of our proposed methods and the great potential of spectral basis and sparsity-driven methods for shape modeling.

  16. A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials

    NASA Astrophysics Data System (ADS)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing

    2015-09-01

    The accuracy of metamodelling is determined by both the sampling and approximation. This article proposes a new sampling method based on the zeros of Chebyshev polynomials to capture the sampling information effectively. First, the zeros of one-dimensional Chebyshev polynomials are applied to construct Chebyshev tensor product (CTP) sampling, and the CTP is then used to construct high-order multi-dimensional metamodels using the 'hypercube' polynomials. Secondly, the CTP sampling is further enhanced to develop Chebyshev collocation method (CCM) sampling, to construct the 'simplex' polynomials. The samples of CCM are randomly and directly chosen from the CTP samples. Two widely studied sampling methods, namely the Smolyak sparse grid and Hammersley, are used to demonstrate the effectiveness of the proposed sampling method. Several numerical examples are utilized to validate the approximation accuracy of the proposed metamodel under different dimensions.

  17. Compressed multi-block local binary pattern for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao

    2018-04-01

    Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.

  18. Tensor-based dynamic reconstruction method for electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.

    2017-03-01

    Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.

  19. Sampling design for groundwater solute transport: Tests of methods and analysis of Cape Cod tracer test data

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.; Garabedian, Stephen P.

    1991-01-01

    Tests of a one-dimensional sampling design methodology on measurements of bromide concentration collected during the natural gradient tracer test conducted by the U.S. Geological Survey on Cape Cod, Massachusetts, demonstrate its efficacy for field studies of solute transport in groundwater and the utility of one-dimensional analysis. The methodology was applied to design of sparse two-dimensional networks of fully screened wells typical of those often used in engineering practice. In one-dimensional analysis, designs consist of the downstream distances to rows of wells oriented perpendicular to the groundwater flow direction and the timing of sampling to be carried out on each row. The power of a sampling design is measured by its effectiveness in simultaneously meeting objectives of model discrimination, parameter estimation, and cost minimization. One-dimensional models of solute transport, differing in processes affecting the solute and assumptions about the structure of the flow field, were considered for description of tracer cloud migration. When fitting each model using nonlinear regression, additive and multiplicative error forms were allowed for the residuals which consist of both random and model errors. The one-dimensional single-layer model of a nonreactive solute with multiplicative error was judged to be the best of those tested. Results show the efficacy of the methodology in designing sparse but powerful sampling networks. Designs that sample five rows of wells at five or fewer times in any given row performed as well for model discrimination as the full set of samples taken up to eight times in a given row from as many as 89 rows. Also, designs for parameter estimation judged to be good by the methodology were as effective in reducing the variance of parameter estimates as arbitrary designs with many more samples. Results further showed that estimates of velocity and longitudinal dispersivity in one-dimensional models based on data from only five rows of fully screened wells each sampled five or fewer times were practically equivalent to values determined from moments analysis of the complete three-dimensional set of 29,285 samples taken during 16 sampling times.

  20. A General Formulation for Robust and Efficient Integration of Finite Differences and Phase Unwrapping on Sparse Multidimensional Domains

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Malvarosa, Fabio; Minati, Federico

    2010-03-01

    Phase unwrapping and integration of finite differences are key problems in several technical fields. In SAR interferometry and differential and persistent scatterers interferometry digital elevation models and displacement measurements can be obtained after unambiguously determining the phase values and reconstructing the mean velocities and elevations of the observed targets, which can be performed by integrating differential estimates of these quantities (finite differences between neighboring points).In this paper we propose a general formulation for robust and efficient integration of finite differences and phase unwrapping, which includes standard techniques methods as sub-cases. The proposed approach allows obtaining more reliable and accurate solutions by exploiting redundant differential estimates (not only between nearest neighboring points) and multi-dimensional information (e.g. multi-temporal, multi-frequency, multi-baseline observations), or external data (e.g. GPS measurements). The proposed approach requires the solution of linear or quadratic programming problems, for which computationally efficient algorithms exist.The validation tests obtained on real SAR data confirm the validity of the method, which was integrated in our production chain and successfully used also in massive productions.

  1. An efficient classification method based on principal component and sparse representation.

    PubMed

    Zhai, Lin; Fu, Shujun; Zhang, Caiming; Liu, Yunxian; Wang, Lu; Liu, Guohua; Yang, Mingqiang

    2016-01-01

    As an important application in optical imaging, palmprint recognition is interfered by many unfavorable factors. An effective fusion of blockwise bi-directional two-dimensional principal component analysis and grouping sparse classification is presented. The dimension reduction and normalizing are implemented by the blockwise bi-directional two-dimensional principal component analysis for palmprint images to extract feature matrixes, which are assembled into an overcomplete dictionary in sparse classification. A subspace orthogonal matching pursuit algorithm is designed to solve the grouping sparse representation. Finally, the classification result is gained by comparing the residual between testing and reconstructed images. Experiments are carried out on a palmprint database, and the results show that this method has better robustness against position and illumination changes of palmprint images, and can get higher rate of palmprint recognition.

  2. Development of a WRF-RTFDDA-based high-resolution hybrid data-assimilation and forecasting system toward to operation in the Middle East

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wu, W.; Zhang, Y.; Kucera, P. A.; Liu, Y.; Pan, L.

    2012-12-01

    Weather forecasting in the Middle East is challenging because of its complicated geographical nature including massive coastal area and heterogeneous land, and regional spare observational network. Strong air-land-sea interactions form multi-scale weather regimes in the area, which require a numerical weather prediction model capable of properly representing multi-scale atmospheric flow with appropriate initial conditions. The WRF-based Real-Time Four Dimensional Data Assimilation (RTFDDA) system is one of advanced multi-scale weather analysis and forecasting facilities developed at the Research Applications Laboratory (RAL) of NCAR. The forecasting system is applied for the Middle East with careful configuration. To overcome the limitation of the very sparsely available conventional observations in the region, we develop a hybrid data assimilation algorithm combining RTFDDA and WRF-3DVAR, which ingests remote sensing data from satellites and radar. This hybrid data assimilation blends Newtonian nudging FDDA and 3DVAR technology to effectively assimilate both conventional observations and remote sensing measurements and provide improved initial conditions for the forecasting system. For brevity, the forecasting system is called RTF3H (RTFDDA-3DVAR Hybrid). In this presentation, we will discuss the hybrid data assimilation algorithm, and its implementation, and the applications for high-impact weather events in the area. Sensitivity studies are conducted to understand the strength and limitations of this hybrid data assimilation algorithm.

  3. Incorporating biological information in sparse principal component analysis with application to genomic data.

    PubMed

    Li, Ziyi; Safo, Sandra E; Long, Qi

    2017-07-11

    Sparse principal component analysis (PCA) is a popular tool for dimensionality reduction, pattern recognition, and visualization of high dimensional data. It has been recognized that complex biological mechanisms occur through concerted relationships of multiple genes working in networks that are often represented by graphs. Recent work has shown that incorporating such biological information improves feature selection and prediction performance in regression analysis, but there has been limited work on extending this approach to PCA. In this article, we propose two new sparse PCA methods called Fused and Grouped sparse PCA that enable incorporation of prior biological information in variable selection. Our simulation studies suggest that, compared to existing sparse PCA methods, the proposed methods achieve higher sensitivity and specificity when the graph structure is correctly specified, and are fairly robust to misspecified graph structures. Application to a glioblastoma gene expression dataset identified pathways that are suggested in the literature to be related with glioblastoma. The proposed sparse PCA methods Fused and Grouped sparse PCA can effectively incorporate prior biological information in variable selection, leading to improved feature selection and more interpretable principal component loadings and potentially providing insights on molecular underpinnings of complex diseases.

  4. Multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement

    NASA Astrophysics Data System (ADS)

    Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing

    2018-02-01

    For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.

  5. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    NASA Astrophysics Data System (ADS)

    Hyman, J. D.; Aldrich, G.; Viswanathan, H.; Makedonska, N.; Karra, S.

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  6. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    NASA Astrophysics Data System (ADS)

    Hyman, J.; Aldrich, G. A.; Viswanathan, H. S.; Makedonska, N.; Karra, S.

    2016-12-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semi-correlation, and non-correlation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected so that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same.We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. These observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.

  7. Joint sparse learning for 3-D facial expression generation.

    PubMed

    Song, Mingli; Tao, Dacheng; Sun, Shengpeng; Chen, Chun; Bu, Jiajun

    2013-08-01

    3-D facial expression generation, including synthesis and retargeting, has received intensive attentions in recent years, because it is important to produce realistic 3-D faces with specific expressions in modern film production and computer games. In this paper, we present joint sparse learning (JSL) to learn mapping functions and their respective inverses to model the relationship between the high-dimensional 3-D faces (of different expressions and identities) and their corresponding low-dimensional representations. Based on JSL, we can effectively and efficiently generate various expressions of a 3-D face by either synthesizing or retargeting. Furthermore, JSL is able to restore 3-D faces with holes by learning a mapping function between incomplete and intact data. Experimental results on a wide range of 3-D faces demonstrate the effectiveness of the proposed approach by comparing with representative ones in terms of quality, time cost, and robustness.

  8. Time integration algorithms for the two-dimensional Euler equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Slack, David C.; Whitaker, D. L.; Walters, Robert W.

    1994-01-01

    Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.

  9. Image fusion based on Bandelet and sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiuxing; Zhang, Wei; Li, Xuzhi

    2018-04-01

    Bandelet transform could acquire geometric regular direction and geometric flow, sparse representation could represent signals with as little as possible atoms on over-complete dictionary, both of which could be used to image fusion. Therefore, a new fusion method is proposed based on Bandelet and Sparse Representation, to fuse Bandelet coefficients of multi-source images and obtain high quality fusion effects. The test are performed on remote sensing images and simulated multi-focus images, experimental results show that the performance of new method is better than tested methods according to objective evaluation indexes and subjective visual effects.

  10. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM.

    PubMed

    Singh, Brajesh K; Srivastava, Vineet K

    2015-04-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.

  11. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM

    PubMed Central

    Singh, Brajesh K.; Srivastava, Vineet K.

    2015-01-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639

  12. Where to Settle—Settlement Preferences of Mytilus galloprovincialis and Choice of Habitat at a Micro Spatial Scale

    PubMed Central

    Carl, Christina; Poole, Andrew J.; Williams, Mike R.; de Nys, Rocky

    2012-01-01

    The global mussel aquaculture industry uses specialised spat catching and nursery culture ropes made of multi-filament synthetic and natural fibres to optimise settlement and retention of mussels for on-growing. However, the settlement ecology and preferences of mussels are poorly understood and only sparse information exists in a commercial context. This study quantified the settlement preferences of pediveligers and plantigrades of Mytilus galloprovincialis on increasingly complex surfaces and settlement locations at a micro spatial scale on and within ropes under commercial hatchery operating conditions using optical microscopy and X-ray micro-computed tomography (µCT). M. galloprovincialis has clear settlement preferences for more complex materials and high selectivity for settlement sites from the pediveliger through to the plantigrade stage. Pediveligers of M. galloprovincialis initially settle inside specialised culture ropes. Larger pediveligers were located close to the exterior of ropes as they increased in size over time. In contrast, smaller individuals were located deeper inside of the ropes over time. This study demonstrates that X-ray µCT is an excellent non-destructive technique for mapping settlement and attachment sites of individuals as early as one day post settlement, and quantifies the number and location of settled individuals on and within ropes as a tool to understand and optimise settlement in complex multi-dimensional materials and environments. PMID:23251710

  13. Mapping High Dimensional Sparse Customer Requirements into Product Configurations

    NASA Astrophysics Data System (ADS)

    Jiao, Yao; Yang, Yu; Zhang, Hongshan

    2017-10-01

    Mapping customer requirements into product configurations is a crucial step for product design, while, customers express their needs ambiguously and locally due to the lack of domain knowledge. Thus the data mining process of customer requirements might result in fragmental information with high dimensional sparsity, leading the mapping procedure risk uncertainty and complexity. The Expert Judgment is widely applied against that background since there is no formal requirements for systematic or structural data. However, there are concerns on the repeatability and bias for Expert Judgment. In this study, an integrated method by adjusted Local Linear Embedding (LLE) and Naïve Bayes (NB) classifier is proposed to map high dimensional sparse customer requirements to product configurations. The integrated method adjusts classical LLE to preprocess high dimensional sparse dataset to satisfy the prerequisite of NB for classifying different customer requirements to corresponding product configurations. Compared with Expert Judgment, the adjusted LLE with NB performs much better in a real-world Tablet PC design case both in accuracy and robustness.

  14. A Sparse Bayesian Learning Algorithm for White Matter Parameter Estimation from Compressed Multi-shell Diffusion MRI.

    PubMed

    Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2017-09-01

    We propose a sparse Bayesian learning algorithm for improved estimation of white matter fiber parameters from compressed (under-sampled q-space) multi-shell diffusion MRI data. The multi-shell data is represented in a dictionary form using a non-monoexponential decay model of diffusion, based on continuous gamma distribution of diffusivities. The fiber volume fractions with predefined orientations, which are the unknown parameters, form the dictionary weights. These unknown parameters are estimated with a linear un-mixing framework, using a sparse Bayesian learning algorithm. A localized learning of hyperparameters at each voxel and for each possible fiber orientations improves the parameter estimation. Our experiments using synthetic data from the ISBI 2012 HARDI reconstruction challenge and in-vivo data from the Human Connectome Project demonstrate the improvements.

  15. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  16. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  17. Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point Cloud

    PubMed Central

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204

  18. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    NASA Astrophysics Data System (ADS)

    Hyman, J.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. S.

    2017-12-01

    We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.

  19. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    NASA Astrophysics Data System (ADS)

    Hyman, Jeffrey D.; Hagberg, Aric; Srinivasan, Gowri; Mohd-Yusof, Jamaludin; Viswanathan, Hari

    2017-07-01

    We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.

  20. A fast time-difference inverse solver for 3D EIT with application to lung imaging.

    PubMed

    Javaherian, Ashkan; Soleimani, Manuchehr; Moeller, Knut

    2016-08-01

    A class of sparse optimization techniques that require solely matrix-vector products, rather than an explicit access to the forward matrix and its transpose, has been paid much attention in the recent decade for dealing with large-scale inverse problems. This study tailors application of the so-called Gradient Projection for Sparse Reconstruction (GPSR) to large-scale time-difference three-dimensional electrical impedance tomography (3D EIT). 3D EIT typically suffers from the need for a large number of voxels to cover the whole domain, so its application to real-time imaging, for example monitoring of lung function, remains scarce since the large number of degrees of freedom of the problem extremely increases storage space and reconstruction time. This study shows the great potential of the GPSR for large-size time-difference 3D EIT. Further studies are needed to improve its accuracy for imaging small-size anomalies.

  1. Method and system for data clustering for very large databases

    NASA Technical Reports Server (NTRS)

    Livny, Miron (Inventor); Zhang, Tian (Inventor); Ramakrishnan, Raghu (Inventor)

    1998-01-01

    Multi-dimensional data contained in very large databases is efficiently and accurately clustered to determine patterns therein and extract useful information from such patterns. Conventional computer processors may be used which have limited memory capacity and conventional operating speed, allowing massive data sets to be processed in a reasonable time and with reasonable computer resources. The clustering process is organized using a clustering feature tree structure wherein each clustering feature comprises the number of data points in the cluster, the linear sum of the data points in the cluster, and the square sum of the data points in the cluster. A dense region of data points is treated collectively as a single cluster, and points in sparsely occupied regions can be treated as outliers and removed from the clustering feature tree. The clustering can be carried out continuously with new data points being received and processed, and with the clustering feature tree being restructured as necessary to accommodate the information from the newly received data points.

  2. Construction of Covariance Functions with Variable Length Fields

    NASA Technical Reports Server (NTRS)

    Gaspari, Gregory; Cohn, Stephen E.; Guo, Jing; Pawson, Steven

    2005-01-01

    This article focuses on construction, directly in physical space, of three-dimensional covariance functions parametrized by a tunable length field, and on an application of this theory to reproduce the Quasi-Biennial Oscillation (QBO) in the Goddard Earth Observing System, Version 4 (GEOS-4) data assimilation system. These Covariance models are referred to as multi-level or nonseparable, to associate them with the application where a multi-level covariance with a large troposphere to stratosphere length field gradient is used to reproduce the QBO from sparse radiosonde observations in the tropical lower stratosphere. The multi-level covariance functions extend well-known single level covariance functions depending only on a length scale. Generalizations of the first- and third-order autoregressive covariances in three dimensions are given, providing multi-level covariances with zero and three derivatives at zero separation, respectively. Multi-level piecewise rational covariances with two continuous derivatives at zero separation are also provided. Multi-level powerlaw covariances are constructed with continuous derivatives of all orders. Additional multi-level covariance functions are constructed using the Schur product of single and multi-level covariance functions. A multi-level powerlaw covariance used to reproduce the QBO in GEOS-4 is described along with details of the assimilation experiments. The new covariance model is shown to represent the vertical wind shear associated with the QBO much more effectively than in the baseline GEOS-4 system.

  3. A distributed computing system for magnetic resonance imaging: Java-based processing and binding of XML.

    PubMed

    de Beer, R; Graveron-Demilly, D; Nastase, S; van Ormondt, D

    2004-03-01

    Recently we have developed a Java-based heterogeneous distributed computing system for the field of magnetic resonance imaging (MRI). It is a software system for embedding the various image reconstruction algorithms that we have created for handling MRI data sets with sparse sampling distributions. Since these data sets may result from multi-dimensional MRI measurements our system has to control the storage and manipulation of large amounts of data. In this paper we describe how we have employed the extensible markup language (XML) to realize this data handling in a highly structured way. To that end we have used Java packages, recently released by Sun Microsystems, to process XML documents and to compile pieces of XML code into Java classes. We have effectuated a flexible storage and manipulation approach for all kinds of data within the MRI system, such as data describing and containing multi-dimensional MRI measurements, data configuring image reconstruction methods and data representing and visualizing the various services of the system. We have found that the object-oriented approach, possible with the Java programming environment, combined with the XML technology is a convenient way of describing and handling various data streams in heterogeneous distributed computing systems.

  4. EPR oximetry in three spatial dimensions using sparse spin distribution

    NASA Astrophysics Data System (ADS)

    Som, Subhojit; Potter, Lee C.; Ahmad, Rizwan; Vikram, Deepti S.; Kuppusamy, Periannan

    2008-08-01

    A method is presented to use continuous wave electron paramagnetic resonance imaging for rapid measurement of oxygen partial pressure in three spatial dimensions. A particulate paramagnetic probe is employed to create a sparse distribution of spins in a volume of interest. Information encoding location and spectral linewidth is collected by varying the spatial orientation and strength of an applied magnetic gradient field. Data processing exploits the spatial sparseness of spins to detect voxels with nonzero spin and to estimate the spectral linewidth for those voxels. The parsimonious representation of spin locations and linewidths permits an order of magnitude reduction in data acquisition time, compared to four-dimensional tomographic reconstruction using traditional spectral-spatial imaging. The proposed oximetry method is experimentally demonstrated for a lithium octa- n-butoxy naphthalocyanine (LiNc-BuO) probe using an L-band EPR spectrometer.

  5. Enhanced spectral resolution by high-dimensional NMR using the filter diagonalization method and “hidden” dimensions

    PubMed Central

    Meng, Xi; Nguyen, Bao D.; Ridge, Clark; Shaka, A. J.

    2009-01-01

    High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to “reduced-dimensionality” strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the Filter Diagonalization Method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths. PMID:18926747

  6. Application of composite dictionary multi-atom matching in gear fault diagnosis.

    PubMed

    Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng

    2011-01-01

    The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results.

  7. Assimilation of spatially sparse in situ soil moisture networks into a continuous model domain

    USDA-ARS?s Scientific Manuscript database

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ...

  8. A novel approach to internal crown characterization for coniferous tree species classification

    NASA Astrophysics Data System (ADS)

    Harikumar, A.; Bovolo, F.; Bruzzone, L.

    2016-10-01

    The knowledge about individual trees in forest is highly beneficial in forest management. High density small foot- print multi-return airborne Light Detection and Ranging (LiDAR) data can provide a very accurate information about the structural properties of individual trees in forests. Every tree species has a unique set of crown structural characteristics that can be used for tree species classification. In this paper, we use both the internal and external crown structural information of a conifer tree crown, derived from a high density small foot-print multi-return LiDAR data acquisition for species classification. Considering the fact that branches are the major building blocks of a conifer tree crown, we obtain the internal crown structural information using a branch level analysis. The structure of each conifer branch is represented using clusters in the LiDAR point cloud. We propose the joint use of the k-means clustering and geometric shape fitting, on the LiDAR data projected onto a novel 3-dimensional space, to identify branch clusters. After mapping the identified clusters back to the original space, six internal geometric features are estimated using a branch-level analysis. The external crown characteristics are modeled by using six least correlated features based on cone fitting and convex hull. Species classification is performed using a sparse Support Vector Machines (sparse SVM) classifier.

  9. A deconvolution extraction method for 2D multi-object fibre spectroscopy based on the regularized least-squares QR-factorization algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Yin, Qian; Guo, Ping; Luo, A.-li

    2014-09-01

    This paper presents an efficient method for the extraction of astronomical spectra from two-dimensional (2D) multifibre spectrographs based on the regularized least-squares QR-factorization (LSQR) algorithm. We address two issues: we propose a modified Gaussian point spread function (PSF) for modelling the 2D PSF from multi-emission-line gas-discharge lamp images (arc images), and we develop an efficient deconvolution method to extract spectra in real circumstances. The proposed modified 2D Gaussian PSF model can fit various types of 2D PSFs, including different radial distortion angles and ellipticities. We adopt the regularized LSQR algorithm to solve the sparse linear equations constructed from the sparse convolution matrix, which we designate the deconvolution spectrum extraction method. Furthermore, we implement a parallelized LSQR algorithm based on graphics processing unit programming in the Compute Unified Device Architecture to accelerate the computational processing. Experimental results illustrate that the proposed extraction method can greatly reduce the computational cost and memory use of the deconvolution method and, consequently, increase its efficiency and practicability. In addition, the proposed extraction method has a stronger noise tolerance than other methods, such as the boxcar (aperture) extraction and profile extraction methods. Finally, we present an analysis of the sensitivity of the extraction results to the radius and full width at half-maximum of the 2D PSF.

  10. Identification-While-Scanning of a Multi-Aircraft Formation Based on Sparse Recovery for Narrowband Radar.

    PubMed

    Jiang, Yuan; Xu, Jia; Peng, Shi-Bao; Mao, Er-Ke; Long, Teng; Peng, Ying-Ning

    2016-11-23

    It is known that the identification performance of a multi-aircraft formation (MAF) of narrowband radar mainly depends on the time on target (TOT). To realize the identification task in one rotated scan with limited TOT, the paper proposes a novel identification-while-scanning (IWS) method based on sparse recovery to maintain high rotating speed and super-resolution for MAF identification, simultaneously. First, a multiple chirp signal model is established for MAF in a single scan, where different aircraft may have different Doppler centers and Doppler rates. Second, based on the sparsity of MAF in the Doppler parameter space, a novel hierarchical basis pursuit (HBP) method is proposed to obtain satisfactory sparse recovery performance as well as high computational efficiency. Furthermore, the parameter estimation performance of the proposed IWS identification method is analyzed with respect to recovery condition, signal-to-noise ratio and TOT. It is shown that an MAF can be effectively identified via HBP with a TOT of only about one hundred microseconds for IWS applications. Finally, some numerical experiment results are provided to demonstrate the effectiveness of the proposed method based on both simulated and real measured data.

  11. Locality-preserving sparse representation-based classification in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Gao, Lianru; Yu, Haoyang; Zhang, Bing; Li, Qingting

    2016-10-01

    This paper proposes to combine locality-preserving projections (LPP) and sparse representation (SR) for hyperspectral image classification. The LPP is first used to reduce the dimensionality of all the training and testing data by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold, where the high-dimensional data lies. Then, SR codes the projected testing pixels as sparse linear combinations of all the training samples to classify the testing pixels by evaluating which class leads to the minimum approximation error. The integration of LPP and SR represents an innovative contribution to the literature. The proposed approach, called locality-preserving SR-based classification, addresses the imbalance between high dimensionality of hyperspectral data and the limited number of training samples. Experimental results on three real hyperspectral data sets demonstrate that the proposed approach outperforms the original counterpart, i.e., SR-based classification.

  12. Effective channel estimation and efficient symbol detection for multi-input multi-output underwater acoustic communications

    NASA Astrophysics Data System (ADS)

    Ling, Jun

    Achieving reliable underwater acoustic communications (UAC) has long been recognized as a challenging problem owing to the scarce bandwidth available and the reverberant spread in both time and frequency domains. To pursue high data rates, we consider a multi-input multi-output (MIMO) UAC system, and our focus is placed on two main issues regarding a MIMO UAC system: (1) channel estimation, which involves the design of the training sequences and the development of a reliable channel estimation algorithm, and (2) symbol detection, which requires interference cancelation schemes due to simultaneous transmission from multiple transducers. To enhance channel estimation performance, we present a cyclic approach for designing training sequences with good auto- and cross-correlation properties, and a channel estimation algorithm called the iterative adaptive approach (IAA). Sparse channel estimates can be obtained by combining IAA with the Bayesian information criterion (BIC). Moreover, we present sparse learning via iterative minimization (SLIM) and demonstrate that SLIM gives similar performance to IAA but at a much lower computational cost. Furthermore, an extension of the SLIM algorithm is introduced to estimate the sparse and frequency modulated acoustic channels. The extended algorithm is referred to as generalization of SLIM (GoSLIM). Regarding symbol detection, a linear minimum mean-squared error based detection scheme, called RELAX-BLAST, which is a combination of vertical Bell Labs layered space-time (V-BLAST) algorithm and the cyclic principle of the RELAX algorithm, is presented and it is shown that RELAX-BLAST outperforms V-BLAST. We show that RELAX-BLAST can be implemented efficiently by making use of the conjugate gradient method and diagonalization properties of circulant matrices. This fast implementation approach requires only simple fast Fourier transform operations and facilitates parallel implementations. The effectiveness of the proposed MIMO schemes is verified by both computer simulations and experimental results obtained by analyzing the measurements acquired in multiple in-water experiments.

  13. A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data.

    PubMed

    Zhang, L; Liu, X J

    2016-06-03

    With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.

  14. Fast 2D NMR Spectroscopy for In vivo Monitoring of Bacterial Metabolism in Complex Mixtures.

    PubMed

    Dass, Rupashree; Grudzia Ż, Katarzyna; Ishikawa, Takao; Nowakowski, Michał; Dȩbowska, Renata; Kazimierczuk, Krzysztof

    2017-01-01

    The biological toolbox is full of techniques developed originally for analytical chemistry. Among them, spectroscopic experiments are very important source of atomic-level structural information. Nuclear magnetic resonance (NMR) spectroscopy, although very advanced in chemical and biophysical applications, has been used in microbiology only in a limited manner. So far, mostly one-dimensional 1 H experiments have been reported in studies of bacterial metabolism monitored in situ . However, low spectral resolution and limited information on molecular topology limits the usability of these methods. These problems are particularly evident in the case of complex mixtures, where spectral peaks originating from many compounds overlap and make the interpretation of changes in a spectrum difficult or even impossible. Often a suite of two-dimensional (2D) NMR experiments is used to improve resolution and extract structural information from internuclear correlations. However, for dynamically changing sample, like bacterial culture, the time-consuming sampling of so-called indirect time dimensions in 2D experiments is inefficient. Here, we propose the technique known from analytical chemistry and structural biology of proteins, i.e., time-resolved non-uniform sampling. The method allows application of 2D (and multi-D) experiments in the case of quickly varying samples. The indirect dimension here is sparsely sampled resulting in significant reduction of experimental time. Compared to conventional approach based on a series of 1D measurements, this method provides extraordinary resolution and is a real-time approach to process monitoring. In this study, we demonstrate the usability of the method on a sample of Escherichia coli culture affected by ampicillin and on a sample of Propionibacterium acnes , an acne causing bacterium, mixed with a dose of face tonic, which is a complicated, multi-component mixture providing complex NMR spectrum. Through our experiments we determine the exact concentration and time at which the anti-bacterial agents affect the bacterial metabolism. We show, that it is worth to extend the NMR toolbox for microbiology by including techniques of 2D z-TOCSY, for total "fingerprinting" of a sample and 2D 13 C-edited HSQC to monitor changes in concentration of metabolites in selected metabolic pathways.

  15. Addressing the computational cost of large EIT solutions.

    PubMed

    Boyle, Alistair; Borsic, Andrea; Adler, Andy

    2012-05-01

    Electrical impedance tomography (EIT) is a soft field tomography modality based on the application of electric current to a body and measurement of voltages through electrodes at the boundary. The interior conductivity is reconstructed on a discrete representation of the domain using a finite-element method (FEM) mesh and a parametrization of that domain. The reconstruction requires a sequence of numerically intensive calculations. There is strong interest in reducing the cost of these calculations. An improvement in the compute time for current problems would encourage further exploration of computationally challenging problems such as the incorporation of time series data, wide-spread adoption of three-dimensional simulations and correlation of other modalities such as CT and ultrasound. Multicore processors offer an opportunity to reduce EIT computation times but may require some restructuring of the underlying algorithms to maximize the use of available resources. This work profiles two EIT software packages (EIDORS and NDRM) to experimentally determine where the computational costs arise in EIT as problems scale. Sparse matrix solvers, a key component for the FEM forward problem and sensitivity estimates in the inverse problem, are shown to take a considerable portion of the total compute time in these packages. A sparse matrix solver performance measurement tool, Meagre-Crowd, is developed to interface with a variety of solvers and compare their performance over a range of two- and three-dimensional problems of increasing node density. Results show that distributed sparse matrix solvers that operate on multiple cores are advantageous up to a limit that increases as the node density increases. We recommend a selection procedure to find a solver and hardware arrangement matched to the problem and provide guidance and tools to perform that selection.

  16. Ultrasound Imaging Initiative

    DTIC Science & Technology

    2003-01-01

    texture mapping hardware," IEEE Tranactions on Information Technology in Biomedicine, Submitted. [14] C.R. Castro Pareja , J.M. Jagadeesh and R. Shekhar...modulation in real-time three-dimensional sparse synthetic aperture ultrasound imaging systems "* Carlos R. Castro Pareja , Masters of Science, The Ohio...C.R. Castro Pareja , "An architecture for real-time image registration," M.S. Thesis, The Ohio State University, March 2002. 14. C.R. Castro Pareja , R

  17. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    DOE PAGES

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; ...

    2016-08-01

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less

  18. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.

    We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less

  19. Power Enhancement in High Dimensional Cross-Sectional Tests

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Yao, Jiawei

    2016-01-01

    We propose a novel technique to boost the power of testing a high-dimensional vector H : θ = 0 against sparse alternatives where the null hypothesis is violated only by a couple of components. Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers due to the accumulation of errors in estimating high-dimensional parameters. More powerful tests for sparse alternatives such as thresholding and extreme-value tests, on the other hand, require either stringent conditions or bootstrap to derive the null distribution and often suffer from size distortions due to the slow convergence. Based on a screening technique, we introduce a “power enhancement component”, which is zero under the null hypothesis with high probability, but diverges quickly under sparse alternatives. The proposed test statistic combines the power enhancement component with an asymptotically pivotal statistic, and strengthens the power under sparse alternatives. The null distribution does not require stringent regularity conditions, and is completely determined by that of the pivotal statistic. As specific applications, the proposed methods are applied to testing the factor pricing models and validating the cross-sectional independence in panel data models. PMID:26778846

  20. Three-dimensional reconstruction of highly complex microscopic samples using scanning electron microscopy and optical flow estimation.

    PubMed

    Baghaie, Ahmadreza; Pahlavan Tafti, Ahmad; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun

    2017-01-01

    Scanning Electron Microscope (SEM) as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D) reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.

  1. The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications.

    PubMed

    Cao, Lushuai; Krönke, Sven; Vendrell, Oriol; Schmelcher, Peter

    2013-10-07

    We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.

  2. Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Lin, Chuang; Wang, Binghui; Jiang, Ning; Farina, Dario

    2018-04-01

    Objective. This paper proposes a novel simultaneous and proportional multiple degree of freedom (DOF) myoelectric control method for active prostheses. Approach. The approach is based on non-negative matrix factorization (NMF) of surface EMG signals with the inclusion of sparseness constraints. By applying a sparseness constraint to the control signal matrix, it is possible to extract the basis information from arbitrary movements (quasi-unsupervised approach) for multiple DOFs concurrently. Main Results. In online testing based on target hitting, able-bodied subjects reached a greater throughput (TP) when using sparse NMF (SNMF) than with classic NMF or with linear regression (LR). Accordingly, the completion time (CT) was shorter for SNMF than NMF or LR. The same observations were made in two patients with unilateral limb deficiencies. Significance. The addition of sparseness constraints to NMF allows for a quasi-unsupervised approach to myoelectric control with superior results with respect to previous methods for the simultaneous and proportional control of multi-DOF. The proposed factorization algorithm allows robust simultaneous and proportional control, is superior to previous supervised algorithms, and, because of minimal supervision, paves the way to online adaptation in myoelectric control.

  3. Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering.

    PubMed

    Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi

    2016-01-01

    The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children.

  4. Brain abnormality segmentation based on l1-norm minimization

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Erus, Guray; Tanwar, Manoj; Davatzikos, Christos

    2014-03-01

    We present a method that uses sparse representations to model the inter-individual variability of healthy anatomy from a limited number of normal medical images. Abnormalities in MR images are then defined as deviations from the normal variation. More precisely, we model an abnormal (pathological) signal y as the superposition of a normal part ~y that can be sparsely represented under an example-based dictionary, and an abnormal part r. Motivated by a dense error correction scheme recently proposed for sparse signal recovery, we use l1- norm minimization to separate ~y and r. We extend the existing framework, which was mainly used on robust face recognition in a discriminative setting, to address challenges of brain image analysis, particularly the high dimensionality and low sample size problem. The dictionary is constructed from local image patches extracted from training images aligned using smooth transformations, together with minor perturbations of those patches. A multi-scale sliding-window scheme is applied to capture anatomical variations ranging from fine and localized to coarser and more global. The statistical significance of the abnormality term r is obtained by comparison to its empirical distribution through cross-validation, and is used to assign an abnormality score to each voxel. In our validation experiments the method is applied for segmenting abnormalities on 2-D slices of FLAIR images, and we obtain segmentation results consistent with the expert-defined masks.

  5. TH-EF-BRA-08: A Novel Technique for Estimating Volumetric Cine MRI (VC-MRI) From Multi-Slice Sparsely Sampled Cine Images Using Motion Modeling and Free Form Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Yin, F; Wang, C

    Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution ofmore » VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI-MM-ROI-FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while maintaining the estimation accuracy. Estimation using slices sampled uniformly through the tumor achieved better accuracy than slices sampled non-uniformly. Conclusions: Preliminary studies showed that it is feasible to generate VC-MRI from multi-slice sparsely-sampled 2D-cine images for real-time 3D-target verification. This work was supported by the National Institutes of Health under Grant No. R01-CA184173 and a research grant from Varian Medical Systems.« less

  6. Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM).

    PubMed

    Gao, Hao; Yu, Hengyong; Osher, Stanley; Wang, Ge

    2011-11-01

    We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations.

  7. Multi-label classification of chronically ill patients with bag of words and supervised dimensionality reduction algorithms.

    PubMed

    Bromuri, Stefano; Zufferey, Damien; Hennebert, Jean; Schumacher, Michael

    2014-10-01

    This research is motivated by the issue of classifying illnesses of chronically ill patients for decision support in clinical settings. Our main objective is to propose multi-label classification of multivariate time series contained in medical records of chronically ill patients, by means of quantization methods, such as bag of words (BoW), and multi-label classification algorithms. Our second objective is to compare supervised dimensionality reduction techniques to state-of-the-art multi-label classification algorithms. The hypothesis is that kernel methods and locality preserving projections make such algorithms good candidates to study multi-label medical time series. We combine BoW and supervised dimensionality reduction algorithms to perform multi-label classification on health records of chronically ill patients. The considered algorithms are compared with state-of-the-art multi-label classifiers in two real world datasets. Portavita dataset contains 525 diabetes type 2 (DT2) patients, with co-morbidities of DT2 such as hypertension, dyslipidemia, and microvascular or macrovascular issues. MIMIC II dataset contains 2635 patients affected by thyroid disease, diabetes mellitus, lipoid metabolism disease, fluid electrolyte disease, hypertensive disease, thrombosis, hypotension, chronic obstructive pulmonary disease (COPD), liver disease and kidney disease. The algorithms are evaluated using multi-label evaluation metrics such as hamming loss, one error, coverage, ranking loss, and average precision. Non-linear dimensionality reduction approaches behave well on medical time series quantized using the BoW algorithm, with results comparable to state-of-the-art multi-label classification algorithms. Chaining the projected features has a positive impact on the performance of the algorithm with respect to pure binary relevance approaches. The evaluation highlights the feasibility of representing medical health records using the BoW for multi-label classification tasks. The study also highlights that dimensionality reduction algorithms based on kernel methods, locality preserving projections or both are good candidates to deal with multi-label classification tasks in medical time series with many missing values and high label density. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua

    2017-09-01

    In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.

  9. Competition in high dimensional spaces using a sparse approximation of neural fields.

    PubMed

    Quinton, Jean-Charles; Girau, Bernard; Lefort, Mathieu

    2011-01-01

    The Continuum Neural Field Theory implements competition within topologically organized neural networks with lateral inhibitory connections. However, due to the polynomial complexity of matrix-based implementations, updating dense representations of the activity becomes computationally intractable when an adaptive resolution or an arbitrary number of input dimensions is required. This paper proposes an alternative to self-organizing maps with a sparse implementation based on Gaussian mixture models, promoting a trade-off in redundancy for higher computational efficiency and alleviating constraints on the underlying substrate.This version reproduces the emergent attentional properties of the original equations, by directly applying them within a continuous approximation of a high dimensional neural field. The model is compatible with preprocessed sensory flows but can also be interfaced with artificial systems. This is particularly important for sensorimotor systems, where decisions and motor actions must be taken and updated in real-time. Preliminary tests are performed on a reactive color tracking application, using spatially distributed color features.

  10. Sparse regressions for predicting and interpreting subcellular localization of multi-label proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-02-24

    Predicting protein subcellular localization is indispensable for inferring protein functions. Recent studies have been focusing on predicting not only single-location proteins, but also multi-location proteins. Almost all of the high performing predictors proposed recently use gene ontology (GO) terms to construct feature vectors for classification. Despite their high performance, their prediction decisions are difficult to interpret because of the large number of GO terms involved. This paper proposes using sparse regressions to exploit GO information for both predicting and interpreting subcellular localization of single- and multi-location proteins. Specifically, we compared two multi-label sparse regression algorithms, namely multi-label LASSO (mLASSO) and multi-label elastic net (mEN), for large-scale predictions of protein subcellular localization. Both algorithms can yield sparse and interpretable solutions. By using the one-vs-rest strategy, mLASSO and mEN identified 87 and 429 out of more than 8,000 GO terms, respectively, which play essential roles in determining subcellular localization. More interestingly, many of the GO terms selected by mEN are from the biological process and molecular function categories, suggesting that the GO terms of these categories also play vital roles in the prediction. With these essential GO terms, not only where a protein locates can be decided, but also why it resides there can be revealed. Experimental results show that the output of both mEN and mLASSO are interpretable and they perform significantly better than existing state-of-the-art predictors. Moreover, mEN selects more features and performs better than mLASSO on a stringent human benchmark dataset. For readers' convenience, an online server called SpaPredictor for both mLASSO and mEN is available at http://bioinfo.eie.polyu.edu.hk/SpaPredictorServer/.

  11. Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals

    DOE PAGES

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.

    2018-03-20

    A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less

  12. Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.

    A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less

  13. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin

    Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less

  14. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    DOE PAGES

    Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin; ...

    2017-07-10

    Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less

  15. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils

    PubMed Central

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-01-01

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now. PMID:26480892

  16. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils.

    PubMed

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-10-20

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now.

