Science.gov

Sample records for multi-diode dosimetric system

  1. Multi-diode laser system for UV exposure of the photoresists

    NASA Astrophysics Data System (ADS)

    Barbucha, R.; Tanski, M.; Kocik, M.

    2015-06-01

    PCB (Printed Circuit Board) industry is a global business for many years. PCB can be found in every electronic devices and since it becomes smaller, lighter and more efficient, new sophisticated machines need to be developed to meet this demands. The main parameter for the manufacturing machines is throughput. In this paper a multi-diode laser system for UV exposure of the photoresist on Printed Circuit Board is presented. The multi-diode laser system presents high throughput at high resolution of the pattern as well as low development costs.

  2. Standardization of individual dosimetric systems

    NASA Astrophysics Data System (ADS)

    Cavallini, A.

    1983-10-01

    The activities of an Italian operating group for the standardization of individual dosimeters are discussed. Intercalibration was performed for about 10,000 individual dosimeters in order to analyze systematic and random measuring errors. The validity of normalized inspection procedures was examined and the necessity of periodic checks was considered. Legislation is proposed including a technical inspection prior to authorization to start a dosimetry center and a norm for periodic controls of dosimetry services. The creation of a dosimetric data bank is also suggested.

  3. Clinical Digital Breast Tomosynthesis System: Dosimetric Characterization

    PubMed Central

    Feng, Steve Si Jia

    2012-01-01

    Purpose: To comprehensively characterize the dosimetric properties of a clinical digital breast tomosynthesis (DBT) system for the acquisition of mammographic and tomosynthesis images. Materials and Methods: Compressible water-oil mixture phantoms were created and imaged by using the automatic exposure control (AEC) of the Selenia Dimensions system (Hologic, Bedford, Mass) in both DBT and full-field digital mammography (FFDM) mode. Empirical measurements of the x-ray tube output were performed with a dosimeter to measure the air kerma for the range of tube current–exposure time product settings and to develop models of the automatically selected x-ray spectra. A Monte Carlo simulation of the system was developed and used in conjunction with the AEC-chosen settings and spectra models to compute and compare the mean glandular dose (MGD) resulting from both imaging modalities for breasts of varying sizes and glandular compositions. Results: Acquisition of a single craniocaudal view resulted in an MGD ranging from 0.309 to 5.26 mGy in FFDM mode and from 0.657 to 3.52 mGy in DBT mode. For a breast with a compressed thickness of 5.0 cm and a 50% glandular fraction, a DBT acquisition resulted in an only 8% higher MGD than an FFDM acquisition (1.30 and 1.20 mGy, respectively). For a breast with a compressed thickness of 6.0 cm and a 14.3% glandular fraction, a DBT acquisition resulted in an 83% higher MGD than an FFDM acquisition (2.12 and 1.16 mGy, respectively). Conclusion: For two-dimensional–three-dimensional fusion imaging with the Selenia Dimensions system, the MGD for a 5-cm-thick 50% glandular breast is 2.50 mGy, which is less than the Mammography Quality Standards Act limit for a two-view screening mammography study. © RSNA, 2012 PMID:22332070

  4. Developing and improving a scanning system for dosimetric applications

    SciTech Connect

    Perez, P.; Galvan, V.; Castellanoa, G.; Valente, M.

    2010-08-04

    Radiotherapy is nowadays one of the most used techniques for the treatment of different pathologies, particularly cancer diseases. The accuracy regarding the application of these treatments, which are planned according to patient information, depends mainly on the dosimetric measurements of absorbed dose within irradiated tissues. The present work is devoted to the study, design and construction of an original device capable of performing visible light transmission measurements in order to analyze Fricke gel dosimeters. Furthermore, a suitable bi-dimensional positioning system along with a dedicated control system and image processing software has been adapted to the dosimetric device in order to perform 2D dose mapping. The obtained results confirm the feasibility of the proposed method, therefore suggesting its potentiality for clinical applications.

  5. Dosimetric precision of an ion beam tracking system

    PubMed Central

    2010-01-01

    Background Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams. Methods A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion. Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system. Results All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum). Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3%) between measurements and calculations within the target volume for beam tracking (stationary) measurements. Conclusions The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems. PMID:20591160

  6. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems

    PubMed Central

    Sharma, S. D.; Kumar, Sudhir; Dagaonkar, S. S.; Bisht, Geetika; Dayanand, S.; Devi, Reena; Deshpande, S. S.; Chaudhary, S.; Bhatt, B. C.; Kannan, S.

    2007-01-01

    Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems (X-Knife). Output factor (St), tissue maximum ratio (TMR) and off axis ratio (OAR) of these three SRS systems were measured using CC01 (Scanditronix/ Welhofer) and Pinpoint (PTW) cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well. PMID:21217914

  7. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems.

    PubMed

    Sharma, S D; Kumar, Sudhir; Dagaonkar, S S; Bisht, Geetika; Dayanand, S; Devi, Reena; Deshpande, S S; Chaudhary, S; Bhatt, B C; Kannan, S

    2007-01-01

    Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems (X-Knife). Output factor (S(t)), tissue maximum ratio (TMR) and off axis ratio (OAR) of these three SRS systems were measured using CC01 (Scanditronix/ Welhofer) and Pinpoint (PTW) cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well.

  8. [Improved program maintenance of the CIRCIS dosimetric planning system].

    PubMed

    Sevast'ianov, A I; Liutova, N A; Ratner, T G

    1983-03-01

    A special computer complex CIRCIS (Informatique, France) is used in the All-Union Cancer Research Center, USSR AMS, for the dosimetric planning of radiotherapy on 5 gamma-beam units and electron accelerator. Mathematical maintenance of the complex includes programs of the calculation of dose distribution for gamma-, inhibition and electron radiation but has no program of the calculation of the time of irradiation. The authors have devised and introduced into the complex such a program in the Fortran language that makes it possible to calculate within 2-3 min the time of irradiation for multifield rotation therapy using several units as a time, thus expediting the dosimetric planning for patients' irradiation.

  9. [In-phantom dosimetric measurements as quality control for brachytherapy: System check and constancy check].

    PubMed

    Kollefrath, Michael; Bruggmoser, Gregor; Nanko, Norbert; Gainey, Mark

    2015-06-01

    In brachytherapy dosimetric measurements are difficult due to the inherent dose-inhomogenieties. Typically in routine clincal practice only the nominal dose rate is determined for computer controlled afterloading systems. The region of interest lies close to the source when measuring the spatial dose distribution. In this region small errors in the postioning of the detector, and its finite size, lead to large measurement uncertainties that exacerbate the routine dosimetric control of the system in the clinic. The size of the measurement chamber, its energy dependence, and the directional dependence of the measurement apparatus are the factors which have a significant influence on dosimetry. Although ionisation chambers are relatively large, they are employed since similar chambers are commonly found on clincal brachytherapy units. The dose is determined using DIN 6800 [11] since DIN 6809-2 [12], which deals with dosimetry in brachytherapy, is antiquated and is currently in the process of revision. Further information regarding dosimetry for brachytherapy can be found in textbooks [1] and [2]. The measurements for this work were performed with a HDR (High-Dose-Rate) (192)Ir source, type mHDR V2, and a Microselectron Afterloader V2 both from Nucletron/Elekta. In this work two dosimetric procedures are presented which, despite the aforemention difficulties, should assist in performing checks of the proper operation of the system. The first is a system check that measures the dose distribution along a line and is to be performed when first bringing the afterloader into operation, or after significant changes to the system. The other is a dosimetric constancy check, which with little effort can be performed monhtly or weekly. It simultaneously verifies the positioning of the source at two positions, the functionality of the system clock and the automatic re-calculation of the source activity. Copyright © 2015. Published by Elsevier GmbH.

  10. Validation of dosimetric field matching accuracy from proton therapy using a robotic patient positioning system.

    PubMed

    Farr, Jonathan B; O'Ryan-Blair, Avril; Jesseph, Frederick; Hsi, Wen-Chien; Allgower, Chris E; Mascia, Anthony E; Thornton, Allan F; Schreuder, Andreas N

    2010-04-12

    Large area, shallow fields are well suited to proton therapy. However, due to beam production limitations, such volumes typically require multiple matched fields. This is problematic due to the relatively narrow beam penumbra at shallow depths compared to electron and photon beams. Therefore, highly accurate dose planning and delivery is required. As the dose delivery includes shifting the patient for matched fields, accuracy at the 1-2 millimeter level in patient positioning is also required. This study investigates the dosimetric accuracy of such proton field matching by an innovative robotic patient positioner system (RPPS). The dosimetric comparisons were made between treatment planning system calculations, radiographic film and ionization chamber measurements. The results indicated good agreement amongst the methods and suggest that proton field matching by a RPPS is accurate and efficient.

  11. Dosimetric characteristics of novalis Tx system with high definition multileaf collimator.

    PubMed

    Chang, Zheng; Wang, Zhiheng; Wu, Q Jackie; Yan, Hui; Bowsher, Jim; Zhang, Junan; Yin, Fang-Fang

    2008-10-01

    A new Novalis Tx system equipped with a high definition multileaf collimator (HDMLC) recently became available to perform both image-guided radiosurgery and conventional radiotherapy. It is capable of delivering a highly conformal radiation dose with three energy modes: 6 MV photon energy, 15 MV photon energy, and 6 MV photon energy in a stereotactic radiosurgery mode with 1000 MU/min dose rate. Dosimetric characteristics of the new Novalis Tx treatment unit with the HDMLC are systematically measured for commissioning. A high resolution diode detector and miniion-chamber detector are used to measure dosimetric data for a range of field sizes from 4 x 4 mm to 400 x 400 mm. The commissioned Novalis Tx system has passed the RPC stereotactic radiosurgery head phantom irradiation test. The Novalis Tx system not only expands its capabilities with three energy modes, but also achieves better beam conformity and sharer beam penumbra with HDMLC. Since there is little beam data information available for the new Novalis Tx system, we present in this work the dosimetric data of the new modality for reference and comparison.

  12. Three dimensional dose verification of VMAT plans using the Octavius 4D dosimetric system

    NASA Astrophysics Data System (ADS)

    Arumugam, Sankar; Xing, Aitang; Young, Tony; Thwaites, David; Holloway, Lois

    2015-01-01

    The Octavius 4D dosimetric system generates a 3D dose matrix based on a measured planar dose and user supplied Percentage Depth Dose (PDD) data. The accuracy of 3D dose matrices reconstructed by the Octavius 4D dosimetric system was systematically studied for an open static field, an open arc field and clinical VMAT plans. The Octavius reconstructed 3D dose matrices were compared with the Treatment Planning System (TPS) calculated 3D dose matrices using 3D gamma (γ) analysis with 2%/2mm and 3%/3mm tolerance criteria. The larger detector size in the 2D detector array of the Octavius system resulted in failed voxels in the high dose gradient regions. For the open arc fields mean (1σ) γ pass rates of 84.5(8.9) % and 94.2(4.5) % were observed with 2%/2mm and 3%/3mm tolerance criteria respectively and for clinical VMAT plans mean (1σ) γ pass rates of 86.8(3.5) % and 96.7(1.4) % were observed.

  13. Long-term dosimetric stability of multiple TomoTherapy delivery systems.

    PubMed

    Smilowitz, Jennifer B; Dunkerley, David; Hill, Patrick M; Yadav, Poonam; Geurts, Mark W

    2017-05-01

    The dosimetric stability of six TomoTherapy units was analyzed to investigate changes in performance over time and with system upgrades. Energy and output were tracked using monitor chamber signal, onboard megavoltage computed tomography (MVCT) detector profile, and external ion chamber measurements. The systems (and monitoring periods) include three Hi-Art (67, 61, and 65 mos.), two TomoHDA (31 and 26 mos.), and one Radixact unit (11 mos.), representing approximately 10 years of clinical use. The four newest systems use the Dose Control Stability (DCS) system and Fixed Target Linear Accelerator (linac) (FTL). The output stability is reported as deviation from reference monitor chamber signal for all systems and/or from an external chamber signal. The energy stability was monitored using relative (center versus off-axis) MVCT detector signal (beam profile) and/or the ratio of chamber measurements at 2 depths. The clinical TomoHDA data were used to benchmark the Radixact stability, which has the same FTL but runs at a higher dose rate. The output based on monitor chamber data of all systems is very stable. The standard deviation of daily output on the non-DCS systems was 0.94-1.52%. As expected, the DCS systems had improved standard deviation: 0.004-0.06%. The beam energy was also very stable for all units. The standard deviation in profile flatness was 0.23-0.62% for rotating target systems and 0.04-0.09% for FTL. Ion chamber output and PDD ratios supported these results. The output stability on the Radixact system during extended treatment delivery (20, 30, and 40 min) was comparable to a clinical TomoHDA system. For each system, results are consistent between different measurement tools and techniques, proving not only the dosimetric stability, but also these quality parameters can be confirmed with various metrics. The replacement history over extended time periods of the major dosimetric components of the different delivery systems (target, linac, and magnetron

  14. Dosimetric comparison between two MLC systems commonly used for stereotactic radiosurgery and radiotherapy: a Monte Carlo and experimental study.

    PubMed

    Asnaashari, K; Chow, James C L; Heydarian, Mostafa

    2013-06-01

    In this work dosimetric parameters of two multi-leaf collimator (MLC) systems, namely the beam modulator (BM), which is the MLC commercial name for Elekta "Synergy S" linear accelerator and Radionics micro-MLC (MMLC), are compared using measurements and Monte Carlo simulations. Dosimetric parameters, such as percentage depth doses (PDDs), in-plane and cross-plane dose profiles, and penumbras for different depths and field sizes of the 6 MV photon beams were measured using ionization chamber and a water tank. The collimator leakages were measured using radiographic films. MMLC and BM were modeled using the EGSnrc-based BEAMnrc Monte Carlo code and above dosimetric parameters were calculated. The energy fluence spectra for the two MLCs were also determined using the BEAMnrc and BEAMDP. Dosimetric parameters of the two MLCs were similar, except for penumbras. Leaf-side and leaf-end 80-20% dose penumbras at 10 cm depth for a 10×10 cm(2) field size were 4.8 and 5.1mm for MMLC and 5.3 mm and 6.3 mm for BM, respectively. Both Radionics MMLC and Elekta BM can be used effectively based on their dosimetric characteristics for stereotactic radiosurgery and radiotherapy, although the former showed slightly sharper dose penumbra especially in the leaf-end direction. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Commissioning of a motion system to investigate dosimetric consequences due to variability of respiratory waveforms.

    PubMed

    Cetnar, Ashley J; James, Joshua; Wang, Brain

    2016-01-08

    A commercially available six-dimensional (6D) motion system was assessed for accuracy and clinical use in our department. Positional accuracy and respiratory waveform reproducibility were evaluated for the motion system. The system was then used to investigate the dosimetric consequences of respiratory waveform variation when an internal target volume (ITV) approach is used for motion management. The maximum deviations are 0.3 mm and 0.22° for translation and rotation accuracy, respectively, for the tested clinical ranges. The origin reproducibility is less than±0.1 mm. The average differences are less than 0.1 mm with a maximum standard deviation of 0.8 mm between waveforms of actual patients and replication of those waveforms by HexaMotion for three breath-hold and one free-breathing waveform. A modified gamma analysis shows greater than 98% agreement with a 0.5 mm and 100 ms threshold. The motion system was used to investigate respiratory waveform variation and showed that, as the amplitude of the treatment waveform increases above that of the simulation waveform, the periphery of the target volume receives less dose than expected. However, by using gating limits to terminate the beam outside of the simulation amplitude, the results are as expected dosimetrically. Specifically, the average dose difference in the periphery between treating with the simulation waveform and the larger amplitude waveform could be up to 12% less without gating limits, but only differed 2% or less with the gating limits in place. The general functionality of the system performs within the manufacturer's specifications and can accurately replicate patient specific waveforms. When an ITV approach is used for motion management, we found the use of gating limits that coincide with the amplitude of the patient waveform at simulation helpful to prevent the potential underdosing of the target due to changes in patient respiration.

  16. SU-F-P-11: Long Term Dosimetric Stability of 6 TomoTherapy Systems

    SciTech Connect

    Smilowitz, J; Dunkerley, D; Geurts, M; Hill, P; Yadav, P

    2016-06-15

    Purpose: The dosimetric stability of six TomoTherapy units was analyzed to investigate changes in performance over time and with system upgrades. Methods: Energy and output were tracked using monitor chamber signal, onboard MVCT detector signal and external ion chamber measurements. The systems (and monitoring periods) include 3 Hi-Art (67, 61 and 65 mos.), 2 HDA (29 and 25 mos.) and one research unit (7 mo.). Dose Control Stability system (DCS) was installed on 4 systems. Output stability is reported as deviation from reference monitor chamber signal for all systems, and from an external chamber for 4 systems. Energy stability was monitored using the relative (center versus off-axis) MVCT detector signal and/or the ratio of chamber measurements at 2 depths. The results from the clinical systems were used to benchmark the stability of the research unit, which has the same linear accelerator but runs at a higher dose rate. Results: The output based on monitor chamber data of all six systems is very stable. Non- DCS had a standard deviation of 1.7% and 1.8%. As expected, DCS systems had improved standard deviation: 0.003–0.05%. The energy was also very stable for all units. The standard deviation in exit detector flatness was 0.02–0.3%. Ion chamber output and 20/10 cm ratios supported these results. The stability for the research system, as monitored with a variety of metrics, is on par with the existing systems. Conclusion: The output and energy of six TomoTherapy units over a total of almost 10 years is quite stable. For each system, the results are consistent between the different measurement tools and techniques, proving not only the dosimetric stability, but that these quality parameters can be confirmed with various metrics. A research unit operating at a higher dose rate performed as well as the clinical treatment units. University of Wisconsin and Accuray Inc. (vendor of TomoTherapy systems) have a research agreement which supplies funds for research to

  17. Comparison of the dose distribution obtained from dosimetric systems with intensity modulated radiotherapy planning system in the treatment of prostate cancer

    SciTech Connect

    Gökçe, M. Uslu, D. Koçyiğit; Ertunç, C.; Karalı, T.

    2016-03-25

    The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3 percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.

  18. Comparison of the dose distribution obtained from dosimetric systems with intensity modulated radiotherapy planning system in the treatment of prostate cancer

    NASA Astrophysics Data System (ADS)

    Gökçe, M.; Uslu, D. Koçyiǧit; Ertunç, C.; Karalı, T.

    2016-03-01

    The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3 percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.

  19. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector.

    PubMed

    Ovejero, M C; Pérez Vega-Leal, A; Gallardo, M I; Espino, J M; Selva, A; Cortés-Giraldo, M A; Arráns, R

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  20. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector

    NASA Astrophysics Data System (ADS)

    Ovejero, M. C.; Pérez Vega-Leal, A.; Gallardo, M. I.; Espino, J. M.; Selva, A.; Cortés-Giraldo, M. A.; Arráns, R.

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  1. Commissioning of a motion system to investigate dosimetric consequences due to variability of respiratory waveforms.

    PubMed

    Cetnar, Ashley J; James, Joshua; Wang, Brain

    2016-01-01

    A commercially available six-dimensional (6D) motion system was assessed for accuracy and clinical use in our department. Positional accuracy and respiratory waveform reproducibility were evaluated for the motion system. The system was then used to investigate the dosimetric consequences of respiratory waveform variation when an internal target volume (ITV) approach is used for motion management. The maximum deviations are 0.3 mm and 0.22° for translation and rotation accuracy, respectively, for the tested clinical ranges. The origin reproducibility is less than ±0.1 mm. The average differences are less than 0.1 mm with a maximum standard deviation of 0.8 mm between waveforms of actual patients and replication of those waveforms by HexaMotion for three breath-hold and one free-breathing waveform. A modified gamma analysis shows greater than 98% agreement with a 0.5 mm and 100 ms threshold. The motion system was used to investigate respiratory waveform variation and showed that, as the amplitude of the treatment waveform increases above that of the simulation waveform, the periphery of the target volume receives less dose than expected. However, by using gating limits to terminate the beam outside of the simulation amplitude, the results are as expected dosimetrically. Specifically, the average dose difference in the periphery between treating with the simulation waveform and the larger amplitude waveform could be up to 12% less without gating limits, but only differed 2% or less with the gating limits in place. The general functionality of the system performs within the manufacturer's specifications and can accurately replicate patient specific waveforms. When an ITV approach is used for motion management, we found the use of gating limits that coincide with the amplitude of the patient waveform at simulation helpful to prevent the potential underdosing of the target due to changes in patient respiration. PACS numbers: 87.55.Kh, 87.55.Qr, 87.56.Fc. © 2016 The

  2. On the implementation of a recently proposed dosimetric formalism to a robotic radiosurgery system

    SciTech Connect

    Pantelis, E.; Moutsatsos, A.; Zourari, K.; Kilby, W.; Antypas, C.; Papagiannis, P.; Karaiskos, P.; Georgiou, E.; Sakelliou, L.

    2010-05-15

    Purpose: The aim of this work is to implement a recently proposed dosimetric formalism for nonstandard fields to the calibration and small field output factor measurement of a robotic stereotactic radiosurgery system. Methods: Reference dosimetry measurements were performed in the nonstandard, 60 mm diameter machine specific reference (msr) field using a Farmer ion chamber, five other cylindrical chambers with cavity lengths ranging from 16.25 down to 2.7 mm, and alanine dosimeters. Output factor measurements were performed for the 5, 7.5, 10, and 15 mm field sizes using microchambers, diode detectors, alanine dosimeters, TLD microcubes, and EBT Gafchromic films. Measurement correction factors as described in the proposed formalism were calculated for the ion chamber and diode detector output factor measurements based on published Monte Carlo data. Corresponding volume averaging correction factors were calculated for the alanine output factor measurements using 3D dose distributions, measured with polymer gel dosimeters. Results: Farmer chamber and alanine reference dosimetry results were found in close agreement, yielding a correction factor of k{sub Q{sub m{sub s{sub r,Q}{sup f{sub m}{sub s}{sub r},f{sub r}{sub e}{sub f}}}}}=0.999{+-}0.016 for the chamber readings. These results were also found to be in agreement within experimental uncertainties with corresponding results obtained using the shorter cavity length ionization chambers. The mean measured dose values of the latter, however, were found to be consistently greater than that of the Farmer chamber. This finding, combined with an observed inverse relationship between the mean measured dose and chamber cavity length that follows the trend predicted by theoretical volume averaging calculations in the msr field, implies that the Farmer k{sub Q{sub m{sub s{sub r,Q}{sup f{sub m}{sub s}{sub r},f{sub r}{sub e}{sub f}}}}} correction is greater than unity. Regarding the output factor results, deviations as large as

  3. SU-E-T-411: Dosimetric Comparison Between Two Multileaf Collimator Systems for Stereotactic Radiosurgery and Radiotherapy.

    PubMed

    Asnaashari, K; Chow, J; Heydarian, M

    2012-06-01

    This aim of this study is to compare the dosimetric parameters of two multileaf collimator (MLC) systems: (1) the beam modulator (BM), which is the MLC commercial name for Elekta 'Synergy S' linear accelerator; and (2) Radionics micro-MLC (MMLC). Dosimetric parameters of percentage depth dose (PDD), in-plane and cross-plane beam profile, penumbra, MLC leakage and transmission for a 6 MV photon beam with different field sizes and depths were measured using ionization chamber, film, solid water phantom and water tank. At the same time, the BM and MMLC were modeled using the BEAMnrc code and the above dosimetric parameters were calculated using Monte Carlo simulations. Energy fluence spectra for the two MLC were determined using the BEAMnrc and BEAMDP. We found that dosimetric parameters (PDD, beam profile, energy fluence spectra, leakage and transmission) of the two MLC were similar, except for penumbra. The leaf-side and leaf-end 20%-80% penumbras at 10 cm depth for a 10×10 cm(2) field were 4.8 and 5.1 mm for the MMLC and 5.3 mm and 6.3 mm for the BM, respectively. The maximum percentage of the leakage for the BM and MMLC are 1.3% and 1.2%, while the average percentage of leakage for the BM and MMLC are 0.9% and 1%. Based on their dosimetric characteristics for stereotactic radiosurgery and radiotherapy, it can be concluded that both the BM and MMLC can be used effectively, though the latter showed slightly sharper dose penumbra especially in the leaf-end direction. However, the BM has the advantages of producing considerably larger field at isocenter and having a greater isocenter clearance compared to the MMLC. The dosimetric data in this study should help radiotherapy staff to appreciate dependence of dosimetry on the MLC design and configuration for stereotactic radiosurgery and radiotherapy. Actual or potential conflicts of interest do not exist. © 2012 American Association of Physicists in Medicine.

  4. Dosimetric evaluation of a Monte Carlo IMRT treatment planning system incorporating the MIMiC

    NASA Astrophysics Data System (ADS)

    Rassiah-Szegedi, P.; Fuss, M.; Sheikh-Bagheri, D.; Szegedi, M.; Stathakis, S.; Lancaster, J.; Papanikolaou, N.; Salter, B.

    2007-12-01

    The high dose per fraction delivered to lung lesions in stereotactic body radiation therapy (SBRT) demands high dose calculation and delivery accuracy. The inhomogeneous density in the thoracic region along with the small fields used typically in intensity-modulated radiation therapy (IMRT) treatments poses a challenge in the accuracy of dose calculation. In this study we dosimetrically evaluated a pre-release version of a Monte Carlo planning system (PEREGRINE 1.6b, NOMOS Corp., Cranberry Township, PA), which incorporates the modeling of serial tomotherapy IMRT treatments with the binary multileaf intensity modulating collimator (MIMiC). The aim of this study is to show the validation process of PEREGRINE 1.6b since it was used as a benchmark to investigate the accuracy of doses calculated by a finite size pencil beam (FSPB) algorithm for lung lesions treated on the SBRT dose regime via serial tomotherapy in our previous study. Doses calculated by PEREGRINE were compared against measurements in homogeneous and inhomogeneous materials carried out on a Varian 600C with a 6 MV photon beam. Phantom studies simulating various sized lesions were also carried out to explain some of the large dose discrepancies seen in the dose calculations with small lesions. Doses calculated by PEREGRINE agreed to within 2% in water and up to 3% for measurements in an inhomogeneous phantom containing lung, bone and unit density tissue.

  5. Design and dosimetric characteristics of a new endocavitary contact radiotherapy system using an electronic brachytherapy source

    SciTech Connect

    Richardson, Susan; Garcia-Ramirez, Jose; Lu Wei; Myerson, Robert J.; Parikh, Parag

    2012-11-15

    Purpose: To present design aspects and acceptance tests performed for clinical implementation of electronic brachytherapy treatment of early stage rectal adenocarcinoma. A dosimetric comparison is made between the historically used Philips RT-50 unit and the newly developed Axxent{sup Registered-Sign} Model S700 electronic brachytherapy source manufactured by Xoft (iCad, Inc.). Methods: Two proctoscope cones were manufactured by ElectroSurgical Instruments (ESI). Two custom surface applicators were manufactured by Xoft and were designed to fit and interlock with the proctoscope cones from ESI. Dose rates, half value layers (HVL), and percentage depth dose (PDD) measurements were made with the Xoft system and compared to historical RT-50 data. A description of the patient treatment approach and exposure rates during the procedure is also provided. Results: The electronic brachytherapy system has a lower surface dose rate than the RT-50. The dose rate to water on the surface from the Xoft system is approximately 2.1 Gy/min while the RT-50 is 10-12 Gy/min. However, treatment times with Xoft are still reasonable. The HVLs and PDDs between the two systems were comparable resulting in similar doses to the target and to regions beyond the target. The exposure rate levels around a patient treatment were acceptable. The standard uncertainty in the dose rate to water on the surface is approximately {+-}5.2%. Conclusions: The Philips RT-50 unit is an out-of-date radiotherapy machine that is no longer manufactured with limited replacement parts. The use of a custom-designed proctoscope and Xoft surface applicators allows delivery of a well-established treatment with the ease of a modern radiotherapy device. While the dose rate is lower with the use of Xoft, the treatment times are still reasonable. Additionally, personnel may stand farther away from the Xoft radiation source, thus potentially reducing radiation exposure to the operator and other personnel.

  6. Evaluation of the dosimetric accuracy for a couch-based tracking system (CBTS)

    NASA Astrophysics Data System (ADS)

    Chang, Kyung Hwan; Lee, Suk; Kim, Kwang Hyeon; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong; Cao, Yuanjie

    2016-07-01

    In this study, the geometric and dosimetric accuracy of an in-house-developed couch-based tracking system (CBTS) was investigated using both film and in-house-developed polymer gel dosimeters. We evaluated the 1D and the 2D motion accuracies of our couch system by using Gafchromic EBT film. For the 1D test, the couch system was moved 5, 10, and 20 mm in the X, Y, and Z directions, respectively. Meanwhile, for the 2D test, it was moved along the XY, YZ, and ZX directions. We compared the profiles, full widths at half maximum (FWHMs), and penumbras between the static and the tracking fields. For the 3D test, we quantitatively compared the dose distribution between the static and the tracking fields by using the polymer gel dosimeter when it was simultaneously moved in the XYZ directions. We confirmed that the film was moved according to motion amplitudes of 5, 10, and 20 mm in the X, Y, and Z directions, respectively, in the 1D and 2D motion tests. The value of the FWHM of the static field and the three tracking fields were 51.88, 53.28, 57.67, and 64.43 mm, respectively. Two types of penumbras became wider with increasing amplitudes compared to the static field. For the 3D test, the dose distribution of the XYZ tracking field was qualitatively larger than that of the static field. We conclude that this CBTS has the potential for pre-clinical applications in adaptive radiation therapy.

  7. Dosimetric quality control of Eclipse treatment planning system using pelvic digital test object

    NASA Astrophysics Data System (ADS)

    Benhdech, Yassine; Beaumont, Stéphane; Guédon, Jeanpierre; Crespin, Sylvain

    2011-03-01

    Last year, we demonstrated the feasibility of a new method to perform dosimetric quality control of Treatment Planning Systems in radiotherapy, this method is based on Monte-Carlo simulations and uses anatomical Digital Test Objects (DTOs). The pelvic DTO was used in order to assess this new method on an ECLIPSE VARIAN Treatment Planning System. Large dose variations were observed particularly in air and bone equivalent material. In this current work, we discuss the results of the previous paper and provide an explanation for observed dose differences, the VARIAN Eclipse (Anisotropic Analytical) algorithm was investigated. Monte Carlo simulations (MC) were performed with a PENELOPE code version 2003. To increase efficiency of MC simulations, we have used our parallelized version based on the standard MPI (Message Passing Interface). The parallel code has been run on a 32- processor SGI cluster. The study was carried out using pelvic DTOs and was performed for low- and high-energy photon beams (6 and 18MV) on 2100CD VARIAN linear accelerator. A square field (10x10 cm2) was used. Assuming the MC data as reference, χ index analyze was carried out. For this study, a distance to agreement (DTA) was set to 7mm while the dose difference was set to 5% as recommended in the TRS-430 and TG-53 (on the beam axis in 3-D inhomogeneities). When using Monte Carlo PENELOPE, the absorbed dose is computed to the medium, however the TPS computes dose to water. We have used the method described by Siebers et al. based on Bragg-Gray cavity theory to convert MC simulated dose to medium to dose to water. Results show a strong consistency between ECLIPSE and MC calculations on the beam axis.

  8. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate

    NASA Astrophysics Data System (ADS)

    Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.

    2017-04-01

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  9. Dosimetric effects of positioning shifts using 6D-frameless stereotactic Brainlab system in hypofractionated intracranial radiotherapy.

    PubMed

    Jin, Hosang; Keeling, Vance P; Ali, Imad; Ahmad, Salahuddin

    2016-01-01

    Dosimetric consequences of positional shifts were studied using frameless Brainlab ExacTrac X-ray system for hypofractionated (3 or 5 fractions) intracranial stereotactic radiotherapy (SRT). SRT treatments of 17 patients with metastatic intracranial tumors using the stereotactic system were retrospectively investigated. The treatments were simulated in a treatment planning system by modifying planning parameters with a matrix conversion technique based on positional shifts for initial infrared (IR)-based setup (XC: X-ray correction) and post-correction (XV: X-ray verification). The simulation was implemented with (a) 3D translational shifts only and (b) 6D translational and rotational shifts for dosimetric effects of angular correction. Mean translations and rotations (± 1 SD) of 77 fractions based on the initial IR setup (XC) were 0.51±0.86 mm (lateral), 0.30±1.55 mm (longitudinal), and -1.63±1.00 mm (vertical); 0.53±0.56 mm (pitch), 0.42±0.60 mm (roll), and 0.44±0.90 mm (yaw), respectively. These were -0.07±0.24 mm, -0.07±0.25 mm, 0.06±0.21 mm, 0.04±0.23 mm, 0.00±0.30 mm, and 0.02±0.22 mm, respectively, for the postcorrection (XV). Substantial degradation of the treatment plans was observed in D95 of PTV (2.6%±3.3%; simulated treatment versus treatment planning), Dmin of PTV (13.4%±11.6%), and Dmin of CTV (2.8%±3.8%, with the maximum error of 10.0%) from XC, while dosimetrically negligible changes (< 0.1%) were detected for both CTV and PTV from XV simulation. 3D angular correction significantly improved CTV dose coverage when the total angular shifts (|pitch|+|roll|+|yaw|) were greater than 2°. With the 6D stereoscopic X-ray verification imaging and frameless immobilization, submillimeter and subdegree accuracy is achieved with negligible dosimetric deviations. 3D angular correction is required when the angular deviation is substantial. A CTV-to-PTV safety margin of 2 mm is large enough to prevent deterioration of CTV

  10. Dosimetric effects of positioning shifts using 6D-frameless stereotactic Brainlab system in hypofractionated intracranial radiotherapy.

    PubMed

    Jin, Hosang; Keeling, Vance P; Ali, Imad; Ahmad, Salahuddin

    2016-01-08

    Dosimetric consequences of positional shifts were studied using frameless Brainlab ExacTrac X-ray system for hypofractionated (3 or 5 fractions) intracranial stereo-tactic radiotherapy (SRT). SRT treatments of 17 patients with metastatic intracranial tumors using the stereotactic system were retrospectively investigated. The treatments were simulated in a treatment planning system by modifying planning parameters with a matrix conversion technique based on positional shifts for initial infrared (IR)-based setup (XC: X-ray correction) and post-correction (XV: X-ray verification). The simulation was implemented with (a) 3D translational shifts only and (b) 6D translational and rotational shifts for dosimetric effects of angular correction. Mean translations and rotations (± 1 SD) of 77 fractions based on the initial IR setup (XC) were 0.51 ± 0.86 mm (lateral), 0.30 ± 1.55 mm (longitudinal), and -1.63 ± 1.00 mm (vertical); -0.53° ± 0.56° (pitch), 0.42° ± 0.60° (roll), and 0.44°± 0.90° (yaw), respectively. These were -0.07 ± 0.24 mm, -0.07 ± 0.25 mm, 0.06± 0.21 mm, 0.04° ± 0.23°, 0.00° ± 0.30°, and -0.02° ± 0.22°, respectively, for the postcorrection (XV). Substantial degradation of the treatment plans was observed in D95 of PTV (2.6% ± 3.3%; simulated treatment versus treatment planning), Dmin of PTV (13.4% ± 11.6%), and Dmin of CTV (2.8% ± 3.8%, with the maximum error of 10.0%) from XC, while dosimetrically negligible changes (< 0.1%) were detected for both CTV and PTV from XV simulation. 3D angular correction significantly improved CTV dose coverage when the total angular shifts (|pitch| + |roll| + |yaw|) were greater than 2°. With the 6D stereoscopic X-ray verification imaging and frameless immobilization, submillimeter and subdegree accuracy is achieved with negligible dosimetric deviations. 3D angular correction is required when the angular deviation is substantial. A CTV-to-PTV safety margin of 2 mm is large enough to prevent

  11. Design and dosimetric analysis of a 385 MHz TETRA head exposure system for use in human provocation studies.

    PubMed

    Schmid, Gernot; Bolz, Thomas; Uberbacher, Richard; Escorihuela-Navarro, Ana; Bahr, Achim; Dorn, Hans; Sauter, Cornelia; Eggert, Torsten; Danker-Hopfe, Heidi

    2012-10-01

    A new head exposure system for double-blind provocation studies investigating possible effects of terrestrial trunked radio (TETRA)-like exposure (385 MHz) on central nervous processes was developed and dosimetrically analyzed. The exposure system allows localized exposure in the temporal brain, similar to the case of operating a TETRA handset at the ear. The system and antenna concept enables exposure during wake and sleep states while an electroencephalogram (EEG) is recorded. The dosimetric assessment and uncertainty analysis yield high efficiency of 14 W/kg per Watt of accepted antenna input power due to an optimized antenna directly worn on the subject's head. Beside sham exposure, high and low exposure at 6 and 1.5 W/kg (in terms of maxSAR10g in the head) were implemented. Double-blind control and monitoring of exposure is enabled by easy-to-use control software. Exposure uncertainty was rigorously evaluated using finite-difference time-domain (FDTD)-based computations, taking into account anatomical differences of the head, the physiological range of the dielectric tissue properties including effects of sweating on the antenna, possible influences of the EEG electrodes and cables, variations in antenna input reflection coefficients, and effects on the specific absorption rate (SAR) distribution due to unavoidable small variations in the antenna position. This analysis yielded a reasonable uncertainty of <±45% (max to min ratio of 4.2 dB) in terms of maxSAR10g in the head and a variability of <±60% (max to min ratio of 6 dB) in terms of mass-averaged SAR in different brain regions, as demonstrated by a brain region-specific absorption analysis.

  12. New method to perform dosimetric quality control of treatment planning system using PENELOPE Monte Carlo and anatomical digital test objects

    NASA Astrophysics Data System (ADS)

    Benhdech, Yassine; Beaumont, Stéphane; Guédon, Jean-Pierre; Torfeh, Tarraf

    2010-04-01

    In this paper, we deepen the R&D program named DTO-DC (Digital Object Test and Dosimetric Console), which goal is to develop an efficient, accurate and full method to achieve dosimetric quality control (QC) of radiotherapy treatment planning system (TPS). This method is mainly based on Digital Test Objects (DTOs) and on Monte Carlo (MC) simulation using the PENELOPE code [1]. These benchmark simulations can advantageously replace experimental measures typically used as reference for comparison with TPS calculated dose. Indeed, the MC simulations rather than dosimetric measurements allow contemplating QC without tying treatment devices and offer in many situations (i.p. heterogeneous medium, lack of scattering volume...) better accuracy compared to dose measurements with classical dosimetry equipment of a radiation therapy department. Furthermore using MC simulations and DTOs, i.e. a totally numerical QC tools, will also simplify QC implementation, and enable process automation; this allows radiotherapy centers to have a more complete and thorough QC. The program DTO-DC was established primarily on ELEKTA accelerator (photons mode) using non-anatomical DTOs [2]. Today our aim is to complete and apply this program on VARIAN accelerator (photons and electrons mode) using anatomical DTOs. First, we developed, modeled and created three anatomical DTOs in DICOM format: 'Head and Neck', Thorax and Pelvis. We parallelized the PENELOPE code using MPI libraries to accelerate their calculation, we have modeled in PENELOPE geometry Clinac head of Varian Clinac 2100CD (photons mode). Then, to implement this method, we calculated the dose distributions in Pelvis DTO using PENELOPE and ECLIPSE TPS. Finally we compared simulated and calculated dose distributions employing the relative difference proposed by Venselaar [3]. The results of this work demonstrate the feasibility of this method that provides a more accurate and easily achievable QC. Nonetheless, this method, implemented

  13. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    SciTech Connect

    Guidelli, Eder José Baffa, Oswaldo

    2014-11-07

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  14. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Baffa, Oswaldo

    2014-11-01

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  15. Preliminary evaluation of the dosimetric accuracy of the in vivo plastic scintillation detector OARtrac system for prostate cancer treatments

    PubMed Central

    Klawikowski, Slade J.; Zeringue, Clint; Wootton, Landon S.; Ibbott, Geoffrey S.; Beddar, Sam

    2014-01-01

    A promising, new, in vivo prostate dosimetry system has been developed for clinical radiation therapy. This work outlines the preliminary end-to-end testing of the accuracy and precision of the new OARtrac scintillation dosimetry system. We tested 94 calibrated plastic scintillation detector (PSD) probes before their final integration into endorectal balloon assemblies. These probes had been calibrated at The University of Texas MD Anderson Cancer Center Dosimetry Laboratory (MDADL). We used a complete clinical OARtrac system including the PSD probes, charge coupled device (CCD camera) monitoring system, and the manufacturer’s integrated software package. The PSD probes were irradiated at 6 MV in a Solid Water® phantom. Irradiations were performed with a 6 MV linear accelerator using anterior-posterior/posterior-anterior (AP/PA) matched fields to a maximum dose of 200 cGy in a 100 cm source-axis distance (SAD geometry. As a whole, the OARtrac system has good accuracy with a mean error of 0.01% and an error spread of ± 5.4% at the 95% confidence interval. These results reflect the PSD probes’ accuracy before their final insertion into endorectal balloons. Future work will test the dosimetric effects of mounting the PSD probes within the endorectal balloon assemblies. PMID:24732073

  16. Preliminary evaluation of the dosimetric accuracy of the in vivo plastic scintillation detector OARtrac system for prostate cancer treatments

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Zeringue, Clint; Wootton, Landon S.; Ibbott, Geoffrey S.; Beddar, Sam

    2014-05-01

    A promising, new, in vivo prostate dosimetry system has been developed for clinical radiation therapy. This work outlines the preliminary end-to-end testing of the accuracy and precision of the new OARtrac scintillation dosimetry system. We tested 94 calibrated plastic scintillation detector (PSD) probes before their final integration into endorectal balloon assemblies. These probes had been calibrated at The University of Texas MD Anderson Cancer Center Dosimetry Laboratory. We used a complete clinical OARtrac system including the PSD probes, charge coupled device camera monitoring system, and the manufacturer's integrated software package. The PSD probes were irradiated at 6 MV in a Solid Water® phantom. Irradiations were performed with a 6 MV linear accelerator using anterior-posterior/posterior-anterior matched fields to a maximum dose of 200 cGy in a 100 cm source-axis distance geometry. As a whole, the OARtrac system has good accuracy with a mean error of 0.01% and an error spread of ±5.4% at the 95% confidence interval. These results reflect the PSD probes’ accuracy before their final insertion into endorectal balloons. Future work will test the dosimetric effects of mounting the PSD probes within the endorectal balloon assemblies.

  17. SU-E-T-335: Dosimetric Investigation of An Advanced Rotating Gamma Ray System for Imaged Guided Radiation Therapy

    SciTech Connect

    Ma, C; Eldib, A; Chibani, O; Li, J; Chen, L; Li, C; Mora, G

    2015-06-15

    Purpose: Co-60 beams have unique dosimetric properties for cranial treatments and thoracic cancers. The conventional concern about the high surface dose is overcome by modern system designs with rotational treatment techniques. This work investigates a novel rotational Gamma ray system for image-guided, external beam radiotherapy. Methods: The CybeRT system (Cyber Medical Corp., China) consists of a ring gantry with either one or two treatment heads containing a Gamma source and a multileaf collimator (MLC). The MLC has 60 paired leaves, and the maximum field size is either 40cmx40cm (40 pairs of 0.5cm central leaves, 20 pairs of 1cm outer leaves), or 22cmx40cm (32 pairs of 0.25cm central leaves, 28 pairs of 0.5cm outer leaves). The treatment head(s) can swing 35° superiorly and 8° inferiorly, allowing a total of 43° non-coplanar beam incident. The treatment couch provides 6-degrees-of-freedom motion compensation and the kV cone-beam CT system has a spatial resolution of 0.4mm. Monte Carlo simulations were used to compute dose distributions and compare with measurements. A retrospective study of 98 previously treated patients was performed to compare CybeRT with existing RT systems. Results: Monte Carlo results confirmed the CybeRT design parameters including output factors and 3D dose distributions. Its beam penumbra/dose gradient was similar to or better than that of 6MV photon beams and its isocenter accuracy is 0.3mm. Co-60 beams produce lower-energy secondary electrons that exhibit better dose properties in low-density lung tissues. Because of their rapid depth dose falloff, Co-60 beams are favorable for peripheral lung tumors with half-arc arrangements to spare the opposite lung and critical structures. Superior dose distributions were obtained for head and neck, breast, spine and lung tumors. Conclusion: Because of its accurate dose delivery and unique dosimetric properties of C-60 sources, CybeRT is ideally suited for advanced SBRT as well as

  18. Four-dimensional computed tomography based respiratory-gated radiotherapy with respiratory guidance system: analysis of respiratory signals and dosimetric comparison.

    PubMed

    Lee, Jung Ae; Kim, Chul Yong; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Lee, Suk; Kim, Young Bum

    2014-01-01

    To investigate the effectiveness of respiratory guidance system in 4-dimensional computed tomography (4 DCT) based respiratory-gated radiation therapy (RGRT) by comparing respiratory signals and dosimetric analysis of treatment plans. The respiratory amplitude and period of the free, the audio device-guided, and the complex system-guided breathing were evaluated in eleven patients with lung or liver cancers. The dosimetric parameters were assessed by comparing free breathing CT plan and 4 DCT-based 30-70% maximal intensity projection (MIP) plan. The use of complex system-guided breathing showed significantly less variation in respiratory amplitude and period compared to the free or audio-guided breathing regarding the root mean square errors (RMSE) of full inspiration (P = 0.031), full expiration (P = 0.007), and period (P = 0.007). The dosimetric parameters including V(5 Gy), V(10 Gy), V(20 Gy), V(30 Gy), V(40 Gy), and V(50 Gy) of normal liver or lung in 4 DCT MIP plan were superior over free breathing CT plan. The reproducibility and regularity of respiratory amplitude and period were significantly improved with the complex system-guided breathing compared to the free or the audio-guided breathing. In addition, the treatment plan based on the 4D CT-based MIP images acquired with the complex system guided breathing showed better normal tissue sparing than that on the free breathing CT.

  19. Dosimetric verification of IMAT delivery with a conventional EPID system and a commercial portal dose image prediction tool

    SciTech Connect

    Iori, Mauro; Cagni, Elisabetta; Paiusco, Marta; Munro, Peter; Nahum, Alan E.

    2010-01-15

    Purpose: The electronic portal imaging device (EPID) is a system for checking the patient setup; as a result of its integration with the linear accelerator and software customized for dosimetry, it is increasingly used for verification of the delivery of fixed-field intensity-modulated radiation therapy (IMRT). In order to extend such an approach to intensity-modulated arc therapy (IMAT), the combined use of an EPID system and a portal dose image prediction (PDIP) tool has been investigated. Methods: The dosimetric behavior of an EPID system, mechanically reinforced to maintain its positional stability during the accelerator gantry rotation, has been studied to assess its ability to measure portal dose distributions for IMAT treatment beams. In addition, the PDIP tool of a commercial treatment planning system, commonly used for static IMRT dosimetry, has been validated for simulating the PDIs of IMAT treatment fields. The method has been applied to the delivery verification of 23 treatment fields that were measured in their dual mode of IMRT and IMAT modalities. Results: The EPID system has proved to be appropriate for measuring the PDIs of IMAT fields; additionally the PDIP tool was able to simulate these accurately. The results are quite similar to those obtained for static IMRT treatment verification, although it was necessary to investigate the dependence of the EPID signal and of the accelerator monitor chamber response on variable dose rate. Conclusions: Our initial tests indicate that the EPID system, together with the PDIP tool, is a suitable device for the verification of IMAT plan delivery; however, additional tests are necessary to confirm these results.

  20. Dosimetric evaluation of the clinical implementation of the first commercial IMRT Monte Carlo treatment planning system at 6 MV

    SciTech Connect

    Heath, Emily; Seuntjens, Jan; Sheikh-Bagheri, Daryoush

    2004-10-01

    In this work we dosimetrically evaluated the clinical implementation of a commercial Monte Carlo treatment planning software (PEREGRINE, North American Scientific, Cranberry Township, PA) intended for quality assurance (QA) of intensity modulated radiation therapy treatment plans. Dose profiles calculated in homogeneous and heterogeneous phantoms using this system were compared to both measurements and simulations using the EGSnrc Monte Carlo code for the 6 MV beam of a Varian CL21EX linear accelerator. For simple jaw-defined fields, calculations agree within 2% of the dose at d{sub max} with measurements in homogeneous phantoms with the exception of the buildup region where the calculations overestimate the dose by up to 8%. In heterogeneous lung and bone phantoms the agreement is within 3%, on average, up to 5% for a 1x1 cm{sup 2} field. We tested two consecutive implementations of the MLC model. After matching the calculated and measured MLC leakage, simulations of static and dynamic MLC-defined fields using the most recent MLC model agreed to within 2% with measurements.

  1. Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments

    SciTech Connect

    Singh, Hardev; De La Fuente Herman, Tania; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin

    2012-10-23

    This study compares the dosimetric differences in HDR brachytherapy treatment plans calculated with Nucletron's PLATO and Oncentra MasterPlan treatment planning systems (TPS). Ten patients (1 T1b, 1 T2a, 6 T2b, 2 T4) having cervical carcinoma, median age of 43.5 years (range, 34-79 years) treated with tandem and ring applicator in our institution were selected retrospectively for this study. For both Plato and Oncentra TPS, the same orthogonal films anterior-posterior (AP) and lateral were used to manually draw the prescription and anatomical points using definitions from the Manchester system and recommendations from the ICRU report 38. Data input for PLATO was done using a digitizer and Epson Expression 10000XL scanner was used for Oncentra where the points were selected on the images in the screen. The prescription doses for these patients were 30 Gy to points right A (RA) and left A (LA) delivered in 5 fractions with Ir-192 HDR source. Two arrangements: one dwell position and two dwell positions on the tandem were used for dose calculation. The doses to the patient points right B (RB) and left B (LB), and to the organs at risk (OAR), bladder and rectum for each patient were calculated. The mean dose and the mean percentage difference in dose calculated by the two treatment planning systems were compared. Paired t-tests were used for statistical analysis. No significant differences in mean RB, LB, bladder and rectum doses were found with p-values > 0.14. The mean percent difference of doses in RB, LB, bladder and rectum are found to be less than 2.2%, 1.8%, 1.3% and 2.2%, respectively. Dose calculations based on the two different treatment planning systems were found to be consistent and the treatment plans can be made with either system in our department without any concern.

  2. Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments

    NASA Astrophysics Data System (ADS)

    Singh, Hardev; Herman, Tania De La Fuente; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin

    2012-10-01

    This study compares the dosimetric differences in HDR brachytherapy treatment plans calculated with Nucletron's PLATO and Oncentra MasterPlan treatment planning systems (TPS). Ten patients (1 T1b, 1 T2a, 6 T2b, 2 T4) having cervical carcinoma, median age of 43.5 years (range, 34-79 years) treated with tandem & ring applicator in our institution were selected retrospectively for this study. For both Plato and Oncentra TPS, the same orthogonal films anterior-posterior (AP) and lateral were used to manually draw the prescription and anatomical points using definitions from the Manchester system and recommendations from the ICRU report 38. Data input for PLATO was done using a digitizer and Epson Expression 10000XL scanner was used for Oncentra where the points were selected on the images in the screen. The prescription doses for these patients were 30 Gy to points right A (RA) and left A (LA) delivered in 5 fractions with Ir-192 HDR source. Two arrangements: one dwell position and two dwell positions on the tandem were used for dose calculation. The doses to the patient points right B (RB) and left B (LB), and to the organs at risk (OAR), bladder and rectum for each patient were calculated. The mean dose and the mean percentage difference in dose calculated by the two treatment planning systems were compared. Paired t-tests were used for statistical analysis. No significant differences in mean RB, LB, bladder and rectum doses were found with p-values > 0.14. The mean percent difference of doses in RB, LB, bladder and rectum are found to be less than 2.2%, 1.8%, 1.3% and 2.2%, respectively. Dose calculations based on the two different treatment planning systems were found to be consistent and the treatment plans can be made with either system in our department without any concern.

  3. Determining the optimal dosimetric leaf gap setting for rounded leaf-end multileaf collimator systems by simple test fields.

    PubMed

    Yao, Weiguang; Farr, Jonathan B

    2015-07-08

    Individual QA for IMRT/VMAT plans is required by protocols. Sometimes plans cannot pass the institute's QA criteria. For the Eclipse treatment planning system (TPS) with rounded leaf-end multileaf collimator (MLC), one practical way to improve the agreement of planned and delivered doses is to tune the value of dosimetric leaf gap (DLG) in the TPS from the measured DLG. We propose that this step may be necessary due to the complexity of the MLC system, including dosimetry of small fields and the tongue-and-groove (T&G) effects, and report our use of test fields to obtain linac-specific optimal DLGs in TPSs. More than 20 original patient plans were reoptimized with the linac-specific optimal DLG value. We examined the distribution of gaps and T&G extensions in typical patient plans and the effect of using the optimal DLG on the distribution. The QA pass rate of patient plans using the optimal DLG was investigated. The dose-volume histograms (DVHs) of targets and organs at risk were checked. We tested three MLC systems (Varian millennium 120 MLC, high-definition 120 MLC, and Siemens 160 MLC) installed in four Varian linear accelerators (linacs) (TrueBEAM STx, Trilogy, Clinac 2300 iX, and Clinac 21 EX) and 1 Siemens linac (Artiste). With an optimal DLG, the individual QA for all those patient plans passed the institute's criteria (95% in DTA test or gamma test with 3%/3 mm/10%), even though most of these plans had failed to pass QA when using original DLGs optimized from typical patient plans or from the optimization process (automodeler) of Pinnacle TPS. Using either our optimal DLG or one optimized from typical patient plans or from the Pinnacle optimization process yielded similar DVHs.

  4. SU-E-T-318: Dosimetric Evaluation of ArcCHECK and 3DVH System Using Customized Polymer Gel Dosimeter

    SciTech Connect

    Ono, K; Fujimoto, S; Akagi, Y; Hirokawa, Y; Hayashi, S; Miyazawa, M

    2015-06-15

    Purpose: ArcCHECK and 3DVH system (Sun Nuclear) can reconstruct the three-dimensional (3D) dose distribution and provide the DVH analysis in a patient. The aim of this study was to evaluate dosimetric accuracy of this system using customized polymer gel dosimeter, and also Gafchromic EBT3 films. Methods: Polyacrylamide-based gel contained magnesium chloride as a sensitizer (iPAGAT) was used in this study. Volumetric-modulated arc therapy (VMAT) plan was performed for the C-shape structure by the Eclipse treatment planning system (Varian) and used to irradiate the ArcCHECK by the Novalis Tx linear accelerator (Varian/BrainLAB). The cubic phantom filled with iPAGAT and EBT3 films placed in three orthogonal planes (axial, sagittal, and coronal) inserted into the I’mRT Phantom (IBA Dosimetry) simulated a patient were irradiated with the same VMAT plan. The measurement-guided 3D dose distribution was reconstructed using 3DVH software from the measured data of the ArcCHECK. The 3D dose distribution in iPAGAT was read out by Signa 1.5 T MRI system (GE), and 2D dose distribution on EBT3 was read out by color scanner (Epson). The comparison of all the dose distributions was performed with dose profiles and gamma index analysis in orthogonal planes using in-house developed software. Results: A good agreement was observed by overlaying the dose profiles of 3DVH, EBT3, and iPAGAT. The mean pass rates by gamma index analysis with 3%/3 mm criteria in orthogonal planes were 94.3% (3DVH vs EBT3), 91.1% (3DVH vs iPAGAT), and 96.4% (iPAGAT vs EBT3), respectively. Conclusion: 3D dose distribution reconstructed by ArcCHECK and 3DVH system was estimated accurately in a patient. However, slightly differences were observed between 3DVH and iPAGAT because of MRI noise, therefore further study is required to improve the accuracy of MRI based polymer gel dosimetry for the DVH analysis.

  5. Development of a three-dimensionally movable phantom system for dosimetric verifications

    SciTech Connect

    Nakayama, Hiroshi; Mizowaki, Takashi; Narita, Yuichiro; Kawada, Noriyuki; Takahashi, Kunio; Mihara, Kazumasa; Hiraoka, Masahiro

    2008-05-15

    The authors developed a three-dimensionally movable phantom system (3D movable phantom system) which can reproduce three-dimensional movements to experimentally verify the impact of radiotherapy treatment-related movements on dose distribution. The phantom system consists of three integrated components: a three-dimensional driving mechanism (3D driving mechanism), computer control system, and phantoms for film dosimetry. The 3D driving mechanism is a quintessential part of this system. It is composed of three linear-motion tables (single-axis robots) which are joined orthogonally to each other. This mechanism has a motion range of 100 mm, with a maximum velocity of 200 mm/s in each dimension, and 3D motion ability of arbitrary patterns. These attributes are sufficient to reproduce almost all organ movements. The positional accuracy of this 3D movable phantom system in a state of geostationary is less than 0.1 mm. The maximum error in terms of the absolute position on movement was 0.56 mm. The positional reappearance error on movement was up to 0.23 mm. The observed fluctuation of time was 0.012 s in the cycle of 4.5 s of oscillation. These results suggested that the 3D movable phantom system exhibited a sufficient level of accuracy in terms of geometry and timing to reproduce interfractional organ movement or setup errors in order to assess the influence of these errors on high-precision radiotherapy such as stereotactic irradiation and intensity-modulated radiotherapy. In addition, the authors 3D movable phantom system will also be useful in evaluating the adequacy and efficacy of new treatment techniques such as gating or tracking radiotherapy.

  6. Evaluation of MLC leaf positioning accuracy for static and dynamic IMRT treatments using DAVID in vivo dosimetric system.

    PubMed

    Karagoz, Gulay; Zorlu, Faruk; Yeginer, Mete; Yildiz, Demet; Ozyigit, Gokhan

    2016-03-01

    Accuracy and precision of leaf positioning in multileaf collimators (MLCs) are significant factors for the accuracy of IMRT treatments. This study aimed to investigate the accuracy and repeatability of the MLC leaf positioning via the DAVID in vivo dosimetric system for dynamic and static MLC systems. The DAVID system was designed as multiwire transmission ionization chamber which is placed in accessory holder of linear accelerators. Each wire of DAVID system corresponds to a MLC leaf-pair to verify the leaf positioning accuracy during IMRT treatment and QA. In this study, verifications of IMRT plans of five head and neck (H&N) and five prostate patients treated in a Varian DHX linear accelerator with 80-leaf MLC were performed using DAVID system. Before DAVID-based dosimetry, Electronics Portal Imaging Device (EPID) and PTW 2D ARRAY dosimetry system were used for 2D verification of each plan. The measurements taken by DAVID system in the first day of the treatments were used as reference for the following measurements taken over the next four weeks. The deviations in leaf positioning were evaluated by "Total Deviation (TD)" parameter calculated by DAVID software. The delivered IMRT plans were originally prepared using dynamic MLC method. The same plans were subsequently calculated based on static MLC method with three different intensity levels of five (IL5), 10 (IL10) and 20 (IL20) in order to compare the performances of MLC leaf positioning repeatability for dynamic and static IMRT plans. The leaf positioning accuracy is also evaluated by analyzing DynaLog files based on error histograms and root mean square (RMS) errors of leaf pairs' positions. Moreover, a correlation analysis between simultaneously taken DAVID and EPID measurements and DynaLog file recordings was subsequently performed. In the analysis of DAVID outputs, the overall deviations of dynamic MLC-based IMRT calculated from the deviations of the four weeks were found as 0.55%±0.57% and 1.48%±0

  7. Evaluation of MLC leaf positioning accuracy for static and dynamic IMRT treatments using DAVID in vivo dosimetric system.