  17. Dimension-Factorized Range Migration Algorithm for Regularly Distributed Array Imaging

    PubMed Central

    Guo, Qijia; Wang, Jie; Chang, Tianying

    2017-01-01

    The two-dimensional planar MIMO array is a popular approach for millimeter wave imaging applications. As a promising practical alternative, sparse MIMO arrays have been devised to reduce the number of antenna elements and transmitting/receiving channels with predictable and acceptable loss in image quality. In this paper, a high precision three-dimensional imaging algorithm is proposed for MIMO arrays of the regularly distributed type, especially the sparse varieties. Termed the Dimension-Factorized Range Migration Algorithm, the new imaging approach factorizes the conventional MIMO Range Migration Algorithm into multiple operations across the sparse dimensions. The thinner the sparse dimensions of the array, the more efficient the new algorithm will be. Advantages of the proposed approach are demonstrated by comparison with the conventional MIMO Range Migration Algorithm and its non-uniform fast Fourier transform based variant in terms of all the important characteristics of the approaches, especially the anti-noise capability. The computation cost is analyzed as well to evaluate the efficiency quantitatively. PMID:29113083

  18. Machine Learning Techniques for Global Sensitivity Analysis in Climate Models

    NASA Astrophysics Data System (ADS)

    Safta, C.; Sargsyan, K.; Ricciuto, D. M.

    2017-12-01

    Climate models studies are not only challenged by the compute intensive nature of these models but also by the high-dimensionality of the input parameter space. In our previous work with the land model components (Sargsyan et al., 2014) we identified subsets of 10 to 20 parameters relevant for each QoI via Bayesian compressive sensing and variance-based decomposition. Nevertheless the algorithms were challenged by the nonlinear input-output dependencies for some of the relevant QoIs. In this work we will explore a combination of techniques to extract relevant parameters for each QoI and subsequently construct surrogate models with quantified uncertainty necessary to future developments, e.g. model calibration and prediction studies. In the first step, we will compare the skill of machine-learning models (e.g. neural networks, support vector machine) to identify the optimal number of classes in selected QoIs and construct robust multi-class classifiers that will partition the parameter space in regions with smooth input-output dependencies. These classifiers will be coupled with techniques aimed at building sparse and/or low-rank surrogate models tailored to each class. Specifically we will explore and compare sparse learning techniques with low-rank tensor decompositions. These models will be used to identify parameters that are important for each QoI. Surrogate accuracy requirements are higher for subsequent model calibration studies and we will ascertain the performance of this workflow for multi-site ALM simulation ensembles.

  19. Real-time model learning using Incremental Sparse Spectrum Gaussian Process Regression.

    PubMed

    Gijsberts, Arjan; Metta, Giorgio

    2013-05-01

    Novel applications in unstructured and non-stationary human environments require robots that learn from experience and adapt autonomously to changing conditions. Predictive models therefore not only need to be accurate, but should also be updated incrementally in real-time and require minimal human intervention. Incremental Sparse Spectrum Gaussian Process Regression is an algorithm that is targeted specifically for use in this context. Rather than developing a novel algorithm from the ground up, the method is based on the thoroughly studied Gaussian Process Regression algorithm, therefore ensuring a solid theoretical foundation. Non-linearity and a bounded update complexity are achieved simultaneously by means of a finite dimensional random feature mapping that approximates a kernel function. As a result, the computational cost for each update remains constant over time. Finally, algorithmic simplicity and support for automated hyperparameter optimization ensures convenience when employed in practice. Empirical validation on a number of synthetic and real-life learning problems confirms that the performance of Incremental Sparse Spectrum Gaussian Process Regression is superior with respect to the popular Locally Weighted Projection Regression, while computational requirements are found to be significantly lower. The method is therefore particularly suited for learning with real-time constraints or when computational resources are limited. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    PubMed

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information.

    PubMed

    Safo, Sandra E; Li, Shuzhao; Long, Qi

    2018-03-01

    Integrative analysis of high dimensional omics data is becoming increasingly popular. At the same time, incorporating known functional relationships among variables in analysis of omics data has been shown to help elucidate underlying mechanisms for complex diseases. In this article, our goal is to assess association between transcriptomic and metabolomic data from a Predictive Health Institute (PHI) study that includes healthy adults at a high risk of developing cardiovascular diseases. Adopting a strategy that is both data-driven and knowledge-based, we develop statistical methods for sparse canonical correlation analysis (CCA) with incorporation of known biological information. Our proposed methods use prior network structural information among genes and among metabolites to guide selection of relevant genes and metabolites in sparse CCA, providing insight on the molecular underpinning of cardiovascular disease. Our simulations demonstrate that the structured sparse CCA methods outperform several existing sparse CCA methods in selecting relevant genes and metabolites when structural information is informative and are robust to mis-specified structural information. Our analysis of the PHI study reveals that a number of gene and metabolic pathways including some known to be associated with cardiovascular diseases are enriched in the set of genes and metabolites selected by our proposed approach. © 2017, The International Biometric Society.

  2. Automatic segmentation of brain MRI in high-dimensional local and non-local feature space based on sparse representation.

    PubMed

    Khalilzadeh, Mohammad Mahdi; Fatemizadeh, Emad; Behnam, Hamid

    2013-06-01

    Automatic extraction of the varying regions of magnetic resonance images is required as a prior step in a diagnostic intelligent system. The sparsest representation and high-dimensional feature are provided based on learned dictionary. The classification is done by employing the technique that computes the reconstruction error locally and non-locally of each pixel. The acquired results from the real and simulated images are superior to the best MRI segmentation method with regard to the stability advantages. In addition, it is segmented exactly through a formula taken from the distance and sparse factors. Also, it is done automatically taking sparse factor in unsupervised clustering methods whose results have been improved. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Face recognition based on two-dimensional discriminant sparse preserving projection

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Zhu, Shanan

    2018-04-01

    In this paper, a supervised dimensionality reduction algorithm named two-dimensional discriminant sparse preserving projection (2DDSPP) is proposed for face recognition. In order to accurately model manifold structure of data, 2DDSPP constructs within-class affinity graph and between-class affinity graph by the constrained least squares (LS) and l1 norm minimization problem, respectively. Based on directly operating on image matrix, 2DDSPP integrates graph embedding (GE) with Fisher criterion. The obtained projection subspace preserves within-class neighborhood geometry structure of samples, while keeping away samples from different classes. The experimental results on the PIE and AR face databases show that 2DDSPP can achieve better recognition performance.

  4. Sparse PCA with Oracle Property.

    PubMed

    Gu, Quanquan; Wang, Zhaoran; Liu, Han

    In this paper, we study the estimation of the k -dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations. In particular, under a weak assumption on the magnitude of the population projection matrix, one estimator within this family exactly recovers the true support with high probability, has exact rank- k , and attains a [Formula: see text] statistical rate of convergence with s being the subspace sparsity level and n the sample size. Compared to existing support recovery results for sparse PCA, our approach does not hinge on the spiked covariance model or the limited correlation condition. As a complement to the first estimator that enjoys the oracle property, we prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA, even when the previous assumption on the magnitude of the projection matrix is violated. We validate the theoretical results by numerical experiments on synthetic datasets.

  5. Sparse PCA with Oracle Property

    PubMed Central

    Gu, Quanquan; Wang, Zhaoran; Liu, Han

    2014-01-01

    In this paper, we study the estimation of the k-dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations. In particular, under a weak assumption on the magnitude of the population projection matrix, one estimator within this family exactly recovers the true support with high probability, has exact rank-k, and attains a s/n statistical rate of convergence with s being the subspace sparsity level and n the sample size. Compared to existing support recovery results for sparse PCA, our approach does not hinge on the spiked covariance model or the limited correlation condition. As a complement to the first estimator that enjoys the oracle property, we prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA, even when the previous assumption on the magnitude of the projection matrix is violated. We validate the theoretical results by numerical experiments on synthetic datasets. PMID:25684971

  6. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    PubMed

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  7. Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.

    PubMed

    Nagaoka, Tomoaki; Watanabe, Soichi

    2011-01-01

    Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.

  8. iSAP: Interactive Sparse Astronomical Data Analysis Packages

    NASA Astrophysics Data System (ADS)

    Fourt, O.; Starck, J.-L.; Sureau, F.; Bobin, J.; Moudden, Y.; Abrial, P.; Schmitt, J.

    2013-03-01

    iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution.

  9. Modeling Alzheimer's disease cognitive scores using multi-task sparse group lasso.

    PubMed

    Liu, Xiaoli; Goncalves, André R; Cao, Peng; Zhao, Dazhe; Banerjee, Arindam

    2018-06-01

    Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by loss of memory and reduction in cognitive functions due to progressive degeneration of neurons and their connections, eventually leading to death. In this paper, we consider the problem of simultaneously predicting several different cognitive scores associated with categorizing subjects as normal, mild cognitive impairment (MCI), or Alzheimer's disease (AD) in a multi-task learning framework using features extracted from brain images obtained from ADNI (Alzheimer's Disease Neuroimaging Initiative). To solve the problem, we present a multi-task sparse group lasso (MT-SGL) framework, which estimates sparse features coupled across tasks, and can work with loss functions associated with any Generalized Linear Models. Through comparisons with a variety of baseline models using multiple evaluation metrics, we illustrate the promising predictive performance of MT-SGL on ADNI along with its ability to identify brain regions more likely to help the characterization Alzheimer's disease progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Color normalization of histology slides using graph regularized sparse NMF

    NASA Astrophysics Data System (ADS)

    Sha, Lingdao; Schonfeld, Dan; Sethi, Amit

    2017-03-01

    Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The representation of a pixel in the stain density space is constrained to follow the feature distance of the pixel to pixels in the neighborhood graph. Utilizing color matrix transfer method with the stain concentrations found using our GSNMF method, the color normalization performance was also better than existing methods.

  11. Multi scales based sparse matrix spectral clustering image segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  12. A novel aliasing-free subband information fusion approach for wideband sparse spectral estimation

    NASA Astrophysics Data System (ADS)

    Luo, Ji-An; Zhang, Xiao-Ping; Wang, Zhi

    2017-12-01

    Wideband sparse spectral estimation is generally formulated as a multi-dictionary/multi-measurement (MD/MM) problem which can be solved by using group sparsity techniques. In this paper, the MD/MM problem is reformulated as a single sparse indicative vector (SIV) recovery problem at the cost of introducing an additional system error. Thus, the number of unknowns is reduced greatly. We show that the system error can be neglected under certain conditions. We then present a new subband information fusion (SIF) method to estimate the SIV by jointly utilizing all the frequency bins. With orthogonal matching pursuit (OMP) leveraging the binary property of SIV's components, we develop a SIF-OMP algorithm to reconstruct the SIV. The numerical simulations demonstrate the performance of the proposed method.

  13. Local sparse bump hunting reveals molecular heterogeneity of colon tumors‡

    PubMed Central

    Dazard, Jean-Eudes; Rao, J. Sunil; Markowitz, Sanford

    2013-01-01

    The question of molecular heterogeneity and of tumoral phenotype in cancer remains unresolved. To understand the underlying molecular basis of this phenomenon, we analyzed genome-wide expression data of colon cancer metastasis samples, as these tumors are the most advanced and hence would be anticipated to be the most likely heterogeneous group of tumors, potentially exhibiting the maximum amount of genetic heterogeneity. Casting a statistical net around such a complex problem proves difficult because of the high dimensionality and multi-collinearity of the gene expression space, combined with the fact that genes act in concert with one another and that not all genes surveyed might be involved. We devise a strategy to identify distinct subgroups of samples and determine the genetic/molecular signature that defines them. This involves use of the local sparse bump hunting algorithm, which provides a much more optimal and biologically faithful transformed space within which to search for bumps. In addition, thanks to the variable selection feature of the algorithm, we derived a novel sparse gene expression signature, which appears to divide all colon cancer patients into two populations: a population whose expression pattern can be molecularly encompassed within the bump and an outlier population that cannot be. Although all patients within any given stage of the disease, including the metastatic group, appear clinically homogeneous, our procedure revealed two subgroups in each stage with distinct genetic/molecular profiles. We also discuss implications of such a finding in terms of early detection, diagnosis and prognosis. PMID:22052459

  14. Low photon count based digital holography for quadratic phase cryptography.

    PubMed

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Ryle, James P; Healy, John J; Lee, Byung-Geun; Sheridan, John T

    2017-07-15

    Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.

  15. Wavepacket dynamics and the multi-configurational time-dependent Hartree approach

    NASA Astrophysics Data System (ADS)

    Manthe, Uwe

    2017-06-01

    Multi-configurational time-dependent Hartree (MCTDH) based approaches are efficient, accurate, and versatile methods for high-dimensional quantum dynamics simulations. Applications range from detailed investigations of polyatomic reaction processes in the gas phase to high-dimensional simulations studying the dynamics of condensed phase systems described by typical solid state physics model Hamiltonians. The present article presents an overview of the different areas of application and provides a comprehensive review of the underlying theory. The concepts and guiding ideas underlying the MCTDH approach and its multi-mode and multi-layer extensions are discussed in detail. The general structure of the equations of motion is highlighted. The representation of the Hamiltonian and the correlated discrete variable representation (CDVR), which provides an efficient multi-dimensional quadrature in MCTDH calculations, are discussed. Methods which facilitate the calculation of eigenstates, the evaluation of correlation functions, and the efficient representation of thermal ensembles in MCTDH calculations are described. Different schemes for the treatment of indistinguishable particles in MCTDH calculations and recent developments towards a unified multi-layer MCTDH theory for systems including bosons and fermions are discussed.

  16. Sparse learning of stochastic dynamical equations

    NASA Astrophysics Data System (ADS)

    Boninsegna, Lorenzo; Nüske, Feliks; Clementi, Cecilia

    2018-06-01

    With the rapid increase of available data for complex systems, there is great interest in the extraction of physically relevant information from massive datasets. Recently, a framework called Sparse Identification of Nonlinear Dynamics (SINDy) has been introduced to identify the governing equations of dynamical systems from simulation data. In this study, we extend SINDy to stochastic dynamical systems which are frequently used to model biophysical processes. We prove the asymptotic correctness of stochastic SINDy in the infinite data limit, both in the original and projected variables. We discuss algorithms to solve the sparse regression problem arising from the practical implementation of SINDy and show that cross validation is an essential tool to determine the right level of sparsity. We demonstrate the proposed methodology on two test systems, namely, the diffusion in a one-dimensional potential and the projected dynamics of a two-dimensional diffusion process.

  17. Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy

    NASA Astrophysics Data System (ADS)

    Zhu, Changsheng; Liu, Jieqiong; Zhu, Mingfang; Feng, Li

    2018-03-01

    In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.

  18. A robust sparse-modeling framework for estimating schizophrenia biomarkers from fMRI.

    PubMed

    Dillon, Keith; Calhoun, Vince; Wang, Yu-Ping

    2017-01-30

    Our goal is to identify the brain regions most relevant to mental illness using neuroimaging. State of the art machine learning methods commonly suffer from repeatability difficulties in this application, particularly when using large and heterogeneous populations for samples. We revisit both dimensionality reduction and sparse modeling, and recast them in a common optimization-based framework. This allows us to combine the benefits of both types of methods in an approach which we call unambiguous components. We use this to estimate the image component with a constrained variability, which is best correlated with the unknown disease mechanism. We apply the method to the estimation of neuroimaging biomarkers for schizophrenia, using task fMRI data from a large multi-site study. The proposed approach yields an improvement in both robustness of the estimate and classification accuracy. We find that unambiguous components incorporate roughly two thirds of the same brain regions as sparsity-based methods LASSO and elastic net, while roughly one third of the selected regions differ. Further, unambiguous components achieve superior classification accuracy in differentiating cases from controls. Unambiguous components provide a robust way to estimate important regions of imaging data. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Energy Balanced Strategies for Maximizing the Lifetime of Sparsely Deployed Underwater Acoustic Sensor Networks

    PubMed Central

    Luo, Hanjiang; Guo, Zhongwen; Wu, Kaishun; Hong, Feng; Feng, Yuan

    2009-01-01

    Underwater acoustic sensor networks (UWA-SNs) are envisioned to perform monitoring tasks over the large portion of the world covered by oceans. Due to economics and the large area of the ocean, UWA-SNs are mainly sparsely deployed networks nowadays. The limited battery resources is a big challenge for the deployment of such long-term sensor networks. Unbalanced battery energy consumption will lead to early energy depletion of nodes, which partitions the whole networks and impairs the integrity of the monitoring datasets or even results in the collapse of the entire networks. On the contrary, balanced energy dissipation of nodes can prolong the lifetime of such networks. In this paper, we focus on the energy balance dissipation problem of two types of sparsely deployed UWA-SNs: underwater moored monitoring systems and sparsely deployed two-dimensional UWA-SNs. We first analyze the reasons of unbalanced energy consumption in such networks, then we propose two energy balanced strategies to maximize the lifetime of networks both in shallow and deep water. Finally, we evaluate our methods by simulations and the results show that the two strategies can achieve balanced energy consumption per node while at the same time prolong the networks lifetime. PMID:22399970

  20. Overview of Sparse Graph for Multiple Access in Future Mobile Networks

    NASA Astrophysics Data System (ADS)

    Lei, Jing; Li, Baoguo; Li, Erbao; Gong, Zhenghui

    2017-10-01

    Multiple access via sparse graph, such as low density signature (LDS) and sparse code multiple access (SCMA), is a promising technique for future wireless communications. This survey presents an overview of the developments in this burgeoning field, including transmitter structures, extrinsic information transform (EXIT) chart analysis and comparisons with existing multiple access techniques. Such technique enables multiple access under overloaded conditions to achieve a satisfactory performance. Message passing algorithm is utilized for multi-user detection in the receiver, and structures of the sparse graph are illustrated in detail. Outlooks and challenges of this technique are also presented.

  1. Ontology Sparse Vector Learning Algorithm for Ontology Similarity Measuring and Ontology Mapping via ADAL Technology

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zhu, Linli; Wang, Kaiyun

    2015-12-01

    Ontology, a model of knowledge representation and storage, has had extensive applications in pharmaceutics, social science, chemistry and biology. In the age of “big data”, the constructed concepts are often represented as higher-dimensional data by scholars, and thus the sparse learning techniques are introduced into ontology algorithms. In this paper, based on the alternating direction augmented Lagrangian method, we present an ontology optimization algorithm for ontological sparse vector learning, and a fast version of such ontology technologies. The optimal sparse vector is obtained by an iterative procedure, and the ontology function is then obtained from the sparse vector. Four simulation experiments show that our ontological sparse vector learning model has a higher precision ratio on plant ontology, humanoid robotics ontology, biology ontology and physics education ontology data for similarity measuring and ontology mapping applications.

  2. Three-dimensional image authentication scheme using sparse phase information in double random phase encoded integral imaging.

    PubMed

    Yi, Faliu; Jeoung, Yousun; Moon, Inkyu

    2017-05-20

    In recent years, many studies have focused on authentication of two-dimensional (2D) images using double random phase encryption techniques. However, there has been little research on three-dimensional (3D) imaging systems, such as integral imaging, for 3D image authentication. We propose a 3D image authentication scheme based on a double random phase integral imaging method. All of the 2D elemental images captured through integral imaging are encrypted with a double random phase encoding algorithm and only partial phase information is reserved. All the amplitude and other miscellaneous phase information in the encrypted elemental images is discarded. Nevertheless, we demonstrate that 3D images from integral imaging can be authenticated at different depths using a nonlinear correlation method. The proposed 3D image authentication algorithm can provide enhanced information security because the decrypted 2D elemental images from the sparse phase cannot be easily observed by the naked eye. Additionally, using sparse phase images without any amplitude information can greatly reduce data storage costs and aid in image compression and data transmission.

  3. Compressive sensing for single-shot two-dimensional coherent spectroscopy

    NASA Astrophysics Data System (ADS)

    Harel, E.; Spencer, A.; Spokoyny, B.

    2017-02-01

    In this work, we explore the use of compressive sensing for the rapid acquisition of two-dimensional optical spectra that encodes the electronic structure and ultrafast dynamics of condensed-phase molecular species. Specifically, we have developed a means to combine multiplexed single-element detection and single-shot and phase-resolved two-dimensional coherent spectroscopy. The method described, which we call Single Point Array Reconstruction by Spatial Encoding (SPARSE) eliminates the need for costly array detectors while speeding up acquisition by several orders of magnitude compared to scanning methods. Physical implementation of SPARSE is facilitated by combining spatiotemporal encoding of the nonlinear optical response and signal modulation by a high-speed digital micromirror device. We demonstrate the approach by investigating a well-characterized cyanine molecule and a photosynthetic pigment-protein complex. Hadamard and compressive sensing algorithms are demonstrated, with the latter achieving compression factors as high as ten. Both show good agreement with directly detected spectra. We envision a myriad of applications in nonlinear spectroscopy using SPARSE with broadband femtosecond light sources in so-far unexplored regions of the electromagnetic spectrum.

  4. Inter-Disciplinary Collaboration in Support of the Post-Standby TREAT Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHart, Mark; Baker, Benjamin; Ortensi, Javier

    Although analysis methods have advanced significantly in the last two decades, high fidelity multi- physics methods for reactors systems have been under development for only a few years and are not presently mature nor deployed. Furthermore, very few methods provide the ability to simulate rapid transients in three dimensions. Data for validation of advanced time-dependent multi- physics is sparse; at TREAT, historical data were not collected for the purpose of validating three-dimensional methods, let alone multi-physics simulations. Existing data continues to be collected to attempt to simulate the behavior of experiments and calibration transients, but it will be insufficient formore » the complete validation of analysis methods used for TREAT transient simulations. Hence, a 2018 restart will most likely occur without the direct application of advanced modeling and simulation methods. At present, the current INL modeling and simulation team plans to work with TREAT operations staff in performing reactor simulations with MAMMOTH, in parallel with the software packages currently being used in preparation for core restart (e.g., MCNP5, RELAP5, ABAQUS). The TREAT team has also requested specific measurements to be performed during startup testing, currently scheduled to run from February to August of 2018. These startup measurements will be crucial in validating the new analysis methods in preparation for ultimate application for TREAT operations and experiment design. This document describes the collaboration between modeling and simulation staff and restart, operations, instrumentation and experiment development teams to be able to effectively interact and achieve successful validation work during restart testing.« less

  5. Multi-dimensional scores to predict mortality in patients with idiopathic pulmonary fibrosis undergoing lung transplantation assessment.

    PubMed

    Fisher, Jolene H; Al-Hejaili, Faris; Kandel, Sonja; Hirji, Alim; Shapera, Shane; Mura, Marco

    2017-04-01

    The heterogeneous progression of idiopathic pulmonary fibrosis (IPF) makes prognostication difficult and contributes to high mortality on the waitlist for lung transplantation (LTx). Multi-dimensional scores (Composite Physiologic index [CPI], [Gender-Age-Physiology [GAP]; RIsk Stratification scorE [RISE]) demonstrated enhanced predictive power towards outcome in IPF. The lung allocation score (LAS) is a multi-dimensional tool commonly used to stratify patients assessed for LTx. We sought to investigate whether IPF-specific multi-dimensional scores predict mortality in patients with IPF assessed for LTx. The study included 302 patients with IPF who underwent a LTx assessment (2003-2014). Multi-dimensional scores were calculated. The primary outcome was 12-month mortality after assessment. LTx was considered as competing event in all analyses. At the end of the observation period, there were 134 transplants, 63 deaths, and 105 patients were alive without LTx. Multi-dimensional scores predicted mortality with accuracy similar to LAS, and superior to that of individual variables: area under the curve (AUC) for LAS was 0.78 (sensitivity 71%, specificity 86%); CPI 0.75 (sensitivity 67%, specificity 82%); GAP 0.67 (sensitivity 59%, specificity 74%); RISE 0.78 (sensitivity 71%, specificity 84%). A separate analysis conducted only in patients actively listed for LTx (n = 247; 50 deaths) yielded similar results. In patients with IPF assessed for LTx as well as in those actually listed, multi-dimensional scores predict mortality better than individual variables, and with accuracy similar to the LAS. If validated, multi-dimensional scores may serve as inexpensive tools to guide decisions on the timing of referral and listing for LTx. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. HYPOTHESIS TESTING FOR HIGH-DIMENSIONAL SPARSE BINARY REGRESSION

    PubMed Central

    Mukherjee, Rajarshi; Pillai, Natesh S.; Lin, Xihong

    2015-01-01

    In this paper, we study the detection boundary for minimax hypothesis testing in the context of high-dimensional, sparse binary regression models. Motivated by genetic sequencing association studies for rare variant effects, we investigate the complexity of the hypothesis testing problem when the design matrix is sparse. We observe a new phenomenon in the behavior of detection boundary which does not occur in the case of Gaussian linear regression. We derive the detection boundary as a function of two components: a design matrix sparsity index and signal strength, each of which is a function of the sparsity of the alternative. For any alternative, if the design matrix sparsity index is too high, any test is asymptotically powerless irrespective of the magnitude of signal strength. For binary design matrices with the sparsity index that is not too high, our results are parallel to those in the Gaussian case. In this context, we derive detection boundaries for both dense and sparse regimes. For the dense regime, we show that the generalized likelihood ratio is rate optimal; for the sparse regime, we propose an extended Higher Criticism Test and show it is rate optimal and sharp. We illustrate the finite sample properties of the theoretical results using simulation studies. PMID:26246645

  7. Adaptive sparse grid approach for the efficient simulation of pulsed eddy current testing inspections

    NASA Astrophysics Data System (ADS)

    Miorelli, Roberto; Reboud, Christophe

    2018-04-01

    Pulsed Eddy Current Testing (PECT) is a popular NonDestructive Testing (NDT) technique for some applications like corrosion monitoring in the oil and gas industry, or rivet inspection in the aeronautic area. Its particularity is to use a transient excitation, which allows to retrieve more information from the piece than conventional harmonic ECT, in a simpler and cheaper way than multi-frequency ECT setups. Efficient modeling tools prove, as usual, very useful to optimize experimental sensors and devices or evaluate their performance, for instance. This paper proposes an efficient simulation of PECT signals based on standard time harmonic solvers and use of an Adaptive Sparse Grid (ASG) algorithm. An adaptive sampling of the ECT signal spectrum is performed with this algorithm, then the complete spectrum is interpolated from this sparse representation and PECT signals are finally synthesized by means of inverse Fourier transform. Simulation results corresponding to existing industrial configurations are presented and the performance of the strategy is discussed by comparison to reference results.

  8. Parallel solution of sparse one-dimensional dynamic programming problems

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1989-01-01

    Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.

  9. On the estimation of brain signal entropy from sparse neuroimaging data

    PubMed Central

    Grandy, Thomas H.; Garrett, Douglas D.; Schmiedek, Florian; Werkle-Bergner, Markus

    2016-01-01

    Multi-scale entropy (MSE) has been recently established as a promising tool for the analysis of the moment-to-moment variability of neural signals. Appealingly, MSE provides a measure of the predictability of neural operations across the multiple time scales on which the brain operates. An important limitation in the application of the MSE to some classes of neural signals is MSE’s apparent reliance on long time series. However, this sparse-data limitation in MSE computation could potentially be overcome via MSE estimation across shorter time series that are not necessarily acquired continuously (e.g., in fMRI block-designs). In the present study, using simulated, EEG, and fMRI data, we examined the dependence of the accuracy and precision of MSE estimates on the number of data points per segment and the total number of data segments. As hypothesized, MSE estimation across discontinuous segments was comparably accurate and precise, despite segment length. A key advance of our approach is that it allows the calculation of MSE scales not previously accessible from the native segment lengths. Consequently, our results may permit a far broader range of applications of MSE when gauging moment-to-moment dynamics in sparse and/or discontinuous neurophysiological data typical of many modern cognitive neuroscience study designs. PMID:27020961

  10. A study of the parallel algorithm for large-scale DC simulation of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Cortés Udave, Diego Ernesto; Ogrodzki, Jan; Gutiérrez de Anda, Miguel Angel

    Newton-Raphson DC analysis of large-scale nonlinear circuits may be an extremely time consuming process even if sparse matrix techniques and bypassing of nonlinear models calculation are used. A slight decrease in the time required for this task may be enabled on multi-core, multithread computers if the calculation of the mathematical models for the nonlinear elements as well as the stamp management of the sparse matrix entries are managed through concurrent processes. This numerical complexity can be further reduced via the circuit decomposition and parallel solution of blocks taking as a departure point the BBD matrix structure. This block-parallel approach may give a considerable profit though it is strongly dependent on the system topology and, of course, on the processor type. This contribution presents the easy-parallelizable decomposition-based algorithm for DC simulation and provides a detailed study of its effectiveness.

  11. A Stabilized Sparse-Matrix U-D Square-Root Implementation of a Large-State Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Boggs, D.; Ghil, M.; Keppenne, C.

    1995-01-01

    The full nonlinear Kalman filter sequential algorithm is, in theory, well-suited to the four-dimensional data assimilation problem in large-scale atmospheric and oceanic problems. However, it was later discovered that this algorithm can be very sensitive to computer roundoff, and that results may cease to be meaningful as time advances. Implementations of a modified Kalman filter are given.

  12. A sparse grid based method for generative dimensionality reduction of high-dimensional data

    NASA Astrophysics Data System (ADS)

    Bohn, Bastian; Garcke, Jochen; Griebel, Michael

    2016-03-01

    Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.

  13. Fast multi-dimensional NMR by minimal sampling

    NASA Astrophysics Data System (ADS)

    Kupče, Ēriks; Freeman, Ray

    2008-03-01

    A new scheme is proposed for very fast acquisition of three-dimensional NMR spectra based on minimal sampling, instead of the customary step-wise exploration of all of evolution space. The method relies on prior experiments to determine accurate values for the evolving frequencies and intensities from the two-dimensional 'first planes' recorded by setting t1 = 0 or t2 = 0. With this prior knowledge, the entire three-dimensional spectrum can be reconstructed by an additional measurement of the response at a single location (t1∗,t2∗) where t1∗ and t2∗ are fixed values of the evolution times. A key feature is the ability to resolve problems of overlap in the acquisition dimension. Applied to a small protein, agitoxin, the three-dimensional HNCO spectrum is obtained 35 times faster than systematic Cartesian sampling of the evolution domain. The extension to multi-dimensional spectroscopy is outlined.

  14. JESTR: Jupiter Exploration Science in the Time Regime

    NASA Technical Reports Server (NTRS)

    Noll, Keith S.; Simon-Miller, A. A.; Wong, M. H.; Choi, D. S.

    2012-01-01

    Solar system objects are inherently time-varying with changes that occur on timescales ranging from seconds to years. For all planets other than the Earth, temporal coverage of atmospheric phenomena is limited and sparse. Many important atmospheric phenomena, especially those related to atmospheric dynamics, can be studied in only very limited ways with current data. JESTR is a mission concept that would remedy this gap in our exploration of the solar system by ncar-continuous imaging and spectral monitoring of Jupiter over a multi-year mission lifetime.

  15. Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkó, Zoltán, E-mail: Z.Perko@tudelft.nl; Gilli, Luca, E-mail: Gilli@nrg.eu; Lathouwers, Danny, E-mail: D.Lathouwers@tudelft.nl

    2014-03-01

    The demand for accurate and computationally affordable sensitivity and uncertainty techniques is constantly on the rise and has become especially pressing in the nuclear field with the shift to Best Estimate Plus Uncertainty methodologies in the licensing of nuclear installations. Besides traditional, already well developed methods – such as first order perturbation theory or Monte Carlo sampling – Polynomial Chaos Expansion (PCE) has been given a growing emphasis in recent years due to its simple application and good performance. This paper presents new developments of the research done at TU Delft on such Polynomial Chaos (PC) techniques. Our work ismore » focused on the Non-Intrusive Spectral Projection (NISP) approach and adaptive methods for building the PCE of responses of interest. Recent efforts resulted in a new adaptive sparse grid algorithm designed for estimating the PC coefficients. The algorithm is based on Gerstner's procedure for calculating multi-dimensional integrals but proves to be computationally significantly cheaper, while at the same it retains a similar accuracy as the original method. More importantly the issue of basis adaptivity has been investigated and two techniques have been implemented for constructing the sparse PCE of quantities of interest. Not using the traditional full PC basis set leads to further reduction in computational time since the high order grids necessary for accurately estimating the near zero expansion coefficients of polynomial basis vectors not needed in the PCE can be excluded from the calculation. Moreover the sparse PC representation of the response is easier to handle when used for sensitivity analysis or uncertainty propagation due to the smaller number of basis vectors. The developed grid and basis adaptive methods have been implemented in Matlab as the Fully Adaptive Non-Intrusive Spectral Projection (FANISP) algorithm and were tested on four analytical problems. These show consistent good performance both in terms of the accuracy of the resulting PC representation of quantities and the computational costs associated with constructing the sparse PCE. Basis adaptivity also seems to make the employment of PC techniques possible for problems with a higher number of input parameters (15–20), alleviating a well known limitation of the traditional approach. The prospect of larger scale applicability and the simplicity of implementation makes such adaptive PC algorithms particularly appealing for the sensitivity and uncertainty analysis of complex systems and legacy codes.« less

  16. Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD

    NASA Astrophysics Data System (ADS)

    Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun

    2017-12-01

    This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.

  17. Fractal dimension based damage identification incorporating multi-task sparse Bayesian learning

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Li, Hui; Wu, Stephen; Yang, Yongchao

    2018-07-01

    Sensitivity to damage and robustness to noise are critical requirements for the effectiveness of structural damage detection. In this study, a two-stage damage identification method based on the fractal dimension analysis and multi-task Bayesian learning is presented. The Higuchi’s fractal dimension (HFD) based damage index is first proposed, directly examining the time-frequency characteristic of local free vibration data of structures based on the irregularity sensitivity and noise robustness analysis of HFD. Katz’s fractal dimension is then presented to analyze the abrupt irregularity change of the spatial curve of the displacement mode shape along the structure. At the second stage, the multi-task sparse Bayesian learning technique is employed to infer the final damage localization vector, which borrow the dependent strength of the two fractal dimension based damage indication information and also incorporate the prior knowledge that structural damage occurs at a limited number of locations in a structure in the absence of its collapse. To validate the capability of the proposed method, a steel beam and a bridge, named Yonghe Bridge, are analyzed as illustrative examples. The damage identification results demonstrate that the proposed method is capable of localizing single and multiple damages regardless of its severity, and show superior robustness under heavy noise as well.

  18. Spline curve matching with sparse knot sets

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman

    2004-01-01

    This paper presents a new curve matching method for deformable shapes using two-dimensional splines. In contrast to the residual error criterion, which is based on relative locations of corresponding knot points such that is reliable primarily for dense point sets, we use deformation energy of thin-plate-spline mapping between sparse knot points and normalized local...

  19. Generalizing DTW to the multi-dimensional case requires an adaptive approach

    PubMed Central

    Hu, Bing; Jin, Hongxia; Wang, Jun; Keogh, Eamonn

    2017-01-01

    In recent years Dynamic Time Warping (DTW) has emerged as the distance measure of choice for virtually all time series data mining applications. For example, virtually all applications that process data from wearable devices use DTW as a core sub-routine. This is the result of significant progress in improving DTW’s efficiency, together with multiple empirical studies showing that DTW-based classifiers at least equal (and generally surpass) the accuracy of all their rivals across dozens of datasets. Thus far, most of the research has considered only the one-dimensional case, with practitioners generalizing to the multi-dimensional case in one of two ways, dependent or independent warping. In general, it appears the community believes either that the two ways are equivalent, or that the choice is irrelevant. In this work, we show that this is not the case. The two most commonly used multi-dimensional DTW methods can produce different classifications, and neither one dominates over the other. This seems to suggest that one should learn the best method for a particular application. However, we will show that this is not necessary; a simple, principled rule can be used on a case-by-case basis to predict which of the two methods we should trust at the time of classification. Our method allows us to ensure that classification results are at least as accurate as the better of the two rival methods, and, in many cases, our method is significantly more accurate. We demonstrate our ideas with the most extensive set of multi-dimensional time series classification experiments ever attempted. PMID:29104448

  20. A WENO-Limited, ADER-DT, Finite-Volume Scheme for Efficient, Robust, and Communication-Avoiding Multi-Dimensional Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, Matthew R

    2014-01-01

    The novel ADER-DT time discretization is applied to two-dimensional transport in a quadrature-free, WENO- and FCT-limited, Finite-Volume context. Emphasis is placed on (1) the serial and parallel computational properties of ADER-DT and this framework and (2) the flexibility of ADER-DT and this framework in efficiently balancing accuracy with other constraints important to transport applications. This study demonstrates a range of choices for the user when approaching their specific application while maintaining good parallel properties. In this method, genuine multi-dimensionality, single-step and single-stage time stepping, strict positivity, and a flexible range of limiting are all achieved with only one parallel synchronizationmore » and data exchange per time step. In terms of parallel data transfers per simulated time interval, this improves upon multi-stage time stepping and post-hoc filtering techniques such as hyperdiffusion. This method is evaluated with standard transport test cases over a range of limiting options to demonstrate quantitatively and qualitatively what a user should expect when employing this method in their application.« less

  1. Application of a sparseness constraint in multivariate curve resolution - Alternating least squares.

    PubMed

    Hugelier, Siewert; Piqueras, Sara; Bedia, Carmen; de Juan, Anna; Ruckebusch, Cyril

    2018-02-13

    The use of sparseness in chemometrics is a concept that has increased in popularity. The advantage is, above all, a better interpretability of the results obtained. In this work, sparseness is implemented as a constraint in multivariate curve resolution - alternating least squares (MCR-ALS), which aims at reproducing raw (mixed) data by a bilinear model of chemically meaningful profiles. In many cases, the mixed raw data analyzed are not sparse by nature, but their decomposition profiles can be, as it is the case in some instrumental responses, such as mass spectra, or in concentration profiles linked to scattered distribution maps of powdered samples in hyperspectral images. To induce sparseness in the constrained profiles, one-dimensional and/or two-dimensional numerical arrays can be fitted using a basis of Gaussian functions with a penalty on the coefficients. In this work, a least squares regression framework with L 0 -norm penalty is applied. This L 0 -norm penalty constrains the number of non-null coefficients in the fit of the array constrained without having an a priori on the number and their positions. It has been shown that the sparseness constraint induces the suppression of values linked to uninformative channels and noise in MS spectra and improves the location of scattered compounds in distribution maps, resulting in a better interpretability of the constrained profiles. An additional benefit of the sparseness constraint is a lower ambiguity in the bilinear model, since the major presence of null coefficients in the constrained profiles also helps to limit the solutions for the profiles in the counterpart matrix of the MCR bilinear model. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Object Separation from Medical X-Ray Images Based on ICA].

    PubMed

    Li, Yan; Yu, Chun-yu; Miao, Ya-jian; Fei, Bin; Zhuang, Feng-yun

    2015-03-01

    X-ray medical image can examine diseased tissue of patients and has important reference value for medical diagnosis. With the problems that traditional X-ray images have noise, poor level sense and blocked aliasing organs, this paper proposes a method for the introduction of multi-spectrum X-ray imaging and independent component analysis (ICA) algorithm to separate the target object. Firstly image de-noising preprocessing ensures the accuracy of target extraction based on independent component analysis and sparse code shrinkage. Then according to the main proportion of organ in the images, aliasing thickness matrix of each pixel was isolated. Finally independent component analysis obtains convergence matrix to reconstruct the target object with blind separation theory. In the ICA algorithm, it found that when the number is more than 40, the target objects separate successfully with the aid of subjective evaluation standard. And when the amplitudes of the scale are in the [25, 45] interval, the target images have high contrast and less distortion. The three-dimensional figure of Peak signal to noise ratio (PSNR) shows that the different convergence times and amplitudes have a greater influence on image quality. The contrast and edge information of experimental images achieve better effects with the convergence times 85 and amplitudes 35 in the ICA algorithm.

  3. Sparse Matrix for ECG Identification with Two-Lead Features.

    PubMed

    Tseng, Kuo-Kun; Luo, Jiao; Hegarty, Robert; Wang, Wenmin; Haiting, Dong

    2015-01-01

    Electrocardiograph (ECG) human identification has the potential to improve biometric security. However, improvements in ECG identification and feature extraction are required. Previous work has focused on single lead ECG signals. Our work proposes a new algorithm for human identification by mapping two-lead ECG signals onto a two-dimensional matrix then employing a sparse matrix method to process the matrix. And that is the first application of sparse matrix techniques for ECG identification. Moreover, the results of our experiments demonstrate the benefits of our approach over existing methods.

  4. Fast Physically Correct Refocusing for Sparse Light Fields Using Block-Based Multi-Rate View Interpolation.

    PubMed

    Huang, Chao-Tsung; Wang, Yu-Wen; Huang, Li-Ren; Chin, Jui; Chen, Liang-Gee

    2017-02-01

    Digital refocusing has a tradeoff between complexity and quality when using sparsely sampled light fields for low-storage applications. In this paper, we propose a fast physically correct refocusing algorithm to address this issue in a twofold way. First, view interpolation is adopted to provide photorealistic quality at infocus-defocus hybrid boundaries. Regarding its conventional high complexity, we devised a fast line-scan method specifically for refocusing, and its 1D kernel can be 30× faster than the benchmark View Synthesis Reference Software (VSRS)-1D-Fast. Second, we propose a block-based multi-rate processing flow for accelerating purely infocused or defocused regions, and a further 3- 34× speedup can be achieved for high-resolution images. All candidate blocks of variable sizes can interpolate different numbers of rendered views and perform refocusing in different subsampled layers. To avoid visible aliasing and block artifacts, we determine these parameters and the simulated aperture filter through a localized filter response analysis using defocus blur statistics. The final quadtree block partitions are then optimized in terms of computation time. Extensive experimental results are provided to show superior refocusing quality and fast computation speed. In particular, the run time is comparable with the conventional single-image blurring, which causes serious boundary artifacts.

  5. Using dynamic mode decomposition for real-time background/foreground separation in video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutz, Jose Nathan; Grosek, Jacob; Brunton, Steven

    The technique of dynamic mode decomposition (DMD) is disclosed herein for the purpose of robustly separating video frames into background (low-rank) and foreground (sparse) components in real-time. Foreground/background separation is achieved at the computational cost of just one singular value decomposition (SVD) and one linear equation solve, thus producing results orders of magnitude faster than robust principal component analysis (RPCA). Additional techniques, including techniques for analyzing the video for multi-resolution time-scale components, and techniques for reusing computations to allow processing of streaming video in real time, are also described herein.

  6. What is integrability of discrete variational systems?

    PubMed

    Boll, Raphael; Petrera, Matteo; Suris, Yuri B

    2014-02-08

    We propose a notion of a pluri-Lagrangian problem, which should be understood as an analogue of multi-dimensional consistency for variational systems. This is a development along the line of research of discrete integrable Lagrangian systems initiated in 2009 by Lobb and Nijhoff, however, having its more remote roots in the theory of pluriharmonic functions, in the Z -invariant models of statistical mechanics and their quasiclassical limit, as well as in the theory of variational symmetries going back to Noether. A d -dimensional pluri-Lagrangian problem can be described as follows: given a d -form [Formula: see text] on an m -dimensional space (called multi-time, m > d ), whose coefficients depend on a sought-after function x of m independent variables (called field), find those fields x which deliver critical points to the action functionals [Formula: see text] for any d -dimensional manifold Σ in the multi-time. We derive the main building blocks of the multi-time Euler-Lagrange equations for a discrete pluri-Lagrangian problem with d =2, the so-called corner equations, and discuss the notion of consistency of the system of corner equations. We analyse the system of corner equations for a special class of three-point two-forms, corresponding to integrable quad-equations of the ABS list. This allows us to close a conceptual gap of the work by Lobb and Nijhoff by showing that the corresponding two-forms are closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding corner equations. We also find an example of a pluri-Lagrangian system not coming from a multi-dimensionally consistent system of quad-equations.

  7. What is integrability of discrete variational systems?

    PubMed Central

    Boll, Raphael; Petrera, Matteo; Suris, Yuri B.

    2014-01-01

    We propose a notion of a pluri-Lagrangian problem, which should be understood as an analogue of multi-dimensional consistency for variational systems. This is a development along the line of research of discrete integrable Lagrangian systems initiated in 2009 by Lobb and Nijhoff, however, having its more remote roots in the theory of pluriharmonic functions, in the Z-invariant models of statistical mechanics and their quasiclassical limit, as well as in the theory of variational symmetries going back to Noether. A d-dimensional pluri-Lagrangian problem can be described as follows: given a d-form on an m-dimensional space (called multi-time, m>d), whose coefficients depend on a sought-after function x of m independent variables (called field), find those fields x which deliver critical points to the action functionals for any d-dimensional manifold Σ in the multi-time. We derive the main building blocks of the multi-time Euler–Lagrange equations for a discrete pluri-Lagrangian problem with d=2, the so-called corner equations, and discuss the notion of consistency of the system of corner equations. We analyse the system of corner equations for a special class of three-point two-forms, corresponding to integrable quad-equations of the ABS list. This allows us to close a conceptual gap of the work by Lobb and Nijhoff by showing that the corresponding two-forms are closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding corner equations. We also find an example of a pluri-Lagrangian system not coming from a multi-dimensionally consistent system of quad-equations. PMID:24511254

  8. electromagnetics, eddy current, computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartling, David

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  9. Removing flicker based on sparse color correspondences in old film restoration

    NASA Astrophysics Data System (ADS)

    Huang, Xi; Ding, Youdong; Yu, Bing; Xia, Tianran

    2018-04-01

    In the long history of human civilization, archived film is an indispensable part of it, and using digital method to repair damaged film is also a mainstream trend nowadays. In this paper, we propose a sparse color correspondences based technique to remove fading flicker for old films. Our model, combined with multi frame images to establish a simple correction model, includes three key steps. Firstly, we recover sparse color correspondences in the input frames to build a matrix with many missing entries. Secondly, we present a low-rank matrix factorization approach to estimate the unknown parameters of this model. Finally, we adopt a two-step strategy that divide the estimated parameters into reference frame parameters for color recovery correction and other frame parameters for color consistency correction to remove flicker. Our method combined multi-frames takes continuity of the input sequence into account, and the experimental results show the method can remove fading flicker efficiently.

  10. Mixing in 3D Sparse Multi-Scale Grid Generated Turbulence

    NASA Astrophysics Data System (ADS)

    Usama, Syed; Kopec, Jacek; Tellez, Jackson; Kwiatkowski, Kamil; Redondo, Jose; Malik, Nadeem

    2017-04-01

    Flat 2D fractal grids are known to alter turbulence characteristics downstream of the grid as compared to the regular grids with the same blockage ratio and the same mass inflow rates [1]. This has excited interest in the turbulence community for possible exploitation for enhanced mixing and related applications. Recently, a new 3D multi-scale grid design has been proposed [2] such that each generation of length scale of turbulence grid elements is held in its own frame, the overall effect is a 3D co-planar arrangement of grid elements. This produces a 'sparse' grid system whereby each generation of grid elements produces a turbulent wake pattern that interacts with the other wake patterns downstream. A critical motivation here is that the effective blockage ratio in the 3D Sparse Grid Turbulence (3DSGT) design is significantly lower than in the flat 2D counterpart - typically the blockage ratio could be reduced from say 20% in 2D down to 4% in the 3DSGT. If this idea can be realized in practice, it could potentially greatly enhance the efficiency of turbulent mixing and transfer processes clearly having many possible applications. Work has begun on the 3DSGT experimentally using Surface Flow Image Velocimetry (SFIV) [3] at the European facility in the Max Planck Institute for Dynamics and Self-Organization located in Gottingen, Germany and also at the Technical University of Catalonia (UPC) in Spain, and numerically using Direct Numerical Simulation (DNS) at King Fahd University of Petroleum & Minerals (KFUPM) in Saudi Arabia and in University of Warsaw in Poland. DNS is the most useful method to compare the experimental results with, and we are studying different types of codes such as Imcompact3d, and OpenFoam. Many variables will eventually be investigated for optimal mixing conditions. For example, the number of scale generations, the spacing between frames, the size ratio of grid elements, inflow conditions, etc. We will report upon the first set of findings from the 3DSGT by the time of the conference. {Acknowledgements}: This work has been supported partly by the EuHIT grant, 'Turbulence Generated by Sparse 3D Multi-Scale Grid (M3SG)', 2017. {References} [1] S. Laizet, J. C. Vassilicos. DNS of Fractal-Generated Turbulence. Flow Turbulence Combust 87:673705, (2011). [2] N. A. Malik. Sparse 3D Multi-Scale Grid Turbulence Generator. USPTO Application no. 14/710,531, Patent Pending, (2015). [3] J. Tellez, M. Gomez, B. Russo, J.M. Redondo. Surface Flow Image Velocimetry (SFIV) for hydraulics applications. 18th Int. Symposium on the Application of Laser Imaging Techniques in Fluid Mechanics, Lisbon, Portugal (2016).

  11. Large Covariance Estimation by Thresholding Principal Orthogonal Complements

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2012-01-01

    This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented. PMID:24348088

  12. Large Covariance Estimation by Thresholding Principal Orthogonal Complements.

    PubMed

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2013-09-01

    This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (POET) method to explore such an approximate factor structure with sparsity. The POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical insights when the factor analysis is approximately the same as the principal component analysis for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and the conditional sparse covariance matrix are studied under various norms. It is shown that the impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform rates of convergence for the unobserved factors and their factor loadings are derived. The asymptotic results are also verified by extensive simulation studies. Finally, a real data application on portfolio allocation is presented.

  13. Regression-based adaptive sparse polynomial dimensional decomposition for sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Tang, Kunkun; Congedo, Pietro; Abgrall, Remi

    2014-11-01

    Polynomial dimensional decomposition (PDD) is employed in this work for global sensitivity analysis and uncertainty quantification of stochastic systems subject to a large number of random input variables. Due to the intimate structure between PDD and Analysis-of-Variance, PDD is able to provide simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to polynomial chaos (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of the standard method unaffordable for real engineering applications. In order to address this problem of curse of dimensionality, this work proposes a variance-based adaptive strategy aiming to build a cheap meta-model by sparse-PDD with PDD coefficients computed by regression. During this adaptive procedure, the model representation by PDD only contains few terms, so that the cost to resolve repeatedly the linear system of the least-square regression problem is negligible. The size of the final sparse-PDD representation is much smaller than the full PDD, since only significant terms are eventually retained. Consequently, a much less number of calls to the deterministic model is required to compute the final PDD coefficients.

  14. Finite-time scaling at the Anderson transition for vibrations in solids

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Skipetrov, S. E.

    2017-11-01

    A model in which a three-dimensional elastic medium is represented by a network of identical masses connected by springs of random strengths and allowed to vibrate only along a selected axis of the reference frame exhibits an Anderson localization transition. To study this transition, we assume that the dynamical matrix of the network is given by a product of a sparse random matrix with real, independent, Gaussian-distributed nonzero entries and its transpose. A finite-time scaling analysis of the system's response to an initial excitation allows us to estimate the critical parameters of the localization transition. The critical exponent is found to be ν =1.57 ±0.02 , in agreement with previous studies of the Anderson transition belonging to the three-dimensional orthogonal universality class.

  15. Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications

    PubMed Central

    Huang, Jian; Zhang, Cun-Hui

    2013-01-01

    The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including the generalized linear models. We study the estimation, prediction, selection and sparsity properties of the weighted ℓ1-penalized estimator in sparse, high-dimensional settings where the number of predictors p can be much larger than the sample size n. Adaptive Lasso is considered as a special case. A multistage method is developed to approximate concave regularized estimation by applying an adaptive Lasso recursively. We provide prediction and estimation oracle inequalities for single- and multi-stage estimators, a general selection consistency theorem, and an upper bound for the dimension of the Lasso estimator. Important models including the linear regression, logistic regression and log-linear models are used throughout to illustrate the applications of the general results. PMID:24348100

  16. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.

    PubMed

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2011-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.

  17. Reconstructing three-dimensional protein crystal intensities from sparse unoriented two-axis X-ray diffraction patterns

    PubMed Central

    Lan, Ti-Yen; Wierman, Jennifer L.; Tate, Mark W.; Philipp, Hugh T.; Elser, Veit

    2017-01-01

    Recently, there has been a growing interest in adapting serial microcrystallography (SMX) experiments to existing storage ring (SR) sources. For very small crystals, however, radiation damage occurs before sufficient numbers of photons are diffracted to determine the orientation of the crystal. The challenge is to merge data from a large number of such ‘sparse’ frames in order to measure the full reciprocal space intensity. To simulate sparse frames, a dataset was collected from a large lysozyme crystal illuminated by a dim X-ray source. The crystal was continuously rotated about two orthogonal axes to sample a subset of the rotation space. With the EMC algorithm [expand–maximize–compress; Loh & Elser (2009). Phys. Rev. E, 80, 026705], it is shown that the diffracted intensity of the crystal can still be reconstructed even without knowledge of the orientation of the crystal in any sparse frame. Moreover, parallel computation implementations were designed to considerably improve the time and memory scaling of the algorithm. The results show that EMC-based SMX experiments should be feasible at SR sources. PMID:28808431

  18. Removal of nuisance signals from limited and sparse 1H MRSI data using a union-of-subspaces model.

    PubMed

    Ma, Chao; Lam, Fan; Johnson, Curtis L; Liang, Zhi-Pei

    2016-02-01

    To remove nuisance signals (e.g., water and lipid signals) for (1) H MRSI data collected from the brain with limited and/or sparse (k, t)-space coverage. A union-of-subspace model is proposed for removing nuisance signals. The model exploits the partial separability of both the nuisance signals and the metabolite signal, and decomposes an MRSI dataset into several sets of generalized voxels that share the same spectral distributions. This model enables the estimation of the nuisance signals from an MRSI dataset that has limited and/or sparse (k, t)-space coverage. The proposed method has been evaluated using in vivo MRSI data. For conventional chemical shift imaging data with limited k-space coverage, the proposed method produced "lipid-free" spectra without lipid suppression during data acquisition at 130 ms echo time. For sparse (k, t)-space data acquired with conventional pulses for water and lipid suppression, the proposed method was also able to remove the remaining water and lipid signals with negligible residuals. Nuisance signals in (1) H MRSI data reside in low-dimensional subspaces. This property can be utilized for estimation and removal of nuisance signals from (1) H MRSI data even when they have limited and/or sparse coverage of (k, t)-space. The proposed method should prove useful especially for accelerated high-resolution (1) H MRSI of the brain. © 2015 Wiley Periodicals, Inc.

  19. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    NASA Astrophysics Data System (ADS)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  20. Spatially Correlated Sparse MIMO Channel Path Delay Estimation in Scattering Environments Based on Signal Subspace Tracking

    PubMed Central

    Chargé, Pascal; Bazzi, Oussama; Ding, Yuehua

    2018-01-01

    A parametric scheme for spatially correlated sparse multiple-input multiple-output (MIMO) channel path delay estimation in scattering environments is presented in this paper. In MIMO outdoor communication scenarios, channel impulse responses (CIRs) of different transmit–receive antenna pairs are often supposed to be sparse due to a few significant scatterers, and share a common sparse pattern, such that path delays are assumed to be equal for every transmit–receive antenna pair. In some existing works, an exact common support condition is exploited, where the path delays are considered equal for every transmit–receive antenna pair, meanwhile ignoring the influence of scattering. A more realistic channel model is proposed in this paper, where due to scatterers in the environment, the received signals are modeled as clusters of multi-rays around a nominal or mean time delay at different antenna elements, resulting in a non-strictly exact common support phenomenon. A method for estimating the channel mean path delays is then derived based on the subspace approach, and the tracking of the effective dimension of the signal subspace that changes due to the wireless environment. The proposed method shows an improved channel mean path delays estimation performance in comparison with the conventional estimation methods. PMID:29734797

  1. Spatially Correlated Sparse MIMO Channel Path Delay Estimation in Scattering Environments Based on Signal Subspace Tracking.

    PubMed

    Mohydeen, Ali; Chargé, Pascal; Wang, Yide; Bazzi, Oussama; Ding, Yuehua

    2018-05-06

    A parametric scheme for spatially correlated sparse multiple-input multiple-output (MIMO) channel path delay estimation in scattering environments is presented in this paper. In MIMO outdoor communication scenarios, channel impulse responses (CIRs) of different transmit⁻receive antenna pairs are often supposed to be sparse due to a few significant scatterers, and share a common sparse pattern, such that path delays are assumed to be equal for every transmit⁻receive antenna pair. In some existing works, an exact common support condition is exploited, where the path delays are considered equal for every transmit⁻receive antenna pair, meanwhile ignoring the influence of scattering. A more realistic channel model is proposed in this paper, where due to scatterers in the environment, the received signals are modeled as clusters of multi-rays around a nominal or mean time delay at different antenna elements, resulting in a non-strictly exact common support phenomenon. A method for estimating the channel mean path delays is then derived based on the subspace approach, and the tracking of the effective dimension of the signal subspace that changes due to the wireless environment. The proposed method shows an improved channel mean path delays estimation performance in comparison with the conventional estimation methods.

  2. Modeling of Multi-Tube Pulse Detonation Engine Operation

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.

    2001-01-01

    The present paper explores some preliminary issues concerning the operational characteristics of multiple-tube pulsed detonation engines (PDEs). The study is based on a two-dimensional analysis of the first-pulse operation of two detonation tubes exhausting through a common nozzle. Computations are first performed to assess isolated tube behavior followed by results for multi-tube flow phenomena. The computations are based on an eight-species, finite-rate transient flow-field model. The results serve as an important precursor to understanding appropriate propellant fill procedures and shock wave propagation in multi-tube, multi-dimensional simulations. Differences in behavior between single and multi-tube PDE models are discussed, The influence of multi-tube geometry and the preferred times for injecting the fresh propellant mixture during multi-tube PDE operation are studied.

  3. Euclidean chemical spaces from molecular fingerprints: Hamming distance and Hempel's ravens.

    PubMed

    Martin, Eric; Cao, Eddie

    2015-05-01

    Molecules are often characterized by sparse binary fingerprints, where 1s represent the presence of substructures and 0s represent their absence. Fingerprints are especially useful for similarity calculations, such as database searching or clustering, generally measuring similarity as the Tanimoto coefficient. In other cases, such as visualization, design of experiments, or latent variable regression, a low-dimensional Euclidian "chemical space" is more useful, where proximity between points reflects chemical similarity. A temptation is to apply principal components analysis (PCA) directly to these fingerprints to obtain a low dimensional continuous chemical space. However, Gower has shown that distances from PCA on bit vectors are proportional to the square root of Hamming distance. Unlike Tanimoto similarity, Hamming similarity (HS) gives equal weight to shared 0s as to shared 1s, that is, HS gives as much weight to substructures that neither molecule contains, as to substructures which both molecules contain. Illustrative examples show that proximity in the corresponding chemical space reflects mainly similar size and complexity rather than shared chemical substructures. These spaces are ill-suited for visualizing and optimizing coverage of chemical space, or as latent variables for regression. A more suitable alternative is shown to be Multi-dimensional scaling on the Tanimoto distance matrix, which produces a space where proximity does reflect structural similarity.

  4. Exploiting sparsity and low-rank structure for the recovery of multi-slice breast MRIs with reduced sampling error.

    PubMed

    Yin, X X; Ng, B W-H; Ramamohanarao, K; Baghai-Wadji, A; Abbott, D

    2012-09-01

    It has been shown that, magnetic resonance images (MRIs) with sparsity representation in a transformed domain, e.g. spatial finite-differences (FD), or discrete cosine transform (DCT), can be restored from undersampled k-space via applying current compressive sampling theory. The paper presents a model-based method for the restoration of MRIs. The reduced-order model, in which a full-system-response is projected onto a subspace of lower dimensionality, has been used to accelerate image reconstruction by reducing the size of the involved linear system. In this paper, the singular value threshold (SVT) technique is applied as a denoising scheme to reduce and select the model order of the inverse Fourier transform image, and to restore multi-slice breast MRIs that have been compressively sampled in k-space. The restored MRIs with SVT for denoising show reduced sampling errors compared to the direct MRI restoration methods via spatial FD, or DCT. Compressive sampling is a technique for finding sparse solutions to underdetermined linear systems. The sparsity that is implicit in MRIs is to explore the solution to MRI reconstruction after transformation from significantly undersampled k-space. The challenge, however, is that, since some incoherent artifacts result from the random undersampling, noise-like interference is added to the image with sparse representation. These recovery algorithms in the literature are not capable of fully removing the artifacts. It is necessary to introduce a denoising procedure to improve the quality of image recovery. This paper applies a singular value threshold algorithm to reduce the model order of image basis functions, which allows further improvement of the quality of image reconstruction with removal of noise artifacts. The principle of the denoising scheme is to reconstruct the sparse MRI matrices optimally with a lower rank via selecting smaller number of dominant singular values. The singular value threshold algorithm is performed by minimizing the nuclear norm of difference between the sampled image and the recovered image. It has been illustrated that this algorithm improves the ability of previous image reconstruction algorithms to remove noise artifacts while significantly improving the quality of MRI recovery.

  5. From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms

    NASA Astrophysics Data System (ADS)

    Bodin, Jacques

    2015-03-01

    In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.

  6. Collaborative sparse priors for multi-view ATR

    NASA Astrophysics Data System (ADS)

    Li, Xuelu; Monga, Vishal

    2018-04-01

    Recent work has seen a surge of sparse representation based classification (SRC) methods applied to automatic target recognition problems. While traditional SRC approaches used l0 or l1 norm to quantify sparsity, spike and slab priors have established themselves as the gold standard for providing general tunable sparse structures on vectors. In this work, we employ collaborative spike and slab priors that can be applied to matrices to encourage sparsity for the problem of multi-view ATR. That is, target images captured from multiple views are expanded in terms of a training dictionary multiplied with a coefficient matrix. Ideally, for a test image set comprising of multiple views of a target, coefficients corresponding to its identifying class are expected to be active, while others should be zero, i.e. the coefficient matrix is naturally sparse. We develop a new approach to solve the optimization problem that estimates the sparse coefficient matrix jointly with the sparsity inducing parameters in the collaborative prior. ATR problems are investigated on the mid-wave infrared (MWIR) database made available by the US Army Night Vision and Electronic Sensors Directorate, which has a rich collection of views. Experimental results show that the proposed joint prior and coefficient estimation method (JPCEM) can: 1.) enable improved accuracy when multiple views vs. a single one are invoked, and 2.) outperform state of the art alternatives particularly when training imagery is limited.

  7. A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Wu, Fuyuan; Ramis, Rafael; Li, Zhenghong

    2018-03-01

    A new algorithm to model resistive magnetohydrodynamics (MHD) in Z-pinches has been developed. Two-dimensional axisymmetric geometry with azimuthal magnetic field Bθ is considered. Discretization is carried out using unstructured meshes made up of arbitrarily connected polygons. The algorithm is fully conservative for mass, momentum, and energy. Matter energy and magnetic energy are managed separately. The diffusion of magnetic field is solved using a derivative of the Symmetric-Semi-Implicit scheme, Livne et al. (1985) [23], where unconditional stability is obtained without needing to solve large sparse systems of equations. This MHD package has been integrated into the radiation-hydrodynamics code MULTI-2D, Ramis et al. (2009) [20], that includes hydrodynamics, laser energy deposition, heat conduction, and radiation transport. This setup allows to simulate Z-pinch configurations relevant for Inertial Confinement Fusion.

  8. Communication requirements of sparse Cholesky factorization with nested dissection ordering

    NASA Technical Reports Server (NTRS)

    Naik, Vijay K.; Patrick, Merrell L.

    1989-01-01

    Load distribution schemes for minimizing the communication requirements of the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems are presented. The total data traffic in factoring an n x n sparse symmetric positive definite matrix representing an n-vertex regular two-dimensional grid graph using n exp alpha, alpha not greater than 1, processors are shown to be O(n exp 1 + alpha/2). It is O(n), when n exp alpha, alpha not smaller than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal.

  9. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    NASA Astrophysics Data System (ADS)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  10. Portable laser synthesizer for high-speed multi-dimensional spectroscopy

    DOEpatents

    Demos, Stavros G [Livermore, CA; Shverdin, Miroslav Y [Sunnyvale, CA; Shirk, Michael D [Brentwood, CA

    2012-05-29

    Portable, field-deployable laser synthesizer devices designed for multi-dimensional spectrometry and time-resolved and/or hyperspectral imaging include a coherent light source which simultaneously produces a very broad, energetic, discrete spectrum spanning through or within the ultraviolet, visible, and near infrared wavelengths. The light output is spectrally resolved and each wavelength is delayed with respect to each other. A probe enables light delivery to a target. For multidimensional spectroscopy applications, the probe can collect the resulting emission and deliver this radiation to a time gated spectrometer for temporal and spectral analysis.

  11. Sparse Polynomial Chaos Surrogate for ACME Land Model via Iterative Bayesian Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Debusschere, B.; Najm, H. N.; Thornton, P. E.

    2015-12-01

    For computationally expensive climate models, Monte-Carlo approaches of exploring the input parameter space are often prohibitive due to slow convergence with respect to ensemble size. To alleviate this, we build inexpensive surrogates using uncertainty quantification (UQ) methods employing Polynomial Chaos (PC) expansions that approximate the input-output relationships using as few model evaluations as possible. However, when many uncertain input parameters are present, such UQ studies suffer from the curse of dimensionality. In particular, for 50-100 input parameters non-adaptive PC representations have infeasible numbers of basis terms. To this end, we develop and employ Weighted Iterative Bayesian Compressive Sensing to learn the most important input parameter relationships for efficient, sparse PC surrogate construction with posterior uncertainty quantified due to insufficient data. Besides drastic dimensionality reduction, the uncertain surrogate can efficiently replace the model in computationally intensive studies such as forward uncertainty propagation and variance-based sensitivity analysis, as well as design optimization and parameter estimation using observational data. We applied the surrogate construction and variance-based uncertainty decomposition to Accelerated Climate Model for Energy (ACME) Land Model for several output QoIs at nearly 100 FLUXNET sites covering multiple plant functional types and climates, varying 65 input parameters over broad ranges of possible values. This work is supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Accelerated Climate Modeling for Energy (ACME) project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Recognizing the ‘sparsely settled forest’: Multi-decade socioecological change dynamics and community exemplars

    Treesearch

    Derek B. Van Berkel; Bronwyn Rayfield; Sebastián Martinuzzi; Martin J. Lechowicz; Eric White; Kathleen P. Bell; Chris R. Colocousis; Kent F. Kovacs; Anita T. Morzillo; Darla K. Munroe; Benoit Parmentier; Volker C. Radeloff; Brian J. McGill

    2018-01-01

    Sparsely settled forests (SSF) are poorly studied, coupled natural and human systems involving rural communities in forest ecosystems that are neither largely uninhabited wildland nor forests on the edges of urban areas. We developed and applied a multidisciplinary approach to define, map, and examine changes in the spatial extent and structure of both the landscapes...

  13. Inference for High-dimensional Differential Correlation Matrices.

    PubMed

    Cai, T Tony; Zhang, Anru

    2016-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.

  14. Estimating the Uncertainty and Predictive Capabilities of Three-Dimensional Earth Models (Postprint)

    DTIC Science & Technology

    2012-03-22

    www.isc.ac.uk). This global database includes more than 7,000 events whose epicentral location accuracy is known to at least 5 km. GT events with...region, which illustrates the difficulty of validating a model with travel times alone. However, the IASPEI REL database is currently the highest...S (right) paths in the IASPEI REL ground-truth database . Stations are represented by purple triangles and events by gray circles. Note the sparse

  15. Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Nagarajaiah, Satish

    2016-06-01

    Randomly missing data of structural vibration responses time history often occurs in structural dynamics and health monitoring. For example, structural vibration responses are often corrupted by outliers or erroneous measurements due to sensor malfunction; in wireless sensing platforms, data loss during wireless communication is a common issue. Besides, to alleviate the wireless data sampling or communication burden, certain accounts of data are often discarded during sampling or before transmission. In these and other applications, recovery of the randomly missing structural vibration responses from the available, incomplete data, is essential for system identification and structural health monitoring; it is an ill-posed inverse problem, however. This paper explicitly harnesses the data structure itself-of the structural vibration responses-to address this (inverse) problem. What is relevant is an empirical, but often practically true, observation, that is, typically there are only few modes active in the structural vibration responses; hence a sparse representation (in frequency domain) of the single-channel data vector, or, a low-rank structure (by singular value decomposition) of the multi-channel data matrix. Exploiting such prior knowledge of data structure (intra-channel sparse or inter-channel low-rank), the new theories of ℓ1-minimization sparse recovery and nuclear-norm-minimization low-rank matrix completion enable recovery of the randomly missing or corrupted structural vibration response data. The performance of these two alternatives, in terms of recovery accuracy and computational time under different data missing rates, is investigated on a few structural vibration response data sets-the seismic responses of the super high-rise Canton Tower and the structural health monitoring accelerations of a real large-scale cable-stayed bridge. Encouraging results are obtained and the applicability and limitation of the presented methods are discussed.

  16. High-Dimensional Function Approximation With Neural Networks for Large Volumes of Data.

    PubMed

    Andras, Peter

    2018-02-01

    Approximation of high-dimensional functions is a challenge for neural networks due to the curse of dimensionality. Often the data for which the approximated function is defined resides on a low-dimensional manifold and in principle the approximation of the function over this manifold should improve the approximation performance. It has been show that projecting the data manifold into a lower dimensional space, followed by the neural network approximation of the function over this space, provides a more precise approximation of the function than the approximation of the function with neural networks in the original data space. However, if the data volume is very large, the projection into the low-dimensional space has to be based on a limited sample of the data. Here, we investigate the nature of the approximation error of neural networks trained over the projection space. We show that such neural networks should have better approximation performance than neural networks trained on high-dimensional data even if the projection is based on a relatively sparse sample of the data manifold. We also find that it is preferable to use a uniformly distributed sparse sample of the data for the purpose of the generation of the low-dimensional projection. We illustrate these results considering the practical neural network approximation of a set of functions defined on high-dimensional data including real world data as well.

  17. Viewing Angle Classification of Cryo-Electron Microscopy Images Using Eigenvectors

    PubMed Central

    Singer, A.; Zhao, Z.; Shkolnisky, Y.; Hadani, R.

    2012-01-01

    The cryo-electron microscopy (cryo-EM) reconstruction problem is to find the three-dimensional structure of a macromolecule given noisy versions of its two-dimensional projection images at unknown random directions. We introduce a new algorithm for identifying noisy cryo-EM images of nearby viewing angles. This identification is an important first step in three-dimensional structure determination of macromolecules from cryo-EM, because once identified, these images can be rotationally aligned and averaged to produce “class averages” of better quality. The main advantage of our algorithm is its extreme robustness to noise. The algorithm is also very efficient in terms of running time and memory requirements, because it is based on the computation of the top few eigenvectors of a specially designed sparse Hermitian matrix. These advantages are demonstrated in numerous numerical experiments. PMID:22506089

  18. Ensemble of sparse classifiers for high-dimensional biological data.

    PubMed

    Kim, Sunghan; Scalzo, Fabien; Telesca, Donatello; Hu, Xiao

    2015-01-01

    Biological data are often high in dimension while the number of samples is small. In such cases, the performance of classification can be improved by reducing the dimension of data, which is referred to as feature selection. Recently, a novel feature selection method has been proposed utilising the sparsity of high-dimensional biological data where a small subset of features accounts for most variance of the dataset. In this study we propose a new classification method for high-dimensional biological data, which performs both feature selection and classification within a single framework. Our proposed method utilises a sparse linear solution technique and the bootstrap aggregating algorithm. We tested its performance on four public mass spectrometry cancer datasets along with two other conventional classification techniques such as Support Vector Machines and Adaptive Boosting. The results demonstrate that our proposed method performs more accurate classification across various cancer datasets than those conventional classification techniques.

  19. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2012-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied. PMID:22661790

  20. JDINAC: joint density-based non-parametric differential interaction network analysis and classification using high-dimensional sparse omics data.

    PubMed

    Ji, Jiadong; He, Di; Feng, Yang; He, Yong; Xue, Fuzhong; Xie, Lei

    2017-10-01

    A complex disease is usually driven by a number of genes interwoven into networks, rather than a single gene product. Network comparison or differential network analysis has become an important means of revealing the underlying mechanism of pathogenesis and identifying clinical biomarkers for disease classification. Most studies, however, are limited to network correlations that mainly capture the linear relationship among genes, or rely on the assumption of a parametric probability distribution of gene measurements. They are restrictive in real application. We propose a new Joint density based non-parametric Differential Interaction Network Analysis and Classification (JDINAC) method to identify differential interaction patterns of network activation between two groups. At the same time, JDINAC uses the network biomarkers to build a classification model. The novelty of JDINAC lies in its potential to capture non-linear relations between molecular interactions using high-dimensional sparse data as well as to adjust confounding factors, without the need of the assumption of a parametric probability distribution of gene measurements. Simulation studies demonstrate that JDINAC provides more accurate differential network estimation and lower classification error than that achieved by other state-of-the-art methods. We apply JDINAC to a Breast Invasive Carcinoma dataset, which includes 114 patients who have both tumor and matched normal samples. The hub genes and differential interaction patterns identified were consistent with existing experimental studies. Furthermore, JDINAC discriminated the tumor and normal sample with high accuracy by virtue of the identified biomarkers. JDINAC provides a general framework for feature selection and classification using high-dimensional sparse omics data. R scripts available at https://github.com/jijiadong/JDINAC. lxie@iscb.org. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. 3D reconstruction based on light field images

    NASA Astrophysics Data System (ADS)

    Zhu, Dong; Wu, Chunhong; Liu, Yunluo; Fu, Dongmei

    2018-04-01

    This paper proposed a method of reconstructing three-dimensional (3D) scene from two light field images capture by Lytro illium. The work was carried out by first extracting the sub-aperture images from light field images and using the scale-invariant feature transform (SIFT) for feature registration on the selected sub-aperture images. Structure from motion (SFM) algorithm is further used on the registration completed sub-aperture images to reconstruct the three-dimensional scene. 3D sparse point cloud was obtained in the end. The method shows that the 3D reconstruction can be implemented by only two light field camera captures, rather than at least a dozen times captures by traditional cameras. This can effectively solve the time-consuming, laborious issues for 3D reconstruction based on traditional digital cameras, to achieve a more rapid, convenient and accurate reconstruction.

  2. New numerical method for radiation heat transfer in nonhomogeneous participating media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, J.R.; Tan, Zhiqiang

    A new numerical method, which solves the exact integral equations of distance-angular integration form for radiation transfer, is introduced in this paper. By constructing and prestoring the numerical integral formulas for the distance integral for appropriate kernel functions, this method eliminates the time consuming evaluations of the kernels of the space integrals in the formal computations. In addition, when the number of elements in the system is large, the resulting coefficient matrix is quite sparse. Thus, either considerable time or much storage can be saved. A weakness of the method is discussed, and some remedies are suggested. As illustrations, somemore » one-dimensional and two-dimensional problems in both homogeneous and inhomogeneous emitting, absorbing, and linear anisotropic scattering media are studied. Some results are compared with available data. 13 refs.« less

  3. TESTING HIGH-DIMENSIONAL COVARIANCE MATRICES, WITH APPLICATION TO DETECTING SCHIZOPHRENIA RISK GENES

    PubMed Central

    Zhu, Lingxue; Lei, Jing; Devlin, Bernie; Roeder, Kathryn

    2017-01-01

    Scientists routinely compare gene expression levels in cases versus controls in part to determine genes associated with a disease. Similarly, detecting case-control differences in co-expression among genes can be critical to understanding complex human diseases; however statistical methods have been limited by the high dimensional nature of this problem. In this paper, we construct a sparse-Leading-Eigenvalue-Driven (sLED) test for comparing two high-dimensional covariance matrices. By focusing on the spectrum of the differential matrix, sLED provides a novel perspective that accommodates what we assume to be common, namely sparse and weak signals in gene expression data, and it is closely related with Sparse Principal Component Analysis. We prove that sLED achieves full power asymptotically under mild assumptions, and simulation studies verify that it outperforms other existing procedures under many biologically plausible scenarios. Applying sLED to the largest gene-expression dataset obtained from post-mortem brain tissue from Schizophrenia patients and controls, we provide a novel list of genes implicated in Schizophrenia and reveal intriguing patterns in gene co-expression change for Schizophrenia subjects. We also illustrate that sLED can be generalized to compare other gene-gene “relationship” matrices that are of practical interest, such as the weighted adjacency matrices. PMID:29081874

  4. TESTING HIGH-DIMENSIONAL COVARIANCE MATRICES, WITH APPLICATION TO DETECTING SCHIZOPHRENIA RISK GENES.

    PubMed

    Zhu, Lingxue; Lei, Jing; Devlin, Bernie; Roeder, Kathryn

    2017-09-01

    Scientists routinely compare gene expression levels in cases versus controls in part to determine genes associated with a disease. Similarly, detecting case-control differences in co-expression among genes can be critical to understanding complex human diseases; however statistical methods have been limited by the high dimensional nature of this problem. In this paper, we construct a sparse-Leading-Eigenvalue-Driven (sLED) test for comparing two high-dimensional covariance matrices. By focusing on the spectrum of the differential matrix, sLED provides a novel perspective that accommodates what we assume to be common, namely sparse and weak signals in gene expression data, and it is closely related with Sparse Principal Component Analysis. We prove that sLED achieves full power asymptotically under mild assumptions, and simulation studies verify that it outperforms other existing procedures under many biologically plausible scenarios. Applying sLED to the largest gene-expression dataset obtained from post-mortem brain tissue from Schizophrenia patients and controls, we provide a novel list of genes implicated in Schizophrenia and reveal intriguing patterns in gene co-expression change for Schizophrenia subjects. We also illustrate that sLED can be generalized to compare other gene-gene "relationship" matrices that are of practical interest, such as the weighted adjacency matrices.

  5. Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveci, Mehmet; Trott, Christian Robert; Rajamanickam, Sivasankaran

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less

  6. Sequential time interleaved random equivalent sampling for repetitive signal.

    PubMed

    Zhao, Yijiu; Liu, Jingjing

    2016-12-01

    Compressed sensing (CS) based sampling techniques exhibit many advantages over other existing approaches for sparse signal spectrum sensing; they are also incorporated into non-uniform sampling signal reconstruction to improve the efficiency, such as random equivalent sampling (RES). However, in CS based RES, only one sample of each acquisition is considered in the signal reconstruction stage, and it will result in more acquisition runs and longer sampling time. In this paper, a sampling sequence is taken in each RES acquisition run, and the corresponding block measurement matrix is constructed using a Whittaker-Shannon interpolation formula. All the block matrices are combined into an equivalent measurement matrix with respect to all sampling sequences. We implemented the proposed approach with a multi-cores analog-to-digital converter (ADC), whose ADC cores are time interleaved. A prototype realization of this proposed CS based sequential random equivalent sampling method has been developed. It is able to capture an analog waveform at an equivalent sampling rate of 40 GHz while sampled at 1 GHz physically. Experiments indicate that, for a sparse signal, the proposed CS based sequential random equivalent sampling exhibits high efficiency.

  7. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.

  8. Network Data: Statistical Theory and New Models

    DTIC Science & Technology

    2016-02-17

    SECURITY CLASSIFICATION OF: During this period of review, Bin Yu worked on many thrusts of high-dimensional statistical theory and methodologies. Her...research covered a wide range of topics in statistics including analysis and methods for spectral clustering for sparse and structured networks...2,7,8,21], sparse modeling (e.g. Lasso) [4,10,11,17,18,19], statistical guarantees for the EM algorithm [3], statistical analysis of algorithm leveraging

  9. Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition

    PubMed Central

    Ong, Frank; Lustig, Michael

    2016-01-01

    We present a natural generalization of the recent low rank + sparse matrix decomposition and consider the decomposition of matrices into components of multiple scales. Such decomposition is well motivated in practice as data matrices often exhibit local correlations in multiple scales. Concretely, we propose a multi-scale low rank modeling that represents a data matrix as a sum of block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse problem of decomposing the data matrix into its multi-scale low rank components and approach the problem via a convex formulation. Theoretically, we show that under various incoherence conditions, the convex program recovers the multi-scale low rank components either exactly or approximately. Practically, we provide guidance on selecting the regularization parameters and incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multi-scale low rank decomposition provides a more intuitive decomposition than conventional low rank methods and demonstrate its effectiveness in four applications, including illumination normalization for face images, motion separation for surveillance videos, multi-scale modeling of the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering exploiting age information. PMID:28450978

  10. Dictionary learning-based spatiotemporal regularization for 3D dense speckle tracking

    NASA Astrophysics Data System (ADS)

    Lu, Allen; Zontak, Maria; Parajuli, Nripesh; Stendahl, John C.; Boutagy, Nabil; Eberle, Melissa; O'Donnell, Matthew; Sinusas, Albert J.; Duncan, James S.