    PubMed

    Karagoz, Gulay; Zorlu, Faruk; Yeginer, Mete; Yildiz, Demet; Ozyigit, Gokhan

    2016-03-08

    Accuracy and precision of leaf positioning in multileaf collimators (MLCs) are significant factors for the accuracy of IMRT treatments. This study aimed to inves-tigate the accuracy and repeatability of the MLC leaf positioning via the DAVID invivo dosimetric system for dynamic and static MLC systems. The DAVID system was designed as multiwire transmission ionization chamber which is placed in accessory holder of linear accelerators. Each wire of DAVID system corresponds to a MLC leaf-pair to verify the leaf positioning accuracy during IMRT treatment and QA. In this study, verifications of IMRT plans of five head and neck (H&N) and five prostate patients treated in a Varian DHX linear accelerator with 80-leaf MLC were performed using DAVID system. Before DAVID-based dosimetry, Electronics Portal Imaging Device (EPID) and PTW 2D ARRAY dosimetry system were used for 2D verification of each plan. The measurements taken by DAVID system in the first day of the treatments were used as reference for the following measurements taken over the next four weeks. The deviations in leaf positioning were evaluated by "Total Deviation (TD)" parameter calculated by DAVID software. The delivered IMRT plans were originally prepared using dynamic MLC method. The same plans were subsequently calculated based on static MLC method with three different intensity levels of five (IL5), 10 (IL10) and 20 (IL20) in order to compare the performances of MLC leaf positioning repeatability for dynamic and static IMRT plans. The leaf positioning accuracy is also evaluated by analyzing DynaLog files based on error histograms and root mean square (RMS) errors of leaf pairs' positions. Moreover, a correlation analysis between simultaneously taken DAVID and EPID measurements and DynaLog file recordings was subsequently performed. In the analysis of DAVID outputs, the overall deviations of dynamic MLC-based IMRT calculated from the deviations of the four weeks were found as 0.55% ± 0.57% and 1.48% ± 0

  8. An integrated Monte Carlo dosimetric verification system for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Mizowaki, T.; Miyabe, Y.; Takegawa, H.; Narita, Y.; Yano, S.; Nagata, Y.; Teshima, T.; Hiraoka, M.

    2007-04-01

    An integrated Monte Carlo (MC) dose calculation system, MCRTV (Monte Carlo for radiotherapy treatment plan verification), has been developed for clinical treatment plan verification, especially for routine quality assurance (QA) of intensity-modulated radiotherapy (IMRT) plans. The MCRTV system consists of the EGS4/PRESTA MC codes originally written for particle transport through the accelerator, the multileaf collimator (MLC), and the patient/phantom, which run on a 28-CPU Linux cluster, and the associated software developed for the clinical implementation. MCRTV has an interface with a commercial treatment planning system (TPS) (Eclipse, Varian Medical Systems, Palo Alto, CA, USA) and reads the information needed for MC computation transferred in DICOM-RT format. The key features of MCRTV have been presented in detail in this paper. The phase-space data of our 15 MV photon beam from a Varian Clinac 2300C/D have been developed and several benchmarks have been performed under homogeneous and several inhomogeneous conditions (including water, aluminium, lung and bone media). The MC results agreed with the ionization chamber measurements to within 1% and 2% for homogeneous and inhomogeneous conditions, respectively. The MC calculation for a clinical prostate IMRT treatment plan validated the implementation of the beams and the patient/phantom configuration in MCRTV.

  9. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system

    SciTech Connect

    Li, X. Allen; Stepaniak, Christopher; Gore, Elizabeth

    2006-01-15

    This work introduces a gating technique that uses 4DCT to determine gating parameters and to plan gated treatment, and employs a Siemens linear accelerator to deliver the gated treatment. Because of technology incompatibility, the 4DCT scanner (LightSpeed, GE) and the Siemens accelerator require two different motion-monitoring systems. The motion monitoring system (AZ-773V, Anzai Med.) used for the gated delivery utilizes a pressure sensor to detect the external respiratory motion (pressure change) in real time. Another system (RPM, Varian) used for the 4DCT scanner (LightSpeed, GE) is based on an infrared camera to detect motion of external markers. These two motion monitoring systems (RPM and Anzai systems) were found to correlate well with each other. The depth doses and profile measured for gated delivery (with a duty cycle of 25% or 50%) were found to agree within 1.0% with those measured for ungated delivery, indicating that gating did not significantly alter beam characteristics. The measurement verified also that the MU linearity and beam output remained unchanged (within 0.3%). A practical method of using 4DCT to plan a gated treatment was developed. The duty cycle for either phase or amplitude gating can be determined based on 4DCT with consideration of set-up error and delivery efficiency. The close-loop measurement involving the entire gating process (imaging, planning, and delivery) showed that the measured isodose distributions agreed with those intended, validating the accuracy and reliability of the gating technique. Based these observations, we conclude that the gating technique introduced in this work, integrating Siemens linear accelerator and Anzai pressure sensor device with GE/Varian RPM 4DCT, is reliable and effective, and it can be used clinically to account for respiratory motion during radiation therapy.

  10. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system.

    PubMed

    Li, X Allen; Stepaniak, Christopher; Gore, Elizabeth

    2006-01-01

    This work introduces a gating technique that uses 4DCT to determine gating parameters and to plan gated treatment, and employs a Siemens linear accelerator to deliver the gated treatment. Because of technology incompatibility, the 4DCT scanner (LightSpeed, GE) and the Siemens accelerator require two different motion-monitoring systems. The motion monitoring system (AZ-773V, Anzai Med.) used for the gated delivery utilizes a pressure sensor to detect the external respiratory motion (pressure change) in real time. Another system (RPM, Varian) used for the 4DCT scanner (LightSpeed, GE) is based on an infrared camera to detect motion of external markers. These two motion monitoring systems (RPM and Anzai systems) were found to correlate well with each other. The depth doses and profile measured for gated delivery (with a duty cycle of 25% or 50%) were found to agree within 1.0% with those measured for ungated delivery, indicating that gating did not significantly alter beam characteristics. The measurement verified also that the MU linearity and beam output remained unchanged (within 0.3%). A practical method of using 4DCT to plan a gated treatment was developed. The duty cycle for either phase or amplitude gating can be determined based on 4DCT with consideration of set-up error and delivery efficiency. The close-loop measurement involving the entire gating process (imaging, planning, and delivery) showed that the measured isodose distributions agreed with those intended, validating the accuracy and reliability of the gating technique. Based these observations, we conclude that the gating technique introduced in this work, integrating Siemens linear accelerator and Anzai pressure sensor device with GE/Varian RPM 4DCT, is reliable and effective, and it can be used clinically to account for respiratory motion during radiation therapy.

  11. EMCCD based luminescence imaging system for spatially resolved geo-chronometric and radiation dosimetric applications

    NASA Astrophysics Data System (ADS)

    Chauhan, N.; Adhyaru, P.; Vaghela, H.; Singhvi, A. K.

    2014-11-01

    We report the development of an Electron Multiplier Charge Coupled Device (EMCCD) based luminescence dating system. The system enables position sensitive measurements of luminescence for the estimation of spatially resolved distribution of equivalent dose for complex geological samples. The system includes: 1) a sample stimulation unit (with both thermal and optical stimulations), 2) an optics unit that comprises imaging optics and, 3) a data acquisition and processing unit. The system works in a LabVIEW environment with a graphical user interface (GUI). User specified stimulation protocols enable thermal and optical stimulation in any desired combination. The optics unit images the luminescence on to a EMCCD (512 × 512 pixels, each of 16μm × 16μm size) and maintains a unit magnification. This unit has flexible focusing and a filter housing that enables change of filters combinations without disturbing the setup. Time integrated EMCCD images of luminescence from the sample are acquired as a function of programmable dwell time and these images are processed using indigenously developed MATLAB based programs. Additionally, the programs align the acquired images using a set of control points (identifier features on the images) to a single pixel accuracy. The dose evaluation is based on integrated intensity from selected pixels followed by generation of a growth curve giving luminescence as a function of applied beta doses. Development of this EMCCD camera based luminescence system will enable in-situ luminescence measurements of the samples, without the requirement of separating mineral grains from their matrix. It will also allow age estimation of samples such as lithic artifacts/structures via dating of their surfaces, fusion crust of meteorites, pedogenic carbonates, etc and will additionally open up possibilities of application like testing spatial uniformity of doping in artificial luminescence phosphors, dating/dosimetry of inclusions etc.

  12. SU-E-T-303: Dosimetric Comparison of a LINAC Fallback Plan Generated From Tomotherapy System

    SciTech Connect

    Yang, C; Chen, Y

    2015-06-15

    Purpose: Quantitatively evaluate the Multi Criteria Optimization (MCO) based MLC step and shoot (sMLC) fallback plan derived from Tomotherapy of multiple lesions lung SBRT Methods: Inter-comparison of various IMRT planning systems tends to be difficult due to the vendor-specific functionalities. The methodology of defining dose constraints and beam geometries is challenging. Raysearch™ planning system offers an alternative replanning to deliver same intensity map from Tomotherapy without modifying original fluence. This intuitive comparison comes from the final fluence map converted without any embedded system dependent dose optimization. This planner independent approach could be utilized to study the merits of individual machines. The term “fallback” was utilized to (A) transfer plans in among treatment delivery systems; (B) maintain acceptable plan qualities; and (C) minimize the biological dose impact due to machine breakdown. The Tomotherapy specific DICOM RT dose and plan are retrieved into Raystation’s pre-defined sMLC protocol. Based on specific machine characteristics, same fluence maps were converted to generate equivalent deliverable segments. Therefore, the treatment plans were evaluated among two planning tools, Tomotherapy and MCO based sMLC delivery plans. Results: By converting the fluence map with the pre-defined machine characteristics, the 9-fields fallback plan has similar ITV coverage compared to the original Tomotherapy plan. ITV average doses, the D95 consisted of 0.9% variation. The total lung doses of fallback plan drifted from 17.4% to 30.5% which represents the limitations of the static beam delivery. D2 of fallback spinal cord increased from 22.4% to 36.4% but still within tolerances. Ipsilateral lung changed from 11.0% to 22.6%. Low dose region between ITVs presented increased dose to the normal lung tissues. Conclusion: Acceptable fallback plan for Tomotherapy SBRT has similar ITVs coverage, but lack of the normal tissues

  13. Development of a three-dimensional model of the human respiratory system for dosimetric use

    PubMed Central

    2013-01-01

    Background Determining the fate of inhaled contaminants in the human respiratory system has challenged scientists for years. Human and animal studies have provided some data, but there is a paucity of data for toxic contaminants and sensitive populations (such as children, elderly, diseased). Methods Three-dimensional modeling programs and publicly available human physiology data have been used to develop a comprehensive model of the human respiratory system. Results The in silico human respiratory system model, which includes the extrathoracic region (nasal, oral, pharyngeal, and laryngeal passages), the upper airways (trachea and main bronchi), the tracheobronchial tree, and branching networks through alveolar region, allows for virtually any variation of airway geometries and disease states. The model allows for parameterization of variables that define the subject’s airways by integrating morphological changes created by disease, age, etc. with a dynamic morphology. Conclusions The model can be used for studies of sensitive populations and the homeland security community, in cases where inhalation studies on humans cannot be conducted with toxic contaminants of interest. PMID:23634755

  14. MO-FG-BRA-01: Development of An Image-Guided Dosimetric Planning System for Injectable Brachytherapy Using ELP Nanoparticles

    SciTech Connect

    Lafata, K; Schaal, J; Liu, W; Cai, J

    2015-06-15

    Purpose: To develop, validate, and evaluate a methodology for determining dosimetry for intratumoral injections of elastin-like-polypeptide (ELP) brachytherapy nanoparticles. These organic-polymer-based nanoparticles are injectable, biodegradable, and genetically tunable. We present a genetically encoded polymer-solution, composed of novel radiolabeled-ELP nanoparticles that are custom-designed to self-assemble into a local source upon intratumoral injection. Our preliminary results of a small animal study demonstrate 100% tumor response, effective radionuclide retention-rates, strong in vivo stability, and no polymer-induced toxicities. While our approach is therefore highly promising for improved brachytherapy, the current workflow lacks a dosimetry framework. Methods: We are developing a robust software framework that provides image-guided dosimetric-planning capabilities for ELP brachytherapy. The user graphically places ELP injection sites within a µCT-planning-image, and independently defines each injection volume, concentration, and radioisotope to be used. The resulting internal dosimetry is then pre-determined by first modeling post-injection ELP advection-diffusion, and then calculating the resulting dose distribution based on a point- dose-kernel-convolution algorithm. We have experimentally measured ELP steady-state concentrations via µSPECT acquisition, and validated our dose calculation algorithm against Monte Carlo simulations of several radioactivity distributions. Finally, we have investigated potential advantages and limitations of various ELP injection parameters. Results: The µSPECT results demonstrated inhomogeneous steady-state distributions of ELP in tissue, and Monte Carlo radioactivity distributions were designed accordingly. Our algorithm yielded a root-mean-square-error of less than 2% for each distribution tested (average root-mean-square-error was 0.73%). Dose-Volume-Histogram analysis of five different plans showed how strategic

  15. A generalized definition of dosimetric quantities.

    PubMed

    Kellerer, A M; Rossi, H H

    1990-04-01

    The current definitions of microdosimetric and dosimetric quantities use the notion of 'ionizing radiation'. However, this notion is not rigorously defined, and its definition would require the somewhat arbitrary choice of specified energy cut-off values for different types of particles. Instead of choosing fixed cut-off values one can extend the system of definitions by admitting the free selection of a category of types and energies of particles that are taken to be part of the field. In this way one extends the system of dosimetric quantities. Kerma and absorbed dose appear then as special cases of a more general dosimetric quantity, and an analogue to kerma can be obtained for charged particle fields; it is termed cema. A modification that is suitable for electron fields is termed reduced cema.

  16. Detection of IMRT delivery errors using a quantitative 2D dosimetric verification system

    SciTech Connect

    Childress, Nathan L.; Bloch, Charles; White, R. Allen; Salehpour, Mohammad; Rosen, Isaac I.

    2005-01-01

    We investigated the feasibility of detecting intensity modulated radiotherapy delivery errors automatically using a scalar evaluation of two-dimensional (2D) transverse dose measurement of the complete treatment delivery. Techniques using the gamma index and the normalized agreement test (NAT) index were used to parametrize the agreement between measured and computed dose distributions to seven different scalar metrics. Simulated verifications with delivery errors calculated using a commercially available treatment planning system for 9 prostate and 7 paranasal sinus cases were compared to 433 clinical verifications. The NAT index with 5% and 3 mm criteria that included cold areas outside the planning target volume detected the largest percent of delivery errors. Assuming a false positive rate of 5%, it was able to detect 88% of beam energy changes, 94% of a different patient's plan being delivered, 25% of plans with one beam's collimator rotated by 90 deg., 81% of rotating one beam's gantry angle by 10 deg., and 100% of omitting the delivery of one beam. However, no instances of changing one beam's monitor unit setting by 10% or shifting the isocenter by 5 mm were detected. Although the phantom shift could not be detected by the small change it made in the dose distribution, our autopositioning algorithm clearly identified the spatial anomaly. Using tighter 3%/2 mm criteria or combining dose and distance disagreements in an either/or fashion resulted in poorer delivery error detection. The mean value of the 2D gamma index distribution was less sensitive to delivery errors than the other scalar metrics studied. Although we found that scalar metrics do not have sufficient delivery error detection rates to be used as the sole clinical analysis technique, manually examining 2D dose comparison images would result in a near 100% detection rate while performing an ion chamber measurement alone would only detect 54% of these errors.

  17. The dosimetric properties of phosphate glass systems prepared by different chemical nanomaterials.

    PubMed

    Abdelhalim, Mohamed Anwar K; Al-Shamrani, Bandar Mora

    2016-12-01

    The synthesis and characterization of glass systems were carried out using prepared nanocrystals injected into a glass matrix as a thermoluminescence (TL) activator using the melt-quenching method. Sample 1 was prepared as [40P2 O5 50BaO:2.5MgO, 2.5Na2 O, 5TiO2 ], sample 2 as [37.5P2 O5 37.5CaO:25TiO2 ] and sample 3 as [50P2 O5 -50Li2 O]. Formation of the synthesized compound was confirmed by studying the X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images. An annealing procedure was carried out for 1 h at 400 °C. The glow curve position and shape shifted dramatically and linearly to the higher temperature values on increasing the heating rate. A heating rate of 30 °C/s was the most suitable for obtaining a high TL response. Samples 2 and 3 have the highest TL response, which approached the effective atomic number (Zeff ) of natural bone. The observed TL sensitivity of the prepared samples 2 and 3 is less than that of commercially available 'TLD-200 chips' and LiF:Mg,Ti (TLD-100) phosphor. Sample [37.5P2 O5 37.5CaO:25TiO2 ] would be useful in personal and environmental dosimetry for measuring high doses of gamma radiation. Sample [50P2 O5 -50Li2 O] is a good dosimeter, although it requires the addition of an appropriate transitional metal (activator) to overcome the problem of high fading. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Dosimetric verification of radiotherapy treatment planning systems in Serbia: national audit.

    PubMed

    Rutonjski, Laza; Petrović, Borislava; Baucal, Milutin; Teodorović, Milan; Cudić, Ozren; Gershkevitsh, Eduard; Izewska, Joanna

    2012-09-12

    Independent external audits play an important role in quality assurance programme in radiation oncology. The audit supported by the IAEA in Serbia was designed to review the whole chain of activities in 3D conformal radiotherapy (3D-CRT) workflow, from patient data acquisition to treatment planning and dose delivery. The audit was based on the IAEA recommendations and focused on dosimetry part of the treatment planning and delivery processes. The audit was conducted in three radiotherapy departments of Serbia. An anthropomorphic phantom was scanned with a computed tomography unit (CT) and treatment plans for eight different test cases involving various beam configurations suggested by the IAEA were prepared on local treatment planning systems (TPSs). The phantom was irradiated following the treatment plans for these test cases and doses in specific points were measured with an ionization chamber. The differences between the measured and calculated doses were reported. The measurements were conducted for different photon beam energies and TPS calculation algorithms. The deviation between the measured and calculated values for all test cases made with advanced algorithms were within the agreement criteria, while the larger deviations were observed for simpler algorithms. The number of measurements with results outside the agreement criteria increased with the increase of the beam energy and decreased with TPS calculation algorithm sophistication. Also, a few errors in the basic dosimetry data in TPS were detected and corrected. The audit helped the users to better understand the operational features and limitations of their TPSs and resulted in increased confidence in dose calculation accuracy using TPSs. The audit results indicated the shortcomings of simpler algorithms for the test cases performed and, therefore the transition to more advanced algorithms is highly desirable.

  19. Dosimetric audit in brachytherapy

    PubMed Central

    Bradley, D A; Nisbet, A

    2014-01-01

    Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068

  20. Dosimetric and delivery efficiency investigation for treating hepatic lesions with a MLC-equipped robotic radiosurgery–radiotherapy combined system

    SciTech Connect

    Jin, Lihui Price, Robert A.; Wang, Lu; Meyer, Joshua; Fan, James; Charlie Ma, Chang Ming

    2016-02-15

    Purpose: The CyberKnife M6 (CK-M6) Series introduced a multileaf collimator (MLC) for extending its capability from stereotactic radiosurgery/stereotactic radiotherapy (SBRT) to conventionally fractionated radiotherapy. This work is to investigate the dosimetric quality of plans that are generated using MLC-shaped beams on the CK-M6, as well as their delivery time, via comparisons with the intensity modulated radiotherapy plans that were clinically used on a Varian Linac for treating hepatic lesions. Methods: Nine patient cases were selected and divided into three groups with three patients in each group: (1) the group-one patients were treated conventionally (25 fractions); (2) the group-two patients were treated with SBRT-like hypofractionation (5 fractions); and (3) the group-three patients were treated similar to group-one patients, but with two planning target volumes (PTVs) and two different prescription dose levels correspondingly. The clinically used plans were generated on the ECLIPSE treatment planning system (TPS) and delivered on a Varian Linac (E-V plans). The multiplan (MP) TPS was used to replan these clinical cases with the MLC as the beam device for the CK-M6 (C-M plans). After plans were normalized to the same PTV dose coverage, comparisons between the C-M and E-V plans were performed based on D{sub 99%} (percentage of prescription dose received by 99% of the PTV), D{sub 0.1cm{sup 3}} (the percentage of prescription dose to 0.1 cm{sup 3} of the PTV), and doses received by critical structures. Then, the delivery times for the C-M plans will be obtained, which are the MP TPS generated estimations assuming having an imaging interval of 60 s. Results: The difference in D{sub 99%} between C-M and E-V plans is +0.6% on average (+ or − indicating a higher or lower dose from C-M plans than from E-V plans) with a range from −4.1% to +3.8%, and the difference in D{sub 0.1cm{sup 3}} was −1.0% on average with a range from −5.1% to +2.9%. The PTV

  1. Dosimetric comparison of Linac-based (BrainLAB®) and robotic radiosurgery (CyberKnife ®) stereotactic system plans for acoustic schwannoma.

    PubMed

    Dutta, Debnarayan; Balaji Subramanian, S; Murli, V; Sudahar, H; Gopalakrishna Kurup, P G; Potharaju, Mahadev

    2012-02-01

    A dosimetric comparison of linear accelerator (LA)-based (BrainLAB) and robotic radiosurgery (RS) (CyberKnife) systems for acoustic schwannoma (Acoustic neuroma, AN) was carried out. Seven patients with radiologically confirmed unilateral AN were planned with both an LA-based (BrainLAB) and robotic RS (CyberKnife) system using the same computed tomography (CT) dataset and contours. Gross tumour volume (GTV) was contoured on post-contrast magnetic resonance imaging (MRI) scan [planning target volume (PTV) margin 2 mm]. Planning and calculation were done with appropriate calculation algorithms. The prescribed isodose in both systems was considered adequate to cover at least 95% of the contoured target. Plan evaluations were done by examining the target coverage by the prescribed isodose line, and high- and low-dose volumes. Isodose plans and dose volume histograms generated by the two systems were compared. There was no statistically significant difference between the contoured volumes between the systems. Tumour volumes ranged from 380 to 3,100 mm(3). Dose prescription was 13-15 Gy in single fraction (median prescribed isodose 85%). There were no significant differences in conformity index (CI) (0.53 versus 0.58; P = 0.225), maximum brainstem dose (4.9 versus 4.7 Gy; P = 0.935), 2.5-Gy volume (39.9 versus 52.3 cc; P = 0.238) or 5-Gy volume (11.8 versus 16.8 cc; P = 0.129) between BrainLAB and CyberKnife system plans. There were statistically significant differences in organs at risk (OAR) doses, such as mean cochlear dose (6.9 versus 5.4 Gy; P = 0.001), mean mesial temporal dose (2.6 versus 1.7 Gy; P = 0.07) and high-dose (10 Gy) volume (3.2 versus 5.2 cc; P = 0.017). AN patients planned with the CyberKnife system had superior OAR (cochlea and mesial temporal lobe) sparing compared with those planned with the Linac-based system. Further evaluation of these findings in prospective studies with clinical correlation will provide actual clinical benefit from the

  2. Sci-Sat AM(2): Brachy-04: Spectral and dosimetric study of the Xoft electronic brachytherapy system.

    PubMed

    Liu, D; Reniers, B; Poon, E; Bazalova, M; Rusch, T; Verhaegen, F

    2008-07-01

    The Axxent developed by Xoft Inc. is a miniature x-ray tube capable of generating a 50 kVp x-ray spectrum with dose-rates suitable for HDR applications. Results of spectral measurements compared with Geant4 Monte Carlo simulations have been published. This study is a continuation of previous work with shifting emphasis towards dosimetric characterization of the miniature x-ray tube. Dose distributions using EBT Gafchromic films agree to within 10 % of Geant4 results. In addition, TG-43 parameters can be calculated. However, consideration should be given to the biological effectiveness of the spectrum at different depths. Spectral measurements show significant beam hardening with 1(st) HVL increasing from 0.55 to 1.20 mm Al after 11.50 mm of water filtration. This effect may be attributed to the significant loss of low energy characteristic photons. Furthermore, the degree of beam hardening is dependent of the material, with 1(st) HVLs of 1.20 and 1.03 mm Al after 11.50 mm of water and Lucite respectively. The biological effect is quantified by calculating the number of single and double strand breaks. The number of strand breaks for the 50 kVp x-ray spectrum is similar to that of I-125 radiation. © 2008 American Association of Physicists in Medicine.

  3. Leaf sequencing and dosimetric verification in intensity-modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Agazaryan, Nzhde

    Although sophisticated means to calculate and deliver intensity modulated radiotherapy (IMRT) have been developed by many groups, methods to verify the delivery, as well as definitions of acceptability of a treatment in terms of these measurements are the most problematic at this stage of advancement of IMRT. Present intensity modulated radiotherapy systems fail to account for many dosimetric characteristics of the delivery system. In this dissertation, a dosimetrically based leaf sequencing algorithm is developed and implemented for multileaf collimated intensity modulated radiotherapy. The dosimetric considerations are investigated and are shown to significantly improve the outcome in terms of an agreement between desired and delivered radiation dose distributions. Subsequently, a system for determining the desirability of a produced intensity modulated radiotherapy plan in terms of deliverability of calculated profiles with the use of a multileaf collimator is developed. Three deliverability scoring indices are defined to evaluate the deliverability of the profiles. Gradient Index (GI) is a measure of the complexity of the profile in terms of gradients. Baseline Index (BI) is the fraction of the profile that is planned to get lower than the minimum level of transmission radiation. Cumulative Monitor Unit Index (CMUI) is the ratio of the cumulative monitor units (CMU) required for obtaining the desired profile to an average dose level in the profile. The dosimetric investigations of the deliverability scoring indices are presented, showing a clear correlation between scoring indices and dosimetric accuracy. Finally, materials and methods are developed for verification of intensity modulated radiotherapy. Dosimetric verification starts from investigations of the developed leaf sequencing algorithm, then extends to dosimetric verification in terms of deliverability, and lastly, dosimetric verification of complete clinical IMRT plans is performed.

  4. SU-E-T-256: Development of a Monte Carlo-Based Dose-Calculation System in a Cloud Environment for IMRT and VMAT Dosimetric Verification

    SciTech Connect

    Fujita, Y

    2015-06-15

    Purpose: Intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are techniques that are widely used for treating cancer due to better target coverage and critical structure sparing. The increasing complexity of IMRT and VMAT plans leads to decreases in dose calculation accuracy. Monte Carlo simulations are the most accurate method for the determination of dose distributions in patients. However, the simulation settings for modeling an accurate treatment head are very complex and time consuming. The purpose of this work is to report our implementation of a simple Monte Carlo simulation system in a cloud-computing environment for dosimetric verification of IMRT and VMAT plans. Methods: Monte Carlo simulations of a Varian Clinac linear accelerator were performed using the BEAMnrc code, and dose distributions were calculated using the DOSXYZnrc code. Input files for the simulations were automatically generated from DICOM RT files by the developed web application. We therefore must only upload the DICOM RT files through the web interface, and the simulations are run in the cloud. The calculated dose distributions were exported to RT Dose files that can be downloaded through the web interface. The accuracy of the calculated dose distribution was verified by dose measurements. Results: IMRT and VMAT simulations were performed and good agreement results were observed for measured and MC dose comparison. Gamma analysis with a 3% dose and 3 mm DTA criteria shows a mean gamma index value of 95% for the studied cases. Conclusion: A Monte Carlo-based dose calculation system has been successfully implemented in a cloud environment. The developed system can be used for independent dose verification of IMRT and VMAT plans in routine clinical practice. The system will also be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems. This work was supported by JSPS KAKENHI Grant Number 25861057.

  5. SU-E-T-132: Dosimetric Impact of Positioning Errors in Hypo-Fractionated Cranial Radiation Therapy Using Frameless Stereotactic BrainLAB System

    SciTech Connect

    Keeling, V; Jin, H; Ali, I; Ahmad, S

    2014-06-01

    Purpose: To determine dosimetric impact of positioning errors in the stereotactic hypo-fractionated treatment of intracranial lesions using 3Dtransaltional and 3D-rotational corrections (6D) frameless BrainLAB ExacTrac X-Ray system. Methods: 20 cranial lesions, treated in 3 or 5 fractions, were selected. An infrared (IR) optical positioning system was employed for initial patient setup followed by stereoscopic kV X-ray radiographs for position verification. 6D-translational and rotational shifts were determined to correct patient position. If these shifts were above tolerance (0.7 mm translational and 1° rotational), corrections were applied and another set of X-rays was taken to verify patient position. Dosimetric impact (D95, Dmin, Dmax, and Dmean of planning target volume (PTV) compared to original plans) of positioning errors for initial IR setup (XC: Xray Correction) and post-correction (XV: X-ray Verification) was determined in a treatment planning system using a method proposed by Yue et al. (Med. Phys. 33, 21-31 (2006)) with 3D-translational errors only and 6D-translational and rotational errors. Results: Absolute mean translational errors (±standard deviation) for total 92 fractions (XC/XV) were 0.79±0.88/0.19±0.15 mm (lateral), 1.66±1.71/0.18 ±0.16 mm (longitudinal), 1.95±1.18/0.15±0.14 mm (vertical) and rotational errors were 0.61±0.47/0.17±0.15° (pitch), 0.55±0.49/0.16±0.24° (roll), and 0.68±0.73/0.16±0.15° (yaw). The average changes (loss of coverage) in D95, Dmin, Dmax, and Dmean were 4.5±7.3/0.1±0.2%, 17.8±22.5/1.1±2.5%, 0.4±1.4/0.1±0.3%, and 0.9±1.7/0.0±0.1% using 6Dshifts and 3.1±5.5/0.0±0.1%, 14.2±20.3/0.8±1.7%, 0.0±1.2/0.1±0.3%, and 0.7±1.4/0.0±0.1% using 3D-translational shifts only. The setup corrections (XC-XV) improved the PTV coverage by 4.4±7.3% (D95) and 16.7±23.5% (Dmin) using 6D adjustment. Strong correlations were observed between translation errors and deviations in dose coverage for XC. Conclusion

  6. A higher-speed compressive sensing camera through multi-diode design

    NASA Astrophysics Data System (ADS)

    Herman, Matthew A.; Tidman, James; Hewitt, Donna; Weston, Tyler; McMackin, Lenore

    2013-05-01

    Obtaining high frame rates is a challenge with compressive sensing (CS) systems that gather measurements in a sequential manner, such as the single-pixel CS camera. One strategy for increasing the frame rate is to divide the FOV into smaller areas that are sampled and reconstructed in parallel. Following this strategy, InView has developed a multi-aperture CS camera using an 8×4 array of photodiodes that essentially act as 32 individual simultaneously operating single-pixel cameras. Images reconstructed from each of the photodiode measurements are stitched together to form the full FOV. To account for crosstalk between the sub-apertures, novel modulation patterns have been developed to allow neighboring sub-apertures to share energy. Regions of overlap not only account for crosstalk energy that would otherwise be reconstructed as noise, but they also allow for tolerance in the alignment of the DMD to the lenslet array. Currently, the multi-aperture camera is built into a computational imaging workstation configuration useful for research and development purposes. In this configuration, modulation patterns are generated in a CPU and sent to the DMD via PCI express, which allows the operator to develop and change the patterns used in the data acquisition step. The sensor data is collected and then streamed to the workstation via an Ethernet or USB connection for the reconstruction step. Depending on the amount of data taken and the amount of overlap between sub-apertures, frame rates of 2-5 frames per second can be achieved. In a stand-alone camera platform, currently in development, pattern generation and reconstruction will be implemented on-board.

  7. Dosimetric accuracy of a deterministic radiation transport based {sup 192}Ir brachytherapy treatment planning system. Part III. Comparison to Monte Carlo simulation in voxelized anatomical computational models

    SciTech Connect

    Zourari, K.; Pantelis, E.; Moutsatsos, A.; Sakelliou, L.; Georgiou, E.; Karaiskos, P.; Papagiannis, P.

    2013-01-15

    Purpose: To compare TG43-based and Acuros deterministic radiation transport-based calculations of the BrachyVision treatment planning system (TPS) with corresponding Monte Carlo (MC) simulation results in heterogeneous patient geometries, in order to validate Acuros and quantify the accuracy improvement it marks relative to TG43. Methods: Dosimetric comparisons in the form of isodose lines, percentage dose difference maps, and dose volume histogram results were performed for two voxelized mathematical models resembling an esophageal and a breast brachytherapy patient, as well as an actual breast brachytherapy patient model. The mathematical models were converted to digital imaging and communications in medicine (DICOM) image series for input to the TPS. The MCNP5 v.1.40 general-purpose simulation code input files for each model were prepared using information derived from the corresponding DICOM RT exports from the TPS. Results: Comparisons of MC and TG43 results in all models showed significant differences, as reported previously in the literature and expected from the inability of the TG43 based algorithm to account for heterogeneities and model specific scatter conditions. A close agreement was observed between MC and Acuros results in all models except for a limited number of points that lay in the penumbra of perfectly shaped structures in the esophageal model, or at distances very close to the catheters in all models. Conclusions: Acuros marks a significant dosimetry improvement relative to TG43. The assessment of the clinical significance of this accuracy improvement requires further work. Mathematical patient equivalent models and models prepared from actual patient CT series are useful complementary tools in the methodology outlined in this series of works for the benchmarking of any advanced dose calculation algorithm beyond TG43.

  8. Electronic tissue compensation achieved with both dynamic and static multileaf collimator in eclipse treatment planning system for Clinac 6 EX and 2100 CD Varian linear accelerators: Feasibility and dosimetric study

    PubMed Central

    Kinhikar, Rajesh A.; Sharma, Pramod K.; Patkar, Sachin; Tambe, Chandrashekhar M.; Deshpande, Deepak D.

    2007-01-01

    Dynamic multileaf collimator (DMLC) and static multileaf collimator (SMLC), along with three-dimensional treatment planning system (3-D TPS), open the possibility of tissue compensation. A method using electronic tissue compensator (ETC) has been implemented in Eclipse 3-D TPS (V 7.3, Varian Medical Systems, Palo Alto, USA) at our center. The ETC was tested for head and neck conformal radiotherapy planning. The purpose of this study was to verify the feasibility of DMLC and SMLC in head and neck field irradiation for delivering homogeneous dose in the midplane at a pre-defined depth. In addition, emphasis was given to the dosimetric aspects in commissioning ETC in Eclipse. A Head and Neck Phantom (The Phantom Laboratory, USA) was used for the dosimetric verification. Planning was carried out for both DMLC and SMLC ETC plans. The dose calculated at central axis by eclipse with DMLC and SMLC was noted. This was compared with the doses measured on machine with ion chamber and thermoluminescence dosimetry (TLD). The calculated isodose curves and profiles were compared with the measured ones. The dose profiles along the two major axes from Eclipse were also compared with the profiles obtained from Amorphous Silicon (AS500) Electronic portal imaging device (EPID) on Clinac 6 EX machine. In uniform dose regions, measured dose values agreed with the calculated doses within 3%. Agreement between calculated and measured isodoses in the dose gradient zone was within 3 mm. The isodose curves and the profiles were found to be in good agreement with the measured curves and profiles. The measured and the calculated dose profiles along the two major axes were flat for both DMLC and SMLC. The dosimetric verification of ETC for both the linacs demonstrated the feasibility and the accuracy of the ETC treatment modality for achieving uniform dose distributions. Therefore, ETC can be used as a tool in head and neck treatment planning optimization for improved dose uniformity. PMID

  9. FBX aqueous chemical dosimeter for measurement of dosimetric parameters.

    PubMed

    Moussous, O; Medjadj, T; Benguerba, M

    2011-02-01

    We investigated the ferrous sulphate-benzoic acid-xylenol orange (FBX) aqueous chemical dosimeter for measurement of dosimetric parameters such as the output factor, backscatter factor and lateral beam profiles for different square fields sizes for (60)Co γ-rays. A water phantom was employed to measure these parameters. An ionization chamber (IC) was used for calibration and comparison. A comparison of the resulting measurements with an ionization chamber's measured parameters showed good agreement. We thus believe that the tissue equivalent FBX dosimetry system can measure the dosimetric parameters for (60)Co with reasonable accuracy.

  10. SU-E-T-136: Dosimetric Robustness of a Magnetic Resonance Imaging Guided Radiation Therapy (MR-IGRT) System

    SciTech Connect

    Rodriguez, V; Green, O; Wooten, H; Kashani, R; Mutic, S; Li, H; Dempsey, J

    2014-06-01

    Purpose: To test the radiation delivery robustness of the first MR-IGRT system using a commercial cylindrical diode array detector (ArcCHECK) and an ionization thimble chamber (Exradin A18). Methods: The MR-IGRT system is composed of three evenly spaced Co-60 sources on a rotating gantry located between two magnet halves. The collimator for each source consists of 30 doubly-focused leaf pairs that allow the system to deliver both conformal and intensity modulated (IMRT) treatment plans. The system's delivery robustness was tested over a span of 6 months from September 2013 through February 2014. This was achieved by repeatedly delivering 10 patient plans. These plans consisted of 2 conformal prostates, 2 IMRT prostates, 2 IMRT head and neck, 2 IMRT breast, 1 IMRT pancreas, and 1 IMRT bladder. The plans were generated with the system's treatment planning software. Once the plans were generated, quality assurance plans were created on a digital ArcCHECK dataset. The ArcCHECK used for testing was specially designed to be MR-compatible by moving the power supply outside of the magnetic field. The A18 ionization chamber was placed in a custom plastic plug insert in the center of the ArcCHECK. Gamma analysis was used with the ArcCHECK for relative dose evaluating both 3%/3mm and 2%/2mm. Absolute point dose was compared between ion chamber measurement and treatment plan. Results: The ArcCHECK passing rate remained constant over the 6 month period. The average passing rate for 3%/3mm and 2%/2mm analysis was 98.6% ± 0.7 and 88.8% ± 2.9, respectively. The ion chamber measurements showed little variation with an average percent difference between planned dose verses measured dose of 0.9% ± 0.7. Conclusion: Minimal differences were noted in the delivery of the 10 patient plans. Over a period that included acceptance testing, commissioning, and clinical deliveries, the MR-IGRT system remained consistent in radiation delivery.

  11. SU-D-18A-06: Variation of Controlled Breath Hold From CT Simulation to Treatment and Its Dosimetric Impact for Left-Sided Breast Radiotherapy with a Real-Time Optical Tracking System

    SciTech Connect

    Mittauer, K; Deraniyagala, R; Li, J; Lu, B; Liu, C; Lightsey, J; Yan, G

    2014-06-01

    Purpose: Different breath-hold (BH) maneuvers (abdominal breathing vs. chest breathing) during CT simulation and treatment can lead to chest wall positional variation. The purpose of this study is to quantify the variation of active breathing control (ABC)-assisted BH and estimate its dosimetric impact for left-sided whole-breast radiotherapy with a real-time optical tracking system (OTS). Methods: Seven breast cancer patients were included. An in-house OTS tracked an infrared (IR) marker affixed over the xiphoid process of the patient at CT simulation and throughout the treatment course to measure BH variations. Correlation between the IR marker and the breast was studied for dosimetric purposes. The positional variations of 860 BHs were retrospectively incorporated into treatment plans to assess their dosimetric impact on breast and cardiac organs (heart and left anterior descending artery [LAD]). Results: The mean intrafraction variations were 2.8 mm, 2.7 mm, and 1.6 mm in the anteroposterior (AP), craniocaudal (CC), and mediolateral (ML) directions, respectively. Mean stability in any direction was within 1.5 mm. A general trend of BH undershoot at treatment relative to CT simulation was observed with an average of 4.4 mm, 3.6 mm, and 0.1 mm in the AP, CC, and ML directions, respectively. Undershoot up to 12.6 mm was observed for individual patients. The difference between the planned and delivered dose to breast targets was negligible. The average planned/delivered mean heart doses, mean LAD doses, and max LAD doses were 1.4/2.1, 7.4/15.7, and 18.6/31.0 Gy, respectively. Conclusion: Systematic undershoot was observed in ABC-assisted BHs from CT simulation to treatment. Its dosimetric impact on breast coverage was minimized with image guidance, but the benefits of cardiac organ sparing were degraded. A real-time tracking system can be used in junction with the ABC device to improve BH reproducibility.

  12. Poster - Thur Eve - 12: Dosimetric manifestation of harmonic mode imaging for seed implant brachytherapy.

    PubMed

    Sandhu, G; Angyalfi, S; Dunscombe, P; Khan, R

    2012-07-01

    To demonstrate the dosimetric effects of observer variability in defining the prostate and critical organs, using Tissue Harmonic (H) ultrasound imaging mode for permanent seed implant brachytherapy. Images were acquired using a B -K medical 8848 probe with Brightness (B) and H mode for ten prostate brachytherapy patients. The prostate, rectum and urethra were contoured independently by five observers. The clinically used treatment plans based on B mode imaging fulfilling the dosimetric criteria were applied on these contours. Dosimetric parameters (prostate: D90, V100 and V200; rectum: V100; urethra: V140, V150 and V160) were computed using SPOT PRO™ planning system. Interobserver variability in dosimetric parameters was tested using standard deviations as percentages of means. Two-factor analysis of variances showed significant (p<0.05) interobserver variability in all dosimetric parameters for both modes. Interobserver agreement in dosimetric parameters improves in H mode due to improved interobserver consistency in contouring these organs on H mode images compared to B mode. There is no significant difference observed (paired student t test, p>0.05) in the mean values of dosimetric parameters in H and B mode for prostate and critical organs. H mode due to its better image quality helped to improve the interobserver agreement in contouring the prostate and critical organs and hence better interobserver consistency in all dosimetric parameter. Because the difference in the mean value of dosimetric parameters between two imaging modes is not statistically significant, H mode does not appear to offer any clinical advantages in terms of improving the dosimetric outcome. © 2012 American Association of Physicists in Medicine.

  13. Dosimetric inter-institutional comparison in European radiotherapy centres: Results of IAEA supported treatment planning system audit.

    PubMed

    Gershkevitsh, Eduard; Pesznyak, Csilla; Petrovic, Borislava; Grezdo, Joseph; Chelminski, Krzysztof; do Carmo Lopes, Maria; Izewska, Joanna; Van Dyk, Jacob

    2014-05-01

    One of the newer audit modalities operated by the International Atomic Energy Agency (IAEA) involves audits of treatment planning systems (TPS) in radiotherapy. The main focus of the audit is the dosimetry verification of the delivery of a radiation treatment plan for three-dimensional (3D) conformal radiotherapy using high energy photon beams. The audit has been carried out in eight European countries - Estonia, Hungary, Latvia, Lithuania, Serbia, Slovakia, Poland and Portugal. The corresponding results are presented. The TPS audit reviews the dosimetry, treatment planning and radiotherapy delivery processes using the 'end-to-end' approach, i.e. following the pathway similar to that of the patient, through imaging, treatment planning and dose delivery. The audit is implemented at the national level with IAEA assistance. The national counterparts conduct the TPS audit at local radiotherapy centres through on-site visits. TPS calculated doses are compared with ion chamber measurements performed in an anthropomorphic phantom for eight test cases per algorithm/beam. A set of pre-defined agreement criteria is used to analyse the performance of TPSs. TPS audit was carried out in 60 radiotherapy centres. In total, 190 data sets (combination of algorithm and beam quality) have been collected and reviewed. Dosimetry problems requiring interventions were discovered in about 10% of datasets. In addition, suboptimal beam modelling in TPSs was discovered in a number of cases. The TPS audit project using the IAEA methodology has verified the treatment planning system calculations for 3D conformal radiotherapy in a group of radiotherapy centres in Europe. It contributed to achieving better understanding of the performance of TPSs and helped to resolve issues related to imaging, dosimetry and treatment planning.

  14. A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform

    PubMed Central

    Tryggestad, E; Armour, M; Iordachita, I; Verhaegen, F; Wong, J W

    2011-01-01

    Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP’s treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min−1 at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth–dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5–7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important. PMID:19687532

  15. Dosimetric Verification by Using the ArcCHECK System and 3DVH Software for Various Target Sizes

    PubMed Central

    Song, Jin Ho; Shin, Hun-Joo; Kay, Chul Seung; Son, Seok Hyun

    2015-01-01

    Objective To investigate the usefulness of the 3DVH software with an ArcCHECK 3D diode array detector in newly designed plans with various target sizes. Methods The isocenter dose was measured with an ion-chamber and was compared with the planned and 3DVH predicted doses. The 2D gamma passing rates were evaluated at the diode level by using the ArcCHECK detector. The 3D gamma passing rates for specific regions of interest (ROIs) were also evaluated by using the 3DVH software. Several dose-volume histograms (DVH)-based predicted metrics for all structures were also obtained by using the 3DVH software. Results The isocenter dose deviation was <1% in all plans except in the case of a 1 cm target. Besides the gamma passing rate at the diode level, the 3D gamma passing rate for specific ROIs tended to decrease with increasing target size; this was more noticeable when a more stringent gamma criterion was applied. No correlation was found with the gamma passing rates and the DVH-based metrics especially in the ROI with high-dose gradients. Conclusions Delivery quality assurance by using 3DVH and ArcCHECK can provide substantial information through a simple and easy approach, although the accuracy of this system should be judged cautiously. PMID:25807544

  16. A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform.

    PubMed

    Tryggestad, E; Armour, M; Iordachita, I; Verhaegen, F; Wong, J W

    2009-09-07

    Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP's treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min(-1) at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth-dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5-7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important.

  17. Dosimetric verification by using the ArcCHECK system and 3DVH software for various target sizes.

    PubMed

    Song, Jin Ho; Shin, Hun-Joo; Kay, Chul Seung; Son, Seok Hyun

    2015-01-01

    To investigate the usefulness of the 3DVH software with an ArcCHECK 3D diode array detector in newly designed plans with various target sizes. The isocenter dose was measured with an ion-chamber and was compared with the planned and 3DVH predicted doses. The 2D gamma passing rates were evaluated at the diode level by using the ArcCHECK detector. The 3D gamma passing rates for specific regions of interest (ROIs) were also evaluated by using the 3DVH software. Several dose-volume histograms (DVH)-based predicted metrics for all structures were also obtained by using the 3DVH software. The isocenter dose deviation was <1% in all plans except in the case of a 1 cm target. Besides the gamma passing rate at the diode level, the 3D gamma passing rate for specific ROIs tended to decrease with increasing target size; this was more noticeable when a more stringent gamma criterion was applied. No correlation was found with the gamma passing rates and the DVH-based metrics especially in the ROI with high-dose gradients. Delivery quality assurance by using 3DVH and ArcCHECK can provide substantial information through a simple and easy approach, although the accuracy of this system should be judged cautiously.

  18. Dosimetric Verification of the System of Planning Brainscan for Stereotactic Radiosurgery at Oncology Department of the General Hospital of Mexico

    SciTech Connect

    Alvarez R, J. T.; Salinas, B.; Tovar M, V. M.; Villasenor O, L. F.; Molero M, A. C.

    2006-09-08

    The verification consists on the planning and administration of stereotactic treatments by means of conformed static beams, several polyethylene capsules with powder TLD 100 (type IAEA) located inside the head of a phantom Alderson-Rando. Because the planning system corrects for no-homogeneity in the density from the tomographic information, it is assumed that the absorbed dose in the tumor volume (capsule) corresponds to the dose absorbed to LiF: DLiF. Applying different cavity theories, the percent deviations to the nominal dose are: -1.81%{<=}{delta}%{<=}0.71%, which are consistent with the order of the U%'s. The values of DW are calculated from two calibration curve: TL Response (nC) vs DW for the energy of the 60Co corrected for energy dependence to the accelerator photon beam quality D20/D10=0.57. Once curve for 0.5 to 5 Gy and other for 5 to 35 Gy. The traceability for the Dwater is obtained by means of a secondary standard ionization chamber Farmer PTW 30013 calibrated at the NRC.

  19. Dosimetric verification of a commercial Monte Carlo treatment planning system (VMC++) for a 9 MeV electron beam

    SciTech Connect

    Schiapparelli, P.; Zefiro, D.; Taccini, G.

    2009-05-15

    The aim of this work was to evaluate the performance of the voxel-based Monte Carlo algorithm implemented in the commercial treatment planning system ONCENTRA MASTERPLAN for a 9 MeV electron beam produced by a linear accelerator Varian Clinac 2100 C/D. In order to realize an experimental verification of the computed data, three different groups of tests were planned. The first set was performed in a water phantom to investigate standard fields, custom inserts, and extended treatment distances. The second one concerned standard field, irregular entrance surface, and oblique incidence in a homogeneous PMMA phantom. The last group involved the introduction of inhomogeneities in a PMMA phantom to simulate high and low density materials such as bone and lung. Measurements in water were performed by means of cylindrical and plane-parallel ionization chambers, whereas measurements in PMMA were carried out by the use of radiochromic films. Point dose values were compared in terms of percentage difference, whereas the gamma index tool was used to perform the comparison between computed and measured dose profiles, considering different tolerances according to the test complexity. In the case of transverse scans, the agreement was searched in the plane formed by the intersection of beam axis and the profile (2D analysis), while for percentage depth dose curves, only the beam axis was explored (1D analysis). An excellent agreement was found for point dose evaluation in water (discrepancies smaller than 2%). Also the comparison between planned and measured dose profiles in homogeneous water and PMMA phantoms showed good results (agreement within 2%-2 mm). Profile evaluation in phantoms with internal inhomogeneities showed a good agreement in the case of ''lung'' insert, while in tests concerning a small ''bone'' inhomogeneity, a discrepancy was particularly evidenced in dose values on the beam axis. This is due to the inaccurate geometrical description of the phantom that is

  20. SU-E-T-130: Dosimetric Evaluation of Tissue Equivalent Gel Dosimeter Using Saccharide in Radiotherapy System

    SciTech Connect

    Cho, Y; Lee, D; Jung, H; Ji, Y; Kim, K; Chang, U; Kwon, S

    2014-06-01

    Purpose: In this study, the dose responses of the MAGIC gel with various concentrations and type of saccharide are examined to clarify the roles of mono and disaccharide in the polymerization process. Then we focused on the tissue equivalence and dose sensitivity of MAGIC gel dosimeters. Methods: The gel is composed of HPLC, 8% gelatin, 2 × 10-3 M L-ascorbic acid, 1.8 × 10-2 M hydroquinone, 8 × 10-5 M copper(II)sulfate and 9% methacrylic acid, new polymer gels are synthesized by adding glucose(monosaccharide), sucrose(disaccharide) and urea in the concentration range of 5∼35%. For irradiation of the gel, cesium-137 gamma-ray irradiator was used, radiation dose was delivered from 5∼50 Gy. MRI images of the gel were acquired by using a 3.0 T MRI system. Results: When saccharide and urea were added, the O/C, O/N and C/N ratios agreed with those of soft tissue with 1.7%. The dose-response of glucose and sucrose gel have slope-to-intercept ratio of 0.044 and 0.283 respectively. The slope-to-ratio is one important determinant of gel sensitivity. R-square values of glucose and sucrose gel dosimeters were 0.984 and 0.994 respectively. Moreover when urea were added, the slope-to-intercept ratio is 0.044 and 0.073 respectively. R-square values of mono and disaccharide gel were 0.973 and 0.989 respectively. When a saccharide is added into the MAGIC gel dosimeter, dose sensitivity is increased. However when urea were added, dose sensitivity is slightly decreased. Conclusion: In this study, it was possible to obtain the following conclusions by looking at the dose response characteristics after adding mono-, di-saccharide and urea to a MAGIC gel dosimeter. Saccharide was a tendency of increasing dose sensitivity with disaccharide. Sa.ccharide is cost effective, safe, soft tissue equivalent, and can be used under various experimental conditions, making it a suitable dosimeter for some radiotherapy applications.

  1. Dosimetric Characteristics for Brachytherapy Sources

    SciTech Connect

    DeWerd, Larry A.; Davis, Stephen D.

    2011-05-05

    Brachytherapy sources are characterized by the dosimetric parameters in a protocol such as the American Association of Physicists in Medicine Task Group 43. The air-kerma strength is measured and traceable to a primary standard. Then the parameters such as dose-rate constant, radial dose function, and anisotropy function are measured and related back to the primary standard. This is normally accomplished with thermoluminescent dosimeters (TLDs). Since radial dose function and anisotropy function are relative parameters, some of the dosimetric corrections are negligible. For the dose-rate constant, parameters such as the energy dependence compared with a calibration beam such as {sup 60}Co need to be accounted for. A description of the primary standard measurements and TLD measurements will be discussed.

  2. Elaboration d'un dosimetre a fibres scintillantes

    NASA Astrophysics Data System (ADS)

    Archambault, Louis

    Le but de ce travail est de developper un dosimetre constitue d'une matrice de petits scintillateurs plastiques. Ce dosimetre doit presenter une bonne precision et reproductibilite pour satisfaire aux exigences imposees par des techniques de radiotherapie de pointe comme la radiotherapie d'intensite modulee, la radiochirurgie et la tomotherapie. Le desavantage majeur de cette forme de dosimetrie est la presence de bruit produit par l'effet de la radiation sur la fibre optique transportant la lumiere de scintillation jusqu'au photodetecteur. Pour en reduire l'impact, une etude approfondie des dosimetres a scintillation a ete effectuee. Commencant par une modelisation theorique de la collecte et du guidage lumineux, ce travail a ete suivi d'une comparaison experimentale de plusieurs scintillateurs plastiques, de methodes de couplage, de photodetecteurs et de techniques de filtrage. Ces etudes ont permis de choisir les fibres scintillantes pour leur gain de signal de 50% relativement aux autres scintillateurs plastiques. La camera CCD est le photodetecteur le plus adapte pour ce projet etant donne une sensibilite et une stabilite suffisantes, une capacite d'evaluer 3000 signaux dosimetriques simultanement et un systeme de separation chromatique. Apres la selection des meilleures composantes, un dosimetre a ete developpe pour etudier la performance des techniques de filtrage. Il a ete demontre que, apres utilisation du meilleur filtrage, une precision superieure a 1% pouvait etre atteinte. Un dosimetre a trois detecteurs de volumes differents (0,0014, 0,0034 et 0,0083 cm 3) a demontre une linearite face a des taux de doses allant de 10 a 600 cGy/min et pour des temps d'integration entre 0,05 et 50 s. Une reproductibilite superieure a 1% a ete observee pour des doses minimales de 45, 35 et 20 cGy respectivement pour le petit, le moyen et le grand detecteur. Une matrice de 10 detecteurs espaces de 5 mm sur une ligne a ensuite ete realisee. Ce dosimetre s'est montre

  3. Dosimetric methodology of the ICRP

    SciTech Connect

    Eckerman, K.F.

    1994-12-31

    Establishment of guidance for the protection of workers and members of the public from radiation exposures necessitates estimation of the radiation dose to tissues of the body at risk. The dosimetric methodology formulated by the International Commission on Radiological Protection (ICRP) is intended to be responsive to this need. While developed for radiation protection, elements of the methodology are often applied in addressing other radiation issues; e.g., risk assessment. This chapter provides an overview of the methodology, discusses its recent extension to age-dependent considerations, and illustrates specific aspects of the methodology through a number of numerical examples.

  4. IPIP: A new approach to inverse planning for HDR brachytherapy by directly optimizing dosimetric indices

    SciTech Connect

    Siauw, Timmy; Cunha, Adam; Atamtuerk, Alper; Hsu, I-Chow; Pouliot, Jean; Goldberg, Ken

    2011-07-15

    Purpose: Many planning methods for high dose rate (HDR) brachytherapy require an iterative approach. A set of computational parameters are hypothesized that will give a dose plan that meets dosimetric criteria. A dose plan is computed using these parameters, and if any dosimetric criteria are not met, the process is iterated until a suitable dose plan is found. In this way, the dose distribution is controlled by abstract parameters. The purpose of this study is to develop a new approach for HDR brachytherapy by directly optimizing the dose distribution based on dosimetric criteria. Methods: The authors developed inverse planning by integer program (IPIP), an optimization model for computing HDR brachytherapy dose plans and a fast heuristic for it. They used their heuristic to compute dose plans for 20 anonymized prostate cancer image data sets from patients previously treated at their clinic database. Dosimetry was evaluated and compared to dosimetric criteria. Results: Dose plans computed from IPIP satisfied all given dosimetric criteria for the target and healthy tissue after a single iteration. The average target coverage was 95%. The average computation time for IPIP was 30.1 s on an Intel(R) Core{sup TM}2 Duo CPU 1.67 GHz processor with 3 Gib RAM. Conclusions: IPIP is an HDR brachytherapy planning system that directly incorporates dosimetric criteria. The authors have demonstrated that IPIP has clinically acceptable performance for the prostate cases and dosimetric criteria used in this study, in both dosimetry and runtime. Further study is required to determine if IPIP performs well for a more general group of patients and dosimetric criteria, including other cancer sites such as GYN.

  5. Dosimetric Predictors of Laryngeal Edema

    SciTech Connect

    Sanguineti, Giuseppe . E-mail: gisangui@utmb.edu; Adapala, Prashanth; Endres, Eugene J. C; Brack, Collin; Fiorino, Claudio; Sormani, Maria Pia; Parker, Brent

    2007-07-01

    Purpose: To investigate dosimetric predictors of laryngeal edema after radiotherapy (RT). Methods and Materials: A total of 66 patients were selected who had squamous cell carcinoma of the head and neck with grossly uninvolved larynx at the time of RT, no prior major surgical operation except for neck dissection and tonsillectomy, treatment planning data available for analysis, and at least one fiberoptic examination of the larynx within 2 years from RT performed by a single observer. Both the biologically equivalent mean dose at 2 Gy per fraction and the cumulative biologic dose-volume histogram of the larynx were extracted for each patient. Laryngeal edema was prospectively scored after treatment. Time to endpoint, moderate or worse laryngeal edema (Radiation Therapy Oncology Group Grade 2+), was calculated with log rank test from the date of treatment end. Results: At a median follow-up of 17.1 months (range, 0.4- 50.0 months), the risk of Grade 2+ edema was 58.9% {+-} 7%. Mean dose to the larynx, V30, V40, V50, V60, and V70 were significantly correlated with Grade 2+ edema at univariate analysis. At multivariate analysis, mean laryngeal dose (continuum, hazard ratio, 1.11; 95% confidence interval, 1.06-1.15; p < 0.001), and positive neck stage at RT (N0-x vs. N +, hazard ratio, 3.66; 95% confidence interval, 1.40-9.58; p = 0.008) were the only independent predictors. Further stratification showed that, to minimize the risk of Grade 2+ edema, the mean dose to the larynx has to be kept {<=}43.5 Gy at 2 Gy per fraction. Conclusion: Laryngeal edema is strictly correlated with various dosimetric parameters; mean dose to the larynx should be kept {<=}43.5 Gy.

  6. Practical simplifications for radioimmunotherapy dosimetric models

    SciTech Connect

    Shen, S.; DeNardo, G.L.; O`Donnell, R.T.; Yuan, A.; DeNardo, D.A.; Macey, D.J.; DeNardo, S.J.

    1999-01-01

    Radiation dosimetry is potentially useful for assessment and prediction of efficacy and toxicity for radionuclide therapy. The usefulness of these dose estimates relies on the establishment of a dose-response model using accurate pharmacokinetic data and a radiation dosimetric model. Due to the complexity in radiation dose estimation, many practical simplifications have been introduced in the dosimetric modeling for clinical trials of radioimmunotherapy. Although research efforts are generally needed to improve the simplifications used at each stage of model development, practical simplifications are often possible for specific applications without significant consequences to the dose-response model. In the development of dosimetric methods for radioimmunotherapy, practical simplifications in the dosimetric models were introduced. This study evaluated the magnitude of uncertainty associated with practical simplifications for: (1) organ mass of the MIRD phantom; (2) radiation contribution from target alone; (3) interpolation of S value; (4) macroscopic tumor uniformity; and (5) fit of tumor pharmacokinetic data.