    2017-03-01

    Speckle tracking is a common method for non-rigid tissue motion analysis in 3D echocardiography, where unique texture patterns are tracked through the cardiac cycle. However, poor tracking often occurs due to inherent ultrasound issues, such as image artifacts and speckle decorrelation; thus regularization is required. Various methods, such as optical flow, elastic registration, and block matching techniques have been proposed to track speckle motion. Such methods typically apply spatial and temporal regularization in a separate manner. In this paper, we propose a joint spatiotemporal regularization method based on an adaptive dictionary representation of the dense 3D+time Lagrangian motion field. Sparse dictionaries have good signal adaptive and noise-reduction properties; however, they are prone to quantization errors. Our method takes advantage of the desirable noise suppression, while avoiding the undesirable quantization error. The idea is to enforce regularization only on the poorly tracked trajectories. Specifically, our method 1.) builds data-driven 4-dimensional dictionary of Lagrangian displacements using sparse learning, 2.) automatically identifies poorly tracked trajectories (outliers) based on sparse reconstruction errors, and 3.) performs sparse reconstruction of the outliers only. Our approach can be applied on dense Lagrangian motion fields calculated by any method. We demonstrate the effectiveness of our approach on a baseline block matching speckle tracking and evaluate performance of the proposed algorithm using tracking and strain accuracy analysis.

  11. Modeling change from large-scale high-dimensional spatio-temporal array data

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Pebesma, Edzer

    2014-05-01

    The massive data that come from Earth observation satellite and other sensors provide significant information for modeling global change. At the same time, the high dimensionality of the data has brought challenges in data acquisition, management, effective querying and processing. In addition, the output of earth system modeling tends to be data intensive and needs methodologies for storing, validation, analyzing and visualization, e.g. as maps. An important proportion of earth system observations and simulated data can be represented as multi-dimensional array data, which has received increasingly attention in big data management and spatial-temporal analysis. Study cases will be developed in natural science such as climate change, hydrological modeling, sediment dynamics, from which the addressing of big data problems is necessary. Multi-dimensional array-based database management and analytics system such as Rasdaman, SciDB, and R will be applied to these cases. From these studies will hope to learn the strengths and weaknesses of these systems, how they might work together or how semantics of array operations differ, through addressing the problems associated with big data. Research questions include: • How can we reduce dimensions spatially and temporally, or thematically? • How can we extend existing GIS functions to work on multidimensional arrays? • How can we combine data sets of different dimensionality or different resolutions? • Can map algebra be extended to an intelligible array algebra? • What are effective semantics for array programming of dynamic data driven applications? • In which sense are space and time special, as dimensions, compared to other properties? • How can we make the analysis of multi-spectral, multi-temporal and multi-sensor earth observation data easy?

  12. An evaluation of clinical, radiological and three-dimensional dental tomography findings in ectodermal dysplasia cases

    PubMed Central

    Doğan, Mehmet-Sinan; Callea, Michele; Aksoy, Orhan; Clarich, Gabriella; Günay, Ayşe; Günay, Ahmet; Güven, Sedat; Maglione, Michele; Akkuş, Zeki

    2015-01-01

    Background This study aimed to review the results related to head and jaw disorders in cases of ectodermal dysplasia. The evaluation of ectodermal dysplasia cases was made by clincal examination and examination of the jaw and facial areas radiologically and on cone-beam 3-dimensional dental tomography (CBCT) images. Material and Methods In the 36 cases evaluated in the study, typical clinical findings of pure hypohidrotic ectodermal displasia (HED) were seen, such as missing teeth, dry skin, hair and nail disorders. CBCT images were obtained from 12 of the 36 cases, aged 1.5- 45 years, and orthodontic analyses were made on these images. Results The clinical and radiological evaluations determined, hypodontia or oligodontia, breathing problems, sweating problems, a history of fever, sparse hair, saddle nose, skin peeling, hypopigmentation, hyperpigmentation, finger and nail deformities, conical teeth anomalies, abnormal tooth root formation, tooth resorption in the root, gingivitis, history of epilepsy, absent lachrymal canals and vision problems in the cases which included to the study. Conclusions Ectodermal dysplasia cases have a particular place in dentistry and require a professional, multi-disciplinary approach in respect of the chewing function, orthognathic problems, growth, oral and dental health. It has been understood that with data obtained from modern technologies such as three-dimensional dental tomography and the treatments applied, the quality of life of these cases can be improved. Key words: Ectodermal dysplasia, three-dimensional dental tomography. PMID:25662550

  13. Sparse Regression as a Sparse Eigenvalue Problem

    NASA Technical Reports Server (NTRS)

    Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai

    2008-01-01

    We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization

  14. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION.

    PubMed

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-06-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression.

  15. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION

    PubMed Central

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2014-01-01

    Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression. PMID:25598560

  16. Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging

    NASA Astrophysics Data System (ADS)

    Afik, Eldad

    2015-09-01

    Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection.

  17. Two alternate proofs of Wang's lune formula for sparse distributed memory and an integral approximation

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1988-01-01

    In Kanerva's Sparse Distributed Memory, writing to and reading from the memory are done in relation to spheres in an n-dimensional binary vector space. Thus it is important to know how many points are in the intersection of two spheres in this space. Two proofs are given of Wang's formula for spheres of unequal radii, and an integral approximation for the intersection in this case.

  18. Robust Multi Sensor Classification via Jointly Sparse Representation

    DTIC Science & Technology

    2016-03-14

    rank, sensor network, dictionary learning REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...with ultrafast laser pulses, Optics Express, (04 2015): 10521. doi: Xiaoxia Sun, Nasser M. Nasrabadi, Trac D. Tran. Task-Driven Dictionary Learning...in dictionary design, compressed sensors design, and optimization in sparse recovery also helps. We are able to advance the state of the art

  19. A compressive-sensing Fourier-transform on-chip Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Podmore, Hugh; Scott, Alan; Lee, Regina

    2018-02-01

    We demonstrate a novel compressive sensing Fourier-transform spectrometer (FTS) for snapshot Raman spectroscopy in a compact format. The on-chip FTS consists of a set of planar-waveguide Mach-Zehnder interferometers (MZIs) arrayed on a photonic chip, effecting a discrete Fourier-transform of the input spectrum. Incoherence between the sampling domain (time), and the spectral domain (frequency) permits compressive sensing retrieval using undersampled interferograms for sparse spectra such as Raman emission. In our fabricated device we retain our chosen bandwidth and resolution while reducing the number of MZIs, e.g. the size of the interferogram, to 1/4th critical sampling. This architecture simultaneously reduces chip footprint and concentrates the interferogram in fewer pixels to improve the signal to noise ratio. Our device collects interferogram samples simultaneously, therefore a time-gated detector may be used to separate Raman peaks from sample fluorescence. A challenge for FTS waveguide spectrometers is to achieve multi-aperture high throughput broadband coupling to a large number of single-mode waveguides. A multi-aperture design allows one to increase the bandwidth and spectral resolution without sacrificing optical throughput. In this device, multi-aperture coupling is achieved using an array of microlenses bonded to the surface of the chip, and aligned with a grid of vertically illuminated waveguide apertures. The microlens array accepts a collimated beam with near 100% fill-factor, and the resulting spherical wavefronts are coupled into the single-mode waveguides using 45& mirrors etched into the waveguide layer via focused ion-beam (FIB). The interferogram from the waveguide outputs is imaged using a CCD, and inverted via l1-norm minimization to correctly retrieve a sparse input spectrum.

  20. Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning.

    PubMed

    Pilarski, Patrick M; Dawson, Michael R; Degris, Thomas; Fahimi, Farbod; Carey, Jason P; Sutton, Richard S

    2011-01-01

    As a contribution toward the goal of adaptable, intelligent artificial limbs, this work introduces a continuous actor-critic reinforcement learning method for optimizing the control of multi-function myoelectric devices. Using a simulated upper-arm robotic prosthesis, we demonstrate how it is possible to derive successful limb controllers from myoelectric data using only a sparse human-delivered training signal, without requiring detailed knowledge about the task domain. This reinforcement-based machine learning framework is well suited for use by both patients and clinical staff, and may be easily adapted to different application domains and the needs of individual amputees. To our knowledge, this is the first my-oelectric control approach that facilitates the online learning of new amputee-specific motions based only on a one-dimensional (scalar) feedback signal provided by the user of the prosthesis. © 2011 IEEE

  1. SIAM Conference on Parallel Processing for Scientific Computing, 4th, Chicago, IL, Dec. 11-13, 1989, Proceedings

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack (Editor); Messina, Paul (Editor); Sorensen, Danny C. (Editor); Voigt, Robert G. (Editor)

    1990-01-01

    Attention is given to such topics as an evaluation of block algorithm variants in LAPACK and presents a large-grain parallel sparse system solver, a multiprocessor method for the solution of the generalized Eigenvalue problem on an interval, and a parallel QR algorithm for iterative subspace methods on the CM2. A discussion of numerical methods includes the topics of asynchronous numerical solutions of PDEs on parallel computers, parallel homotopy curve tracking on a hypercube, and solving Navier-Stokes equations on the Cedar Multi-Cluster system. A section on differential equations includes a discussion of a six-color procedure for the parallel solution of elliptic systems using the finite quadtree structure, data parallel algorithms for the finite element method, and domain decomposition methods in aerodynamics. Topics dealing with massively parallel computing include hypercube vs. 2-dimensional meshes and massively parallel computation of conservation laws. Performance and tools are also discussed.

  2. From Wheatstone to Cameron and beyond: overview in 3-D and 4-D imaging technology

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine

    2012-02-01

    This paper reviews three-dimensional (3-D) and four-dimensional (4-D) imaging technology, from Wheatstone through today, with some prognostications for near future applications. This field is rich in variety, subject specialty, and applications. A major trend, multi-view stereoscopy, is moving the field forward to real-time wide-angle 3-D reconstruction as breakthroughs in parallel processing and multi-processor computers enable very fast processing. Real-time holography meets 4-D imaging reconstruction at the goal of achieving real-time, interactive, 3-D imaging. Applications to telesurgery and telemedicine as well as to the needs of the defense and intelligence communities are also discussed.

  3. Two-Dimensional Signal Processing, Optical Information Storage and Processing, and Electromagnetic Measurements

    DTIC Science & Technology

    1994-05-16

    analysis of anisotropic grating diffraction, perfor- mance analysis of Givens rotation integrated optical interdigitated-electrode cross- channel Bragg...11. T. R. Gardos and R. M. Mersereau, "FIR filtering on a lattice with periodically deleted samples," Proc. 1991 IEEE Int. Conf. on Acoustics...pp. vol. 1, pp. 301-311, July 1992. 23. T. R. Gardos , K. Nayebi, and R. M. Mersereau, "Time domain analysis of multi- dimensional multi-rate filter

  4. Extracting oscillation frequencies from sparse spectra: Fourier analysis

    NASA Astrophysics Data System (ADS)

    Jerzykiewicz, M.

    2008-12-01

    I begin by explaining the properties of spectral windows of time-series data. Emphasis is on data obtained at a single geographic longitude, but ground-based multi-longitude cam- paigns and space missions such as MOST and Hipparcos are not entirely neglected. In the second section, I consider the Fourier transform of time-series data and the procedure of pre-whitening. Sect. 3 is devoted to the pioneers of the subject. In Sect. 4, I suggest how to avoid pitfalls in the practice of periodogram-analysing variable-stars observations. In the last section, I venture an opinion.

  5. A quantitative study on magnesium alloy stent biodegradation.

    PubMed

    Gao, Yuanming; Wang, Lizhen; Gu, Xuenan; Chu, Zhaowei; Guo, Meng; Fan, Yubo

    2018-06-06

    Insufficient scaffolding time in the process of rapid corrosion is the main problem of magnesium alloy stent (MAS). Finite element method had been used to investigate corrosion of MAS. However, related researches mostly described all elements suffered corrosion in view of one-dimensional corrosion. Multi-dimensional corrosions significantly influence mechanical integrity of MAS structures such as edges and corners. In this study, the effects of multi-dimensional corrosion were studied using experiment quantitatively, then a phenomenological corrosion model was developed to consider these effects. We implemented immersion test with magnesium alloy (AZ31B) cubes, which had different numbers of exposed surfaces to analyze differences of dimension. It was indicated that corrosion rates of cubes are almost proportional to their exposed-surface numbers, especially when pitting corrosions are not marked. The cubes also represented the hexahedron elements in simulation. In conclusion, corrosion rate of every element accelerates by increasing corrosion-surface numbers in multi-dimensional corrosion. The damage ratios among elements with the same size are proportional to the ratios of corrosion-surface numbers under uniform corrosion. The finite element simulation using proposed model provided more details of changes of morphology and mechanics in scaffolding time by removing 25.7% of elements of MAS. The proposed corrosion model reflected the effects of multi-dimension on corrosions. It would be used to predict degradation process of MAS quantitatively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Efficient convolutional sparse coding

    DOEpatents

    Wohlberg, Brendt

    2017-06-20

    Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.

  7. Sparse 4D TomoSAR imaging in the presence of non-linear deformation

    NASA Astrophysics Data System (ADS)

    Khwaja, Ahmed Shaharyar; ćetin, Müjdat

    2018-04-01

    In this paper, we present a sparse four-dimensional tomographic synthetic aperture radar (4D TomoSAR) imaging scheme that can estimate elevation and linear as well as non-linear seasonal deformation rates of scatterers using the interferometric phase. Unlike existing sparse processing techniques that use fixed dictionaries based on a linear deformation model, we use a variable dictionary for the non-linear deformation in the form of seasonal sinusoidal deformation, in addition to the fixed dictionary for the linear deformation. We estimate the amplitude of the sinusoidal deformation using an optimization method and create the variable dictionary using the estimated amplitude. We show preliminary results using simulated data that demonstrate the soundness of our proposed technique for sparse 4D TomoSAR imaging in the presence of non-linear deformation.

  8. Sparse partial least squares regression for simultaneous dimension reduction and variable selection

    PubMed Central

    Chun, Hyonho; Keleş, Sündüz

    2010-01-01

    Partial least squares regression has been an alternative to ordinary least squares for handling multicollinearity in several areas of scientific research since the 1960s. It has recently gained much attention in the analysis of high dimensional genomic data. We show that known asymptotic consistency of the partial least squares estimator for a univariate response does not hold with the very large p and small n paradigm. We derive a similar result for a multivariate response regression with partial least squares. We then propose a sparse partial least squares formulation which aims simultaneously to achieve good predictive performance and variable selection by producing sparse linear combinations of the original predictors. We provide an efficient implementation of sparse partial least squares regression and compare it with well-known variable selection and dimension reduction approaches via simulation experiments. We illustrate the practical utility of sparse partial least squares regression in a joint analysis of gene expression and genomewide binding data. PMID:20107611

  9. Inference for High-dimensional Differential Correlation Matrices *

    PubMed Central

    Cai, T. Tony; Zhang, Anru

    2015-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed. PMID:26500380

  10. Face recognition from unconstrained three-dimensional face images using multitask sparse representation

    NASA Astrophysics Data System (ADS)

    Bentaieb, Samia; Ouamri, Abdelaziz; Nait-Ali, Amine; Keche, Mokhtar

    2018-01-01

    We propose and evaluate a three-dimensional (3D) face recognition approach that applies the speeded up robust feature (SURF) algorithm to the depth representation of shape index map, under real-world conditions, using only a single gallery sample for each subject. First, the 3D scans are preprocessed, then SURF is applied on the shape index map to find interest points and their descriptors. Each 3D face scan is represented by keypoints descriptors, and a large dictionary is built from all the gallery descriptors. At the recognition step, descriptors of a probe face scan are sparsely represented by the dictionary. A multitask sparse representation classification is used to determine the identity of each probe face. The feasibility of the approach that uses the SURF algorithm on the shape index map for face identification/authentication is checked through an experimental investigation conducted on Bosphorus, University of Milano Bicocca, and CASIA 3D datasets. It achieves an overall rank one recognition rate of 97.75%, 80.85%, and 95.12%, respectively, on these datasets.

  11. Optimization of sparse synthetic transmit aperture imaging with coded excitation and frequency division.

    PubMed

    Behar, Vera; Adam, Dan

    2005-12-01

    An effective aperture approach is used for optimization of a sparse synthetic transmit aperture (STA) imaging system with coded excitation and frequency division. A new two-stage algorithm is proposed for optimization of both the positions of the transmit elements and the weights of the receive elements. In order to increase the signal-to-noise ratio in a synthetic aperture system, temporal encoding of the excitation signals is employed. When comparing the excitation by linear frequency modulation (LFM) signals and phase shift key modulation (PSKM) signals, the analysis shows that chirps are better for excitation, since at the output of a compression filter the sidelobes generated are much smaller than those produced by the binary PSKM signals. Here, an implementation of a fast STA imaging is studied by spatial encoding with frequency division of the LFM signals. The proposed system employs a 64-element array with only four active elements used during transmit. The two-dimensional point spread function (PSF) produced by such a sparse STA system is compared to the PSF produced by an equivalent phased array system, using the Field II simulation program. The analysis demonstrates the superiority of the new sparse STA imaging system while using coded excitation and frequency division. Compared to a conventional phased array imaging system, this system acquires images of equivalent quality 60 times faster, when the transmit elements are fired in pairs consecutively and the power level used during transmit is very low. The fastest acquisition time is achieved when all transmit elements are fired simultaneously, which improves detectability, but at the cost of a slight degradation of the axial resolution. In real-time implementation, however, it must be borne in mind that the frame rate of a STA imaging system depends not only on the acquisition time of the data but also on the processing time needed for image reconstruction. Comparing to phased array imaging, a significant increase in the frame rate of a STA imaging system is possible if and only if an equivalent time efficient algorithm is used for image reconstruction.

  12. EMD-WVD time-frequency distribution for analysis of multi-component signals

    NASA Astrophysics Data System (ADS)

    Chai, Yunzi; Zhang, Xudong

    2016-10-01

    Time-frequency distribution (TFD) is two-dimensional function that indicates the time-varying frequency content of one-dimensional signals. And The Wigner-Ville distribution (WVD) is an important and effective time-frequency analysis method. The WVD can efficiently show the characteristic of a mono-component signal. However, a major drawback is the extra cross-terms when multi-component signals are analyzed by WVD. In order to eliminating the cross-terms, we decompose signals into single frequency components - Intrinsic Mode Function (IMF) - by using the Empirical Mode decomposition (EMD) first, then use WVD to analyze each single IMF. In this paper, we define this new time-frequency distribution as EMD-WVD. And the experiment results show that the proposed time-frequency method can solve the cross-terms problem effectively and improve the accuracy of WVD time-frequency analysis.

  13. Reduction of multi-dimensional laboratory data to a two-dimensional plot: a novel technique for the identification of laboratory error.

    PubMed

    Kazmierczak, Steven C; Leen, Todd K; Erdogmus, Deniz; Carreira-Perpinan, Miguel A

    2007-01-01

    The clinical laboratory generates large amounts of patient-specific data. Detection of errors that arise during pre-analytical, analytical, and post-analytical processes is difficult. We performed a pilot study, utilizing a multidimensional data reduction technique, to assess the utility of this method for identifying errors in laboratory data. We evaluated 13,670 individual patient records collected over a 2-month period from hospital inpatients and outpatients. We utilized those patient records that contained a complete set of 14 different biochemical analytes. We used two-dimensional generative topographic mapping to project the 14-dimensional record to a two-dimensional space. The use of a two-dimensional generative topographic mapping technique to plot multi-analyte patient data as a two-dimensional graph allows for the rapid identification of potentially anomalous data. Although we performed a retrospective analysis, this technique has the benefit of being able to assess laboratory-generated data in real time, allowing for the rapid identification and correction of anomalous data before they are released to the physician. In addition, serial laboratory multi-analyte data for an individual patient can also be plotted as a two-dimensional plot. This tool might also be useful for assessing patient wellbeing and prognosis.

  14. Time-Resolved and Spectroscopic Three-Dimensional Optical Breast Tomography

    DTIC Science & Technology

    2009-03-01

    polarization sensitive imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON R. R...project; • Development of a near-infrared center of intensity time gated imaging approach; and • Polarization sensitive imaging. We provide an...spectroscopic imaging arrangement, and a multi-source illumination and multi- detector signal acquisition arrangement. 5 5.1.1. Time-resolved transillumination

  15. Effects of ambient conditions on the risk of pressure injuries in bedridden patients-multi-physics modelling of microclimate.

    PubMed

    Zeevi, Tal; Levy, Ayelet; Brauner, Neima; Gefen, Amit

    2018-06-01

    Scientific evidence regarding microclimate and its effects on the risk of pressure ulcers (PU) remains sparse. It is known that elevated skin temperatures and moisture may affect metabolic demand as well as the mechanical behaviour of the tissue. In this study, we incorporated these microclimate factors into a novel, 3-dimensional multi-physics coupled model of the human buttocks, which simultaneously determines the biothermal and biomechanical behaviours of the buttocks in supine lying on different support surfaces. We compared 3 simulated thermally controlled mattresses with 2 reference foam mattresses. A tissue damage score was numerically calculated in a relevant volume of the model, and the cooling effect of each 1°C decrease of tissue temperature was deduced. Damage scores of tissues were substantially lower for the non-foam mattresses compared with the foams. The percentage tissue volume at risk within the volume of interest was found to grow exponentially as the average tissue temperature increased. The resultant average sacral skin temperature was concluded to be a good predictor for an increased risk of PU/injuries. Each 1°C increase contributes approximately 14 times as much to the risk with respect to an increase of 1 mmHg of pressure. These findings highlight the advantages of using thermally controlled support surfaces as well as the need to further assess the potential damage that may be caused by uncontrolled microclimate conditions on inadequate support surfaces in at-risk patients. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  16. An evaluation of clinical, radiological and three-dimensional dental tomography findings in ectodermal dysplasia cases.

    PubMed

    Doğan, Mehmet-Sinan; Callea, Michele; Yavuz, Ìzzet; Aksoy, Orhan; Clarich, Gabriella; Günay, Ayse; Günay, Ahmet; Güven, Sedat; Maglione, Michele; Akkuş, Zeki

    2015-05-01

    This study aimed to review the results related to head and jaw disorders in cases of ectodermal dysplasia. The evaluation of ectodermal dysplasia cases was made by clinical examination and examination of the jaw and facial areas radiologically and on cone-beam 3-dimensional dental tomography (CBCT) images. In the 36 cases evaluated in the study, typical clinical findings of pure hypohidrotic ectodermal displasia (HED) were seen, such as missing teeth, dry skin, hair and nail disorders. CBCT images were obtained from 12 of the 36 cases, aged 1.5- 45 years, and orthodontic analyses were made on these images. The clinical and radiological evaluations determined, hypodontia or oligodontia, breathing problems, sweating problems, a history of fever, sparse hair, saddle nose, skin peeling, hypopigmentation, hyperpigmentation, finger and nail deformities, conical teeth anomalies, abnormal tooth root formation, tooth resorption in the root, gingivitis, history of epilepsy, absent lachrymal canals and vision problems in the cases which included to the study. Ectodermal dysplasia cases have a particular place in dentistry and require a professional, multi-disciplinary approach in respect of the chewing function, orthognathic problems, growth, oral and dental health. It has been understood that with data obtained from modern technologies such as three-dimensional dental tomography and the treatments applied, the quality of life of these cases can be improved.

  17. A novel method for 3D measurement of RFID multi-tag network based on matching vision and wavelet

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiao; Yu, Xiaolei; Zhao, Zhimin; Wang, Donghua; Zhang, Wenjie; Liu, Zhenlu; Lu, Dongsheng; Dong, Dingbang

    2018-07-01

    In the field of radio frequency identification (RFID), the three-dimensional (3D) distribution of RFID multi-tag networks has a significant impact on their reading performance. At the same time, in order to realize the anti-collision of RFID multi-tag networks in practical engineering applications, the 3D distribution of RFID multi-tag networks must be measured. In this paper, a novel method for the 3D measurement of RFID multi-tag networks is proposed. A dual-CCD system (vertical and horizontal cameras) is used to obtain images of RFID multi-tag networks from different angles. Then, the wavelet threshold denoising method is used to remove noise in the obtained images. The template matching method is used to determine the two-dimensional coordinates and vertical coordinate of each tag. The 3D coordinates of each tag are obtained subsequently. Finally, a model of the nonlinear relation between the 3D coordinate distribution of the RFID multi-tag network and the corresponding reading distance is established using the wavelet neural network. The experiment results show that the average prediction relative error is 0.71% and the time cost is 2.17 s. The values of the average prediction relative error and time cost are smaller than those of the particle swarm optimization neural network and genetic algorithm–back propagation neural network. The time cost of the wavelet neural network is about 1% of that of the other two methods. The method proposed in this paper has a smaller relative error. The proposed method can improve the real-time performance of RFID multi-tag networks and the overall dynamic performance of multi-tag networks.

  18. A Middleware Solution for Wireless IoT Applications in Sparse Smart Cities

    PubMed Central

    Lanzone, Stefano; Riberto, Giulio; Stefanelli, Cesare; Tortonesi, Mauro

    2017-01-01

    The spread of off-the-shelf mobile devices equipped with multiple wireless interfaces together with sophisticated sensors is paving the way to novel wireless Internet of Things (IoT) environments, characterized by multi-hop infrastructure-less wireless networks where devices carried by users act as sensors/actuators as well as network nodes. In particular, the paper presents Real Ad-hoc Multi-hop Peer-to peer-Wireless IoT Application (RAMP-WIA), a novel solution that facilitates the development, deployment, and management of applications in sparse Smart City environments, characterized by users willing to collaborate by allowing new applications to be deployed on their smartphones to remotely monitor and control fixed/mobile devices. RAMP-WIA allows users to dynamically configure single-hop wireless links, to manage opportunistically multi-hop packet dispatching considering that the network topology (together with the availability of sensors and actuators) may abruptly change, to actuate reliably sensor nodes specifically considering that only part of them could be actually reachable in a timely manner, and to upgrade dynamically the nodes through over-the-air distribution of new software components. The paper also reports the performance of RAMP-WIA on simple but realistic cases of small-scale deployment scenarios with off-the-shelf Android smartphones and Raspberry Pi devices; these results show not only the feasibility and soundness of the proposed approach, but also the efficiency of the middleware implemented when deployed on real testbeds. PMID:29099745

  19. A Middleware Solution for Wireless IoT Applications in Sparse Smart Cities.

    PubMed

    Bellavista, Paolo; Giannelli, Carlo; Lanzone, Stefano; Riberto, Giulio; Stefanelli, Cesare; Tortonesi, Mauro

    2017-11-03

    The spread of off-the-shelf mobile devices equipped with multiple wireless interfaces together with sophisticated sensors is paving the way to novel wireless Internet of Things (IoT) environments, characterized by multi-hop infrastructure-less wireless networks where devices carried by users act as sensors/actuators as well as network nodes. In particular, the paper presents Real Ad-hoc Multi-hop Peer-to peer-Wireless IoT Application (RAMP-WIA), a novel solution that facilitates the development, deployment, and management of applications in sparse Smart City environments, characterized by users willing to collaborate by allowing new applications to be deployed on their smartphones to remotely monitor and control fixed/mobile devices. RAMP-WIA allows users to dynamically configure single-hop wireless links, to manage opportunistically multi-hop packet dispatching considering that the network topology (together with the availability of sensors and actuators) may abruptly change, to actuate reliably sensor nodes specifically considering that only part of them could be actually reachable in a timely manner, and to upgrade dynamically the nodes through over-the-air distribution of new software components. The paper also reports the performance of RAMP-WIA on simple but realistic cases of small-scale deployment scenarios with off-the-shelf Android smartphones and Raspberry Pi devices; these results show not only the feasibility and soundness of the proposed approach, but also the efficiency of the middleware implemented when deployed on real testbeds.

  20. Multi-frame linear regressive filter for the measurement of infrared pixel spatial response and MTF from sparse data.

    PubMed

    Huard, Edouard; Derelle, Sophie; Jaeck, Julien; Nghiem, Jean; Haïdar, Riad; Primot, Jérôme

    2018-03-05

    A challenging point in the prediction of the image quality of infrared imaging systems is the evaluation of the detector modulation transfer function (MTF). In this paper, we present a linear method to get a 2D continuous MTF from sparse spectral data. Within the method, an object with a predictable sparse spatial spectrum is imaged by the focal plane array. The sparse data is then treated to return the 2D continuous MTF with the hypothesis that all the pixels have an identical spatial response. The linearity of the treatment is a key point to estimate directly the error bars of the resulting detector MTF. The test bench will be presented along with measurement tests on a 25 μm pitch InGaAs detector.

  1. Multi-Dimensional Asymptotically Stable 4th Order Accurate Schemes for the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Ditkowski, Adi

    1996-01-01

    An algorithm is presented which solves the multi-dimensional diffusion equation on co mplex shapes to 4th-order accuracy and is asymptotically stable in time. This bounded-error result is achieved by constructing, on a rectangular grid, a differentiation matrix whose symmetric part is negative definite. The differentiation matrix accounts for the Dirichlet boundary condition by imposing penalty like terms. Numerical examples in 2-D show that the method is effective even where standard schemes, stable by traditional definitions fail.

  2. A new approach for solving seismic tomography problems and assessing the uncertainty through the use of graph theory and direct methods

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.; Davis, T. A.

    2016-12-01

    Seismic tomography inverse problems are among the largest high-dimensional parameter estimation tasks in Earth science. We show how combinatorics and graph theory can be used to analyze the structure of such problems, and to effectively decompose them into smaller ones that can be solved efficiently by means of the least squares method. In combination with recent high performance direct sparse algorithms, this reduction in dimensionality allows for an efficient computation of the model resolution and covariance matrices using limited resources. Furthermore, we show that a new sparse singular value decomposition method can be used to obtain the complete spectrum of the singular values. This procedure provides the means for more objective regularization and further dimensionality reduction of the problem. We apply this methodology to a moderate size, non-linear seismic tomography problem to image the structure of the crust and the upper mantle beneath Japan using local deep earthquakes recorded by the High Sensitivity Seismograph Network stations.

  3. Compressed digital holography: from micro towards macro

    NASA Astrophysics Data System (ADS)

    Schretter, Colas; Bettens, Stijn; Blinder, David; Pesquet-Popescu, Béatrice; Cagnazzo, Marco; Dufaux, Frédéric; Schelkens, Peter

    2016-09-01

    signal processing methods from software-driven computer engineering and applied mathematics. The compressed sensing theory in particular established a practical framework for reconstructing the scene content using few linear combinations of complex measurements and a sparse prior for regularizing the solution. Compressed sensing found direct applications in digital holography for microscopy. Indeed, the wave propagation phenomenon in free space mixes in a natural way the spatial distribution of point sources from the 3-dimensional scene. As the 3-dimensional scene is mapped to a 2-dimensional hologram, the hologram samples form a compressed representation of the scene as well. This overview paper discusses contributions in the field of compressed digital holography at the micro scale. Then, an outreach on future extensions towards the real-size macro scale is discussed. Thanks to advances in sensor technologies, increasing computing power and the recent improvements in sparse digital signal processing, holographic modalities are on the verge of practical high-quality visualization at a macroscopic scale where much higher resolution holograms must be acquired and processed on the computer.

  4. APPLICATION OF THE MODELS-3 COMMUNITY MULTI-SCALE AIR QUALITY (CMAQ) MODEL SYSTEM TO SOS/NASHVILLE 1999

    EPA Science Inventory

    The Models-3 Community Multi-scale Air Quality (CMAQ) model, first released by the USEPA in 1999 (Byun and Ching. 1999), continues to be developed and evaluated. The principal components of the CMAQ system include a comprehensive emission processor known as the Sparse Matrix O...

  5. A weighted ℓ{sub 1}-minimization approach for sparse polynomial chaos expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Ji; Hampton, Jerrad; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2014-06-15

    This work proposes a method for sparse polynomial chaos (PC) approximation of high-dimensional stochastic functions based on non-adapted random sampling. We modify the standard ℓ{sub 1}-minimization algorithm, originally proposed in the context of compressive sampling, using a priori information about the decay of the PC coefficients, when available, and refer to the resulting algorithm as weightedℓ{sub 1}-minimization. We provide conditions under which we may guarantee recovery using this weighted scheme. Numerical tests are used to compare the weighted and non-weighted methods for the recovery of solutions to two differential equations with high-dimensional random inputs: a boundary value problem with amore » random elliptic operator and a 2-D thermally driven cavity flow with random boundary condition.« less

  6. Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.

    PubMed

    Wu, Hulin; Lu, Tao; Xue, Hongqi; Liang, Hua

    2014-04-02

    The gene regulation network (GRN) is a high-dimensional complex system, which can be represented by various mathematical or statistical models. The ordinary differential equation (ODE) model is one of the popular dynamic GRN models. High-dimensional linear ODE models have been proposed to identify GRNs, but with a limitation of the linear regulation effect assumption. In this article, we propose a sparse additive ODE (SA-ODE) model, coupled with ODE estimation methods and adaptive group LASSO techniques, to model dynamic GRNs that could flexibly deal with nonlinear regulation effects. The asymptotic properties of the proposed method are established and simulation studies are performed to validate the proposed approach. An application example for identifying the nonlinear dynamic GRN of T-cell activation is used to illustrate the usefulness of the proposed method.

  7. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. A lock-free priority queue design based on multi-dimensional linked lists

    DOE PAGES

    Dechev, Damian; Zhang, Deli

    2015-04-03

    The throughput of concurrent priority queues is pivotal to multiprocessor applications such as discrete event simulation, best-first search and task scheduling. Existing lock-free priority queues are mostly based on skiplists, which probabilistically create shortcuts in an ordered list for fast insertion of elements. The use of skiplists eliminates the need of global rebalancing in balanced search trees and ensures logarithmic sequential search time on average, but the worst-case performance is linear with respect to the input size. In this paper, we propose a quiescently consistent lock-free priority queue based on a multi-dimensional list that guarantees worst-case search time of O(logN)more » for key universe of size N. The novel multi-dimensional list (MDList) is composed of nodes that contain multiple links to child nodes arranged by their dimensionality. The insertion operation works by first injectively mapping the scalar key to a high-dimensional vector, then uniquely locating the target position by using the vector as coordinates. Nodes in MDList are ordered by their coordinate prefixes and the ordering property of the data structure is readily maintained during insertion without rebalancing nor randomization. Furthermore, in our experimental evaluation using a micro-benchmark, our priority queue achieves an average of 50% speedup over the state of the art approaches under high concurrency.« less

  9. A lock-free priority queue design based on multi-dimensional linked lists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechev, Damian; Zhang, Deli

    The throughput of concurrent priority queues is pivotal to multiprocessor applications such as discrete event simulation, best-first search and task scheduling. Existing lock-free priority queues are mostly based on skiplists, which probabilistically create shortcuts in an ordered list for fast insertion of elements. The use of skiplists eliminates the need of global rebalancing in balanced search trees and ensures logarithmic sequential search time on average, but the worst-case performance is linear with respect to the input size. In this paper, we propose a quiescently consistent lock-free priority queue based on a multi-dimensional list that guarantees worst-case search time of O(logN)more » for key universe of size N. The novel multi-dimensional list (MDList) is composed of nodes that contain multiple links to child nodes arranged by their dimensionality. The insertion operation works by first injectively mapping the scalar key to a high-dimensional vector, then uniquely locating the target position by using the vector as coordinates. Nodes in MDList are ordered by their coordinate prefixes and the ordering property of the data structure is readily maintained during insertion without rebalancing nor randomization. Furthermore, in our experimental evaluation using a micro-benchmark, our priority queue achieves an average of 50% speedup over the state of the art approaches under high concurrency.« less

  10. Multi-channel feature dictionaries for RGB-D object recognition

    NASA Astrophysics Data System (ADS)

    Lan, Xiaodong; Li, Qiming; Chong, Mina; Song, Jian; Li, Jun

    2018-04-01

    Hierarchical matching pursuit (HMP) is a popular feature learning method for RGB-D object recognition. However, the feature representation with only one dictionary for RGB channels in HMP does not capture sufficient visual information. In this paper, we propose multi-channel feature dictionaries based feature learning method for RGB-D object recognition. The process of feature extraction in the proposed method consists of two layers. The K-SVD algorithm is used to learn dictionaries in sparse coding of these two layers. In the first-layer, we obtain features by performing max pooling on sparse codes of pixels in a cell. And the obtained features of cells in a patch are concatenated to generate patch jointly features. Then, patch jointly features in the first-layer are used to learn the dictionary and sparse codes in the second-layer. Finally, spatial pyramid pooling can be applied to the patch jointly features of any layer to generate the final object features in our method. Experimental results show that our method with first or second-layer features can obtain a comparable or better performance than some published state-of-the-art methods.

  11. Stationary Wavelet-based Two-directional Two-dimensional Principal Component Analysis for EMG Signal Classification

    NASA Astrophysics Data System (ADS)

    Ji, Yi; Sun, Shanlin; Xie, Hong-Bo

    2017-06-01

    Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis.

  12. Embedded sparse representation of fMRI data via group-wise dictionary optimization

    NASA Astrophysics Data System (ADS)

    Zhu, Dajiang; Lin, Binbin; Faskowitz, Joshua; Ye, Jieping; Thompson, Paul M.

    2016-03-01

    Sparse learning enables dimension reduction and efficient modeling of high dimensional signals and images, but it may need to be tailored to best suit specific applications and datasets. Here we used sparse learning to efficiently represent functional magnetic resonance imaging (fMRI) data from the human brain. We propose a novel embedded sparse representation (ESR), to identify the most consistent dictionary atoms across different brain datasets via an iterative group-wise dictionary optimization procedure. In this framework, we introduced additional criteria to make the learned dictionary atoms more consistent across different subjects. We successfully identified four common dictionary atoms that follow the external task stimuli with very high accuracy. After projecting the corresponding coefficient vectors back into the 3-D brain volume space, the spatial patterns are also consistent with traditional fMRI analysis results. Our framework reveals common features of brain activation in a population, as a new, efficient fMRI analysis method.

  13. Parallel transformation of K-SVD solar image denoising algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Youwen; Tian, Yu; Li, Mei

    2017-02-01

    The images obtained by observing the sun through a large telescope always suffered with noise due to the low SNR. K-SVD denoising algorithm can effectively remove Gauss white noise. Training dictionaries for sparse representations is a time consuming task, due to the large size of the data involved and to the complexity of the training algorithms. In this paper, an OpenMP parallel programming language is proposed to transform the serial algorithm to the parallel version. Data parallelism model is used to transform the algorithm. Not one atom but multiple atoms updated simultaneously is the biggest change. The denoising effect and acceleration performance are tested after completion of the parallel algorithm. Speedup of the program is 13.563 in condition of using 16 cores. This parallel version can fully utilize the multi-core CPU hardware resources, greatly reduce running time and easily to transplant in multi-core platform.

  14. Sparse approximation problem: how rapid simulated annealing succeeds and fails

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki

    2016-03-01

    Information processing techniques based on sparseness have been actively studied in several disciplines. Among them, a mathematical framework to approximately express a given dataset by a combination of a small number of basis vectors of an overcomplete basis is termed the sparse approximation. In this paper, we apply simulated annealing, a metaheuristic algorithm for general optimization problems, to sparse approximation in the situation where the given data have a planted sparse representation and noise is present. The result in the noiseless case shows that our simulated annealing works well in a reasonable parameter region: the planted solution is found fairly rapidly. This is true even in the case where a common relaxation of the sparse approximation problem, the G-relaxation, is ineffective. On the other hand, when the dimensionality of the data is close to the number of non-zero components, another metastable state emerges, and our algorithm fails to find the planted solution. This phenomenon is associated with a first-order phase transition. In the case of very strong noise, it is no longer meaningful to search for the planted solution. In this situation, our algorithm determines a solution with close-to-minimum distortion fairly quickly.

  15. Exposure-time based modeling of nonlinear reactive transport in porous media subject to physical and geochemical heterogeneity.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Amos, Richard T; Finkel, Michael; Blowes, David W; Cirpka, Olaf A

    2016-09-01

    Transport of reactive solutes in groundwater is affected by physical and chemical heterogeneity of the porous medium, leading to complex spatio-temporal patterns of concentrations and reaction rates. For certain cases of bioreactive transport, it could be shown that the concentrations of reactive constituents in multi-dimensional domains are approximately aligned with isochrones, that is, lines of identical travel time, provided that the chemical properties of the matrix are uniform. We extend this concept to combined physical and chemical heterogeneity by additionally considering the time that a water parcel has been exposed to reactive materials, the so-called exposure time. We simulate bioreactive transport in a one-dimensional domain as function of time and exposure time, rather than space. Subsequently, we map the concentrations to multi-dimensional heterogeneous domains by means of the mean exposure time at each location in the multi-dimensional domain. Differences in travel and exposure time at a given location are accounted for as time difference. This approximation simplifies reactive-transport simulations significantly under conditions of steady-state flow when reactions are restricted to specific locations. It is not expected to be exact in realistic applications because the underlying assumption, such as neglecting transverse mixing altogether, may not hold. We quantify the error introduced by the approximation for the hypothetical case of a two-dimensional, binary aquifer made of highly-permeable, non-reactive and low-permeable, reactive materials releasing dissolved organic matter acting as electron donor for aerobic respiration and denitrification. The kinetically controlled reactions are catalyzed by two non-competitive bacteria populations, enabling microbial growth. Even though the initial biomass concentrations were uniform, the interplay between transport, non-uniform electron-donor supply, and bio-reactions led to distinct spatial patterns of the two types of biomass at late times. Results obtained by mapping the exposure-time based results to the two-dimensional domain are compared with simulations based on the two-dimensional, spatially explicit advection-dispersion-reaction equation. Once quasi-steady state has been reached, we find a good agreement in terms of the chemical-compound concentrations between the two approaches inside the reactive zones, whereas the exposure-time based model is not able to capture reactions occurring in the zones with zero electron-donor release. We conclude that exposure-time models provide good approximations of nonlinear bio-reactive transport when transverse mixing is not the overall controlling process and all reactions are essentially restricted to distinct reactive zones. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A multi-objective framework to predict flows of ungauged rivers within regions of sparse hydrometeorologic observation

    NASA Astrophysics Data System (ADS)

    Alipour, M.; Kibler, K. M.

    2017-12-01

    Despite advances in flow prediction, managers of ungauged rivers located within broad regions of sparse hydrometeorologic observation still lack prescriptive methods robust to the data challenges of such regions. We propose a multi-objective streamflow prediction framework for regions of minimum observation to select models that balance runoff efficiency with choice of accurate parameter values. We supplement sparse observed data with uncertain or low-resolution information incorporated as `soft' a priori parameter estimates. The performance of the proposed framework is tested against traditional single-objective and constrained single-objective calibrations in two catchments in a remote area of southwestern China. We find that the multi-objective approach performs well with respect to runoff efficiency in both catchments (NSE = 0.74 and 0.72), within the range of efficiencies returned by other models (NSE = 0.67 - 0.78). However, soil moisture capacity estimated by the multi-objective model resonates with a priori estimates (parameter residuals of 61 cm versus 289 and 518 cm for maximum soil moisture capacity in one catchment, and 20 cm versus 246 and 475 cm in the other; parameter residuals of 0.48 versus 0.65 and 0.7 for soil moisture distribution shape factor in one catchment, and 0.91 versus 0.79 and 1.24 in the other). Thus, optimization to a multi-criteria objective function led to very different representations of soil moisture capacity as compared to models selected by single-objective calibration, without compromising runoff efficiency. These different soil moisture representations may translate into considerably different hydrological behaviors. The proposed approach thus offers a preliminary step towards greater process understanding in regions of severe data limitations. For instance, the multi-objective framework may be an adept tool to discern between models of similar efficiency to select models that provide the "right answers for the right reasons". Managers may feel more confident to utilize such models to predict flows in fully ungauged areas.

  17. Electrical Capacitance Volume Tomography: Design and Applications

    PubMed Central

    Wang, Fei; Marashdeh, Qussai; Fan, Liang-Shih; Warsito, Warsito

    2010-01-01

    This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research. PMID:22294905

  18. Numerical simulation of two-dimensional flow over a heated carbon surface with coupled heterogeneous and homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan Federick; Chelliah, Harsha Kumar

    2017-01-01

    For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.

  19. Hawking radiation of five-dimensional charged black holes with scalar fields

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2017-09-01

    We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  20. Reduced detonation kinetics and detonation structure in one- and multi-fuel gaseous mixtures

    NASA Astrophysics Data System (ADS)

    Fomin, P. A.; Trotsyuk, A. V.; Vasil'ev, A. A.

    2017-10-01

    Two-step approximate models of chemical kinetics of detonation combustion of (i) one-fuel (CH4/air) and (ii) multi-fuel gaseous mixtures (CH4/H2/air and CH4/CO/air) are developed for the first time. The models for multi-fuel mixtures are proposed for the first time. Owing to the simplicity and high accuracy, the models can be used in multi-dimensional numerical calculations of detonation waves in corresponding gaseous mixtures. The models are in consistent with the second law of thermodynamics and Le Chatelier’s principle. Constants of the models have a clear physical meaning. Advantages of the kinetic model for detonation combustion of methane has been demonstrated via numerical calculations of a two-dimensional structure of the detonation wave in a stoichiometric and fuel-rich methane-air mixtures and stoichiometric methane-oxygen mixture. The dominant size of the detonation cell, determines in calculations, is in good agreement with all known experimental data.

  1. Parallel iterative methods for sparse linear and nonlinear equations

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1989-01-01

    As three-dimensional models are gaining importance, iterative methods will become almost mandatory. Among these, preconditioned Krylov subspace methods have been viewed as the most efficient and reliable, when solving linear as well as nonlinear systems of equations. There has been several different approaches taken to adapt iterative methods for supercomputers. Some of these approaches are discussed and the methods that deal more specifically with general unstructured sparse matrices, such as those arising from finite element methods, are emphasized.

  2. Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks

    PubMed Central

    Chen, Jianhui; Liu, Ji; Ye, Jieping

    2013-01-01

    We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We also present two projected gradient algorithms and analyze their rates of convergence in details. In addition, we illustrate the use of the presented projected gradient algorithms for the proposed multi-task learning formulation using the least squares loss. Experimental results on a collection of real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms. PMID:24077658

  3. Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks.

    PubMed

    Chen, Jianhui; Liu, Ji; Ye, Jieping

    2012-02-01

    We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We also present two projected gradient algorithms and analyze their rates of convergence in details. In addition, we illustrate the use of the presented projected gradient algorithms for the proposed multi-task learning formulation using the least squares loss. Experimental results on a collection of real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms.

  4. Spectrum recovery method based on sparse representation for segmented multi-Gaussian model

    NASA Astrophysics Data System (ADS)

    Teng, Yidan; Zhang, Ye; Ti, Chunli; Su, Nan

    2016-09-01

    Hyperspectral images can realize crackajack features discriminability for supplying diagnostic characteristics with high spectral resolution. However, various degradations may generate negative influence on the spectral information, including water absorption, bands-continuous noise. On the other hand, the huge data volume and strong redundancy among spectrums produced intense demand on compressing HSIs in spectral dimension, which also leads to the loss of spectral information. The reconstruction of spectral diagnostic characteristics has irreplaceable significance for the subsequent application of HSIs. This paper introduces a spectrum restoration method for HSIs making use of segmented multi-Gaussian model (SMGM) and sparse representation. A SMGM is established to indicating the unsymmetrical spectral absorption and reflection characteristics, meanwhile, its rationality and sparse property are discussed. With the application of compressed sensing (CS) theory, we implement sparse representation to the SMGM. Then, the degraded and compressed HSIs can be reconstructed utilizing the uninjured or key bands. Finally, we take low rank matrix recovery (LRMR) algorithm for post processing to restore the spatial details. The proposed method was tested on the spectral data captured on the ground with artificial water absorption condition and an AVIRIS-HSI data set. The experimental results in terms of qualitative and quantitative assessments demonstrate that the effectiveness on recovering the spectral information from both degradations and loss compression. The spectral diagnostic characteristics and the spatial geometry feature are well preserved.

  5. Multiple Kernel Sparse Representation based Orthogonal Discriminative Projection and Its Cost-Sensitive Extension.

    PubMed

    Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen

    2016-07-07

    Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.

  6. Sparse and redundant representations for inverse problems and recognition

    NASA Astrophysics Data System (ADS)

    Patel, Vishal M.

    Sparse and redundant representation of data enables the description of signals as linear combinations of a few atoms from a dictionary. In this dissertation, we study applications of sparse and redundant representations in inverse problems and object recognition. Furthermore, we propose two novel imaging modalities based on the recently introduced theory of Compressed Sensing (CS). This dissertation consists of four major parts. In the first part of the dissertation, we study a new type of deconvolution algorithm that is based on estimating the image from a shearlet decomposition. Shearlets provide a multi-directional and multi-scale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditional wavelets. We develop a deconvolution algorithm that allows for the approximation inversion operator to be controlled on a multi-scale and multi-directional basis. Furthermore, we develop a method for the automatic determination of the threshold values for the noise shrinkage for each scale and direction without explicit knowledge of the noise variance using a generalized cross validation method. In the second part of the dissertation, we study a reconstruction method that recovers highly undersampled images assumed to have a sparse representation in a gradient domain by using partial measurement samples that are collected in the Fourier domain. Our method makes use of a robust generalized Poisson solver that greatly aids in achieving a significantly improved performance over similar proposed methods. We will demonstrate by experiments that this new technique is more flexible to work with either random or restricted sampling scenarios better than its competitors. In the third part of the dissertation, we introduce a novel Synthetic Aperture Radar (SAR) imaging modality which can provide a high resolution map of the spatial distribution of targets and terrain using a significantly reduced number of needed transmitted and/or received electromagnetic waveforms. We demonstrate that this new imaging scheme, requires no new hardware components and allows the aperture to be compressed. Also, it presents many new applications and advantages which include strong resistance to countermesasures and interception, imaging much wider swaths and reduced on-board storage requirements. The last part of the dissertation deals with object recognition based on learning dictionaries for simultaneous sparse signal approximations and feature extraction. A dictionary is learned for each object class based on given training examples which minimize the representation error with a sparseness constraint. A novel test image is then projected onto the span of the atoms in each learned dictionary. The residual vectors along with the coefficients are then used for recognition. Applications to illumination robust face recognition and automatic target recognition are presented.

  7. Harnessing Sparse and Low-Dimensional Structures for Robust Clustering of Imagery Data

    ERIC Educational Resources Information Center

    Rao, Shankar Ramamohan

    2009-01-01

    We propose a robust framework for clustering data. In practice, data obtained from real measurement devices can be incomplete, corrupted by gross errors, or not correspond to any assumed model. We show that, by properly harnessing the intrinsic low-dimensional structure of the data, these kinds of practical problems can be dealt with in a uniform…

  8. Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

    NASA Astrophysics Data System (ADS)

    Tang, Kunkun; Congedo, Pietro M.; Abgrall, Rémi

    2016-06-01

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

  9. Behavioral modeling and digital compensation of nonlinearity in DFB lasers for multi-band directly modulated radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Li, Jianqiang; Yin, Chunjing; Chen, Hao; Yin, Feifei; Dai, Yitang; Xu, Kun

    2014-11-01

    The envisioned C-RAN concept in wireless communication sector replies on distributed antenna systems (DAS) which consist of a central unit (CU), multiple remote antenna units (RAUs) and the fronthaul links between them. As the legacy and emerging wireless communication standards will coexist for a long time, the fronthaul links are preferred to carry multi-band multi-standard wireless signals. Directly-modulated radio-over-fiber (ROF) links can serve as a lowcost option to make fronthaul connections conveying multi-band wireless signals. However, directly-modulated radioover- fiber (ROF) systems often suffer from inherent nonlinearities from directly-modulated lasers. Unlike ROF systems working at the single-band mode, the modulation nonlinearities in multi-band ROF systems can result in both in-band and cross-band nonlinear distortions. In order to address this issue, we have recently investigated the multi-band nonlinear behavior of directly-modulated DFB lasers based on multi-dimensional memory polynomial model. Based on this model, an efficient multi-dimensional baseband digital predistortion technique was developed and experimentally demonstrated for linearization of multi-band directly-modulated ROF systems.

  10. Multi-threaded Sparse Matrix-Matrix Multiplication for Many-Core and GPU Architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deveci, Mehmet; Rajamanickam, Sivasankaran; Trott, Christian Robert

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scienti c computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less

  11. The Extraction of One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, Robert A.; Gaffney, Richard L., Jr.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e.g. thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  12. The Art of Extracting One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.; Gaffney, R. L.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e:g: thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  13. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data.

    PubMed

    Becker, Natalia; Toedt, Grischa; Lichter, Peter; Benner, Axel

    2011-05-09

    Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net.We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone.Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error.Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters.The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'.We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets.

  14. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data

    PubMed Central

    2011-01-01

    Background Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net. We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone. Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Results Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error. Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. Conclusions The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters. The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'. We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets. PMID:21554689

  15. Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    2003-01-01

    In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.

  16. Two-Dimensional Computational Model for Wave Rotor Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.

  17. Fast and Adaptive Sparse Precision Matrix Estimation in High Dimensions

    PubMed Central

    Liu, Weidong; Luo, Xi

    2014-01-01

    This paper proposes a new method for estimating sparse precision matrices in the high dimensional setting. It has been popular to study fast computation and adaptive procedures for this problem. We propose a novel approach, called Sparse Column-wise Inverse Operator, to address these two issues. We analyze an adaptive procedure based on cross validation, and establish its convergence rate under the Frobenius norm. The convergence rates under other matrix norms are also established. This method also enjoys the advantage of fast computation for large-scale problems, via a coordinate descent algorithm. Numerical merits are illustrated using both simulated and real datasets. In particular, it performs favorably on an HIV brain tissue dataset and an ADHD resting-state fMRI dataset. PMID:25750463

  18. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching

    PubMed Central

    Wang, Guohua; Liu, Qiong

    2015-01-01

    Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians’ head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians’ size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only. PMID:26703611

  19. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching.

    PubMed

    Wang, Guohua; Liu, Qiong

    2015-12-21

    Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians' head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians' size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only.

  20. Three dimensional profile measurement using multi-channel detector MVM-SEM

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Makoto; Harada, Sumito; Ito, Keisuke; Murakawa, Tsutomu; Shida, Soichi; Matsumoto, Jun; Nakamura, Takayuki

    2014-07-01

    In next generation lithography (NGL) for the 1x nm node and beyond, the three dimensional (3D) shape measurements such as side wall angle (SWA) and height of feature on photomask become more critical for the process control. Until today, AFM (Atomic Force Microscope), X-SEM (cross-section Scanning Electron Microscope) and TEM (Transmission Electron Microscope) tools are normally used for 3D measurements, however, these techniques require time-consuming preparation and observation. And both X-SEM and TEM are destructive measurement techniques. This paper presents a technology for quick and non-destructive 3D shape analysis using multi-channel detector MVM-SEM (Multi Vision Metrology SEM), and also reports its accuracy and precision.

  1. Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption

    NASA Astrophysics Data System (ADS)

    Saritha, R.; Vinod Chandra, S. S.

    2017-10-01

    In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.

  2. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    NASA Astrophysics Data System (ADS)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  3. Some theorems and properties of multi-dimensional fractional Laplace transforms

    NASA Astrophysics Data System (ADS)

    Ahmood, Wasan Ajeel; Kiliçman, Adem

    2016-06-01

    The aim of this work is to study theorems and properties for the one-dimensional fractional Laplace transform, generalize some properties for the one-dimensional fractional Lapalce transform to be valid for the multi-dimensional fractional Lapalce transform and is to give the definition of the multi-dimensional fractional Lapalce transform. This study includes: dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable with some of important theorems and properties and develop of some properties for the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform. Also, we obtain a fractional Laplace inversion theorem after a short survey on fractional analysis based on the modified Riemann-Liouville derivative.

  4. TIME-DEPENDENT MULTI-GROUP MULTI-DIMENSIONAL RELATIVISTIC RADIATIVE TRANSFER CODE BASED ON SPHERICAL HARMONIC DISCRETE ORDINATE METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tominaga, Nozomu; Shibata, Sanshiro; Blinnikov, Sergei I., E-mail: tominaga@konan-u.ac.jp, E-mail: sshibata@post.kek.jp, E-mail: Sergei.Blinnikov@itep.ru

    We develop a time-dependent, multi-group, multi-dimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids that are involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) which evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed-frame approach; the source functionmore » is evaluated in the comoving frame, whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated using various test problems and comparisons with the results from a relativistic Monte Carlo code. These validations confirm that the code correctly calculates the intensity and its evolution in the computational domain. The code enables us to obtain an Eddington tensor that relates the first and third moments of intensity (energy density and radiation pressure) and is frequently used as a closure relation in radiation hydrodynamics calculations.« less

  5. Multi-channel EEG-based sleep stage classification with joint collaborative representation and multiple kernel learning.

    PubMed

    Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui

    2015-10-30

    Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Improving subjective pattern recognition in chemical senses through reduction of nonlinear effects in evaluation of sparse data

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.; Rasouli, Firooz; Wrenn, Susan E.; Subbiah, M.

    2002-11-01

    Artificial neural network models are typically useful in pattern recognition and extraction of important features in large data sets. These models are implemented in a wide variety of contexts and with diverse type of input-output data. The underlying mathematics of supervised training of neural networks is ultimately tied to the ability to approximate the nonlinearities that are inherent in network"s generalization ability. The quality and availability of sufficient data points for training and validation play a key role in the generalization ability of the network. A potential domain of applications of neural networks is in analysis of subjective data, such as in consumer science, affective neuroscience and perception of chemical senses. In applications of ANN to subjective data, it is common to rely on knowledge of the science and context for data acquisition, for instance as a priori probabilities in the Bayesian framework. In this paper, we discuss the circumstances that create challenges for success of neural network models for subjective data analysis, such as sparseness of data and cost of acquisition of additional samples. In particular, in the case of affect and perception of chemical senses, we suggest that inherent ambiguity of subjective responses could be offset by a combination of human-machine expert. We propose a method of pre- and post-processing for blind analysis of data that that relies on heuristics from human performance in interpretation of data. In particular, we offer an information-theoretic smoothing (ITS) algorithm that optimizes that geometric visualization of multi-dimensional data and improves human interpretation of the input-output view of neural network implementations. The pre- and post-processing algorithms and ITS are unsupervised. Finally, we discuss the details of an example of blind data analysis from actual taste-smell subjective data, and demonstrate the usefulness of PCA in reduction of dimensionality, as well as ITS.

  7. A Comparison of Compressed Sensing and Sparse Recovery Algorithms Applied to Simulation Data

    DOE PAGES

    Fan, Ya Ju; Kamath, Chandrika

    2016-09-01

    The move toward exascale computing for scientific simulations is placing new demands on compression techniques. It is expected that the I/O system will not be able to support the volume of data that is expected to be written out. To enable quantitative analysis and scientific discovery, we are interested in techniques that compress high-dimensional simulation data and can provide perfect or near-perfect reconstruction. In this paper, we explore the use of compressed sensing (CS) techniques to reduce the size of the data before they are written out. Using large-scale simulation data, we investigate how the sufficient sparsity condition and themore » contrast in the data affect the quality of reconstruction and the degree of compression. Also, we provide suggestions for the practical implementation of CS techniques and compare them with other sparse recovery methods. Finally, our results show that despite longer times for reconstruction, compressed sensing techniques can provide near perfect reconstruction over a range of data with varying sparsity.« less

  8. A Comparison of Compressed Sensing and Sparse Recovery Algorithms Applied to Simulation Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ya Ju; Kamath, Chandrika

    The move toward exascale computing for scientific simulations is placing new demands on compression techniques. It is expected that the I/O system will not be able to support the volume of data that is expected to be written out. To enable quantitative analysis and scientific discovery, we are interested in techniques that compress high-dimensional simulation data and can provide perfect or near-perfect reconstruction. In this paper, we explore the use of compressed sensing (CS) techniques to reduce the size of the data before they are written out. Using large-scale simulation data, we investigate how the sufficient sparsity condition and themore » contrast in the data affect the quality of reconstruction and the degree of compression. Also, we provide suggestions for the practical implementation of CS techniques and compare them with other sparse recovery methods. Finally, our results show that despite longer times for reconstruction, compressed sensing techniques can provide near perfect reconstruction over a range of data with varying sparsity.« less

  9. Beyond union of subspaces: Subspace pursuit on Grassmann manifold for data representation

    DOE PAGES

    Shen, Xinyue; Krim, Hamid; Gu, Yuantao

    2016-03-01

    Discovering the underlying structure of a high-dimensional signal or big data has always been a challenging topic, and has become harder to tackle especially when the observations are exposed to arbitrary sparse perturbations. Here in this paper, built on the model of a union of subspaces (UoS) with sparse outliers and inspired by a basis pursuit strategy, we exploit the fundamental structure of a Grassmann manifold, and propose a new technique of pursuing the subspaces systematically by solving a non-convex optimization problem using the alternating direction method of multipliers. This problem as noted is further complicated by non-convex constraints onmore » the Grassmann manifold, as well as the bilinearity in the penalty caused by the subspace bases and coefficients. Nevertheless, numerical experiments verify that the proposed algorithm, which provides elegant solutions to the sub-problems in each step, is able to de-couple the subspaces and pursue each of them under time-efficient parallel computation.« less

  10. Towards designing an optical-flow based colonoscopy tracking algorithm: a comparative study

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2013-03-01

    Automatic co-alignment of optical and virtual colonoscopy images can supplement traditional endoscopic procedures, by providing more complete information of clinical value to the gastroenterologist. In this work, we present a comparative analysis of our optical flow based technique for colonoscopy tracking, in relation to current state of the art methods, in terms of tracking accuracy, system stability, and computational efficiency. Our optical-flow based colonoscopy tracking algorithm starts with computing multi-scale dense and sparse optical flow fields to measure image displacements. Camera motion parameters are then determined from optical flow fields by employing a Focus of Expansion (FOE) constrained egomotion estimation scheme. We analyze the design choices involved in the three major components of our algorithm: dense optical flow, sparse optical flow, and egomotion estimation. Brox's optical flow method,1 due to its high accuracy, was used to compare and evaluate our multi-scale dense optical flow scheme. SIFT6 and Harris-affine features7 were used to assess the accuracy of the multi-scale sparse optical flow, because of their wide use in tracking applications; the FOE-constrained egomotion estimation was compared with collinear,2 image deformation10 and image derivative4 based egomotion estimation methods, to understand the stability of our tracking system. Two virtual colonoscopy (VC) image sequences were used in the study, since the exact camera parameters(for each frame) were known; dense optical flow results indicated that Brox's method was superior to multi-scale dense optical flow in estimating camera rotational velocities, but the final tracking errors were comparable, viz., 6mm vs. 8mm after the VC camera traveled 110mm. Our approach was computationally more efficient, averaging 7.2 sec. vs. 38 sec. per frame. SIFT and Harris affine features resulted in tracking errors of up to 70mm, while our sparse optical flow error was 6mm. The comparison among egomotion estimation algorithms showed that our FOE-constrained egomotion estimation method achieved the optimal balance between tracking accuracy and robustness. The comparative study demonstrated that our optical-flow based colonoscopy tracking algorithm maintains good accuracy and stability for routine use in clinical practice.

  11. Parallel Lattice Basis Reduction Using a Multi-threaded Schnorr-Euchner LLL Algorithm

    NASA Astrophysics Data System (ADS)

    Backes, Werner; Wetzel, Susanne

    In this paper, we introduce a new parallel variant of the LLL lattice basis reduction algorithm. Our new, multi-threaded algorithm is the first to provide an efficient, parallel implementation of the Schorr-Euchner algorithm for today’s multi-processor, multi-core computer architectures. Experiments with sparse and dense lattice bases show a speed-up factor of about 1.8 for the 2-thread and about factor 3.2 for the 4-thread version of our new parallel lattice basis reduction algorithm in comparison to the traditional non-parallel algorithm.

  12. Progress in multi-dimensional upwind differencing

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1992-01-01

    Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.

  13. A geometry package for generation of input data for a three-dimensional potential-flow program

    NASA Technical Reports Server (NTRS)

    Halsey, N. D.; Hess, J. L.

    1978-01-01

    The preparation of geometric data for input to three-dimensional potential flow programs was automated and simplified by a geometry package incorporated into the NASA Langley version of the 3-D lifting potential flow program. Input to the computer program for the geometry package consists of a very sparse set of coordinate data, often with an order of magnitude of fewer points than required for the actual potential flow calculations. Isolated components, such as wings, fuselages, etc. are paneled automatically, using one of several possible element distribution algorithms. Curves of intersection between components are calculated, using a hybrid curve-fit/surface-fit approach. Intersecting components are repaneled so that adjacent elements on either side of the intersection curves line up in a satisfactory manner for the potential-flow calculations. Many cases may be run completely (from input, through the geometry package, and through the flow calculations) without interruption. Use of the package significantly reduces the time and expense involved in making three-dimensional potential flow calculations.

  14. A novel coupling of noise reduction algorithms for particle flow simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimoń, M.J., E-mail: malgorzata.zimon@stfc.ac.uk; James Weir Fluids Lab, Mechanical and Aerospace Engineering Department, The University of Strathclyde, Glasgow G1 1XJ; Reese, J.M.

    2016-09-15

    Proper orthogonal decomposition (POD) and its extension based on time-windows have been shown to greatly improve the effectiveness of recovering smooth ensemble solutions from noisy particle data. However, to successfully de-noise any molecular system, a large number of measurements still need to be provided. In order to achieve a better efficiency in processing time-dependent fields, we have combined POD with a well-established signal processing technique, wavelet-based thresholding. In this novel hybrid procedure, the wavelet filtering is applied within the POD domain and referred to as WAVinPOD. The algorithm exhibits promising results when applied to both synthetically generated signals and particlemore » data. In this work, the simulations compare the performance of our new approach with standard POD or wavelet analysis in extracting smooth profiles from noisy velocity and density fields. Numerical examples include molecular dynamics and dissipative particle dynamics simulations of unsteady force- and shear-driven liquid flows, as well as phase separation phenomenon. Simulation results confirm that WAVinPOD preserves the dimensionality reduction obtained using POD, while improving its filtering properties through the sparse representation of data in wavelet basis. This paper shows that WAVinPOD outperforms the other estimators for both synthetically generated signals and particle-based measurements, achieving a higher signal-to-noise ratio from a smaller number of samples. The new filtering methodology offers significant computational savings, particularly for multi-scale applications seeking to couple continuum informations with atomistic models. It is the first time that a rigorous analysis has compared de-noising techniques for particle-based fluid simulations.« less

  15. On the feasibility of real-time mapping of the geoelectric field across North America

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, E. Joshua; Kelbert, Anna; Finn, Carol A.; Bedrosian, Paul A.; Balch, Christopher C.

    2018-06-08

    A review is given of the present feasibility for accurately mapping geoelectric fields across North America in near-realtime by modeling geomagnetic monitoring and magnetotelluric survey data. Should this capability be successfully developed, it could inform utility companies of magnetic-storm interference on electric-power-grid systems. That real-time mapping of geoelectric fields is a challenge is reflective of (1) the spatiotemporal complexity of geomagnetic variation, especially during magnetic storms, (2) the sparse distribution of ground-based geomagnetic monitoring stations that report data in realtime, (3) the spatial complexity of three-dimensional solid-Earth impedance, and (4) the geographically incomplete state of continental-scale magnetotelluric surveys.

  16. Integration of Sparse Multi-modality Representation and Geometrical Constraint for Isointense Infant Brain Segmentation

    PubMed Central

    Wang, Li; Shi, Feng; Li, Gang; Lin, Weili; Gilmore, John H.; Shen, Dinggang

    2014-01-01

    Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination process. During the first year of life, the signal contrast between white matter (WM) and gray matter (GM) in MR images undergoes inverse changes. In particular, the inversion of WM/GM signal contrast appears around 6–8 months of age, where brain tissues appear isointense and hence exhibit extremely low tissue contrast, posing significant challenges for automated segmentation. In this paper, we propose a novel segmentation method to address the above-mentioned challenge based on the sparse representation of the complementary tissue distribution information from T1, T2 and diffusion-weighted images. Specifically, we first derive an initial segmentation from a library of aligned multi-modality images with ground-truth segmentations by using sparse representation in a patch-based fashion. The segmentation is further refined by the integration of the geometrical constraint information. The proposed method was evaluated on 22 6-month-old training subjects using leave-one-out cross-validation, as well as 10 additional infant testing subjects, showing superior results in comparison to other state-of-the-art methods. PMID:24505729

  17. Integration of sparse multi-modality representation and geometrical constraint for isointense infant brain segmentation.

    PubMed

    Wang, Li; Shi, Feng; Li, Gang; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2013-01-01

    Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination process. During the first year of life, the signal contrast between white matter (WM) and gray matter (GM) in MR images undergoes inverse changes. In particular, the inversion of WM/GM signal contrast appears around 6-8 months of age, where brain tissues appear isointense and hence exhibit extremely low tissue contrast, posing significant challenges for automated segmentation. In this paper, we propose a novel segmentation method to address the above-mentioned challenge based on the sparse representation of the complementary tissue distribution information from T1, T2 and diffusion-weighted images. Specifically, we first derive an initial segmentation from a library of aligned multi-modality images with ground-truth segmentations by using sparse representation in a patch-based fashion. The segmentation is further refined by the integration of the geometrical constraint information. The proposed method was evaluated on 22 6-month-old training subjects using leave-one-out cross-validation, as well as 10 additional infant testing subjects, showing superior results in comparison to other state-of-the-art methods.

  18. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.

    PubMed

    Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M

    2018-05-07

    A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.

  19. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network.

    PubMed

    Han, Changcai; Yang, Jinsheng

    2017-10-30

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes.

  20. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network

    PubMed Central

    Han, Changcai; Yang, Jinsheng

    2017-01-01

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes. PMID:29084155

  1. The application of a sparse, distributed memory to the detection, identification and manipulation of physical objects

    NASA Technical Reports Server (NTRS)

    Kanerva, P.

    1986-01-01

    To determine the relation of the sparse, distributed memory to other architectures, a broad review of the literature was made. The memory is called a pattern memory because they work with large patterns of features (high-dimensional vectors). A pattern is stored in a pattern memory by distributing it over a large number of storage elements and by superimposing it over other stored patterns. A pattern is retrieved by mathematical or statistical reconstruction from the distributed elements. Three pattern memories are discussed.

  2. Challenges in Ocean Data Assimilation for the US West Coast

    NASA Astrophysics Data System (ADS)

    Li, Z.; Chao, Y.; Farrara, J.; Wang, X.

    2006-12-01

    A three-dimensional variational data assimilation (3DVAR) system has been developed for the Regional Ocean Modeling System (ROMS), and it is called ROMS-DAS. This system provides a capability of predicting meso- to small-scale variations with temporal scales from hours to days in the coastal oceans. To cope with the particular difficulties that result from complex coastlines and bottom topography, unbalanced flows and sparse observations, ROMS-DAS utilizes several novel strategies. These strategies include the implementation of three-dimensional anisotropic and inhomogeneous error correlations, application of particular weak dynamic constraints, and implementation of efficient and reliable algorithms for minimizing the cost function. The ROMS-DAS system was applied in field experiments for Monterey Bay during both 2003 (Autonomous Ocean Sampling Network - AOSN) and 2006 (MB06). These two experiments included intensive data collection from a variety of observational platforms, including satellites, airplanes, High Frequency radars, Acoustic Doppler Current Profilers, ships, drifters, buoys, autonomous underwater vehicles (AUV), and particularly a fleet of undersea gliders. Using these data sets, various data assimilation experiments were performed to address several major data assimilation challenges that arise from multi-scales structures, inhomogeneous properties, dynamical imbalance of the flow, and tides. Basing on these experiments, a set of strategies were formulated to deal with those challenges.

  3. Automatic Reconstruction of Spacecraft 3D Shape from Imagery

    NASA Astrophysics Data System (ADS)

    Poelman, C.; Radtke, R.; Voorhees, H.

    We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.

  4. Integration of Sparse Multi-modality Representation and Anatomical Constraint for Isointense Infant Brain MR Image Segmentation

    PubMed Central

    Wang, Li; Shi, Feng; Gao, Yaozong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang

    2014-01-01

    Segmentation of infant brain MR images is challenging due to poor spatial resolution, severe partial volume effect, and the ongoing maturation and myelination process. During the first year of life, the brain image contrast between white and gray matters undergoes dramatic changes. In particular, the image contrast inverses around 6–8 months of age, where the white and gray matter tissues are isointense in T1 and T2 weighted images and hence exhibit the extremely low tissue contrast, posing significant challenges for automated segmentation. In this paper, we propose a general framework that adopts sparse representation to fuse the multi-modality image information and further incorporate the anatomical constraints for brain tissue segmentation. Specifically, we first derive an initial segmentation from a library of aligned images with ground-truth segmentations by using sparse representation in a patch-based fashion for the multi-modality T1, T2 and FA images. The segmentation result is further iteratively refined by integration of the anatomical constraint. The proposed method was evaluated on 22 infant brain MR images acquired at around 6 months of age by using a leave-one-out cross-validation, as well as other 10 unseen testing subjects. Our method achieved a high accuracy for the Dice ratios that measure the volume overlap between automated and manual segmentations, i.e., 0.889±0.008 for white matter and 0.870±0.006 for gray matter. PMID:24291615

  5. Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps

    NASA Astrophysics Data System (ADS)

    Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.

    2018-04-01

    Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.

  6. Semi-blind sparse image reconstruction with application to MRFM.

    PubMed

    Park, Se Un; Dobigeon, Nicolas; Hero, Alfred O

    2012-09-01

    We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high-dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.

  7. Modeling the impacts of dryland agricultural reclamation on groundwater resources in Northern Egypt using sparse data

    NASA Astrophysics Data System (ADS)

    Switzman, Harris; Coulibaly, Paulin; Adeel, Zafar

    2015-01-01

    Demand for freshwater in many dryland environments is exerting negative impacts on the quality and availability of groundwater resources, particularly in areas where demand is high due to irrigation or industrial water requirements to support dryland agricultural reclamation. Often however, information available to diagnose the drivers of groundwater degradation and assess management options through modeling is sparse, particularly in low and middle-income countries. This study presents an approach for generating transient groundwater model inputs to assess the long-term impacts of dryland agricultural land reclamation on groundwater resources in a highly data-sparse context. The approach was applied to the area of Wadi El Natrun in Northern Egypt, where dryland reclamation and the associated water use has been aggressive since the 1960s. Statistical distributions of water use information were constructed from a variety of sparse field and literature estimates and then combined with remote sensing data in spatio-temporal infilling model to produce the groundwater model inputs of well-pumping and surface recharge. An ensemble of groundwater model inputs were generated and used in a 3D groundwater flow (MODFLOW) of Wadi El Natrun's multi-layer aquifer system to analyze trends in water levels and water budgets over time. Validation of results against monitoring records, and model performance statistics demonstrated that despite the extremely sparse data, the approach used in this study was capable of simulating the cumulative impacts of agricultural land reclamation reasonably well. The uncertainty associated with the groundwater model itself was greater than that associated with the ensemble of well-pumping and surface recharge estimates. Water budget analysis of the groundwater model output revealed that groundwater recharge has not changed significantly over time, while pumping has. As a result of these trends, groundwater was estimated to be in a deficit of approximately 24 billion m3 (±15%) in 2011, compared to 1957. A significant trend in water level declines beginning in the 1990s that has been observed in monitoring records was evident in the model results and is directly attributed to abstraction.

  8. The theory of n-scales

    NASA Astrophysics Data System (ADS)

    Dündar, Furkan Semih

    2018-01-01

    We provide a theory of n-scales previously called as n dimensional time scales. In previous approaches to the theory of time scales, multi-dimensional scales were taken as product space of two time scales [1, 2]. n-scales make the mathematical structure more flexible and appropriate to real world applications in physics and related fields. Here we define an n-scale as an arbitrary closed subset of ℝn. Modified forward and backward jump operators, Δ-derivatives and Δ-integrals on n-scales are defined.

  9. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    PubMed Central

    2011-01-01

    Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Conclusions Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views. PMID:21251284

  10. A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.

    PubMed

    Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M

    2011-01-20

    A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views.

  11. A cross-diffusion system derived from a Fokker-Planck equation with partial averaging

    NASA Astrophysics Data System (ADS)

    Jüngel, Ansgar; Zamponi, Nicola

    2017-02-01

    A cross-diffusion system for two components with a Laplacian structure is analyzed on the multi-dimensional torus. This system, which was recently suggested by P.-L. Lions, is formally derived from a Fokker-Planck equation for the probability density associated with a multi-dimensional Itō process, assuming that the diffusion coefficients depend on partial averages of the probability density with exponential weights. A main feature is that the diffusion matrix of the limiting cross-diffusion system is generally neither symmetric nor positive definite, but its structure allows for the use of entropy methods. The global-in-time existence of positive weak solutions is proved and, under a simplifying assumption, the large-time asymptotics is investigated.

  12. Accelerating the reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning using CUDA.

    PubMed

    Jiansen Li; Jianqi Sun; Ying Song; Yanran Xu; Jun Zhao

    2014-01-01

    An effective way to improve the data acquisition speed of magnetic resonance imaging (MRI) is using under-sampled k-space data, and dictionary learning method can be used to maintain the reconstruction quality. Three-dimensional dictionary trains the atoms in dictionary in the form of blocks, which can utilize the spatial correlation among slices. Dual-dictionary learning method includes a low-resolution dictionary and a high-resolution dictionary, for sparse coding and image updating respectively. However, the amount of data is huge for three-dimensional reconstruction, especially when the number of slices is large. Thus, the procedure is time-consuming. In this paper, we first utilize the NVIDIA Corporation's compute unified device architecture (CUDA) programming model to design the parallel algorithms on graphics processing unit (GPU) to accelerate the reconstruction procedure. The main optimizations operate in the dictionary learning algorithm and the image updating part, such as the orthogonal matching pursuit (OMP) algorithm and the k-singular value decomposition (K-SVD) algorithm. Then we develop another version of CUDA code with algorithmic optimization. Experimental results show that more than 324 times of speedup is achieved compared with the CPU-only codes when the number of MRI slices is 24.

  13. Big Data Challenges of High-Dimensional Continuous-Time Mean-Variance Portfolio Selection and a Remedy.

    PubMed

    Chiu, Mei Choi; Pun, Chi Seng; Wong, Hoi Ying

    2017-08-01

    Investors interested in the global financial market must analyze financial securities internationally. Making an optimal global investment decision involves processing a huge amount of data for a high-dimensional portfolio. This article investigates the big data challenges of two mean-variance optimal portfolios: continuous-time precommitment and constant-rebalancing strategies. We show that both optimized portfolios implemented with the traditional sample estimates converge to the worst performing portfolio when the portfolio size becomes large. The crux of the problem is the estimation error accumulated from the huge dimension of stock data. We then propose a linear programming optimal (LPO) portfolio framework, which applies a constrained ℓ 1 minimization to the theoretical optimal control to mitigate the risk associated with the dimensionality issue. The resulting portfolio becomes a sparse portfolio that selects stocks with a data-driven procedure and hence offers a stable mean-variance portfolio in practice. When the number of observations becomes large, the LPO portfolio converges to the oracle optimal portfolio, which is free of estimation error, even though the number of stocks grows faster than the number of observations. Our numerical and empirical studies demonstrate the superiority of the proposed approach. © 2017 Society for Risk Analysis.

  14. Deep ensemble learning of sparse regression models for brain disease diagnosis.

    PubMed

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2017-04-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Sparse modeling of spatial environmental variables associated with asthma

    PubMed Central

    Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.