  7. Reevaluations of dosimetric factors: Hiroshima and Nagasaki

    SciTech Connect

    Bond, V.P.; Thiessen, J.W.

    1982-01-01

    Separate abstracts were prepared for the 13 papers in this proceedings of a symposium on the reevaluation of dosimetric factors for Hiroshima and Nagasaki. A summary and general discussion are included at the end of the proceedings. (KRM)

  8. Proton Radiotherapy for Liver Tumors: Dosimetric Advantages Over Photon Plans

    SciTech Connect

    Wang Xiaochun Krishnan, Sunil; Zhang Xiaodong; Dong Lei; Briere, Tina; Crane, Christopher H.; Martel, Mary; Gillin, Michael; Mohan, Radhe; Beddar, Sam

    2008-01-01

    The purpose of the study is to dosimetrically investigate the advantages of proton radiotherapy over photon radiotherapy for liver tumors. The proton plan and the photon plan were designed using commercial treatment planning systems. The treatment target dose conformity and heterogeneity and dose-volume analyses of normal structures were compared between proton and photon radiotherapy for 9 patients with liver tumors. Proton radiotherapy delivered a more conformal target dose with slightly less homogeneity when compared with photon radiotherapy. Protons significantly reduced the fractional volume of liver receiving dose greater or equal to 30 Gy (V{sub 30}) and the mean liver dose. The stomach and duodenal V{sub 45} were significantly lower with the use of proton radiotherapy. The V{sub 40} and V{sub 50} of the heart and the maximum spinal cord dose were also significantly lower with the use of proton radiotherapy. Protons were better able to spare one kidney completely and deliver less dose to one (generally the left) kidney than photons. The mean dose to the total body and most critical structures was significantly decreased using protons when compared to corresponding photon plans. In conclusion, our study suggests the dosimetric benefits of proton radiotherapy over photon radiotherapy. These dosimetric advantages of proton plans may permit further dose escalation with lower risk of complications.

  9. Effective atomic numbers and electron density of dosimetric material

    PubMed Central

    Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.

    2009-01-01

    A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566

  10. A dosimetric comparison of two high-dose-rate brachytherapy planning systems in cervix cancer: standardized template planning vs. computerized treatment planning.

    PubMed

    Patone, Hassisen; Souhami, Luis; Parker, William; Evans, Michael; Duclos, Marie; Portelance, Lorraine

    2008-01-01

    High-dose-rate brachytherapy is an important component of the curative treatment for cervical cancer. Some institutions use standardized template planning (STP), based on a precalculated table of dose rates, instead of computerized treatment planning (CTP), based on digitized orthogonal X-ray films. STP can be used as a backup check in case of computer hardware malfunction, and/or as a way to minimize treatment planning time. We performed a dosimetric comparison of STP and CTP to determine dose differences at point A and the International Commission on Radiation Units and Measurements Report 38 bladder and rectal reference points. We retrospectively reviewed the treatment plans of 62 patients (135 applications) treated with a tandem and two ovoids using the CTP method. For each of these plans, we calculated the dwell times required to deliver the same prescription dose had STP been used. We also used the planning computer to vary tandem and ovoid geometry and develop a table of dose rates based on geometric parameters. The mean dose at point A was 7.6 Gy using CTP, increasing to 8.4 Gy when the STP approach was used (p<0.05). The mean doses at the International Commission on Radiation Units and Measurements Report 38 bladder and rectal points were both 4.5 Gy with CTP and increased to 4.9 and 5.0 Gy, respectively using STP (p<0.05). Our table of dose rates showed significant dose rate dependency on the applicators geometry. Our study shows that if the STP approach had been used, a significantly higher dose would have been delivered, and that STP tables accounting for differences in implant geometry should be carefully considered.

  11. Dosimetric characteristics of the Elekta Beam Modulator.

    PubMed

    Patel, I; Glendinning, A G; Kirby, M C

    2005-12-07

    The dosimetric characteristics of a production pilot multi-leaf collimator (Elekta Beam Modulator, Elekta Oncology Systems, Crawley, UK) having a 4 mm leaf width (at isocentre) have been investigated. Characteristics explored included leaf bank set-up, penumbra width (80-20%) as a function of leaf position, leaf positioning reproducibility, interleaf leakage and leaf transmission. The penumbra values for leaf ends were measured to be between 4.2 and 4.8 mm for various large rectangular fields studied using Kodak X-omat V film at isocentre (1.5 cm deep). Similar films were taken with a standard 1 cm width multi-leaf collimator (MLC) and the penumbra for leaf ends was found to range from 4.3 to 5.2 mm. Other results showed that the rounded leaf tip provided tight control of the penumbra across the leaves' full range of travel. The positioning of the leaves was within a 0.5 mm range when approaching from the same direction. The maximum interleaf leakage was found to be 1.7% and the average leaf transmission less than 1.0%. No major differences were observed in leakage and transmission with changing gantry angle.

  12. Dosimetric effects of patient rotational setup errors on prostate IMRT treatments

    NASA Astrophysics Data System (ADS)

    Fu, Weihua; Yang, Yong; Li, Xiang; Heron, Dwight E.; Saiful Huq, M.; Yue, Ning J.

    2006-10-01

    The purpose of this work is to determine dose delivery errors that could result from systematic rotational setup errors (ΔΦ) for prostate cancer patients treated with three-phase sequential boost IMRT. In order to implement this, different rotational setup errors around three Cartesian axes were simulated for five prostate patients and dosimetric indices, such as dose-volume histogram (DVH), tumour control probability (TCP), normal tissue complication probability (NTCP) and equivalent uniform dose (EUD), were employed to evaluate the corresponding dosimetric influences. Rotational setup errors were simulated by adjusting the gantry, collimator and horizontal couch angles of treatment beams and the dosimetric effects were evaluated by recomputing the dose distributions in the treatment planning system. Our results indicated that, for prostate cancer treatment with the three-phase sequential boost IMRT technique, the rotational setup errors do not have significant dosimetric impacts on the cumulative plan. Even in the worst-case scenario with ΔΦ = 3°, the prostate EUD varied within 1.5% and TCP decreased about 1%. For seminal vesicle, slightly larger influences were observed. However, EUD and TCP changes were still within 2%. The influence on sensitive structures, such as rectum and bladder, is also negligible. This study demonstrates that the rotational setup error degrades the dosimetric coverage of target volume in prostate cancer treatment to a certain degree. However, the degradation was not significant for the three-phase sequential boost prostate IMRT technique and for the margin sizes used in our institution.

  13. Comparing the dosimetric characteristics of the electron beam from dedicated intraoperative and conventional radiotherapy accelerators.

    PubMed

    Baghani, Hamid Reza; Aghamiri, Seyed Mahmoud Reza; Mahdavi, Seyed Rabi; Akbari, Mohammad Esmail; Mirzaei, Hamid Reza

    2015-03-08

    The specific design of the mobile dedicated intraoperative radiotherapy (IORT) accelerators and different electron beam collimation system can change the dosimetric characteristics of electron beam with respect to the conventional accelerators. The aim of this study is to measure and compare the dosimetric characteristics of electron beam produced by intraoperative and conventional radiotherapy accelerators. To this end, percentage depth dose along clinical axis (PDD), transverse dose profile (TDP), and output factor of LIAC IORT and Varian 2100C/D conventional radiotherapy accelerators were measured and compared. TDPs were recorded at depth of maximum dose. The results of this work showed that depths of maximum dose, R90, R50, and RP for LIAC beam are lower than those of Varian beam. Furthermore, for all energies, surface doses related to the LIAC beam are substantially higher than those of Varian beam. The symmetry and flatness of LIAC beam profiles are more desirable compared to the Varian ones. Contrary to Varian accelerator, output factor of LIAC beam substantially increases with a decrease in the size of the applicator. Dosimetric characteristics of beveled IORT applicators along clinical axis were different from those of the flat ones. From these results, it can be concluded that dosimetric characteristics of intraoperative electron beam are substantially different from those of conventional clinical electron beam. The dosimetric characteristics of the LIAC electron beam make it a useful tool for intraoperative radiotherapy purposes.

  14. Dosimetric accuracy of a staged radiosurgery treatment

    NASA Astrophysics Data System (ADS)

    Cernica, George; de Boer, Steven F.; Diaz, Aidnag; Fenstermaker, Robert A.; Podgorsak, Matthew B.

    2005-05-01

    For large cerebral arteriovenous malformations (AVMs), the efficacy of radiosurgery is limited since the large doses necessary to produce obliteration may increase the risk of radiation necrosis to unacceptable levels. An alternative is to stage the radiosurgery procedure over multiple stages (usually two), effectively irradiating a smaller volume of the AVM nidus with a therapeutic dose during each session. The difference between coordinate systems defined by sequential stereotactic frame placements can be represented by a translation and a rotation. A unique transformation can be determined based on the coordinates of several fiducial markers fixed to the skull and imaged in each stereotactic coordinate system. Using this transformation matrix, isocentre coordinates from the first stage can be displayed in the coordinate system of subsequent stages allowing computation of a combined dose distribution covering the entire AVM. The accuracy of this approach was tested on an anthropomorphic head phantom and was verified dosimetrically. Subtle defects in the phantom were used as control points, and 2 mm diameter steel balls attached to the surface were used as fiducial markers and reference points. CT images (2 mm thick) were acquired. Using a transformation matrix developed with two frame placements, the predicted locations of control and reference points had an average error of 0.6 mm near the fiducial markers and 1.0 mm near the control points. Dose distributions in a staged treatment approach were accurately calculated using the transformation matrix. This approach is simple, fast and accurate. Errors were small and clinically acceptable for Gamma Knife radiosurgery. Accuracy can be improved by reducing the CT slice thickness.

  15. NOTE: Monte Carlo dosimetric study of the BEBIG Co-60 HDR source

    NASA Astrophysics Data System (ADS)

    Ballester, F.; Granero, D.; Pérez-Calatayud, J.; Casal, E.; Agramunt, S.; Cases, R.

    2005-11-01

    Although not as widespread as Ir-192, Co-60 is also available on afterloading equipment devoted to high dose rate brachytherapy, mainly addressed to the treatment of gynaecological lesions. The purpose of this study is to obtain the dosimetric parameters of the Co-60 source used by the BEBIG MultiSource remote afterloader (BEBIG GmbH, Germany) for which there are no dosimetric data available in the literature. The Monte Carlo code GEANT4 has been used to obtain the TG43 parameters and the 2D dose rate table in Cartesian coordinates of the BEBIG Co-60 HDR source. The dose rate constant, radial dose function and anisotropy function have been calculated and are presented in a tabular form as well as a detailed 2D dose rate table in Cartesian coordinates. These dosimetric datasets can be used as input data and to validate the treatment planning system calculations.

  16. Transport and dosimetric solutions for the ELIMED laser-driven beam line

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Romano, F.; Scuderi, V.; Amato, A.; Candiano, G.; Cuttone, G.; Giove, D.; Korn, G.; Krasa, J.; Leanza, R.; Manna, R.; Maggiore, M.; Marchese, V.; Margarone, D.; Milluzzo, G.; Petringa, G.; Sabini, M. G.; Schillaci, F.; Tramontana, A.; Valastro, L.; Velyhan, A.

    2015-10-01

    Within 2017, the ELIMED (ELI-Beamlines MEDical applications) transport beam-line and dosimetric systems for laser-generated beams will be installed at the ELI-Beamlines facility in Prague (CZ), inside the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) interaction room. The beam-line will be composed of two sections: one in vacuum, devoted to the collecting, focusing and energy selection of the primary beam and the second in air, where the ELIMED beam-line dosimetric devices will be located. This paper briefly describes the transport solutions that will be adopted together with the main dosimetric approaches. In particular, the description of an innovative Faraday Cup detector with its preliminary experimental tests will be reported.

  17. CURRENT STATUS OF INDIVIDUAL DOSIMETRIC MONITORING IN UKRAINE.

    PubMed

    Chumak, V; Deniachenko, N; Makarovska, O; Mihailescu, L-C; Prykhodko, A; Voloskyi, V; Vanhavere, F

    2016-09-01

    About 50 000 workers are being occupationally exposed to radiation in Ukraine. Individual dosimetric monitoring (IDM) is provided by 77 dosimetry services and laboratories of very different scale with a number of monitored workers ranging from several persons to ∼9000. In the present work, the current status of personal dosimetry in Ukraine was studied. The First National Intercomparison (FNI) of the IDM labs was accompanied by a survey of the laboratory operation in terms of coverage, types of dosimetry provided, instrumentation and methodologies used, metrological support, data recording, etc. Totally, 34 laboratories responded to the FNI call, and 18 services with 19 different personal dosimetry systems took part in the intercomparison exercise providing 24 dosimeters each for blind irradiation to photons of 6 different qualities (ISO N-series X-rays, S-Cs and S-Co sources) in a dose range of 5-60 mSv. Performance of the dosimetry labs was evaluated according to ISO 14146 criteria of matching trumpet curves with H0 = 0.2 mSv. The test revealed that 8 of the 19 systems meet ISO 14146 criteria in full, 5 other labs show marginal performance and 6 laboratories demonstrated catastrophic quality of dosimetric results. Altogether, 18 participating labs provide dosimetric monitoring to 37 477 workers (about three-fourths of all occupationally exposed workers), usually on monthly (nuclear industry) or quarterly (rest of applications) basis. Of this number, 20 664 persons (55 %) receive completely adequate individual monitoring, and the number of personnel receiving IDM of inadequate quality counts 3054 persons. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Patient doses and dosimetric evaluations in interventional cardiology.

    PubMed

    Bor, Dogan; Olğar, Turan; Toklu, Türkay; Cağlan, Ayça; Onal, Elif; Padovani, Renato

    2009-03-01

    Interventional cardiological examinations may be associated with excessive radiation exposures which may cause skin injuries and higher probabilities of stochastic effects. Dose-area product (DAP) and skin doses of 325 patients were measured using alternative dosimetric techniques for different cardiological examinations. Data were collected from five different systems with the involvement of 11 cardiologists. All these dosimetric information has been collected separately for each of 10 projections together with the exposure parameters of X-ray systems. Mean DAP values measured with a transparent ion chamber were 49.1 Gy cm(2), 66.8 Gy cm(2), 106.9 Gy cm(2) and 124.7 Gy cm(2), respectively, for coronary angiography (CA), percutaneous transluminal coronary angioplasty (PTCA) or stent (PT-SI), coronary angiography and/or PTCA and/or stent (CA-PT-SI), and ablation examinations. Radiochromic films, thermoluminescent dosimeters (TLD) and point measurement of air kerma (AK) were carried out for skin dose assessments. Skin doses of 23 patients measured with radiochromic films were found to be between 2 Gy and 6 Gy. Although the complexity of the procedures was the major reason for these excessive doses, considerable contributions of high X-ray output of some fluoroscopy units were also noticed. In addition to the direct measurement of DAP, alternative DAP values were also determined from the skin dose measurement techniques; exposed areas were summed on digitized radiochromic films in one technique, The product of AK reading with X-ray field size measured at the patient entrance using slow X-ray films was taken as another DAP. Good correlations were found among the DAP results and also between the entrance skin doses calculated from AK measurements and direct DAP readings (R(2)=0.91). A trigger DAP value of 130 Gy cm(2) for the 2 Gy of skin doses was derived from this relationship. Collection of dosimetric data for each projection was also investigated regarding a

  19. Dosimetric accuracy of a deterministic radiation transport based {sup 192}Ir brachytherapy treatment planning system. Part II: Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator

    SciTech Connect

    Petrokokkinos, L.; Zourari, K.; Pantelis, E.; Moutsatsos, A.; Karaiskos, P.; Sakelliou, L.; Seimenis, I.; Georgiou, E.; Papagiannis, P.

    2011-04-15

    Purpose: The aim of this work is the dosimetric validation of a deterministic radiation transport based treatment planning system (BRACHYVISION v. 8.8, referred to as TPS in the following) for multiple {sup 192}Ir source dwell position brachytherapy applications employing a shielded applicator in homogeneous water geometries. Methods: TPS calculations for an irradiation plan employing seven VS2000 {sup 192}Ir high dose rate (HDR) source dwell positions and a partially shielded applicator (GM11004380) were compared to corresponding Monte Carlo (MC) simulation results, as well as experimental results obtained using the VIP polymer gel-magnetic resonance imaging three-dimensional dosimetry method with a custom made phantom. Results: TPS and MC dose distributions were found in agreement which is mainly within {+-}2%. Considerable differences between TPS and MC results (greater than 2%) were observed at points in the penumbra of the shields (i.e., close to the edges of the ''shielded'' segment of the geometries). These differences were experimentally verified and therefore attributed to the TPS. Apart from these regions, experimental and TPS dose distributions were found in agreement within 2 mm distance to agreement and 5% dose difference criteria. As shown in this work, these results mark a significant improvement relative to dosimetry algorithms that disregard the presence of the shielded applicator since the use of the latter leads to dosimetry errors on the order of 20%-30% at the edge of the ''unshielded'' segment of the geometry and even 2%-6% at points corresponding to the potential location of the target volume in clinical applications using the applicator (points in the unshielded segment at short distances from the applicator). Conclusions: Results of this work attest the capability of the TPS to accurately account for the scatter conditions and the increased attenuation involved in HDR brachytherapy applications employing multiple source dwell positions and

  20. A biokinetic and dosimetric model for ionic indium in humans

    NASA Astrophysics Data System (ADS)

    Andersson, Martin; Mattsson, Sören; Johansson, Lennart; Leide-Svegborn, Sigrid

    2017-08-01

    This paper reviews biokinetic data for ionic indium, and proposes a biokinetic model for systemic indium in adult humans. The development of parameter values focuses on human data and indium in the form of ionic indium(III), as indium chloride and indium arsenide. The model presented for systemic indium is defined by five different pools: plasma, bone marrow, liver, kidneys and other soft tissues. The model is based on two subsystems: one corresponding to indium bound to transferrin and one where indium is transported back to the plasma, binds to red blood cell transferrin and is then excreted through the kidneys to the urinary bladder. Absorbed doses to several organs and the effective dose are calculated for 111In- and 113mIn-ions. The proposed biokinetic model is compared with previously published biokinetic indium models published by the ICRP. The absorbed doses are calculated using the ICRP/ICRU adult reference phantoms and the effective dose is estimated according to ICRP Publication 103. The effective doses for 111In and 113mIn are 0.25 mSv MBq-1 and 0.013 mSv MBq-1 respectively. The updated biokinetic and dosimetric models presented in this paper take into account human data and new animal data, which represent more detailed and presumably more accurate dosimetric data than that underlying previous models for indium.

  1. Comparison of Dosimetric Performance among Commercial Quality Assurance Systems for Verifying Pretreatment Plans of Stereotactic Body Radiotherapy Using Flattening-Filter-Free Beams

    PubMed Central

    2016-01-01

    The purpose of this study was to compare the performance of different commercial quality assurance (QA) systems for the pretreatment verification plan of stereotactic body radiotherapy (SBRT) with volumetric arc therapy (VMAT) technique using a flattening-filter-free beam. The verification for 20 pretreatment cancer patients (seven lung, six spine, and seven prostate cancers) were tested using three QA systems (EBT3 film, I’mRT MatriXX array, and MapCHECK). All the SBRT-VMAT plans were optimized in the Eclipse (version 11.0.34) treatment planning system (TPS) using the Acuros XB dose calculation algorithm and were delivered to the Varian TrueBeam® accelerator equipped with a high-definition multileaf collimator. Gamma agreement evaluation was analyzed with the criteria of 2% dose difference and 2 mm distance to agreement (2%/2 mm) or 3%/3 mm. The highest passing rate (99.1% for 3%/3 mm) was observed on the MapCHECK system while the lowest passing rate was obtained on the film. The pretreatment verification results depend on the QA systems, treatment sites, and delivery beam energies. However, the delivery QA results for all QA systems based on the TPS calculation showed a good agreement of more than 90% for both the criteria. It is concluded that the three 2D QA systems have sufficient potential for pretreatment verification of the SBRT-VMAT plan. PMID:27709851

  2. Dosimetric validation and clinical implementation of two 3D dose verification systems for quality assurance in volumetric-modulated arc therapy techniques.

    PubMed

    Clemente-Gutiérrez, Francisco; Pérez-Vara, Consuelo

    2015-03-08

    A pretreatment quality assurance program for volumetric techniques should include redundant calculations and measurement-based verifications. The patient-specific quality assurance process must be based in clinically relevant metrics. The aim of this study was to show the commission, clinical implementation, and comparison of two systems that allow performing a 3D redundant dose calculation. In addition, one of them is capable of reconstructing the dose on patient anatomy from measurements taken with a 2D ion chamber array. Both systems were compared in terms of reference calibration data (absolute dose, output factors, percentage depth-dose curves, and profiles). Results were in good agreement for absolute dose values (discrepancies were below 0.5%) and output factors (mean differences were below 1%). Maximum mean discrepancies were located between 10 and 20 cm of depth for PDDs (-2.7%) and in the penumbra region for profiles (mean DTA of 1.5 mm). Validation of the systems was performed by comparing point-dose measurements with values obtained by the two systems for static, dynamic fields from AAPM TG-119 report, and 12 real VMAT plans for different anatomical sites (differences better than 1.2%). Comparisons between measurements taken with a 2D ion chamber array and results obtained by both systems for real VMAT plans were also performed (mean global gamma passing rates better than 87.0% and 97.9% for the 2%/2 mm and 3%/3 mm criteria). Clinical implementation of the systems was evaluated by comparing dose-volume parameters for all TG-119 tests and real VMAT plans with TPS values (mean differences were below 1%). In addition, comparisons between dose distributions calculated by TPS and those extracted by the two systems for real VMAT plans were also performed (mean global gamma passing rates better than 86.0% and 93.0% for the 2%/2 mm and 3%/ 3 mm criteria). The clinical use of both systems was successfully evaluated.

  3. Electromagnetic real-time tumor position monitoring and dynamic multileaf collimator tracking using a Siemens 160 MLC: geometric and dosimetric accuracy of an integrated system.

    PubMed

    Krauss, Andreas; Nill, Simeon; Tacke, Martin; Oelfke, Uwe

    2011-02-01

    Dynamic multileaf collimator tracking represents a promising method for high-precision radiotherapy to moving tumors. In the present study, we report on the integration of electromagnetic real-time tumor position monitoring into a multileaf collimator-based tracking system. The integrated system was characterized in terms of its geometric and radiologic accuracy. The former was assessed from portal images acquired during radiation delivery to a phantom in tracking mode. The tracking errors were calculated from the positions of the tracking field and of the phantom as extracted from the portal images. Radiologic accuracy was evaluated from film dosimetry performed for conformal and intensity-modulated radiotherapy applied to different phantoms moving on sinusoidal trajectories. A static radiation delivery to the nonmoving target served as a reference for the delivery to the moving phantom with and without tracking applied. Submillimeter tracking accuracy was observed for two-dimensional target motion despite the relatively large system latency of 500 ms. Film dosimetry yielded almost complete recovery of a circular dose distribution with tracking in two dimensions applied: 2%/2 mm gamma-failure rates could be reduced from 59.7% to 3.3%. For single-beam intensity-modulated radiotherapy delivery, accuracy was limited by the finite leaf width. A 2%/2 mm gamma-failure rate of 15.6% remained with tracking applied. The integrated system we have presented marks a major step toward the clinical implementation of high-precision dynamic multileaf collimator tracking. However, several challenges such as irregular motion traces or a thorough quality assurance still need to be addressed. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Electromagnetic Real-Time Tumor Position Monitoring and Dynamic Multileaf Collimator Tracking Using a Siemens 160 MLC: Geometric and Dosimetric Accuracy of an Integrated System

    SciTech Connect

    Krauss, Andreas; Nill, Simeon; Tacke, Martin; Oelfke, Uwe

    2011-02-01

    Purpose: Dynamic multileaf collimator tracking represents a promising method for high-precision radiotherapy to moving tumors. In the present study, we report on the integration of electromagnetic real-time tumor position monitoring into a multileaf collimator-based tracking system. Methods and Materials: The integrated system was characterized in terms of its geometric and radiologic accuracy. The former was assessed from portal images acquired during radiation delivery to a phantom in tracking mode. The tracking errors were calculated from the positions of the tracking field and of the phantom as extracted from the portal images. Radiologic accuracy was evaluated from film dosimetry performed for conformal and intensity-modulated radiotherapy applied to different phantoms moving on sinusoidal trajectories. A static radiation delivery to the nonmoving target served as a reference for the delivery to the moving phantom with and without tracking applied. Results: Submillimeter tracking accuracy was observed for two-dimensional target motion despite the relatively large system latency of 500 ms. Film dosimetry yielded almost complete recovery of a circular dose distribution with tracking in two dimensions applied: 2%/2 mm gamma-failure rates could be reduced from 59.7% to 3.3%. For single-beam intensity-modulated radiotherapy delivery, accuracy was limited by the finite leaf width. A 2%/2 mm gamma-failure rate of 15.6% remained with tracking applied. Conclusion: The integrated system we have presented marks a major step toward the clinical implementation of high-precision dynamic multileaf collimator tracking. However, several challenges such as irregular motion traces or a thorough quality assurance still need to be addressed.

  5. SU-C-201-02: Dosimetric Verification of SBRT with FFF-VMAT Using a 3-D Radiochromic/Optical-CT Dosimetry System

    SciTech Connect

    Na, Y; Black, P; Wuu, C; Adamovics, J

    2016-06-15

    Purpose: With an increasing use of small field size and high dose rate irradiation in the advances of radiotherapy techniques, such as stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS), an in-depth quality assurance (QA) system is required. The purpose of this study is to investigate a high resolution optical CT-based 3D radiochromic dosimetry system for SBRT with intensity modulated radiotherapy (IMRT) and flattening filter free (FFF) volumetric modulated arc therapy (VMAT). Methods: Cylindrical PRESAGE radiochromic dosimeters of 10cm height and 11cm diameter were used to validate SBRT. Four external landmarks were placed on the surface of each dosimeter to define the isocenter of target. SBRT plans were delivered using a Varian TrueBeam™ linear accelerator (LINAC). Three validation plans, SBRT with IMRT (6MV 600MU/min), FFF-VMAT (10MV 2400MU/min), and mixed FFF-VMAT (6MV 1400MU/min, 10MV 2400MU/min), were delivered to the PRESAGE dosimeters. Each irradiated PRESAGE dosimeter was scanned using a single laser beam optical CT scanner and reconstructed with a 1mm × 1mm high spatial resolution. The comparison of measured dose distributions of irradiated PRESAGE dosimeters to those calculated by Pinnacle{sup 3} treatment planning system (TPS) were performed with a 10% dose threshold, 3% dose difference (DD), and 3mm distance-to-agreement (DTA) Gamma criteria. Results: The average pass rates for the gamma comparisons between PRESAGE and Pinnacle{sup 3} in the transverse, sagittal, coronal planes were 94.6%, 95.9%, and 96.4% for SBRT with IMRT, FFF-VMAT, and mixed FFF-VMAT plans, respectively. A good agreement of the isodose distributions of those comparisons were shown at the isodose lines 50%, 70%, 80%, 90% and 98%. Conclusion: This study demonstrates the feasibility of the high resolution optical CT-based 3D radiochromic dosimetry system for validation of SBRT with IMRT and FFF-VMAT. This dosimetry system offers higher precision QA with 3D

  6. Application of the quality index methodology for dosimetric verification of build-up effect beyond air-tissue interface in treatment planning system algorithms.

    PubMed

    Caneva, Sandra; Tsiakalos, Miltiadis F; Stathakis, Sotirios; Zefkili, Sofia; Mazal, Alejandro; Rosenwald, Jean-Claude

    2006-05-01

    We have designed a simple benchmark test for the user of a treatment planning system to check the calculation algorithm's ability to model the build up effect beyond an air/tissue interface. The expected result is expressed as an inhomogeneity correction factor CF derived from measurements and from Monte Carlo calculations for a full range of photon beam qualities. The linear regression lines obtained from plotting CF as a function of beam quality index form the basis for a quantitative check of the algorithm performance.

  7. Errors in radiation oncology: a study in pathways and dosimetric impact.

    PubMed

    Klein, Eric E; Drzymala, Robert E; Purdy, James A; Michalski, Jeff

    2005-01-01

    As complexity for treating patients increases, so does the risk of error. Some publications have suggested that record and verify (R&V) systems may contribute in propagating errors. Direct data transfer has the potential to eliminate most, but not all, errors. And although the dosimetric consequences may be obvious in some cases, a detailed study does not exist. In this effort, we examined potential errors in terms of scenarios, pathways of occurrence, and dosimetry. Our goal was to prioritize error prevention according to likelihood of event and dosimetric impact. For conventional photon treatments, we investigated errors of incorrect source-to-surface distance (SSD), energy, omitted wedge (physical, dynamic, or universal) or compensating filter, incorrect wedge or compensating filter orientation, improper rotational rate for arc therapy, and geometrical misses due to incorrect gantry, collimator or table angle, reversed field settings, and setup errors. For electron beam therapy, errors investigated included incorrect energy, incorrect SSD, along with geometric misses. For special procedures we examined errors for total body irradiation (TBI, incorrect field size, dose rate, treatment distance) and LINAC radiosurgery (incorrect collimation setting, incorrect rotational parameters). Likelihood of error was determined and subsequently rated according to our history of detecting such errors. Dosimetric evaluation was conducted by using dosimetric data, treatment plans, or measurements. We found geometric misses to have the highest error probability. They most often occurred due to improper setup via coordinate shift errors or incorrect field shaping. The dosimetric impact is unique for each case and depends on the proportion of fields in error and volume mistreated. These errors were short-lived due to rapid detection via port films. The most significant dosimetric error was related to a reversed wedge direction. This may occur due to incorrect collimator angle or

  8. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    NASA Astrophysics Data System (ADS)

    Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  9. Dosimetric accuracy assessment of a treatment plan verification system for scanned proton beam radiotherapy: one-year experimental results and Monte Carlo analysis of the involved uncertainties.

    PubMed

    Molinelli, S; Mairani, A; Mirandola, A; Vilches Freixas, G; Tessonnier, T; Giordanengo, S; Parodi, K; Ciocca, M; Orecchia, R

    2013-06-07

    During one year of clinical activity at the Italian National Center for Oncological Hadron Therapy 31 patients were treated with actively scanned proton beams. Results of patient-specific quality assurance procedures are presented here which assess the accuracy of a three-dimensional dose verification technique with the simultaneous use of multiple small-volume ionization chambers. To investigate critical cases of major deviations between treatment planning system (TPS) calculated and measured data points, a Monte Carlo (MC) simulation tool was implemented for plan verification in water. Starting from MC results, the impact of dose calculation, dose delivery and measurement set-up uncertainties on plan verification results was analyzed. All resulting patient-specific quality checks were within the acceptance threshold, which was set at 5% for both mean deviation between measured and calculated doses and standard deviation. The mean deviation between TPS dose calculation and measurement was less than ±3% in 86% of the cases. When all three sources of uncertainty were accounted for, simulated data sets showed a high level of agreement, with mean and maximum absolute deviation lower than 2.5% and 5%, respectively.

  10. Dosimetric accuracy assessment of a treatment plan verification system for scanned proton beam radiotherapy: one-year experimental results and Monte Carlo analysis of the involved uncertainties

    NASA Astrophysics Data System (ADS)

    Molinelli, S.; Mairani, A.; Mirandola, A.; Vilches Freixas, G.; Tessonnier, T.; Giordanengo, S.; Parodi, K.; Ciocca, M.; Orecchia, R.

    2013-06-01

    During one year of clinical activity at the Italian National Center for Oncological Hadron Therapy 31 patients were treated with actively scanned proton beams. Results of patient-specific quality assurance procedures are presented here which assess the accuracy of a three-dimensional dose verification technique with the simultaneous use of multiple small-volume ionization chambers. To investigate critical cases of major deviations between treatment planning system (TPS) calculated and measured data points, a Monte Carlo (MC) simulation tool was implemented for plan verification in water. Starting from MC results, the impact of dose calculation, dose delivery and measurement set-up uncertainties on plan verification results was analyzed. All resulting patient-specific quality checks were within the acceptance threshold, which was set at 5% for both mean deviation between measured and calculated doses and standard deviation. The mean deviation between TPS dose calculation and measurement was less than ±3% in 86% of the cases. When all three sources of uncertainty were accounted for, simulated data sets showed a high level of agreement, with mean and maximum absolute deviation lower than 2.5% and 5%, respectively.

  11. Dosimetric comparison between three dimensional treatment planning system, Monte Carlo simulation and gel dosimetry in nasopharynx phantom for high dose rate brachytherapy.

    PubMed

    Fazli, Zeynab; Sadeghi, Mahdi; Zahmatkesh, M H; Mahdavi, Seied Rabei; Tenreiro, Claudio

    2013-01-01

    For the treatment of nasopharnx carcinoma (NPC) using brachytherapy methods and high-energy photon sources are common techniques. In the common three dimensional (3D) treatments planning, all of the computed tomography images are assumed homogeneous. This study presents the results of Monte Carlo calculations for non-homogeneous nasopharynx phantom, MAGICA normoxic gel dosimetry and 3D treatment planning system (TPS). The head phantom was designed with Plexiglas cylinder, head bone, and nasopharynx brachytherapy silicon applicator. For the simulations, version 5 of the Monte Carlo N-particle transport code (MCNP5) was used. 3D treatment planning was performed in Flexiplan software. A normoxic radiosensitive polymer gel was fabricated under normal atmospheric conditions and poured into test tubes (for calibration curve) and the head phantom. In addition, the head phantom was irradiated with Flexitron afterloader brachytherapy machine with (192)Ir source. To obtain calibration curves, 11 dosimeters were irradiated with dose range of 0-2000 cGy. Evaluations of dosimeters were performed on 1.5T scanner. Two-dimensional iso-dose in coronal plan at distances of z = +0.3, -0.3 cm was calculated. There was a good accordance between 3D TPS and MCNP5 simulation and differences in various distances were between 2.4% and 6.1%. There was a predictable accordance between MAGICA gel dosimetry and MCNP5 simulation and differences in various distances were between 5.7% and 7.4%. Moreover, there was an acceptable accordance between MAGICA gel dosimetry and MCNP5 data and differences in various distances were between 5.2% and 9.4%. The sources of differences in this comparison are divided to calculations variation and practical errors that was added in experimental dosimetry. The result of quality assurance of nasopharynx high dose rate brachytherapy is consistent with international standards.

  12. SU-E-T-111: An Iterative Approach to Modelling Dosimetric Properties of a Varian MLC

    SciTech Connect

    DiCostanzo, D

    2015-06-15

    Purpose: In effort to efficiently and accurately model MLC parameters for use in Varian Eclipse treatment planning system (TPS), an iterative technique for characterizing the dosimetric properties of MLCs has been developed. Methods: The initial characterization of the dosimetric leaf gap (DLG) and MLC transmission was performed using varied sizes of moving gaps and transmission measurements through central axis of the radiation beam. These values were determined during the initial data collection. After the initial values were determined and entered into the TPS, two plans were calculated to test the veracity of DLG and transmission independently. The plan used to determine the DLG has openings of varied sizes which are affected differently by the DLG. A large field uniform fluence that required a MLC carriage shift was used to determine the transmission value independent of DLG. After characterizing the dosimetric properties of the MLC independently, clinical IMRT plans were tested and used to tweak the final values. Results: This approach to modelling MLC dosimetric properties was employed for: standard 120 leaf MLC (SDMLC) and 120 leaf high definition MLC (HDMLC). Both types were successfully commissioned, tested, and approved for clinical use on 4 SDMLC machines and 2 HDMLC machines. The pass rate of clinical IMRT plans was 96.9% for 6MV and 98.3% for 10MV for SDMLC and 96.3% for 6MV, 96.5% for 6FFF, and 97.5% for 10FFF for HDMLCs using MapCheck2 with gamma analysis of 2%/2mm and 10% threshold. The final DLG and transmission parameters for 6X were 0.5mm and 0.01, and 1.35mm and 0.02 for HD and SD MLCs respectively. Conclusion: This iterative approach of determining dosimetric properties of MLCs is viable for both SDMLC and HDMLC and multiple energies. This approach accurately and efficiently determines the values needed for commissioning MLCs when they are employed for modulated therapies.

  13. Dosimetric characteristics of Novalis shaped beam surgery unit.

    PubMed

    Yin, Fang-Fang; Zhu, Jingeng; Yan, Hui; Gaun, Haiqun; Hammoud, Rabih; Ryu, Samuel; Kim, Jae H

    2002-08-01

    The dosimetric characteristics of a new dedicated radiosurgical treatment unit are systematically measured in terms of its percent depth dose, beam profile, and relative scatter factor. High-resolution diode detector, mini-ion-chamber detector, and conventional Kodak XV films are used to measure dosimetric data for a range of field sizes from 6x6 mm to 100x100 mm. The effects of collimator size, micro-multileaf collimator shape, and detector type on the dosimetric data are investigated. Results indicate that, with careful design, accurate dosimetric data could be acquired using either a dedicated diode detector or a mini-ion-chamber detector, and film detector. Special attention is required when measuring dosimetric data for small field sizes such as 6x6 mm.

  14. Dosimetric adaptive IMRT driven by fiducial points

    SciTech Connect

    Crijns, Wouter; Van Herck, Hans; Defraene, Gilles; Van den Bergh, Laura; Haustermans, Karin; Slagmolen, Pieter; Maes, Frederik; Van den Heuvel, Frank

    2014-06-15

    Purpose: Intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy have become standard treatments but are more sensitive to anatomical variations than 3D conformal techniques. To correct for inter- and intrafraction anatomical variations, fast and easy to implement methods are needed. Here, the authors propose a full dosimetric IMRT correction that finds a compromise in-between basic repositioning (the current clinical practice) and full replanning. It simplifies replanning by avoiding a recontouring step and a full dose calculation. It surpasses repositioning by updating the preoptimized fluence and monitor units (MU) using a limited number of fiducial points and a pretreatment (CB)CT. To adapt the fluence the fiducial points were projected in the beam's eye view (BEV). To adapt the MUs, point dose calculation towards the same fiducial points were performed. The proposed method is intrinsically fast and robust, and simple to understand for operators, because of the use of only four fiducial points and the beam data based point dose calculations. Methods: To perform our dosimetric adaptation, two fluence corrections in the BEV are combined with two MU correction steps along the beam's path. (1) A transformation of the fluence map such that it is realigned with the current target geometry. (2) A correction for an unintended scaling of the penumbra margin when the treatment beams scale to the current target size. (3) A correction for the target depth relative to the body contour and (4) a correction for the target distance to the source. The impact of the correction strategy and its individual components was evaluated by simulations on a virtual prostate phantom. This heterogeneous reference phantom was systematically subjected to population based prostate transformations to simulate interfraction variations. Additionally, a patient example illustrated the clinical practice. The correction strategy was evaluated using both dosimetric (CTV mean

  15. [Dosimetric evaluation of conformal radiotherapy: conformity factor].

    PubMed

    Oozeer, R; Chauvet, B; Garcia, R; Berger, C; Felix-Faure, C; Reboul, F

    2000-01-01

    The aim of three-dimensional conformal therapy (3DCRT) is to treat the Planning Target Volume (PTV) to the prescribed dose while reducing doses to normal tissues and critical structures, in order to increase local control and reduce toxicity. The evaluation tools used for optimizing treatment techniques are three-dimensional visualization of dose distributions, dose-volume histograms, tumor control probabilities (TCP) and normal tissue complication probabilities (NTCP). These tools, however, do not fully quantify the conformity of dose distributions to the PTV. Specific tools were introduced to measure this conformity for a given dose level. We have extended those definitions to different dose levels, using a conformity index (CI). CI is based on the relative volumes of PTV and outside the PTV receiving more than a given dose. This parameter has been evaluated by a clinical study including 82 patients treated for lung cancer and 82 patients treated for prostate cancer. The CI was low for lung dosimetric studies (0.35 at the prescribed dose 66 Gy) due to build-up around the GTV and to spinal cord sparing. For prostate dosimetric studies, the CI was higher (0.57 at the prescribed dose 70 Gy). The CI has been used to compare treatment plans for lung 3DCRT (2 vs 3 beams) and prostate 3DCRT (4 vs 7 beams). The variation of CI with dose can be used to optimize dose prescription.

  16. Electron radiotherapy: a study on dosimetric uncertainty using small cutouts.

    PubMed

    Chow, James C L; Grigorov, Grigor N

    2007-01-07

    This note investigated the dosimetric uncertainties due to the positional error when centring a small cutout to the machine central beam axis (CAX) in electron radiotherapy. A group of six circular cutouts with 4 cm diameter were made with their centres shifting 0, 2, 4, 6, 8 and 10 mm from the machine CAX for the 6 x 6 cm(2) applicator. The per cent depth doses, beam profiles and output factors were measured using the 4, 9 and 16 MeV clinical electron beams produced by a Varian 21 EX linear accelerator. The 2D isodose distributions in the z-x (or cross-line) and z-y (or in-line) plane were calculated by Monte Carlo simulation using the EGSnrc system. When the cutout centre was shifted away from the machine CAX for the 4 MeV beam, the d(m), R(80) and R(90) at the machine CAX had no significant change (<0.1 mm). For higher energies of 9 and 16 MeV beams, the d(m) was reduced by 0.45 and 1.63 mm per mm, between the cutout centre and the machine CAX with off-axis shift <6 mm respectively. R(80) and R(90) were reduced by more than 0.3 mm per mm off-axis shift for both energies. The isodose coverage of the in-line axis beam profile was reduced when the cutout centre was shifted away from machine CAX. It is important for oncology staff to note such dosimetric changes in the clinical electron radiotherapy, particularly when a high energy electron beam is used for small cutout. Such positional uncertainty is unavoidable in fabricating an electron cutout in the mould room.

  17. Dosimetric comparison of stereotactic body radiotherapy for spinal metastasis in cyberknife and helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Kang, Young-nam; Kay, Chul Seung; Son, Seok Hyun; Choi, Byung Ock; Jung, Ji-Young; Shin, Hun-Joo; Kay, Chul Seung; Son, Seok Hyun; Kim, Myong Ho; Seo, Jae-Hyuk; Lee, Gi Woong

    2012-12-01

    This study seeks to evaluate the stereotactic body radiation therapy (SBRT) dosimetric benefit of cyberknife (CK) and helical tomotherapy (HT) for spinal tumor patients in regards to successful plan acceptance and lower dosage to critical structures. This study used dose volume histogram (DVH) compared the two systems quantitatively, by using several indices for the dosimetric comparisons, including the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV). We planned L3 (n = 2), L5 (n = 1), T12 (n = 1), C3 (n = 1), and T5 (n = 1) spinal tumors case with planning target volumes ranging from 3.55-17.95 cc. Prescription doses were 1600 ˜ 2000 cGy per single fraction. CK prescribed 80 ˜ 85% in PTV and HT 90 ˜ 95%, respectively. The dosimetric data were compared between the two treatment systems by calculating the CI, HI, and maximum doses to the OARs based on the treatment plans, generated for each site. Regarding the homogeneity of PTV, both plans gave satisfactory results, and no significant differences were observed. The partial volume tolerance dose (received dose of 10 Gy at a spinal cord volume 10%) to the spinal cord in 16 ˜ 18 Gy single fraction was satisfactory. We found that both planning systems satisfied the required PTV prescription, but better dose conformity and better dose homogeneity with a poorer dose gradient were achieved with HT then with CK.

  18. SU-E-T-651: Quantification of Dosimetric Accuracy of Respiratory Gated Stereotactic Body Radiation Therapy

    SciTech Connect

    Thiyagarajan, Rajesh; Vikraman, S; Maragathaveni, S; Dhivya, N; Kataria, Tejinder; Nambiraj, N Arunai; Sigamani, Ashokkumar; Sinha, Sujit Nath; Yadav, Girigesh; Raman, Kothanda

    2015-06-15

    Purpose: To quantify the dosimetric accuracy of respiratory gated stereotactic body radiation therapy delivery using dynamic thorax phantom. Methods: Three patients with mobile target (2 lung, 1liver) were chosen. Retrospective 4DCT image sets were acquired for using Varian RPM system. An in-house MATLAB program was designed for MIP, MinIP and AvgIP generation. ITV was contoured on MIP image set for lung patients and on MinIP for liver patient. Dynamic IMRT plans were generated on selected phase bin image set in Eclipse (v10.0) planning system. CIRS dynamic thorax phantom was used to perform the dosimetric quality assurance. Patient breathing pattern file from RPM system was converted to phantom compatible file by an in-house MATLAB program. This respiratory pattern fed to the CIRS dynamic thorax phantom. 4DCT image set was acquired for this phantom using patient breathing pattern. Verification plans were generated using patient gating window and delivered on the phantom. Measurements were carried out using with ion chamber and EBT2 film. Exposed films were analyzed and evaluated in FilmQA software. Results: The stability of gated output in comparison with un-gated output was within 0.5%. The Ion chamber measured and TPS calculated dose compared for all the patients. The difference observed was 0.45%, −0.52% and −0.54 for Patient 1, Patient2 and Patient 3 respectively.Gamma value evaluated from EBT film shows pass rates from 92.41% to 99.93% for 3% dose difference and 3mm distance to agreement criteria. Conclusion: Dosimetric accuracy of respiratory gated SBRT delivery for lung and liver was dosimetrically acceptable. The Ion chamber measured dose was within 0.203±0.5659% of the expected dose. Gamma pass rates were within 96.63±3.84% of the expected dose.

  19. Dosimetric characterization of a bi-directional micromultileaf collimator for stereotactic applications.

    PubMed

    Bucciolini, M; Russo, S; Banci Buonamici, F; Pini, S; Silli, P

    2002-07-01

    A 6 MV photon beam from Linac SL75-5 has been collimated with a new micromultileaf device that is able to shape the field in the two orthogonal directions with four banks of leaves. This is the first clinical installation of the collimator and in this paper the dosimetric characterization of the system is reported. The dosimetric parameters required by the treatment planning system used for the dose calculation in the patient are: tissue maximum ratios, output factors, transmission and leakage of the leaves, penumbra values. Ionization chambers, silicon diode, radiographic films, and LiF thermoluminescent dosimeters have been employed for measurements of absolute dose and beam dosimetric data. Measurements with different dosimeters supply results in reasonable agreement among them and consistent with data available in literature for other models of micromultileaf collimator; that permits the use of the measured parameters for clinical applications. The discrepancies between results obtained with the different detectors (around 2%) for the analyzed parameters can be considered an indication of the accuracy that can be reached by current stereotactic dosimetry.

  20. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array.

    PubMed

    Yoganathan, S A; Das, K J Maria; Raj, D Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams.

  1. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array

    PubMed Central

    Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552

  2. Dosimetric investigations on Mars-96 mission.

    PubMed

    Semkova, J; Dachev, T s; Matviichuk, Y u; Koleva, R; Tomov, B; Baynov, P; Petrov, V; Nguyen, V; Siegrist, M; Chene, J; d'Uston, C; Cotin, F

    1994-10-01

    The dosimetric experiments Dose-M and Liulin as part of the more complex French-German-Bulgarian-Russian experiments for the investigation of the radiation environment for Mars-96 mission are described. The experiments will be realized with dosemeter-radiometer instruments, measuring absorbed dose in semiconductor detectors and the particle flux. Two detectors will be mounted on board the Mars-96 orbiter. Another detector will be on the guiderope of the Mars-96 Aerostate station. The scientific aims of Dose-M and Liulin experiments are: Analysis of the absorbed dose and the flux on the path and around Mars behind different shielding. Study of the shielding characteristics of the Martian atmosphere from galactic and solar cosmic rays including solar proton events. Together with the French gamma-spectrometer and the German neutron detectors the investigation of the radiation environment on the surface of Mars and in the atmosphere up to 4000 m altitude will be conducted.

  3. TU-D-9A-01: TG176: Dosimetric Effects of Couch Tops and Immobilization Devices

    SciTech Connect

    Olch, A

    2014-06-15

    The dosimetric impact from devices external to the patient is a complex combination of increased skin dose, reduced tumor dose, and altered dose distribution. Although small monitor unit or dose corrections are routinely made for blocking trays, ion chamber correction factors, or tissue inhomogeneities, the dose perturbation of the treatment couch top or immobilization devices are often overlooked. These devices also increase surface dose, an effect which is also often ignored or underestimated. These concerns have grown recently due to the increased use of monolithic carbon fiber couch tops which are optimal for imaging for patient position verification but cause attenuation and increased surface dose compared to the ‘tennis racket’ style couch top they often replace. Also, arc delivery techniques have replaced stationary gantry techniques which cause a greater fraction of the dose to be delivered from posterior angles. A host of immobilization devices are available and used to increase patient positioning reproducibility, and these also have attenuation and skin dose implications which are often ignored. This report of Task Group 176 serves to present a survey of published data that illustrates the magnitude of the dosimetric effects of a wide range of devices external to the patient. The report also provides methods for modeling couch tops in treatment planning systems so the physicist can accurately compute the dosimetric effects for indexed patient treatments. Both photon and proton beams are considered. A discussion on avoidance of high density structures during beam planning is also provided. An important aspect of this report are the recommendations we make to clinical physicists, treatment planning system vendors, and device vendors on how to make measurements of skin dose and attenuation, how to report these values, and for the vendors, an appeal is made to work together to provide accurate couch top models in planning systems. Learning Objectives

  4. Dosimetric comparison of helical tomotherapy and dynamic conformal arc therapy in stereotactic radiosurgery for vestibular schwannomas.

    PubMed

    Lee, Tsair-Fwu; Chao, Pei-Ju; Wang, Chang-Yu; Lan, Jen-Hong; Huang, Yu-Je; Hsu, Hsuan-Chih; Sung, Chieh-Cheng; Su, Te-Jen; Lian, Shi-Long; Fang, Fu-Min

    2011-01-01

    The dosimetric results of stereotactic radiosurgery (SRS) for vestibular schwannoma (VS) performed using dynamic conformal arc therapy (DCAT) with the Novalis system and helical TomoTherapy (HT) were compared using plan quality indices. The HT plans were created for 10 consecutive patients with VS previously treated with SRS using the Novalis system. The dosimetric indices used to compare the techniques included the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV), the comprehensive quality index (CQI) for nine organs at risk (OARs), gradient score index (GSI) for the dose drop-off outside the PTV, and plan quality index (PQI), which was verified using the plan quality discerning power (PQDP) to incorporate 3 plan indices, to evaluate the rival plans. The PTV ranged from 0.27-19.99 cm(3) (median 3.39 cm(3)), with minimum required PTV prescribed doses of 10-16 Gy (median 12 Gy). Both systems satisfied the minimum required PTV prescription doses. HT conformed better to the PTV (CI: 1.51 ± 0.23 vs. 1.94 ± 0.34; p < 0.01), but had a worse drop-off outside the PTV (GSI: 40.3 ± 10.9 vs. 64.9 ± 13.6; p < 0.01) compared with DCAT. No significant difference in PTV homogeneity was observed (HI: 1.08 ± 0.03 vs. 1.09 ± 0.02; p = 0.20). HT had a significantly lower maximum dose in 4 OARs and significant lower mean dose in 1 OAR; by contrast, DCAT had a significantly lower maximum dose in 1 OAR and significant lower mean dose in 2 OARs, with the CQI of the 9 OARs = 0.92 ± 0.45. Plan analysis using PQI (HT 0.37 ± 0.12 vs. DCAT 0.65 ± 0.08; p < 0.01), and verified using the PQDP, confirmed the dosimetric advantage of HT. However, the HT system had a longer beam-on time (33.2 ± 7.4 vs. 4.6 ± 0.9 min; p < 0.01) and consumed more monitor units (16772 ± 3803 vs. 1776 ± 356.3; p < 0.01). HT had a better dose conformity and similar dose homogeneity but worse dose gradient than DCAT. Plan analysis confirmed the dosimetric advantage of HT

  5. Dosimetric Comparison of Helical Tomotherapy and Dynamic Conformal Arc Therapy in Stereotactic Radiosurgery for Vestibular Schwannomas

    SciTech Connect

    Lee, Tsair-Fwu; Chao, Pei-Ju; Wang, Chang-Yu; Lan, Jen-Hong; Huang, Yu-Je; Hsu, Hsuan-Chih; Sung, Chieh-Cheng; Su, Te-Jen; Lian, Shi-Long; Fang, Fu-Min

    2011-04-01

    The dosimetric results of stereotactic radiosurgery (SRS) for vestibular schwannoma (VS) performed using dynamic conformal arc therapy (DCAT) with the Novalis system and helical TomoTherapy (HT) were compared using plan quality indices. The HT plans were created for 10 consecutive patients with VS previously treated with SRS using the Novalis system. The dosimetric indices used to compare the techniques included the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV), the comprehensive quality index (CQI) for nine organs at risk (OARs), gradient score index (GSI) for the dose drop-off outside the PTV, and plan quality index (PQI), which was verified using the plan quality discerning power (PQDP) to incorporate 3 plan indices, to evaluate the rival plans. The PTV ranged from 0.27-19.99 cm{sup 3} (median 3.39 cm{sup 3}), with minimum required PTV prescribed doses of 10-16 Gy (median 12 Gy). Both systems satisfied the minimum required PTV prescription doses. HT conformed better to the PTV (CI: 1.51 {+-} 0.23 vs. 1.94 {+-} 0.34; p < 0.01), but had a worse drop-off outside the PTV (GSI: 40.3 {+-} 10.9 vs. 64.9 {+-} 13.6; p < 0.01) compared with DCAT. No significant difference in PTV homogeneity was observed (HI: 1.08 {+-} 0.03 vs. 1.09 {+-} 0.02; p = 0.20). HT had a significantly lower maximum dose in 4 OARs and significant lower mean dose in 1 OAR; by contrast, DCAT had a significantly lower maximum dose in 1 OAR and significant lower mean dose in 2 OARs, with the CQI of the 9 OARs = 0.92 {+-} 0.45. Plan analysis using PQI (HT 0.37 {+-} 0.12 vs. DCAT 0.65 {+-} 0.08; p < 0.01), and verified using the PQDP, confirmed the dosimetric advantage of HT. However, the HT system had a longer beam-on time (33.2 {+-} 7.4 vs. 4.6 {+-} 0.9 min; p < 0.01) and consumed more monitor units (16772 {+-} 3803 vs. 1776 {+-} 356.3; p < 0.01). HT had a better dose conformity and similar dose homogeneity but worse dose gradient than DCAT. Plan analysis

  6. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources

    PubMed Central

    Ghorbani, Mahdi; Davenport, David

    2016-01-01

    Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558

  7. Monte Carlo dosimetric study of the medium dose rate CSM40 source.

    PubMed

    Vijande, J; Granero, D; Perez-Calatayud, J; Ballester, F

    2013-12-01

    The (137)Cs medium dose rate (MDR) CSM40 source model (Eckert & Ziegler BEBIG, Germany) is in clinical use but no dosimetric dataset has been published. This study aims to obtain dosimetric data for the CSM40 source for its use in clinical practice as required by the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO). Penelope2008 and Geant4 Monte Carlo codes were used to characterize this source dosimetrically. It was located in an unbounded water phantom with composition and mass density as recommended by AAPM and ESTRO. Due to the low photon energies of (137)Cs, absorbed dose was approximated by collisional kerma. Additional simulations were performed to obtain the air-kerma strength, sK. Mass-energy absorption coefficients in water and air were consistently derived and used to calculate collisional kerma. Results performed with both radiation transport codes showed agreement typically within 0.05%. Dose rate constant, radial dose function and anisotropy function are provided for the CSM40 and compared with published data for other commercially available (137)Cs sources. An uncertainty analysis has been performed. The data provided by this study can be used as input data and verification in the treatment planning systems.

  8. A clinical method for real-time dosimetric guidance of transperineal 125I prostate implants using interventional magnetic resonance imaging.

    PubMed

    Cormack, R A; Kooy, H; Tempany, C M; D'Amico, A V

    2000-01-01

    The clinical utility of an interventional magnetic resonance (IMR)-guided implant technique with real-time dosimetric feedback is presented. The work was carried out at a IMR unit at Brigham and Women's Hospital. Planning and dosimetric feedback were provided by a software system that provides an interface to the IMR images, anatomy demarcation, template registration, dose calculation engine for planning, and evaluating the implant. Planning during the procedure permits the incorporation of actual needle trajectories in the dose calculations. Fifteen patients were planned in the treatment position. During source placement, actual needle locations were incorporated into the dose calculations. After accounting for the observed needle trajectories of the planned needles, 14 of 15 patients (93%) required additional sources to achieve the desired coverage of the target volume. A brachytherapy implant procedure which provides clinically significant advances has been implemented. Specifically, the planning system allows dosimetric validation of the needle placement. This procedure is effective in delivering brachytherapy to the target volume and assuring that the implant is delivered in accordance with the preplan. The dosimetric feedback could be incorporated in ultrasound-guided implants.

  9. Dosimetric, mechanical, and geometric verification of conformal dynamic arc treatment.

    PubMed

    Malatesta, T; Landoni, V; delle Canne, S; Bufacchi, A; Marmiroli, L; Caspiani, O; Bonanni, A; Tortoreto, F; Leone, M V; Capparella, R; Fragomeni, R; Begnozzi, L

    2003-01-01

    A conformal dynamic arc (CD-arc) technique has been implemented at the S. Giovanni Calibita-Fatebenefratelli Hospital Radiotherapy Center. This technique is performed by rotational beams and a dynamic multileaf collimator (DMLC): during the treatment delivery the gantry rotates and the field shape, formed by the DMLC changes continuously. The aim of this study was to perform dosimetric, mechanical, and geometric verification to ensure that the dose calculated by a commercial treatment planning system and administered to the patient was correct, before and during the clinical use of this technique. Absolute dose values, at the isocenter and at other points placed in dose heterogeneity zone, have been verified with an ionization chamber in a solid homogeneous phantom. In uniform dose regions measured dose values resulted in agreements with the calculated doses within 2%. Isodose distributions have also been determined by radiographic films and compared with those predicted by the planning system. Distance to agreement between calculated and measured isodoses in dose gradient zone was within 2 mm. In conclusion, our results demonstrated the feasibility and the accuracy of the CD-arc technique for achieving highly conformal dose distributions. Up till now 20 patients have been treated with CD-arc therapy.