    2014-01-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437

  16. Sparse modeling of spatial environmental variables associated with asthma.

    PubMed

    Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W

    2015-02-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Deep ensemble learning of sparse regression models for brain disease diagnosis

    PubMed Central

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2018-01-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer’s disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call ‘ Deep Ensemble Sparse Regression Network.’ To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. PMID:28167394

  18. Sparse aperture 3D passive image sensing and recognition

    NASA Astrophysics Data System (ADS)

    Daneshpanah, Mehdi

    The way we perceive, capture, store, communicate and visualize the world has greatly changed in the past century Novel three dimensional (3D) imaging and display systems are being pursued both in academic and industrial settings. In many cases, these systems have revolutionized traditional approaches and/or enabled new technologies in other disciplines including medical imaging and diagnostics, industrial metrology, entertainment, robotics as well as defense and security. In this dissertation, we focus on novel aspects of sparse aperture multi-view imaging systems and their application in quantum-limited object recognition in two separate parts. In the first part, two concepts are proposed. First a solution is presented that involves a generalized framework for 3D imaging using randomly distributed sparse apertures. Second, a method is suggested to extract the profile of objects in the scene through statistical properties of the reconstructed light field. In both cases, experimental results are presented that demonstrate the feasibility of the techniques. In the second part, the application of 3D imaging systems in sensing and recognition of objects is addressed. In particular, we focus on the scenario in which only 10s of photons reach the sensor from the object of interest, as opposed to hundreds of billions of photons in normal imaging conditions. At this level, the quantum limited behavior of light will dominate and traditional object recognition practices may fail. We suggest a likelihood based object recognition framework that incorporates the physics of sensing at quantum-limited conditions. Sensor dark noise has been modeled and taken into account. This framework is applied to 3D sensing of thermal objects using visible spectrum detectors. Thermal objects as cold as 250K are shown to provide enough signature photons to be sensed and recognized within background and dark noise with mature, visible band, image forming optics and detector arrays. The results suggest that one might not need to venture into exotic and expensive detector arrays and associated optics for sensing room-temperature thermal objects in complete darkness.

  19. Structure and stability of genetic variance-covariance matrices: A Bayesian sparse factor analysis of transcriptional variation in the three-spined stickleback.

    PubMed

    Siren, J; Ovaskainen, O; Merilä, J

    2017-10-01

    The genetic variance-covariance matrix (G) is a quantity of central importance in evolutionary biology due to its influence on the rate and direction of multivariate evolution. However, the predictive power of empirically estimated G-matrices is limited for two reasons. First, phenotypes are high-dimensional, whereas traditional statistical methods are tuned to estimate and analyse low-dimensional matrices. Second, the stability of G to environmental effects and over time remains poorly understood. Using Bayesian sparse factor analysis (BSFG) designed to estimate high-dimensional G-matrices, we analysed levels variation and covariation in 10,527 expressed genes in a large (n = 563) half-sib breeding design of three-spined sticklebacks subject to two temperature treatments. We found significant differences in the structure of G between the treatments: heritabilities and evolvabilities were higher in the warm than in the low-temperature treatment, suggesting more and faster opportunity to evolve in warm (stressful) conditions. Furthermore, comparison of G and its phenotypic equivalent P revealed the latter is a poor substitute of the former. Most strikingly, the results suggest that the expected impact of G on evolvability-as well as the similarity among G-matrices-may depend strongly on the number of traits included into analyses. In our results, the inclusion of only few traits in the analyses leads to underestimation in the differences between the G-matrices and their predicted impacts on evolution. While the results highlight the challenges involved in estimating G, they also illustrate that by enabling the estimation of large G-matrices, the BSFG method can improve predicted evolutionary responses to selection. © 2017 John Wiley & Sons Ltd.

  20. High-dimensional statistical inference: From vector to matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Anru

    Statistical inference for sparse signals or low-rank matrices in high-dimensional settings is of significant interest in a range of contemporary applications. It has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. In this thesis, we consider several problems in including sparse signal recovery (compressed sensing under restricted isometry) and low-rank matrix recovery (matrix recovery via rank-one projections and structured matrix completion). The first part of the thesis discusses compressed sensing and affine rank minimization in both noiseless and noisy cases and establishes sharp restricted isometry conditions for sparse signal and low-rank matrix recovery. The analysis relies on a key technical tool which represents points in a polytope by convex combinations of sparse vectors. The technique is elementary while leads to sharp results. It is shown that, in compressed sensing, delta kA < 1/3, deltak A+ thetak,kA < 1, or deltatkA < √( t - 1)/t for any given constant t ≥ 4/3 guarantee the exact recovery of all k sparse signals in the noiseless case through the constrained ℓ1 minimization, and similarly in affine rank minimization delta rM < 1/3, deltar M + thetar, rM < 1, or deltatrM< √( t - 1)/t ensure the exact reconstruction of all matrices with rank at most r in the noiseless case via the constrained nuclear norm minimization. Moreover, for any epsilon > 0, delta kA < 1/3 + epsilon, deltak A + thetak,kA < 1 + epsilon, or deltatkA< √(t - 1) / t + epsilon are not sufficient to guarantee the exact recovery of all k-sparse signals for large k. Similar result also holds for matrix recovery. In addition, the conditions delta kA<1/3, deltak A+ thetak,kA<1, delta tkA < √(t - 1)/t and deltarM<1/3, delta rM+ thetar,rM<1, delta trM< √(t - 1)/ t are also shown to be sufficient respectively for stable recovery of approximately sparse signals and low-rank matrices in the noisy case. For the second part of the thesis, we introduce a rank-one projection model for low-rank matrix recovery and propose a constrained nuclear norm minimization method for stable recovery of low-rank matrices in the noisy case. The procedure is adaptive to the rank and robust against small perturbations. Both upper and lower bounds for the estimation accuracy under the Frobenius norm loss are obtained. The proposed estimator is shown to be rate-optimal under certain conditions. The estimator is easy to implement via convex programming and performs well numerically. The techniques and main results developed in the chapter also have implications to other related statistical problems. An application to estimation of spiked covariance matrices from one-dimensional random projections is considered. The results demonstrate that it is still possible to accurately estimate the covariance matrix of a high-dimensional distribution based only on one-dimensional projections. For the third part of the thesis, we consider another setting of low-rank matrix completion. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.

  1. DEM generation from contours and a low-resolution DEM

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Shen, Huanfeng; Feng, Ruitao; Li, Jie; Zhang, Liangpei

    2017-12-01

    A digital elevation model (DEM) is a virtual representation of topography, where the terrain is established by the three-dimensional co-ordinates. In the framework of sparse representation, this paper investigates DEM generation from contours. Since contours are usually sparsely distributed and closely related in space, sparse spatial regularization (SSR) is enforced on them. In order to make up for the lack of spatial information, another lower spatial resolution DEM from the same geographical area is introduced. In this way, the sparse representation implements the spatial constraints in the contours and extracts the complementary information from the auxiliary DEM. Furthermore, the proposed method integrates the advantage of the unbiased estimation of kriging. For brevity, the proposed method is called the kriging and sparse spatial regularization (KSSR) method. The performance of the proposed KSSR method is demonstrated by experiments in Shuttle Radar Topography Mission (SRTM) 30 m DEM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m global digital elevation model (GDEM) generation from the corresponding contours and a 90 m DEM. The experiments confirm that the proposed KSSR method outperforms the traditional kriging and SSR methods, and it can be successfully used for DEM generation from contours.

  2. Access to Educational Opportunity in Rural Communities: Alternative Patterns of Delivering Vocational Education in Sparsely Populated Areas. Volume 3: The Northwest Multi-District: A Mobile Facilities Center.

    ERIC Educational Resources Information Center

    Peterson, Roland L.; And Others

    Representing the mobile facilities pattern of inter-district cooperation, the Northwest Multi-District case is one of four studies addressing access of rural students to vocational education through inter-school district cooperation. The report identifies essential features of this form of cooperation, details factors facilitating/impeding the…

  3. Cluster Analysis and Gaussian Mixture Estimation of Correlated Time-Series by Means of Multi-dimensional Scaling

    NASA Astrophysics Data System (ADS)

    Ibuki, Takero; Suzuki, Sei; Inoue, Jun-ichi

    We investigate cross-correlations between typical Japanese stocks collected through Yahoo!Japan website ( http://finance.yahoo.co.jp/ ). By making use of multi-dimensional scaling (MDS) for the cross-correlation matrices, we draw two-dimensional scattered plots in which each point corresponds to each stock. To make a clustering for these data plots, we utilize the mixture of Gaussians to fit the data set to several Gaussian densities. By minimizing the so-called Akaike Information Criterion (AIC) with respect to parameters in the mixture, we attempt to specify the best possible mixture of Gaussians. It might be naturally assumed that all the two-dimensional data points of stocks shrink into a single small region when some economic crisis takes place. The justification of this assumption is numerically checked for the empirical Japanese stock data, for instance, those around 11 March 2011.

  4. The Two-Dimensional Gabor Function Adapted to Natural Image Statistics: A Model of Simple-Cell Receptive Fields and Sparse Structure in Images.

    PubMed

    Loxley, P N

    2017-10-01

    The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.

  5. Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT.

    PubMed

    Han, Yoseob; Ye, Jong Chul

    2018-06-01

    X-ray computed tomography (CT) using sparse projection views is a recent approach to reduce the radiation dose. However, due to the insufficient projection views, an analytic reconstruction approach using the filtered back projection (FBP) produces severe streaking artifacts. Recently, deep learning approaches using large receptive field neural networks such as U-Net have demonstrated impressive performance for sparse-view CT reconstruction. However, theoretical justification is still lacking. Inspired by the recent theory of deep convolutional framelets, the main goal of this paper is, therefore, to reveal the limitation of U-Net and propose new multi-resolution deep learning schemes. In particular, we show that the alternative U-Net variants such as dual frame and tight frame U-Nets satisfy the so-called frame condition which makes them better for effective recovery of high frequency edges in sparse-view CT. Using extensive experiments with real patient data set, we demonstrate that the new network architectures provide better reconstruction performance.

  6. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.

    PubMed

    Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio

    2018-06-19

    Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.

  7. Practical Sub-Nyquist Sampling via Array-Based Compressed Sensing Receiver Architecture

    DTIC Science & Technology

    2016-07-10

    different array ele- ments at different sub-Nyquist sampling rates. Signal processing inspired by the sparse fast Fourier transform allows for signal...reconstruction algorithms can be computationally demanding (REF). The related sparse Fourier transform algorithms aim to reduce the processing time nec- essary to...compute the DFT of frequency-sparse signals [7]. In particular, the sparse fast Fourier transform (sFFT) achieves processing time better than the

  8. In-Situ Three-Dimensional Shape Rendering from Strain Values Obtained Through Optical Fiber Sensors

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    A method and system for rendering the shape of a multi-core optical fiber or multi-fiber bundle in three-dimensional space in real time based on measured fiber strain data. Three optical fiber cores arc arranged in parallel at 120.degree. intervals about a central axis. A series of longitudinally co-located strain sensor triplets, typically fiber Bragg gratings, are positioned along the length of each fiber at known intervals. A tunable laser interrogates the sensors to detect strain on the fiber cores. Software determines the strain magnitude (.DELTA.L/L) for each fiber at a given triplet, but then applies beam theory to calculate curvature, beading angle and torsion of the fiber bundle, and from there it determines the shape of the fiber in s Cartesian coordinate system by solving a series of ordinary differential equations expanded from the Frenet-Serrat equations. This approach eliminates the need for computationally time-intensive curve-tilting and allows the three-dimensional shape of the optical fiber assembly to be displayed in real-time.

  9. Investigation of upwind, multigrid, multiblock numerical schemes for three dimensional flows. Volume 1: Runge-Kutta methods for a thin layer Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Cannizzaro, Frank E.; Ash, Robert L.

    1992-01-01

    A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, upwind numerical techniques, multigrid acceleration, and multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available: van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multi-grid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with multiple topologies. The results shown in this dissertation were chosen to validate the computer code and display its geometric flexibility, which is provided by the multi-block structure.

  10. Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Ronco, Michele

    2017-10-01

    We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow) and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales) and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.

  11. Tau lepton production and decays: perspective of multi-dimensional distributions and Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Was, Z.

    2017-06-01

    Status of τ lepton decay Monte Carlo generator TAUOLA, its main applications and recent developments are reviewed. It is underlined, that in recent efforts on development of new hadronic currents, the multi-dimensional nature of distributions of the experimental data must be taken with a great care: lesson from comparison and fits to the BaBar and Belle data is recalled. It was found, that as in the past at a time of comparisons with CLEO and ALEPH data, proper fitting, to as detailed as possible representation of the experimental data, is essential for appropriate developments of models of τ decay dynamic. This multi-dimensional nature of distributions is also important for observables where τ leptons are used to constrain experimental data. In later part of the presentation, use of the TAUOLA program for phenomenology of W, Z, H decays at LHC is addressed, in particular in the context of the Higgs boson parity measurements. Some new results, relevant for QED lepton pair emission are mentioned as well.

  12. Weighted Iterative Bayesian Compressive Sensing (WIBCS) for High Dimensional Polynomial Surrogate Construction

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Debusschere, B.; Najm, H. N.; Thornton, P. E.

    2016-12-01

    Surrogate construction has become a routine procedure when facing computationally intensive studies requiring multiple evaluations of complex models. In particular, surrogate models, otherwise called emulators or response surfaces, replace complex models in uncertainty quantification (UQ) studies, including uncertainty propagation (forward UQ) and parameter estimation (inverse UQ). Further, surrogates based on Polynomial Chaos (PC) expansions are especially convenient for forward UQ and global sensitivity analysis, also known as variance-based decomposition. However, the PC surrogate construction strongly suffers from the curse of dimensionality. With a large number of input parameters, the number of model simulations required for accurate surrogate construction is prohibitively large. Relatedly, non-adaptive PC expansions typically include infeasibly large number of basis terms far exceeding the number of available model evaluations. We develop Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth and PC surrogate construction leading to a sparse, high-dimensional PC surrogate with a very few model evaluations. The surrogate is then readily employed for global sensitivity analysis leading to further dimensionality reduction. Besides numerical tests, we demonstrate the construction on the example of Accelerated Climate Model for Energy (ACME) Land Model for several output QoIs at nearly 100 FLUXNET sites covering multiple plant functional types and climates, varying 65 input parameters over broad ranges of possible values. This work is supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Accelerated Climate Modeling for Energy (ACME) project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Estimating multivariate similarity between neuroimaging datasets with sparse canonical correlation analysis: an application to perfusion imaging.

    PubMed

    Rosa, Maria J; Mehta, Mitul A; Pich, Emilio M; Risterucci, Celine; Zelaya, Fernando; Reinders, Antje A T S; Williams, Steve C R; Dazzan, Paola; Doyle, Orla M; Marquand, Andre F

    2015-01-01

    An increasing number of neuroimaging studies are based on either combining more than one data modality (inter-modal) or combining more than one measurement from the same modality (intra-modal). To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA). However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA), overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labeling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.

  14. Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation.

    PubMed

    Nagaoka, Tomoaki; Watanabe, Soichi

    2012-01-01

    Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.

  15. Protein crystal structure from non-oriented, single-axis sparse X-ray data

    DOE PAGES

    Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.; ...

    2016-01-01

    X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases where the data are sparse.« less

  16. Protein crystal structure from non-oriented, single-axis sparse X-ray data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.

    X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases where the data are sparse.« less

  17. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-01-01

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified. PMID:29649173

  18. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor.

    PubMed

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-04-12

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified.

  19. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Youzuo; Huang, Lianjie

    2015-01-28

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversionmore » method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity models produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.« less

  20. Uncertainty Analysis Based on Sparse Grid Collocation and Quasi-Monte Carlo Sampling with Application in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Lu, D.; Ye, M.; Gunzburger, M.

    2011-12-01

    Markov Chain Monte Carlo (MCMC) methods have been widely used in many fields of uncertainty analysis to estimate the posterior distributions of parameters and credible intervals of predictions in the Bayesian framework. However, in practice, MCMC may be computationally unaffordable due to slow convergence and the excessive number of forward model executions required, especially when the forward model is expensive to compute. Both disadvantages arise from the curse of dimensionality, i.e., the posterior distribution is usually a multivariate function of parameters. Recently, sparse grid method has been demonstrated to be an effective technique for coping with high-dimensional interpolation or integration problems. Thus, in order to accelerate the forward model and avoid the slow convergence of MCMC, we propose a new method for uncertainty analysis based on sparse grid interpolation and quasi-Monte Carlo sampling. First, we construct a polynomial approximation of the forward model in the parameter space by using the sparse grid interpolation. This approximation then defines an accurate surrogate posterior distribution that can be evaluated repeatedly at minimal computational cost. Second, instead of using MCMC, a quasi-Monte Carlo method is applied to draw samples in the parameter space. Then, the desired probability density function of each prediction is approximated by accumulating the posterior density values of all the samples according to the prediction values. Our method has the following advantages: (1) the polynomial approximation of the forward model on the sparse grid provides a very efficient evaluation of the surrogate posterior distribution; (2) the quasi-Monte Carlo method retains the same accuracy in approximating the PDF of predictions but avoids all disadvantages of MCMC. The proposed method is applied to a controlled numerical experiment of groundwater flow modeling. The results show that our method attains the same accuracy much more efficiently than traditional MCMC.

  1. A novel algorithm of super-resolution image reconstruction based on multi-class dictionaries for natural scene

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Zhao, Dewei; Zhang, Huan

    2015-12-01

    Super-resolution image reconstruction is an effective method to improve the image quality. It has important research significance in the field of image processing. However, the choice of the dictionary directly affects the efficiency of image reconstruction. A sparse representation theory is introduced into the problem of the nearest neighbor selection. Based on the sparse representation of super-resolution image reconstruction method, a super-resolution image reconstruction algorithm based on multi-class dictionary is analyzed. This method avoids the redundancy problem of only training a hyper complete dictionary, and makes the sub-dictionary more representatives, and then replaces the traditional Euclidean distance computing method to improve the quality of the whole image reconstruction. In addition, the ill-posed problem is introduced into non-local self-similarity regularization. Experimental results show that the algorithm is much better results than state-of-the-art algorithm in terms of both PSNR and visual perception.

  2. A guided wave dispersion compensation method based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Xu, Cai-bin; Yang, Zhi-bo; Chen, Xue-feng; Tian, Shao-hua; Xie, Yong

    2018-03-01

    The ultrasonic guided wave has emerged as a promising tool for structural health monitoring (SHM) and nondestructive testing (NDT) due to their capability to propagate over long distances with minimal loss and sensitivity to both surface and subsurface defects. The dispersion effect degrades the temporal and spatial resolution of guided waves. A novel ultrasonic guided wave processing method for both single mode and multi-mode guided waves dispersion compensation is proposed in this work based on compressed sensing, in which a dispersion signal dictionary is built by utilizing the dispersion curves of the guided wave modes in order to sparsely decompose the recorded dispersive guided waves. Dispersion-compensated guided waves are obtained by utilizing a non-dispersion signal dictionary and the results of sparse decomposition. Numerical simulations and experiments are implemented to verify the effectiveness of the developed method for both single mode and multi-mode guided waves.

  3. Highly undersampled contrast-enhanced MRA with iterative reconstruction: Integration in a clinical setting.

    PubMed

    Stalder, Aurelien F; Schmidt, Michaela; Quick, Harald H; Schlamann, Marc; Maderwald, Stefan; Schmitt, Peter; Wang, Qiu; Nadar, Mariappan S; Zenge, Michael O

    2015-12-01

    To integrate, optimize, and evaluate a three-dimensional (3D) contrast-enhanced sparse MRA technique with iterative reconstruction on a standard clinical MR system. Data were acquired using a highly undersampled Cartesian spiral phyllotaxis sampling pattern and reconstructed directly on the MR system with an iterative SENSE technique. Undersampling, regularization, and number of iterations of the reconstruction were optimized and validated based on phantom experiments and patient data. Sparse MRA of the whole head (field of view: 265 × 232 × 179 mm(3) ) was investigated in 10 patient examinations. High-quality images with 30-fold undersampling, resulting in 0.7 mm isotropic resolution within 10 s acquisition, were obtained. After optimization of the regularization factor and of the number of iterations of the reconstruction, it was possible to reconstruct images with excellent quality within six minutes per 3D volume. Initial results of sparse contrast-enhanced MRA (CEMRA) in 10 patients demonstrated high-quality whole-head first-pass MRA for both the arterial and venous contrast phases. While sparse MRI techniques have not yet reached clinical routine, this study demonstrates the technical feasibility of high-quality sparse CEMRA of the whole head in a clinical setting. Sparse CEMRA has the potential to become a viable alternative where conventional CEMRA is too slow or does not provide sufficient spatial resolution. © 2014 Wiley Periodicals, Inc.

  4. Information jet: Handling noisy big data from weakly disconnected network

    NASA Astrophysics Data System (ADS)

    Aurongzeb, Deeder

    Sudden aggregation (information jet) of large amount of data is ubiquitous around connected social networks, driven by sudden interacting and non-interacting events, network security threat attacks, online sales channel etc. Clustering of information jet based on time series analysis and graph theory is not new but little work is done to connect them with particle jet statistics. We show pre-clustering based on context can element soft network or network of information which is critical to minimize time to calculate results from noisy big data. We show difference between, stochastic gradient boosting and time series-graph clustering. For disconnected higher dimensional information jet, we use Kallenberg representation theorem (Kallenberg, 2005, arXiv:1401.1137) to identify and eliminate jet similarities from dense or sparse graph.

  5. Behavior analysis of video object in complicated background

    NASA Astrophysics Data System (ADS)

    Zhao, Wenting; Wang, Shigang; Liang, Chao; Wu, Wei; Lu, Yang

    2016-10-01

    This paper aims to achieve robust behavior recognition of video object in complicated background. Features of the video object are described and modeled according to the depth information of three-dimensional video. Multi-dimensional eigen vector are constructed and used to process high-dimensional data. Stable object tracing in complex scenes can be achieved with multi-feature based behavior analysis, so as to obtain the motion trail. Subsequently, effective behavior recognition of video object is obtained according to the decision criteria. What's more, the real-time of algorithms and accuracy of analysis are both improved greatly. The theory and method on the behavior analysis of video object in reality scenes put forward by this project have broad application prospect and important practical significance in the security, terrorism, military and many other fields.

  6. Drug-like properties and the causes of poor solubility and poor permeability.

    PubMed

    Lipinski, C A

    2000-01-01

    There are currently about 10000 drug-like compounds. These are sparsely, rather than uniformly, distributed through chemistry space. True diversity does not exist in experimental combinatorial chemistry screening libraries. Absorption, distribution, metabolism, and excretion (ADME) and chemical reactivity-related toxicity is low, while biological receptor activity is higher dimensional in chemistry space, and this is partly explainable by evolutionary pressures on ADME to deal with endobiotics and exobiotics. ADME is hard to predict for large data sets because current ADME experimental screens are multi-mechanisms, and predictions get worse as more data accumulates. Currently, screening for biological receptor activity precedes or is concurrent with screening for properties related to "drugability." In the future, "drugability" screening may precede biological receptor activity screening. The level of permeability or solubility needed for oral absorption is related to potency. The relative importance of poor solubility and poor permeability towards the problem of poor oral absorption depends on the research approach used for lead generation. A "rational drug design" approach as exemplified by Merck advanced clinical candidates leads to time-dependent higher molecular weight, higher H-bonding properties, unchanged lipophilicity, and, hence, poorer permeability. A high throughput screening (HTS)-based approach as exemplified by unpublished data on Pfizer (Groton, CT) early candidates leads to higher molecular weight, unchanged H-bonding properties, higher lipophilicity, and, hence, poorer aqueous solubility.

  7. Non-convex Statistical Optimization for Sparse Tensor Graphical Model

    PubMed Central

    Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang

    2016-01-01

    We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies. PMID:28316459

  8. Rapid acquisition of data dense solid-state CPMG NMR spectral sets using multi-dimensional statistical analysis

    DOE PAGES

    Mason, H. E.; Uribe, E. C.; Shusterman, J. A.

    2018-01-01

    Tensor-rank decomposition methods have been applied to variable contact time 29 Si{ 1 H} CP/CPMG NMR data sets to extract NMR dynamics information and dramatically decrease conventional NMR acquisition times.

  9. Rapid acquisition of data dense solid-state CPMG NMR spectral sets using multi-dimensional statistical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, H. E.; Uribe, E. C.; Shusterman, J. A.

    Tensor-rank decomposition methods have been applied to variable contact time 29 Si{ 1 H} CP/CPMG NMR data sets to extract NMR dynamics information and dramatically decrease conventional NMR acquisition times.

  10. Inertial objects in complex flows

    NASA Astrophysics Data System (ADS)

    Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip

    2017-11-01

    Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.

  11. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  12. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  13. Multi-dimensional photonic states from a quantum dot

    NASA Astrophysics Data System (ADS)

    Lee, J. P.; Bennett, A. J.; Stevenson, R. M.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2018-04-01

    Quantum states superposed across multiple particles or degrees of freedom offer an advantage in the development of quantum technologies. Creating these states deterministically and with high efficiency is an ongoing challenge. A promising approach is the repeated excitation of multi-level quantum emitters, which have been shown to naturally generate light with quantum statistics. Here we describe how to create one class of higher dimensional quantum state, a so called W-state, which is superposed across multiple time bins. We do this by repeated Raman scattering of photons from a charged quantum dot in a pillar microcavity. We show this method can be scaled to larger dimensions with no reduction in coherence or single-photon character. We explain how to extend this work to enable the deterministic creation of arbitrary time-bin encoded qudits.

  14. Evaluation of fast highly undersampled contrast-enhanced MR angiography (sparse CE-MRA) in intracranial applications - initial study.

    PubMed

    Gratz, Marcel; Schlamann, Marc; Goericke, Sophia; Maderwald, Stefan; Quick, Harald H

    2017-03-01

    To assess the image quality of sparsely sampled contrast-enhanced MR angiography (sparse CE-MRA) providing high spatial resolution and whole-head coverage. Twenty-three patients scheduled for contrast-enhanced MR imaging of the head, (N = 19 with intracranial pathologies, N = 9 with vascular diseases), were included. Sparse CE-MRA at 3 Tesla was conducted using a single dose of contrast agent. Two neuroradiologists independently evaluated the data regarding vascular visibility and diagnostic value of overall 24 parameters and vascular segments on a 5-point ordinary scale (5 = very good, 1 = insufficient vascular visibility). Contrast bolus timing and the resulting arterio-venous overlap was also evaluated. Where available (N = 9), sparse CE-MRA was compared to intracranial Time-of-Flight MRA. The overall rating across all patients for sparse CE-MRA was 3.50 ± 1.07. Direct influence of the contrast bolus timing on the resulting image quality was observed. Overall mean vascular visibility and image quality across different features was rated good to intermediate (3.56 ± 0.95). The average performance of intracranial Time-of-Flight was rated 3.84 ± 0.87 across all patients and 3.54 ± 0.62 across all features. Sparse CE-MRA provides high-quality 3D MRA with high spatial resolution and whole-head coverage within short acquisition time. Accurate contrast bolus timing is mandatory. • Sparse CE-MRA enables fast vascular imaging with full brain coverage. • Volumes with sub-millimetre resolution can be acquired within 10 seconds. • Reader's ratings are good to intermediate and dependent on contrast bolus timing. • The method provides an excellent overview and allows screening for vascular pathologies.

  15. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics

    PubMed Central

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-01-01

    Motivation: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of O(n6). Subsequently, numerous faster ‘Sankoff-style’ approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity (≥ quartic time). Results: Breaking this barrier, we introduce the novel Sankoff-style algorithm ‘sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)’, which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff’s original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. Availability and implementation: SPARSE is freely available at http://www.bioinf.uni-freiburg.de/Software/SPARSE. Contact: backofen@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25838465

  16. Artificial neural network does better spatiotemporal compressive sampling

    NASA Astrophysics Data System (ADS)

    Lee, Soo-Young; Hsu, Charles; Szu, Harold

    2012-06-01

    Spatiotemporal sparseness is generated naturally by human visual system based on artificial neural network modeling of associative memory. Sparseness means nothing more and nothing less than the compressive sensing achieves merely the information concentration. To concentrate the information, one uses the spatial correlation or spatial FFT or DWT or the best of all adaptive wavelet transform (cf. NUS, Shen Shawei). However, higher dimensional spatiotemporal information concentration, the mathematics can not do as flexible as a living human sensory system. The reason is obviously for survival reasons. The rest of the story is given in the paper.

  17. Data-assisted reduced-order modeling of extreme events in complex dynamical systems

    PubMed Central

    Koumoutsakos, Petros

    2018-01-01

    The prediction of extreme events, from avalanches and droughts to tsunamis and epidemics, depends on the formulation and analysis of relevant, complex dynamical systems. Such dynamical systems are characterized by high intrinsic dimensionality with extreme events having the form of rare transitions that are several standard deviations away from the mean. Such systems are not amenable to classical order-reduction methods through projection of the governing equations due to the large intrinsic dimensionality of the underlying attractor as well as the complexity of the transient events. Alternatively, data-driven techniques aim to quantify the dynamics of specific, critical modes by utilizing data-streams and by expanding the dimensionality of the reduced-order model using delayed coordinates. In turn, these methods have major limitations in regions of the phase space with sparse data, which is the case for extreme events. In this work, we develop a novel hybrid framework that complements an imperfect reduced order model, with data-streams that are integrated though a recurrent neural network (RNN) architecture. The reduced order model has the form of projected equations into a low-dimensional subspace that still contains important dynamical information about the system and it is expanded by a long short-term memory (LSTM) regularization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected to the reduced-order space. The data-driven model assists the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system state. We assess the developed framework on two challenging prototype systems exhibiting extreme events. We show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. Notably the improvement is more significant in regions associated with extreme events, where data is sparse. PMID:29795631

  18. Data-assisted reduced-order modeling of extreme events in complex dynamical systems.

    PubMed

    Wan, Zhong Yi; Vlachas, Pantelis; Koumoutsakos, Petros; Sapsis, Themistoklis

    2018-01-01

    The prediction of extreme events, from avalanches and droughts to tsunamis and epidemics, depends on the formulation and analysis of relevant, complex dynamical systems. Such dynamical systems are characterized by high intrinsic dimensionality with extreme events having the form of rare transitions that are several standard deviations away from the mean. Such systems are not amenable to classical order-reduction methods through projection of the governing equations due to the large intrinsic dimensionality of the underlying attractor as well as the complexity of the transient events. Alternatively, data-driven techniques aim to quantify the dynamics of specific, critical modes by utilizing data-streams and by expanding the dimensionality of the reduced-order model using delayed coordinates. In turn, these methods have major limitations in regions of the phase space with sparse data, which is the case for extreme events. In this work, we develop a novel hybrid framework that complements an imperfect reduced order model, with data-streams that are integrated though a recurrent neural network (RNN) architecture. The reduced order model has the form of projected equations into a low-dimensional subspace that still contains important dynamical information about the system and it is expanded by a long short-term memory (LSTM) regularization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected to the reduced-order space. The data-driven model assists the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system state. We assess the developed framework on two challenging prototype systems exhibiting extreme events. We show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. Notably the improvement is more significant in regions associated with extreme events, where data is sparse.

  19. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2012-09-30

    Estimation Methods for Underwater OFDM 5) Two Iterative Receivers for Distributed MIMO - OFDM with Large Doppler Deviations. 6) Asynchronous Multiuser...multi-input multi-output ( MIMO ) OFDM is also pursued, where it is shown that the proposed hybrid initialization enables drastically improved receiver...are investigated. 5) Two Iterative Receivers for Distributed MIMO - OFDM with Large Doppler Deviations. This work studies a distributed system with

  20. Multi-level discriminative dictionary learning with application to large scale image classification.

    PubMed

    Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua

    2015-10-01

    The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.

  1. Statistics of the stochastically forced Lorenz attractor by the Fokker-Planck equation and cumulant expansions.

    PubMed

    Allawala, Altan; Marston, J B

    2016-11-01

    We investigate the Fokker-Planck description of the equal-time statistics of the three-dimensional Lorenz attractor with additive white noise. The invariant measure is found by computing the zero (or null) mode of the linear Fokker-Planck operator as a problem of sparse linear algebra. Two variants are studied: a self-adjoint construction of the linear operator and the replacement of diffusion with hyperdiffusion. We also access the low-order statistics of the system by a perturbative expansion in equal-time cumulants. A comparison is made to statistics obtained by the standard approach of accumulation via direct numerical simulation. Theoretical and computational aspects of the Fokker-Planck and cumulant expansion methods are discussed.

  2. Sparse Reconstruction Techniques in MRI: Methods, Applications, and Challenges to Clinical Adoption

    PubMed Central

    Yang, Alice Chieh-Yu; Kretzler, Madison; Sudarski, Sonja; Gulani, Vikas; Seiberlich, Nicole

    2016-01-01

    The family of sparse reconstruction techniques, including the recently introduced compressed sensing framework, has been extensively explored to reduce scan times in Magnetic Resonance Imaging (MRI). While there are many different methods that fall under the general umbrella of sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR images can be employed to reconstruct full images from undersampled data. This review describes the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MR imaging, and the open challenges to their general adoption in a clinical setting. The fundamental principles underlying different classes of sparse reconstructions techniques are examined, and the requirements that each make on the undersampled data outlined. Applications that could potentially benefit from the accelerations that sparse reconstructions could provide are described, and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges to widespread implementation of sparse reconstruction techniques, including optimization, reconstruction times, artifact appearance, and comparison with current gold-standards, are discussed. PMID:27003227

  3. Classification of multiple sclerosis lesions using adaptive dictionary learning.

    PubMed

    Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian

    2015-12-01

    This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Single Vector Calibration System for Multi-Axis Load Cells and Method for Calibrating a Multi-Axis Load Cell

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor)

    2003-01-01

    A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.

  5. Temporally-Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer’s Disease

    PubMed Central

    Jie, Biao; Liu, Mingxia; Liu, Jun

    2016-01-01

    Sparse learning has been widely investigated for analysis of brain images to assist the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). However, most existing sparse learning-based studies only adopt cross-sectional analysis methods, where the sparse model is learned using data from a single time-point. Actually, multiple time-points of data are often available in brain imaging applications, which can be used in some longitudinal analysis methods to better uncover the disease progression patterns. Accordingly, in this paper we propose a novel temporally-constrained group sparse learning method aiming for longitudinal analysis with multiple time-points of data. Specifically, we learn a sparse linear regression model by using the imaging data from multiple time-points, where a group regularization term is first employed to group the weights for the same brain region across different time-points together. Furthermore, to reflect the smooth changes between data derived from adjacent time-points, we incorporate two smoothness regularization terms into the objective function, i.e., one fused smoothness term which requires that the differences between two successive weight vectors from adjacent time-points should be small, and another output smoothness term which requires the differences between outputs of two successive models from adjacent time-points should also be small. We develop an efficient optimization algorithm to solve the proposed objective function. Experimental results on ADNI database demonstrate that, compared with conventional sparse learning-based methods, our proposed method can achieve improved regression performance and also help in discovering disease-related biomarkers. PMID:27093313

  6. Real-time monitoring and visualization of the multi-dimensional motion of an anisotropic nanoparticle

    NASA Astrophysics Data System (ADS)

    Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, Minkwan; Park, Chung-Hyun; Cho, Yong-Hoon

    2017-03-01

    As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles.

  7. Integrative Sparse K-Means With Overlapping Group Lasso in Genomic Applications for Disease Subtype Discovery

    PubMed Central

    Huo, Zhiguang; Tseng, George

    2017-01-01

    Cancer subtypes discovery is the first step to deliver personalized medicine to cancer patients. With the accumulation of massive multi-level omics datasets and established biological knowledge databases, omics data integration with incorporation of rich existing biological knowledge is essential for deciphering a biological mechanism behind the complex diseases. In this manuscript, we propose an integrative sparse K-means (is-K means) approach to discover disease subtypes with the guidance of prior biological knowledge via sparse overlapping group lasso. An algorithm using an alternating direction method of multiplier (ADMM) will be applied for fast optimization. Simulation and three real applications in breast cancer and leukemia will be used to compare is-K means with existing methods and demonstrate its superior clustering accuracy, feature selection, functional annotation of detected molecular features and computing efficiency. PMID:28959370

  8. Integrative Sparse K-Means With Overlapping Group Lasso in Genomic Applications for Disease Subtype Discovery.

    PubMed

    Huo, Zhiguang; Tseng, George

    2017-06-01

    Cancer subtypes discovery is the first step to deliver personalized medicine to cancer patients. With the accumulation of massive multi-level omics datasets and established biological knowledge databases, omics data integration with incorporation of rich existing biological knowledge is essential for deciphering a biological mechanism behind the complex diseases. In this manuscript, we propose an integrative sparse K -means (is- K means) approach to discover disease subtypes with the guidance of prior biological knowledge via sparse overlapping group lasso. An algorithm using an alternating direction method of multiplier (ADMM) will be applied for fast optimization. Simulation and three real applications in breast cancer and leukemia will be used to compare is- K means with existing methods and demonstrate its superior clustering accuracy, feature selection, functional annotation of detected molecular features and computing efficiency.

  9. GENERAL: Scattering Phase Correction for Semiclassical Quantization Rules in Multi-Dimensional Quantum Systems

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Min; Mou, Chung-Yu; Chang, Cheng-Hung

    2010-02-01

    While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semiclassical Landauer-Büttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.

  10. Multi-dimensional multi-species modeling of transient electrodeposition in LIGA microfabrication.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Gregory Herbert; Chen, Ken Shuang

    2004-06-01

    This report documents the efforts and accomplishments of the LIGA electrodeposition modeling project which was headed by the ASCI Materials and Physics Modeling Program. A multi-dimensional framework based on GOMA was developed for modeling time-dependent diffusion and migration of multiple charged species in a dilute electrolyte solution with reduction electro-chemical reactions on moving deposition surfaces. By combining the species mass conservation equations with the electroneutrality constraint, a Poisson equation that explicitly describes the electrolyte potential was derived. The set of coupled, nonlinear equations governing species transport, electric potential, velocity, hydrodynamic pressure, and mesh motion were solved in GOMA, using themore » finite-element method and a fully-coupled implicit solution scheme via Newton's method. By treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and by repeatedly performing re-meshing with CUBIT and re-mapping with MAPVAR, the moving deposition surfaces were tracked explicitly from start of deposition until the trenches were filled with metal, thus enabling the computation of local current densities that potentially influence the microstructure and frictional/mechanical properties of the deposit. The multi-dimensional, multi-species, transient computational framework was demonstrated in case studies of two-dimensional nickel electrodeposition in single and multiple trenches, without and with bath stirring or forced flow. Effects of buoyancy-induced convection on deposition were also investigated. To further illustrate its utility, the framework was employed to simulate deposition in microscreen-based LIGA molds. Lastly, future needs for modeling LIGA electrodeposition are discussed.« less

  11. Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection

    PubMed Central

    Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem

    2013-01-01

    The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method. PMID:24351629

  12. Online least squares one-class support vector machines-based abnormal visual event detection.

    PubMed

    Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem

    2013-12-12

    The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method.

  13. Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex

    PubMed Central

    Jenison, Rick L.; Reale, Richard A.; Armstrong, Amanda L.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2015-01-01

    Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM). A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl’s gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl’s gyrus recordings elicited by click-train stimuli. PMID:26367010

  14. Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present new, efficient central schemes for multi-dimensional Hamilton-Jacobi equations. These non-oscillatory, non-staggered schemes are first- and second-order accurate and are designed to scale well with an increasing dimension. Efficiency is obtained by carefully choosing the location of the evolution points and by using a one-dimensional projection step. First-and second-order accuracy is verified for a variety of multi-dimensional, convex and non-convex problems.

  15. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models

    PubMed Central

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348

  16. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

    PubMed

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.

  17. k-t Acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs

    NASA Astrophysics Data System (ADS)

    Xiao, Dan; Balcom, Bruce J.

    2014-06-01

    Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems.

  18. Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function

    PubMed Central

    Wang, Zhaojun; Cai, Yanan; Liang, Yansheng; Zhou, Xing; Yan, Shaohui; Dan, Dan; Bianco, Piero R.; Lei, Ming; Yao, Baoli

    2017-01-01

    A wide-field fluorescence microscope with a double-helix point spread function (PSF) is constructed to obtain the specimen’s three-dimensional distribution with a single snapshot. Spiral-phase-based computer-generated holograms (CGHs) are adopted to make the depth-of-field of the microscope adjustable. The impact of system aberrations on the double-helix PSF at high numerical aperture is analyzed to reveal the necessity of the aberration correction. A modified cepstrum-based reconstruction scheme is promoted in accordance with properties of the new double-helix PSF. The extended depth-of-field images and the corresponding depth maps for both a simulated sample and a tilted section slice of bovine pulmonary artery endothelial (BPAE) cells are recovered, respectively, verifying that the depth-of-field is properly extended and the depth of the specimen can be estimated at a precision of 23.4nm. This three-dimensional fluorescence microscope with a framerate-rank time resolution is suitable for studying the fast developing process of thin and sparsely distributed micron-scale cells in extended depth-of-field. PMID:29296483

  19. On controllability of homogeneous and inhomogeneous discrete-time multi-input bilinear systems in dimension two

    NASA Astrophysics Data System (ADS)

    Tie, Lin

    2017-08-01

    In this paper, the controllability problem of two-dimensional discrete-time multi-input bilinear systems is completely solved. The homogeneous and the inhomogeneous cases are studied separately and necessary and sufficient conditions for controllability are established by using a linear algebraic method, which are easy to apply. Moreover, for the uncontrollable systems, near-controllability is considered and similar necessary and sufficient conditions are also obtained. Finally, examples are provided to demonstrate the results of this paper.

  20. Spectral Eclipse Timing

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian; Agol, Eric; Deming, Drake

    2015-12-01

    We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength-dependent variations in the eclipse times of gas-giant planets. A displaced hot spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. The effect of time offsets was first explored in the IRAC wavebands by Williams et al. Here we improve upon their methodology, extend to a broad range of wavelengths, and demonstrate our technique on a series of multi-dimensional radiative-hydrodynamical simulations of HD 209458b with varying equatorial jet strength and hot-spot displacement. Simulations with the largest hot-spot displacement result in timing offsets of up to 100 s in the infrared. Though we utilize a particular radiative hydrodynamical model to demonstrate this effect, the technique is model independent. This technique should allow a much larger survey of hot-spot displacements with the James Webb Space Telescope than currently accessible with time-intensive phase curves, hopefully shedding light on the physical mechanisms associated with thermal energy advection in irradiated gas giants.

  1. Scientific Visualization and Simulation for Multi-dimensional Marine Environment Data

    NASA Astrophysics Data System (ADS)

    Su, T.; Liu, H.; Wang, W.; Song, Z.; Jia, Z.

    2017-12-01

    As higher attention on the ocean and rapid development of marine detection, there are increasingly demands for realistic simulation and interactive visualization of marine environment in real time. Based on advanced technology such as GPU rendering, CUDA parallel computing and rapid grid oriented strategy, a series of efficient and high-quality visualization methods, which can deal with large-scale and multi-dimensional marine data in different environmental circumstances, has been proposed in this paper. Firstly, a high-quality seawater simulation is realized by FFT algorithm, bump mapping and texture animation technology. Secondly, large-scale multi-dimensional marine hydrological environmental data is virtualized by 3d interactive technologies and volume rendering techniques. Thirdly, seabed terrain data is simulated with improved Delaunay algorithm, surface reconstruction algorithm, dynamic LOD algorithm and GPU programming techniques. Fourthly, seamless modelling in real time for both ocean and land based on digital globe is achieved by the WebGL technique to meet the requirement of web-based application. The experiments suggest that these methods can not only have a satisfying marine environment simulation effect, but also meet the rendering requirements of global multi-dimension marine data. Additionally, a simulation system for underwater oil spill is established by OSG 3D-rendering engine. It is integrated with the marine visualization method mentioned above, which shows movement processes, physical parameters, current velocity and direction for different types of deep water oil spill particle (oil spill particles, hydrates particles, gas particles, etc.) dynamically and simultaneously in multi-dimension. With such application, valuable reference and decision-making information can be provided for understanding the progress of oil spill in deep water, which is helpful for ocean disaster forecasting, warning and emergency response.

  2. Intermediate Scale Experimental Design to Validate a Subsurface Inverse Theory Applicable to Date-sparse Conditions

    NASA Astrophysics Data System (ADS)

    Jiao, J.; Trautz, A.; Zhang, Y.; Illangasekera, T.

    2017-12-01

    Subsurface flow and transport characterization under data-sparse condition is addressed by a new and computationally efficient inverse theory that simultaneously estimates parameters, state variables, and boundary conditions. Uncertainty in static data can be accounted for while parameter structure can be complex due to process uncertainty. The approach has been successfully extended to inverting transient and unsaturated flows as well as contaminant source identification under unknown initial and boundary conditions. In one example, by sampling numerical experiments simulating two-dimensional steady-state flow in which tracer migrates, a sequential inversion scheme first estimates the flow field and permeability structure before the evolution of tracer plume and dispersivities are jointly estimated. Compared to traditional inversion techniques, the theory does not use forward simulations to assess model-data misfits, thus the knowledge of the difficult-to-determine site boundary condition is not required. To test the general applicability of the theory, data generated during high-precision intermediate-scale experiments (i.e., a scale intermediary to the field and column scales) in large synthetic aquifers can be used. The design of such experiments is not trivial as laboratory conditions have to be selected to mimic natural systems in order to provide useful data, thus requiring a variety of sensors and data collection strategies. This paper presents the design of such an experiment in a synthetic, multi-layered aquifer with dimensions of 242.7 x 119.3 x 7.7 cm3. Different experimental scenarios that will generate data to validate the theory are presented.

  3. Beyond multi-fractals: surrogate time series and fields

    NASA Astrophysics Data System (ADS)

    Venema, V.; Simmer, C.

    2007-12-01

    Most natural complex are characterised by variability on a large range of temporal and spatial scales. The two main methodologies to generate such structures are Fourier/FARIMA based algorithms and multifractal methods. The former is restricted to Gaussian data, whereas the latter requires the structure to be self-similar. This work will present so-called surrogate data as an alternative that works with any (empirical) distribution and power spectrum. The best-known surrogate algorithm is the iterative amplitude adjusted Fourier transform (IAAFT) algorithm. We have studied six different geophysical time series (two clouds, runoff of a small and a large river, temperature and rain) and their surrogates. The power spectra and consequently the 2nd order structure functions were replicated accurately. Even the fourth order structure function was more accurately reproduced by the surrogates as would be possible by a fractal method, because the measured structure deviated too strong from fractal scaling. Only in case of the daily rain sums a fractal method could have been more accurate. Just as Fourier and multifractal methods, the current surrogates are not able to model the asymmetric increment distributions observed for runoff, i.e., they cannot reproduce nonlinear dynamical processes that are asymmetric in time. Furthermore, we have found differences for the structure functions on small scales. Surrogate methods are especially valuable for empirical studies, because the time series and fields that are generated are able to mimic measured variables accurately. Our main application is radiative transfer through structured clouds. Like many geophysical fields, clouds can only be sampled sparsely, e.g. with in-situ airborne instruments. However, for radiative transfer calculations we need full 3-dimensional cloud fields. A first study relating the measured properties of the cloud droplets and the radiative properties of the cloud field by generating surrogate cloud fields yielded good results within the measurement error. A further test of the suitability of the surrogate clouds for radiative transfer is evaluated by comparing the radiative properties of model cloud fields of sparse cumulus and stratocumulus with their surrogate fields. The bias and root mean square error in various radiative properties is small and the deviations in the radiances and irradiances are not statistically significant, i.e. these deviations can be attributed to the Monte Carlo noise of the radiative transfer calculations. We compared these results with optical properties of synthetic clouds that have either the correct distribution (but no spatial correlations) or the correct power spectrum (but a Gaussian distribution). These clouds did show statistical significant deviations. For more information see: http://www.meteo.uni-bonn.de/venema/themes/surrogates/

  4. Sparse models for correlative and integrative analysis of imaging and genetic data

    PubMed Central

    Lin, Dongdong; Cao, Hongbao; Calhoun, Vince D.

    2014-01-01

    The development of advanced medical imaging technologies and high-throughput genomic measurements has enhanced our ability to understand their interplay as well as their relationship with human behavior by integrating these two types of datasets. However, the high dimensionality and heterogeneity of these datasets presents a challenge to conventional statistical methods; there is a high demand for the development of both correlative and integrative analysis approaches. Here, we review our recent work on developing sparse representation based approaches to address this challenge. We show how sparse models are applied to the correlation and integration of imaging and genetic data for biomarker identification. We present examples on how these approaches are used for the detection of risk genes and classification of complex diseases such as schizophrenia. Finally, we discuss future directions on the integration of multiple imaging and genomic datasets including their interactions such as epistasis. PMID:25218561

  5. The Research on Denoising of SAR Image Based on Improved K-SVD Algorithm

    NASA Astrophysics Data System (ADS)

    Tan, Linglong; Li, Changkai; Wang, Yueqin

    2018-04-01

    SAR images often receive noise interference in the process of acquisition and transmission, which can greatly reduce the quality of images and cause great difficulties for image processing. The existing complete DCT dictionary algorithm is fast in processing speed, but its denoising effect is poor. In this paper, the problem of poor denoising, proposed K-SVD (K-means and singular value decomposition) algorithm is applied to the image noise suppression. Firstly, the sparse dictionary structure is introduced in detail. The dictionary has a compact representation and can effectively train the image signal. Then, the sparse dictionary is trained by K-SVD algorithm according to the sparse representation of the dictionary. The algorithm has more advantages in high dimensional data processing. Experimental results show that the proposed algorithm can remove the speckle noise more effectively than the complete DCT dictionary and retain the edge details better.

  6. DOLPHIn—Dictionary Learning for Phase Retrieval

    NASA Astrophysics Data System (ADS)

    Tillmann, Andreas M.; Eldar, Yonina C.; Mairal, Julien

    2016-12-01

    We propose a new algorithm to learn a dictionary for reconstructing and sparsely encoding signals from measurements without phase. Specifically, we consider the task of estimating a two-dimensional image from squared-magnitude measurements of a complex-valued linear transformation of the original image. Several recent phase retrieval algorithms exploit underlying sparsity of the unknown signal in order to improve recovery performance. In this work, we consider such a sparse signal prior in the context of phase retrieval, when the sparsifying dictionary is not known in advance. Our algorithm jointly reconstructs the unknown signal - possibly corrupted by noise - and learns a dictionary such that each patch of the estimated image can be sparsely represented. Numerical experiments demonstrate that our approach can obtain significantly better reconstructions for phase retrieval problems with noise than methods that cannot exploit such "hidden" sparsity. Moreover, on the theoretical side, we provide a convergence result for our method.

  7. Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation

    PubMed Central

    Zhao, Tuo; Liu, Han

    2016-01-01

    We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430

  8. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  9. Saliency Detection for Stereoscopic 3D Images in the Quaternion Frequency Domain

    NASA Astrophysics Data System (ADS)

    Cai, Xingyu; Zhou, Wujie; Cen, Gang; Qiu, Weiwei

    2018-06-01

    Recent studies have shown that a remarkable distinction exists between human binocular and monocular viewing behaviors. Compared with two-dimensional (2D) saliency detection models, stereoscopic three-dimensional (S3D) image saliency detection is a more challenging task. In this paper, we propose a saliency detection model for S3D images. The final saliency map of this model is constructed from the local quaternion Fourier transform (QFT) sparse feature and global QFT log-Gabor feature. More specifically, the local QFT feature measures the saliency map of an S3D image by analyzing the location of a similar patch. The similar patch is chosen using a sparse representation method. The global saliency map is generated by applying the wake edge-enhanced gradient QFT map through a band-pass filter. The results of experiments on two public datasets show that the proposed model outperforms existing computational saliency models for estimating S3D image saliency.

  10. Data-driven cluster reinforcement and visualization in sparsely-matched self-organizing maps.

    PubMed

    Manukyan, Narine; Eppstein, Margaret J; Rizzo, Donna M

    2012-05-01

    A self-organizing map (SOM) is a self-organized projection of high-dimensional data onto a typically 2-dimensional (2-D) feature map, wherein vector similarity is implicitly translated into topological closeness in the 2-D projection. However, when there are more neurons than input patterns, it can be challenging to interpret the results, due to diffuse cluster boundaries and limitations of current methods for displaying interneuron distances. In this brief, we introduce a new cluster reinforcement (CR) phase for sparsely-matched SOMs. The CR phase amplifies within-cluster similarity in an unsupervised, data-driven manner. Discontinuities in the resulting map correspond to between-cluster distances and are stored in a boundary (B) matrix. We describe a new hierarchical visualization of cluster boundaries displayed directly on feature maps, which requires no further clustering beyond what was implicitly accomplished during self-organization in SOM training. We use a synthetic benchmark problem and previously published microbial community profile data to demonstrate the benefits of the proposed methods.

  11. A sparse structure learning algorithm for Gaussian Bayesian Network identification from high-dimensional data.

    PubMed

    Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric

    2013-06-01

    Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph--a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer's disease (AD) and reveal findings that could lead to advancements in AD research.

  12. A Sparse Structure Learning Algorithm for Gaussian Bayesian Network Identification from High-Dimensional Data

    PubMed Central

    Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric

    2014-01-01

    Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph (DAG)—a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer’s disease (AD) and reveal findings that could lead to advancements in AD research. PMID:22665720

  13. Unsteady three-dimensional thermal field prediction in turbine blades using nonlinear BEM

    NASA Technical Reports Server (NTRS)

    Martin, Thomas J.; Dulikravich, George S.

    1993-01-01

    A time-and-space accurate and computationally efficient fully three dimensional unsteady temperature field analysis computer code has been developed for truly arbitrary configurations. It uses boundary element method (BEM) formulation based on an unsteady Green's function approach, multi-point Gaussian quadrature spatial integration on each panel, and a highly clustered time-step integration. The code accepts either temperatures or heat fluxes as boundary conditions that can vary in time on a point-by-point basis. Comparisons of the BEM numerical results and known analytical unsteady results for simple shapes demonstrate very high accuracy and reliability of the algorithm. An example of computed three dimensional temperature and heat flux fields in a realistically shaped internally cooled turbine blade is also discussed.

  14. Highlights from the previous volumes

    NASA Astrophysics Data System (ADS)

    Tong, Liu; al., Hadjihoseini Ali et; Jörg David, J.; al., Gao Zhong-Ke et; et al.

    2018-01-01

    Superconductivity at 7.3 K in quasi--one-dimensional RbCr3As3Rogue waves as negative entropy events durationsBiological rhythms ---What sets their amplitude?Reconstructing multi-mode networks from multivariate time series

  15. Optimal Couple Projections for Domain Adaptive Sparse Representation-based Classification.

    PubMed

    Zhang, Guoqing; Sun, Huaijiang; Porikli, Fatih; Liu, Yazhou; Sun, Quansen

    2017-08-29

    In recent years, sparse representation based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data has a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive sparse representation-based classification (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space. OCPD-SRC is designed based on the decision rule of SRC, with the objective to learn coupled projection matrices and a common discriminative dictionary such that the between-class sparse reconstruction residuals of data from both domains are maximized, and the within-class sparse reconstruction residuals of data are minimized in the projected low-dimensional space. Thus, the resulting representations can well fit SRC and simultaneously have a better discriminant ability. In addition, our method can be easily extended to multiple domains and can be kernelized to deal with the nonlinear structure of data. The optimal solution for the proposed method can be efficiently obtained following the alternative optimization method. Extensive experimental results on a series of benchmark databases show that our method is better or comparable to many state-of-the-art methods.

  16. Tomographic Imaging of a Forested Area By Airborne Multi-Baseline P-Band SAR.

    PubMed

    Frey, Othmar; Morsdorf, Felix; Meier, Erich

    2008-09-24

    In recent years, various attempts have been undertaken to obtain information about the structure of forested areas from multi-baseline synthetic aperture radar data. Tomographic processing of such data has been demonstrated for airborne L-band data but the quality of the focused tomographic images is limited by several factors. In particular, the common Fourierbased focusing methods are susceptible to irregular and sparse sampling, two problems, that are unavoidable in case of multi-pass, multi-baseline SAR data acquired by an airborne system. In this paper, a tomographic focusing method based on the time-domain back-projection algorithm is proposed, which maintains the geometric relationship between the original sensor positions and the imaged target and is therefore able to cope with irregular sampling without introducing any approximations with respect to the geometry. The tomographic focusing quality is assessed by analysing the impulse response of simulated point targets and an in-scene corner reflector. And, in particular, several tomographic slices of a volume representing a forested area are given. The respective P-band tomographic data set consisting of eleven flight tracks has been acquired by the airborne E-SAR sensor of the German Aerospace Center (DLR).

  17. Multi-Atlas Segmentation using Partially Annotated Data: Methods and Annotation Strategies.

    PubMed

    Koch, Lisa M; Rajchl, Martin; Bai, Wenjia; Baumgartner, Christian F; Tong, Tong; Passerat-Palmbach, Jonathan; Aljabar, Paul; Rueckert, Daniel

    2017-08-22

    Multi-atlas segmentation is a widely used tool in medical image analysis, providing robust and accurate results by learning from annotated atlas datasets. However, the availability of fully annotated atlas images for training is limited due to the time required for the labelling task. Segmentation methods requiring only a proportion of each atlas image to be labelled could therefore reduce the workload on expert raters tasked with annotating atlas images. To address this issue, we first re-examine the labelling problem common in many existing approaches and formulate its solution in terms of a Markov Random Field energy minimisation problem on a graph connecting atlases and the target image. This provides a unifying framework for multi-atlas segmentation. We then show how modifications in the graph configuration of the proposed framework enable the use of partially annotated atlas images and investigate different partial annotation strategies. The proposed method was evaluated on two Magnetic Resonance Imaging (MRI) datasets for hippocampal and cardiac segmentation. Experiments were performed aimed at (1) recreating existing segmentation techniques with the proposed framework and (2) demonstrating the potential of employing sparsely annotated atlas data for multi-atlas segmentation.

  18. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring.

    PubMed

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-09-07

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure.

  19. Application of information-retrieval methods to the classification of physical data

    NASA Technical Reports Server (NTRS)

    Mamotko, Z. N.; Khorolskaya, S. K.; Shatrovskiy, L. I.

    1975-01-01

    Scientific data received from satellites are characterized as a multi-dimensional time series, whose terms are vector functions of a vector of measurement conditions. Information retrieval methods are used to construct lower dimensional samples on the basis of the condition vector, in order to obtain these data and to construct partial relations. The methods are applied to the joint Soviet-French Arkad project.

  20. Detection of dual-band infrared small target based on joint dynamic sparse representation

    NASA Astrophysics Data System (ADS)

    Zhou, Jinwei; Li, Jicheng; Shi, Zhiguang; Lu, Xiaowei; Ren, Dongwei

    2015-10-01

    Infrared small target detection is a crucial and yet still is a difficult issue in aeronautic and astronautic applications. Sparse representation is an important mathematic tool and has been used extensively in image processing in recent years. Joint sparse representation is applied in dual-band infrared dim target detection in this paper. Firstly, according to the characters of dim targets in dual-band infrared images, 2-dimension Gaussian intensity model was used to construct target dictionary, then the dictionary was classified into different sub-classes according to different positions of Gaussian function's center point in image block; The fact that dual-band small targets detection can use the same dictionary and the sparsity doesn't lie in atom-level but in sub-class level was utilized, hence the detection of targets in dual-band infrared images was converted to be a joint dynamic sparse representation problem. And the dynamic active sets were used to describe the sparse constraint of coefficients. Two modified sparsity concentration index (SCI) criteria was proposed to evaluate whether targets exist in the images. In experiments, it shows that the proposed algorithm can achieve better detecting performance and dual-band detection is much more robust to noise compared with single-band detection. Moreover, the proposed method can be expanded to multi-spectrum small target detection.

  1. Locality constrained joint dynamic sparse representation for local matching based face recognition.

    PubMed

    Wang, Jianzhong; Yi, Yugen; Zhou, Wei; Shi, Yanjiao; Qi, Miao; Zhang, Ming; Zhang, Baoxue; Kong, Jun

    2014-01-01

    Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC) in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW) demonstrate the effectiveness of LCJDSRC.

  2. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function

    NASA Astrophysics Data System (ADS)

    Fei, Peng; Lee, Juhyun; Packard, René R. Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C.-C. Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K.

    2016-03-01

    Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.

  3. GIS prospectivity mapping and 3D modeling validation for potential uranium deposit targets in Shangnan district, China

    NASA Astrophysics Data System (ADS)

    Xie, Jiayu; Wang, Gongwen; Sha, Yazhou; Liu, Jiajun; Wen, Botao; Nie, Ming; Zhang, Shuai

    2017-04-01

    Integrating multi-source geoscience information (such as geology, geophysics, geochemistry, and remote sensing) using GIS mapping is one of the key topics and frontiers in quantitative geosciences for mineral exploration. GIS prospective mapping and three-dimensional (3D) modeling can be used not only to extract exploration criteria and delineate metallogenetic targets but also to provide important information for the quantitative assessment of mineral resources. This paper uses the Shangnan district of Shaanxi province (China) as a case study area. GIS mapping and potential granite-hydrothermal uranium targeting were conducted in the study area combining weights of evidence (WofE) and concentration-area (C-A) fractal methods with multi-source geoscience information. 3D deposit-scale modeling using GOCAD software was performed to validate the shapes and features of the potential targets at the subsurface. The research results show that: (1) the known deposits have potential zones at depth, and the 3D geological models can delineate surface or subsurface ore-forming features, which can be used to analyze the uncertainty of the shape and feature of prospectivity mapping at the subsurface; (2) single geochemistry anomalies or remote sensing anomalies at the surface require combining the depth exploration criteria of geophysics to identify potential targets; and (3) the single or sparse exploration criteria zone with few mineralization spots at the surface has high uncertainty in terms of the exploration target.

  4. Micro-precision control/structure interaction technology for large optical space systems

    NASA Technical Reports Server (NTRS)

    Sirlin, Samuel W.; Laskin, Robert A.

    1993-01-01

    The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.

  5. Sparse Matrices in MATLAB: Design and Implementation

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Moler, Cleve; Schreiber, Robert

    1992-01-01

    The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.

  6. Pedagogical Factors Stimulating the Self-Development of Students' Multi-Dimensional Thinking in Terms of Subject-Oriented Teaching

    ERIC Educational Resources Information Center

    Andreev, Valentin I.

    2014-01-01

    The main aim of this research is to disclose the essence of students' multi-dimensional thinking, also to reveal the rating of factors which stimulate the raising of effectiveness of self-development of students' multi-dimensional thinking in terms of subject-oriented teaching. Subject-oriented learning is characterized as a type of learning where…

  7. Control electronics for a multi-laser/multi-detector scanning system

    NASA Technical Reports Server (NTRS)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  8. Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing.

    PubMed

    Li, Shuang; Liu, Bing; Zhang, Chen

    2016-01-01

    Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple kernel learning. In addition, some models might be ill-posed if the rank of matrices in their objective functions was not high enough. To address these issues, we extend the traditional graph embedding framework and propose a novel regularized embedded multiple kernel dimensionality reduction method. Different from the conventional convex relaxation technique, the proposed algorithm directly takes advantage of a binary search and an alternative optimization scheme to obtain optimal solutions efficiently. The experimental results demonstrate the effectiveness of the proposed method for supervised, unsupervised, and semisupervised scenarios.

  9. Design of Environmental Flows Below Diversion Hydropower Dams: Is There Benefit to Advanced Streamflow Prediction in Sparse Data Landscapes?

    NASA Astrophysics Data System (ADS)

    Kibler, K. M.; Alipour, M.

    2017-12-01

    Diversion hydropower has been shown to significantly alter river flow regimes by dewatering diversion bypass reaches. Data scarcity is one of the foremost challenges to establishing environmental flow regimes below diversion hydropower dams, especially in regions of sparse hydro-meteorological observation. Herein, we test two prediction strategies for generating daily flows in rivers developed with diversion hydropower: a catchment similarity model, and a rainfall-runoff model selected by multi-objective optimization based on soft data. While both methods are designed for ungauged rivers embedded within large regions of sparse hydrologic observation, one is more complex and computationally-intensive. The objective of this study is to assess the benefit of using complex modeling tools in data-sparse landscapes to support design of environmental flow regimes. Models were tested in gauged catchments and then used to simulate a 28-year record of daily flows in 32 ungauged rivers. After perturbing flows with the hydropower diversion, we detect alteration using Indicators of Hydrologic Alteration (IHA) metrics and compare outcomes of the two modeling approaches. The catchment similarity model simulates low flows well (Nash-Sutcliff efficiency (NSE) = 0.91), but poorly represents moderate to high flows (overall NSE = 0.25). The multi-objective rainfall-runoff model performs well overall (NSE = 0.72). Both models agree that flow magnitudes and variability consistently decrease following diversion as temporally-dynamic flows are replaced by static minimal flows. Mean duration of events sustained below the pre-diversion Q75 and mean hydrograph rise and fall rates increase. While we see broad areas of agreement, significant effects and thresholds vary between models, particularly in the representation of moderate flows. Thus, use of simplified streamflow models may bias detected alterations or inadequately characterize pre-regulation flow regimes, providing inaccurate information as a basis for flow regime design. As an alternative, the multi-objective framework can be applied globally, and is robust to common challenges of flow prediction in ungauged rivers, such as equifinality and hydrologic dissimilarity of reference catchments.

  10. Multiuser TOA Estimation Algorithm in DS-CDMA Sparse Channel for Radiolocation

    NASA Astrophysics Data System (ADS)

    Kim, Sunwoo

    This letter considers multiuser time delay estimation in a sparse channel environment for radiolocation. The generalized successive interference cancellation (GSIC) algorithm is used to eliminate the multiple access interference (MAI). To adapt GSIC to sparse channels the alternating maximization (AM) algorithm is considered, and the continuous time delay of each path is estimated without requiring a priori known data sequences.

  11. Evidencing Learning Outcomes: A Multi-Level, Multi-Dimensional Course Alignment Model

    ERIC Educational Resources Information Center

    Sridharan, Bhavani; Leitch, Shona; Watty, Kim

    2015-01-01

    This conceptual framework proposes a multi-level, multi-dimensional course alignment model to implement a contextualised constructive alignment of rubric design that authentically evidences and assesses learning outcomes. By embedding quality control mechanisms at each level for each dimension, this model facilitates the development of an aligned…

  12. Infrared and visible image fusion method based on saliency detection in sparse domain

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Qi, Y.; Ding, W. R.

    2017-06-01

    Infrared and visible image fusion is a key problem in the field of multi-sensor image fusion. To better preserve the significant information of the infrared and visible images in the final fused image, the saliency maps of the source images is introduced into the fusion procedure. Firstly, under the framework of the joint sparse representation (JSR) model, the global and local saliency maps of the source images are obtained based on sparse coefficients. Then, a saliency detection model is proposed, which combines the global and local saliency maps to generate an integrated saliency map. Finally, a weighted fusion algorithm based on the integrated saliency map is developed to achieve the fusion progress. The experimental results show that our method is superior to the state-of-the-art methods in terms of several universal quality evaluation indexes, as well as in the visual quality.

  13. Digital Correlation In Laser-Speckle Velocimetry

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Mathys, Donald R.

    1992-01-01

    Periodic recording helps to eliminate spurious results. Improved digital-correlation process extracts velocity field of two-dimensional flow from laser-speckle images of seed particles distributed sparsely in flow. Method which involves digital correlation of images recorded at unequal intervals, completely automated and has potential to be fastest yet.

  14. PACE-90 water and solute transport calculations for 0.01, 0.1, and 0. 5 mm/yr infiltration into Yucca Mountain; Yucca Mountain Site Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykhuizen, R.C.; Eaton, R.R.; Hopkins, P.L.

    1991-12-01

    Numerical results are presented for the Performance Assessment Calculational Exercise (PACE-90). One- and two-dimensional water and solute transport are presented for steady infiltration into Yucca Mountain. Evenly distributed infiltration rates of 0.01, 0.1, and 0.5 mm/yr were considered. The calculations of solute transport show that significant amounts of radionuclides can reach the water table over 100,000 yr at the 0.5 mm/yr rate. For time periods less than 10,000 yr or infiltrations less than 0.1 mm/yr very little solute reaches the water table. The numerical simulations clearly demonstrate that multi-dimensional effects can result in significant decreases in the travel time ofmore » solute through the modeled domain. Dual continuum effects are shown to be negligible for the low steady state fluxes considered. However, material heterogeneities may cause local amplification of the flux level in multi-dimensional flows. These higher flux levels may then require modeling of a dual continuum porous medium.« less

  15. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase

    NASA Astrophysics Data System (ADS)

    Ono, Junichi; Takada, Shoji; Saito, Shinji

    2015-06-01

    An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.

  16. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Junichi; Takada, Shoji; Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502

    2015-06-07

    An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchicalmore » conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.« less

  17. Seismic signal time-frequency analysis based on multi-directional window using greedy strategy

    NASA Astrophysics Data System (ADS)

    Chen, Yingpin; Peng, Zhenming; Cheng, Zhuyuan; Tian, Lin

    2017-08-01

    Wigner-Ville distribution (WVD) is an important time-frequency analysis technology with a high energy distribution in seismic signal processing. However, it is interfered by many cross terms. To suppress the cross terms of the WVD and keep the concentration of its high energy distribution, an adaptive multi-directional filtering window in the ambiguity domain is proposed. This begins with the relationship of the Cohen distribution and the Gabor transform combining the greedy strategy and the rotational invariance property of the fractional Fourier transform in order to propose the multi-directional window, which extends the one-dimensional, one directional, optimal window function of the optimal fractional Gabor transform (OFrGT) to a two-dimensional, multi-directional window in the ambiguity domain. In this way, the multi-directional window matches the main auto terms of the WVD more precisely. Using the greedy strategy, the proposed window takes into account the optimal and other suboptimal directions, which also solves the problem of the OFrGT, called the local concentration phenomenon, when encountering a multi-component signal. Experiments on different types of both the signal models and the real seismic signals reveal that the proposed window can overcome the drawbacks of the WVD and the OFrGT mentioned above. Finally, the proposed method is applied to a seismic signal's spectral decomposition. The results show that the proposed method can explore the space distribution of a reservoir more precisely.

  18. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    NASA Astrophysics Data System (ADS)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.; Viallet, M.

    2017-08-01

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ˜50 Myr to ˜4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  19. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraffe, I.; Pratt, J.; Goffrey, T.

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a youngmore » low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ∼50 Myr to ∼4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.« less

  20. Application of Multi-task Sparse Lasso Feature Extraction and Support Vector Machine Regression in the Stellar Atmospheric Parameterization

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Li, Xiang-ru

    2017-07-01

    The multi-task learning takes the multiple tasks together to make analysis and calculation, so as to dig out the correlations among them, and therefore to improve the accuracy of the analyzed results. This kind of methods have been widely applied to the machine learning, pattern recognition, computer vision, and other related fields. This paper investigates the application of multi-task learning in estimating the stellar atmospheric parameters, including the surface temperature (Teff), surface gravitational acceleration (lg g), and chemical abundance ([Fe/H]). Firstly, the spectral features of the three stellar atmospheric parameters are extracted by using the multi-task sparse group Lasso algorithm, then the support vector machine is used to estimate the atmospheric physical parameters. The proposed scheme is evaluated on both the Sloan stellar spectra and the theoretical spectra computed from the Kurucz's New Opacity Distribution Function (NEWODF) model. The mean absolute errors (MAEs) on the Sloan spectra are: 0.0064 for lg (Teff /K), 0.1622 for lg (g/(cm · s-2)), and 0.1221 dex for [Fe/H]; the MAEs on the synthetic spectra are 0.0006 for lg (Teff /K), 0.0098 for lg (g/(cm · s-2)), and 0.0082 dex for [Fe/H]. Experimental results show that the proposed scheme has a rather high accuracy for the estimation of stellar atmospheric parameters.

  1. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  2. Three- and two-dimensional simulations of counter-propagating shear experiments at high energy densities at the National Ignition Facility

    DOE PAGES

    Wang, Ping; Zhou, Ye; MacLaren, Stephan A.; ...

    2015-11-06

    Three- and two-dimensional numerical studies have been carried out to simulate recent counter-propagating shear flow experiments on the National Ignition Facility. A multi-physics three-dimensional, time-dependent radiation hydrodynamics simulation code is used. Using a Reynolds Averaging Navier-Stokes model, we show that the evolution of the mixing layer width obtained from the simulations agrees well with that measured from the experiments. A sensitivity study is conducted to illustrate a 3D geometrical effect that could confuse the measurement at late times, if the energy drives from the two ends of the shock tube are asymmetric. Implications for future experiments are discussed.

  3. New generic indexing technology

    NASA Technical Reports Server (NTRS)

    Freeston, Michael

    1996-01-01

    There has been no fundamental change in the dynamic indexing methods supporting database systems since the invention of the B-tree twenty-five years ago. And yet the whole classical approach to dynamic database indexing has long since become inappropriate and increasingly inadequate. We are moving rapidly from the conventional one-dimensional world of fixed-structure text and numbers to a multi-dimensional world of variable structures, objects and images, in space and time. But, even before leaving the confines of conventional database indexing, the situation is highly unsatisfactory. In fact, our research has led us to question the basic assumptions of conventional database indexing. We have spent the past ten years studying the properties of multi-dimensional indexing methods, and in this paper we draw the strands of a number of developments together - some quite old, some very new, to show how we now have the basis for a new generic indexing technology for the next generation of database systems.

  4. A novel structure-aware sparse learning algorithm for brain imaging genetics.

    PubMed

    Du, Lei; Jingwen, Yan; Kim, Sungeun; Risacher, Shannon L; Huang, Heng; Inlow, Mark; Moore, Jason H; Saykin, Andrew J; Shen, Li

    2014-01-01

    Brain imaging genetics is an emergent research field where the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. Most existing SCCA algorithms are designed using the soft threshold strategy, which assumes that the features in the data are independent from each other. This independence assumption usually does not hold in imaging genetic data, and thus inevitably limits the capability of yielding optimal solutions. We propose a novel structure-aware SCCA (denoted as S2CCA) algorithm to not only eliminate the independence assumption for the input data, but also incorporate group-like structure in the model. Empirical comparison with a widely used SCCA implementation, on both simulated and real imaging genetic data, demonstrated that S2CCA could yield improved prediction performance and biologically meaningful findings.

  5. Unsupervised Transfer Learning via Multi-Scale Convolutional Sparse Coding for Biomedical Applications

    PubMed Central

    Chang, Hang; Han, Ju; Zhong, Cheng; Snijders, Antoine M.; Mao, Jian-Hua

    2017-01-01

    The capabilities of (I) learning transferable knowledge across domains; and (II) fine-tuning the pre-learned base knowledge towards tasks with considerably smaller data scale are extremely important. Many of the existing transfer learning techniques are supervised approaches, among which deep learning has the demonstrated power of learning domain transferrable knowledge with large scale network trained on massive amounts of labeled data. However, in many biomedical tasks, both the data and the corresponding label can be very limited, where the unsupervised transfer learning capability is urgently needed. In this paper, we proposed a novel multi-scale convolutional sparse coding (MSCSC) method, that (I) automatically learns filter banks at different scales in a joint fashion with enforced scale-specificity of learned patterns; and (II) provides an unsupervised solution for learning transferable base knowledge and fine-tuning it towards target tasks. Extensive experimental evaluation of MSCSC demonstrates the effectiveness of the proposed MSCSC in both regular and transfer learning tasks in various biomedical domains. PMID:28129148

  6. Performance analysis of distributed symmetric sparse matrix vector multiplication algorithm for multi-core architectures

    DOE PAGES

    Oryspayev, Dossay; Aktulga, Hasan Metin; Sosonkina, Masha; ...

    2015-07-14

    In this article, sparse matrix vector multiply (SpMVM) is an important kernel that frequently arises in high performance computing applications. Due to its low arithmetic intensity, several approaches have been proposed in literature to improve its scalability and efficiency in large scale computations. In this paper, our target systems are high end multi-core architectures and we use messaging passing interface + open multiprocessing hybrid programming model for parallelism. We analyze the performance of recently proposed implementation of the distributed symmetric SpMVM, originally developed for large sparse symmetric matrices arising in ab initio nuclear structure calculations. We also study important featuresmore » of this implementation and compare with previously reported implementations that do not exploit underlying symmetry. Our SpMVM implementations leverage the hybrid paradigm to efficiently overlap expensive communications with computations. Our main comparison criterion is the "CPU core hours" metric, which is the main measure of resource usage on supercomputers. We analyze the effects of topology-aware mapping heuristic using simplified network load model. Furthermore, we have tested the different SpMVM implementations on two large clusters with 3D Torus and Dragonfly topology. Our results show that the distributed SpMVM implementation that exploits matrix symmetry and hides communication yields the best value for the "CPU core hours" metric and significantly reduces data movement overheads.« less

  7. Coulomb disorder in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Skinner, Brian

    2015-03-01

    In three-dimensional materials with a Dirac spectrum, weak short-ranged disorder is essentially irrelevant near the Dirac point. This is manifestly not the case for Coulomb disorder, where the long-ranged nature of the potential produced by charged impurities implies large fluctuations of the disorder potential even when impurities are sparse, and these fluctuations are screened by the formation of electron/hole puddles. Here I outline a theory of such nonlinear screening of Coulomb disorder in three-dimensional Dirac systems, and present results for the typical magnitude of the disorder potential, the corresponding density of states, and the size and density of electron/hole puddles. The resulting conductivity is also discussed.

  8. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Valeev, Edward F.; Neese, Frank

    2016-01-01

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate previous implementation.

  9. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics.

    PubMed

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-08-01

    RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of [Formula: see text]. Subsequently, numerous faster 'Sankoff-style' approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity ([Formula: see text] quartic time). Breaking this barrier, we introduce the novel Sankoff-style algorithm 'sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)', which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff's original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. © The Author 2015. Published by Oxford University Press.

  10. Semi-Supervised Clustering for High-Dimensional and Sparse Features

    ERIC Educational Resources Information Center

    Yan, Su

    2010-01-01

    Clustering is one of the most common data mining tasks, used frequently for data organization and analysis in various application domains. Traditional machine learning approaches to clustering are fully automated and unsupervised where class labels are unknown a priori. In real application domains, however, some "weak" form of side…

  11. Multi-dimensional quantum state sharing based on quantum Fourier transform

    NASA Astrophysics Data System (ADS)

    Qin, Huawang; Tso, Raylin; Dai, Yuewei

    2018-03-01

    A scheme of multi-dimensional quantum state sharing is proposed. The dealer performs the quantum SUM gate and the quantum Fourier transform to encode a multi-dimensional quantum state into an entanglement state. Then the dealer distributes each participant a particle of the entanglement state, to share the quantum state among n participants. In the recovery, n-1 participants measure their particles and supply their measurement results; the last participant performs the unitary operation on his particle according to these measurement results and can reconstruct the initial quantum state. The proposed scheme has two merits: It can share the multi-dimensional quantum state and it does not need the entanglement measurement.

  12. Data-based diffraction kernels for surface waves from convolution and correlation processes through active seismic interferometry

    NASA Astrophysics Data System (ADS)

    Chmiel, Malgorzata; Roux, Philippe; Herrmann, Philippe; Rondeleux, Baptiste; Wathelet, Marc

    2018-05-01

    We investigated the construction of diffraction kernels for surface waves using two-point convolution and/or correlation from land active seismic data recorded in the context of exploration geophysics. The high density of controlled sources and receivers, combined with the application of the reciprocity principle, allows us to retrieve two-dimensional phase-oscillation diffraction kernels (DKs) of surface waves between any two source or receiver points in the medium at each frequency (up to 15 Hz, at least). These DKs are purely data-based as no model calculations and no synthetic data are needed. They naturally emerge from the interference patterns of the recorded wavefields projected on the dense array of sources and/or receivers. The DKs are used to obtain multi-mode dispersion relations of Rayleigh waves, from which near-surface shear velocity can be extracted. Using convolution versus correlation with a grid of active sources is an important step in understanding the physics of the retrieval of surface wave Green's functions. This provides the foundation for future studies based on noise sources or active sources with a sparse spatial distribution.