  10. Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques

    NASA Astrophysics Data System (ADS)

    Amoush, Ahmad

    The American Association of Physicists in Medicine Task Group Report43 (AAPM-TG43) and its updated version TG-43U1 rely on the LiF TLD detector to determine the experimental absolute dose rate for brachytherapy. The recommended uncertainty estimates associated with TLD experimental dosimetry include 5% for statistical errors (Type A) and 7% for systematic errors (Type B). TG-43U1 protocol does not include recommendation for other experimental dosimetric techniques to calculate the absolute dose for brachytherapy. This research used two independent experimental methods and Monte Carlo simulations to investigate and analyze uncertainties and errors associated with absolute dosimetry of HDR brachytherapy for a Tandem applicator. An A16 MicroChamber* and one dose MOSFET detectors† were selected to meet the TG-43U1 recommendations for experimental dosimetry. Statistical and systematic uncertainty analyses associated with each experimental technique were analyzed quantitatively using MCNPX 2.6‡ to evaluate source positional error, Tandem positional error, the source spectrum, phantom size effect, reproducibility, temperature and pressure effects, volume averaging, stem and wall effects, and Tandem effect. Absolute dose calculations for clinical use are based on Treatment Planning System (TPS) with no corrections for the above uncertainties. Absolute dose and uncertainties along the transverse plane were predicted for the A16 microchamber. The generated overall uncertainties are 22%, 17%, 15%, 15%, 16%, 17%, and 19% at 1cm, 2cm, 3cm, 4cm, and 5cm, respectively. Predicting the dose beyond 5cm is complicated due to low signal-to-noise ratio, cable effect, and stem effect for the A16 microchamber. Since dose beyond 5cm adds no clinical information, it has been ignored in this study. The absolute dose was predicted for the MOSFET detector from 1cm to 7cm along the transverse plane. The generated overall uncertainties are 23%, 11%, 8%, 7%, 7%, 9%, and 8% at 1cm, 2cm, 3cm

  11. Dosimetric characterization of two radium sources for retrospective dosimetry studies

    SciTech Connect

    Candela-Juan, C.; Karlsson, M.; Lundell, M.; Ballester, F.; Tedgren, Å. Carlsson

    2015-05-15

    Purpose: During the first part of the 20th century, {sup 226}Ra was the most used radionuclide for brachytherapy. Retrospective accurate dosimetry, coupled with patient follow up, is important for advancing knowledge on long-term radiation effects. The purpose of this work was to dosimetrically characterize two {sup 226}Ra sources, commonly used in Sweden during the first half of the 20th century, for retrospective dose–effect studies. Methods: An 8 mg {sup 226}Ra tube and a 10 mg {sup 226}Ra needle, used at Radiumhemmet (Karolinska University Hospital, Stockholm, Sweden), from 1925 to the 1960s, were modeled in two independent Monte Carlo (MC) radiation transport codes: GEANT4 and MCNP5. Absorbed dose and collision kerma around the two sources were obtained, from which the TG-43 parameters were derived for the secular equilibrium state. Furthermore, results from this dosimetric formalism were compared with results from a MC simulation with a superficial mould constituted by five needles inside a glass casing, placed over a water phantom, trying to mimic a typical clinical setup. Calculated absorbed doses using the TG-43 formalism were also compared with previously reported measurements and calculations based on the Sievert integral. Finally, the dose rate at large distances from a {sup 226}Ra point-like-source placed in the center of 1 m radius water sphere was calculated with GEANT4. Results: TG-43 parameters [including g{sub L}(r), F(r, θ), Λ, and s{sub K}] have been uploaded in spreadsheets as additional material, and the fitting parameters of a mathematical curve that provides the dose rate between 10 and 60 cm from the source have been provided. Results from TG-43 formalism are consistent within the treatment volume with those of a MC simulation of a typical clinical scenario. Comparisons with reported measurements made with thermoluminescent dosimeters show differences up to 13% along the transverse axis of the radium needle. It has been estimated that

  12. Dosimetric characterization of two radium sources for retrospective dosimetry studies.

    PubMed

    Candela-Juan, C; Karlsson, M; Lundell, M; Ballester, F; Tedgren, Å Carlsson

    2015-05-01

    During the first part of the 20th century, (226)Ra was the most used radionuclide for brachytherapy. Retrospective accurate dosimetry, coupled with patient follow up, is important for advancing knowledge on long-term radiation effects. The purpose of this work was to dosimetrically characterize two (226)Ra sources, commonly used in Sweden during the first half of the 20th century, for retrospective dose-effect studies. An 8 mg (226)Ra tube and a 10 mg (226)Ra needle, used at Radiumhemmet (Karolinska University Hospital, Stockholm, Sweden), from 1925 to the 1960s, were modeled in two independent Monte Carlo (MC) radiation transport codes: geant4 and mcnp5. Absorbed dose and collision kerma around the two sources were obtained, from which the TG-43 parameters were derived for the secular equilibrium state. Furthermore, results from this dosimetric formalism were compared with results from a MC simulation with a superficial mould constituted by five needles inside a glass casing, placed over a water phantom, trying to mimic a typical clinical setup. Calculated absorbed doses using the TG-43 formalism were also compared with previously reported measurements and calculations based on the Sievert integral. Finally, the dose rate at large distances from a (226)Ra point-like-source placed in the center of 1 m radius water sphere was calculated with geant4. TG-43 parameters [including gL(r), F(r, θ), Λ, and sK] have been uploaded in spreadsheets as additional material, and the fitting parameters of a mathematical curve that provides the dose rate between 10 and 60 cm from the source have been provided. Results from TG-43 formalism are consistent within the treatment volume with those of a MC simulation of a typical clinical scenario. Comparisons with reported measurements made with thermoluminescent dosimeters show differences up to 13% along the transverse axis of the radium needle. It has been estimated that the uncertainty associated to the absorbed dose within the

  13. Optical and dosimetric properties of zircon.

    PubMed

    Kristianpoller, N; Weiss, D; Chen, R

    2006-01-01

    Irradiation effects were investigated in zircon crystals by methods of optical absorption and luminescence. Special attention was given to the effects of vacuum ultraviolet (VUV) radiation. The same main thermoluminescence (TL) peaks with the same thermal activation energies appeared after VUV as after X- or beta irradiation, indicating that the same traps were induced by the different irradiations. TL excitation spectra in the VUV showed an increase <220 nm and maxima near 190 and 140 nm. Excitation spectra of phototransferred TL (PTTL) and optically stimulated luminescence (OSL) were also measured. Most TL emission bands also appeared in the X-luminescence, PTTL and OSL. Dosimetric properties such as the TL radiation sensitivity, thermal stability of radiation-induced defects and TL dose dependence were also investigated. The radiation sensitivity of zircon was by an order of magnitude lower than that of TLD-100. The 355 K TL peak showed linear dose dependence only up to approximately 500 Gy and the 520 K peak up to approximately 1800 Gy.

  14. A high sensitive phosphor for dosimetric applications

    SciTech Connect

    Kore, Bhushan P. Dhoble, S. J.; Dhoble, N. S.; Lochab, S. P.

    2015-06-24

    In this study a novel TL phosphor CaMg{sub 3}(SO{sub 4}){sub 4}:Dy{sup 3+} was prepared by acid distillation method. The TL response of this phosphor towards γ-rays and carbon ion beam was tested. Good dosimetric glow curve was observed which is stable against both the type of radiations. The CaMg{sub 3}(SO{sub 4}){sub 4}:Dy{sup 3+} phosphor doped with 0.2 mol% of Dy{sup 3+}, irradiated with γ-ray shows nearly equal sensitivity to that of commercially available CaSO{sub 4}:Dy TLD phosphor whereas 3.5 times more sensitivity than CaSO{sub 4}:Dy, when irradiated with carbon ion beam. The change in glow peak intensities and glow peak temperature with variation in irradiation species and energy of ion beam is discussed here. The effect of these on trapping parameters is also illustrated.

  15. Gamma Putty dosimetric studies in electron beam

    PubMed Central

    Gloi, Aime M.

    2016-01-01

    Traditionally, lead has been used for field shaping in megavoltage electron beams in radiation therapy. In this study, we analyze the dosimetric parameters of a nontoxic, high atomic number (Z = 83), bismuth-loaded material called Gamma Putty that is malleable and can be easily molded to any desired shape. First, we placed an ionization chamber at different depths in a solid water phantom under a Gamma Putty shield of thickness (t = 0, 3, 5, 10, 15, 20, and 25 mm, respectively) and measured the ionizing radiation on the central axis (CAX) for electron beam ranging in energies from 6 to 20 MeV. Next, we investigated the relationship between the relative ionization (RI) measured at a fixed depth for several Gamma Putty shield at different cutout diameters ranging from 2 to 5 cm for various beam energies and derived an exponential fitting equation for clinical purposes. The dose profiles along the CAX show that bremsstrahlung dominates for Gamma Putty thickness >15 mm. For high-energy beams (12–20 MeV) and all Gamma Putty thicknesses up to 25 mm, RI below 5% could not be achieved due to the strong bremsstrahlung component. However, Gamma Putty is a very suitable material for reducing the transmission factor below 5% and protecting underlying normal tissues for low-energy electron beams (6–9 MeV). PMID:27651563

  16. Dosimetric Study of a Low-Dose-Rate Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Rodríguez-Villafuerte, M.; Arzamendi, S.; Díaz-Perches, R.

    Carcinoma of the cervix is the most common malignancy - in terms of both incidence and mortality - in Mexican women. Low dose rate (LDR) intracavitary brachytherapy is normally prescribed for the treatment of this disease to the vast majority of patients attending public hospitals in our country. However, most treatment planning systems being used in these hospitals still rely on Sievert integral dose calculations. Moreover, experimental verification of dose distributions are hardly ever done. In this work we present a dosimetric characterisation of the Amersham CDCS-J 137Cs source, an LDR brachytherapy source commonly used in Mexican hospitals. To this end a Monte Carlo simulation was developed, that includes a realistic description of the internal structure of the source embedded in a scattering medium. The Monte Carlo results were compared to experimental measurements of dose distributions. A lucite phantom with the same geometric characteristics as the one used in the simulation was built. Dose measurements were performed using thermoluminescent dosimeters together with commercial RadioChromic dye film. A comparison between our Monte Carlo simulation, the experimental data, and results reported in the literature is presented.

  17. Dosimetric implications of new compounds for neutron capture therapy (NCT)

    SciTech Connect

    Fairchild, R.G.

    1982-01-01

    Systemic application of radiolabeled or cytotoxic agents should allow targeting of primary and metastatic neoplasms on a cellular level. In fact, drug uptake in non-target cell pools often exceeds toxic levels before sufficient amounts are delivered to tumor. In addition, at the large concentration of molecules necessary for therapy, effects of saturation are often found. Application of NCT can circumvent problems associated with high uptake in competing non-target cell pools, as the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is activated only within the radiation field. A comparison with other modes of particle therapy indicated that NCT provides significant advantages. It is however, difficult to obtain vehicles for boron transport which demonstrate both the tumor specificity and concentration requisite for NCT. A number of biomolecules have been investigated which show both the necessary concentration and specificity. These include chlorpromazine, thiouracil, porphyrins, amino acids, and nucleosides. However, these analogs have yet to be made available for NCT. Dosimetric implications of binding sites are considered, as well as alternate neutron sources. (ERB)

  18. Active pixel as dosimetric device for interventional radiology

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Baldaccini, F.; Biasini, M.; Checcucci, B.; Chiocchini, S.; Cicioni, R.; Conti, E.; Di Lorenzo, R.; Dipilato, A. C.; Esposito, A.; Fanó, L.; Paolucci, M.; Passeri, D.; Pentiricci, A.; Placidi, P.

    2013-08-01

    Interventional Radiology (IR) is a subspecialty of radiology comprehensive of all minimally invasive diagnostic and therapeutic procedures performed using radiological devices to obtain image guidance. The interventional procedures are potentially harmful for interventional radiologists and medical staff due to the X-ray diffusion by the patient's body. The characteristic energy range of the diffused photons spans few tens of keV. In this work we will present a proposal for a new X-ray sensing element in the energy range of interest for IR procedures. The sensing element will then be assembled in a dosimeter prototype, capable of real-time measurement, packaged in a small form-factor, with wireless communication and no external power supply to be used for individual operators dosimetry for IR procedures. For the sensor, which is the heart of the system, we considered three different Active Pixel Sensors (APS). They have shown a good capability as single X-ray photon detectors, up to several tens keV photon energy. Two dosimetric quantities have been considered, the number of detected photons and the measured energy deposition. Both observables have a linear dependence with the dose, as measured by commercial dosimeters. The uncertainties in the measurement are dominated by statistic and can be pushed at ˜5% for all the sensors under test.

  19. Adaptive optimization by 6 DOF robotic couch in prostate volumetric IMRT treatment: rototranslational shift and dosimetric consequences.

    PubMed

    Chiesa, Silvia; Placidi, Lorenzo; Azario, Luigi; Mattiucci, Gian Carlo; Greco, Francesca; Damiani, Andrea; Mantini, Giovanna; Frascino, Vincenzo; Piermattei, Angelo; Valentini, Vincenzo; Balducci, Mario

    2015-09-08

    The purpose of this study was to investigate the magnitude and dosimetric relevance of translational and rotational shifts on IGRT prostate volumetric-modulated arc therapy (VMAT) using Protura six degrees of freedom (DOF) Robotic Patient Positioning System. Patients with cT3aN0M0 prostate cancer, treated with VMAT simultaneous integrated boost (VMAT-SIB), were enrolled. PTV2 was obtained adding 0.7 cm margin to seminal vesicles base (CTV2), while PTV1 adding to prostate (CTV1) 0.7 cm margin in all directions, except 1.2 cm, as caudal margin. A daily CBCT was acquired before dose delivery. The translational and rotational displacements were corrected through Protura Robotic Couch, collected and applied to the simulation CT to obtain a translated CT (tCT) and a rototranslated CT (rtCT) on which we recalculated the initial treatment plan (TP). We analyzed the correlation between dosimetric coverage, organs at risk (OAR) sparing, and translational or rotational displacements. The dosimetric impact of a rototranslational correction was calculated. From October 2012 to September 2013, a total of 263 CBCT scans from 12 patients were collected. Translational shifts were < 5 mm in 81% of patients and the rotational shifts were < 2° in 93% of patient scans. The dosimetric analysis was performed on 172 CBCT scans and calculating 344 VMAT-TP. Two significant linear correlations were observed between yaw and the V20 femoral heads and between pitch rotation and V50 rectum (p < 0.001); rototranslational correction seems to impact more on PTV2 than on PTV1, especially when margins are reduced. Rotational errors are of dosimetric significance in sparing OAR and in target coverage. This is relevant for femoral heads and rectum because of major distance from isocenter, and for seminal vesicles because of irregular shape. No correlation was observed between translational and rotational errors. A study considering the intrafractional error and the deformable registration is ongoing.

  20. Dosimetric measurements of an n-butyl cyanoacrylate embolization material for arteriovenous malformations

    SciTech Connect

    Labby, Zacariah E.; Chaudhary, Neeraj; Gemmete, Joseph J.; Pandey, Aditya S.; Roberts, Donald A.

    2015-04-15

    Purpose: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder. Methods: The embolization agents were provided cured from the manufacturer with and without added tantalum. Attenuation measurements were made for the samples and compared to the attenuation of a solid water substitute using a 6 MV photon beam. Effective linear attenuation coefficients (ELAC) were derived from attenuation measurements made using a portal imager and derived sample thickness maps projected in an identical geometry. Probable dosimetric errors for calculations in which the embolized regions are overridden with the properties of water were calculated using the ELAC values. Interface effects were investigated using a parallel plate ion chamber placed at set distances below fixed samples. Finally, Hounsfield units (HU) were measured using a stereotactic radiosurgery CT protocol, and more appropriate HU values were derived from the ELAC results and the CT scanner’s HU calibration curve. Results: The ELAC was 0.0516 ± 0.0063 cm{sup −1} and 0.0580 ± 0.0091 cm{sup −1} for n-BCA without and with tantalum, respectively, compared to 0.0487 ± 0.0009 cm{sup −1} for the water substitute. Dose calculations with the embolized region set to be water equivalent in the treatment planning system would result in errors of −0.29% and −0.93% per cm thickness of n-BCA without and with tantalum, respectively. Interface effects compared to water were small in magnitude and limited in distance for both embolization materials. CT values at 120 kVp were 2082 and 2358 HU for n-BCA without and with tantalum, respectively

  1. Advanced optical techniques for monitoring dosimetric parameters in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Buhong; Qiu, Zhihai; Huang, Zheng

    2012-12-01

    Photodynamic therapy (PDT) is based on the generation of highly reactive singlet oxygen through interactions of photosensitizer, light and molecular oxygen. PDT has become a clinically approved, minimally invasive therapeutic modality for a wide variety of malignant and nonmalignant diseases. The main dosimetric parameters for predicting the PDT efficacy include the delivered light dose, the quantification and photobleaching of the administrated photosensitizer, the tissue oxygen concentration, the amount of singlet oxygen generation and the resulting biological responses. This review article presents the emerging optical techniques that in use or under development for monitoring dosimetric parameters during PDT treatment. Moreover, the main challenges in developing real-time and noninvasive optical techniques for monitoring dosimetric parameters in PDT will be described.

  2. Dosimetric and mechanical characteristics of a commercial dynamic {mu}MLC used in SRS

    SciTech Connect

    Galal, Mohamed M.; Keogh, Sinead; Khalil, Sultan

    2011-07-15

    Purpose: The aim of this work is to carry out mechanical and dosimetric assessments on a commercial dynamic micromulti leaf collimator system to be used for stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT). Mechanical parameters such as leaf position accuracy with different gantry angles and leaf position reproducibility were measured. Also dosimetric measurements of the interleaf leakage, intraleaf transmission, penumbra width, and light field alignment were carried out. Furthermore, measurements of output factors (S{sub cp}) and in-air factors (S{sub c}) for the {mu}MLC system will be reported. Methods: EBT2 films were used to assess the leaf position error with gantry angle and after stress test, penumbra width and light field alignment. Leaf leakage was quantified using both EBT2 film and a pinpoint ion chamber. With regard to output factors, the pinpoint chamber was placed in a water phantom at 10 cm depth and 100 cm SSD. For in-air output factor measurements, 0.2 cm of brass was placed above the photon diode as build-up. Results: Measurements of mechanical parameters gave values of 0.05 cm (SD 0.035) for the average leaf position accuracy for different gantry angles and after stress test. Dosimetric measurements, yielded values of 0.22 {+-} 0.01 and 0.24 {+-} 0.01 cm, respectively, for side and head leaf penumbras. Also, average leaf abutting, leakage and transmission were found to be 0.65, 0.91, and 0.20%, respectively. Conclusions: (a) The add-on {mu}MLC system in combination with our LINAC has been commissioned to be used for clinical purposes and showed good agreement with published results for different {mu}MLC types. (b) This work has lead to the recommendation that leaves should be recalibrated after ten static beams or after each dynamic arc.

  3. Dosimetric effects caused by couch tops and immobilization devices: Report of AAPM Task Group 176

    SciTech Connect

    Olch, Arthur J.; Gerig, Lee; Li, Heng; Mihaylov, Ivaylo; Morgan, Andrew

    2014-06-15

    The dosimetric impact from devices external to the patient is a complex combination of increased skin dose, reduced tumor dose, and altered dose distribution. Although small monitor unit or dose corrections are routinely made for blocking trays, ion chamber correction factors, e.g., accounting for temperature and pressure, or tissue inhomogeneities, the dose perturbation of the treatment couch top or immobilization devices is often overlooked. These devices also increase skin dose, an effect which is also often ignored or underestimated. These concerns have grown recently due to the increased use of monolithic carbon fiber couch tops which are optimal for imaging for patient position verification but cause attenuation and increased skin dose compared to the “tennis racket” style couch top they often replace. Also, arc delivery techniques have replaced stationary gantry techniques which cause a greater fraction of the dose to be delivered from posterior angles. A host of immobilization devices are available and used to increase patient positioning reproducibility, and these also have attenuation and skin dose implications which are often ignored. This report of Task Group 176 serves to present a survey of published data that illustrates the magnitude of the dosimetric effects of a wide range of devices external to the patient. The report also provides methods for modeling couch tops in treatment planning systems so the physicist can accurately compute the dosimetric effects for indexed patient treatments. Both photon and proton beams are considered. A discussion on avoidance of high density structures during beam planning is also provided. An important aspect of this report are the recommendations the authors make to clinical physicists, treatment planning system vendors, and device vendors on how to make measurements of surface dose and attenuation and how to report these values. For the vendors, an appeal is made to work together to provide accurate couch top

  4. Dosimetric characteristics of a new unit for electronic skin brachytherapy.

    PubMed

    Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose; Ballester, Facundo

    2014-03-01

    Brachytherapy with radioactive high dose rate (HDR) (192)Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya(®) Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. The new Esteya(®) Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy.

  5. The spectral applications of Beer-Lambert law for some biological and dosimetric materials

    NASA Astrophysics Data System (ADS)

    Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.

    2014-08-01

    The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.

  6. The revised International Commission on Radiological Protection (ICRP) dosimetric model for the human respiratory tract

    SciTech Connect

    Bair, W.J.

    1992-05-01

    A task group has revised the dosimetric model of the respiratory tract used to calculate annual limits on intake of radionuclides. The revised model can be used to project respiratory tract doses for workers and members of the public from airborne radionuclides and to assess past exposures. Doses calculated for specific extrathoracic and thoracic tissues can be adjusted to account for differences in radiosensitivity and summed to yield two values of dose for the respiratory tract that are applicable to the ICRP tissue weighted dosimetry system.

  7. Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer

    PubMed Central

    Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun

    2016-01-01

    The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5–8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3–5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3–5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. PMID:27605630

  8. Intra-arterial {sup 90}Y brachytherapy: Preliminary dosimetric study using a specially modified angioplasty balloon

    SciTech Connect

    Popowski, Y.; Nouet, P.; Rouzaud, M.

    1995-10-15

    Irradiation has been shown to be effective in preventing restenosis after dilatation in human peripheral arteries. We have developed a dedicated system for coronary intraarterial irradiation using a {sup 90}Y pure beta-emitting source inside a specially modified angioplasty balloon. This paper presents a preliminary dosimetric evaluation of this system. Thermoluminescent dosimetric measurements using the standard balloons filled with contrast medium were plotted semilogarithmically as a function of distance from the balloon surface. The logarithms of the measured doses fit a straight line as a function of depth. The doses at 1 mm and 3 mm are approximately 50 and 10% of the surface dose, respectively. Due to the poor centering of the source in the conventional balloons, the dispersion and standard deviations (SDs) of the measured surface doses increased proportionally to the balloon diameter (SDs are 1.89, 5.52, 5.79, and 6.46 Gy for 2.5, 3, 3.5, and 4 mm balloon diameters, respectively). For the 3.5 mm centering and conventional balloons the respective mean, minimum, and maximum surface doses were 8.41 Gy (min.7.26; max. 9.46) and 7.89 Gy (min. 2.18; max. 16.06) and their standard deviations were 0.66 and 5.79 Gy, respectively. Conventional angioplasty balloons cannot ensure a homogeneous dose delivery to an arterial wall with an intralumenal {sup 90}Y beta source. Preliminary dosimetric results using a modified centering balloon show that it permits improved surface dose distribution (axial and circumferential homogeneity), making it suitable for clinical applications. 9 refs., 5 figs.

  9. SU-E-T-345: Effect of DLG and MLC Transmission Value Set in the Treatment Planning System (TPS) On Dosimetric Accuracy of True Beam Hypofractionated SRT/SBRT and 2Gy/fx Prostate Rapid Arc Plans

    SciTech Connect

    Wu, X; Wang, Y

    2015-06-15

    Purpose: Due to limited commissioning time, we previously only released our True beam non-FFF mode for prostate treatment. Clinical demand now pushes us to release the non-FFF mode for SRT/SBRT treatment. When re-planning on True beam previously treated SRT/SBRT cases on iX machine we found the patient specific QA pass rate was worse than iX’s, though the 2Gy/fx prostate Result had been as good. We hypothesize that in TPS the True beam DLG and MLC transmission values, of those measured during commissioning could not yet provide accurate SRS/SBRT dosimetry. Hence this work is to investigate how the TPS DLG and transmission value affects Rapid Arc plans’ dosimetric accuracy. Methods: We increased DLG and transmission value of True beam in TPS such that their percentage differences against the measured matched those of iX’s. We re-calculated 2 SRT, 1 SBRT and 2 prostate plans, performed patient specific QA on these new plans and compared the results to the previous. Results: With DLG and transmission value set respectively 40 and 8% higher than the measured, the patient specific QA pass rate (at 3%/3mm) improved from 95.0 to 97.6% vs previous iX’s 97.8% in the case of SRT. In the case of SBRT, the pass rate improved from 75.2 to 93.9% vs previous iX’s 92.5%. In the case of prostate, the pass rate improved from 99.3 to 100%. The maximum dose difference in plans before and after adjusting DLG and transmission was approximately 1% of the prescription dose among all plans. Conclusion: The impact of adjusting DLG and transmission value on dosimetry might be the same among all Rapid Arc plans regardless hypofractionated or not. The large variation observed in patient specific QA pass rate might be due to the data analysis method in the QA software being more sensitive to hypofractionated plans.

  10. Examination of geometric and dosimetric accuracies of gated step-and-shoot intensity modulated radiation therapy.

    PubMed

    Wiersma, R D; Xing, L

    2007-10-01

    Due to the complicated technical nature of gated radiation therapy, electronic and mechanical limitations may affect the precision of delivery. The purpose of this study is to investigate the geometric and dosimetric accuracies of gated step-and-shoot intensity modulated radiation treatments (SS-IMRT). Unique segmental MLC plans are designed, which allow quantitative testing of the gating process. Both ungated and gated deliveries are investigated for different dose sizes, dose rates, and gating window times using a commercial treatment system (Varian Trilogy) together with a respiratory gating system [Varian Real-Time Position Management system]. Radiographic film measurements are used to study the geometric accuracy, where it is found that with both ungated and gated SS-IMRT deliveries the MLC leaf divergence away from planned is less than or equal to the MLC specified leaf tolerance value for all leafs (leaf tolerance being settable from 0.5-5 mm). Nevertheless, due to the MLC controller design, failure to define a specific leaf tolerance value suitable to the SS-IMRT plan can lead to undesired geometric effects, such as leaf motion of up to the maximum 5 mm leaf tolerance value occurring after the beam is turned on. In this case, gating may be advantageous over the ungated case, as it allows more time for the MLC to reach the intended leaf configuration. The dosimetric precision of gated SS-IMRT is investigated using ionization chamber methods. Compared with the ungated case, it is found that gating generally leads to increased dosimetric errors due to the interruption of the "overshoot phenomena." With gating the average timing deviation for intermediate segments is found to be 27 ms, compared to 18 ms for the ungated case. For a plan delivered at 600 MU/min this would correspond to an average segment dose error of approximately 0.27 MU and approximately 0.18 MU for gated and ungated deliveries, respectively. The maximum dosimetric errors for individual

  11. Quality assurance and dosimetric evaluation for an endocavitary unit.

    PubMed

    Klein, E E; Purdy, J A

    1994-01-01

    The use of endocavitary contact therapy for selected rectal carcinomas continues to be an effective treatment option. Very small volumes are treated with an extremely high dose rate associated with rapid fall-off in depth and an overall high dose. The clinical benefits of the high dose rate leads to dosimetric and quality-assurance challenges. In addition, the operating room environment creates concerns in terms of dosimetry and radiation safety due to varying room line voltages and uncontrolled environments. The unit at our facility delivers 50 kVp X-rays using an SSD of 35 mm with lead-lined procotscopes of 24 and 29 mm. The dose rate is approximately 10 Gy per minute. Establishment of daily, monthly, and annual quality assurance reviews have been made and assessed. Parallel-plate ionization chambers measure outputs and relative depth dose with different phantoms. Silver bromide film is used to evaluate beam profiles. An electron diode system was chosen for day-of-treatment output checks. An ion chamber survey meter measures scatter and leakage exposure rates. Day-of-treatment output checks have assured output stability in various operating rooms. Trends in output have been confirmed by monthly ion chamber checks. Percent depth dose measurements carried out in liquid water compared well with accepted published data as did corrected polystyrene measurements. Radiation survey measurements detected acceptable exposure rate levels. The established comprehensive quality assurance program incorporates cross checking with multiple dosimetry systems. The confidence level of dose delivery has increased with the introduction of a day-of-treatment output checks.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Dosimetric Impact of Intrafractional Patient Motion in Pediatric Brain Tumor Patients

    SciTech Connect

    Beltran, Chris Trussell, John; Merchant, Thomas E.

    2010-04-01

    The purpose of this study was to determine the dosimetric consequences of intrafractional patient motion on the clinical target volume (CTV), spinal cord, and optic nerves for non-sedated pediatric brain tumor patients. The patients were immobilized for treatment using a customized thermoplastic full-face mask and bite-block attached to an array of reflectors. The array was optically tracked by infra-red cameras at a frequency of 10 Hz. Patients were localized based on skin/mask marks and weekly films were taken to ensure proper setup. Before each noncoplanar field was delivered, the deviation from baseline of the array was recorded. The systematic error (SE) and random error (RE) were calculated. Direct simulation of the intrafractional motion was used to quantify the dosimetric changes to the targets and critical structures. Nine patients utilizing the optical tracking system were evaluated. The patient cohort had a mean of 31 {+-} 1.5 treatment fractions; motion data were acquired for a mean of 26 {+-} 6.2 fractions. The mean age was 15.6 {+-} 4.1 years. The SE and RE were 0.4 and 1.1 mm in the posterior-anterior, 0.5 and 1.0 mm in left-right, and 0.6 and 1.3 mm in superior-inferior directions, respectively. The dosimetric effects of the motion on the CTV were negligible; however, the dose to the critical structures was increased. Patient motion during treatment does affect the dose to critical structures, therefore, planning risk volumes are needed to properly assess the dose to normal tissues. Because the motion did not affect the dose to the CTV, the 3-mm PTV margin used is sufficient to account for intrafractional motion, given the patient is properly localized at the start of treatment.

  13. Dosimetric characterization of an 192Ir brachytherapy source with the Monte Carlo code PENELOPE.

    PubMed

    Casado, Francisco Javier; García-Pareja, Salvador; Cenizo, Elena; Mateo, Beatriz; Bodineau, Coral; Galán, Pedro

    2010-01-01

    Monte Carlo calculations are highly spread and settled practice to calculate brachytherapy sources dosimetric parameters. In this study, recommendations of the AAPM TG-43U1 report have been followed to characterize the Varisource VS2000 (192)Ir high dose rate source, provided by Varian Oncology Systems. In order to obtain dosimetric parameters for this source, Monte Carlo calculations with PENELOPE code have been carried out. TG-43 formalism parameters have been presented, i.e., air kerma strength, dose rate constant, radial dose function and anisotropy function. Besides, a 2D Cartesian coordinates dose rate in water table has been calculated. These quantities are compared to this source reference data, finding results in good agreement with them. The data in the present study complement published data in the next aspects: (i) TG-43U1 recommendations are followed regarding to phantom ambient conditions and to uncertainty analysis, including statistical (type A) and systematic (type B) contributions; (ii) PENELOPE code is benchmarked for this source; (iii) Monte Carlo calculation methodology differs from that usually published in the way to estimate absorbed dose, leaving out the track-length estimator; (iv) the results of the present work comply with the most recent AAPM and ESTRO physics committee recommendations about Monte Carlo techniques, in regards to dose rate uncertainty values and established differences between our results and reference data. The results stated in this paper provide a complete parameter collection, which can be used for dosimetric calculations as well as a means of comparison with other datasets from this source.

  14. Comparison of dosimetric and radiobiological parameters on plans for prostate stereotactic body radiotherapy using an endorectal balloon for different dose-calculation algorithms and delivery-beam modes

    NASA Astrophysics Data System (ADS)

    Kang, Sang-Won; Suh, Tae-Suk; Chung, Jin-Beom; Eom, Keun-Yong; Song, Changhoon; Kim, In-Ah; Kim, Jae-Sung; Lee, Jeong-Woo; Cho, Woong

    2017-02-01

    The purpose of this study was to evaluate the impact of dosimetric and radiobiological parameters on treatment plans by using different dose-calculation algorithms and delivery-beam modes for prostate stereotactic body radiation therapy using an endorectal balloon. For 20 patients with prostate cancer, stereotactic body radiation therapy (SBRT) plans were generated by using a 10-MV photon beam with flattening filter (FF) and flattening-filter-free (FFF) modes. The total treatment dose prescribed was 42.7 Gy in 7 fractions to cover at least 95% of the planning target volume (PTV) with 95% of the prescribed dose. The dose computation was initially performed using an anisotropic analytical algorithm (AAA) in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) and was then re-calculated using Acuros XB (AXB V. 11.0.34) with the same monitor units and multileaf collimator files. The dosimetric and the radiobiological parameters for the PTV and organs at risk (OARs) were analyzed from the dose-volume histogram. An obvious difference in dosimetric parameters between the AAA and the AXB plans was observed in the PTV and rectum. Doses to the PTV, excluding the maximum dose, were always higher in the AAA plans than in the AXB plans. However, doses to the other OARs were similar in both algorithm plans. In addition, no difference was observed in the dosimetric parameters for different delivery-beam modes when using the same algorithm to generate plans. As a result of the dosimetric parameters, the radiobiological parameters for the two algorithm plans presented an apparent difference in the PTV and the rectum. The average tumor control probability of the AAA plans was higher than that of the AXB plans. The average normal tissue complication probability (NTCP) to rectum was lower in the AXB plans than in the AAA plans. The AAA and the AXB plans yielded very similar NTCPs for the other OARs. In plans using the same algorithms, the NTCPs for delivery

  15. SU-F-E-06: Dosimetric Characterization of Small Photons Beams of a Novel Linear Accelerator

    SciTech Connect

    Almonte, A; Polanco, G; Sanchez, E

    2016-06-15

    Purpose: The aim of the present contribution was to measure the main dosimetric quantities of small fields produced by UNIQUE and evaluate its matching with the corresponding dosimetric data of one 21EX conventional linear accelerator (Varian) in operation at the same center. The second step was to evaluate comparative performance of the EDGE diode detector and the PinPoint micro-ionization chamber for dosimetry of small fields. Methods: UNIQUE is configured with MLC (120 leaves with 0.5 cm leaf width) and a single low photon energy of 6 MV. Beam data were measured with scanning EDGE diode detector (volume of 0.019 mm{sup 3}), a PinPoint micro-ionization chamber (PTW) and for larger fields (≥ 4×4cm{sup 2}) a PTW Semi flex chamber (0.125 cm{sup 3}) was used. The scanning system used was the 3D cylindrical tank manufactured by Sun Nuclear, Inc. The measurement of PDD and profiles were done at 100 cm SSD and 1.5 depth; the relative output factors were measured at 10 cm depth. Results: PDD and the profile data showed less than 1% variation between the two linear accelerators for fields size between 2×2 cm{sup 2} and 5×5cm{sup 2}. Output factor differences was less than 1% for field sizes between 3×3 cm{sup 2} and 10×10 cm{sup 2} and less of 1.5 % for fields of 1.5×1.5 cm{sup 2} and 2×2 cm{sup 2} respectively. The dmax value of the EDGE diode detector, measured from the PDD, was 8.347 mm for 0.5×0,5cm{sup 2} for UNIQUE. The performance of EDGE diode detector was comparable for all measurements in small fields. Conclusion: UNIQUE linear accelerator show similar dosimetrics characteristics as conventional 21EX Varian linear accelerator for small, medium and large field sizes.EDGE detector show good performance by measuring dosimetrics quantities in small fields typically used in IMRT and radiosurgery treatments.

  16. First biological and dosimetric results of the free flyer biostack experiment AO015 on LDEF

    NASA Technical Reports Server (NTRS)

    Reitz, G.; Buecker, H.; Facius, R.; Horneck, G.; Schaeffer, M.; Schott, J. U.; Bayonove, J.; Beaujean, R.; Benton, E. V.; Delpoux, M.

    1991-01-01

    The main objectives of the Biostack Experiment are to study the effectiveness of the structured components of the cosmic radiation to bacterial spores, plant seeds, and animal cysts for a long duration spaceflight and to get dosimetric data such as particle fluences and spectra and total doses for the Long Duration Exposure Facility orbit. The configuration of the experiment packages allows the localization of the trajectory of the particles in each biological layer and to correlate the potential biological impairment or injury with the physical characteristics of the responsible particle. Although the Biostack Experiment was designed for a long duration flight of only nine months, most of the biological systems show a high hatching or germination rate. Some of the first observations are an increase of the mutation rate of embryonic lethals in the second generation of Arabidopsis seeds, somatic mutations, and a reduction of growth rates of corn plants and a reduction of life span of Artemia salina shrimps. The different passive detector systems are also in a good shape and give access to a proper dosimetric analysis. The results are summarized, and some aspects of future analysis are shown.

  17. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    SciTech Connect

    Omar, R. S. Wagiran, H. Saeed, M. A.

    2016-01-22

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  18. Dosimetric comparison of helical tomothearpy and linac-based IMRT in whole abdomen radiotherapy

    NASA Astrophysics Data System (ADS)

    Kang, Young-nam; Kim, Dae-Hyun; Jang, Hong Seok; Song, Jin Ho; Choi, Byung Ock; Cho, Seok Goo; Jung, Ji-Young; Kay, Chul Seung

    2012-10-01

    Recent advances in radiotherapy techniques have allowed a significant improvement in the therapeutic ratio of whole abdominal irradiation (WAI) through linear-accelerator (Linac) based intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT). IMRT has been shown to reduce the dose to organs at risk (OAR) while adequately treating the tumor volume. HT operates by adjusting 51 beam directions, couch speed, pitch and shapes of a binary multileaf collimator (MLC), with the purpose of clinically increasing the befit to the patient. We incorporated helical tomotherapy as a new modality for WAI for the treatment of non-Hodgkin's lymphoma patients whose disease involved the intestine and the mesenteric lymph nodes. Excellent tumor coverage with effective sparing of normal organ sparings, and homogeneous dose distribution could be achieved. This study dosimetrically compared HT and linac-based IMRT by using several indices, including the conformity index (CI) and the homogeneity index (HI) for the planning target volume (PTV), as well as the, max dose and the mean dose and the quality index (QI) for five organs at risk (OARs). The HI and the CI were used to compare the quality of target coverage while the QI was used compare the dosimetric performans for OAR systems. The target coverages between the two systems were similar, but the most QIs were lower than 1, what means that HT is batter at sparing OARs than IMRT. Tomotherapy enabled excellent target coverage, effective sparing of normal tissues, and homogeneous dose distribution without severe acute toxicity.

  19. Dosimetric characteristics of fabricated silica fibre for postal radiotherapy dose audits

    NASA Astrophysics Data System (ADS)

    Fadzil, M. S. Ahmad; Ramli, N. N. H.; Jusoh, M. A.; Kadni, T.; Bradley, D. A.; Ung, N. M.; Suhairul, H.; Mohd Noor, N.

    2014-11-01

    Present investigation aims to establish the dosimetric characteristics of a novel fabricated flat fibre TLD system for postal radiotherapy dose audits. Various thermoluminescence (TL) properties have been investigated for five sizes of 6 mol% Ge-doped optical fibres. Key dosimetric characteristics including reproducibility, linearity, fading and energy dependence have been established. Irradiations were carried out using a linear accelerator (linac) and a Cobalt-60 machine. For doses from 0.5 Gy up to 10 Gy, Ge-doped flat fibres exhibit linearity between TL yield and dose, reproducible to better than 8% standard deviation (SD) following repeat measurements (n = 3). For photons generated at potentials from 1.25 MeV to 10 MV an energy-dependent response is noted, with a coefficient of variation (CV) of less than 40% over the range of energies investigated. For 6.0 mm length flat fibres 100 μm thick × 350 pm wide, the TL fading loss following 30 days of storage at room temperature was < 8%. The Ge-doped flat fibre system represents a viable basis for use in postal radiotherapy dose audits, corrections being made for the various factors influencing the TL yield.

  20. First biological and dosimetric results of the free flyer biostack experiment AO015 on LDEF

    NASA Technical Reports Server (NTRS)

    Reitz, G.; Buecker, H.; Facius, R.; Horneck, G.; Schaeffer, M.; Schott, J. U.; Bayonove, J.; Beaujean, R.; Benton, E. V.; Delpoux, M.

    1991-01-01

    The main objectives of the Biostack Experiment are to study the effectiveness of the structured components of the cosmic radiation to bacterial spores, plant seeds, and animal cysts for a long duration spaceflight and to get dosimetric data such as particle fluences and spectra and total doses for the Long Duration Exposure Facility orbit. The configuration of the experiment packages allows the localization of the trajectory of the particles in each biological layer and to correlate the potential biological impairment or injury with the physical characteristics of the responsible particle. Although the Biostack Experiment was designed for a long duration flight of only nine months, most of the biological systems show a high hatching or germination rate. Some of the first observations are an increase of the mutation rate of embryonic lethals in the second generation of Arabidopsis seeds, somatic mutations, and a reduction of growth rates of corn plants and a reduction of life span of Artemia salina shrimps. The different passive detector systems are also in a good shape and give access to a proper dosimetric analysis. The results are summarized, and some aspects of future analysis are shown.

  1. Dosimetric effects of rotational output variation and x-ray target degradation on helical tomotherapy plans.

    PubMed

    Staton, Robert J; Langen, Katja M; Kupelian, Patrick A; Meeks, Sanford L

    2009-07-01

    In this study, two potential sources of IMRT delivery error have been identified for helical tomotherapy delivery using the HiART system (TomoTherapy, Inc., Madison, WI): Rotational output variation and target degradation. The HiArt system is known to have output variation, typically about +/- 2%, due to the absence of a dose servo system. On the HiArt system, x-ray target replacement is required approximately every 10-12 months due to target degradation. Near the end of target life, the target thins and causes a decrease in the beam energy and a softening of the beam profile at the lateral edges of the beam. The purpose of this study is to evaluate the dosimetric effects of rotational output variation and target degradation by modeling their effects and incorporating them into recalculated treatment plans for three clinical scenarios: Head and neck, partial breast, and prostate. Models were created to emulate both potential sources of error. For output variation, a model was created using a sine function to match the amplitude (+/- 2%), frequency, and phase of the measured rotational output variation data. A second model with a hypothetical variation of +/- 7% was also created to represent the largest variation that could exist without violating the allowable dose window in the delivery system. A measured beam profile near the end of target life was used to create a modified beam profile model for the target degradation. These models were then incorporated into the treatment plan by modifying the leaf opening times in the delivery sinogram. A new beam model was also created to mimic the change in beam energy seen near the end of target life. The plans were then calculated using a research version of the PLANNED ADAPTIVE treatment planning software from TomoTherapy, Inc. Three plans were evaluated in this study: Head and neck, partial breast, and prostate. The D50 of organs at risk, the D95 for planning target volumes (PTVs), and the local dose difference were used

  2. Multi-institutional dosimetric and geometric commissioning of image-guided small animal irradiators

    SciTech Connect

    Lindsay, P. E.; Granton, P. V.; Hoof, S. van; Hermans, J.; Gasparini, A.; Jelveh, S.; Clarkson, R.; Kaas, J.; Wittkamper, F.; Sonke, J.-J.; Verhaegen, F.; Jaffray, D. A.

    2014-03-15

    Purpose: To compare the dosimetric and geometric properties of a commercial x-ray based image-guided small animal irradiation system, installed at three institutions and to establish a complete and broadly accessible commissioning procedure. Methods: The system consists of a 225 kVp x-ray tube with fixed field size collimators ranging from 1 to 44 mm equivalent diameter. The x-ray tube is mounted opposite a flat-panel imaging detector, on a C-arm gantry with 360° coplanar rotation. Each institution performed a full commissioning of their system, including half-value layer, absolute dosimetry, relative dosimetry (profiles, percent depth dose, and relative output factors), and characterization of the system geometry and mechanical flex of the x-ray tube and detector. Dosimetric measurements were made using Farmer-type ionization chambers, small volume air and liquid ionization chambers, and radiochromic film. The results between the three institutions were compared. Results: At 225 kVp, with 0.3 mm Cu added filtration, the first half value layer ranged from 0.9 to 1.0 mm Cu. The dose-rate in-air for a 40 × 40 mm{sup 2} field size, at a source-to-axis distance of 30 cm, ranged from 3.5 to 3.9 Gy/min between the three institutions. For field sizes between 2.5 mm diameter and 40 × 40 mm{sup 2}, the differences between percent depth dose curves up to depths of 3.5 cm were between 1% and 4% on average, with the maximum difference being 7%. The profiles agreed very well for fields >5 mm diameter. The relative output factors differed by up to 6% for fields larger than 10 mm diameter, but differed by up to 49% for fields ≤5 mm diameter. The mechanical characteristics of the system (source-to-axis and source-to-detector distances) were consistent between all three institutions. There were substantial differences in the flex of each system. Conclusions: With the exception of the half-value layer, and mechanical properties, there were significant differences between the

  3. SU-F-BRB-15: Dosimetric Study of Radiation Therapy for Head/Neck Patients with Metallic Dental Fixtures

    SciTech Connect

    Lu, L; Allan, E; Putten, M Van; Gupta, N; Blakaj, D

    2015-06-15

    Purpose: To investigate the dose contributions of scattered electrons from dental amalgams during head and neck radiotherapy, and to evaluate the protective role of dosimetric dental stents during treatment to prevent oral mucositis. Methods: A phantom was produced to accurately simulate the oral cavity and head. The oral cavity consisted of a tissue equivalent upper and lower jaw and complete set of teeth. A set of 4 mm ethylene copolymer dosimetric stents was made for the upper and lower teeth. Five removable gold caps were fitted to apposing right molars, and the phantom was crafted to accomodate horizontal and vertical film for 2D dosimetry and NanoDot dosimeter for recording point doses. The head was simulated using a small cylindrical glass water bath. CT simulation was performed on the phantom with and without metal fittings and, in each case, with and without the dental stent. The CT image sets were imported into Eclipse treatment planning system for contouring and treatment planning, and a 9-field IMRT treatment plan was developed for each scenario. These plans were delivered using a Varian TrueBeam linear accelerator. Doses were recorded using GafChromic EBT2 films and NanoDot dosimeters. Results: The measurements revealed a 43% relative increase in dose measured adjacent to the metal fixtures in the horizontal plane without the use of the dental stent. This equates to a total dose of 100 Gy to the oral mucosa during a standard course of definitive radiotherapy. To our knowledge, this is the first dosimetric analysis of dental stents using an anatomically realistic phantom and modern beam arrangement. Conclusion: These results support the use of dosimetric dental stents in head and neck radiotherapy for patients with metallic dental fixtures as a way to effectively reduce dose to nearby mucosal surfaces and, hence, reduce the risk and severity of mucositis.

  4. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    PubMed Central

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-01-01

    Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621

  5. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    SciTech Connect

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-12-15

    This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

  6. Dosimetric characteristics of a new unit for electronic skin brachytherapy

    PubMed Central

    Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose

    2014-01-01

    Purpose Brachytherapy with radioactive high dose rate (HDR) 192Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya® Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Material and methods Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Results Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. Conclusions The new Esteya® Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy. PMID:24790622

  7. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    SciTech Connect

    Senthi, Sashendra; Gill, Suki S.; Haworth, Annette; Kron, Tomas; Cramb, Jim; Rolfo, Aldo; Thomas, Jessica; Duchesne, Gillian M.; Hamilton, Christopher H.; Joon, Daryl Lim; Bowden, Patrick; Foroudi, Farshad

    2012-02-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V{sub 95%} and V{sub 100%}, respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V{sub 95%}, PTV sigma index, and conformity number. The mean PTV V{sub 95%} was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V{sub 95%} only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures

  8. Benchmarking dosimetric quality assessment of prostate intensity-modulated radiotherapy.

    PubMed

    Senthi, Sashendra; Gill, Suki S; Haworth, Annette; Kron, Tomas; Cramb, Jim; Rolfo, Aldo; Thomas, Jessica; Duchesne, Gillian M; Hamilton, Christopher H; Joon, Daryl Lim; Bowden, Patrick; Foroudi, Farshad

    2012-02-01

    To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V(95%) and V(100%), respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V(95%), PTV sigma index, and conformity number. The mean PTV V(95%) was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V(95%) only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Our study has benchmarked measures of coverage, homogeneity, and conformity for the treatment of prostate

  9. Monte Carlo dosimetric study of the Flexisource Co-60 high dose rate source

    PubMed Central

    Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo

    2012-01-01

    Purpose Recently, a new HDR 60Co brachytherapy source, Flexisource Co-60, has been developed (Nucletron B.V. Veenendaal, The Netherlands). This study aims to obtain dosimetric data for this source for its use in clinical practice as required by AAPM and ESTRO. Material and methods Two Monte Carlo radiation transport codes were used: Penelope2008 and GEANT4. The source was centrally-positioned in a 100 cm radius water phantom. Absorbed dose and collisional kerma were obtained using 0.01 cm (close) and 0.1 cm (far) sized voxels to provide high-resolution dosimetry near (far from) the source. Dose rate distributions obtained with the two Monte Carlo codes were compared. Results and Discussion Simulations performed with those two radiation transport codes showed an agreement typically within 0.2% for r > 0.8 cm and up to 2% closer to the source. Detailed results of dose distributions are being made available. Conclusions Dosimetric data are provided for the new Flexisource Co-60 source. These data are meant to be used in treatment planning systems in clinical practice. PMID:23346138

  10. A Dosimetric Analysis of IMRT and Multistatic Fields Techniques for Left Breast Radiotherapy

    SciTech Connect

    Moon, Seong Kwon; Kim, Yeon Sil; Kim, Soo Young; Lee, Mi Jo; Keum, Hyun Sup; Kim, Seung Jin; Youn, Seon Min

    2011-10-01

    The purpose of this study was to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and multistatic field technique (MSF) in radiotherapy of the left breast. We made comparative analysis of two kinds of radiotherapy that can achieve improved dose homogeneity. First is a MSF that uses both major and small irradiation fields at the same time. The other is IMRT using 3 or 5 beams with an inverse planning system using multiple static multileaf collimators. We made treatment plans for 16 early left breast cancer patients who were randomly selected and had undergone breast conserving surgery and radiotherapy, and analyzed them in the dosimetric aspect. For the mean values of V{sub 95} and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving >110% of prescribed dose were not found in any of the three methods. Using Tukey's test, IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and the heart than MSF in the low-dose area, but in the high-dose area, MSF showed a slight increase. To improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered optimal as an alternative to IMRT for radiotherapy of early left breast cancer.

  11. [Mathematical simulation support to the dosimetric monitoring on the Russian segment of the International Space Station].

    PubMed

    Mitrikas, V G

    2014-01-01

    To ensure radiation safety of cosmonauts, it is necessary not only to predict, but also to reconstruct absorbed dose dynamics with the knowledge of how long cosmonauts stay in specific space vehicle compartments with different shielding properties and lacking equipment for dosimetric monitoring. In this situation, calculating is one and only way to make a correct estimate of radiation exposure of cosmonaut's organism as a whole (tissue-average dose) and of separate systems and organs. The paper addresses the issues of mathematical simulation of epy radiation environment of standard dosimetric instruments in the Russian segments of the International Space Station (ISS RS). Results of comparing the simulation and experimental data for the complement of dosimeters including ionization chamber-based radiometer R-16, DB8 dosimeters composed of semiconductor detectors, and Pille dosimeters composed of thermoluminescent detectors evidence that the current methods of simulation in support of the ISS RS radiation monitoring provide a sufficiently good agreement between the calculated and experimental data.

  12. Dosimetric characterization of a 2D polycrystalline CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Bartoli, A.; Cupparo, I.; Baldi, A.; Scaringella, M.; Pasquini, A.; Pallotta, S.; Talamonti, C.; Bruzzi, M.

    2017-03-01

    A bidimensional pixelated dosimeter composed of two polycrystalline Chemical Vapour Deposited diamond films, 2.5 × 2.5 cm2 each placed aside, has been manufactured so as to obtain a detector with a 2 mm pitch over a total active area of 5.0 × 2.5 cm2. We performed the dosimetric characterization of the detector with an Elekta Synergy linear accelerator using a 6 MV photon beam. Uniformity maps, rise and fall times, signal repeatability, dependence on dose rate, linearity with dose and sensitivity show that the device is suitable for dosimetric evaluations in Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy (VMAT) treatments. Then, a first quantitative evaluation of the dose distribution in a lung VMAT treatment plan has been carried out, by comparing data from our device with Treatment Planning Sistem values by means of a Γ test, with promising results.

  13. [Dosimetric verification of the intensity modulated radiation therapy].

    PubMed

    Zhang, Yuhai; Gao, Yang

    2010-05-01

    To research the method of dosimetric verification of the intensity modulated radiation therapy (IMRT). The IMRT treatment plans were designed by Eclipse TPS and were implemented in Varian ClinacIX LA with 6MV X-ray. The absolute point doses were measured using a PTW 0.6 cc ion chamber with UNIDOS E dosimeter and the planes dose distributions were measured using PTW 2D-Array ion chamber in the phantom. The error between the measured dose and calculated dose in the interesting points was less than 3%. The points passed ratio was more than 90% in gamma analysis method (3 mm 13%) about the plane dose distribution verification. The method of dosimetric verification of IMRT is reliable and efficient in the implementation.

  14. Gamma dosimetric parameters in some skeletal muscle relaxants

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.

    2017-09-01

    We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.

  15. Monte Carlo simulation and dosimetric verification of radiotherapy beam modifiers

    NASA Astrophysics Data System (ADS)

    Spezi, E.; Lewis, D. G.; Smith, C. W.

    2001-11-01

    Monte Carlo simulation of beam modifiers such as physical wedges and compensating filters has been performed with a rectilinear voxel geometry module. A modified version of the EGS4/DOSXYZ code has been developed for this purpose. The new implementations have been validated against the BEAM Monte Carlo code using its standard component modules (CMs) in several geometrical conditions. No significant disagreements were found within the statistical errors of 0.5% for photons and 2% for electrons. The clinical applicability and flexibility of the new version of the code has been assessed through an extensive verification versus dosimetric data. Both Varian multi-leaf collimator (MLC) wedges and standard wedges have been simulated and compared against experiments for 6 MV photon beams and different field sizes. Good agreement was found between calculated and measured depth doses and lateral dose profiles along both wedged and unwedged directions for different depths and focus-to-surface distances. Furthermore, Monte Carlo-generated output factors for both open and wedged fields agreed with linac commissioning beam data within statistical uncertainties of the calculations (<3% at largest depths). Compensating filters of both low-density and high-density materials have also been successfully simulated. As a demonstration, a wax compensating filter with a complex three-dimensional concave and convex geometry has been modelled through a CT scan import. Calculated depth doses and lateral dose profiles for different field sizes agreed well with experiments. The code was used to investigate the performance of a commercial treatment planning system in designing compensators. Dose distributions in a heterogeneous water phantom emulating the head and neck region were calculated with the convolution-superposition method (pencil beam and collapsed cone implementations) and compared against those from the MC code developed herein. The new technique presented in this work is

  16. Mass transport analysis: inhalation rfc methods framework for interspecies dosimetric adjustment.

    PubMed

    Hanna, L M; Lou, S R; Su, S; Jarabek, A M

    2001-05-01

    In 1994, the U.S. Environmental Protection Agency introduced dosimetry modeling into the methods used to derive an inhalation reference concentration (RfC). The type of dosimetric adjustment factor (DAF) applied had to span the range of physicochemical characteristics of the gases listed on the Clean Air Act Amendments in 1991 as hazardous air pollutants (HAPs) and accommodate differences in available data with respect to their toxicokinetic properties. A framework was proposed that allowed for a hierarchy of dosimetry model structures, from optimal to rudimentary, and a category scheme that provided for limiting model structures based on physicochemical and toxicokinetic properties. These limiting cases were developed from restricting consideration to specific properties relying on an understanding of the generalized system based on mass transport theory. Physiochemical characteristics included the solubility and reactivity (e.g., propensity to dissociate, oxidize, or serve as a metabolic substrate) of the gas and were used as major determinants of absorption. Dosimetric adjustments were developed to evaluate portal of entry (POE) effects as well as remote (systemic) effects relevant to the toxicokinetic properties of the gas of interest. The gas categorization scheme consisted of defining three gas categories: (1) gases that are highly soluble and/or reactive, absorbing primarily in the extrathoracic airways; (2) gases that are moderately soluble and/or reactive, absorbing throughout the airways, as well as accumulating in the bloodstream; and (3) gases that have a low water solubility and are lipid soluble such that they are primarily absorbed in the pulmonary region and likely to act systemically. This article presents the framework and the mass transport theory behind the RfC method. Comparison to compartmental approaches and considerations for future development are also discussed.

  17. Study of the thermoluminescence dosimetric properties of window glass

    NASA Astrophysics Data System (ADS)

    Engin, Birol; Aydaş, Canan; Demirtaş, Hayrünnisa

    2010-01-01

    This paper presents the main thermoluminescence (TL) dosimetric characteristics of commercial Turkish transparent window glass. The structure of the glow curves, including the number of peaks, was found to be dose-dependent. A low-temperature glow peak that at 160 °C shifts to higher temperatures was also observed with increasing storage time at room temperature. This result suggests that this TL glow peak is actually made up of two or more overlapping peaks. These we have attributed to the glow peaks at lower temperatures, which decay faster than the ones at higher temperatures with storage time. The thermal fading of the window glass sample at room temperature showed a relatively sharp decay of about 60% occurring over a period of 28 days, after which the decay rate is small for a measured period of 250 days. In order to the improve the post-irradiation stability of the glow curve, the glass samples were heated after irradiation. To remove the unstable TL peaks responsible for the initial rapid fading, post-irradiation heating at 160 °C for 10 min was found to be the most suitable procedure. The dosimetric characteristics of the post-irradiation heated window glass examined in this study include fading, gamma photon dose-response, reproducibility, batch sensitivity, humidity influence, a dose-rate effect and photon energy response. Dose-response was found to be appropriate for dosimetry in the range 5 Gy to 10 kGy. The post-irradiation heating procedure did not affect the main dosimetric characteristics of the window glass samples. The results in this work suggest that the materials could, by using the TL technique, be a suitable candidate for alternative dose measurements in radiation processing, provided that a judicious choice of the post-irradiation heat temperature is made to minimize fading.

  18. Dosimetric study of the new Intersource125 iodine seed.

    PubMed

    Reniers, B; Vynckier, S; Scalliet, P

    2001-11-01

    The use of low energy photon emitters for brachytherapy applications, as in the treatment of the prostate or of eye tumors, has significantly increased these last few years. New seed models for 125I have been recently introduced. The aim of this study is to determine the dosimetric parameters as recommended by the AAPM in the TG43 formalism for a new iodine seed design: the InterSource125 (Furnished by IBt, Seneffe, Belgium). Measurements are made with LiF thermoluminescent dosimeters (size of 1 mm3) in solid water phantoms to obtain the dose constant, the radial dose function, and the anisotropy function. The TLDs were calibrated at 6 MV and an energy correction factor of 1.41 has been applied. The same dose parameters are also obtained by Monte Carlo calculations (MCNP4B) in solid water and in liquid water. The radial function was measured at 1, 1.5, 2, 3, 4, 5, 6, and 7 cm and calculated between 0.3 and 7 cm. The anisotropy functions were measured at 2, 3, and 5 cm and calculated between 0.3 and 7 cm. The calculated and the measured TG43 functions for solid water are in excellent agreement. We have then calculated these functions in liquid water to obtain the dosimetric information for clinical applications as per TG43 recommendations. In WTI, the calculated dose rate constant is 0.98+/-1% and the measured value is 1.03 +/- 7 %. The calculated value for water is 1.02+/- 1 %. In conclusion, the dosimetric functions for the new iodine seed InterSource125 have been determined. They are quite different from the data of the well-known model 6711 from Amersham due to the absence of silver in the new seed. The characteristics are very similar to those of model 6702.

  19. The Dosimetric Parameters Investigation of the Pulsed X-ray and Gamma Radiation Sources

    NASA Astrophysics Data System (ADS)

    Stuchebrov, S. G.; Miloichikova, I. A.; Shilova, X. O.

    2016-01-01

    The most common type of radiation used for diagnostic purposes are X-rays. However, X-rays methods have limitations related to the radiation dose for the biological objects. It is known that the use of the pulsed emitting source synchronized with the detection equipment for internal density visualization of objects significant reduces the radiation dose to the object. In the article the analysis of the suitability of the different dosimetric equipment for the radiation dose estimation of the pulsed emitting sources is carried out. The approbation results on the pulsed X-ray generator RAP-160-5 of the dosimetry systems workability with the pulse radiation and its operation range are presented. The results of the dose field investigation of the portable betatron OB-4 are demonstrated. The depth dose distribution in the air, lead and water of the pulsed bremsstrahlung generated by betatron are shown.

  20. Dosimetric Characteristics of 6 MV Modified Beams by Physical Wedges of a Siemens Linear Accelerator.

    PubMed

    Zabihzadeh, Mansour; Birgani, Mohammad Javad Tahmasebi; Hoseini-Ghahfarokhi, Mojtaba; Arvandi, Sholeh; Hoseini, Seyed Mohammad; Fadaei, Mahbube

    2016-01-01

    Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended.