  13. Visualizing Gyrokinetic Turbulence in a Tokamak

    NASA Astrophysics Data System (ADS)

    Stantchev, George

    2005-10-01

    Multi-dimensional data output from gyrokinetic microturbulence codes are often difficult to visualize, in part due to the non-trivial geometry of the underlying grids, in part due to high irregularity of the relevant scalar field structures in turbulent regions. For instance, traditional isosurface extraction methods are likely to fail for the electrostatic potential field whose level sets may exhibit various geometric pathologies. To address these issues we develop an advanced interactive 3D gyrokinetic turbulence visualization framework which we apply in the study of microtearing instabilities calculated with GS2 in the MAST and NSTX geometries. In these simulations GS2 uses field-line-following coordinates such that the computational domain maps in physical space to a long, twisting flux tube with strong cross-sectional shear. Using statistical wavelet analysis we create a sparse multiple-scale volumetric representation of the relevant scalar fields, which we visualize via a variation of the so called splatting technique. To handle the problem of highly anisotropic flux tube configurations we adapt a geometry-driven surface illumination algorithm that places local light sources for effective feature-enhanced visualization.

  14. Joint fMRI analysis and subject clustering using sparse dictionary learning

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Jun; Dontaraju, Krishna K.

    2017-08-01

    Multi-subject fMRI data analysis methods based on sparse dictionary learning are proposed. In addition to identifying the component spatial maps by exploiting the sparsity of the maps, clusters of the subjects are learned by postulating that the fMRI volumes admit a subspace clustering structure. Furthermore, in order to tune the associated hyper-parameters systematically, a cross-validation strategy is developed based on entry-wise sampling of the fMRI dataset. Efficient algorithms for solving the proposed constrained dictionary learning formulations are developed. Numerical tests performed on synthetic fMRI data show promising results and provides insights into the proposed technique.

  15. Aggregate Measures of Watershed Health from Reconstructed ...

    EPA Pesticide Factsheets

    Risk-based indices such as reliability, resilience, and vulnerability (R-R-V), have the potential to serve as watershed health assessment tools. Recent research has demonstrated the applicability of such indices for water quality (WQ) constituents such as total suspended solids and nutrients on an individual basis. However, the calculations can become tedious when time-series data for several WQ constituents have to be evaluated individually. Also, comparisons between locations with different sets of constituent data can prove difficult. In this study, data reconstruction using relevance vector machine algorithm was combined with dimensionality reduction via variational Bayesian noisy principal component analysis to reconstruct and condense sparse multidimensional WQ data sets into a single time series. The methodology allows incorporation of uncertainty in both the reconstruction and dimensionality-reduction steps. The R-R-V values were calculated using the aggregate time series at multiple locations within two Indiana watersheds. Results showed that uncertainty present in the reconstructed WQ data set propagates to the aggregate time series and subsequently to the aggregate R-R-V values as well. serving as motivating examples. Locations with different WQ constituents and different standards for impairment were successfully combined to provide aggregate measures of R-R-V values. Comparisons with individual constituent R-R-V values showed that v

  16. Whole left ventricular functional assessment from two minutes free breathing multi-slice CINE acquisition

    NASA Astrophysics Data System (ADS)

    Usman, M.; Atkinson, D.; Heathfield, E.; Greil, G.; Schaeffter, T.; Prieto, C.

    2015-04-01

    Two major challenges in cardiovascular MRI are long scan times due to slow MR acquisition and motion artefacts due to respiratory motion. Recently, a Motion Corrected-Compressed Sensing (MC-CS) technique has been proposed for free breathing 2D dynamic cardiac MRI that addresses these challenges by simultaneously accelerating MR acquisition and correcting for any arbitrary motion in a compressed sensing reconstruction. In this work, the MC-CS framework is combined with parallel imaging for further acceleration, and is termed Motion Corrected Sparse SENSE (MC-SS). Validation of the MC-SS framework is demonstrated in eight volunteers and three patients for left ventricular functional assessment and results are compared with the breath-hold acquisitions as reference. A non-significant difference (P > 0.05) was observed in the volumetric functional measurements (end diastolic volume, end systolic volume, ejection fraction) and myocardial border sharpness values obtained with the proposed and gold standard methods. The proposed method achieves whole heart multi-slice coverage in 2 min under free breathing acquisition eliminating the time needed between breath-holds for instructions and recovery. This results in two-fold speed up of the total acquisition time in comparison to the breath-hold acquisition.

  17. Interferometric synthetic aperture radar phase unwrapping based on sparse Markov random fields by graph cuts

    NASA Astrophysics Data System (ADS)

    Zhou, Lifan; Chai, Dengfeng; Xia, Yu; Ma, Peifeng; Lin, Hui

    2018-01-01

    Phase unwrapping (PU) is one of the key processes in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) data. It is known that two-dimensional (2-D) PU problems can be formulated as maximum a posteriori estimation of Markov random fields (MRFs). However, considering that the traditional MRF algorithm is usually defined on a rectangular grid, it fails easily if large parts of the wrapped data are dominated by noise caused by large low-coherence area or rapid-topography variation. A PU solution based on sparse MRF is presented to extend the traditional MRF algorithm to deal with sparse data, which allows the unwrapping of InSAR data dominated by high phase noise. To speed up the graph cuts algorithm for sparse MRF, we designed dual elementary graphs and merged them to obtain the Delaunay triangle graph, which is used to minimize the energy function efficiently. The experiments on simulated and real data, compared with other existing algorithms, both confirm the effectiveness of the proposed MRF approach, which suffers less from decorrelation effects caused by large low-coherence area or rapid-topography variation.

  18. Energy budgets and resistances to energy transport in sparsely vegetated rangeland

    USGS Publications Warehouse

    Nichols, W.D.

    1992-01-01

    Partitioning available energy between plants and bare soil in sparsely vegetated rangelands will allow hydrologists and others to gain a greater understanding of water use by native vegetation, especially phreatophytes. Standard methods of conducting energy budget studies result in measurements of latent and sensible heat fluxes above the plant canopy which therefore include the energy fluxes from both the canopy and the soil. One-dimensional theoretical numerical models have been proposed recently for the partitioning of energy in sparse crops. Bowen ratio and other micrometeorological data collected over phreatophytes growing in areas of shallow ground water in central Nevada were used to evaluate the feasibility of using these models, which are based on surface and within-canopy aerodynamic resistances, to determine heat and water vapor transport in sparsely vegetated rangelands. The models appear to provide reasonably good estimates of sensible heat flux from the soil and latent heat flux from the canopy. Estimates of latent heat flux from the soil were less satisfactory. Sensible heat flux from the canopy was not well predicted by the present resistance formulations. Also, estimates of total above-canopy fluxes were not satisfactory when using a single value for above-canopy bulk aerodynamic resistance. ?? 1992.

  19. Sparse kernel methods for high-dimensional survival data.

    PubMed

    Evers, Ludger; Messow, Claudia-Martina

    2008-07-15

    Sparse kernel methods like support vector machines (SVM) have been applied with great success to classification and (standard) regression settings. Existing support vector classification and regression techniques however are not suitable for partly censored survival data, which are typically analysed using Cox's proportional hazards model. As the partial likelihood of the proportional hazards model only depends on the covariates through inner products, it can be 'kernelized'. The kernelized proportional hazards model however yields a solution that is dense, i.e. the solution depends on all observations. One of the key features of an SVM is that it yields a sparse solution, depending only on a small fraction of the training data. We propose two methods. One is based on a geometric idea, where-akin to support vector classification-the margin between the failed observation and the observations currently at risk is maximised. The other approach is based on obtaining a sparse model by adding observations one after another akin to the Import Vector Machine (IVM). Data examples studied suggest that both methods can outperform competing approaches. Software is available under the GNU Public License as an R package and can be obtained from the first author's website http://www.maths.bris.ac.uk/~maxle/software.html.

  20. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573

  1. Statistical Downscaling in Multi-dimensional Wave Climate Forecast

    NASA Astrophysics Data System (ADS)

    Camus, P.; Méndez, F. J.; Medina, R.; Losada, I. J.; Cofiño, A. S.; Gutiérrez, J. M.

    2009-04-01

    Wave climate at a particular site is defined by the statistical distribution of sea state parameters, such as significant wave height, mean wave period, mean wave direction, wind velocity, wind direction and storm surge. Nowadays, long-term time series of these parameters are available from reanalysis databases obtained by numerical models. The Self-Organizing Map (SOM) technique is applied to characterize multi-dimensional wave climate, obtaining the relevant "wave types" spanning the historical variability. This technique summarizes multi-dimension of wave climate in terms of a set of clusters projected in low-dimensional lattice with a spatial organization, providing Probability Density Functions (PDFs) on the lattice. On the other hand, wind and storm surge depend on instantaneous local large-scale sea level pressure (SLP) fields while waves depend on the recent history of these fields (say, 1 to 5 days). Thus, these variables are associated with large-scale atmospheric circulation patterns. In this work, a nearest-neighbors analog method is used to predict monthly multi-dimensional wave climate. This method establishes relationships between the large-scale atmospheric circulation patterns from numerical models (SLP fields as predictors) with local wave databases of observations (monthly wave climate SOM PDFs as predictand) to set up statistical models. A wave reanalysis database, developed by Puertos del Estado (Ministerio de Fomento), is considered as historical time series of local variables. The simultaneous SLP fields calculated by NCEP atmospheric reanalysis are used as predictors. Several applications with different size of sea level pressure grid and with different temporal domain resolution are compared to obtain the optimal statistical model that better represents the monthly wave climate at a particular site. In this work we examine the potential skill of this downscaling approach considering perfect-model conditions, but we will also analyze the suitability of this methodology to be used for seasonal forecast and for long-term climate change scenario projection of wave climate.

  2. Folded concave penalized learning in identifying multimodal MRI marker for Parkinson’s disease

    PubMed Central

    Liu, Hongcheng; Du, Guangwei; Zhang, Lijun; Lewis, Mechelle M.; Wang, Xue; Yao, Tao; Li, Runze; Huang, Xuemei

    2016-01-01

    Background Brain MRI holds promise to gauge different aspects of Parkinson’s disease (PD)-related pathological changes. Its analysis, however, is hindered by the high-dimensional nature of the data. New method This study introduces folded concave penalized (FCP) sparse logistic regression to identify biomarkers for PD from a large number of potential factors. The proposed statistical procedures target the challenges of high-dimensionality with limited data samples acquired. The maximization problem associated with the sparse logistic regression model is solved by local linear approximation. The proposed procedures then are applied to the empirical analysis of multimodal MRI data. Results From 45 features, the proposed approach identified 15 MRI markers and the UPSIT, which are known to be clinically relevant to PD. By combining the MRI and clinical markers, we can enhance substantially the specificity and sensitivity of the model, as indicated by the ROC curves. Comparison to existing methods We compare the folded concave penalized learning scheme with both the Lasso penalized scheme and the principle component analysis-based feature selection (PCA) in the Parkinson’s biomarker identification problem that takes into account both the clinical features and MRI markers. The folded concave penalty method demonstrates a substantially better clinical potential than both the Lasso and PCA in terms of specificity and sensitivity. Conclusions For the first time, we applied the FCP learning method to MRI biomarker discovery in PD. The proposed approach successfully identified MRI markers that are clinically relevant. Combining these biomarkers with clinical features can substantially enhance performance. PMID:27102045

  3. Measuring the Perception of the Teachers' Autonomy-Supportive Behavior in Physical Education: Development and Initial Validation of a Multi-Dimensional Instrument

    ERIC Educational Resources Information Center

    Tilga, Henri; Hein, Vello; Koka, Andre

    2017-01-01

    This research aimed to develop and validate an instrument to assess the students' perceptions of the teachers' autonomy-supportive behavior by the multi-dimensional scale (Multi-Dimensional Perceived Autonomy Support Scale for Physical Education). The participants were 1,476 students aged 12- to 15-years-old. In Study 1, a pool of 37 items was…

  4. A review of direct numerical simulations of astrophysical detonations and their implications

    DOE PAGES

    Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; ...

    2013-04-11

    Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x10 7 g∙cm -3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x10 7 g∙cm -3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. In conclusion, this work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less

  5. Simulating electron wave dynamics in graphene superlattices exploiting parallel processing advantages

    NASA Astrophysics Data System (ADS)

    Rodrigues, Manuel J.; Fernandes, David E.; Silveirinha, Mário G.; Falcão, Gabriel

    2018-01-01

    This work introduces a parallel computing framework to characterize the propagation of electron waves in graphene-based nanostructures. The electron wave dynamics is modeled using both "microscopic" and effective medium formalisms and the numerical solution of the two-dimensional massless Dirac equation is determined using a Finite-Difference Time-Domain scheme. The propagation of electron waves in graphene superlattices with localized scattering centers is studied, and the role of the symmetry of the microscopic potential in the electron velocity is discussed. The computational methodologies target the parallel capabilities of heterogeneous multi-core CPU and multi-GPU environments and are built with the OpenCL parallel programming framework which provides a portable, vendor agnostic and high throughput-performance solution. The proposed heterogeneous multi-GPU implementation achieves speedup ratios up to 75x when compared to multi-thread and multi-core CPU execution, reducing simulation times from several hours to a couple of minutes.

  6. Evaluating Environmental Impact of Traffic Congestion in Real Time Based on Sparse Mobile Crowd-sourced Data

    DOT National Transportation Integrated Search

    2018-02-02

    Traffic congestion at arterial intersections and freeway bottlenecks degrades the air quality and threatens the public health. Conventionally, air pollutants are monitored by sparsely-distributed Quality Assurance Air Monitoring Sites. Sparse mobile ...

  7. Experiences of time loss among videogame players: an empirical study.

    PubMed

    Wood, Richard T A; Griffiths, Mark D; Parke, Adrian

    2007-02-01

    Playing videogames is now a major leisure pursuit, yet research in the area is comparatively sparse. Previous correlational evidence suggests that subjective time loss occurs during playing videogames. This study examined experiences of time loss among a relatively large group of gamers (n = 280). Quantitative and qualitative data were collected through an online survey. Results showed that time loss occurred irrespective of gender, age, or frequency of play, but was associated with particular structural characteristics of games such as their complexity, the presence of multi-levels, missions and/or high scores, multiplayer interactions, and plot. Results also demonstrated that time loss could have both positive and negative outcomes for players. Positive aspects of time loss included helping players to relax and temporarily escape from reality. Negative aspects included the sacrificing of other things in their lives, guilty feelings about wasted time, and social conflict. It is concluded that for many gamers, losing track of time is a positive experience and is one of the main reasons for playing videogames.

  8. A Comparative Study of Multi-material Data Structures for Computational Physics Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Rao Veerabhadra; Robey, Robert W.

    The data structures used to represent the multi-material state of a computational physics application can have a drastic impact on the performance of the application. We look at efficient data structures for sparse applications where there may be many materials, but only one or few in most computational cells. We develop simple performance models for use in selecting possible data structures and programming patterns. We verify the analytic models of performance through a small test program of the representative cases.

  9. Feature Selection and Pedestrian Detection Based on Sparse Representation.

    PubMed

    Yao, Shihong; Wang, Tao; Shen, Weiming; Pan, Shaoming; Chong, Yanwen; Ding, Fei

    2015-01-01

    Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental results, this paper screens out the sparse feature subsets via sparse representation to investigate whether the sparse subsets have the same description abilities and the most stable features. When any two of the six features are fused, the fusion feature is sparsely represented to obtain its important components. Sparse subsets of the fusion features can be rapidly generated by avoiding calculation of the corresponding index of dimension numbers of these feature descriptors; thus, the calculation speed of the feature dimension reduction is improved and the pedestrian detection time is reduced. Experimental results show that sparse feature subsets are capable of keeping the important components of these six feature descriptors. The sparse features of HOG and LSS possess the same description ability and consume less time compared with their full features. The ratios of the sparse feature subsets of HOG and LSS to their full sets are the highest among the six, and thus these two features can be used to best describe the characteristics of the pedestrian and the sparse feature subsets of the combination of HOG-LSS show better distinguishing ability and parsimony.

  10. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  11. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles

    DOE PAGES

    Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher; ...

    2016-08-12

    Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. In this paper, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expectedmore » two-phase coexistence throughout the entire charging process. Finally, we expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences.« less

  12. Enhancement of snow cover change detection with sparse representation and dictionary learning

    NASA Astrophysics Data System (ADS)

    Varade, D.; Dikshit, O.

    2014-11-01

    Sparse representation and decoding is often used for denoising images and compression of images with respect to inherent features. In this paper, we adopt a methodology incorporating sparse representation of a snow cover change map using the K-SVD trained dictionary and sparse decoding to enhance the change map. The pixels often falsely characterized as "changes" are eliminated using this approach. The preliminary change map was generated using differenced NDSI or S3 maps in case of Resourcesat-2 and Landsat 8 OLI imagery respectively. These maps are extracted into patches for compressed sensing using Discrete Cosine Transform (DCT) to generate an initial dictionary which is trained by the K-SVD approach. The trained dictionary is used for sparse coding of the change map using the Orthogonal Matching Pursuit (OMP) algorithm. The reconstructed change map incorporates a greater degree of smoothing and represents the features (snow cover changes) with better accuracy. The enhanced change map is segmented using kmeans to discriminate between the changed and non-changed pixels. The segmented enhanced change map is compared, firstly with the difference of Support Vector Machine (SVM) classified NDSI maps and secondly with a reference data generated as a mask by visual interpretation of the two input images. The methodology is evaluated using multi-spectral datasets from Resourcesat-2 and Landsat-8. The k-hat statistic is computed to determine the accuracy of the proposed approach.

  13. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.

    PubMed

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.

  14. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES

    PubMed Central

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    2016-01-01

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓr norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics. PMID:26806986

  15. Sparse Zero-Sum Games as Stable Functional Feature Selection

    PubMed Central

    Sokolovska, Nataliya; Teytaud, Olivier; Rizkalla, Salwa; Clément, Karine; Zucker, Jean-Daniel

    2015-01-01

    In large-scale systems biology applications, features are structured in hidden functional categories whose predictive power is identical. Feature selection, therefore, can lead not only to a problem with a reduced dimensionality, but also reveal some knowledge on functional classes of variables. In this contribution, we propose a framework based on a sparse zero-sum game which performs a stable functional feature selection. In particular, the approach is based on feature subsets ranking by a thresholding stochastic bandit. We provide a theoretical analysis of the introduced algorithm. We illustrate by experiments on both synthetic and real complex data that the proposed method is competitive from the predictive and stability viewpoints. PMID:26325268

  16. Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics

    NASA Astrophysics Data System (ADS)

    Dai, Xiongping; Tang, Xinjia

    2017-11-01

    Let π : T × X → X, written T↷π X, be a topological semiflow/flow on a uniform space X with T a multiplicative topological semigroup/group not necessarily discrete. We then prove: If T↷π X is non-minimal topologically transitive with dense almost periodic points, then it is sensitive to initial conditions. As a result of this, Devaney chaos ⇒ Sensitivity to initial conditions, for this very general setting. Let R+↷π X be a C0-semiflow on a Polish space; then we show: If R+↷π X is topologically transitive with at least one periodic point p and there is a dense orbit with no nonempty interior, then it is multi-dimensional Li-Yorke chaotic; that is, there is a uncountable set Θ ⊆ X such that for any k ≥ 2 and any distinct points x1 , … ,xk ∈ Θ, one can find two time sequences sn → ∞ ,tn → ∞ with Moreover, let X be a non-singleton Polish space; then we prove: Any weakly-mixing C0-semiflow R+↷π X is densely multi-dimensional Li-Yorke chaotic. Any minimal weakly-mixing topological flow T↷π X with T abelian is densely multi-dimensional Li-Yorke chaotic. Any weakly-mixing topological flow T↷π X is densely Li-Yorke chaotic. We in addition construct a completely Li-Yorke chaotic minimal SL (2 , R)-acting flow on the compact metric space R ∪ { ∞ }. Our various chaotic dynamics are sensitive to the choices of the topology of the phase semigroup/group T.

  17. A general prediction model for the detection of ADHD and Autism using structural and functional MRI.

    PubMed

    Sen, Bhaskar; Borle, Neil C; Greiner, Russell; Brown, Matthew R G

    2018-01-01

    This work presents a novel method for learning a model that can diagnose Attention Deficit Hyperactivity Disorder (ADHD), as well as Autism, using structural texture and functional connectivity features obtained from 3-dimensional structural magnetic resonance imaging (MRI) and 4-dimensional resting-state functional magnetic resonance imaging (fMRI) scans of subjects. We explore a series of three learners: (1) The LeFMS learner first extracts features from the structural MRI images using the texture-based filters produced by a sparse autoencoder. These filters are then convolved with the original MRI image using an unsupervised convolutional network. The resulting features are used as input to a linear support vector machine (SVM) classifier. (2) The LeFMF learner produces a diagnostic model by first computing spatial non-stationary independent components of the fMRI scans, which it uses to decompose each subject's fMRI scan into the time courses of these common spatial components. These features can then be used with a learner by themselves or in combination with other features to produce the model. Regardless of which approach is used, the final set of features are input to a linear support vector machine (SVM) classifier. (3) Finally, the overall LeFMSF learner uses the combined features obtained from the two feature extraction processes in (1) and (2) above as input to an SVM classifier, achieving an accuracy of 0.673 on the ADHD-200 holdout data and 0.643 on the ABIDE holdout data. Both of these results, obtained with the same LeFMSF framework, are the best known, over all hold-out accuracies on these datasets when only using imaging data-exceeding previously-published results by 0.012 for ADHD and 0.042 for Autism. Our results show that combining multi-modal features can yield good classification accuracy for diagnosis of ADHD and Autism, which is an important step towards computer-aided diagnosis of these psychiatric diseases and perhaps others as well.

  18. A coarse-to-fine approach for medical hyperspectral image classification with sparse representation

    NASA Astrophysics Data System (ADS)

    Chang, Lan; Zhang, Mengmeng; Li, Wei

    2017-10-01

    A coarse-to-fine approach with sparse representation is proposed for medical hyperspectral image classification in this work. Segmentation technique with different scales is employed to exploit edges of the input image, where coarse super-pixel patches provide global classification information while fine ones further provide detail information. Different from common RGB image, hyperspectral image has multi bands to adjust the cluster center with more high precision. After segmentation, each super pixel is classified by recently-developed sparse representation-based classification (SRC), which assigns label for testing samples in one local patch by means of sparse linear combination of all the training samples. Furthermore, segmentation with multiple scales is employed because single scale is not suitable for complicate distribution of medical hyperspectral imagery. Finally, classification results for different sizes of super pixel are fused by some fusion strategy, offering at least two benefits: (1) the final result is obviously superior to that of segmentation with single scale, and (2) the fusion process significantly simplifies the choice of scales. Experimental results using real medical hyperspectral images demonstrate that the proposed method outperforms the state-of-the-art SRC.

  19. Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction

    NASA Astrophysics Data System (ADS)

    Niu, Shanzhou; Yu, Gaohang; Ma, Jianhua; Wang, Jing

    2018-02-01

    Spectral computed tomography (CT) has been a promising technique in research and clinics because of its ability to produce improved energy resolution images with narrow energy bins. However, the narrow energy bin image is often affected by serious quantum noise because of the limited number of photons used in the corresponding energy bin. To address this problem, we present an iterative reconstruction method for spectral CT using nonlocal low-rank and sparse matrix decomposition (NLSMD), which exploits the self-similarity of patches that are collected in multi-energy images. Specifically, each set of patches can be decomposed into a low-rank component and a sparse component, and the low-rank component represents the stationary background over different energy bins, while the sparse component represents the rest of the different spectral features in individual energy bins. Subsequently, an effective alternating optimization algorithm was developed to minimize the associated objective function. To validate and evaluate the NLSMD method, qualitative and quantitative studies were conducted by using simulated and real spectral CT data. Experimental results show that the NLSMD method improves spectral CT images in terms of noise reduction, artifact suppression and resolution preservation.

  20. Computer architectures for computational physics work done by Computational Research and Technology Branch and Advanced Computational Concepts Group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Slides are reproduced that describe the importance of having high performance number crunching and graphics capability. They also indicate the types of research and development underway at Ames Research Center to ensure that, in the near term, Ames is a smart buyer and user, and in the long-term that Ames knows the best possible solutions for number crunching and graphics needs. The drivers for this research are real computational physics applications of interest to Ames and NASA. They are concerned with how to map the applications, and how to maximize the physics learned from the results of the calculations. The computer graphics activities are aimed at getting maximum information from the three-dimensional calculations by using the real time manipulation of three-dimensional data on the Silicon Graphics workstation. Work is underway on new algorithms that will permit the display of experimental results that are sparse and random, the same way that the dense and regular computed results are displayed.

  1. Two-dimensional particle-in-cell plasma source ion implantation of a prolate spheroid target

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Sen; Han, Hong-Ying; Peng, Xiao-Qing; Chang, Ye; Wang, De-Zhen

    2010-03-01

    A two-dimensional particle-in-cell simulation is used to study the time-dependent evolution of the sheath surrounding a prolate spheroid target during a high voltage pulse in plasma source ion implantation. Our study shows that the potential contour lines pack more closely in the plasma sheath near the vertex of the major axis, i.e. where a thinner sheath is formed, and a non-uniform total ion dose distribution is incident along the surface of the prolate spheroid target due to the focusing of ions by the potential structure. Ion focusing takes place not only at the vertex of the major axis, where dense potential contour lines exist, but also at the vertex of the minor axis, where sparse contour lines exist. This results in two peaks of the received ion dose, locating at the vertices of the major and minor axes of the prolate spheroid target, and an ion dose valley, staying always between the vertices, rather than at the vertex of the minor axis.

  2. Optimal Dictionaries for Sparse Solutions of Multi-frame Blind Deconvolution

    DTIC Science & Technology

    2014-09-01

    object is the Hubble Space Telescope (HST). As stated above, the dictionary training used the first 100 of the total of the simulated PSFs. The second set...diffraction-limited Hubble image and HubbleRE is the reconstructed image from the 100 simulated atmospheric turbulence degraded images of the HST

  3. Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA.

    USDA-ARS?s Scientific Manuscript database

    A change detection experiment for an invasive species, saltcedar, near Lovelock, Nevada, was conducted with multi-date Compact Airborne Spectrographic Imager (CASI) hyperspectral datasets. Classification and NDVI differencing change detection methods were tested, In the classification strategy, a p...

  4. The theoretical relationship between foliage temperature and canopy resistance in sparse crops

    NASA Technical Reports Server (NTRS)

    Shuttleworth, W. James; Gurney, Robert J.

    1990-01-01

    One-dimensional, sparse-crop interaction theory is reformulated to allow calculation of the canopy resistance from measurements of foliage temperature. A submodel is introduced to describe eddy diffusion within the canopy which provides a simple, empirical simulation of the reported behavior obtained from a second-order closure model. The sensitivity of the calculated canopy resistance to the parameters and formulas assumed in the model is investigated. The calculation is shown to exhibit a significant but acceptable sensitivity to extreme changes in canopy aerodynamics, and to changes in the surface resistance of the substrate beneath the canopy at high and intermediate values of leaf area index. In very sparse crops changes in the surface resistance of the substrate are shown to contaminate the calculated canopy resistance, tending to amplify the apparent response to changes in water availability. The theory is developed to allow the use of a measurement of substrate temperature as an option to mitigate this contamination.

  5. Social Collaborative Filtering by Trust.

    PubMed

    Yang, Bo; Lei, Yu; Liu, Jiming; Li, Wenjie

    2017-08-01

    Recommender systems are used to accurately and actively provide users with potentially interesting information or services. Collaborative filtering is a widely adopted approach to recommendation, but sparse data and cold-start users are often barriers to providing high quality recommendations. To address such issues, we propose a novel method that works to improve the performance of collaborative filtering recommendations by integrating sparse rating data given by users and sparse social trust network among these same users. This is a model-based method that adopts matrix factorization technique that maps users into low-dimensional latent feature spaces in terms of their trust relationship, and aims to more accurately reflect the users reciprocal influence on the formation of their own opinions and to learn better preferential patterns of users for high-quality recommendations. We use four large-scale datasets to show that the proposed method performs much better, especially for cold start users, than state-of-the-art recommendation algorithms for social collaborative filtering based on trust.

  6. Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics

    DOE PAGES

    Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.; ...

    2016-04-27

    We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

  7. Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.

    We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

  8. Design principles of the sparse coding network and the role of “sister cells” in the olfactory system of Drosophila

    PubMed Central

    Zhang, Danke; Li, Yuanqing; Wu, Si; Rasch, Malte J.

    2013-01-01

    Sensory systems face the challenge to represent sensory inputs in a way to allow easy readout of sensory information by higher brain areas. In the olfactory system of the fly drosopohila melanogaster, projection neurons (PNs) of the antennal lobe (AL) convert a dense activation of glomeruli into a sparse, high-dimensional firing pattern of Kenyon cells (KCs) in the mushroom body (MB). Here we investigate the design principles of the olfactory system of drosophila in regard to the capabilities to discriminate odor quality from the MB representation and its robustness to different types of noise. We focus on understanding the role of highly correlated homotypic projection neurons (“sister cells”) found in the glomeruli of flies. These cells are coupled by gap-junctions and receive almost identical sensory inputs, but target randomly different KCs in MB. We show that sister cells might play a crucial role in increasing the robustness of the MB odor representation to noise. Computationally, sister cells thus might help the system to improve the generalization capabilities in face of noise without impairing the discriminability of odor quality at the same time. PMID:24167488

  9. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport

    USGS Publications Warehouse

    Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.

    2002-01-01

    Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.

  10. Variational Bayesian Learning for Wavelet Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Roberts, S.; Daubechies, I.

    2005-11-01

    In an exploratory approach to data analysis, it is often useful to consider the observations as generated from a set of latent generators or "sources" via a generally unknown mapping. For the noisy overcomplete case, where we have more sources than observations, the problem becomes extremely ill-posed. Solutions to such inverse problems can, in many cases, be achieved by incorporating prior knowledge about the problem, captured in the form of constraints. This setting is a natural candidate for the application of the Bayesian methodology, allowing us to incorporate "soft" constraints in a natural manner. The work described in this paper is mainly driven by problems in functional magnetic resonance imaging of the brain, for the neuro-scientific goal of extracting relevant "maps" from the data. This can be stated as a `blind' source separation problem. Recent experiments in the field of neuroscience show that these maps are sparse, in some appropriate sense. The separation problem can be solved by independent component analysis (ICA), viewed as a technique for seeking sparse components, assuming appropriate distributions for the sources. We derive a hybrid wavelet-ICA model, transforming the signals into a domain where the modeling assumption of sparsity of the coefficients with respect to a dictionary is natural. We follow a graphical modeling formalism, viewing ICA as a probabilistic generative model. We use hierarchical source and mixing models and apply Bayesian inference to the problem. This allows us to perform model selection in order to infer the complexity of the representation, as well as automatic denoising. Since exact inference and learning in such a model is intractable, we follow a variational Bayesian mean-field approach in the conjugate-exponential family of distributions, for efficient unsupervised learning in multi-dimensional settings. The performance of the proposed algorithm is demonstrated on some representative experiments.

  11. Latent feature decompositions for integrative analysis of multi-platform genomic data

    PubMed Central

    Gregory, Karl B.; Momin, Amin A.; Coombes, Kevin R.; Baladandayuthapani, Veerabhadran

    2015-01-01

    Increased availability of multi-platform genomics data on matched samples has sparked research efforts to discover how diverse molecular features interact both within and between platforms. In addition, simultaneous measurements of genetic and epigenetic characteristics illuminate the roles their complex relationships play in disease progression and outcomes. However, integrative methods for diverse genomics data are faced with the challenges of ultra-high dimensionality and the existence of complex interactions both within and between platforms. We propose a novel modeling framework for integrative analysis based on decompositions of the large number of platform-specific features into a smaller number of latent features. Subsequently we build a predictive model for clinical outcomes accounting for both within- and between-platform interactions based on Bayesian model averaging procedures. Principal components, partial least squares and non-negative matrix factorization as well as sparse counterparts of each are used to define the latent features, and the performance of these decompositions is compared both on real and simulated data. The latent feature interactions are shown to preserve interactions between the original features and not only aid prediction but also allow explicit selection of outcome-related features. The methods are motivated by and applied to, a glioblastoma multiforme dataset from The Cancer Genome Atlas to predict patient survival times integrating gene expression, microRNA, copy number and methylation data. For the glioblastoma data, we find a high concordance between our selected prognostic genes and genes with known associations with glioblastoma. In addition, our model discovers several relevant cross-platform interactions such as copy number variation associated gene dosing and epigenetic regulation through promoter methylation. On simulated data, we show that our proposed method successfully incorporates interactions within and between genomic platforms to aid accurate prediction and variable selection. Our methods perform best when principal components are used to define the latent features. PMID:26146492

  12. Stereo Science Results at Solar Minimum

    NASA Technical Reports Server (NTRS)

    Christian, Eric R.; Kaiser, Michael L.; Kucera Therese A.; St. Cyr, O. C.; van Driel-Gesztelyi, Lidia; Mandrini, Cristina H.

    2009-01-01

    The magnetic fields that drive solar activity are complex and inherently three-dimensional structures. Twisted flux ropes, magnetic reconnection and the initiation of solar storms, as well as space weather propagation through the heliosphere, are just a few of the topics that cannot properly be observed or modeled in only two dimensions. Examination of this three-dimensional complex has been hampered by the fact that solar remote sensing observations have occurred only from the Earth-Sun line, and in situ observations, while available from a greater variety of locations, have been sparse throughout the heliosphere.

  13. Weather prediction using a genetic memory

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1990-01-01

    Kanaerva's sparse distributed memory (SDM) is an associative memory model based on the mathematical properties of high dimensional binary address spaces. Holland's genetic algorithms are a search technique for high dimensional spaces inspired by evolutional processes of DNA. Genetic Memory is a hybrid of the above two systems, in which the memory uses a genetic algorithm to dynamically reconfigure its physical storage locations to reflect correlations between the stored addresses and data. This architecture is designed to maximize the ability of the system to scale-up to handle real world problems.

  14. JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure.

    PubMed

    Labschütz, Matthias; Bruckner, Stefan; Gröller, M Eduard; Hadwiger, Markus; Rautek, Peter

    2016-01-01

    Sparse volume data structures enable the efficient representation of large but sparse volumes in GPU memory for computation and visualization. However, the choice of a specific data structure for a given data set depends on several factors, such as the memory budget, the sparsity of the data, and data access patterns. In general, there is no single optimal sparse data structure, but a set of several candidates with individual strengths and drawbacks. One solution to this problem are hybrid data structures which locally adapt themselves to the sparsity. However, they typically suffer from increased traversal overhead which limits their utility in many applications. This paper presents JiTTree, a novel sparse hybrid volume data structure that uses just-in-time compilation to overcome these problems. By combining multiple sparse data structures and reducing traversal overhead we leverage their individual advantages. We demonstrate that hybrid data structures adapt well to a large range of data sets. They are especially superior to other sparse data structures for data sets that locally vary in sparsity. Possible optimization criteria are memory, performance and a combination thereof. Through just-in-time (JIT) compilation, JiTTree reduces the traversal overhead of the resulting optimal data structure. As a result, our hybrid volume data structure enables efficient computations on the GPU, while being superior in terms of memory usage when compared to non-hybrid data structures.

  15. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. From the total budget of $5,000, Tricia and I studied the problem domain for developing ail Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy datasets. From the study and discussion with NASA LERC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of the data for GA based multi-resolution optimal search. Wavelet processing is proposed to create a coarse resolution representation of data providing two advantages in GA based search: 1. We will have less data to begin with to make search sub-spaces. 2. It will have robustness against the noise because at every level of wavelet based decomposition, we will be decomposing the signal into low pass and high pass filters.

  16. CMOS Active-Pixel Image Sensor With Intensity-Driven Readout

    NASA Technical Reports Server (NTRS)

    Langenbacher, Harry T.; Fossum, Eric R.; Kemeny, Sabrina

    1996-01-01

    Proposed complementary metal oxide/semiconductor (CMOS) integrated-circuit image sensor automatically provides readouts from pixels in order of decreasing illumination intensity. Sensor operated in integration mode. Particularly useful in number of image-sensing tasks, including diffractive laser range-finding, three-dimensional imaging, event-driven readout of sparse sensor arrays, and star tracking.

  17. Innovative architectures for dense multi-microprocessor computers

    NASA Technical Reports Server (NTRS)

    Larson, Robert E.

    1989-01-01

    The purpose is to summarize a Phase 1 SBIR project performed for the NASA/Langley Computational Structural Mechanics Group. The project was performed from February to August 1987. The main objectives of the project were to: (1) expand upon previous research into the application of chordal ring architectures to the general problem of designing multi-microcomputer architectures, (2) attempt to identify a family of chordal rings such that each chordal ring can be simply expanded to produce the next member of the family, (3) perform a preliminary, high-level design of an expandable multi-microprocessor computer based upon chordal rings, (4) analyze the potential use of chordal ring based multi-microprocessors for sparse matrix problems and other applications arising in computational structural mechanics.

  18. Two-dimensional shape recognition using sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti; Olshausen, Bruno

    1990-01-01

    Researchers propose a method for recognizing two-dimensional shapes (hand-drawn characters, for example) with an associative memory. The method consists of two stages: first, the image is preprocessed to extract tangents to the contour of the shape; second, the set of tangents is converted to a long bit string for recognition with sparse distributed memory (SDM). SDM provides a simple, massively parallel architecture for an associative memory. Long bit vectors (256 to 1000 bits, for example) serve as both data and addresses to the memory, and patterns are grouped or classified according to similarity in Hamming distance. At the moment, tangents are extracted in a simple manner by progressively blurring the image and then using a Canny-type edge detector (Canny, 1986) to find edges at each stage of blurring. This results in a grid of tangents. While the technique used for obtaining the tangents is at present rather ad hoc, researchers plan to adopt an existing framework for extracting edge orientation information over a variety of resolutions, such as suggested by Watson (1987, 1983), Marr and Hildreth (1980), or Canny (1986).

  19. Nested sparse grid collocation method with delay and transformation for subsurface flow and transport problems

    NASA Astrophysics Data System (ADS)

    Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi

    2017-06-01

    In numerical modeling of subsurface flow and transport problems, formation properties may not be deterministically characterized, which leads to uncertainty in simulation results. In this study, we propose a sparse grid collocation method, which adopts nested quadrature rules with delay and transformation to quantify the uncertainty of model solutions. We show that the nested Kronrod-Patterson-Hermite quadrature is more efficient than the unnested Gauss-Hermite quadrature. We compare the convergence rates of various quadrature rules including the domain truncation and domain mapping approaches. To further improve accuracy and efficiency, we present a delayed process in selecting quadrature nodes and a transformed process for approximating unsmooth or discontinuous solutions. The proposed method is tested by an analytical function and in one-dimensional single-phase and two-phase flow problems with different spatial variances and correlation lengths. An additional example is given to demonstrate its applicability to three-dimensional black-oil models. It is found from these examples that the proposed method provides a promising approach for obtaining satisfactory estimation of the solution statistics and is much more efficient than the Monte-Carlo simulations.

  20. Estimation of Dynamic Sparse Connectivity Patterns From Resting State fMRI.

    PubMed

    Cai, Biao; Zille, Pascal; Stephen, Julia M; Wilson, Tony W; Calhoun, Vince D; Wang, Yu Ping

    2018-05-01

    Functional connectivity (FC) estimated from functional magnetic resonance imaging (fMRI) time series, especially during resting state periods, provides a powerful tool to assess human brain functional architecture in health, disease, and developmental states. Recently, the focus of connectivity analysis has shifted toward the subnetworks of the brain, which reveals co-activating patterns over time. Most prior works produced a dense set of high-dimensional vectors, which are hard to interpret. In addition, their estimations to a large extent were based on an implicit assumption of spatial and temporal stationarity throughout the fMRI scanning session. In this paper, we propose an approach called dynamic sparse connectivity patterns (dSCPs), which takes advantage of both matrix factorization and time-varying fMRI time series to improve the estimation power of FC. The feasibility of analyzing dynamic FC with our model is first validated through simulated experiments. Then, we use our framework to measure the difference between young adults and children with real fMRI data set from the Philadelphia Neurodevelopmental Cohort (PNC). The results from the PNC data set showed significant FC differences between young adults and children in four different states. For instance, young adults had reduced connectivity between the default mode network and other subnetworks, as well as hyperconnectivity within the visual system in states 1 and 3, and hypoconnectivity in state 2. Meanwhile, they exhibited temporal correlation patterns that changed over time within functional subnetworks. In addition, the dSCPs model indicated that older people tend to spend more time within a relatively connected FC pattern. Overall, the proposed method provides a valid means to assess dynamic FC, which could facilitate the study of brain networks.

Top