  1. Dosimetric differences in flattened and flattening filter-free beam treatment plans

    PubMed Central

    Yan, Yue; Yadav, Poonam; Bassetti, Michael; Du, Kaifang; Saenz, Daniel; Harari, Paul; Paliwal, Bhudatt R.

    2016-01-01

    This study investigated the dosimetric differences in treatment plans from flattened and flattening filter-free (FFF) beams from the TrueBeam System. A total of 104 treatment plans with static (sliding window) intensity-modulated radiotherapy beams and volumetric-modulated arc therapy (VMAT) beams were generated for 15 patients involving three cancer sites. In general, the FFF beam provides similar target coverage as the flattened beam with improved dose sparing to organ-at-risk (OAR). Among all three cancer sites, the head and neck showed more important differences between the flattened beam and FFF beam. The maximum reduction of the FFF beam in the mean dose reached up to 2.82 Gy for larynx in head and neck case. Compared to the 6 MV flattened beam, the 10 MV FFF beam provided improved dose sparing to certain OARs, especially for VMAT cases. Thus, 10 MV FFF beam could be used to improve the treatment plan. PMID:27217620

  2. SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC

    SciTech Connect

    Park, J; Xu, Q; Xue, J; Zhai, Y; An, L; Chen, Y

    2014-06-01

    Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured with scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD{sub 10} of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R{sub 80} matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs.

  3. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy

    SciTech Connect

    Riley, Craig; Yang, Yong Li, Tianfang; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful

    2014-01-15

    Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated Rapid

  4. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Luo, W.; Li, J.; Fourkal, E.; Fan, J.; Xu, X.; Chen, Z.; Jin, L.; Price, R.; Ma, C.-M.

    2008-12-01

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying δE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has a

  5. Dosimetric Characteristics of a Two-Dimensional Diode Array Detector Irradiated with Passively Scattered Proton Beams

    PubMed Central

    Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald

    2015-01-01

    Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively

  6. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy

    SciTech Connect

    Riley, Craig; Yang, Yong Li, Tianfang; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful

    2014-01-15

    Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated Rapid

  7. Multi-dimensional dosimetric verification of stereotactic radiotherapy for uveal melanoma using radiochromic EBT film.

    PubMed

    Sturtewagen, Eva; Fuss, Martina; Paelinck, Leen; De Wagter, Carlos; Georg, Dietmar

    2008-01-01

    dosimetric tool for treatment plan quality assurance. EBT films are a suitable and reliable dosimetric tool that could replace traditionally used radiographic films. The presented acceptance criteria for SRT treatment plans might be used as a benchmarking data-set for other stereotactic applications and/or other equipment (planning system and delivery hardware) combinations.

  8. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams.

    PubMed

    Luo, W; Li, J; Fourkal, E; Fan, J; Xu, X; Chen, Z; Jin, L; Price, R; Ma, C-M

    2008-12-21

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying deltaE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has

  9. Dosimetric Comparison of Helical Tomotherapy and Linac-IMRT Treatment Plans for Head and Neck Cancer Patients

    SciTech Connect

    Zhang Xin; Penagaricano, Jose; Moros, Eduardo G.; Corry, Peter M.; Yan Yulong; Ratanatharathorn, Vaneerat

    2010-01-01

    The rapid development and clinical implementation of external beam radiation treatment technologies continues. The existence of various commercially available technologies for intensity-modulated radiation therapy (IMRT) has stimulated interest in exploring the differential potential advantage one may have compared with another. Two such technologies, Hi-Art Helical Tomotherapy (HT) and conventional medical linear accelerator-based IMRT (LIMRT) have been shown to be particularly suitable for the treatment of head and neck cancers. In this study, 23 patients who were diagnosed with stages 3 or 4 head and neck cancers, without evidence of distance metastatic disease, were treated in our clinic. Treatment plans were developed for all patients simultaneously on the HT planning station and on the Pinnacle treatment planning system for step-and-shoot IMRT. Patients were treated only on the HT unit, with the LIMRT plan serving as a backup in case the HT system might not be available. All plans were approved for clinical use by a physician. The prescription was that patients receive at least 95% of the planning target volume (PTV), which is 66 Gy at 2.2 Gy per fraction. Several dosimetric parameters were computed: PTV dose coverage; PTV volume conformity index; the normalized total dose (NTD), where doses were converted to 2 Gy per fraction to organs at risk (OAR); and PTV dose homogeneity. Both planning systems satisfied our clinic's PTV prescription requirements. The results suggest that HT plans had, in general, slightly better dosimetric characteristics, especially regarding PTV dose homogeneity and normal tissue sparing. However, for both techniques, doses to OAR were well below the currently accepted normal tissue tolerances. Consequently, factors other than the dosimetric parameters studied here may have to be considered when making a choice between IMRT techniques.

  10. Dosimetric Verification and Validation of Conformal and IMRT Treatments Fields with an Ionization Chamber 2D-Array

    SciTech Connect

    Evangelina, Figueroa M.; Gabriel, Resendiz G.; Miguel, Perez P.

    2008-08-11

    A three-dimensional treatment planning system requires comparisons of calculated and measured dose distributions. It is necessary to confirm by means of patient specific QA that the dose distributions are correctly calculated, and that the patient data is correctly transferred to and delivered by the treatment machine. We used an analysis software for bi-dimensional dosimetric verification of conformal treatment and IMRT fields using as objective criterion the gamma index. An ionization chamber bi-dimensional array was used for absolute dose measurement in the complete field area.

  11. Dosimetric calculations for uranium miners for epidemiological studies.

    PubMed

    Marsh, J W; Blanchardon, E; Gregoratto, D; Hofmann, W; Karcher, K; Nosske, D; Tomásek, L

    2012-05-01

    Epidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners.

  12. Comprehensive Australasian multicentre dosimetric intercomparison: issues, logistics and recommendations.

    PubMed

    Ebert, M A; Harrison, K M; Cornes, D; Howlett, S J; Joseph, D J; Kron, T; Hamilton, C S; Denham, J W

    2009-02-01

    The present paper describes the logistics of the 2004-2008 Australasian Level III Dosimetry Intercomparison. Dosimetric intercomparisons (or 'audits') can be used in radiotherapy to evaluate the accuracy and quality of radiation delivery. An intercomparison was undertaken in New Zealand and Australia to evaluate the feasibility and logistics of ongoing dosimetric intercomparisons that evaluate all steps in the radiotherapy treatment process, known as a 'Level III' intercomparison. The study commenced in 2002 with the establishment of a study team, definition of the study protocol, acquisition of appropriate equipment and recruitment of participating radiotherapy centres. Measurements were undertaken between October 2004 and March 2008, and included collation of data on time, costs and logistics of the study. Forty independent Australian and New Zealand radiotherapy centres agreed to participate. Measurement visits were made to 37 of these centres. Data is presented on the costs of the study and the level of support required. The study involved the participation of 16 staff at the study centre who invested over 4000 hours in the study, and of over 200 professionals at participating centres. Recommendations are provided for future phantom-based intercomparisons. It is hoped that the present paper will be of benefit to any centres or groups contemplating similar activities by identifying the processes involved in establishing the study, the potential hazards and pitfalls, and expected resource requirements.

  13. Determination of dosimetric quantities in pediatric abdominal computed tomography scans*

    PubMed Central

    Jornada, Tiago da Silva; da Silva, Teógenes Augusto

    2014-01-01

    Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103

  14. Dosimetric characteristics of LKB:Cu,P solid TL detector

    NASA Astrophysics Data System (ADS)

    Hashim, S.; Alajerami, Y. S. M.; Ghoshal, S. K.; Saleh, M. A.; Saripan, M. I.; Kadir, A. B. A.; Bradley, D. A.; Alzimami, K.

    2014-11-01

    The dosimetric characteristics of newly developed borate glass dosimeter modified with lithium and potassium carbonate (LKB) and co-doped with CuO and NH4H2PO4 are reported. Broad peaks in the absence of any sharp peak confirms the amorphous nature of the prepared glass. A simple glow curve of Cu doped sample is observed with a single prominent peak (Tm) at 220 °C. The TL intensity response shows an enhancement of ~100 times due to the addition of CuO (0.1 mol%) to LKB compound. A further enhancement of the intensity by a factor of 3 from the addition of 0.25 mol% NH4H2PO4 as a co-dopant impurity is attributed to the creation of extra electron traps with consequent increase in energy transfer of radiation recombination centers. The TL yield performance of LKB:Cu,P with Zeff ≈8.92 is approximately seventeen times less sensitive compared to LiF:Mg,Ti (TLD-100). The proposed dosimeter shows good linearity up to 103 Gy, minimal fading and photon energy independence. These attractive features offered by our dosimeter is expected to pave the way towards dosimetric applications.

  15. Dosimetric characteristics of the Siemens IGRT carbon fiber tabletop.

    PubMed

    Spezi, Emiliano; Ferri, Andrea

    2007-01-01

    In this work, the dosimetric characteristics of a new commercial carbon fiber treatment table are investigated. The photon beam attenuation properties of the Siemens image-guided radiation therapy (IGRT) tabletop were studied in detail. Two sets of dosimetric measurements were performed. In the first experiment a polystyrene slab phantom was used: the central axis attenuation and the skin-sparing detriment were investigated. In the second experiment, the off-axis treatment table transmission was investigated using a polystyrene cylindrical phantom. Measurements were taken at the isocenter for a 360 degrees rotation of the radiation beam. Our results show that the photon beam attenuation of the Siemens IGRT carbon fiber tabletop varies from a minimum of 2.1% (central axis) to a maximum of 4.6% (120 degrees and 240 degrees beam incidence). The beam entrance dose increases from 82% to 97% of the dose at the depth of maximum for a clinical 6-MV radiation field. The depth of maximum also decreases by 0.4 cm. Despite the wedge cross section of the table the beam attenuation properties of the IGRT tabletop remain constant along the longitudinal direction. American Association of Medical Dosimetrists.

  16. Dosimetric Characteristics of the Siemens IGRT Carbon Fiber Tabletop

    SciTech Connect

    Spezi, Emiliano; Ferri, Andrea

    2007-01-01

    In this work, the dosimetric characteristics of a new commercial carbon fiber treatment table are investigated. The photon beam attenuation properties of the Siemens image-guided radiation therapy (IGRT) tabletop were studied in detail. Two sets of dosimetric measurements were performed. In the first experiment a polystyrene slab phantom was used: the central axis attenuation and the skin-sparing detriment were investigated. In the second experiment, the off-axis treatment table transmission was investigated using a polystyrene cylindrical phantom. Measurements were taken at the isocenter for a 360 deg. rotation of the radiation beam. Our results show that the photon beam attenuation of the Siemens IGRT carbon fiber tabletop varies from a minimum of 2.1% (central axis) to a maximum of 4.6% (120 deg. and 240 deg. beam incidence). The beam entrance dose increases from 82% to 97% of the dose at the depth of maximum for a clinical 6-MV radiation field. The depth of maximum also decreases by 0.4 cm. Despite the wedge cross section of the table the beam attenuation properties of the IGRT tabletop remain constant along the longitudinal direction. American Association of Medical Dosimetrists.

  17. Biologic data, models, and dosimetric methods for internal emitters

    SciTech Connect

    Weber, D.A.

    1990-01-01

    The absorbed radiation dose from internal emitters has been and will remain a pivotal factor in assessing risk and therapeutic utility in selecting radiopharmaceuticals for diagnosis and treatment. Although direct measurements of absorbed dose and dose distributions in vivo have been and will continue to be made in limited situations, the measurement of the biodistribution and clearance of radiopharmaceuticals in human subjects and the use of this data is likely to remain the primary means to approach the calculation and estimation of absorbed dose from internal emitters over the next decade. Since several approximations are used in these schema to calculate dose, attention must be given to inspecting and improving the application of this dosimetric method as better techniques are developed to assay body activity and as more experience is gained in applying these schema to calculating absorbed dose. Discussion of the need for considering small scale dosimetry to calculate absorbed dose at the cellular level will be presented in this paper. Other topics include dose estimates for internal emitters, biologic data mathematical models and dosimetric methods employed. 44 refs.

  18. Dosimetric algorithm to reproduce isodose curves obtained from a LINAC.

    PubMed

    Estrada Espinosa, Julio Cesar; Martínez Ovalle, Segundo Agustín; Pereira Benavides, Cinthia Kotzian

    2014-01-01

    In this work isodose curves are obtained by the use of a new dosimetric algorithm using numerical data from percentage depth dose (PDD) and the maximum absorbed dose profile, calculated by Monte Carlo in a 18 MV LINAC. The software allows reproducing the absorbed dose percentage in the whole irradiated volume quickly and with a good approximation. To validate results an 18 MV LINAC with a whole geometry and a water phantom were constructed. On this construction, the distinct simulations were processed by the MCNPX code and then obtained the PDD and profiles for the whole depths of the radiation beam. The results data were used by the code to produce the dose percentages in any point of the irradiated volume. The absorbed dose for any voxel's size was also reproduced at any point of the irradiated volume, even when the voxels are considered to be of a pixel's size. The dosimetric algorithm is able to reproduce the absorbed dose induced by a radiation beam over a water phantom, considering PDD and profiles, whose maximum percent value is in the build-up region. Calculation time for the algorithm is only a few seconds, compared with the days taken when it is carried out by Monte Carlo.

  19. Dosimetric Algorithm to Reproduce Isodose Curves Obtained from a LINAC

    PubMed Central

    Estrada Espinosa, Julio Cesar; Martínez Ovalle, Segundo Agustín; Pereira Benavides, Cinthia Kotzian

    2014-01-01

    In this work isodose curves are obtained by the use of a new dosimetric algorithm using numerical data from percentage depth dose (PDD) and the maximum absorbed dose profile, calculated by Monte Carlo in a 18 MV LINAC. The software allows reproducing the absorbed dose percentage in the whole irradiated volume quickly and with a good approximation. To validate results an 18 MV LINAC with a whole geometry and a water phantom were constructed. On this construction, the distinct simulations were processed by the MCNPX code and then obtained the PDD and profiles for the whole depths of the radiation beam. The results data were used by the code to produce the dose percentages in any point of the irradiated volume. The absorbed dose for any voxel's size was also reproduced at any point of the irradiated volume, even when the voxels are considered to be of a pixel's size. The dosimetric algorithm is able to reproduce the absorbed dose induced by a radiation beam over a water phantom, considering PDD and profiles, whose maximum percent value is in the build-up region. Calculation time for the algorithm is only a few seconds, compared with the days taken when it is carried out by Monte Carlo. PMID:25045398

  20. Dosimetric Quantities for Computed Tomography Examinations of Paediatric Patients on the Thoracic and Abdominal Regions

    NASA Astrophysics Data System (ADS)

    Flores-M, E.; Buenfil, A. E.; Dies, P.; Gamboa-deBuen, I.; Ruiz-Trejo, C.

    2010-12-01

    Computed Tomography (CT) is a high dose X ray imaging procedure and its use has rapidly increased in the last two decades fueled by the development of helical CT. The aim of this study is to present values of the dosimetric quantities for CT paediatric examinations of thoracic and abdominal regions. The protocols studied were those of chest, lung-mediastine, chest-abdomen, pulmonary high resolution and mediastine-abdomen, which are the more common examinations performed at "Hospital Infantil de México Federico Gómez" in the thoracic-abdominal region. The measurements were performed on a Siemens SOMATOM Sensation 16 CT Scanner and the equipment used was a CT pencil ionization chamber, connected to an electrometer. This system was calibrated for RQT9 CT beam quality. A PMMA head phantom with diameter of 16 cm and length of 15 cm was also used. The dosimetric quantities measured were the weighted air kerma index (Cw), the volumetric dose index (Cvol) and the CT air kerma-length product. It was found that the pulmonary high resolution examination presented the highest values for the Cw (31.1 mGy) and Cvol (11.1 mGy). The examination with the lowest values of these two quantities was the chest-abdomen protocol with 10.5 mGy for Cw and 5.5 mGy for Cvol. However, this protocol presented the highest value for PKL,CT (282.2 mGy cm) when considering the average clinical length of the examinations.

  1. SU-E-J-167: Dosimetric Consequences From Minimal Displacements in APBI with SAVI Applicators

    SciTech Connect

    Chandrasekara, S; Dumitru, N; Hyvarinen, M; Pella, S

    2015-06-15

    Purpose: To determine the importance of providing proper solid immobilization in every fraction of treatment in APBI with brachytherapy. Methods: 125 patients treated with APBI brachytherapy with SAVI applicators at SFRO Boca Raton, from 2013–2015 were considered for this retrospective study. The CT scans of each patient, which were taken before each treatment, were imported in to the Oncentra treatment planning system. Then they were compared with the initial CT scan which was used for the initial plan. Deviation in displacements in reference to ribs and skin surface was measured and dosimetric evaluations respective to the initial image were performed. Results: Small deviations in displacements were observed from the SAVI applicator to the ribs and the skin surface. Dosimetric evaluations revealed, very small changes in the inter-fractionation position make significant differences in the maximum dose to critical organs. Additionally, the volume of the cavity also changed between fractions. As a Result, the maximum dose manifested variance between 10% and 32% in ribs and skin surface respectively. Conclusion: It appears that taking a CT scan before each treatment is necessary to minimize the risk of delivering undesired high doses to the critical organs. This study indicates, in 30% of the cases re-planning was necessary between treatments. We conclude that, treatment planning teams should evaluate the placement of the device by analyzing the CT images before each treatment and they must be prepared for re-planning if needed. This study also reveals the urgent need of improving the immobilization methods with APBI when treating with the SAVI applicator.

  2. Multicellular dosimetric chain for molecular radiotherapy exemplified with dose simulations on 3D cell spheroids.

    PubMed

    Reijonen, Vappu; Kanninen, Liisa K; Hippeläinen, Eero; Lou, Yan-Ru; Salli, Eero; Sofiev, Alexey; Malinen, Melina; Paasonen, Timo; Yliperttula, Marjo; Kuronen, Antti; Savolainen, Sauli

    2017-08-01

    Absorbed radiation dose-response relationships are not clear in molecular radiotherapy (MRT). Here, we propose a voxel-based dose calculation system for multicellular dosimetry in MRT. We applied confocal microscope images of a spherical cell aggregate i.e. a spheroid, to examine the computation of dose distribution within a tissue from the distribution of radiopharmaceuticals. A confocal microscope Z-stack of a human hepatocellular carcinoma HepG2 spheroid was segmented using a support-vector machine algorithm and a watershed function. Heterogeneity in activity uptake was simulated by selecting a varying amount of the cell nuclei to contain (111)In, (125)I, or (177)Lu. Absorbed dose simulations were carried out using vxlPen, a software application based on the Monte Carlo code PENELOPE. We developed a schema for radiopharmaceutical dosimetry. The schema utilizes a partially supervised segmentation method for cell-level image data together with a novel main program for voxel-based radiation dose simulations. We observed that for (177)Lu, radiation cross-fire enabled full dose coverage even if the radiopharmaceutical had accumulated to only 60% of the spheroid cells. This effect was not found with (111)In and (125)I. Using these Auger/internal conversion electron emitters seemed to guarantee that only the cells with a high enough activity uptake will accumulate a lethal amount of dose, while neighboring cells are spared. We computed absorbed radiation dose distributions in a 3D-cultured cell spheroid with a novel multicellular dosimetric chain. Combined with pharmacological studies in different tissue models, our cell-level dosimetric calculation method can clarify dose-response relationships for radiopharmaceuticals used in MRT. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Experimental dosimetric comparison of (1)H, (4)He, (12)C and (16)O scanned ion beams.

    PubMed

    Tessonnier, T; Mairani, A; Brons, S; Haberer, T; Debus, J; Parodi, K

    2017-05-21

    At the Heidelberg Ion Beam Therapy Center, scanned helium and oxygen ion beams are available in addition to the clinically used protons and carbon ions for physical and biological experiments. In this work, a study of the basic dosimetric features of the different ions is performed in the entire therapeutic energy range. Depth dose distributions are investigated for pencil-like beam irradiation, with and without a modulating ripple filter, focusing on the extraction of key Bragg curve parameters, such as the range, the peak-width and the distal 80%-20% fall-off. Pencil-beam lateral profiles are measured at different depths in water, and parameterized with multiple Gaussian functions. A more complex situation of an extended treatment field is analyzed through a physically optimized spread-out Bragg peak, delivered with beam scanning. The experimental results of this physical beam characterization indicate that helium ions could afford a more conformal treatment and in turn, increased tumor control. This is mainly due to a smaller lateral scattering than with protons, leading to better lateral and distal fall-off, as well as a lower fragmentation tail compared to carbon and oxygen ions. Moreover, the dosimetric dataset can be used directly for comparison with results from analytical dose engines or Monte Carlo codes. Specifically, it was used at the Heidelberg Ion Beam Therapy Center to generate a new input database for a research analytical treatment planning system, as well as for validation of a general purpose Monte Carlo program, in order to lay the groundwork for biological experiments and further patient planning studies.

  4. Dosimetric Quantities for Computed Tomography Examinations of Paediatric Patients on the Thoracic and Abdominal Regions

    SciTech Connect

    Flores-M, E.; Gamboa de Buen, I.; Buenfil, A. E.; Ruiz-Trejo, C.; Dies, P.

    2010-12-07

    Computed Tomography (CT) is a high dose X ray imaging procedure and its use has rapidly increased in the last two decades fueled by the development of helical CT. The aim of this study is to present values of the dosimetric quantities for CT paediatric examinations of thoracic and abdominal regions. The protocols studied were those of chest, lung-mediastine, chest-abdomen, pulmonary high resolution and mediastine-abdomen, which are the more common examinations performed at ''Hospital Infantil de Mexico Federico Gomez'' in the thoracic-abdominal region. The measurements were performed on a Siemens SOMATOM Sensation 16 CT Scanner and the equipment used was a CT pencil ionization chamber, connected to an electrometer. This system was calibrated for RQT9 CT beam quality. A PMMA head phantom with diameter of 16 cm and length of 15 cm was also used. The dosimetric quantities measured were the weighted air kerma index (C{sub w}), the volumetric dose index (C{sub vol}) and the CT air kerma-length product. It was found that the pulmonary high resolution examination presented the highest values for the C{sub w}(31.1 mGy) and C{sub vol}(11.1 mGy). The examination with the lowest values of these two quantities was the chest-abdomen protocol with 10.5 mGy for C{sub w} and 5.5 mGy for C{sub vol}. However, this protocol presented the highest value for P{sub KL,CT}(282.2 mGy cm) when considering the average clinical length of the examinations.

  5. SU-E-T-09: A Dosimetric Analysis of Various Clinically Used Bolus Materials

    SciTech Connect

    Stowe, M; Yeager, C; Zhou, F; Hand, C

    2014-06-01

    Purpose: To evaluate the dosimetric effect of various clinically used bolus materials. Methods: Materials investigated include solid water, superflab, wet gauze, wet sheets, Play-Doh{sup ™}, and gauze embedded with petroleum jelly. Each bolusing material was scanned in a Philips CT to determine the Hounsfield unit (HU) and to verify uniformity throughout the material. Using the corresponding HU, boluses of 0.5 cm and 1.0 cm thicknesses were created in the Eclipse treatment planning system (TPS) on a solid water phantom. Dose was calculated at various depths for beam energies 6 MV, 6 MeV, 9 MeV, and 12 MeV to determine the effects of each material on deposition of dose. In addition, linac-based measurements at these energies were made using a farmer chamber in solid water. Wet sheets and wet gauze were measured with various water content to quantify the effects on dose. Results: Preliminary CT scans find a range in HU of bolus materials from −120 to almost 300. There is a trend in the dose at depth based on the HU of the material; however inconsistencies are found when the bolus materials have a negative HU value. The measured data indicates that there is a linear relationship between the mass of water in a material and the dose reading, the slope of which is material dependent. Conclusion: Due to the variation in HU of the bolus materials studied, it is recommended that any new bolus be evaluated before clinical use to determine physical and dosimetric properties. If possible, patients should have bolus included in their CT scans; or if the bolus is created in the TPS, the HU should correspond to the material used. For water-soaked materials, once the bolus material is selected (gauze or sheet), the bolusing effect is only dependent on the amount of water applied to the material.

  6. SU-E-T-314: Dosimetric Effect of Smooth Drilling On Proton Compensators in Prostate Patients

    SciTech Connect

    Reyhan, M; Yue, N; Zou, J

    2015-06-15

    Purpose: To evaluate the dosimetric effect of smooth drilling of proton compensators in proton prostate plans when compared to typical plunge drilling settings. Methods: Twelve prostate patients were planned in Eclipse treatment planning system using three different drill settings Smooth, Plunge drill A, and Plunge drill B. The differences between A and B were: spacing X[cm]: 0.4(A), 0.1(B), spacing Y[cm]: 0.35(A), 0.1(B), row offset [cm]: 0.2(A), 0(B). Planning parameters were kept consistent between the different plans, which utilized two opposed lateral beams arrangement. Mean differences absolute dosimetry in OAR constraints are presented. Results: The smooth drilled compensator based plans yielded equivalent target coverage to the plans generated with drill settings A and B. Overall, the smooth compensators reduced dose to the majority of organs at risk compared to settings A and B. Constraints were reduced for the following OAR: Rectal V75 by 2.12 and 2.48%, V70 by 2.45 and 2.91%, V65 by 2.85 and 3.37%, V50 by 2.3 and 5.1%, Bladder V65 by 4.49 and 3.67%, Penial Bulb mean by 3.7 and 4.2Gy, and the maximum plan dose 5.3 and 7.4Gy for option A vs smooth and option B vs smooth respectively. The femoral head constraint (V50<5%) was met by all plans, but it was not consistently lower for the smooth drilling plan. Conclusion: Smooth drilled compensators provide equivalent target coverage and overall slightly cooler plans to the majority of organs at risk; it also minimizes the potential dosimetric impacts caused by patient positioning uncertainty.

  7. Experimental dosimetric comparison of 1H, 4He, 12C and 16O scanned ion beams

    NASA Astrophysics Data System (ADS)

    Tessonnier, T.; Mairani, A.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.

    2017-05-01

    At the Heidelberg Ion Beam Therapy Center, scanned helium and oxygen ion beams are available in addition to the clinically used protons and carbon ions for physical and biological experiments. In this work, a study of the basic dosimetric features of the different ions is performed in the entire therapeutic energy range. Depth dose distributions are investigated for pencil-like beam irradiation, with and without a modulating ripple filter, focusing on the extraction of key Bragg curve parameters, such as the range, the peak-width and the distal 80%-20% fall-off. Pencil-beam lateral profiles are measured at different depths in water, and parameterized with multiple Gaussian functions. A more complex situation of an extended treatment field is analyzed through a physically optimized spread-out Bragg peak, delivered with beam scanning. The experimental results of this physical beam characterization indicate that helium ions could afford a more conformal treatment and in turn, increased tumor control. This is mainly due to a smaller lateral scattering than with protons, leading to better lateral and distal fall-off, as well as a lower fragmentation tail compared to carbon and oxygen ions. Moreover, the dosimetric dataset can be used directly for comparison with results from analytical dose engines or Monte Carlo codes. Specifically, it was used at the Heidelberg Ion Beam Therapy Center to generate a new input database for a research analytical treatment planning system, as well as for validation of a general purpose Monte Carlo program, in order to lay the groundwork for biological experiments and further patient planning studies.

  8. Determination of dosimetric parameters for shielded 153Gd source in prostate cancer brachytherapy

    PubMed Central

    Ghorbani, Mahdi; Ghatei, Najmeh; Mehrpouyan, Mohammad; Meigooni, Ali S.; Shahraini, Ramin

    2017-01-01

    Abstract Background Interstitial rotating shield brachytherapy (I-RSBT) is a recently developed method for treatment of prostate cancer. In the present study TG-43 dosimetric parameters of a 153Gd source were obtained for use in I-RSBT. Materials and methods A 153Gd source located inside a needle including a Pt shield and an aluminum window was simulated using MCNPX Monte Carlo code. Dosimetric parameters of this source model, including air kerma strength, dose rate constant, radial dose function and 2D anisotropy function, with and without the shields were calculated according to the TG-43 report. Results The air kerma strength was found to be 6.71 U for the non-shielded source with 1 GBq activity. This value was found to be 0.04 U and 6.19 U for the Pt shield and Al window cases, respectively. Dose rate constant for the non-shielded source was found to be 1.20 cGy/(hU). However, for a shielded source with Pt and aluminum window, dose rate constants were found to be 0.07 cGy/(hU) and 0.96 cGy/(hU), on the shielded and window sides, respectively. The values of radial dose function and anisotropy function were tabulated for these sources. Additionally, isodose curves were drawn for sources with and without shield, in order to evaluate the effect of shield on dose distribution. Conclusions Existence of the Pt shield may greatly reduce the dose to organs at risk and normal tissues which are located toward the shielded side. The calculated air kerma strength, dose rate constant, radial dose function and 2D anisotropy function data for the 153Gd source for the non-shielded and the shielded sources can be used in the treatment planning system (TPS). PMID:28265239

  9. Dosimetric characterization of round HDR {sup 192}Ir AccuBoost applicators for breast brachytherapy

    SciTech Connect

    Rivard, Mark J.; Melhus, Christopher S.; Wazer, David E.; Bricault, Raymond J. Jr.

    2009-11-15

    Purpose: The AccuBoost brachytherapy system applies HDR {sup 192}Ir beams peripherally to the breast using collimating applicators. The purpose of this study was to benchmark Monte Carlo simulations of the HDR {sup 192}Ir source, to dosimetrically characterize the round applicators using established Monte Carlo simulation and radiation measurement techniques and to gather data for clinical use. Methods: Dosimetric measurements were performed in a polystyrene phantom, while simulations estimated dose in air, liquid water, polystyrene and ICRU 44 breast tissue. Dose distribution characterization of the 4-8 cm diameter collimators was performed using radiochromic EBT film and air ionization chambers. Results: The central axis dose falloff was steeper for the 4 cm diameter applicator in comparison to the 8 cm diameter applicator, with surface to 3 cm depth-dose ratios of 3.65 and 2.44, respectively. These ratios did not considerably change when varying the phantom composition from breast tissue to polystyrene, phantom thickness from 4 to 8 cm, or phantom radius from 8 to 15 cm. Dose distributions on the central axis were fitted to sixth-order polynomials for clinical use in a hand calculation spreadsheet (i.e., nomogram). Dose uniformity within the useful applicator apertures decreased as depth-dose increased. Conclusions: Monte Carlo benchmarking simulations of the HDR {sup 192}Ir source using the MCNP5 radiation transport code indicated agreement within 1% of the published results over the radial/angular region of interest. Changes in phantom size and radius did not cause noteworthy changes in the central axis depth-dose. Polynomial fit depth-dose curves provide a simple and accurate basis for a nomogram.

  10. Dosimetric Impact of Interplay Effect on RapidArc Lung Stereotactic Treatment Delivery

    SciTech Connect

    Ong, Chin Loon; Verbakel, Wilko F.A.R.; Cuijpers, Johan P.; Slotman, Ben J.; Senan, Suresh

    2011-01-01

    Purpose: Volumetric modulated arc therapy (RapidArc; Varian Medical Systems, Palo Alto, CA) allows fast delivery of stereotactic radiotherapy for Stage I lung tumors. We investigated discrepancies between the calculated and delivered dose distributions, as well as the dosimetric impact of leaf interplay with breathing-induced tumor motion. Methods and Materials: In 20 consecutive patients with Stage I lung cancer who completed RapidArc delivery, 15 had tumor motion exceeding 5 mm on four-dimensional computed tomography scan. Static and dynamic measurements were performed with Gafchromic EBT film (International Specialty Products Inc., Wayne, NJ) in a Quasar motion phantom (Modus Medical Devices, London, Ontario, Canada). Static measurements were compared with calculated dose distributions, and dynamic measurements were compared with the convolution of static measurements with sinusoidal motion patterns. Besides clinical treatment plans, additional cases were optimized to create excessive multileaf collimator modulation and delivered on the phantom with peak-to-peak motions of up to 25 mm. {gamma} Analysis with a 3% dose difference and 2- or 1-mm distance to agreement was used to evaluate the accuracy of delivery and the dosimetric impact of the interplay effect. Results: In static mode film dosimetry of the two-arc delivery in the phantom showed that, on average, fewer than 3% of measurements had {gamma} greater than 1. Dynamic measurements of clinical plans showed a high degree of agreement with the convolutions: for double-arc plans, 99.5% met the {gamma} criterion. The degree of agreement was 98.5% for the plans with excessive multileaf collimator modulations and 25 mm of motion. Conclusions: Film dosimetry shows that RapidArc accurately delivers the calculated dose distribution and that interplay between leaves and tumor motion is not significant for single-fraction treatments when RapidArc is delivered with two different arcs.

  11. Effect of heterogeneity correction on dosimetric parameters of radiotherapy planning for thoracic esophageal cancer

    SciTech Connect

    Nakayama, Masao; Yoshida, Kenji; Nishimura, Hideki; Miyawaki, Daisuke; Uehara, Kazuyuki; Okamoto, Yoshiaki; Okayama, Takanobu; Sasaki, Ryohei

    2014-04-01

    The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose, and dose that covers 95% of the PTV between the first and second plans were 1.10 Gy (1.8%), 1.35 Gy (2.2%), 1.10 Gy (1.9%), and 0.56 Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30 Gy (lung V{sub 5}, V{sub 10}, V{sub 20}, and V{sub 30}) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V{sub 5} and V{sub 10}) than on the dosimetric parameters related to the PTV and other OARs.

  12. Conventional Versus Automated Implantation of Loose Seeds in Prostate Brachytherapy: Analysis of Dosimetric and Clinical Results

    SciTech Connect

    Genebes, Caroline; Filleron, Thomas; Graff, Pierre; Jonca, Frédéric; Huyghe, Eric; Thoulouzan, Matthieu; Soulie, Michel; Malavaud, Bernard; Aziza, Richard; Brun, Thomas; Delannes, Martine; Bachaud, Jean-Marc

    2013-11-15

    Purpose: To review the clinical outcome of I-125 permanent prostate brachytherapy (PPB) for low-risk and intermediate-risk prostate cancer and to compare 2 techniques of loose-seed implantation. Methods and Materials: 574 consecutive patients underwent I-125 PPB for low-risk and intermediate-risk prostate cancer between 2000 and 2008. Two successive techniques were used: conventional implantation from 2000 to 2004 and automated implantation (Nucletron, FIRST system) from 2004 to 2008. Dosimetric and biochemical recurrence-free (bNED) survival results were reported and compared for the 2 techniques. Univariate and multivariate analysis researched independent predictors for bNED survival. Results: 419 (73%) and 155 (27%) patients with low-risk and intermediate-risk disease, respectively, were treated (median follow-up time, 69.3 months). The 60-month bNED survival rates were 95.2% and 85.7%, respectively, for patients with low-risk and intermediate-risk disease (P=.04). In univariate analysis, patients treated with automated implantation had worse bNED survival rates than did those treated with conventional implantation (P<.0001). By day 30, patients treated with automated implantation showed lower values of dose delivered to 90% of prostate volume (D90) and volume of prostate receiving 100% of prescribed dose (V100). In multivariate analysis, implantation technique, Gleason score, and V100 on day 30 were independent predictors of recurrence-free status. Grade 3 urethritis and urinary incontinence were observed in 2.6% and 1.6% of the cohort, respectively, with no significant differences between the 2 techniques. No grade 3 proctitis was observed. Conclusion: Satisfactory 60-month bNED survival rates (93.1%) and acceptable toxicity (grade 3 urethritis <3%) were achieved by loose-seed implantation. Automated implantation was associated with worse dosimetric and bNED survival outcomes.

  13. Calibration of a TLD-100 powder dosimetric system to verify the absorbed dose to water imparted by 137Cs sources in low dose rate brachytherapy at the oncology unit in the Hospital General de Mexico.

    PubMed

    Alvarez Romero, J T; Tovar Muñoz, V M; de León, B Salinas; Oviedo, J O Hernández; Barcenas, L Santillán; Milo, C Molero; Monterrubio, J Montoya

    2006-01-01

    A thermoluminescence dosimetry (TLD) system was characterised at SSDL-ININ to verify the air-kerma strength (S(K)) and dose-to-water (D(W)) values for (137)Cs sources used in low dose rate (LDR) brachytherapy treatments at the Hospital General de Mexico (HGM). It consists of a Harshaw 3500 reader and a set of TLD-100 powder capsules. The samples of TLD-100 powder were calibrated in terms of D(W) vs. nC or nC mg(-1), and their dose response curves were corrected for supralinearity. The D(W) was calculated using the AAPM TG-43 formalism using S(K) for a CDCSM4 (137)Cs reference source. The S(K) value was obtained by using a NE 2611 chamber, and with two well chambers. The angular anisotropy factor was measured with the NE 2611 chamber for this source. The HGM irradiated TLD-100 powder capsules to a reference dose D(W) of 2 Gy with their (137)Cs sources. The percent deviations between the imparted and reference doses were 1.2% < or = Delta < or = 6.5%, which are consistent with the combined uncertainties: 5.6% < or = u(c) < or = 9.8% for D(W).

  14. Geometric and dosimetric uncertainties in intracranial stereotatctic treatments for multiple nonisocentric lesions.

    PubMed

    Winey, Brian; Bussiére, Marc

    2014-05-01

    The purpose of this study was to determine the effects of geometric uncertainties of patient position on treatments of multiple nonisocentric intracranial lesions. The average distance between lesions in patients with multiple targets was determined by a retrospective survey of patients with multiple lesions. Retrospective patient imaging data from fractionated stereotactic patients were used to calculate interfractional and intrafractional patient position uncertainty. Three different immobilization devices were included in the positioning study. The interfractional and intrafractional patient positioning error data were used to calculate the geometric offset of a lesion located at varying distances from the mechanical isocenter for treatments of multiple lesions with a single arc, assuming that no intrafractional position correction is employed during an arc rotation. Dosimetric effects were studied using two representative lesions of two sizes, 6 mm and 13 mm maximum dimensions, and prescribed to 20 Gy and 18 Gy, respectively. Distances between lesions ranged from < 10 mm to 150 mm, which would correspond to a range of isocenter to lesion separations of < 10 mm to 75 mm, assuming an isocenter located at the geometric mean. In the presence of a full six degree of freedom patient correction system, the effects of the intrafractional patient positioning uncertainties were less than 1.8 mm (3.6 mm) for 1σ (2σ) deviations for lesion spacing up to 75 mm assuming a quadratic summation of 1σ and 2σ. Without the benefit of a six DOF correction device, only correcting for three translations, the effects of the intrafractional patient positioning uncertainties were within 3.1 mm (7.2 mm) for 1σ (2σ) deviations for distances up to 75 mm. 1σ and 2σ deviations along all six axes were observed in 3.6% and 0.3%, respectively, of 974 fractions analyzed. Dosimetric effects for 2 mm and 4 mm offsets were most significant for the small lesion with minimum dose (Dmin

  15. Geometric and dosimetric uncertainties in intracranial stereotatctic treatments for multiple nonisocentric lesions.

    PubMed

    Winey, Brian; Bussiere, Marc

    2014-05-08

    The purpose of this study was to determine the effects of geometric uncertainties of patient position on treatments of multiple nonisocentric intracranial lesions. The average distance between lesions in patients with multiple targets was determined by a retrospective survey of patients with multiple lesions. Retrospective patient imaging data from fractionated stereotactic patients were used to calculate interfractional and intrafractional patient position uncertainty. Three different immobilization devices were included in the positioning study. The interfractional and intrafractional patient positioning error data were used to calculate the geometric offset of a lesion located at varying distances from the mechanical isocenter for treatments of multiple lesions with a single arc, assuming that no intrafractional position correction is employed during an arc rotation. Dosimetric effects were studied using two representative lesions of two sizes, 6 mm and 13 mm maximum dimensions, and prescribed to 20 Gy and 18 Gy, respectively. Distances between lesions ranged from < 10 mm to 150 mm, which would correspond to a range of isocenter to lesion separations of < 10 mm to 75 mm, assuming an isocenter located at the geometric mean. In the presence of a full six degree of freedom patient correction system, the effects of the intrafractional patient positioning uncertainties were less than 1.8 mm (3.6mm) for 1σ (2σ) deviations for lesion spacing up to 75 mm assuming a quadratic summation of 1σ and 2σ. Without the benefit of a six DOF correction device, only correcting for three translations, the effects of the intrafractional patient positioning uncertainties were within 3.1 mm (7.2 mm) for 1σ (2σ) deviations for distances up to 75 mm. 1σ and 2σ deviations along all six axes were observed in 3.6% and 0.3%, respectively, of 974 fractions analyzed. Dosimetric effects for 2 mm and 4 mm offsets were most significant for the small lesion with minimum dose (Dmin

  16. Energy dependence corrections to MOSFET dosimetric sensitivity.

    PubMed

    Cheung, T; Butson, M J; Yu, P K N

    2009-03-01

    Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6 MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to readings to account for this effect to provide more accurate dose assessments both in phantom and in-vivo.

  17. Contura Multi-Lumen Balloon Breast Brachytherapy Catheter: Comparative Dosimetric Findings of a Phase 4 Trial

    SciTech Connect

    Arthur, Douglas W.; Vicini, Frank A.; Julian, Thomas B.; Cuttino, Laurie W.; Mukhopadhyay, Nitai D.

    2013-06-01

    Purpose: Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Methods and Materials: Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥95% of the prescribed dose (PD) covering ≥95% of the target volume (TV); maximum skin dose ≤125% of the PD; maximum rib dose ≤145% of the PD; and V150 ≤50 cc and V200 ≤10 cc. Results: Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Conclusions: Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals.

  18. Dosimetric uncertainty in prostate cancer proton radiotherapy

    SciTech Connect

    Lin Liyong; Vargas, Carlos; Hsi Wen; Indelicato, Daniel; Slopsema, Roelf; Li Zuofeng; Yeung, Daniel; Horne, Dave; Palta, Jatinder

    2008-11-15

    Purpose: The authors we evaluate the uncertainty in proton therapy dose distribution for prostate cancer due to organ displacement, varying penumbra width of proton beams, and the amount of rectal gas inside the rectum. Methods and Materials: Proton beam treatment plans were generated for ten prostate patients with a minimum dose of 74.1 cobalt gray equivalent (CGE) to the planning target volume (PTV) while 95% of the PTV received 78 CGE. Two lateral or lateral oblique proton beams were used for each plan. The authors we investigated the uncertainty in dose to the rectal wall (RW) and the bladder wall (BW) due to organ displacement by comparing the dose-volume histograms (DVH) calculated with the original or shifted contours. The variation between DVHs was also evaluated for patients with and without rectal gas in the rectum for five patients who had 16 to 47 cc of visible rectal gas in their planning computed tomography (CT) imaging set. The uncertainty due to the varying penumbra width of the delivered protons for different beam setting options on the proton delivery system was also evaluated. Results: For a 5 mm anterior shift, the relative change in the RW volume receiving 70 CGE dose (V{sub 70}) was 37.9% (5.0% absolute change in 13.2% of a mean V{sub 70}). The relative change in the BW volume receiving 70 CGE dose (V{sub 70}) was 20.9% (4.3% absolute change in 20.6% of a mean V{sub 70}) with a 5 mm inferior shift. A 2 mm penumbra difference in beam setting options on the proton delivery system resulted in the relative variations of 6.1% (0.8% absolute change) and 4.4% (0.9% absolute change) in V{sub 70} of RW and BW, respectively. The data show that the organ displacements produce absolute DVH changes that generally shift the entire isodose line while maintaining the same shape. The overall shape of the DVH curve for each organ is determined by the penumbra and the distance of the target in beam's eye view (BEV) from the block edge. The beam setting option

  19. Analysis of superficial fluorescence patterns in nonmelanoma skin cancer during photodynamic therapy by a dosimetric model

    NASA Astrophysics Data System (ADS)

    Salas-García, I.; Fanjul-Vélez, F.; Arce-Diego, J. L.

    2016-03-01

    In this work the superficial fluorescence patterns in different nonmelanoma skin cancers and their photodynamic treatment response are analysed by a fluorescence based dosimetric model. Results show differences of even more than 50% in the fluorescence patterns as photodynamic therapy progresses depending on the malignant tissue type. They demonstrate the great relevance of the biological media as an additional dosimetric factor and contribute to the development of a future customized therapy with the assistance of dosimetric tools to interpret the fluorescence images obtained during the treatment monitoring and the differential photodiagnosis.

  20. Correlation of dosimetric parameters obtained with the analytical anisotropic algorithm and toxicity of chest chemoradiation in lung carcinoma

    SciTech Connect

    Cartier, Lysian; Auberdiac, Pierre; Khodri, Mustapha; Malkoun, Nadia; Chargari, Cyrus; Thorin, Julie; Melis, Adrien; Talabard, Jean-Noeel; Laroche, Guy de; Fournel, Pierre; Tiffet, Olivier; Schmitt, Thierry; and others

    2012-07-01

    The purpose of this study was to analyze and revisit toxicity related to chest chemoradiotherapy and to correlate these side effects with dosimetric parameters obtained using analytical anisotropic algorithm (AAA) in locally unresectable advanced lung cancer. We retrospectively analyzed data from 47 lung cancer patients between 2005 and 2008. All received conformal 3D radiotherapy using high-energy linear accelerator plus concomitant chemotherapy. All treatment planning data were transferred into Eclipse 8.05 (Varian Medical Systems, Palo Alto, CA) and dosimetric calculations were performed using AAA. Thirty-three patients (70.2%) developed acute pneumopathy after radiotherapy (grades 1 and 2). One patient (2.1%) presented with grade 3 pneumopathy. Thirty-one (66%) presented with grades 1-2 lung fibrosis, and 1 patient presented with grade 3 lung fibrosis. Thirty-four patients (72.3%) developed grade 1-2 acute oesophagic toxicity. Four patients (8.5%) presented with grades 3 and 4 dysphagia, necessitating prolonged parenteral nutrition. Median prescribed dose was 64 Gy (range 50-74) with conventional fractionation (2 Gy per fraction). Dose-volume constraints were respected with a median V20 of 23.5% (maximum 34%) and a median V30 of 17% (maximum 25%). The median dose delivered to healthy contralateral lung was 13.1 Gy (maximum 18.1 Gy). At univariate analysis, larger planning target volume and V20 were significantly associated with the probability of grade {>=}2 radiation-induced pneumopathy (p = 0.022 and p = 0.017, respectively). No relation between oesophagic toxicity and clinical/dosimetric parameters could be established. Using AAA, the present results confirm the predictive value of the V20 for lung toxicity as already demonstrated with the conventional pencil beam convolution approach.

  1. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-04-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within {+-}1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 {+-} 6.3%) and higher MU (13.7 {+-} 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  2. TH-E-BRE-05: Analysis of Dosimetric Characteristics in Two Leaf Motion Calculator Algorithms for Sliding Window IMRT

    SciTech Connect

    Wu, L; Huang, B; Rowedder, B; Ma, B; Kuang, Y

    2014-06-15

    Purpose: The Smart leaf motion calculator (SLMC) in Eclipse treatment planning system is an advanced fluence delivery modeling algorithm as it takes into account fine MLC features including inter-leaf leakage, rounded leaf tips, non-uniform leaf thickness, and the spindle cavity etc. In this study, SLMC and traditional Varian LMC (VLMC) algorithms were investigated, for the first time, in dosimetric characteristics and delivery accuracy of sliding window (SW) IMRT. Methods: The SW IMRT plans of 51 cancer cases were included to evaluate dosimetric characteristics and dose delivery accuracy from leaf motion calculated by SLMC and VLMC, respectively. All plans were delivered using a Varian TrueBeam Linac. The DVH and MUs of the plans were analyzed. Three patient specific QA tools - independent dose calculation software IMSure, Delta4 phantom, and EPID portal dosimetry were also used to measure the delivered dose distribution. Results: Significant differences in the MUs were observed between the two LMCs (p≤0.001).Gamma analysis shows an excellent agreement between the planned dose distribution calculated by both LMC algorithms and delivered dose distribution measured by three QA tools in all plans at 3%/3 mm, leading to a mean pass rate exceeding 97%. The mean fraction of pixels with gamma < 1 of SLMC is slightly lower than that of VLMC in the IMSure and Delta4 results, but higher in portal dosimetry (the highest spatial resolution), especially in complex cases such as nasopharynx. Conclusion: The study suggests that the two LMCs generates the similar target coverage and sparing patterns of critical structures. However, SLMC is modestly more accurate than VLMC in modeling advanced MLC features, which may lead to a more accurate dose delivery in SW IMRT. Current clinical QA tools might not be specific enough to differentiate the dosimetric discrepancies at the millimeter level calculated by these two LMC algorithms. NIH/NIGMS grant U54 GM104944, Lincy Endowed

  3. Dosimetric comparison of split field and fixed jaw techniques for large IMRT target volumes in the head and neck.

    PubMed

    Srivastava, Shiv P; Das, Indra J; Kumar, Arvind; Johnstone, Peter A S

    2011-01-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within ± 1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 ± 6.3%) and higher MU (13.7 ± 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights

  4. The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac

    NASA Astrophysics Data System (ADS)

    Bilal Ahmad, Syed; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M.

    2017-08-01

    Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml-1 were used to represent the gadolinium uptake in the patient’s GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml-1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml-1. This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml-1. If the gadolinium concentration is lower than 23 mg ml-1, then a correction for the presence of gadolinium may not be necessary in the TPS.

  5. Dosimetric and geometric evaluation of a novel stereotactic radiotherapy device for breast cancer: The GammaPod Trade-Mark-Sign

    SciTech Connect

    Mutaf, Yildirim D.; Yi, Byong Yong; Prado, Karl; D'Souza, Warren D.; Regine, William F.; Feigenberg, Steven J.; Zhang Jin; Yu, Cedric X.

    2013-04-15

    Purpose: A dedicated stereotactic gamma irradiation device, the GammaPod Trade-Mark-Sign from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department. Methods: The GammaPod Trade-Mark-Sign stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 {sup 60}Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60 Degree-Sign intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios. Results: Loaded with 36 {sup 60}Co sources with cumulative activity of 4320 Ci, the prototype GammaPod Trade-Mark-Sign unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod Trade-Mark-Sign device is found to deliver

  6. Dosimetric characterization of the M-15 high-dose-rate Iridium-192 brachytherapy source using the AAPM and ESTRO formalism.

    PubMed

    Ho Than, Minh-Tri; Munro Iii, John J; Medich, David C

    2015-05-08

    The Source Production & Equipment Co. (SPEC) model M-15 is a new Iridium-192 brachytherapy source model intended for use as a temporary high-dose-rate (HDR) brachytherapy source for the Nucletron microSelectron Classic afterloading system. The purpose of this study is to characterize this HDR source for clinical application by obtaining a complete set of Monte Carlo calculated dosimetric parameters for the M-15, as recommended by AAPM and ESTRO, for isotopes with average energies greater than 50 keV. This was accomplished by using the MCNP6 Monte Carlo code to simulate the resulting source dosimetry at various points within a pseudoinfinite water phantom. These dosimetric values next were converted into the AAPM and ESTRO dosimetry parameters and the respective statistical uncertainty in each parameter also calculated and presented. The M-15 source was modeled in an MCNP6 Monte Carlo environment using the physical source specifications provided by the manufacturer. Iridium-192 photons were uniformly generated inside the iridium core of the model M-15 with photon and secondary electron transport replicated using photoatomic cross-sectional tables supplied with MCNP6. Simulations were performed for both water and air/vacuum computer models with a total of 4 × 109 sources photon history for each simulation and the in-air photon spectrum filtered to remove low-energy photons belowδ = 10 keV. Dosimetric data, including D·(r,θ), gL(r), F(r,θ), φan(r), and φ-an, and their statistical uncertainty were calculated from the output of an MCNP model consisting of an M-15 source placed at the center of a spherical water phantom of 100 cm diameter. The air kerma strength in free space, SK, and dose rate constant, Λ, also was computed from a MCNP model with M-15 Iridium-192 source, was centered at the origin of an evacuated phantom in which a critical volume containing air at STP was added 100 cm from the source center. The reference dose rate, D·(r0,θ0) ≡ D· (1cm

  7. Dosimetric comparison of two arc-based stereotactic body radiotherapy techniques for early-stage lung cancer.

    PubMed

    Liu, Huan; Ye, Jingjing; Kim, John J; Deng, Jun; Kaur, Monica S; Chen, Zhe Jay

    2015-01-01

    To compare the dosimetric and delivery characteristics of two arc-based stereotactic body radiotherapy (SBRT) techniques for early-stage lung cancer treatment. SBRT treatment plans for lung tumors of different sizes and locations were designed using a single-isocenter multisegment dynamic conformal arc technique (SiMs-arc) and a volumetric modulated arc therapy technique (RapidArc) for 5 representative patients treated previously with lung SBRT. The SiMs-arc plans were generated with the isocenter located in the geometric center of patient׳s axial plane (which allows for collision-free gantry rotation around the patient) and 6 contiguous 60° arc segments spanning from 1° to 359°. 2 RapidArc plans, one using the same arc geometry as the SiMs-arc and the other using typical partial arcs (210°) with the isocenter inside planning target volume (PTV), were generated for each corresponding SiMs-arc plan. All plans were generated using the Varian Eclipse treatment planning system (V10.0) and were normalized with PTV V100 to 95%. PTV coverage, dose to organs at risk, and total monitor units (MUs) were then compared and analyzed. For PTV coverage, the RapidArc plans generally produced higher PTV D99 (by 1.0% to 3.3%) and higher minimum dose (by 2.7% to 12.7%), better PTV conformality index (by 1% to 8%), and less volume of 50% dose outside 2cm from PTV (by 0 to 20.8cm(3)) than the corresponding SiMs-arc plans. For normal tissues, no significant dose differences were observed for the lungs, trachea, chest wall, and heart; RapidArc using partial arcs produced lowest maximum dose to spinal cord. For dose delivery, the RapidArc plans typically required 50% to 90% more MUs than SiMs-arc plans to deliver the same prescribed dose. The additional intensity modulation afforded by variable gantry speed and dose rate and by overlapping arcs enabled RapidArc plans to produce dosimetrically improved plans for lung SBRT, but required more MUs (by a factor > 1.5) to deliver. The

  8. Dosimetric comparison of two arc-based stereotactic body radiotherapy techniques for early-stage lung cancer

    SciTech Connect

    Liu, Huan Ye, Jingjing; Kim, John J.; Deng, Jun; Kaur, Monica S.; Chen, Zhe

    2015-04-01

    To compare the dosimetric and delivery characteristics of two arc-based stereotactic body radiotherapy (SBRT) techniques for early-stage lung cancer treatment. SBRT treatment plans for lung tumors of different sizes and locations were designed using a single-isocenter multisegment dynamic conformal arc technique (SiMs-arc) and a volumetric modulated arc therapy technique (RapidArc) for 5 representative patients treated previously with lung SBRT. The SiMs-arc plans were generated with the isocenter located in the geometric center of patient's axial plane (which allows for collision-free gantry rotation around the patient) and 6 contiguous 60° arc segments spanning from 1° to 359°. 2 RapidArc plans, one using the same arc geometry as the SiMs-arc and the other using typical partial arcs (210°) with the isocenter inside planning target volume (PTV), were generated for each corresponding SiMs-arc plan. All plans were generated using the Varian Eclipse treatment planning system (V10.0) and were normalized with PTV V{sub 100} to 95%. PTV coverage, dose to organs at risk, and total monitor units (MUs) were then compared and analyzed. For PTV coverage, the RapidArc plans generally produced higher PTV D{sub 99} (by 1.0% to 3.3%) and higher minimum dose (by 2.7% to 12.7%), better PTV conformality index (by 1% to 8%), and less volume of 50% dose outside 2 cm from PTV (by 0 to 20.8 cm{sup 3}) than the corresponding SiMs-arc plans. For normal tissues, no significant dose differences were observed for the lungs, trachea, chest wall, and heart; RapidArc using partial arcs produced lowest maximum dose to spinal cord. For dose delivery, the RapidArc plans typically required 50% to 90% more MUs than SiMs-arc plans to deliver the same prescribed dose. The additional intensity modulation afforded by variable gantry speed and dose rate and by overlapping arcs enabled RapidArc plans to produce dosimetrically improved plans for lung SBRT, but required more MUs (by a factor > 1.5) to

  9. Dosimetric aspects of radiolabeled antibodies for tumor therapy

    SciTech Connect

    Humm, J.L.

    1986-09-01

    Radioimmunotherapy (RIT) is rapidly attracting interest as a potential new weapon in the arsenal for cancer therapy. This article concentrates on some of the dosimetric aspects affecting the potential success of RIT, and examines factors which influence the choice of a radiolabel for RIT. No radionuclide is likely to give an optimum tumor/nontumor insult for all tumor types; therefore, the concept of matching the source to tumor morphology is introduced. Lists of candidate radionuclides are given, classified according to the type of decay, range, and energy of the emission. The article examines how the choice of radionuclide for radiolabeling the antibody affects the local energy deposition in the tumor. Both the effect of tumor size on the energy absorbed fraction and the problem of antibody binding heterogeneity are discussed. The approach to RIT is to relate the choice of radionuclide to the physical properties of the tumor. 26 references.

  10. Dosimetric characteristic of a new 125I brachytherapy source.

    PubMed

    Sadeghi, Mahdi; Khanmohammadi, Zahra

    2011-11-01

    A new brachytherapy (125)I source has been investigated at Iranian Agricultural, Medical and Industrial Research School. Dosimetric characteristics [dose-rate constant Λ, radial dose function g(l)(r) and anisotropy function F(r,)] of IRA-(125)I were theoretically determined in terms of the updated AAPM task group 43 (TG-43U1) recommendations. Versions 5 and 4C of the Monte Carlo radiation transport code were used to calculate the dosimetry parameters around the source. The Monte Carlo calculated dose-rate constant of the (125)I source in water was found to be 92×10(-4) Gy h(-1) U(-1) with an approximate uncertainty of ±3 %. Brachytherapy seed model, 6711-(125)I, carrying (125)I radionuclides, was modelled and benchmarked against previously published values. Finally, the calculated results were compared with the published results of those of other source manufacturers.

  11. Potential ocular damage from microwave exposure during electrosurgery: dosimetric survey

    SciTech Connect

    Paz, J.D.; Milliken, R.; Ingram, W.T.; Frank, A.; Atkin, A.

    1987-07-01

    A dosimetric survey of microwave radiation emitted by electrosurgical units used in operating rooms indicated that surgeons expose themselves to levels that may be hazardous, and that ocular exposures are especially high: 20 cm from the active lead, electric field strength at the eye/forehead position was 9.0 X 10(6) V2/M2 for the monopolar unit; and magnetic field strength at this position reached a magnitude of 3.5 A2/M2. These electric and magnetic fields exceeded the TLVs of the American National Standards Institute. The authors concluded that the high levels of microwave radiation generated by electrosurgery devices should receive immediate attention to assess health effects associated with such exposures.

  12. Diagnostics techniques and dosimetric evaluations for environmental radioactivity investigations

    NASA Astrophysics Data System (ADS)

    Caridi, F.; D'Agostino, M.; Belvedere, A.; Marguccio, S.; Belmusto, G.; Gatto, M. F.

    2016-10-01

    A comprehensive study was conducted about the investigation of the natural/anthropo-genic radioactivity of various environmental matrices. Different diagnostics techniques were employed: high resolution HpGe gamma spectrometry, to quantify the activity concentration of radionuclides that emit gamma photons; alpha spectrometry, for the determination of the specific activity of α -emitters radioisotopes; liquid scintillation, to measure the activity concentration of tritium, radon and total alpha/beta in liquid samples; alpha spectrometry through the Rad7 setup, to estimate the gas radon activity concentration in air, water and soil; total alpha/beta counter, for the activity concentration quantification of radionuclides, in solid samples, emitting alpha/beta particles. From the dosimetric point of view, knowledge of the radioactivity level in the environmental matrices allows to evaluate any possible radiological hazard for the population, through the calculation of the appropriate parameters of radioprotection and their comparison with the safety limits reported by the literature.

  13. Glass rod detectors for small field, stereotactic radiosurgery dosimetric audit.

    PubMed

    Perks, J; Gao, M; Smith, V; Skubic, S; Goetsch, S

    2005-03-01

    This paper demonstrates the feasibility of using glass rod detectors for quality assurance audit of radiosurgery units. Five radiosurgery units (3 Gamma Knife model C, 1 Gamma Knife model U and 1 Cyberknife) located in California participated in the study. At each center glass rod detectors were used to measure a number of dosimetric parameters including relative collimator output factor and absolute dose rate. The Gamma Knife data obtained is in excellent agreement with the commissioning data generated by the manufacturer for each unit and the Cyberknife data is in general agreement with the data published by other centers. In particular the output factor of the 4 mm Gamma Knife helmet factor, a subject of abundant debate, was measured in the range 0.863-0.872 with an accuracy of better than 1% across the four participating centers. It is hoped that this pilot study will facilitate a nationwide postal audit of stereotactic radiosurgery units.

  14. Bremsstrahlung dosimetric parameters of beta-emitting therapeutic radionuclides

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.

    2016-03-01

    Dosimetric parameters such as efficiency of bremsstrahlung, probability of energy loss of beta during bremsstrahlung production, intensity and dose rate of high, medium and low-energy beta-emitting therapeutic radionuclides in different tissues of human organs are computed. These parameters are lower in adipose tissue than all other studied tissues. The efficiency, intensity and dose rate of bremsstrahlung increases with maximum energy of the beta nuclide (Emax) and modified atomic number (Zmod) of the target tissue. The estimated bremsstrahlung efficiency, intensity and dose rate are useful in the calculations of photon track-length distributions. These parameters are useful to determine the quality and quantity of the bremsstrahlung radiation (known as the source term). Precise estimation of this source term is very important in planning for radiotherapy and diagnosis.

  15. Studies on photon buildup for some thermoluminescent dosimetric compounds

    NASA Astrophysics Data System (ADS)

    Singh, V. P.; Badiger, N. M.

    2016-03-01

    Photon buildup for some SrSO4, BaSO4, MgSO4, MnSO4, FeSO4 and ZnSO4 thermoluminescent dosimetric (TLD) compounds was investigated in the present work. Photon energy absorption buildup factors and photon exposure build factors were computed for the TLD compounds using the five-parameter geometric progression fitting method in energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The buildup factors were studied as a function of photon energy, penetration depth and chemical compositions. Effective atomic numbers and air-kerma for the TLD compounds were calculated and ICRU standard tissue equivalence was discussed.

  16. EFFECTIVE DOSIMETRIC HALF LIFE OF CESIUM 137 SOIL CONTAMINATION

    SciTech Connect

    Jannik, T; P Fledderman, P; Michael Paller, M

    2008-01-09

    In the early 1960s, an area of privately-owned swamp adjacent to the US Department of Energy's Savannah River Site (SRS), known as Creek Plantation, was contaminated by site operations. Studies conducted in 1974 estimated that approximately 925 GBq of {sup 137}Cs was deposited in the swamp. Subsequently, a series of surveys--composed of 52 monitoring locations--was initiated to characterize and trend the contaminated environment. The annual, potential, maximum doses to a hypothetical hunter were estimated by conservatively using the maximum {sup 137}Cs concentrations measured in the soil. The purpose of this report is to calculate an 'effective dosimetric' half-life for {sup 137}Cs in soil (based on the maximum concentrations) and compare it to the effective environmental half-life (based on the geometric mean concentrations).

  17. Representing the dosimetric impact of deformable image registration errors

    NASA Astrophysics Data System (ADS)

    Vickress, Jason; Battista, Jerry; Barnett, Rob; Yartsev, Slav

    2017-09-01

    Deformable image registration (DIR) is emerging as a tool in radiation therapy for calculating the cumulative dose distribution across multiple fractions of treatment. Unfortunately, due to the variable nature of DIR algorithms and dependence of performance on image quality, registration errors can result in dose accumulation errors. In this study, landmarked images were used to characterize the DIR error throughout an image space and determine its impact on dosimetric analysis. Ten thoracic 4DCT images with 300 landmarks per image study matching the end-inspiration and end-expiration phases were obtained from ‘dir-labs’. DIR was performed using commercial software MIM Maestro. The range of dose uncertainty (RDU) was calculated at each landmark pair as the maximum and minimum of the doses within a sphere around the landmark in the end-expiration phase. The radius of the sphere was defined by a measure of DIR error which included either the actual DIR error, mean DIR error per study, constant errors of 2 or 5 mm, inverse consistency error, transitivity error or the distance discordance metric (DDM). The RDUs were evaluated using the magnitude of dose uncertainty (MDU) and inclusion rate (IR) of actual error lying within the predicted RDU. The RDU was calculated for 300 landmark pairs on each 4DCT study for all measures of DIR error. The most representative RDU was determined using the actual DIR error with a MDU of 2.5 Gy and IR of 97%. Across all other measures of DIR error, the DDM was most predictive with a MDU of 2.5 Gy and IR of 86%, closest to the actual DIR error. The proposed method represents the range of dosimetric uncertainty of DIR error using either landmarks at specific voxels or measures of registration accuracy throughout the volume.

  18. SU-E-T-134: Dosimetric Implications From Organ Segmentation

    SciTech Connect

    Wu, Z; Turian, J; Chu, J

    2014-06-01

    Purpose: To evaluate the dosimetric implications resulting from organ segmentation performed by different clinical experts Methods: Twelve patients received SBRT treatment to thoracic region within the past year were selected for this study. Three physicians contoured a set of organs following RTOG guideline. DVHs of all contours were generated from the approved plans used for treatment, and were compared to those produced during planning. Most OARs were evaluated on their max dose, some, such as heart and chest wall, were also evaluated on metrics such as max dose to 4cc of volume, or 30Gy volume dose. Results: In general, there is a greater dosimetric difference between the RTOG contour sets and clinical contour sets than among the three RTOG contour sets themselves for each patient. For example, there was no difference in esophagus max dose between the RTOG contour sets for ten patients. However, they showed an average of 2.3% higher max dose than the clinical contour set, with a standard deviation of 6.6%. The proximal bronchial tree (PBT) showed a similar behavior. The average difference of PBT max dose for seven patients is 0% between the three RTOG contour sets, with standard deviation of 1%. They showed an average of 16.1% higher max dose than the clinical contour set, with a standard deviation of 126%. Conclusion: This study shows that using RTOG contouring standards improves segmentation consistency between different physicians; most of the contours examined showed less than 1% dose difference. When RTOG contour sets were compared to the clinical contour set, the differences are much more significant. Thus it is important to standardize contouring guidelines in radiation therapy treatment planning. This will reduce uncertainties in clinical outcome analysis and research studies.

  19. Effect of blood activity on dosimetric calculations for radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Zvereva, Alexandra; Petoussi-Henss, Nina; Li, Wei Bo; Schlattl, Helmut; Oeh, Uwe; Zankl, Maria; Graner, Frank Philipp; Hoeschen, Christoph; Nekolla, Stephan G.; Parodi, Katia; Schwaiger, Markus

    2016-11-01

    dosimetric calculations. Hence, blood samples should be included in all pharmacokinetic and dosimetric studies for new tracers if possible.

  20. Dosimetric Comparison in Breast Radiotherapy of 4 MV and 6 MV on Physical Chest Simulator

    SciTech Connect

    Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio; Batista Nogueira, Luciana; Lima Souza Castro, Andre; Alves de oliveira, Marcio; Galvao Dias, Humberto

    2015-07-01

    According to the World Health Organization (2014) breast cancer is the main cause of death by cancer in women worldwide. The biggest challenge of radiotherapy in the treatment of cancer is to deposit the entire prescribed dose homogeneously in the breast, sparing the surrounding tissue. In this context, this paper aimed at evaluating and comparing internal dose distribution in the mammary gland based on experimental procedures submitted to two distinct energy spectra produced in breast cancer radiotherapy. The methodology consisted of reproducing opposite parallel fields used in the treatment of breast tumors in a chest phantom. This simulator with synthetic breast, composed of equivalent tissue material (TE), was previously developed by the NRI Research Group (UFMG). The computer tomography (CT) scan of the simulator was obtained antecedently. The radiotherapy planning systems (TPS) in the chest phantom were performed in the ECLIPSE system from Varian Medical Systems and CAT 3D system from MEVIS. The irradiations were reproduced in the Varian linear accelerator, model SL- 20 Precise, 6 MV energy and Varian linear accelerator, 4 MV Clinac 6x SN11 model. Calibrations of the absorbed dose versus optical density from radiochromic films were generated in order to obtain experimental dosimetric distribution at the films positioned within the glandular and skin equivalent tissues of the chest phantom. The spatial dose distribution showed equivalence with the TPS on measurement data performed in the 6 MV spectrum. The average dose found in radiochromic films placed on the skin ranged from 49 to 79%, and from 39 to 49% in the mammary areola, for the prescribed dose. Dosimetric comparisons between the spectra of 4 and 6 MV, keeping the constant geometry of the fields applied in the same phantom, will be presented showing their equivalence in breast radiotherapy, as well as the variations will be discussed. To sum up, the dose distribution has reached the value expected in

  1. The dosimetric effects of photon energy on the quality of prostate volumetric modulated arc therapy.

    PubMed

    Mattes, Malcolm D; Tai, Cyril; Lee, Alvin; Ashamalla, Hani; Ikoro, N C

    2014-01-01

    Studies comparing the dosimetric effects of high- and low-energy photons to treat prostate cancer using 3-dimensional conformal and intensity modulated radiation therapy have yielded mixed results. With the advent of newer radiation delivery systems like volumetric modulated arc therapy (VMAT), the impact of changing photon energy is readdressed. Sixty-five patients treated for prostate cancer at our institution from 2011 to 2012 underwent CT simulation. A target volume encompassing the prostate and entire seminal vesicles was treated to 50.4 Gy, followed by a boost to the prostate and proximal seminal vesicles to a total dose of 81 Gy. The VMAT plans were generated for 6-MV and 10-MV photons under identical optimization conditions using the Eclipse system version 8.6 (Varian Medical Systems, Palo Alto, CA). The analytical anisotropic algorithm was used for all dose calculations. Plans were normalized such that 98% of the planning target volume (PTV) received 100% of the prescribed dose. Dose-volumetric data from the treatment planning system was recorded for both 6-MV and 10-MV plans, which were compared for both the entire cohort and subsets of patients stratified according to the anterior-posterior separation. Plans using 10-MV photons had statistically significantly lower relative integral dose (4.1%), gradient measure (4.1%), skin Dmax (16.9%), monitor units (13.0%), and bladder V(30) (3.1%) than plans using 6-MV photons (P < .05). There was no difference in rectal dose, high-dose-region bladder dose, PTV coverage, or conformity index. The benefit of 10-MV photons was more pronounced for thicker patients (anterior-posterior separation >21 cm) for most parameters, with statistically significant differences in bladder V(30), bladder V(65), integral dose, conformity index, and monitor units. The main dosimetric benefits of 10-MV as compared with 6-MV photons are seen in thicker patients, though for the entire cohort 10-MV plans resulted in a lower integral dose

  2. Improvements in Critical Dosimetric Endpoints Using the Contura Multilumen Balloon Breast Brachytherapy Catheter to Deliver Accelerated Partial Breast Irradiation: Preliminary Dosimetric Findings of a Phase IV Trial

    SciTech Connect

    Arthur, Douglas W.; Vicini, Frank A.; Todor, Dorin A.; Julian, Thomas B.; Lyden, Maureen R.

    2011-01-01

    Purpose: Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Methods and Materials: Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) {>=}95% of the prescribed dose (PD) covering {>=}90% of the target volume, (2) a maximum skin dose {<=}125% of the PD, (3) maximum rib dose {<=}145% of the PD, and (4) the V150 {<=}50 cc and V200 {<=}10 cc. The ability to concurrently achieve these dosimetric goals using the Contura MLB was analyzed. Results: 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was {>=}5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. Conclusion: The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered.

  3. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4.

    PubMed

    Pope, D J; Cutajar, D L; George, S P; Guatelli, S; Bucci, J A; Enari, K E; Miller, S; Siegele, R; Rosenfeld, A B

    2015-06-07

    Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences.Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors

  4. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    PubMed Central

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-01-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used

  5. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    SciTech Connect

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-02-15

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as

  6. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM Task Group No. 138 and GEC-ESTRO.

    PubMed

    DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M

    2011-02-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as

  7. Impact of gantry rotation time on plan quality and dosimetric verification--volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT).

    PubMed

    Pasler, Marlies; Wirtz, Holger; Lutterbach, Johannes

    2011-12-01

    To compare plan quality criteria and dosimetric accuracy of step-and-shoot intensity-modulated radiotherapy (ss-IMRT) and volumetric modulated arc radiotherapy (VMAT) using two different gantry rotation times. This retrospective planning study based on 20 patients was comprised of 10 prostate cancer (PC) and 10 head and neck (HN) cancer cases. Each plan contained two target volumes: a primary planning target volume (PTV) and a boost volume. For each patient, one ss-IMRT plan and two VMAT plans at 90 s (VMAT90) and 120 s (VMAT120) per arc were generated with the Pinnacle© planning system. Two arcs were provided for the PTV plans and a single arc for boost volumes. Dosimetric verification of the plans was performed using a 2D ionization chamber array placed in a full scatter phantom. VMAT reduced delivery time and monitor units for both treatment sites compared to IMRT. VMAT120 vs. VMAT90 increased delivery time and monitor units in PC plans without improving plan quality. For HN cases, VMAT120 provided comparable organs at risk sparing and better target coverage and conformity than VMAT90. In the VMAT plan verification, an average of 97.1% of the detector points passed the 3 mm, 3% γ criterion, while in IMRT verification it was 98.8%. VMAT90, VMAT120, and IMRT achieved comparable treatment plans. Slower gantry movement in VMAT120 plans only improves dosimetric quality for highly complex targets.

  8. Quantitation of the a priori dosimetric capabilities of spatial points in inverse planning and its significant implication in defining IMRT solution space

    NASA Astrophysics Data System (ADS)

    Shou, Z.; Yang, Y.; Cotrutz, C.; Levy, D.; Xing, Lei

    2005-04-01

    In inverse planning, the likelihood for the points in a target or sensitive structure to meet their dosimetric goals is generally heterogeneous and represents the a priori knowledge of the system once the patient and beam configuration are chosen. Because of this intrinsic heterogeneity, in some extreme cases, a region in a target may never meet the prescribed dose without seriously deteriorating the doses in other areas. Conversely, the prescription in a region may be easily met without violating the tolerance of any sensitive structure. In this work, we introduce the concept of dosimetric capability to quantify the a priori information and develop a strategy to integrate the data into the inverse planning process. An iterative algorithm is implemented to numerically compute the capability distribution on a case specific basis. A method of incorporating the capability data into inverse planning is developed by heuristically modulating the importance of the individual voxels according to the a priori capability distribution. The formalism is applied to a few specific examples to illustrate the technical details of the new inverse planning technique. Our study indicates that the dosimetric capability is a useful concept to better understand the complex inverse planning problem and an effective use of the information allows us to construct a clinically more meaningful objective function to improve IMRT dose optimization techniques. Part of this work was presented in the 14th International Conference on the Use of Computers in Radiation Therapy, Seoul, Korea, 2004.

  9. A breathing thorax phantom with independently programmable 6D tumour motion for dosimetric measurements in radiation therapy

    NASA Astrophysics Data System (ADS)

    Steidl, P.; Richter, D.; Schuy, C.; Schubert, E.; Haberer, Th; Durante, M.; Bert, C.

    2012-04-01

    Irradiation of moving targets using a scanned ion beam can cause clinically intolerable under- and overdosages within the target volume due to the interplay effect. Several motion mitigation techniques such as gating, beam tracking and rescanning are currently investigated to overcome this restriction. To enable detailed experimental studies of potential mitigation techniques a complex thorax phantom was developed. The phantom consists of an artificial thorax with ribs to introduce density changes. The contraction of the thorax can be controlled by a stepping motor. A robotic driven detector head positioned inside the thorax mimics e.g. a lung tumour. The detector head comprises 20 ionization chambers and 5 radiographic films for target dose measurements. The phantom’s breathing as well as the 6D tumour motion (3D translation, 3D rotation) can be programmed independently and adjusted online. This flexibility allows studying the dosimetric effects of correlation mismatches between internal and external motions, irregular breathing, or baseline drifts to name a few. Commercial motion detection systems, e.g. VisionRT or Anzai belt, can be mounted as they would be mounted in a patient case. They are used to control the 4D treatment delivery and to generate data for 4D dose calculation. To evaluate the phantom’s properties, measurements addressing reproducibility, stability, temporal behaviour and performance of dedicated breathing manoeuvres were performed. In addition, initial dosimetric tests for treatment with a scanned carbon beam are reported.

  10. Dosimetric impact of applicator displacement during high dose rate (HDR) Cobalt-60 brachytherapy for cervical cancer: A planning study

    NASA Astrophysics Data System (ADS)

    Yong, J. S.; Ung, N. M.; Jamalludin, Z.; Malik, R. A.; Wong, J. H. D.; Liew, Y. M.; Ng, K. H.

    2016-02-01

    We investigated the dosimetric impact of applicator displacement on dose specification during high dose rate (HDR) Cobalt-60 (Co-60) brachytherapy for cervical cancer through a planning study. Eighteen randomly selected HDR full insertion plans were restrospectively studied. The tandem and ovoids were virtually shifted translationally and rotationally in the x-, y- and z-axis directions on the treatment planning system. Doses to reference points and volumes of interest in the plans with shifted applicators were compared with the original plans. The impact of dose displacement on 2D (point-based) and 3D (volume-based) treatment planning techniques was also assessed. A ±2 mm translational y-axis applicator shift and ±4° rotational x-axis applicator shift resulted in dosimetric changes of more than 5% to organs at risk (OAR) reference points. Changes to the maximum doses to 2 cc of the organ (D2cc) in 3D planning were statistically significant and higher than the reference points in 2D planning for both the rectum and bladder (p<0.05). Rectal D2cc was observed to be the most sensitive to applicator displacement among all dose metrics. Applicator displacement that is greater than ±2 mm translational y-axis and ±4° rotational x-axis resulted in significant dose changes to the OAR. Thus, steps must be taken to minimize the possibility of applicator displacement during brachytherapy.

  11. A breathing thorax phantom with independently programmable 6D tumour motion for dosimetric measurements in radiation therapy.

    PubMed

    Steidl, P; Richter, D; Schuy, C; Schubert, E; Haberer, Th; Durante, M; Bert, C

    2012-04-21

    Irradiation of moving targets using a scanned ion beam can cause clinically intolerable under- and overdosages within the target volume due to the interplay effect. Several motion mitigation techniques such as gating, beam tracking and rescanning are currently investigated to overcome this restriction. To enable detailed experimental studies of potential mitigation techniques a complex thorax phantom was developed. The phantom consists of an artificial thorax with ribs to introduce density changes. The contraction of the thorax can be controlled by a stepping motor. A robotic driven detector head positioned inside the thorax mimics e.g. a lung tumour. The detector head comprises 20 ionization chambers and 5 radiographic films for target dose measurements. The phantom's breathing as well as the 6D tumour motion (3D translation, 3D rotation) can be programmed independently and adjusted online. This flexibility allows studying the dosimetric effects of correlation mismatches between internal and external motions, irregular breathing, or baseline drifts to name a few. Commercial motion detection systems, e.g. VisionRT or Anzai belt, can be mounted as they would be mounted in a patient case. They are used to control the 4D treatment delivery and to generate data for 4D dose calculation. To evaluate the phantom's properties, measurements addressing reproducibility, stability, temporal behaviour and performance of dedicated breathing manoeuvres were performed. In addition, initial dosimetric tests for treatment with a scanned carbon beam are reported.

  12. Dosimetric model for antibody targeted radionuclide therapy of tumor cells in cerebrospinal fluid

    SciTech Connect

    Millar, W.T.; Barrett, A. )

    1990-02-01

    Although encouraging results have been obtained using systemic radioimmunotherapy in the treatment of cancer, it is likely that regional applications may prove more effective. One such strategy is the treatment of central nervous system leukemia in children by intrathecal instillation of targeting or nontargeting beta particle emitting radionuclide carriers. The beta particle dosimetry of the spine is assessed, assuming that the spinal cord and the cerebrospinal fluid compartment can be adequately represented by a cylindrical annulus. The radionuclides investigated were {sup 90}Y, {sup 131}I, {sup 67}Cu, and {sup 199}Au. It is shown that the radiation dose to the cord can be significantly reduced using short range beta particle emitters and that there is little advantage in using targeting carriers with these radionuclides. {sup 199}Au and {sup 67}Cu also have the advantage of having a suitable gamma emission for imaging, permitting pretherapy imaging and dosimetric calculations to be undertaken prior to therapy. If these methods prove successful, it may be possible to replace the external beam component used in the treatment of central nervous system leukemia in children by intrathecal radionuclide therapy, thus reducing or avoiding side effects such as growth and intellectual impairment.

  13. Characterization and use of a 2D-array of ion chambers for brachytherapy dosimetric quality assurance

    SciTech Connect

    Yewondwossen, Mammo

    2012-10-01

    The two-dimensional (2D) ionization chamber array MatriXX Evolution is one of the 2D ionization chamber arrays developed by IBA Dosimetry (IBA Dosimetry, Germany) for megavoltage real-time absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT). The purpose of this study was to (1) evaluate the performance of ion chamber array for submegavoltage range brachytherapy beam dose verification and quality assurance (QA) and (2) use the end-to-end dosimetric evaluation that mimics a patient treatment procedure and confirm the primary source strength calibration agrees in both the treatment planning system (TPS) and treatment delivery console computers. The dose linearity and energy dependence of the 2D ion chamber array was studied using kilovoltage X-ray beams (100, 180 and 300 kVp). The detector calibration factor was determined using 300 kVp X-ray beams so that we can use the same calibration factor for dosimetric verification of high-dose-rate (HDR) brachytherapy. The phantom used for this measurement consists of multiple catheters, the IBA MatriXX detector, and water-equivalent slab of RW3 to provide full scattering conditions. The treatment planning system (TPS) (Oncentra brachy version 3.3, Nucletron BV, Veenendaal, the Netherlands) dose distribution was calculated on the computed tomography (CT) scan of this phantom. The measured and TPS calculated distributions were compared in IBA Dosimetry OmniPro-I'mRT software. The quality of agreement was quantified by the gamma ({gamma}) index (with 3% delta dose and distance criterion of 2 mm) for 9 sets of plans. Using a dedicated phantom capable of receiving 5 brachytherapy intralumenal catheters a QA procedure was developed for end-to-end dosimetric evaluation for routine QA checks. The 2D ion chamber array dose dependence was found to be linear for 100-300 kVp and the detector response (k{sub user}) showed strong energy dependence for 100-300 kVp energy range. For the Ir-192 brachytherapy

  14. Characterization and use of a 2D-array of ion chambers for brachytherapy dosimetric quality assurance.

    PubMed

    Yewondwossen, Mammo

    2012-01-01

    The two-dimensional (2D) ionization chamber array MatriXX Evolution is one of the 2D ionization chamber arrays developed by IBA Dosimetry (IBA Dosimetry, Germany) for megavoltage real-time absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT). The purpose of this study was to (1) evaluate the performance of ion chamber array for submegavoltage range brachytherapy beam dose verification and quality assurance (QA) and (2) use the end-to-end dosimetric evaluation that mimics a patient treatment procedure and confirm the primary source strength calibration agrees in both the treatment planning system (TPS) and treatment delivery console computers. The dose linearity and energy dependence of the 2D ion chamber array was studied using kilovoltage X-ray beams (100, 180 and 300 kVp). The detector calibration factor was determined using 300 kVp X-ray beams so that we can use the same calibration factor for dosimetric verification of high-dose-rate (HDR) brachytherapy. The phantom used for this measurement consists of multiple catheters, the IBA MatriXX detector, and water-equivalent slab of RW3 to provide full scattering conditions. The treatment planning system (TPS) (Oncentra brachy version 3.3, Nucletron BV, Veenendaal, the Netherlands) dose distribution was calculated on the computed tomography (CT) scan of this phantom. The measured and TPS calculated distributions were compared in IBA Dosimetry OmniPro-I'mRT software. The quality of agreement was quantified by the gamma (γ) index (with 3% delta dose and distance criterion of 2 mm) for 9 sets of plans. Using a dedicated phantom capable of receiving 5 brachytherapy intralumenal catheters a QA procedure was developed for end-to-end dosimetric evaluation for routine QA checks. The 2D ion chamber array dose dependence was found to be linear for 100-300 kVp and the detector response (k(user)) showed strong energy dependence for 100-300 kVp energy range. For the Ir-192 brachytherapy HDR

  15. A Robust and Affordable Table Indexing Approach for Multi-isocenter Dosimetrically Matched Fields

    PubMed Central

    Fahimian, Benjamin; Million, Lynn; Hsu, Annie

    2017-01-01

    Purpose  Radiotherapy treatment planning of extended volume typically necessitates the utilization of multiple field isocenters and abutting dosimetrically matched fields in order to enable coverage beyond the field size limits. A common example includes total lymphoid irradiation (TLI) treatments, which are conventionally planned using dosimetric matching of the mantle, para-aortic/spleen, and pelvic fields. Due to the large irradiated volume and system limitations, such as field size and couch extension, a combination of couch shifts and sliding of patients are necessary to be correctly executed for accurate delivery of the plan. However, shifting of patients presents a substantial safety issue and has been shown to be prone to errors ranging from minor deviations to geometrical misses warranting a medical event. To address this complex setup and mitigate the safety issues relating to delivery, a practical technique for couch indexing of TLI treatments has been developed and evaluated through a retrospective analysis of couch position. Methods The indexing technique is based on the modification of the commonly available slide board to enable indexing of the patient position. Modifications include notching to enable coupling with indexing bars, and the addition of a headrest used to fixate the head of the patient relative to the slide board. For the clinical setup, a Varian Exact CouchTM (Varian Medical Systems, Inc, Palo Alto, CA) was utilized. Two groups of patients were treated: 20 patients with table indexing and 10 patients without. The standard deviations (SDs) of the couch positions in longitudinal, lateral, and vertical directions through the entire treatment cycle for each patient were calculated and differences in both groups were analyzed with Student's t-test. Results The longitudinal direction showed the largest improvement. In the non-indexed group, the positioning SD ranged from 2.0 to 7.9 cm. With the indexing device, the positioning SD was

  16. A Robust and Affordable Table Indexing Approach for Multi-isocenter Dosimetrically Matched Fields.

    PubMed

    Yu, Amy; Fahimian, Benjamin; Million, Lynn; Hsu, Annie

    2017-05-23

    Purpose  Radiotherapy treatment planning of extended volume typically necessitates the utilization of multiple field isocenters and abutting dosimetrically matched fields in order to enable coverage beyond the field size limits. A common example includes total lymphoid irradiation (TLI) treatments, which are conventionally planned using dosimetric matching of the mantle, para-aortic/spleen, and pelvic fields. Due to the large irradiated volume and system limitations, such as field size and couch extension, a combination of couch shifts and sliding of patients are necessary to be correctly executed for accurate delivery of the plan. However, shifting of patients presents a substantial safety issue and has been shown to be prone to errors ranging from minor deviations to geometrical misses warranting a medical event. To address this complex setup and mitigate the safety issues relating to delivery, a practical technique for couch indexing of TLI treatments has been developed and evaluated through a retrospective analysis of couch position. Methods The indexing technique is based on the modification of the commonly available slide board to enable indexing of the patient position. Modifications include notching to enable coupling with indexing bars, and the addition of a headrest used to fixate the head of the patient relative to the slide board. For the clinical setup, a Varian Exact Couch(TM) (Varian Medical Systems, Inc, Palo Alto, CA) was utilized. Two groups of patients were treated: 20 patients with table indexing and 10 patients without. The standard deviations (SDs) of the couch positions in longitudinal, lateral, and vertical directions through the entire treatment cycle for each patient were calculated and differences in both groups were analyzed with Student's t-test. Results The longitudinal direction showed the largest improvement. In the non-indexed group, the positioning SD ranged from 2.0 to 7.9 cm. With the indexing device, the positioning SD was

  17. Dosimetric feasibility of real-time MRI-guided proton therapy

    PubMed Central

    Moteabbed, M.; Schuemann, J.; Paganetti, H.

    2014-01-01

    Purpose: Magnetic resonance imaging (MRI) is a prime candidate for image-guided radiotherapy. This study was designed to assess the feasibility of real-time MRI-guided proton therapy by quantifying the dosimetric effects induced by the magnetic field in patients’ plans and identifying the associated clinical consequences. Methods: Monte Carlo dose calculation was performed for nine patients of various treatment sites (lung, liver, prostate, brain, skull-base, and spine) and tissue homogeneities, in the presence of 0.5 and 1.5 T magnetic fields. Dose volume histogram (DVH) parameters such as D95, D5, and V20 as well as equivalent uniform dose were compared for the target and organs at risk, before and after applying the magnetic field. The authors further assessed whether the plans affected by clinically relevant dose distortions could be corrected independent of the planning system. Results: By comparing the resulting dose distributions and analyzing the respective DVHs, it was determined that despite the observed lateral beam deflection, for magnetic fields of up to 0.5 T, neither was the target coverage jeopardized nor was the dose to the nearby organs increased in all cases except for prostate. However, for a 1.5 T magnetic field, the dose distortions were more pronounced and of clinical concern in all cases except for spine. In such circumstances, the target was severely underdosed, as indicated by a decrease in D95 of up to 41% of the prescribed dose compared to the nominal situation (no magnetic field). Sites such as liver and spine were less affected due to higher tissue homogeneity, typically smaller beam range, and the choice of beam directions. Simulations revealed that small modifications to certain plan parameters such as beam isocenter (up to 19 mm) and gantry angle (up to 10°) are sufficient to compensate for the magnetic field-induced dose disturbances. The authors’ observations indicate that the degree of required corrections strongly depends

  18. Dosimetric feasibility of real-time MRI-guided proton therapy

    SciTech Connect

    Moteabbed, M. Schuemann, J.; Paganetti, H.

    2014-11-01

    Purpose: Magnetic resonance imaging (MRI) is a prime candidate for image-guided radiotherapy. This study was designed to assess the feasibility of real-time MRI-guided proton therapy by quantifying the dosimetric effects induced by the magnetic field in patients’ plans and identifying the associated clinical consequences. Methods: Monte Carlo dose calculation was performed for nine patients of various treatment sites (lung, liver, prostate, brain, skull-base, and spine) and tissue homogeneities, in the presence of 0.5 and 1.5 T magnetic fields. Dose volume histogram (DVH) parameters such as D{sub 95}, D{sub 5}, and V{sub 20} as well as equivalent uniform dose were compared for the target and organs at risk, before and after applying the magnetic field. The authors further assessed whether the plans affected by clinically relevant dose distortions could be corrected independent of the planning system. Results: By comparing the resulting dose distributions and analyzing the respective DVHs, it was determined that despite the observed lateral beam deflection, for magnetic fields of up to 0.5 T, neither was the target coverage jeopardized nor was the dose to the nearby organs increased in all cases except for prostate. However, for a 1.5 T magnetic field, the dose distortions were more pronounced and of clinical concern in all cases except for spine. In such circumstances, the target was severely underdosed, as indicated by a decrease in D{sub 95} of up to 41% of the prescribed dose compared to the nominal situation (no magnetic field). Sites such as liver and spine were less affected due to higher tissue homogeneity, typically smaller beam range, and the choice of beam directions. Simulations revealed that small modifications to certain plan parameters such as beam isocenter (up to 19 mm) and gantry angle (up to 10°) are sufficient to compensate for the magnetic field-induced dose disturbances. The authors’ observations indicate that the degree of required

  19. Dosimetric consequences of uncorrected setup errors in helical Tomotherapy treatments of breast-cancer patients.

    PubMed

    Goddu, S Murty; Yaddanapudi, Sridhar; Pechenaya, Olga L; Chaudhari, Summer R; Klein, Eric E; Khullar, Divya; El Naqa, Issam; Mutic, Sasa; Wahab, Sasha; Santanam, Lakshmi; Zoberi, Imran; Low, Daniel A

    2009-10-01

    The Tomotherapy Hi-Art II system allows acquisition of pre-treatment MVCT images to correct patient position. This work evaluates the dosimetric impact of uncorrected setup errors in breast-cancer radiation therapy. Breast-cancer patient-positioning errors were simulated by shifting the patient computed-tomography (CT) dataset relative to the planned photon fluence and re-computing the dose distributions. To properly evaluate the superficial region, film measurements were compared against the Tomotherapy treatment planning system (TPS) calculations. A simulation of the integrated dose distribution was performed to evaluate the setup error impact over the course of treatment. Significant dose differences were observed for 11-mm shifts in the anterolateral and 3-mm shifts in the posteromedial directions. The results of film measurements in the superficial region showed that the TPS overestimated the dose by 14% at a 1-mm depth, improving to 3% at depths >or=5mm. Significant dose reductions in PTV were observed in the dose distributions simulated over the course of treatment. Tomotherapy's rotational delivery provides sufficient photon fluence extending beyond the skin surface to allow an up to 7-mm uncorrected setup error in the anterolateral direction. However, the steep dose falloff that conforms to the lung surface leads to compromised dose distributions with uncorrected posteromedial shifts. Therefore, daily image guidance and consequent patient repositioning is warranted for breast-cancer patients.

  20. Dosimetric estimates for clinical positron emission tomographic scanning after injection of ( sup 18 F)-6-fluorodopamine

    SciTech Connect

    Goldstein, D.S.; Chang, P.C.; Smith, C.B.; Herscovitch, P.; Austin, S.M.; Eisenhofer, G.; Kopin, I.J. )

    1991-01-01

    Positron emission tomographic (PET) scanning after systemic i.v. injection of fluorine-18-6-fluorodopamine (({sup 18}F)-6F-DA) is a method for visualizing and measuring regional sympathetic nervous system innervation and function. Based on results of preclinical studies of rats and dogs and on previous literature about the fate of injected tracer-labeled catecholamines, dosimetric estimates for clinical studies are presented here. After injection of 1 mCi of ({sup 18}F)-F-DA, the radiation dose would be highest to the wall of the urinary bladder (1.40 rem/mCi), due to accumulation of radioactive metabolites of ({sup 18}F)-F-DA in urine. Radioactivity also would accumulate in bile. Organs receiving the next highest dose would be the kidneys (0.9 rem/mCi) and small intestine (0.2 rem/mCi). The parenchymal radiation dose would be lowest in the brain, since there is an effective blood-brain barrier for circulating catecholamines. Radiation doses to all organs after administration of 1 mCi of ({sup 18}F)-F-DA to humans would be less than 3 rem and, therefore, within current FDA guidelines.

  1. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams.

    PubMed

    Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G; Ciocca, M; Mirandola, A; Mairani, A; Raffaele, L; Magro, G

    2015-04-01

    To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30-250 mm Bragg peak depth in water). Homogeneous square fields of 3 × 3 and 6 × 6 cm(2) were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3 × 3 cm(2) area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using fluka Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam direction. A strong distortion in Bragg

  2. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery.

    PubMed

    Guckenberger, Matthias; Roesch, Johannes; Baier, Kurt; Sweeney, Reinhart A; Flentje, Michael

    2012-04-24

    To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7 mm ± 0.5 mm and 1.2 mm ± 0.7 mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75% ± 19% and 60% ± 25% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target

  3. An evaluation of a novel synthetic diamond probe for dosimetric applications

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.

    2015-10-01

    A study is presented that characterises the dosimetric performances of two synthetic diamond sensors (HP1 and HP2) when either one or both detectors are subjected to clinical beams of various types under large as well as small-field conditions. Detector performances were evaluated using a prototype probe housing constructed of tissue-equivalent materials. The probe can accommodate diamond sensors of various sizes and is configured for radiation detection in different exposure orientations without having first to re-orient the sensor plate within its body. Also, the diamond sensor is aligned in the same configuration as its rectangular housing and the probe is designed to be compatible with commercially available electrometer systems. Dosimetric measurements were conducted using mammography X-rays (25-32 kVp) and megavoltage electron (6-21 MeV) and photon (60Co γ-ray, 6-18 MV X-ray) beams. Whereas HP1 was evaluated using all beam types under large-flied conditions and small-photon-beam fields down to 0.7×0.7 cm2, HP2 was evaluated using small-electron and photon-beam conditions down to 0.3×0.3 cm2 6 MV photon field. Using HP1 sensor, the synthetic diamond probe was found not to require daily pre-irradiation as long as it is properly shielded from ambient light and its response stabilised. Furthermore, the diamond probe exhibited linear response characteristics with absorbed dose and on exposure parameters to various beam types, negligible energy dependence and almost no variation in angular response. Exposing the sensor HP2 under a 0.4×0.4 cm2 6 MV photon radiation field, a sensitivity value of 197.3 nC Gy-1 mm-3 was established compared to a value of 136.1 nC Gy-1 mm-3 obtained with a small-field diode detector. Also, a figure of 5.5×103 for the SNR was established for the sensor in the same radiation field. Relative beam data measured with the diamond sensors were found to agree within 1-2% with data obtained with reference detectors. The presentation

  4. Dosimetric effects on small-field beam-modeling for stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Woong; Kim, Suzy; Kim, Jung-In; Wu, Hong-Gyun; Jung, Joo-Young; Kim, Min-Joo; Suh, Tae-Suk; Kim, Jin-Young; Kim, Jong Won

    2015-02-01

    The treatment planning of stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) requires high accuracy of dosimetric data for small radiation fields. The dosimetric effects on the beam-modeling process of a treatment planning system (TPS) were investigated using different measured small-field data sets. We performed small-field dosimetry with three detectors: a CC13 ion chamber, a CC01 ion chamber, and an edge detector. Percentage depth doses (PDDs) and dose profiles for field sizes given by 3 × 3 cm2, 2 × 2 cm2, and 1 × 1 cm2 were obtained for 6 MV and 15 MV photon beams. Each measured data set was used as data input for a TPS, in which a beam-modeling process was implemented using the collapsed cone convolution (CCC) algorithm for dose calculation. The measured data were used to generate six beam-models based on each combination of detector type and photon energy, which were then used to calculate the corresponding PDDs and dose profiles for various depths and field sizes. Root mean square differences (RMSDs) between the calculated and the measured doses were evaluated for the PDDs and the dose profiles. The RMSDs of PDDs beyond the maximum dose depth were within an accuracy of 0.2-0.6%, being clinically acceptable. The RMSDs of the dose profiles corresponding to the CC13, the CC01, and the edge detector were 2.80%, 1.49%, and 1.46% for a beam energy of 6 MV and 2.34%, 1.15%, and 1.44% for a beam energy of 15 MV, respectively. The calculated results for the CC13 ion chamber showed the most discrepancy compared to the measured data, due to the relatively large sensitive volume of this detector. However, the calculated dose profiles for the detectors were not significantly different from another. The physical algorithm used in the beam-modeling process did not seem to be sensitive to blurred data measured with detectors with large sensitive volumes. Each beam-model was used to clinically evaluate lung and lymphatic node SBRT plans

  5. The dosimetric impact of dental implants on head-and-neck volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Lin, Mu-Han; Li, Jinsheng; Price, Robert A., Jr.; Wang, Lu; Lee, Chung-Chi; Ma, C.-M.

    2013-02-01

    This work aims to investigate the dosimetric impact of dental implants on volumetric modulated arc therapy (VMAT) for head-and-neck patients and to evaluate the effectiveness of using the material's electron-density ratio for the correction. An in-house Monte Carlo (MC) code was utilized for the dose calculation to account for the scattering and attenuation caused by the high-Z implant material. Three different dental implant materials were studied in this work: titanium, Degubond®4 and gold. The dose perturbations caused by the dental implant materials were first investigated in a water phantom with a 1 cm3 insert. The per cent depth dose distributions of a 3 × 3 cm2 photon field were compared with the insert material as water and the three selected dental implant materials. To evaluate the impact of the dental implant on VMAT patient dose calculation, four head-and-neck cases were selected. For each case, the VMAT plan was designed based on the artifact-corrected patient geometry using a treatment planning system (TPS) that was typically utilized for routine patient treatment. The plans were re-calculated using the MC code for five situations: uncorrected geometry, artifact-corrected geometry and artifact-corrected geometry with one of the three different implant materials. The isodose distributions and the dose-volume histograms were cross-compared with each other. To evaluate the effectiveness of using the material's electron-density ratio for dental implant correction, the implant region was set as water with the material's electron-density ratio and the calculated dose was compared with the MC simulation with the real material. The main effect of the dental implant was the severe attenuation in the downstream. The 1 cm3 dental implant can lower the downstream dose by 10% (Ti) to 51% (Au) for a 3 × 3 cm2 field. The TPS failed to account for the dose perturbation if the dental implant material was not precisely defined. For the VMAT patient dose calculation

  6. Dosimetric robustness against setup errors in charged particle radiotherapy of skull base tumors.

    PubMed

    Ammazzalorso, Filippo; Jelen, Urszula; Engenhart-Cabillic, Rita; Schlegel, Wolfgang

    2014-12-05

    It is expected that physical dose deposition properties render charged particle dose distributions sensitive to targeting uncertainties. Purpose of this work was to investigate the robustness of scanned-beam particle therapy plans against setup errors for different optimization modalities, beam setups and ion species. For 15 patients with skull base tumors, localized in regions of severe tissue density heterogeneity, scanned lateral-opposed-beam treatment plans were prepared with the treatment planning system TRiP98, employing different optimization settings (single- and multiple-field modulation) and ion species (carbon ions and protons). For 10 of the patients, additional plans were prepared with individually selected beam setups, aiming at avoiding severe tissue heterogeneities. Subsequently, multiple rigid positioning errors of magnitude 1-2 mm (i.e. within planning target expansion) were simulated by introducing a shift of the irradiation fields with respect to the computed tomography (CT) data and recomputing the plans. In presence of shifts, in carbon ion plans using a lateral-opposed beam setup and fulfilling clinical healthy tissue dose constraints, the median reduction in CTV V95% was up to 0.7 percentage points (pp) and 3.5 pp, for shifts of magnitude 1 mm and 2 mm respectively, however, in individual cases, the reduction reached 5.1 pp and 9.7 pp. In the corresponding proton plans similar median CTV V95% reductions of up to 0.9 pp (1 mm error) and 3.4 pp (2 mm error) were observed, with respective individual-case reductions of at most 3.2 pp and 11.7 pp. Unconstrained plans offered slightly higher coverage values, while no relevant differences were observed between different field modulation methods. Individually selected beam setups had a visible dosimetric advantage over lateral-opposed beams, for both particle species. While carbons provided more conformal plans and generally more advantageous absolute dose values, in presence of setup errors

  7. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams

    SciTech Connect

    Marinelli, Marco; Prestopino, G. Verona, C.; Verona-Rinati, G.; Ciocca, M.; Mirandola, A.; Mairani, A.; Raffaele, L.; Magro, G.

    2015-04-15

    Purpose: To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. Methods: The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30–250 mm Bragg peak depth in water). Homogeneous square fields of 3 × 3 and 6 × 6 cm{sup 2} were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3 × 3 cm{sup 2} area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using FLUKA Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. Results: A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam

  8. The effect of interobserver differences in post-implant prostate CT image interpretation on dosimetric parameters.

    PubMed

    Han, Ben H; Wallner, Kent; Merrick, Gregory; Badiozamani, Kas; Butler, Wayne

    2003-06-01

    The purpose of this study was to clarify where observers differ in their interpretation of CT scans, and to relate those differences to clinically relevant dosimetric parameters. Twenty unselected patients treated with I-125 or Pd-103 brachytherapy at the Veterans Affairs Puget Sound Health Care System (VAPSHCS) in 2001 were studied. Patients were implanted with I-125 (7 patients, 0.87 mCi/source) or Pd-103 (13 patients, 2.54 U/source). The number of I-125 sources implanted ranged from 52 to 78. The number of Pd-103 sources implanted ranged from 58-144. Post-implant 3 mm CT images were imported into a laptop running Varian Variseed and sent to the four physician investigators, who outlined the prostate independently. Investigators were not coached specifically for this study, beyond their having read prior reports regarding prostate volume determinations. There was moderate interobserver variability in CT volume determination, with the standard deviations as a percent of the mean ranging from 9% to 29% (median: 17%). An average of 14% of implants (range: 5%-20%) would have been judged inadequate based on a minimum V100 of 80%, versus 24% of implants (range: 5%-45%) being judged inadequate based on a minimum D90 of 90% of prescription dose. The greatest variability was seen in prostate length (median standard deviation: 0.57 cm), due to vagaries in base and apical localization. However, the prostatic width and thickness also varied substantially between observers, with median standard deviations of 0.24 and 0.32 cm, respectively. Treatment margin variability was greatest at the anterior border, with a median standard deviation of 0.21 cm +/- 0.10. We believe that CT-based dosimetry, while influenced by CT interpretation, still provides useful general dosimetric calculations, that are likely to be reproducible enough to provide clinically useful information between institutions. The V100 and TMs are less influenced by interobserver CT interpretation variability than

  9. Dosimetric variability of the rats' exposure to electromagnetic pulses.

    PubMed

    Li, Congsheng; Yang, Lei; Li, Chung-huan; Xie, Yi; Wu, Tongning

    2015-01-01

    Rats' exposure to electromagnetic pulses (EMPs) has been conducted using an EMP simulator for various biological endpoints. In contrast, information about the EMP energy distribution and its variability in rats is lacking. EMPs are signals with spectrum concentrating in several hundred MHz, leading to EM absorption patterns different from those obtained at high frequencies. In this study, two anatomical models of rats (a male and a female) were reconstructed from magnetic resonance imaging. The models had the same posture as in the exposure experiments. Realistic EMPs were acquired directly from the EMP simulator and applied to the simulations. The interaction of the EMP with the rat was analyzed through the finite-difference time-domain method. Two approaches were utilized to calculate the energy absorption at the tissue and whole-body levels. Dosimetric variability due to incident directions, polarizations, exposure signals simplification, and rat separation was evaluated in this study. The variability result differed substantially from that of the non-constrained rats' exposure experiments. The result sensitivity to frequency and amplitude was discussed as well. The work can be used as a basis to determine the uncertainty and to formulate a standard experimental protocol for this type of experiment.

  10. Dosimetric implications of age related glandular changes in screening mammography

    NASA Astrophysics Data System (ADS)

    Beckett, J. R.; Kotre, C. J.

    2000-03-01

    The UK National Health Service Breast Screening Programme is currently organized to routinely screen women between the ages of 50 and 64, with screening for older women available on request. The lower end of this age range closely matches the median age for the menopause (51 years), during which significant changes in the composition of the breast are known to occur. In order to quantify the dosimetric effect of these changes, radiographic factors and compressed breast thickness data for a cohort of 1258 women aged between 35 and 79 undergoing breast screening mammography have been used to derive estimates of breast glandularity and mean glandular dose (MGD), and examine their variation with age. The variation of mean radiographic exposure factors with age is also investigated. The presence of a significant number of age trial women within the cohort allowed an extended age range to be studied. Estimates of MGD including corrections for breast glandularity based on compressed breast thickness only, compressed breast thickness and age and for each individual woman are compared with the MGD based on the conventional assumption of a 50:50 adipose/glandular composition. It has been found that the use of the conventional 50:50 assumption leads to overestimates of MGD of up to 13% over the age range considered. By using compressed breast thickness to estimate breast glandularity, this error range can be reduced to 8%, whilst age and compressed breast thickness based glandularity estimates result in an error range of 1%.

  11. Monte Carlo simulations and dosimetric studies of an irradiation facility

    NASA Astrophysics Data System (ADS)

    Belchior, A.; Botelho, M. L.; Vaz, P.

    2007-09-01

    There is an increasing utilization of ionizing radiation for industrial applications. Additionally, the radiation technology offers a variety of advantages in areas, such as sterilization and food preservation. For these applications, dosimetric tests are of crucial importance in order to assess the dose distribution throughout the sample being irradiated. The use of Monte Carlo methods and computational tools in support of the assessment of the dose distributions in irradiation facilities can prove to be economically effective, representing savings in the utilization of dosemeters, among other benefits. One of the purposes of this study is the development of a Monte Carlo simulation, using a state-of-the-art computational tool—MCNPX—in order to determine the dose distribution inside an irradiation facility of Cobalt 60. This irradiation facility is currently in operation at the ITN campus and will feature an automation and robotics component, which will allow its remote utilization by an external user, under REEQ/996/BIO/2005 project. The detailed geometrical description of the irradiation facility has been implemented in MCNPX, which features an accurate and full simulation of the electron-photon processes involved. The validation of the simulation results obtained was performed by chemical dosimetry methods, namely a Fricke solution. The Fricke dosimeter is a standard dosimeter and is widely used in radiation processing for calibration purposes.

  12. Dosimetric predictors of diarrhea during radiotherapy for prostate cancer.

    PubMed

    Sanguineti, Giuseppe; Endres, Eugene J; Sormani, Maria Pia; Parker, Brent C

    2009-06-01

    To investigate dosimetric predictors of diarrhea during radiotherapy (RT) for prostate cancer. All patients who underwent external-beam radiotherapy as part of treatment for localized prostate cancer at the University of Texas Medical Branch, Galveston, TX, USA, from May 2002 to November 2006 were extracted from the own database. From the cumulative dose-volume histogram (DVH), the absolute volumes (V-value) of intestinal cavity (IC) receiving 15, 30, and 45 Gy were extracted for each patient. Acute gastrointestinal toxicity was prospectively scored at each weekly treatment visit according to CTC (Common Toxicity Criteria) v2.0. The endpoint was the development of peak grade >or= 2 diarrhea during RT. Various patient, tumor, and treatment characteristics were evaluated using logistic regression. 149 patients were included in the analysis, 112 (75.2%) treated with whole-pelvis intensity-modulated radiotherapy (WP-IMRT) and 37 (24.8%) with prostate-only RT, including or not including, the seminal vesicles (PORT +/- SV). 45 patients (30.2%) developed peak grade >or= 2 diarrhea during treatment. At univariate analysis, IC-V(15) and IC-V(30), but not IC-V(45), were correlated to the endpoint; at multivariate analysis, only IC-V(15) (p = 0.047) along with peak acute proctitis (p = 0.041) was independently correlated with the endpoint. These data provide a novel and prostate treatment-specific "upper limit" DVH for IC.

  13. A comprehensive approach to age-dependent dosimetric modeling

    SciTech Connect

    Leggett, R.W.; Cristy, M.; Eckerman, K.F.

    1986-01-01

    In the absence of age-specific biokinetic models, current retention models of the International Commission on Radiological Protection (ICRP) frequently are used as a point of departure for evaluation of exposures to the general population. These models were designed and intended for estimation of long-term integrated doses to the adult worker. Their format and empirical basis preclude incorporation of much valuable physiological information and physiologically reasonable assumptions that could be used in characterizing the age-specific behavior of radioelements in humans. In this paper we discuss a comprehensive approach to age-dependent dosimetric modeling in which consideration is given not only to changes with age in masses and relative geometries of body organs and tissues but also to best available physiological and radiobiological information relating to the age-specific biobehavior of radionuclides. This approach is useful in obtaining more accurate estimates of long-term dose commitments as a function of age at intake, but it may be particularly valuable in establishing more accurate estimates of dose rate as a function of age. Age-specific dose rates are needed for a proper analysis of the potential effects on estimates or risk of elevated dose rates per unit intake in certain stages of life, elevated response per unit dose received during some stages of life, and age-specific non-radiogenic competing risks.

  14. Dosimetrical evaluation of Leksell Gamma Knife 4C radiosurgery unit

    NASA Astrophysics Data System (ADS)

    Sajeev, Thomas; Mustafa, Mohamed M.; Supe, Sanjay S.

    2011-01-01

    A number of experiments was performed using standard protocols, in order to evaluate the dosimetric accuracy of Leksell Gamma Knife 4C unit. Verification of the beam alignment has been performed for all collimators using solid plastic head phantom and Gafchromic™ type MD-55 films. The study showed a good agreement of Leksell Gammaplan calculated dose profiles with experimentally determined profiles in all three axes. Isocentric accuracy is verified using a specially machined cylindrical aluminium film holder tool made with very narrow geometric tolerances aligned between trunnions of 4 mm collimator. Considering all uncertainties in all three dimensions, the estimated accuracy of the unit was 0.1 mm. Dose rate at the centre point of the unit has been determined according to the IAEA, TRS-398 protocol, using Unidose-E (PTW-Freiburg, Germany) with a 0.125 cc ion chamber, over a period of 6 years. The study showed that the Leksell Gamma Knife 4C unit is excellent radiosurgical equipment with high accuracy and precision, which makes it possible to deliver larger doses of radiation, within the limits defined by national and international guidelines, applicable for stereotactic radiosurgery procedures.

  15. Permanent Planar Iodine-125 Implants: The Dosimetric Effect of Geometric Parameters for Idealized Source Configurations

    SciTech Connect

    Cormack, Robert A.

    2007-11-15

    Purpose: To provide dosimetric information about permanent planar {sup 125}I implants in a manner that is useful to the brachytherapist in the operative setting. Methods and Materials: Reference planar permanent implants were simulated for a variety of areas with sources placed uniformly on a 1-cm grid. Implants having variable source spacing and curvature were simulated and compared with the reference implants. Dosimetric measures were calculated at 0.5 and 1.0 cm from the implant plane. Results: A method for calculating dosimetric statistics for permanent implants ranging from 5 x 5 cm to 13 x 13 cm is presented. A formula to predict the reference source strength needed to achieve a desired dosimetric quantity is also presented. The effect of adjusting strand spacing to compensate for source activity is presented and is shown to be an effective means to adjust implants to use source strengths other than the reference strength. The effect of implant curvature compared with flat implants on dosimetric statistics is presented as a function of radius of curvature. Conclusions: The results presented in this work may be used to provide information about dose delivered from planar permanent implants.

  16. Analytical calculation of central-axis dosimetric data for a dedicated 6-MV radiosurgery linear accelerator.

    PubMed

    Yang, James N; Pino, Ramiro

    2008-10-01

    Narrow beams are extensively used in stereotactic radiosurgery. The accuracy of treatment planning dose calculation depends largely on how well the dosimetric data are measured during the machine commissioning. Narrow beams are characterized by the lack of lateral electronic equilibrium. The lateral electronic disequilibrium in the radiation field and detector's finite size are likely to compromise the accuracy in dose measurements in these beams. This may have a profound impact on outcome in patients who undergo stereotactic radiosurgery. To confirm the measured commissioning data for a dedicated 6-MV linear accelerator-based radiosurgery system, we developed an analytical model to calculate the narrow photon beam central-axis dose. This model is an extension of a previously reported method of Nizin and Mooij for the calculation of the absorbed dose under lateral electronic disequilibrium conditions at depth of dmax or greater. The scatter factor and tissue-maximum ratio were calculated for narrow beams using the parametrized model and compared to carefully measured results for the same beams. For narrow beam radii ranging from 0.2 to 1.5 cm, the differences between the analytical and measured scatter factors were no greater than 1.4%. In addition, the differences between the analytical and measured tissue-maximum ratios were within 3.3% for regions greater than the maximum dose depth. The estimated error of this analytical calculation was less than 2%, which is sufficient to validate measurement results.

  17. The Application of Elliptic Cylindrical Phantom in Brachytherapy Dosimetric Study of HDR 192Ir Source

    NASA Astrophysics Data System (ADS)

    Ahn, Woo Sang; Park, Sung Ho; Jung, Sang Hoon; Choi, Wonsik; Do Ahn, Seung; Shin, Seong Soo

    2014-06-01

    The purpose of this study is to determine the radial dose function of HDR 192Ir source based on Monte Carlo simulation using elliptic cylindrical phantom, similar to realistic shape of pelvis, in brachytherapy dosimetric study. The elliptic phantom size and shape was determined by analysis of dimensions of pelvis on CT images of 20 patients treated with brachytherapy for cervical cancer. The radial dose function obtained using the elliptic cylindrical water phantom was compared with radial dose functions for different spherical phantom sizes, including the Williamsion's data loaded into conventional planning system. The differences in the radial dose function for the different spherical water phantoms increase with radial distance, r, and the largest differences in the radial dose function appear for the smallest phantom size. The radial dose function of the elliptic cylindrical phantom significantly decreased with radial distance in the vertical direction due to different scatter condition in comparison with the Williamson's data. Considering doses to ICRU rectum and bladder points, doses to reference points can be underestimated up to 1-2% at the distance from 3 to 6 cm. The radial dose function in this study could be used as realistic data for calculating the brachytherapy dosimetry for cervical cancer.

  18. Dosimetric and bremsstrahlung performance of a single convergent beam for teletherapy device.

    PubMed

    Figueroa, R G; Santibáñez, M; Valente, M

    2016-12-01

    The present work investigates preliminary feasibility and characteristics of a new type of radiation therapy modality based on a single convergent beam of photons. The proposal consists of the design of a device capable of generating convergent X-ray beams useful for radiotherapy. The main goal is to achieve high concentrated dose delivery. The first step is an analytical approach in order to characterize the dosimetric performance of the hypothetical convergent photon beam. Then, the validated FLUKA Monte Carlo main code is used to perform complete radiation transport to account also for scattering effects. The proposed method for producing convergent X-rays is mainly based on the bremsstrahlung effect. Hence the operating principle of the proposed device is described in terms of bremsstrahlung production. The work is mainly devoted characterizing the effect on the bremsstrahlung yield due to accessories present in the device, like anode material and geometry, filtration and collimation systems among others. The results obtained for in-depth dose distributions, by means of analytical and stochastic approaches, confirm the presence of a high dose concentration around the irradiated target, as expected. Moreover, it is shown how this spot of high dose concentration depends upon the relevant physical properties of the produced convergent photon beam. In summary, the proposed design for producing single convergent X-rays attained satisfactory performance for achieving high dose concentration around small targets depending on beam spot size that may be used for some applications in radiotherapy, like radiosurgery.

  19. Topological detector: measuring continuous dosimetric quantities with few-element detector array

    NASA Astrophysics Data System (ADS)

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-01

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  20. Analytical calculation of central-axis dosimetric data for a dedicated 6-MV radiosurgery linear accelerator

    SciTech Connect

    Yang, James N.; Pino, Ramiro

    2008-10-15

    Narrow beams are extensively used in stereotactic radiosurgery. The accuracy of treatment planning dose calculation depends largely on how well the dosimetric data are measured during the machine commissioning. Narrow beams are characterized by the lack of lateral electronic equilibrium. The lateral electronic disequilibrium in the radiation field and detector's finite size are likely to compromise the accuracy in dose measurements in these beams. This may have a profound impact on outcome in patients who undergo stereotactic radiosurgery. To confirm the measured commissioning data for a dedicated 6-MV linear accelerator-based radiosurgery system, we developed an analytical model to calculate the narrow photon beam central-axis dose. This model is an extension of a previously reported method of Nizin and Mooij for the calculation of the absorbed dose under lateral electronic disequilibrium conditions at depth of d{sub max} or greater. The scatter factor and tissue-maximum ratio were calculated for narrow beams using the parametrized model and compared to carefully measured results for the same beams. For narrow beam radii ranging from 0.2 to 1.5 cm, the differences between the analytical and measured scatter factors were no greater than 1.4%. In addition, the differences between the analytical and measured tissue-maximum ratios were within 3.3% for regions greater than the maximum dose depth. The estimated error of this analytical calculation was less than 2%, which is sufficient to validate measurement results.

  1. Dosimetric consequences of pencil beam width variations in scanned beam particle therapy

    NASA Astrophysics Data System (ADS)

    Chanrion, M. A.; Ammazzalorso, F.; Wittig, A.; Engenhart-Cabillic, R.; Jelen, U.

    2013-06-01

    Scanned ion beam delivery enables the highest degree of target dose conformation attainable in external beam radiotherapy. Nominal pencil beam widths (spot sizes) are recorded during treatment planning system commissioning. Due to changes in the beam-line optics, the actual spot sizes may differ from these commissioning values, leading to differences between planned and delivered dose. The purpose of this study was to analyse the dosimetric consequences of spot size variations in particle therapy treatment plans. For 12 patients with skull base tumours and 12 patients with prostate carcinoma, scanned-beam carbon ion and proton treatment plans were prepared and recomputed simulating spot size changes of (1) ±10% to simulate the typical magnitude of fluctuations, (2) ±25% representing the worst-case scenario and (3) ±50% as a part of a risk analysis in case of fault conditions. The primary effect of the spot size variation was a dose deterioration affecting the target edge: loss of target coverage and broadening of the lateral penumbra (increased spot size) or overdosage and contraction of the lateral penumbra (reduced spot size). For changes ⩽25%, the resulting planning target volume mean 95%-isodose line coverage (CI-95%) deterioration was ranging from negligible to moderate. In some cases changes in the dose to adjoining critical structures were observed.

  2. Verification of dosimetric accuracy on the TrueBeam STx: Rounded leaf effect of the high definition MLC

    SciTech Connect

    Kielar, Kayla N.; Mok, Ed; Hsu, Annie; Wang Lei; Luxton, Gary

    2012-10-15

    Purpose: The dosimetric leaf gap (DLG) in the Varian Eclipse treatment planning system is determined during commissioning and is used to model the effect of the rounded leaf-end of the multileaf collimator (MLC). This parameter attempts to model the physical difference between the radiation and light field and account for inherent leakage between leaf tips. With the increased use of single fraction high dose treatments requiring larger monitor units comes an enhanced concern in the accuracy of leakage calculations, as it accounts for much of the patient dose. This study serves to verify the dosimetric accuracy of the algorithm used to model the rounded leaf effect for the TrueBeam STx, and describes a methodology for determining best-practice parameter values, given the novel capabilities of the linear accelerator such as flattening filter free (FFF) treatments and a high definition MLC (HDMLC). Methods: During commissioning, the nominal MLC position was verified and the DLG parameter was determined using MLC-defined field sizes and moving gap tests, as is common in clinical testing. Treatment plans were created, and the DLG was optimized to achieve less than 1% difference between measured and calculated dose. The DLG value found was tested on treatment plans for all energies (6 MV, 10 MV, 15 MV, 6 MV FFF, 10 MV FFF) and modalities (3D conventional, IMRT, conformal arc, VMAT) available on the TrueBeam STx. Results: The DLG parameter found during the initial MLC testing did not match the leaf gap modeling parameter that provided the most accurate dose delivery in clinical treatment plans. Using the physical leaf gap size as the DLG for the HDMLC can lead to 5% differences in measured and calculated doses. Conclusions: Separate optimization of the DLG parameter using end-to-end tests must be performed to ensure dosimetric accuracy in the modeling of the rounded leaf ends for the Eclipse treatment planning system. The difference in leaf gap modeling versus physical

  3. Impact of Multileaf Collimator Configuration Parameters on the Dosimetric Accuracy of 6-MV Intensity-Modulated Radiation Therapy Treatment Plans.

    PubMed

    Petersen, Nick; Perrin, David; Newhauser, Wayne; Zhang, Rui

    2017-01-01

    The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC) transmission and rounded leaf offset in a commercial treatment planning system (TPS) (Pinnacle(3), Philips Medical Systems, Andover, MA, USA) on the accuracy of intensity-modulated radiation therapy (IMRT) dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA) measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2) and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being -0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.

  4. Dosimetric assessment of the PRESAGE dosimeter for a proton pencil beam

    NASA Astrophysics Data System (ADS)

    Wuu, C.-S.; Xu, Y.; Qian, X.; Adamovics, J.; Cascio, E.; Lu, H.-M.

    2013-06-01

    The objective of this study is to assess the feasibility of using PRESAGE dosimeters for proton pencil beam dosimetry. Two different formulations of phantom materials were tested for their suitability in characterizing a single proton pencil beam. The dosimetric response of PRESAGE was found to be linear up to 4Gy. First-generation optical CT scanner, OCTOPUSTM was used to implement dose distributions for proton pencil beams since it provides most accurate readout. Percentage depth dose curves and beam profiles for two proton energy, 110 MeV, and 93 MeV, were used to evaluate the dosimetric performance of two PRESAGE phantom formulas. The findings from this study show that the dosimetric properties of the phantom materials match with basic physics of proton beams.

  5. Theoretical dosimetric evaluation of carbon and oxygen minibeam radiation therapy.

    PubMed

    González, Wilfredo; Peucelle, Cécile; Prezado, Yolanda

    2017-05-01

    Charged particles have several advantages over x-ray radiations, both in terms of physics and radiobiology. The combination of these advantages with those of minibeam radiation therapy (MBRT) could help enhancing the therapeutic index for some cancers with poor prognosis. Among the different ions explored for therapy, carbon ions are considered to provide the optimum physical and biological characteristics. Oxygen could be advantageous due to a reduced oxygen enhancement ratio along with a still moderate biological entrance dose. The aforementioned reasons justified an in-depth evaluation of the dosimetric features of carbon and oxygen minibeam radiation therapy to establish the interest of further explorations of this avenue. The GATE/Geant4 6.2 Monte Carlo simulation platform was employed to simulate arrays of rectangular carbon and oxygen minibeams (600 μm × 2 cm) at a water phantom entrance. They were assumed to be generated by means of a magnetic focusing. The irradiations were performed with a 2-cm-long spread-out Bragg peak (SOBP) centered at 7-cm-depth. Several center-to-center (c-t-c) distances were considered. Peak and valley doses, as well as peak-to-valley dose ratio (PVDR) and the relative contribution of nuclear fragments and electromagnetic processes were assessed. In addition, the type and proportion of the secondary nuclear fragments were evaluated in both peak and valley regions. Carbon and oxygen MBRT lead to very similar dose distributions. No significant advantage of oxygen over carbon ions was observed from physical point of view. Favorable dosimetric features were observed for both ions. Thanks to the reduced lateral scattering, the standard shape of the depth dose curves (in the peaks) is maintained even for submillimetric beam sizes. When a narrow c-t-c is considered (910-980 μm), a (quasi) homogenization of the dose can be obtained at the target, while a spatial fractionation of the dose is maintained in the proximal normal tissues with

  6. Estimation of electromagnetic dosimetric values from non-ionizing radiofrequency fields in an indoor commercial airplane environment.

    PubMed

    Aguirre, Erik; Arpón, Javier; Azpilicueta, Leire; López, Peio; de Miguel, Silvia; Ramos, Victoria; Falcone, Francisco

    2014-12-01

    In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft.

  7. Dosimetric considerations of interstitial photodynamic therapy of the canine prostate mediated by intra-arterially administered hypocrellin derivative

    NASA Astrophysics Data System (ADS)

    Liu, Weiyang; Dickey, Dwayne J.; Xiao, Zhengwen; Moore, Ronald B.; Tulip, John

    2008-02-01

    Interstitial photodynamic therapy (iPDT) is a promising minimally invasive treatment modality for locally confined prostate cancer. Therapeutically excited at 635nm, the photophysical properties of SL-052 (a novel hypocrellin derivative photosensitizer) lend themselves uniquely to iPDT, facilitating real-time monitoring. Under 635nm excitation, SL-052 exhibits near infrared fluorescence, allowing both photosensitizer fluorescence and tissue transmissivity to be continuously monitored. The absorption and fluorescence characteristics of SL-052 in vivo and in vitro are first illustrated. SL-052 mediated iPDT of canine prostate was performed with a novel switched light delivery system and novel intra-arterial drug delivery method. A preliminary examination of the dosimetric properties of intra-arterial iPDT is presented, focusing on transmissivity dynamics. Spectrofluorimetry results relating specifically to the unique photophysical properties of SL-052 iPDT are also included.

  8. Carbon and oxygen minibeam radiation therapy: An experimental dosimetric evaluation.

    PubMed

    Martínez-Rovira, Immaculada; González, Wilfredo; Brons, Stephan; Prezado, Yolanda

    2017-08-01

    To perform dosimetric characterization of a minibeam collimator in both carbon and oxygen ion beams to guide optimal setup geometry and irradiation for future radiobiological studies. Carbon and oxygen minibeams were generated using a prototype tungsten multislit collimator presenting line apertures 700 μm wide, which are spaced 3500 μm centre-to-centre distance apart. Several radiation beam spots generated the desired field size of 15 × 15 mm(2) and production of a 50 mm long spread out Bragg peak (SOBP) centered at 80 mm depth in water. Dose evaluations were performed with two different detectors: a PTW microDiamond® single crystal diamond detector and radiochromic films (EBT3). Peak-to-valley dose ratio (PVDR) values, output factors (OF), penumbras, and full width at half maximum (FWHM) were measured. Measured lateral dose profiles exhibited spatial fractionation of dose at depth in a water phantom in the expected form of peaks and valleys for both carbon and oxygen radiation fields. The diamond detector and radiochromic film provided measurements of PVDR in good agreement. PVDR values at shallow depth were about 60 and decreased to about 10 at 80 mm depth in water. OF in the center of the SOBP was about 0.4; this value is larger than the corresponding one in proton minibeam radiation therapy measured using a comparable collimator due to a reduced lateral scattering for carbon and oxygen minibeams. Carbon and oxygen minibeams may be produced by a mechanical collimator. PVDR values and output factors measured in this first study of these minibeam radiation types indicate there is potential for their therapeutic use. Optimization of minibeam collimator design and the number and size of focal spots for irradiation are advocated to improve PDVR values and dose distributions for each specific applied use. © 2017 American Association of Physicists in Medicine.

  9. Radioembolization of Hepatic Lesions from a Radiobiology and Dosimetric Perspective

    PubMed Central

    Cremonesi, Marta; Chiesa, Carlo; Strigari, Lidia; Ferrari, Mahila; Botta, Francesca; Guerriero, Francesco; De Cicco, Concetta; Bonomo, Guido; Orsi, Franco; Bodei, Lisa; Di Dia, Amalia; Grana, Chiara Maria; Orecchia, Roberto

    2014-01-01

    Radioembolization (RE) of liver cancer with 90Y-microspheres has been applied in the last two decades with notable responses and acceptable toxicity. Two types of microspheres are available, glass and resin, the main difference being the activity/sphere. Generally, administered activities are established by empirical methods and differ for the two types. Treatment planning based on dosimetry is a prerogative of few centers, but has notably gained interest, with evidence of predictive power of dosimetry on toxicity, lesion response, and overall survival (OS). Radiobiological correlations between absorbed doses and toxicity to organs at risk, and tumor response, have been obtained in many clinical studies. Dosimetry methods have evolved from the macroscopic approach at the organ level to voxel analysis, providing absorbed dose spatial distributions and dose–volume histograms (DVH). The well-known effects of the external beam radiation therapy (EBRT), such as the volume effect, underlying disease influence, cumulative damage in parallel organs, and different tolerability of re-treatment, have been observed also in RE, identifying in EBRT a foremost reference to compare with. The radiobiological models – normal tissue complication probability and tumor control probability – and/or the style (DVH concepts) used in EBRT are introduced in RE. Moreover, attention has been paid to the intrinsic different activity distribution of resin and glass spheres at the microscopic scale, with dosimetric and radiobiological consequences. Dedicated studies and mathematical models have developed this issue and explain some clinical evidences, e.g., the shift of dose to higher toxicity thresholds using glass as compared to resin spheres. This paper offers a comprehensive review of the literature incident to dosimetry and radiobiological issues in RE, with the aim to summarize the results and to identify the most useful methods and information that should accompany future studies

  10. Radiation sensitivity and dosimetric features of sultamicillin tosylate

    NASA Astrophysics Data System (ADS)

    Çam, Semra Tepe; Polat, Mustafa; Korkmaz, Mustafa

    Particular interest now centers on the preparation of sterile unit-dose preparations. When preparations are purified from microorganisms using classic sterilization techniques, serious degradations may occur, especially in temperature sensitive drugs and drug active components. Sultamicillin is the tosylate salt of the double ester of sulbactam plus ampicillin. Sultamicillin (SULT) tosylate has previously been shown to be clinically and bacteriologically effective in a variety of infections. The use of high-energy radiation, such as gamma rays, for the sterilization of pharmaceuticals offers considerable interest because of the clear advantages this process has compared with other methods of sterilization. However, radiosensitivity of irradiated pharmaceuticals is important in this respect. Thus, radiosensitivity of SULT and its potential use as a dosimetric material were investigated by electron spin resonance (ESR) spectroscopy in the present work. Samples of SULT powder were irradiated at doses of 3, 6, 10 and 15 kGy and ESR spectra were recorded at room and at different temperatures. Variations of different spectroscopic parameters with irradiation dose, temperature and storage time were evaluated using data derived from experimental ESR spectra which exhibited five different resonance peaks. Stabilities of the radiolytic intermediates at high temperatures were also investigated through annealing studies performed at 340, 345 and 350 K. Rapid decreases in resonance peak heights above 325 K were considered a manifestation of the unstable character of the radiolytical intermediates at high temperature, although they decayed relatively slowly at room temperature. Seven different mathematical functions have been tried to fit the experimental dose-response data, and a power function of the applied dose was found to describe best the dose-response data.

  11. Dosimetric trade-offs in breast treatment with VMAT technique.

    PubMed

    Fogliata, Antonella; Seppälä, Jan; Reggiori, Giacomo; Lobefalo, Francesca; Palumbo, Valentina; De Rose, Fiorenza; Franceschini, Davide; Scorsetti, Marta; Cozzi, Luca

    2017-02-01

    Breast planning with volumetric modulated arc therapy (VMAT) has been explored, especially for left-sided breast treatments, with the primary intent of lowering the heart dose and improving target dose homogeneity. As a trade-off, larger healthy tissue volumes would receive low dose levels, with the potential risk of increasing late toxicities and secondary cancer induction, although no clinical data are available today to confirm the risk level. The scope of this work is to explore the dosimetric trade-offs using two different VMAT plans. Two planning strategies for dual-partial-arc VMAT, RA_avoid and RA_full, with and without avoidance sectors, were explored in a cohort of 20 patients, for whole left breast irradiation for 40.05 Gy to the mean target dose in 15 fractions. Common dose objectives included a stringent dose homogeneity, mean dose to the heart <5 Gy, ipsilateral lung (Ilung) <8 Gy, contralateral lung (Clung) <2 Gy and contralateral breast (Cbreast) <3 Gy. RA_full showed a better dose conformity, lower high-dose spillage in the healthy tissue and lower skin dose. RA_avoid presented a reduction of the mean doses for all critical structures: 51% to the heart, 12% to the Ilung, 81% to the Clung and 73% to the Cbreast. All differences were significant with p < 0.0001. The adaptation of VMAT options to planning objectives reduced significantly the healthy tissue dose levels at the price of some high-dose spillage. Evaluation of the trade-offs for application to the different critical structures should drive in improving the usage of the VMAT technique for breast cancer treatment. Advances in knowledge: Different planning strategies in the same VMAT technique could give significant variations in dose distributions. The choice of the trade-offs would affect the possible future late toxicity and secondary cancer induction risk.

  12. Dosimetric Analysis of Radiation-Induced Gastric Bleeding

    PubMed Central

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-01-01

    Purpose Radiation-induced gastric bleeding has been poorly understood. In this study, we describe dosimetric predictors for gastric bleeding after fractionated radiotherapy and compare several predictive models. Materials & Methods The records of 139 sequential patients treated with 3-dimensional conformal radiotherapy (3D-CRT) for intrahepatic malignancies between January 1999 and April 2002 were reviewed. Median follow-up was 7.4 months. Logistic regression and Lyman normal tissue complication probability (NTCP) models for the occurrence of ≥ grade 3 gastric bleed were fit to the data. The principle of maximum likelihood was used to estimate parameters for all models. Results Sixteen of 116 evaluable patients (14%) developed gastric bleeds, at a median time of 4.0 months (mean 6.5 months, range 2.1–28.3 months) following completion of RT. The median and mean of the maximum doses to the stomach were 61 and 63 Gy (range 46 Gy–86 Gy), respectively, after bio-correction to equivalent 2 Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis was most predictive of gastric bleed (AUROC=0.92). Best fit Lyman NTCP model parameters were n =0.10, and m =0.21, with TD50(normal) =56 Gy and TD50(cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD50 value for the cirrhosis patients points out their greater sensitivity. Conclusion This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding, and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation. PMID:22541965

  13. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    SciTech Connect

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at a median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.

  14. Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy

    SciTech Connect

    Mell, Loren K. . E-mail: lmell@radonc.uchicago.edu; Kochanski, Joel D.; Roeske, John C.; Haslam, Josh J.; Mehta, Neil; Yamada, S. Diane; Hurteau, Jean A.; Collins, Yvonne C.; Lengyel, Ernst; Mundt, Arno J.

    2006-12-01

    Purpose: To identify dosimetric parameters associated with acute hematologic toxicity (HT) and chemotherapy delivery in cervical cancer patients undergoing concurrent chemotherapy and intensity-modulated pelvic radiotherapy. Methods and Materials: We analyzed 37 cervical cancer patients receiving concurrent cisplatin (40 mg/m{sup 2}/wk) and intensity-modulated pelvic radiotherapy. Pelvic bone marrow (BM) was contoured for each patient and divided into three subsites: lumbosacral spine, ilium, and lower pelvis. The volume of each region receiving 10, 20, 30, and {>=}40 Gy (V{sub 1}, V{sub 2}, V{sub 3}, and V{sub 4}, respectively) was calculated. HT was graded according to Radiation Therapy Oncology Group system. Multivariate regression models were used to test associations between dosimetric parameters and HT and chemotherapy delivery. Results: Increased pelvic BM V{sub 1} (BM-V{sub 1}) was associated with an increased Grade 2 or worse leukopenia and neutropenia (odds ratio [OR], 2.09; 95% confidence interval [CI], 1.24-3.53; p = 0.006; and OR, 1.41; 95% CI, 1.02-1.94; p = 0.037, respectively). Patients with BM-V{sub 1} {>=}90% had higher rates of Grade 2 or worse leukopenia and neutropenia than did patients with BM-V{sub 1} <90% (11.1% vs. 73.7%, p < 0.01; and 5.6% vs. 31.6%, p = 0.09) and were more likely to have chemotherapy held on univariate (16.7% vs. 47.4%, p = 0.08) and multivariate (OR, 32.2; 95% CI, 1.67-622; p = 0.02) analysis. No associations between HT and V{sub 3} and V{sub 4} were observed. Dosimetric parameters involving the lumbosacral spine and lower pelvis had stronger associations with HT than did those involving the ilium. Conclusion: The volume of pelvic BM receiving low-dose radiation is associated with HT and chemotherapy delivery in cervical cancer patients undergoing concurrent chemoradiotherapy.

  15. TU-CD-304-03: Dosimetric Verification and Preliminary Comparison of Dynamic Wave Arc for SBRT Treatments

    SciTech Connect

    Burghelea, M; Poels, K; Gevaert, T; Tournel, K; Dhont, J; De Ridder, M; Verellen, D; Hung, C; Eriksson, K; Simon, V

    2015-06-15

    Purpose: To evaluate the potential dosimetric benefits and verify the delivery accuracy of Dynamic Wave Arc, a novel treatment delivery approach for the Vero SBRT system. Methods: Dynamic Wave Arc (DWA) combines simultaneous movement of gantry/ring with inverse planning optimization, resulting in an uninterrupted non-coplanar arc delivery technique. Thirteen SBRT complex cases previously treated with 8–10 conformal static beams (CRT) were evaluated in this study. Eight primary centrally-located NSCLC (prescription dose 4×12Gy or 8×7.5Gy) and five oligometastatic cases (2×2 lesions, 10×5Gy) were selected. DWA and coplanar VMAT plans, partially with dual arcs, were generated for each patient using identical objective functions for target volumes and OARs on the same TPS (RayStation, RaySearch Laboratories). Dosimetric differences and delivery time among these three planning schemes were evaluated. The DWA delivery accuracy was assessed using the Delta4 diode array phantom (ScandiDos AB). The gamma analysis was performed with the 3%/3mm dose and distance-to-agreement criteria. Results: The target conformity for CRT, VMAT and DWA were 0.95±0.07, 0.96±0.04 and 0.97±0.04, while the low dose spillage gradient were 5.52±1.36, 5.44±1.11, and 5.09±0.98 respectively. Overall, the bronchus, esophagus and spinal cord maximum doses were similar between VMAT and DWA, but highly reduced compared with CRT. For the lung cases, the mean dose and V20Gy were lower for the arc techniques compares with CRT, while for the liver cases, the mean dose and the V30Gy presented slightly higher values. The average delivery time of VMAT and DWA were 2.46±1.10 min and 4.25±1.67 min, VMAT presenting shorter treatment time in all cases. The DWA dosimetric verification presented an average gamma index passing rate of 95.73±1.54% (range 94.2%–99.8%). Conclusion: Our preliminary data indicated that the DWA is deliverable with clinically acceptable accuracy and has the potential to

  16. Silicon strip detector for a novel 2D dosimetric method for radiotherapy treatment verification

    NASA Astrophysics Data System (ADS)

    Bocci, A.; Cortés-Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Arráns, R.; Alvarez, M. A. G.; Abou-Haïdar, Z.; Quesada, J. M.; Pérez Vega-Leal, A.; Pérez Nieto, F. J.

    2012-05-01

    The aim of this work is to characterize a silicon strip detector and its associated data acquisition system, based on discrete electronics, to obtain in a near future absorbed dose maps in axial planes for complex radiotherapy treatments, using a novel technique. The experimental setup is based on two phantom prototypes: the first one is a polyethylene slab phantom used to characterize the detector in terms of linearity, percent depth dose, reproducibility, uniformity and penumbra. The second one is a cylindrical phantom, specifically designed and built to recreate conditions close to those normally found in clinical environments, for treatment planning assessment. This system has been used to study the dosimetric response of the detector, in the axial plane of the phantom, as a function of its angle with respect to the irradiation beam. A software has been developed to operate the rotation of this phantom and to acquire signals from the silicon strip detector. As an innovation, the detector was positioned inside the cylindrical phantom parallel to the beam axis. Irradiation experiments were carried out with a Siemens PRIMUS linac operating in the 6 MV photon mode at the Virgen Macarena Hospital. Monte Carlo simulations were performed using Geant4 toolkit and results were compared to Treatment Planning System (TPS) calculations for the absorbed dose-to-water case. Geant4 simulations were used to estimate the sensitivity of the detector in different experimental configurations, in relation to the absorbed dose in each strip. A final calibration of the detector in this clinical setup was obtained by comparing experimental data with TPS calculations.

  17. SU-E-T-332: Dosimetric Impact of Photon Energy and Treatment Technique When Knowledge Based Auto-Planning Is Implemented in Radiotherapy of Localized Prostate Cancer

    SciTech Connect

    Liu, Z; Kennedy, A; Larsen, E; Grow, A; Hayes, C; Balamucki, C; Salmon, H; Thompson, M

    2015-06-15

    Purpose: The aim of this study was to investigate the dosimetric impact of the combination of photon energy and treatment technique on radiotherapy of localized prostate cancer when knowledge based planning was used. Methods: A total of 16 patients with localized prostate cancer were retrospectively retrieved from database and used for this study. For each patient, four types of treatment plans with different combinations of photon energy (6X and 10X) and treatment techniques (7-field IMRT and 2-arc VMAT) were created using a prostate DVH estimation model in RapidPlan™ and Eclipse treatment planning system (Varian Medical System). For any beam arrangement, DVH objectives and weighting priorities were generated based on the geometric relationship between the OAR and PTV. Photon optimization algorithm was used for plan optimization and AAA algorithm was used for final dose calculation. Plans were evaluated in terms of the pre-defined dosimetric endpoints for PTV, rectum, bladder, penile bulb, and femur heads. A Student’s paired t-test was used for statistical analysis and p > 0.05 was considered statistically significant. Results: For PTV, V95 was statistically similar among all four types of plans, though the mean dose of 10X plans was higher than that of 6X plans. VMAT plans showed higher heterogeneity index than IMRT plans. No statistically significant difference in dosimetry metrics was observed for rectum, bladder, and penile bulb among plan types. For left and right femur, VMAT plans had a higher mean dose than IMRT plans regardless of photon energy, whereas the maximum dose was similar. Conclusion: Overall, the dosimetric endpoints were similar regardless of photon energy and treatment techniques when knowledge based auto planning was used. Given the similarity in dosimetry metrics of rectum, bladder, and penile bulb, the genitourinary and gastrointestinal toxicities should be comparable among the selections of photon energy and treatment techniques.

  18. SU-D-BRE-03: Dosimetric Impact of In-Air Spot Size Variations for Commissioning a Room-Matched Beam Model for Pencil Beam Scanning Proton Therapy

    SciTech Connect

    Zhang, Y; Giebeler, A; Mascia, A; Piskulich, F; Perles, L; Lepage, R; Dong, L

    2014-06-01

    Purpose: To quantitatively evaluate dosimetric consequence of spot size variations and validate beam-matching criteria for commissioning a pencil beam model for multiple treatment rooms. Methods: A planning study was first conducted by simulating spot size variations to systematically evaluate dosimetric impact of spot size variations in selected cases, which was used to establish the in-air spot size tolerance for beam matching specifications. A beam model in treatment planning system was created using in-air spot profiles acquired in one treatment room. These spot profiles were also acquired from another treatment room for assessing the actual spot size variations between the two treatment rooms. We created twenty five test plans with targets of different sizes at different depths, and performed dose measurement along the entrance, proximal and distal target regions. The absolute doses at those locations were measured using ionization chambers at both treatment rooms, and were compared against the calculated doses by the beam model. Fifteen additional patient plans were also measured and included in our validation. Results: The beam model is relatively insensitive to spot size variations. With an average of less than 15% measured in-air spot size variations between two treatment rooms, the average dose difference was −0.15% with a standard deviation of 0.40% for 55 measurement points within target region; but the differences increased to 1.4%±1.1% in the entrance regions, which are more affected by in-air spot size variations. Overall, our single-room based beam model in the treatment planning system agreed with measurements in both rooms < 0.5% within the target region. For fifteen patient cases, the agreement was within 1%. Conclusion: We have demonstrated that dosimetrically equivalent machines can be established when in-air spot size variations are within 15% between the two treatment rooms.

  19. Internal radiotherapy and dosimetric study for 111In/ 177Lu-pegylated liposomes conjugates in tumor-bearing mice

    NASA Astrophysics Data System (ADS)

    Wang, Hsin-Ell; Yu, Hung-Man; Lu, Yi-Ching; Heish, Ning-Ning; Tseng, Yun-Long; Huang, Kuang-Liang; Chuang, Kuo-Tang; Chen, Chin-Hsiung; Hwang, Jeng-Jong; Lin, Wuu-Jyh; Wang, Shyh-Jen; Ting, Gann; Whang-Peng, Jacqueline; Deng, Win-Ping

    2006-12-01

    In vivo characterization and dosimetric analysis has been performed to evaluate the potential of pegylated liposomes as carriers of radionuclides in tumor internal radiotherapy. MethodsThe DTPA/PEG-liposomes were synthesized with a medium size of 110 nm, conjugated with 111In/ 177Lu-(oxine) 3 to afford 111In/ 177Lu-liposome. The stability of 111In/ 177Lu-liposome in serum was investigated. The biodistribution, scintigraphic imaging and pharmacokinetics of 111In/ 177Lu-liposomes after intravenous(i.v.) injection into C-26 tumor-bearing BALB/cByJ mice were studied. Radiation dose was estimated by MIRD-III program. ResultsThe incorporation efficiency of 111In/ 177Lu into liposomes was 95%. After incubation at 37 °C for 72 h in serum, more than 83% of radioactivity was still retained in the intact 111In/ 177Lu-liposomes. The biodistribution of 111In-liposomes showed that the radioactivity in the blood decreased from 23.14±8.16%ID/g at 1 h to 0.02±0.00%ID/g at 72 h post-injection (p.i.), while reaching its maximum accumulation in tumors at 48 h p.i., with half-life in blood of 10.2 h. The results were supported by that of 177Lu-liposomes. Scintigraphic imaging with 111In-liposomes showed unambiguous tumor images at 48 h p.i. Dose estimation showed that the absorbed dose in tumor from 177Lu-liposomes was 5.74×10 -5 Gy/MBq. ConclusionsThis study provides an in vivo characterization and dosimetric evaluation for the use of liposome systems as carriers in targeted radionuclide therapy. The results suggest that adequate tumor targeting as well as dose delivered to tumors could be achieved by the use of radionuclide targeted liposomes.

  20. Evaluation of the Positional Accuracy and Dosimetric Properties of a Three-dimensional Printed Device for Head and Neck Immobilization.

    PubMed

    Sato, Kiyokazu; Takeda, Ken; Dobashi, Suguru; Kadoya, Noriyuki; Ito, Kengo; Chiba, Mizuki; Kishi, Kazuma; Yanagawa, Isao; Jingu, Keiichi

    2017-01-01

    Our aim was to investigate the feasibility of a three-dimensional (3D) -printed head-and-neck (HN) immobilization device by comparing its positional accuracy and dosimetric properties with those of a conventional immobilization device (CID). We prepared a 3D-printed immobilization device (3DID) consisting of a mask and headrest with acrylonitrile-butadiene-styrene resin developed from the computed tomography data obtained by imaging a HN phantom. For comparison, a CID comprising a thermoplastic mask and headrest was prepared using the same HN phantom. We measured the setup error using the ExacTrac X-ray image system. Furthermore, using the ionization chamber and the water-equivalent phantom, we measured the changes in the dose due to the difference in the immobilization device material from the photon of 4 MV and 6 MV. The positional accuracy of the two devices were almost similar in each direction except in the vertical, lateral, and pitch directions (t-test, p<0.0001), and the maximum difference was 1 mm, and 1°. The standard deviations were not statistically different in each direction except in the longitudinal (F-test, p=0.034) and roll directions (F-test, p<0.0001). When the thickness was the same, the dose difference was almost similar at a 50 mm depth. At a 1 mm depth, the 3DID-plate had a 2.9-4.2% lower dose than the CID-plate. This study suggested that the positional accuracy and dosimetric properties of 3DID were almost similar to those of CID.

  1. SU-E-T-538: Lung SBRT Dosimetric Comparison of 3D Conformal and RapidArc Planning

    SciTech Connect

    Jiang, R; Zhan, L; Osei, E

    2015-06-15

    Purpose: Dose distributions of RapidArc Plan can be quite different from standard 3D conformal radiation therapy. SBRT plans can be optimized with high conformity or mimic the 3D conformal treatment planning with very high dose in the center of the tumor. This study quantifies the dosimetric differences among 3D conformal plan; flattened beam and FFF beam RapidArc Plans for lung SBRT. Methods: Five lung cancer patients treated with 3D non-coplanar SBRT were randomly selected. All the patients were CT scanned with 4DCT to determine the internal target volume. Abdominal compression was applied to minimize respiratory motion for SBRT patients. The prescription dose was 48 Gy in 4 fractions. The PTV coverage was optimized by two groups of objective function: one with high conformity, another mimicking 3D conformal dose distribution with high dose in the center of PTV. Optimization constraints were set to meet the criteria of the RTOG-0915 protocol. All VMAT plans were optimized with the RapidArc technique using four full arcs in Eclipse treatment planning system. The RapidArc SBRT plans with flattened 6MV beam and 6MV FFF beam were generated and dosimetric results were compared with the previous treated 3D non-coplanar plans. Results: All the RapidArc plans with flattened beam and FFF beam had similar results for the PTV and OARs. For the high conformity optimization group, The DVH of PTV exhibited a steep dose fall-off outside the PTV compared to the 3D non-coplanar plan. However, for the group mimicking the 3D conformal target dose distribution, although the PTV is very similar to the 3D conformal plan, the ITV coverage is better than 3D conformal plan. Conclusion: Due to excellent clinical experiences of 3D conformal SBRT treatment, the Rapid Arc optimization mimicking 3D conformal planning may be suggested for clinical use.

  2. SU-E-T-315: Dosimetric Effects of Couch Top Shift On VMAT Delivery in Absence of Indexing

    SciTech Connect

    Islam, M; Jin, H; Ferguson, S; Ahmad, S

    2015-06-15

    Purpose: To investigate dosimetric effects of couch top shift for volumetric-modulated arc therapy (VMAT) in absence of indexing of immobilization devices. Methods: A total of twelve VMAT treatment plans were selected from three regions (lung, abdomen, and pelvis) to account for the variation of the patient position relative to the couch top. The treatment plans were generated using the Varian Eclipse system. A pinpoint ionization chamber (PTW TN31014) was placed at the center of 16-cm solid water phantom and the dose was delivered using the Varian TrueBeam STx with BrainLAB ExacTrac couch top. To simulate the day-to-day variation of the patient position relative to couch top, the couch top was laterally shifted up to 50 mm, with an increment of 5 mm from 0 to 20 mm; and of 10 mm afterwards, and the phantom was moved back to 0 cm shift for measurement. The dose was also delivered using a Varian tennis racket grid insert at 0 cm shift to simulate the absence of couch top. The treatment plans were delivered with 6, 10, and 15 MV photons using the same leaf sequencing to investigate the energy dependence of couch top shift. The dose difference was normalized to 0 cm shift for the regular couch top for comparison. Results: The percent difference of dose was found to increase with lateral shift for all energies; however, the average differences were close to 0% and the maximum difference was within 1% along the lateral shifts. The differences with the absence of couch top were 2.2±0.5% (6MV), 1.7±0.3% (10MV), and 1.6±0.2% (15MV), respectively. Conclusion: The inclusion of couch top is recommended in treatment planning to minimize the dosimetric uncertainty between calculated and delivered dose even in absence of indexing of immobilization devices in VMAT delivery.

  3. SU-E-T-333: Dosimetric Impact of Rotational Error On the Target Coverage in IMPT Lung Cancer Plans

    SciTech Connect

    Rana, S; Zheng, Y

    2015-06-15

    Purpose: The main purpose of this study was to investigate the impact of rotational (yaw, roll, and pitch) error on the planning target volume (PTV) coverage in lung cancer plans generated by intensity modulated proton therapy (IMPT). Methods: In this retrospective study, computed tomography (CT) dataset of previously treated lung case was used. IMPT plan were generated on the original CT dataset using left-lateral (LL) and posterior-anterior (PA) beams for a total dose of 74 Gy[RBE] with 2 Gy[RBE] per fraction. In order to investigate the dosimetric impact of rotational error, 12 new CT datasets were generated by re-sampling the original CT dataset for rotational (roll, yaw, and pitch) angles ranged from −5° to +5°, with an increment of 2.5°. A total of 12 new IMPT plans were generated based on the re-sampled CT datasets using beam parameters identical to the ones in the original IMPT plan. All treatment plans were generated in XiO treatment planning system. The PTV coverage (i.e., dose received by 95% of the PTV volume, D95) in new IMPT plans were then compared with the PTV coverage in the original IMPT plan. Results: Rotational errors caused the reduction in the PTV coverage in all 12 new IMPT plans when compared to the original IMPT lung plan. Specifically, the PTV coverage was reduced by 4.94% to 50.51% for yaw, by 4.04% to 23.74% for roll, and by 5.21% to 46.88% for pitch errors. Conclusion: Unacceptable dosimetric results were observed in new IMPT plans as the PTV coverage was reduced by up to 26.87% and 50.51% for rotational error of 2.5° and 5°, respectively. Further investigation is underway in evaluating the PTV coverage loss in the IMPT lung cancer plans for smaller rotational angle change.

  4. Dosimetric characteristics of LinaTech DMLC H multi leaf collimator: Monte Carlo simulation and experimental study.

    PubMed

    Molazadeh, Mikaeil; Zeinali, Ahad; Robatjazi, Mostafa; Shirazi, Alireza; Geraily, Ghazale

    2017-03-01

    This study evaluated the basic dosimetric characteristics of a Dynamic Multi Leaf Collimator (DMLC) using a diode detector and film measurements for Intensity Modulated Radiation Therapy Quality Assurance (IMRT QA). The EGSnrc Monte Carlo (MC) simulation system was used for the determination of MLC characteristics. Radiation transmission and abutting leaf leakage relevant to the LinaTech DMLC H were measured using an EDGE detector and EBT3 film. In this study, the BEAMnrc simulation code was used for modeling. The head of Siemens PRIMUS linac (6 MV) with external DMLC H was entered into a BEAMnrc Monte Carlo model using practical dosimetry data. Leaf material density, as well as interleaf and abutting air gaps were determined according to the computed and measured dose profiles. The IMRT QA field was used to evaluate the dose distribution of the simulated DMLC H. According to measurements taken with the EDGE detector and film, the total average measured leakage was 1.60 ± 0.03% and 1.57 ± 0.05%, respectively. For these measurements, abutting leaf transmission was 54.35 ± 1.85% and 53.08 ± 2.05%, respectively. To adapt the simulated leaf dose profiles with measurements, leaf material density, interleaf and abutting air gaps were adjusted to 18 g/cm(3) , 0.008 cm and 0.108 cm, respectively. Thus, the total average leakage was estimated to be about 1.59 ± 0.02%. The step-and-shoot IMRT was implemented and 94% agreement was achieved between the film and MC, using 3%-3 mm gamma criteria. The results of this study showed that the dosimetric characteristics of DMLC H satisfied international standards.

  5. SU-F-SPS-10: The Dosimetric Comparison of GammaKnife and Cyberknife Treatment Plans for Brain SRS Treatment

    SciTech Connect

    Sanli, E; Mabhouti, H; Cebe, M; Codel, G; Pacaci, P; Serin, E; Kucuk, N; Kucukmorkoc, E; Doyuran, M; Canoglu, D; Altinok, A; Acar, H; Caglar Ozkok, H

    2016-06-15

    Purpose: Brain stereotactic radiosurgery (SRS) involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of GammaKnife perfection and Cyberknife M6 treatment plans were made. Methods: Treatment plannings were done for GammaKnife perfection unit using Gammaplan treatment planning system (TPS) on the CT scan of head and neck randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using TMR 10 algorithm. The treatment planning for the same target were also done for Cyberknife M6 machine using Multiplan (TPS) with Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife treatment plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For gammaknife treatment plans, the gamma analysis passing rates were 98.9% and 93.2% for target and peripheral region of target respectively. Conclusion: The study shows that dosimetrically comparable plans are achievable with Cyberknife and GammaKnife. Although TMR 10 algorithm predicts the target dose.

  6. Dosimetric impact of motion in free-breathing and gated lung radiotherapy: A 4D Monte Carlo study of intrafraction and interfraction effects

    PubMed Central

    Seco, Joao; Sharp, Greg C.; Wu, Ziji; Gierga, David; Buettner, Florian; Paganetti, Harald

    2008-01-01

    The purpose of this study was to investigate if interfraction and intrafraction motion in free-breathing and gated lung IMRT can lead to systematic dose differences between 3DCT and 4DCT. Dosimetric effects were studied considering the breathing pattern of three patients monitored during the course of their treatment and an in-house developed 4D Monte Carlo framework. Imaging data were taken in free-breathing and in cine mode for both 3D and 4D acquisition. Treatment planning for IMRT delivery was done based on the free-breathing data with the corvus (North American Scientific, Chatsworth, CA) planning system. The dose distributions as a function of phase in the breathing cycle were combined using deformable image registration. The study focused on (a) assessing the accuracy of the corvus pencil beam algorithm with Monte Carlo dose calculation in the lung, (b) evaluating the dosimetric effect of motion on the individual breathing phases of the respiratory cycle, and (c) assessing intrafraction and interfraction motion effects during free-breathing or gated radiotherapy. The comparison between (a) the planning system and the Monte Carlo system shows that the pencil beam algorithm underestimates the dose in low-density regions, such as lung tissue, and overestimates the dose in high-density regions, such as bone, by 5% or more of the prescribed dose (corresponding to approximately 3–5 Gy for the cases considered). For the patients studied this could have a significant impact on the dose volume histograms for the target structures depending on the margin added to the clinical target volume (CTV) to produce either the planning target (PTV) or internal target volume (ITV). The dose differences between (b) phases in the breathing cycle and the free-breathing case were shown to be negligible for all phases except for the inhale phase, where an underdosage of the tumor by as much as 9.3 Gy relative to the free-breathing was observed. The large difference was due to

  7. Dosimetric impact of motion in free-breathing and gated lung radiotherapy: A 4D Monte Carlo study of intrafraction and interfraction effects

    SciTech Connect

    Seco, Joao; Sharp, Greg C.; Wu Ziji; Gierga, David; Buettner, Florian; Paganetti, Harald

    2008-01-15

    The purpose of this study was to investigate if interfraction and intrafraction motion in free-breathing and gated lung IMRT can lead to systematic dose differences between 3DCT and 4DCT. Dosimetric effects were studied considering the breathing pattern of three patients monitored during the course of their treatment and an in-house developed 4D Monte Carlo framework. Imaging data were taken in free-breathing and in cine mode for both 3D and 4D acquisition. Treatment planning for IMRT delivery was done based on the free-breathing data with the CORVUS (North American Scientific, Chatsworth, CA) planning system. The dose distributions as a function of phase in the breathing cycle were combined using deformable image registration. The study focused on (a) assessing the accuracy of the CORVUS pencil beam algorithm with Monte Carlo dose calculation in the lung, (b) evaluating the dosimetric effect of motion on the individual breathing phases of the respiratory cycle, and (c) assessing intrafraction and interfraction motion effects during free-breathing or gated radiotherapy. The comparison between (a) the planning system and the Monte Carlo system shows that the pencil beam algorithm underestimates the dose in low-density regions, such as lung tissue, and overestimates the dose in high-density regions, such as bone, by 5% or more of the prescribed dose (corresponding to approximately 3-5 Gy for the cases considered). For the patients studied this could have a significant impact on the dose volume histograms for the target structures depending on the margin added to the clinical target volume (CTV) to produce either the planning target (PTV) or internal target volume (ITV). The dose differences between (b) phases in the breathing cycle and the free-breathing case were shown to be negligible for all phases except for the inhale phase, where an underdosage of the tumor by as much as 9.3 Gy relative to the free-breathing was observed. The large difference was due to

  8. SU-E-T-652: Quantification of Dosimetric Uncertainty of I-125 COMS Eye Plaque

    SciTech Connect

    Ferreira, C; Ahmad, S; Firestone, B; Johnson, D; Matthiesen, C; De La Fuente Herman, T

    2015-06-15

    Purpose: To compare dosimetrically three plan calculation systems (Plato, Varian Brachytherapy, and in-house-made Excel) available for I-125 COMS eye plaque treatment with measurement. Methods: All systems assume homogeneous media and calculations are based on a three-dimensional Cartesian coordinates, Plato and Brachytherapy Planning are based on AAPM TG-43 and the in-house Excel program only on inverse square corrections. Doses at specific depths were measured with EBT3 Gafchromic film from a fully loaded and a partially loaded 16 mm plaque (13 and 8 seeds respectively, I-125, model 6711 GE, Oncura). Measurements took place in a water tank, utilizing solid water blocks and a 3D-printed plaque holder. Taking advantage that gafchromic film has low energy dependence, a dose step wedge was delivered with 6 MV photon beam from a Varian 2100 EX linac for calibration. The gray-scale to dose in cGy was obtained with an Epson Expression 10000 XL scanner in the green channel. Treatment plans were generated for doses of 2200 cGy to a depth of 7 mm, and measurements were taken on a sagittal plane. Results: The calculated dose at the prescription point was 2242, 2344, and 2211 cGy with Excel, Brachyvision and Plato respectively for a fully loaded plaque, for the partially loaded plaque the doses were 2266, 2477, and 2193 cGy respectively. At 5 mm depth the doses for Brachyvision and Plato were comparable (3399 and 3267 cGy respectively), however, the measured dose in film was 3180 cGy which was lower by as much as 6.4% in the fully loaded plaque and 7.6% in the partially loaded plaque. Conclusion: Careful methodology and calibration are essential when measuring doses at specific depth due to the sensitivity and rapid dose fall off of I-125.

  9. Strategies for reducing intra-fraction motion induced dosimetric effects in proton therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Li

    Intra-fraction respiration motion during radiation delivery presents a major challenge to radiation therapy. There has been a growing effort to characterize and manage internal organ motion in radiation therapy, however very few studies focus on tackling this issue in proton therapy. Current practice for treating lung tumors in proton therapy is still to apply population-based margins to account for internal tumor motion, which can lead to target underdosage and normal tissue overdosage. This thesis explores the intra-fraction motion induced dosimetric effects from both computational treatment planning and experimental studies. Four-dimensional CT scans are used to analyze the patient-specific tumor motion characteristics. A feasible method to design the range compensator by using the maximum intensity projection (MIP) images is proposed. Results demonstrate that this MIP approach ensures adequate tumor coverage throughout the entire respiratory cycle whilst maintaining normal tissue dose under clinical constraints. Based on 4D-CT scans, dose convolution is used for assessing the accuracy of Gaussian probability density function for modeling the patient-specific respiratory motion on dose distribution. Non-negligible dose discrepancy is observed in comparisons of convolved dose distributions, and patient-specific respiration PDF is advocated. In addition, an experimental phantom study primarily focusing on the interplay effect between target motion and the scanning beam motion is implemented in two proton beam delivery systems: double scattering and uniform scanning. Measurement results suggest that dose blurring effect is dominant, and interplay effect is trivial in the uniform scanning system due to dose repainting.

  10. SU-E-T-293: Dosimetric Analysis of Microscopic Disease in SBRT for Lung Cancers

    SciTech Connect

    Mao, R; Tian, L; Ge, H; Zhang, Y; Ren, L; Gao, R; Yin, F

    2015-06-15

    Purpose: To evaluate the dosimetry of microscopic disease (MD) region of lung cancer in stereotactic body radiation therapy (SBRT). Methods: For simplicity, we assume organ moves along one dimension. The probability distribution function of tumor position was calculated according to the breathing cycle. The dose to the MD region was obtained through accumulating the treatment planning system calculated doses at different positions in a breathing cycle. A phantom experiment was then conducted to validate the calculated results using a motion phantom (The CIRS ‘Dynamic’ Thorax Phantom). The simulated breathing pattern used a cos4(x) curve with an amplitude of 10mm. A 3-D conformal 7-field plan with 6X energy was created and the dose was calculated in the average intensity projection (AIP) simulation CT images. Both films (EBT2) and optically stimulated luminescence (OSL) detectors were inserted in the target of the phantom to measure the dose during radiation delivery (Varian Truebeam) and results were compared to planning dose parameters. Results: The Gamma analysis (3%/3mm) between measured dose using EBT2 film and calculated dose using AIP was 80.5%, indicating substantial dosimetric differences. While the Gamma analysis (3%/3mm) between measured dose using EBT2 and accumulated dose using 4D-CT was 98.9%, indicating the necessity of dose accumulation using 4D-CT. The measured doses using OSL and theoretically calculated doses using probability distribution function at the corresponding position were comparable. Conclusion: Use of static dose calculation in the treatment planning system could substantially underestimate the actually delivered dose in the MD region for a moving target. Funding Supported by NSFC, No.81372436.

  11. Dosimetric characteristics of a reusable 3D radiochromic dosimetry material.

    PubMed

    Park, Jong Min; Park, So-Yeon; Choi, Chang Heon; Chun, Minsoo; Han, Ji Hye; Cho, Jin Dong; Kim, Jung-In

    2017-01-01

    To investigate the dosimetric characteristics of PRESAGEREU dosimeters. Commercially available PRESAGEREU dosimeters (size of 10 mm × 10 mm × 45 mm) were divided into two groups, with one of the groups placed at room temperature of 22°C (RT group) and another group placed at low temperature of 10°C (LT group). A total of 3 dosimeters (set of dosimeters) were irradiated at a time, with doses of 1 Gy, 2 Gy, 4 Gy, 8 Gy, 12 Gy, 16 Gy, and 20 Gy, at a nominal dose rate of 400 MU/min at temperature of 22°C. The dosimeters were irradiated three additional times by delivering the same doses as those during the initial irradiations (4 irradiation cycles). Optical density (OD) was assessed using optical CT scanning. Considering both linearity and sensitivity of the OD curves, R2 above 0.95 and sensitivity above 0.04 ΔOD/Gy were observed at the 1st irradiation (reading time ≤ 6 h) and 2nd irradiation (reading time = 0.5 h) for the RT group. For the LT group, those values were observed at the 1st irradiation (reading time ≤ 2 h), and the 3rd and 4th irradiations (both reading times = 0.5 h). Considering the reproducibility of signals in response to the same dose, dosimeters in the RT group showed average deviations among dosimeters less than 5% (the 1st and 2nd irradiations at the reading time of 0.5 h), while for dosimeters in the LT group showed average deviations among dosimeters less than 6% (the 3rd and 4th irradiations at the reading time of 0.5 h). For the rest, the OD curves were not linear, sensitivities of the dosimeters were lower than 0.04 ΔOD/Gy, and OD deviations at the same dose were larger than 6%. At room temperature, PRESAGEREU dosimeters could be used for dose measurement only for up to two dose measurement sessions. At low temperatures, usage of PRESAGEREU dosimeters for dose measurement seems to be possible from the 3rd irradiation. When reusing PRESAGEREU dosimeters, the OD curve should be re-defined for every measurement session because the

  12. Dosimetric measurements of Onyx embolization material for stereotactic radiosurgery

    SciTech Connect

    Roberts, Donald A.; Balter, James M.; Chaudhary, Neeraj; Gemmete, Joseph J.; Pandey, Aditya S.

    2012-11-15

    Purpose: Arteriovenous malformations are often treated with a combination of embolization and stereotactic radiosurgery. Concern has been expressed in the past regarding the dosimetric properties of materials used in embolization and the effects that the introduction of these materials into the brain may have on the quality of the radiosurgery plan. To quantify these effects, the authors have taken large volumes of Onyx 34 and Onyx 18 (ethylene-vinyl alcohol copolymer doped with tantalum) and measured the attenuation and interface effects of these embolization materials. Methods: The manufacturer provided large cured volumes ({approx}28 cc) of both Onyx materials. These samples were 8.5 cm in diameter with a nominal thickness of 5 mm. The samples were placed on a block tray above a stack of solid water with an Attix chamber at a depth of 5 cm within the stack. The Attix chamber was used to measure the attenuation. These measurements were made for both 6 and 16 MV beams. Placing the sample directly on the solid water stack and varying the thickness of solid water between the sample and the Attix chamber measured the interface effects. The computed tomography (CT) numbers for bulk material were measured in a phantom using a wide bore CT scanner. Results: The transmission through the Onyx materials relative to solid water was approximately 98% and 97% for 16 and 6 MV beams, respectively. The interface effect shows an enhancement of approximately 2% and 1% downstream for 16 and 6 MV beams. CT numbers of approximately 2600-3000 were measured for both materials, which corresponded to an apparent relative electron density (RED) {rho}{sub e}{sup w} to water of approximately 2.7-2.9 if calculated from the commissioning data of the CT scanner. Conclusions: We performed direct measurements of attenuation and interface effects of Onyx 34 and Onyx 18 embolization materials with large samples. The introduction of embolization materials affects the dose distribution of a MV

  13. Predicting Pneumonitis Risk: A Dosimetric Alternative to Mean Lung Dose

    SciTech Connect

    Tucker, Susan L.; Mohan, Radhe; Liengsawangwong, Raweewan; Martel, Mary K.; Liao Zhongxing

    2013-02-01

    Purpose: To determine whether the association between mean lung dose (MLD) and risk of severe (grade {>=}3) radiation pneumonitis (RP) depends on the dose distribution pattern to normal lung among patients receiving 3-dimensional conformal radiation therapy for non-small-cell lung cancer. Methods and Materials: Three cohorts treated with different beam arrangements were identified. One cohort (2-field boost [2FB]) received 2 parallel-opposed (anteroposterior-posteroanterior) fields per fraction initially, followed by a sequential boost delivered using 2 oblique beams. The other 2 cohorts received 3 or 4 straight fields (3FS and 4FS, respectively), ie, all fields were irradiated every day. The incidence of severe RP was plotted against MLD in each cohort, and data were analyzed using the Lyman-Kutcher-Burman (LKB) model. Results: The incidence of grade {>=}3 RP rose more steeply as a function of MLD in the 2FB cohort (N=120) than in the 4FS cohort (N=138), with an intermediate slope for the 3FS group (N=99). The estimated volume parameter from the LKB model was n=0.41 (95% confidence interval, 0.15-1.0) and led to a significant improvement in fit (P=.05) compared to a fit with volume parameter fixed at n=1 (the MLD model). Unlike the MLD model, the LKB model with n=0.41 provided a consistent description of the risk of severe RP in all three cohorts (2FB, 3FS, 4FS) simultaneously. Conclusions: When predicting risk of grade {>=}3 RP, the mean lung dose does not adequately take into account the effects of high doses. Instead, the effective dose, computed from the LKB model using volume parameter n=0.41, may provide a better dosimetric parameter for predicting RP risk. If confirmed, these findings support the conclusion that for the same MLD, high doses to small lung volumes ('a lot to a little') are worse than low doses to large volumes ('a little to a lot').

  14. Dosimetric characteristics of a PIN diode for radiotherapy application.

    PubMed

    Kumar, R; Sharma, S D; Philomina, A; Topkar, A

    2014-08-01

    The PIN diode developed by Bhabha Atomic Research Centre (BARC) was modified for its use as a dosimeter in radiation therapy. For this purpose the diode was mounted on a printed circuit board (PCB) and provided with necessary connections so that its response against irradiation can be recorded by a standard radiotherapy electrometer. The dosimetric characteristics of the diode were studied in Co-60 gamma rays as well as high energy X-rays. The measured sensitivity of this PIN diode is 4 nC/cGy which is about ten times higher than some commercial diode dosimeters. The leakage current from the diode is 0.04 nA. The response of the PIN diode is linear in the range of 20-1000 cGy which covers the full range of radiation dose encountered in radiotherapy treatments. The non-linearity of the diode response is 3.5% at 20 cGy and it is less than 1.5% at higher dose values. Its repeatability is within 0.5%. The angular response variation is about 5.6% within 6608 with respect to normal beam incidence. The response of the PIN diode at 6 and 18 MV X-rays varies within 2% with respect to its response at Co-60 gamma rays. The source to surface distance (SSD) dependence of the PIN diode was studied for Co-60 beam. It was found that the response of the diode decreases almost linearly relative to given dose for beams with constant collimator setting but increasing SSD (decreasing dose-rate). Within this study the diode response varied by about 2.5% between the maximum and minimum SSD. The dose-rate dependence of the PIN diode for 6 and 15 MV-rays was studied. The variation in response of diode for both energies in the studied dose range is less than 1%. The field size dependence of the PIN diode response is within 1% with respect to the response of ionisation chamber. These studies indicate that the characteristics of the PIN diode are suitable for use in radiotherapy dosimetry.

  15. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    PubMed Central

    Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; af Rosenschöld, Per Munck

    2012-01-01

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Methods: Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358° arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy × 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45° or 315°. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior–inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system. The

  16. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    SciTech Connect

    Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; Munck af Rosenschoeld, Per

    2012-03-15

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Methods: Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358 deg. arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy x 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45 deg. or 315 deg. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior-inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system

  17. Preparation, thermoluminescence, photoluminescence and dosimetric characteristics of LiF:Mg,Cu,P,B phosphor

    NASA Astrophysics Data System (ADS)

    Preto, Prince D.; Vidyavathy, B.; Dhabekar, Bhushan S.

    2017-01-01

    This paper presents the preparation, thermoluminescence, thermoluminescence (TL) emission, photoluminescence (PL) emission and dosimetric properties of a new LiF:Mg,Cu,P,B (MCPB) phosphor. This phosphor shows an enhanced sensitivity and is 27 times more sensitive than LiF:Mg,Ti and 1.15 times more sensitive than LiF:Mg,Cu,P (MCP). The position and shape of the glow curve of MCPB is very much similar to that of MCP, but the intensity of the main dosimetric peak increases, reaches a maximum at a concentration of about 0.025 mol% and then decreases slowly upon further addition of boron. The main dosimetric peak of the phosphor appears at 220 °C and is linear up to 10 Gy with a minimum detectable dose of about 10 μGy. MCPB phosphor can be reused up to 10 cycles at an annealing temperature of 260 °C for 10 min without loss in TL sensitivity. MCPB exhibits a very low residual signal (0.42 %) when compared to that of GR-200A and GR-200P reported in the literature. The structural and morphological characteristics of the phosphor have been studied using X-ray diffraction method and scanning electron microscope. Both the TL and PL emission spectrum are recorded and analyzed. The various other dosimetric properties like annealing temperature, fading, reusability and residual signal are also presented in this study.

  18. Dosimetric impact of orthopedic metal artifact reduction (O-MAR) on Spine SBRT patients.

    PubMed

    Shen, Zhilei Liu; Xia, Ping; Klahr, Paul; Djemil, Toufik

    2015-09-08

    The dosimetric impact of orthopedic metal artifact reduction (O-MAR) on spine SBRT patients has not been comprehensively studied, particularly with spinal prostheses in high-dose gradient regions. Using both phantom and patient datasets, we investigated dosimetric effects of O-MAR in combination of various metal locations and dose calculation algorithms. A physical phantom, with and without a titanium insert, was scanned. A clinical patient plan was applied to the artifact-free reference, non-O-MAR, and O-MAR phantom images with the titanium located either inside or outside of the tumor. Subsequently, five clinical patient plans were calculated with pencil beam and Monte Carlo (iPlan) on non-O-MAR and O-MAR patient images using an extended CT-density table. The dose differences for phantom plans and patient plans were analyzed using dose distributions, dose-volume histograms (DVHs), gamma index, and selected dosimetric endpoints. From both phantom plans and patient plans, O-MAR did not affect dose distributions and DVHs while minimizing metal artifacts. Among patient plans, we found that, when the same dose calculation method was used, the difference in the dosimetric endpoints between non-O-MAR and O-MAR datasets were small. In conclusion, for spine SBRT patients with spinal prostheses, O-MAR image reconstruction does not affect dose calculation accuracy while minimizing metal artifacts. Therefore, O-MAR images can be safely used for clinical spine SBRT treatment planning.

  19. Dosimetric impact of density variations in Solid Water 457 water-equivalent slabs.

    PubMed

    Litzenberg, Dale W; Amro, Hanan; Prisciandaro, Joann I; Acosta, Eduardo; Gallagher, Ian; Roberts, Don A

    2011-04-22

    The purpose of this study was to determine the dosimetric impact of density variations observed in water-equivalent solid slabs. Measurements were performed using two 30 cm × 30 cm water-equivalent slabs, one being 4 cm think and the other 5 cm thick. The location and extent of density variations were determined by computed tomography (CT) scans. Additional imaging measurements were made with an amorphous silicon megavoltage portal imaging device and an ultrasound unit. Dosimetric measurements were conducted with a 2D ion chamber array, and a scanned diode in water. Additional measurements and calculations were made of small rectilinear void inhomogeneities formed with water-equivalent slabs, using a 2D ion chamber array and the convolution superposition algorithm. Two general types of density variation features were observed on CT images: 1) regions of many centimeters across, but typically only a few millimeters thick, with electron densities a few percent lower than the bulk material, and 2) cylindrical regions roughly 0.2 cm in diameter and up to 20 cm long with electron densities up to 5% lower than the surrounding material. The density variations were not visible on kilovoltage, megavoltage or ultrasound images. The dosimetric impact of the density variations were not detectable to within 0.1% using the 2D ion chamber array or the scanning photon diode at distances 0.4 cm to 2 cm beyond the features. High-resolution dosimetric calculations using the convolution-superposition algorithm with density corrections enabled on CT-based datasets showed no discernable dosimetric impact. Calculations and measurements on simulated voids place the upper limit on possible dosimetric variations from observed density variations at much less than 0.6%. CT imaging of water-equivalent slabs may reveal density variations which are otherwise unobserved with kV, MV, or ultrasound imaging. No dosimetric impact from these features was measureable with an ion chamber array or

  20. Basic Principles and Practices of Integrated Dosimetric Passportization of the Settlements in Ukraine.

    PubMed

    Likhtarov, I A; Kovgan, L M; Masiuk, S V; Ivanova, O M; Chepurny, M I; Boyko, Z N; Gerasymenko, V B

    2015-12-01

    The purpose of the review is to demonstrate the results of dosimetric passportization (performed in 1991-2014) for the settlements of Ukraine which suffered from radioactive contamination caused by the Chornobyl accident. The dosimetric passportization played a key role in the National program on the liquidation of aftermath of the Chornobyl accident directed on recovery through all stages of the current radiation situation control and decision support touching upon various types of interventions and social benefits to the population of radioactively contaminated areas. The works being performed under dosimetric passportization did not have analogues among the researches which took place after other large-scale industrial and municipal accidents as well their scales as the duration of both radio-ecological and dosimetric monitoring.The new methodological approaches to the assessment of so-called passport doses of a settlement as well as to the definition of the concept of annual dose being the dose used to make decisions for providing both direct and indirect emergency countermeasures for the settlements of Ukraine became pioneering ones. During all the post-accident period there were issued sixteen collections of general dosimetric passportization data which accumulate the results of hundreds of thousands spectrometric, radiochemical and radiation levels measurements and WBC measurements carried out in 1991-2014.The annual passport doses calculated on the basis of these measurements (including their components) are unique information that quantifies the level and time dynamics of the radiation situation for each of the 2161 settlements of 74 raions in 12 oblasts during all the post-accident period. Thanks to the works of dosimetric passportization of the settlements of Ukraine there were created databases to be unique in their structure and content with quantitative characteristics of the territorial and temporal distribution, the dynamics of changes of a number

  1. Study of the Phototransference in GR-200 Dosimetric Material and its Convenience for Dose Re-estimation

    SciTech Connect

    Baly, L.; Otazo, M. R.; Molina, D.; Pernas, R.

    2006-09-08

    A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.

  2. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Tsuruta, Yusuke; Nakata, Manabu; Higashimura, Kyoji; Nakamura, Mitsuhiro Matsuo, Yukinori; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-08-15

    Purpose: To compare the dosimetric performance of Acuros XB (AXB), anisotropic analytical algorithm (AAA), and x-ray voxel Monte Carlo (XVMC) in heterogeneous phantoms and lung stereotactic body radiotherapy (SBRT) plans. Methods: Water- and lung-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. The radiation treatment machine Novalis (BrainLab AG, Feldkirchen, Germany) with an x-ray beam energy of 6 MV was used to calculate the doses in the composite phantom at a source-to-surface distance of 100 cm with a gantry angle of 0°. Subsequently, the clinical lung SBRT plans for the 26 consecutive patients were transferred from the iPlan (ver. 4.1; BrainLab AG) to the Eclipse treatment planning systems (ver. 11.0.3; Varian Medical Systems, Palo Alto, CA). The doses were then recalculated with AXB and AAA while maintaining the XVMC-calculated monitor units and beam arrangement. Then the dose-volumetric data obtained using the three different radiation dose calculation algorithms were compared. Results: The results from AXB and XVMC agreed with measurements within ±3.0% for the lung-equivalent phantom with a 6 × 6 cm{sup 2} field size, whereas AAA values were higher than measurements in the heterogeneous zone and near the boundary, with the greatest difference being 4.1%. AXB and XVMC agreed well with measurements in terms of the profile shape at the boundary of the heterogeneous zone. For the lung SBRT plans, AXB yielded lower values than XVMC in terms of the maximum doses of ITV and PTV; however, the differences were within ±3.0%. In addition to the dose-volumetric data, the dose distribution analysis showed that AXB yielded dose distribution calculations that were closer to those with XVMC than did AAA. Means ± standard deviation of the computation time was 221.6 ± 53.1 s (range, 124–358 s), 66.1 ± 16.0 s (range, 42–94 s), and 6.7 ± 1.1 s (range, 5–9 s) for XVMC, AXB, and AAA, respectively. Conclusions: In the

  3. Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy

    SciTech Connect

    Wang, Jiazhou; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Hu, Weigang; Jin, Xiance; Studenski, Matthew

    2015-02-15

    Purpose: To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient’s anatomic and dosimetric parameters for esophageal cancer patients. Methods: Eighty esophagus patients in the authors’ institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman’s rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. Results: With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. Conclusions: It is feasible to use patients’ anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.

  4. Dosimetric effects of endorectal balloons on intensity-modulated radiation therapy plans for prostate cancer

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Sung; Chung, Jin-Beom; Kim, In-Ah; Eom, Keun-Yong

    2013-10-01

    We used an endorectal balloon (ERB) for prostate immobilization during intensity-modulated radiotherapy (IMRT) for prostate cancer treatment. To investigate the dosimetric effects of ERB-filling materials, we changed the ERB Hounsfield unit (HU) from 0 to 1000 HU in 200-HU intervals to simulate the various ERB fillings; 0 HU simulated a water-filled ERB, and 1000 HU simulated the densest material-filled ERB. Dosimetric data (coverage, homogeneity, conformity, maximal dose, and typical volume dose) for the tumor and the organs at risk (OARs) were evaluated in prostate IMRT treatment plans with 6-MV and 15-MV beams. The tumor coverage appeared to differ by approximately 1%, except for the clinical target volume (CTV) V100% and the planning target volume (PTV) V100%. The largest difference for the various ERB fillings was observed in the PTV V100%. In spite of increasing HU, the prostate IMRT plans at both energies had relatively low dosimetric effects on the PTV and the CTV. However, the maximal and the typical volume doses (D25%, D30%, and D50%) to the rectal wall and the bladder increased with increasing HU. For an air-filled ERB, the maximal doses to the rectal wall and the monitor units were lower than the corresponding values for the water-filled and the densest material-filled ERBs. An air-filled ERB spared the rectal wall because of its dosimetric effect. Thus, we conclude that the use of an air-filled ERB provides a dosimetric benefit to the rectal wall without a loss of target coverage and is an effective option for prostate IMRT treatment.

  5. Dosimetric impact of different multileaf collimators on prostate intensity modulated treatment planning

    PubMed Central

    Orlandini, Lucia Clara; Betti, Margherita; Fulcheri, Christian; Coppola, Marianna; Cionini, Luca

    2015-01-01

    Aim The main purpose of this study is to perform a dosimetric comparison on target volumes and organs at risks (OARs) between prostate intensity modulated treatment plans (IMRT) optimized with different multileaf collimators (MLCs). Background The use of MLCs with a small leaf width in the IMRT optimization may improve conformity around the tumor target whilst reducing the dose to normal tissues. Materials and methods Two linacs mounting MLCs with 5 and 10 mm leaf-width, respectively, implemented in Pinnacle3 treatment planning system were used for this work. Nineteen patients with prostate carcinoma undergoing a radiotherapy treatment were enrolled. Treatment planning with different setup arrangements (7 and 5 beams) were performed for each patient and each machine. Dose volume histograms (DVHs) cut-off points were used in the treatment planning comparison. Results Comparable planning target volume (PTV) coverage was obtained with 7- and 5-beam configuration (both with 5 and 10 mm MLC leaf-width). The comparison of bladder and rectum DVH cut-off points for the 5-beam arrangement shows that 52.6% of the plans optimized with a larger leaf-width did not satisfy at least one of the OARs’ constraints. This percentage is reduced to 10.5% for the smaller leaf-width. If a 7-beam arrangement is used the value of 52.6% decreases to 21.1% while the value of 10.5% remains unchanged. Conclusion MLCs collimators with different widths and number of leaves lead to a comparable prostate treatment planning if a proper adjustment is made of the number of gantry angles. PMID:26549993

  6. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom

    NASA Astrophysics Data System (ADS)

    Mann, P.; Witte, M.; Moser, T.; Lang, C.; Runz, A.; Johnen, W.; Berger, M.; Biederer, J.; Karger, C. P.

    2017-01-01

    In this study, we developed a new setup for the validation of clinical workflows in adaptive radiation therapy, which combines a dynamic ex vivo porcine lung phantom and three-dimensional (3D) polymer gel dosimetry. The phantom consists of an artificial PMMA-thorax and contains a post mortem explanted porcine lung to which arbitrary breathing patterns can be applied. A lung tumor was simulated using the PAGAT (polyacrylamide gelatin gel fabricated at atmospheric conditions) dosimetry gel, which was evaluated in three dimensions by magnetic resonance imaging (MRI). To avoid bias by reaction with oxygen and other materials, the gel was collocated inside a BAREX™ container. For calibration purposes, the same containers with eight gel samples were irradiated with doses from 0 to 7 Gy. To test the technical feasibility of the system, a small spherical dose distribution located completely within the gel volume was planned. Dose delivery was performed under static and dynamic conditions of the phantom with and without motion compensation by beam gating. To verify clinical target definition and motion compensation concepts, the entire gel volume was homogeneously irradiated applying adequate margins in case of the static phantom and an additional internal target volume in case of dynamically operated phantom without and with gated beam delivery. MR-evaluation of the gel samples and comparison of the resulting 3D dose distribution with the planned dose distribution revealed a good agreement for the static phantom. In case of the dynamically operated phantom without motion compensation, agreement was very poor while additional application of motion compensation techniques restored the good agreement between measured and planned dose. From these experiments it was concluded that the set up with the dynamic and anthropomorphic lung phantom together with 3D-gel dosimetry provides a valuable and versatile tool for geometrical and dosimetrical validation of motion compensated

  7. Dosimetric comparison of IMRT rectal and anal canal plans generated using an anterior dose avoidance structure.

    PubMed

    Leicher, Brian; Day, Ellen; Colonias, Athanasios; Gayou, Olivier

    2014-01-01

    To describe a dosimetric method using an anterior dose avoidance structure (ADAS) during the treatment planning process for intensity-modulated radiation therapy (IMRT) for patients with anal canal and rectal carcinomas. A total of 20 patients were planned on the Elekta/CMS XiO treatment planning system, version 4.5.1 (Maryland Heights MO) with a superposition algorithm. For each patient, 2 plans were created: one employing an ADAS (ADAS plan) and the other replanned without an ADAS (non-ADAS plan). The ADAS was defined to occupy the volume between the inguinal nodes and primary target providing a single organ at risk that is completely outside of the target volume. Each plan used the same beam parameters and was analyzed by comparing target coverage, overall plan dose conformity using a conformity number (CN) equation, bowel dose-volume histograms, and the number of segments, daily treatment duration, and global maximum dose. The ADAS and non-ADAS plans were equivalent in target coverage, mean global maximum dose, and sparing of small bowel in low-dose regions (5, 10, 15, and 20 Gy). The mean difference between the CN value for the non-ADAS plans and ADAS plans was 0.04 ± 0.03 (p < 0.001). The mean difference in the number of segments was 15.7 ± 12.7 (p < 0.001) in favor of ADAS plans. The ADAS plan delivery time was shorter by 2.0 ± 1.5 minutes (p < 0.001) than the non-ADAS one. The ADAS has proven to be a powerful tool when planning rectal and anal canal IMRT cases with critical structures partially contained inside the target volume.

  8. Dosimetric Comparison of Manual and Beam Angle Optimization of Gantry Angles in IMRT

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-10-01

    Dosimetric comparison of manual beam angle selection (MBS) and beam angle optimization (BAO) for IMRT plans is investigated retrospectively for 15 head and neck and prostate patients. The head and neck and prostate had planning target volumes (PTVs) ranging between 96.0 and 319.9 cm{sup 3} and 153.6 and 321.3 cm{sup 3}, whereas OAR ranged between 8.3 and 47.8 cm{sup 3} and 68.3 and 469.2 cm{sup 3}, respectively. In MBS, a standard coplanar 7-9 fields equally spaced gantry angles were used. In BAO, the selection of gantry angle was optimized by the algorithm for the same number of beams. The optimization and dose-volume constraints were kept the same for both techniques. Treatment planning was performed on the Eclipse treatment planning system. Our results showed that the dose-volume histogram for PTV are nearly identical in both techniques but BAO provided superior sparing of the organs at risk compared with the MBS. Also, MBS produced statistically significant higher monitor units (MU) and segments than the BAO; 13.1 {+-} 6.6% (p = 0.012) and 10.4 {+-} 13.6% (p = 0.140), and 14.6 {+-} 5.6% (p = 1.003E-5) and 12.6 {+-} 7.4% (p = 0.76E-3) for head and neck and prostate cases, respectively. The reduction in MU translates into the reduction in total body and integral dose. It is concluded that BAO provides advantage over MBS for most intenisty-modulated radiation therapy cases.

  9. The dosimetric impact of control point spacing for sliding gap MLC fields.

    PubMed

    Zwan, Benjamin J; Hindmarsh, Jonathan; Seymour, Erin; Kandasamy, Kankean; Sloan, Kirbie; David, Rajesakar; Lee, Christopher

    2016-11-08

    Dynamic sliding gap multileaf collimator (MLC) fields are used to model MLC properties within the treatment planning system (TPS) for dynamic treatments. One of the key MLC properties in the Eclipse TPS is the dosimetric leaf gap (DLG) and precise determination of this parameter is paramount to ensuring accurate dose delivery. In this investigation, we report on how the spacing between control points (CPs) for sliding gap fields impacts the dose delivery, MLC positioning accuracy, and measurement of the DLG. The central axis dose was measured for sliding gap MLC fields with gap widths ranging from 2 to 40 mm. It was found that for deliveries containing two CPs, the central axis dose was underestimated by the TPS for all gap widths, with the maximum difference being 8% for a 2 mm gap field. For the same sliding gap fields containing 50 CPs, the measured dose was always within ± 2% of the TPS dose. By directly measuring the MLC trajectories we show that this dose difference is due to a systematic MLC gap error for fields containing two CPs, and that the cause of this error is due to the leaf position offset table which is incorrectly applied when the spacing between CPs is too large. This MLC gap error resulted in an increase in the measured DLG of 0.5 mm for both 6MV and 10 MV, when using fields with 2 CPs compared to 50 CPs. Furthermore, this change in DLG was shown to decrease the mean TPS-calculated dose to the target volume by 2.6% for a clinical IMRT test plan. This work has shown that systematic MLC positioning errors occur for sliding gap MLC fields containing two CPs and that using these fields to model critical TPS parameters, such as the DLG, may result in clinically significant systematic dose calculation errors during subsequent dynamic MLC treatments.

  10. The dosimetric impact of control point spacing for sliding gap MLC fields.

    PubMed

    Zwan, Benjamin J; Hindmarsh, Jonathan; Seymour, Erin; Kandasamy, Kankean; Sloan, Kirbie; David, Rajesakar; Lee, Christopher

    2016-11-01

    Dynamic sliding gap multileaf collimator (MLC) fields are used to model MLC properties within the treatment planning system (TPS) for dynamic treatments. One of the key MLC properties in the Eclipse TPS is the dosimetric leaf gap (DLG) and precise determination of this parameter is paramount to ensuring accurate dose delivery. In this investigation, we report on how the spacing between control points (CPs) for sliding gap fields impacts the dose delivery, MLC positioning accuracy, and measurement of the DLG. The central axis dose was measured for sliding gap MLC fields with gap widths ranging from 2 to 40 mm. It was found that for deliveries containing two CPs, the central axis dose was underestimated by the TPS for all gap widths, with the maximum difference being 8% for a 2 mm gap field. For the same sliding gap fields containing 50 CPs, the measured dose was always within ±2% of the TPS dose. By directly measuring the MLC trajectories we show that this dose difference is due to a systematic MLC gap error for fields containing two CPs, and that the cause of this error is due to the leaf position offset table which is incorrectly applied when the spacing between CPs is too large. This MLC gap error resulted in an increase in the measured DLG of 0.5 mm for both 6 MV and 10 MV, when using fields with 2 CPs compared to 50 CPs. Furthermore, this change in DLG was shown to decrease the mean TPS-calculated dose to the target volume by 2.6% for a clinical IMRT test plan. This work has shown that systematic MLC positioning errors occur for sliding gap MLC fields containing two CPs and that using these fields to model critical TPS parameters, such as the DLG, may result in clinically significant systematic dose calculation errors during subsequent dynamic MLC treatments. PACS number(s): 87.56.nk.

  11. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom.

    PubMed

    Mann, P; Witte, M; Moser, T; Lang, C; Runz, A; Johnen, W; Berger, M; Biederer, J; Karger, C P

    2017-01-21

    In this study, we developed a new setup for the validation of clinical workflows in adaptive radiation therapy, which combines a dynamic ex vivo porcine lung phantom and three-dimensional (3D) polymer gel dosimetry. The phantom consists of an artificial PMMA-thorax and contains a post mortem explanted porcine lung to which arbitrary breathing patterns can be applied. A lung tumor was simulated using the PAGAT (polyacrylamide gelatin gel fabricated at atmospheric conditions) dosimetry gel, which was evaluated in three dimensions by magnetic resonance imaging (MRI). To avoid bias by reaction with oxygen and other materials, the gel was collocated inside a BAREX(™) container. For calibration purposes, the same containers with eight gel samples were irradiated with doses from 0 to 7 Gy. To test the technical feasibility of the system, a small spherical dose distribution located completely within the gel volume was planned. Dose delivery was performed under static and dynamic conditions of the phantom with and without motion compensation by beam gating. To verify clinical target definition and motion compensation concepts, the entire gel volume was homogeneously irradiated applying adequate margins in case of the static phantom and an additional internal target volume in case of dynamically operated phantom without and with gated beam delivery. MR-evaluation of the gel samples and comparison of the resulting 3D dose distribution with the planned dose distribution revealed a good agreement for the static phantom. In case of the dynamically operated phantom without motion compensation, agreement was very poor while additional application of motion compensation techniques restored the good agreement between measured and planned dose. From these experiments it was concluded that the set up with the dynamic and anthropomorphic lung phantom together with 3D-gel dosimetry provides a valuable and versatile tool for geometrical and dosimetrical validation of motion compensated

  12. Dosimetric comparison of IMRT rectal and anal canal plans generated using an anterior dose avoidance structure

    SciTech Connect

    Leicher, Brian; Day, Ellen; Colonias, Athanasios; Gayou, Olivier

    2014-10-01

    To describe a dosimetric method using an anterior dose avoidance structure (ADAS) during the treatment planning process for intensity-modulated radiation therapy (IMRT) for patients with anal canal and rectal carcinomas. A total of 20 patients were planned on the Elekta/CMS XiO treatment planning system, version 4.5.1 (Maryland Heights MO) with a superposition algorithm. For each patient, 2 plans were created: one employing an ADAS (ADAS plan) and the other replanned without an ADAS (non-ADAS plan). The ADAS was defined to occupy the volume between the inguinal nodes and primary target providing a single organ at risk that is completely outside of the target volume. Each plan used the same beam parameters and was analyzed by comparing target coverage, overall plan dose conformity using a conformity number (CN) equation, bowel dose-volume histograms, and the number of segments, daily treatment duration, and global maximum dose. The ADAS and non-ADAS plans were equivalent in target coverage, mean global maximum dose, and sparing of small bowel in low-dose regions (5, 10, 15, and 20 Gy). The mean difference between the CN value for the non-ADAS plans and ADAS plans was 0.04 ± 0.03 (p < 0.001). The mean difference in the number of segments was 15.7 ± 12.7 (p < 0.001) in favor of ADAS plans. The ADAS plan delivery time was shorter by 2.0 ± 1.5 minutes (p < 0.001) than the non-ADAS one. The ADAS has proven to be a powerful tool when planning rectal and anal canal IMRT cases with critical structures partially contained inside the target volume.

  13. Poster — Thur Eve — 58: Dosimetric validation of electronic compensation for radiotherapy treatment planning

    SciTech Connect

    Gräfe, James; Khan, Rao; Meyer, Tyler

    2014-08-15

    In this study we investigate the deliverability of dosimetric plans generated by the irregular surface compensator (ISCOMP) algorithm for 6 MV photon beams in Eclipse (Varian Medical System, CA). In contrast to physical tissue compensation, the electronic ISCOMP uses MLCs to dynamically modulate the fluence of a photon beam in order to deliver a uniform dose at a user defined plane in tissue. This method can be used to shield critical organs that are located within the treatment portal or improve dose uniformity by tissue compensation in inhomogeneous regions. Three site specific plans and a set of test fields were evaluated using the γ-metric of 3%/ 3 mm on Varian EPID, MapCHECK, and Gafchromic EBT3 film with a clinical tolerance of >95% passing rates. Point dose measurements with an NRCC calibrated ionization chamber were also performed to verify the absolute dose delivered. In all cases the MapCHECK measured plans met the gamma criteria. The mean passing rate for the six EBT3 film field measurements was 96.2%, with only two fields at 93.4 and 94.0% passing rates. The EPID plans passed for fields encompassing the central ∼10 × 10 cm{sup 2} region of the detector; however for larger fields and greater off-axis distances discrepancies were observed and attributed to the profile corrections and modeling of backscatter in the portal dose calculation. The magnitude of the average percentage difference for 21 ion chamber point dose measurements and 17 different fields was 1.4 ± 0.9%, and the maximum percentage difference was −3.3%. These measurements qualify the algorithm for routine clinical use subject to the same pre-treatment patient specific QA as IMRT.

  14. Fractionated stereotactic radiotherapy: a method to evaluate geometric and dosimetric uncertainties using radiochromic films.

    PubMed

    Coscia, Gianluca; Vaccara, Elena; Corvisiero, Roberta; Cavazzani, Paolo; Ruggieri, Filippo Grillo; Taccini, Gianni

    2009-07-01

    In the authors' hospital, stereotactic radiotherapy treatments are performed with a Varian Clinac 600C equipped with a BrainLAB m3 micro-multileaf-collimator generally using the dynamic conformal arc technique. Patient immobilization during the treatment is achieved with a fixation mask supplied by BrainLAB, made with two reinforced thermoplastic sheets fitting the patient's head. With this work the authors propose a method to evaluate treatment geometric accuracy and, consequently, to determine the amount of the margin to keep in the CTV-PTV expansion during the treatment planning. The reproducibility of the isocenter position was tested by simulating a complete treatment on the anthropomorphic phantom Alderson Rando, inserting in between two phantom slices a high sensitivity Gafchromic EBT film, properly prepared and calibrated, and repeating several treatment sessions, each time removing the fixing mask and replacing the film inside the phantom. The comparison between the dose distributions measured on films and computed by TPS, after a precise image registration procedure performed by a commercial piece of software (FILMQA, 3cognition LLC (Division of ISP), Wayne, NJ), allowed the authors to measure the repositioning errors, obtaining about 0.5 mm in case of central spherical PTV and about 1.5 mm in case of peripheral irregular PTV. Moreover, an evaluation of the errors in the registration procedure was performed, giving negligible values with respect to the quantities to be measured. The above intrinsic two-dimensional estimate of treatment accuracy has to be increased for the error in the third dimension, but the 2 mm margin the authors generally use for the CTV-PTV expansion seems adequate anyway. Using the same EBT films, a dosimetric verification of the treatment planning system was done. Measured dose values are larger or smaller than the nominal ones depending on geometric irradiation conditions, but, in the authors' experimental conditions, always

  15. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    SciTech Connect

    Cusumano, Davide; Fumagalli, Maria L.; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena

    2015-10-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.

  16. Fractionated stereotactic radiotherapy: A method to evaluate geometric and dosimetric uncertainties using radiochromic films

    SciTech Connect

    Coscia, Gianluca; Vaccara, Elena; Corvisiero, Roberta; Cavazzani, Paolo; Ruggieri, Filippo Grillo; Taccini, Gianni

    2009-07-15

    In the authors' hospital, stereotactic radiotherapy treatments are performed with a Varian Clinac 600C equipped with a BrainLAB m3 micro-multileaf-collimator generally using the dynamic conformal arc technique. Patient immobilization during the treatment is achieved with a fixation mask supplied by BrainLAB, made with two reinforced thermoplastic sheets fitting the patient's head. With this work the authors propose a method to evaluate treatment geometric accuracy and, consequently, to determine the amount of the margin to keep in the CTV-PTV expansion during the treatment planning. The reproducibility of the isocenter position was tested by simulating a complete treatment on the anthropomorphic phantom Alderson Rando, inserting in between two phantom slices a high sensitivity Gafchromic EBT film, properly prepared and calibrated, and repeating several treatment sessions, each time removing the fixing mask and replacing the film inside the phantom. The comparison between the dose distributions measured on films and computed by TPS, after a precise image registration procedure performed by a commercial piece of software (FILMQA, 3cognition LLC (Division of ISP), Wayne, NJ), allowed the authors to measure the repositioning errors, obtaining about 0.5 mm in case of central spherical PTV and about 1.5 mm in case of peripheral irregular PTV. Moreover, an evaluation of the errors in the registration procedure was performed, giving negligible values with respect to the quantities to be measured. The above intrinsic two-dimensional estimate of treatment accuracy has to be increased for the error in the third dimension, but the 2 mm margin the authors generally use for the CTV-PTV expansion seems adequate anyway. Using the same EBT films, a dosimetric verification of the treatment planning system was done. Measured dose values are larger or smaller than the nominal ones depending on geometric irradiation conditions, but, in the authors' experimental conditions, always

  17. Dosimetric validation of a redundant independent calculation software for VMAT fields.

    PubMed

    Mata Colodro, F; Serna Berná, A; Puchades Puchades, V

    2013-06-01

    A redundant independent dosimetric calculation (RIDC) prior to treatment has become a basic part of the QA process for 3D conventional radiotherapy, and is strongly recommended in several international publications. On the other hand, the rapid growth in the number of intensity modulated treatments has led to a significant increase in the workflow associated with QA treatments. Diamond ("K&S Associates") is RIDC software which is capable of calculating VMAT (Volumetric Modulated Arc Therapy) fields. Modeling, validation and commissioning are necessary steps thereby making it a useful tool for VMAT QA. In this paper, a procedure for the validation of the calculation algorithm is demonstrated. A set 3D conventional field was verified in two ways: firstly, a comparison was made between Diamond calculations and experimental measures obtaining an average deviation of -0.1 ± 0.7%(1SD), and secondly, a comparison made between Diamond and the treatment planning system (TPS) Eclipse, obtaining an average deviation of 0.4 ± 0.8%(1SD). For both steps, a plastic slab phantom was used. VMAT validation was carried out by analyzing 59 VMAT plans in two ways: first, Diamond calculation versus experimental measurement with an average deviation of -0.2 ± 1.7%(1SD), and second, Diamond calculation versus TPS calculation with an average deviation of 0.0 ± 1.6%(1SD). In this phase a homogeneous cylindrical phantom was used. These results led us to consider this calculation algorithm validated for use in VMAT verifications.

  18. SU-E-T-313: Dosimetric Deviation of Misaligned Beams for a 6 MV Photon Linear Accelerator Using Monte Carlo Simulations

    SciTech Connect

    Kim, S

    2015-06-15

    Purpose: To quantify the dosimetric variations of misaligned beams for a linear accelerator by using Monte Carlo (MC) simulations. Method and Materials: Misaligned beams of a Varian 21EX Clinac were simulated to estimate the dosimetric effects. All the linac head components for a 6 MV photon beam were implemented in BEAMnrc/EGSnrc system. For incident electron beam parameters, 6 MeV with 0.1 cm full-width-half-max Gaussian beam was used. A phase space file was obtained below the jaw per each misalignment condition of the incident electron beam: (1) The incident electron beams were tilted by 0.5, 1.0 and 1.5 degrees on the x-axis from the central axis. (2) The center of the incident electron beam was off-axially moved toward +x-axis by 0.1, 0.2, and 0.3 cm away from the central axis. Lateral profiles for each misaligned beam condition were acquired at dmax = 1.5 cm and 10 cm depth in a rectangular water phantom. Beam flatness and symmetry were calculated by using the lateral profile data. Results: The lateral profiles were found to be skewed opposite to the angle of the incident beam for the tilted beams. For the displaced beams, similar skewed lateral profiles were obtained with small shifts of penumbra on the +x-axis. The variations of beam flatness were 3.89–11.18% and 4.12–42.57% for the tilted beam and the translated beam, respectively. The beam symmetry was separately found to be 2.95 −9.93% and 2.55–38.06% separately. It was found that the percent increase of the flatness and the symmetry values are approximated 2 to 3% per 0.5 degree tilt or per 1 mm displacement. Conclusion: This study quantified the dosimetric effects of misaligned beams using MC simulations. The results would be useful to understand the magnitude of the dosimetric deviations for the misaligned beams.

  19. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4

    NASA Astrophysics Data System (ADS)

    Pope, D. J.; Cutajar, D. L.; George, S. P.; Guatelli, S.; Bucci, J. A.; Enari, K. E.; Miller, S.; Siegele, R.; Rosenfeld, A. B.

    2015-06-01

    Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences. Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors

  20. A dosimetric characterization of a novel linear accelerator collimator

    SciTech Connect

    Thompson, C. M.; Weston, S. J. Cosgrove, V. C.; Thwaites, D. I.

    2014-03-15

    Purpose: The aim of this work is to characterize a new linear accelerator collimator which contains a single pair of sculpted diaphragms mounted orthogonally to a 160 leaf multileaf collimator (MLC). The diaphragms have “thick” regions providing full attenuation and “thin” regions where attenuation is provided by both the leaves and the diaphragm. The leaves are mounted on a dynamic leaf guide allowing rapid leaf motion and leaf travel over 350 mm. Methods: Dosimetric characterization, including assessment of leaf transmission, leaf tip transmission, penumbral width, was performed in a plotting tank. Head scatter factor was measured using a mini-phantom and the effect of leaf guide position on output was assessed using a water phantom. The tongue and groove effect was assessed using multiple exposures on radiochromic film. Leaf reproducibility was assessed from portal images of multiple abutting fields. Results: The maximum transmission through the multileaf collimator is 0.44% at 6 MV and 0.52% at 10 MV. This reduced to 0.22% and 0.27%, respectively, when the beam passes through the dynamic leaf guide in addition to the MLC. The maximum transmission through the thick part of the diaphragm is 0.32% and 0.36% at 6 and 10 MV. The combination of leaf and diaphragm transmission ranges from 0.08% to 0.010% at 6 MV and 0.10% to 0.14% depending on whether the shielding is through the thick or thin part of the diaphragm. The off-axis intertip transmission for a zero leaf gap is 2.2% at 6 and 10 MV. The leaf tip penumbra for a 100 × 100 mm field ranges from 5.4 to 4.3 mm at 6 and 10 MV across the full range of leaf motion when measured in the AB direction, which reduces to 4.0–3.4 mm at 6 MV and 4.5–3.8 mm at 10 MV when measured in the GT direction. For a 50 × 50 mm field, the diaphragm penumbra ranges from 4.3 to 3.7 mm at 6 MV and 4.5 to 4.1 mm at 10 MV in the AB direction and 3.7 to 3.2 mm at 6 MV and 4.2 to 3.7 mm when measured in the GT direction. The

  1. Dosimetric evaluation of whole-breast radiation therapy: Clinical experience

    SciTech Connect

    Osei, Ernest; Darko, Johnson; Fleck, Andre; White, Jana; Kiciak, Alexander; Redekop, Rachel; Gopaul, Darin

    2015-01-01

    Radiation therapy of the intact breast is the standard therapy for preventing local recurrence of early-stage breast cancer following breast conservation surgery. To improve patient standard of care, there is a need to define a consistent and transparent treatment path for all patients that reduces significance variations in the acceptability of treatment plans. There is lack of consistency among institutions or individuals about what is considered an acceptable treatment plan: target coverage vis-à-vis dose to organs at risk (OAR). Clinical trials usually resolve these issues, as the criteria for an acceptable plan within the trial (target coverage and doses to OAR) are well defined. We developed an institutional criterion for accepting breast treatment plans in 2006 after analyzing treatment data of approximately 200 patients. The purpose of this article is to report on the dosimetric review of 623 patients treated in the last 18 months to evaluate the effectiveness of the previously developed plan acceptability criteria and any possible changes necessary to further improve patient care. The mean patient age is 61.6 years (range: 25.2 to 93.0 years). The mean breast separation for all the patients is 21.0 cm (range: 12.4 to 34.9 cm), and the mean planning target volume (PTV-eval) (breast volume for evaluation) is 884.0 cm{sup 3} (range: 73.6 to 3684.6 cm{sup 3}). Overall, 314 (50.4%) patients had the disease in the left breast and 309 (49.6%) had it in the right breast. A total of 147 (23.6%) patients were treated using the deep inspiration breath-hold (DIBH) technique. The mean normalized PTV-eval receiving at least 92% (V{sub 92%} {sub PD}) and 95% (V{sub 95%} {sub PD}) of the prescribed dose (PD) are more than 99% and 97%, respectively, for all patients. The mean normalized PTV-eval receiving at least 105% (V{sub 105%} {sub PD}) of the PD is less than 1% for all groups. The mean homogeneity index (HI), uniformity index (UI), and conformity index (CI) for the

  2. Independent verification of transferred delivery sinogram between two dosimetrically matched helical tomotherapy machines: a protocol for patient-specific quality assurance.

    PubMed

    Yaddanapudi, Sridhar; Oddiraju, Swetha; Rodriguez, Vivian; Green, Olga L; Low, Daniel A; Rangaraj, Dharanipathy; Mutic, Sasa; Goddu, S Murty

    2012-09-07

    The purpose of this study was to independently verify the transferred delivery sinogram between two dosimetrically matched helical tomotherapy machines with the goal of eliminating redundant quality assurance (QA) measurements on the second machine. The equivalence of the two machines was evaluated based on both geometric and dosimetric beam characteristics, including measuring open field per cent depth doses (PDD), longitudinal and transverse profiles and helical delivery of clinical patient treatment plans measured in phantoms. QA of 56 patient plans was studied. The delivery sinogram on the secondary machine was computed by accounting for the differences in the MLC characteristics of the two machines. Computed sinograms were compared against the transferred sinograms by tomotherapy's data management system for the same 56 patient plans. The PDD, transverse and longitudinal dose profiles agreed within ±1% between the two machines. Ionization chamber and planar dose measurements with the Iba MatriXX device on both machines for the 56 patients were found to be within ±3% of the doses computed by the tomotherapy treatment planning system. For all 56 patients, the differences between computed sinograms and DMS-converted sinograms were within ±2%. The matched tomotherapy machines had similar beam characteristics. The sinogram-based QA was validated using point and planar dose measurements and found to be acceptable for clinical use.

  3. Independent verification of transferred delivery sinogram between two dosimetrically matched helical tomotherapy machines: a protocol for patient-specific quality assurance

    NASA Astrophysics Data System (ADS)

    Yaddanapudi, Sridhar; Oddiraju, Swetha; Rodriguez, Vivian; Green, Olga L.; Low, Daniel A.; Rangaraj, Dharanipathy; Mutic, Sasa; Goddu, S. Murty

    2012-09-01

    The purpose of this study was to independently verify the transferred delivery sinogram between two dosimetrically matched helical tomotherapy machines with the goal of eliminating redundant quality assurance (QA) measurements on the second machine. The equivalence of the two machines was evaluated based on both geometric and dosimetric beam characteristics, including measuring open field per cent depth doses (PDD), longitudinal and transverse profiles and helical delivery of clinical patient treatment plans measured in phantoms. QA of 56 patient plans was studied. The delivery sinogram on the secondary machine was computed by accounting for the differences in the MLC characteristics of the two machines. Computed sinograms were compared against the transferred sinograms by tomotherapy's data management system for the same 56 patient plans. The PDD, transverse and longitudinal dose profiles agreed within ±1% between the two machines. Ionization chamber and planar dose measurements with the Iba MatriXX device on both machines for the 56 patients were found to be within ±3% of the doses computed by the tomotherapy treatment planning system. For all 56 patients, the differences between computed sinograms and DMS-converted sinograms were within ±2%. The matched tomotherapy machines had similar beam characteristics. The sinogram-based QA was validated using point and planar dose measurements and found to be acceptable for clinical use.

  4. Energy and angular dependences of common types of personal dosemeters in the mirror of the First national intercomparison of individual dosimetric monitoring laboratories in Ukraine.

    PubMed

    Chumak, V; Deniachenko, N; Volosky, V

    2015-12-01

    In depth analysis of the results of the First National Intercomparison of individual dosimetry laboratories in Ukraine has revealed energy and angular responses of the most common types of personal dosemeters and dosi metric systems. Participating laboratories use 9 different types of dosimetric systems - automatic, semi automat ic and manual. If was found that energy dependences of the most common dosemeter types in Ukraine generally correspond to the literature data on respective TLD materials (LiF:Mg,Cu,P, LiF:Mg,TiandAl2O3:С), however, due to peculiarities of holders (filters) and dose algorithms, for some dosimetry systems the energy dependences can be improved (compensated). Angular dependences proved to be more pronounced: only two systems revealed weak dependence of response on the incident angle, for other systems at large angles (α=60°) dosemeters overestimate true dose values. V. Chumak, N. Deniachenko, V. Volosky.

  5. Dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer

    SciTech Connect

    Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.; Yoo, David S.; Yin, Fang-Fang; Cai, Jing

    2014-04-01

    To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {sub cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.

  6. Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease

    SciTech Connect

    Slopsema, R. L. Mamalui, M.; Yeung, D.; Malyapa, R.; Li, Z.; Zhao, T.

    2014-01-15

    Purpose: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systems and evaluated in the context of the specific clinical requirements of ocular treatments. Methods: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm{sup 2}; the modulation width can be varied in steps of 0.3 g/cm{sup 2} or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). Results: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm{sup 2}, larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong dependence

  7. Dosimetric characterization of whole brain radiotherapy of pediatric patients using modulated proton beams.

    PubMed

    Jin, Hosang; Hsi, Wen; Yeung, Daniel; Li, Zuofeng; Mendenhall, Nancy P; Marcus, Robert B

    2011-01-19

    This study was designed to investigate dosimetric variations between proton plans with (PPW) and without (PPWO), a compensator for whole brain radiotherapy (WBRT). The retrospective study on PPW and PPWO in Eclipse and XiO systems and photon plans (XP) using controlled segments in Pinnacle system was performed on nine pediatric patients for craniospinal irradiations. DVHs and derived metrics, such as the homogeneity index (HI), the doses to 2% (D(2%)) and 5% (D(5%)) volumes, and mean dose (D(mean)) of the whole brain (i.e., PTV), and the organs at risk (OARs) such as lens and skull, were obtained. The PPW plans from both Eclipse and XiO systems uncovered the following advantages: (1) encompassing a cribriform plate area with the 100% isodose line was better than either PPWO or XP, according to calculated two-dimensional distributions of one patient; (2) the mean value of D(5%) for lens was reduced to 23.6% of D(P) from 54.1% for PPWO or 41.6% for XP; and (3) the mean value of D(mean) for skull was reduced to 94.8% of D(P) from either 98.4% for PPWO or 98.3% for XP. However, the PPW plans also exposed several disadvantages including: (1) the HI of PTV increased to 7.7 from 4.7 for PPWO or 3.7 for XP; (2) D(2%) to PTV increased to 108.8% of D(P) from 104.8% for PPWO or 105.1% for XP; and (3) D(5%) to the skull increased to 104.9% of D(P) from 101.6% for PPWO or 103.4% of for XP. One-half of the observed variations were caused by different penumbra on lateral profiles and distal fall-off depth doses of protons in Eclipse and XiO. Because the utilization on the sharp proton distal fall-off was limited for WBRT, the difference between PPW and PPWO or XP indicated no distinguishable improvement by using a compensator in proton plans.

  8. SU-E-T-618: Dosimetric Comparison of Manual and Beam Angle Optimization of Gantry Angles in IMRT for Cervical Cancer

    SciTech Connect

    Lin, X; Sun, T; Liu, T; Zhang, G; Yin, Y

    2014-06-01

    Purpose: To evaluate the dosimetric characteristics of intensity-modulated radiotherapy (IMRT) treatment plan with beam angle optimization. Methods: Ten post-operation patients with cervical cancer were included in this analysis. Two IMRT plans using seven beams were designed in each patient. A standard coplanar equi-space beam angles were used in the first plan (plan 1), whereas the selection of beam angle was optimized by beam angle optimization algorithm in Varian Eclipse treatment planning system for the same number of beams in the second plan (plan 2). Two plans were designed for each patient with the same dose-volume constraints and prescription dose. All plans were normalized to the mean dose to PTV. The dose distribution in the target, the dose to the organs at risk and total MU were compared. Results: For conformity and homogeneity in PTV, no statistically differences were observed in the two plans. For the mean dose in bladder, plan 2 were significantly lower than plan 1(p<0.05). No statistically significant differences were observed between two plans for the mean doses in rectum, left and right femur heads. Compared with plan1, the average monitor units reduced 16% in plan 2. Conclusion: The IMRT plan based on beam angle optimization for cervical cancer could reduce the dose delivered to bladder and also reduce MU. Therefore there were some dosimetric advantages in the IMRT plan with beam angle optimization for cervical cancer.

  9. Design and Testing of a Simulation Framework for Dosimetric Motion Studies Integrating an Anthropomorphic Computational Phantom into Four-dimensional Monte Carlo

    PubMed Central

    Riboldi, M.; Chen, G. T. Y.; Baroni, G.; Paganetti, H.; Seco, J.

    2015-01-01

    We have designed a simulation framework for motion studies in radiation therapy by integrating the anthropomorphic NCAT phantom into a 4D Monte Carlo dose calculation engine based on DPM. Representing an artifact-free environment, the system can be used to identify class solutions as a function of geometric and dosimetric parameters. A pilot dynamic conformal study for three lesions (~ 2.0 cm) in the right lung was performed (70 Gy prescription dose). Tumor motion changed as a function of tumor location, according to the anthropomorphic deformable motion model. Conformal plans were simulated with 0 to 2 cm margin for the aperture, with additional 0.5 cm for beam penumbra. The dosimetric effects of intensity modulated radiotherapy (IMRT) vs. conformal treatments were compared in a static case. Results show that the Monte Carlo simulation framework can model tumor tracking in deformable anatomy with high accuracy, providing absolute doses for IMRT and conformal radiation therapy. A target underdosage of up to 3.67 Gy (lower lung) was highlighted in the composite dose distribution mapped at exhale. Such effects depend on tumor location and treatment margin and are affected by lung deformation and ribcage motion. In summary, the complexity in the irradiation of moving targets has been reduced to a controlled simulation environment, where several treatment options can be accurately modeled and quantified The implemented tools will be utilized for extensive motion study in lung/liver irradiation. PMID:19044324

  10. Overview on the dosimetric uncertainty analysis for photon-emitting brachytherapy sources, in the light of the AAPM Task Group No 138 and GEC-ESTRO report

    NASA Astrophysics Data System (ADS)

    DeWerd, Larry A.; Venselaar, Jack L. M.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Stump, Kurt E.; Thomadsen, Bruce R.; Rivard, Mark J.

    2012-10-01

    In 2011, the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) published a report pertaining to uncertainties in brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization's Guide to the Expression of Uncertainty in Measurement and Technical Note 1297 by the National Institute of Standards and Technology are taken as reference standards for uncertainty formalism. Uncertainties involved in measurements or Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is given with uncertainties in each of the brachytherapy dosimetry parameters of the AAPM TG-43 dose-calculation formalism. For low-energy and high-energy brachytherapy sources of low dose-rate and high dose-rate, a combined dosimetric uncertainty <5% (k = 1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and manufacturers of brachytherapy sources and treatment planning systems. These recommendations reflect the guidance of the AAPM and GEC-ESTRO for their members, and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for conventional brachytherapy sources used in routine clinical treatments.

  11. Design and testing of a simulation framework for dosimetric motion studies integrating an anthropomorphic computational phantom into four-dimensional Monte Carlo.

    PubMed

    Riboldi, M; Chen, G T Y; Baroni, G; Paganetti, H; Seco, J

    2008-12-01

    We have designed a simulation framework for motion studies in radiation therapy by integrating the anthropomorphic NCAT phantom into a 4D Monte Carlo dose calculation engine based on DPM. Representing an artifact-free environment, the system can be used to identify class solutions as a function of geometric and dosimetric parameters. A pilot dynamic conformal study for three lesions ( approximately 2.0 cm) in the right lung was performed (70 Gy prescription dose). Tumor motion changed as a function of tumor location, according to the anthropomorphic deformable motion model. Conformal plans were simulated with 0 to 2 cm margin for the aperture, with additional 0.5 cm for beam penumbra. The dosimetric effects of intensity modulated radiotherapy (IMRT) vs. conformal treatments were compared in a static case. Results show that the Monte Carlo simulation framework can model tumor tracking in deformable anatomy with high accuracy, providing absolute doses for IMRT and conformal radiation therapy. A target underdosage of up to 3.67 Gy (lower lung) was highlighted in the composite dose distribution mapped at exhale. Such effects depend on tumor location and treatment margin and are affected by lung deformation and ribcage motion. In summary, the complexity in the irradiation of moving targets has been reduced to a controlled simulation environment, where several treatment options can be accurately modeled and quantified The implemented tools will be utilized for extensive motion study in lung/liver irradiation.

  12. Dosimetric characterization of a {sup 131}Cs brachytherapy source by thermoluminescence dosimetry in liquid water

    SciTech Connect

    Tailor, Ramesh; Ibbott, Geoffrey; Lampe, Stephanie; Bivens Warren, Whitney; Tolani, Naresh

    2008-12-15

    Dosimetry measurements of a {sup 131}Cs brachytherapy source have been performed in liquid water employing thermoluminescence dosimeters. A search of the literature reveals that this is the first time a complete set of dosimetric parameters for a brachytherapy ''seed'' source has been measured in liquid water. This method avoids the medium correction uncertainties introduced by the use of water-equivalent plastic phantoms. To assure confidence in the results, four different sources were employed for each parameter measured, and measurements were performed multiple times. The measured dosimetric parameters presented here are based on the AAPM Task Group 43 formalism. The dose-rate constant measured in liquid water was (1.063{+-}0.023) cGy h{sup -1} U{sup -1} and was based on the air-kerma strength standard for this source established by the National Institute of Standards and Technology. Measured values for the 2D anisotropy function and the radial dose function are presented.

  13. Radiometric and dosimetric characteristics of HgI/sub 2/ detectors

    SciTech Connect

    Zaletin, V.M.; Krivozubov, O.V.; Torlin, M.A.; Fomin, V.I.

    1988-04-01

    The characteristics of HgI/sub 2/ detectors in x-ray and gamma detection in applications to radiometric and dosimetric monitoring and as portable instruments for such purposes was considered. Blocks with mosaic and sandwich structures were prepared and tested against each other and, for comparative purposes, against CdTe detectors for relative sensitivities at various gamma-quanta energies. Sensitivity dependencies on gamma radiation energy were plotted for the detector materials and structures as were current dependencies on the dose rate of x rays. Results indicated that the mercury iodide detectors could be used in radiometric and dosimetric measurements at gamma quantum energies up to and in excess of 1000 KeV.

  14. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams

    NASA Astrophysics Data System (ADS)

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  15. Dosimetric treatment course simulation based on a statistical model of deformable organ motion.

    PubMed

    Söhn, M; Sobotta, B; Alber, M

    2012-06-21

    We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.

  16. X-Ray Attenuation and Absorption for Materials of Dosimetric Interest

    National Institute of Standards and Technology Data Gateway

    SRD 126 X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (Web, free access)   Tables and graphs of the photon mass attenuation coefficient and the mass energy-absorption coefficient are presented for all of the elements Z = 1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV.

  17. Respiratory Organ Motion and Dosimetric Impact on Breast and Nodal Irradiation

    SciTech Connect

    Qi, X. Sharon; White, Julia; Rabinovitch, Rachel; Merrell, Kenneth; Sood, Amit; Bauer, Anderson; Wilson, J. Frank; Miften, Moyed; Li, X. Allen

    2010-10-01

    Purpose: To examine the respiratory motion for target and normal structures during whole breast and nodal irradiation and the resulting dosimetric impact. Methods and Materials: Four-dimensional CT data sets of 18 patients with early-stage breast cancer were analyzed retrospectively. A three-dimensional conformal dosimetric plan designed to irradiate the breast was generated on the basis of CT images at 20% respiratory phase (reference phase). The reference plans were copied to other respiratory phases at 0% (end of inspiration) and 50% (end of expiration) to simulate the effects of breathing motion on whole breast irradiation. Dose-volume histograms, equivalent uniform dose, and normal tissue complication probability were evaluated and compared. Results: Organ motion of up to 8.8 mm was observed during free breathing. A large lung centroid movement was typically associated with a large shift of other organs. The variation of planning target volume coverage during a free breathing cycle is generally within 1%-5% (17 of 18 patients) compared with the reference plan. However, up to 28% of V{sub 45} variation for the internal mammary nodes was observed. Interphase mean dose variations of 2.2%, 1.2%, and 1.4% were observed for planning target volume, ipsilateral lung, and heart, respectively. Dose variations for the axillary nodes and brachial plexus were minimal. Conclusions: The doses delivered to the target and normal structures are different from the planned dose based on the reference phase. During normal breathing, the dosimetric impact of respiratory motion is clinically insignificant with the exception of internal mammary nodes. However, noticeable degradation in dosimetric plan quality may be expected for the patients with large respiratory motion.

  18. Dosimetric impact of orthopedic metal artifact reduction (O-MAR) on spine SBRT patients.

    PubMed

    Shen, Zhilei Liu; Xia, Ping; Klahr, Paul; Djemil, Toufik

    2015-09-01

    The dosimetric impact of orthopedic metal artifact reduction (O-MAR) on spine SBRT patients has not been comprehensively studied, particularly with spinal prostheses in high-dose gradient regions. Using both phantom and patient datasets, we investigated dosimetric effects of O-MAR in combination of various metal locations and dose calculation algorithms. A physical phantom, with and without a titanium insert, was scanned. A clinical patient plan was applied to the artifact-free reference, non-O-MAR, and O-MAR phantom images with the titanium located either inside or outside of the tumor. Subsequently, five clinical patient plans were calculated with pencil beam and Monte Carlo (iPlan) on non-O-MAR and O-MAR patient images using an extended CT-density table. The dose differences for phantom plans and patient plans were analyzed using dose distributions, dose-volume histograms (DVHs), gamma index, and selected dosimetric endpoints. From both phantom plans and patient plans, O-MAR did not affect dose distributions and DVHs while minimizing metal artifacts. Among patient plans, we found that, when the same dose calculation method was used, the difference in the dosimetric endpoints between non-O-MAR and O-MAR datasets were small. In conclusion, for spine SBRT patients with spinal prostheses, O-MAR image reconstruction does not affect dose calculation accuracy while minimizing metal artifacts. Therefore, O-MAR images can be safely used for clinical spine SBRT treatment planning. PACS numbers: 87.53.Bn, 87.55.K-, 87.57.Q-, 87.57.cp.

  19. Investigating the dosimetric and tumor control consequences of prostate seed loss and migration

    SciTech Connect

    Knaup, Courtney; Mavroidis, Panayiotis; Esquivel, Carlos; Stathakis, Sotirios; Swanson, Gregory; Baltas, Dimos; Papanikolaou, Nikos

    2012-06-15

    Purpose: Low dose-rate brachytherapy is commonly used to treat prostate cancer. However, once implanted, the seeds are vulnerable to loss and movement. The goal of this work is to investigate the dosimetric and radiobiological effects of the types of seed loss and migration commonly seen in prostate brachytherapy. Methods: Five patients were used in this study. For each patient three treatment plans were created using Iodine-125, Palladium-103, and Cesium-131 seeds. The three seeds that were closest to the urethra were identified and modeled as the seeds lost through the urethra. The three seeds closest to the exterior of prostatic capsule were identified and modeled as those lost from the prostate periphery. The seed locations and organ contours were exported from Prowess and used by in-house software to perform the dosimetric and radiobiological evaluation. Seed loss was simulated by simultaneously removing 1, 2, or 3 seeds near the urethra 0, 2, or 4 days after the implant or removing seeds near the exterior of the prostate 14, 21, or 28 days after the implant. Results: Loss of one, two or three seeds through the urethra results in a D{sub 90} reduction of 2%, 5%, and 7% loss, respectively. Due to delayed loss of peripheral seeds, the dosimetric effects are less severe than for loss through the urethra. However, while the dose reduction is modest for multiple lost seeds, the reduction in tumor control probability was minimal. Conclusions: The goal of this work was to investigate the dosimetric and radiobiological effects of the types of seed loss and migration commonly seen in prostate brachytherapy. The results presented show that loss of multiple seeds can cause a substantial reduction of D{sub 90} coverage. However, for the patients in this study the dose reduction was not seen to reduce tumor control probability.

  20. Dosimetric study of thermoluminescent detectors in clinical photon beams using liquid water and PMMA phantoms.

    PubMed

    Matsushima, Luciana C; Veneziani, Glauco R; Sakuraba, Roberto K; da Cruz, José C; Campos, Letícia L

    2012-07-01

    The purpose of this study was the dosimetric evaluation of thermoluminescent detectors of calcium sulphate doped with dysprosium (CaSO4:Dy) produced by IPEN compared to the TL response of lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti) dosimeters and microdosimeters produced by Harshaw Chemical Company to clinical photon beams dosimetry (6 and 15 MV) using liquid water and PMMA phantoms.

  1. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    SciTech Connect

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-05-15

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within {+-}1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient {>=}1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities

  2. Dosimetric and patient correlates of quality of life after prostate stereotactic ablative radiotherapy.

    PubMed

    Elias, Evelyn; Helou, Joelle; Zhang, Liying; Cheung, Patrick; Deabreu, Andrea; D'Alimonte, Laura; Sethukavalan, Perakaa; Mamedov, Alexandre; Cardoso, Marlene; Loblaw, Andrew

    2014-07-01

    Initial results of Stereotactic Ablative Body Radiotherapy (SABR) in the treatment of localized prostate cancer appear promising however long-term quality of life (QOL) outcomes and dosimetric correlates are necessary. A phase I/II study was performed where low risk prostate cancer patients received SABR 35 Gy in 5 fractions, once weekly. Patient self-reported QOL was measured using the Expanded Prostate Cancer Index Composite (EPIC) at baseline and q6 month up to 5 years. Urinary, bowel and sexual domains were analyzed. A minimally clinical important change (MCIC) was defined as 0.5∗standard deviation of the baseline. Univariate and multivariate logistic regression were used to identify dosimetric predictors of MCIC. 84 patients were included. The median follow-up was 50.8 months (interquartile range [IQR], 44.7-56.3). 17.9%, 26.2% and 37.5% of patients reported worse QOL on follow up in the urinary, bowel and sexual domains respectively. On univariate analysis Rectal V31.8>10%, D1cc>35 Gy were associated with bowel MCIC, penile bulb (PB) V35>4%, V20>40% with sexual MCIC. Of these factors only rectal D1cc and PB V35 were predictors of worse QOL on multivariate analysis. Long-term single-institution QOL outcomes are encouraging. Rigorous dosimetric constraints are needed to keep bothersome side effects low. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    PubMed

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-07

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy.

  4. Dosimetric properties of a flattening filter-free 6-MV photon beam: a Monte Carlo study.

    PubMed

    Mesbahi, Asghar; Mehnati, Parinaz; Keshtkar, Ahmad; Farajollahi, Alireza

    2007-08-01

    The dosimetric features of an unflattened 6-MV photon beam of an Elekta SL-25 linac was calculated by the Monte Carlo (MC) method. The head of the Elekta SL-25 linac was simulated using the MCNP4C MC code. The accuracy of the model was evaluated using measured dosimetric features, including depth dose values and dose profiles in a water phantom. The flattening filter was then removed, and beam dosimetric properties were calculated by the MC method and compared with those of the flattened photon beam. Our results showed a significant (twofold) increase in the dose rate for all field sizes. Also, the photon beam spectra for an unflattened beam were softer, which led to a steeper reduction in depth doses. The decrease in the out-of-field dose and increase in the contamination electrons and a buildup region dose were the other consequences of removing the flattening filter. Our study revealed that, for recent radiotherapy techniques, the use of multileaf collimators for beam shaping removing the flattening filter could offer some advantages, including an increased dose rate and decreased out-of-field dose.

  5. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy.

    PubMed

    Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B; Gu, Xuejun

    2015-11-07

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient's unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient's geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.

  6. Use of flattening filter-free photon beams in treating medulloblastoma: a dosimetric evaluation.

    PubMed

    Anchineyan, Pichandi; Mani, Ganesh K; Amalraj, Jerrin; Karthik, Balaji; Anbumani, Surega

    2014-01-01

    Aim. To evaluate the dosimetric benefits of flattening filter-free (FFF) photon beams in intensity modulated radiation therapy (IMRT) and Rapid Arc (RA) over conventional CSI methods. Methods and Materials. Five patients treated with IMRT using static multileaf collimators (MLC) were randomly selected for this retrospective study. Dynamic MLC IMRT, RA, and conformal therapy (3DCRT) were iterated with the same CT data sets with and without flattening filter photons. Total dose prescribed was 28.80 Gy in 16 fractions. Dosimetric parameters such as D max⁡, D min⁡, D mean, V 95%, V 107%, DHI, and CI for PTV and D max⁡, D mean, V 80%, V 50%, V 30%, and V 10% for OARs were extracted from DVHs. Beam on time (BOT) for various plans was also compared. Results. FFF RA therapy (6F_RA) resulted in highly homogeneous and conformal doses throughout the craniospinal axis. 3DCRT resulted in the highest V 107% (SD) 46.97 ± 28.6, whereas flattening filter (FF) and FFF dynamic IMRT had a minimum V 107%. 6F_RA and 6F_DMLC resulted in lesser doses to thyroid, eyes, esophagus, liver, lungs, and kidneys. Conclusion. FFF IMRT and FFF RA for CSI have definite dosimetric advantages over 3DCRT technique in terms of target coverage and OAR sparing. Use of FFF in IMRT resulted in 50% reduction in BOT, thereby increasing the treatment efficiency.

  7. Individual monitoring for internal exposure in Europe and the integration of dosimetric data.

    PubMed

    Lopez Ponte, M A; Castellani, C M; Currivan, L; Falk, R; Olko, P; Wernli, C

    2004-01-01

    The European Radiation Dosimetry Group, EURADOS, established a working group consisting of experts whose aim is to assist in the process of harmonisation of individual monitoring as part of the protection of occupationally exposed workers. A catalogue of facilities and internal dosimetric techniques related to individual monitoring in Europe has been completed as a result of this EURADOS study. A questionnaire was sent in 2002 to services requesting information on various topics including type of exposures, techniques used for direct and indirect measurements including calibration and sensitivity data and the methods employed for the assessment of internal doses. Information relating to Quality Control procedures for direct and indirect measurements, Quality Assurance Programmes in the facilities and legal requirements for "approved dosimetric services" were also considered. A total of 71 completed questionnaires were returned by internal dosimetry facilities in 26 countries. This results in an overview of the actual status of the processes used in internal exposure estimation in Europe. In many ways harmonisation is a reality in internal dose assessments, especially when taking into account the measurements of the activity retained or excreted from the body. However, a future study detailing the estimation of minimum detectable activity in the laboratories is highly recommended. Points to focus on in future harmonisation activities are as follows: the process of calculation of doses from measured activity, establishment of guidelines, similar dosimetric tools and application of the same ICRP recommendations. This would lead to a better and more harmonised approach to the estimation of internal exposures in all European facilities.

  8. TH-C-18A-04: Validation of Dosimetric Measurement of CT Radiation Profile Width

    SciTech Connect

    Gauntt, D; Al-Senan, R

    2014-06-15

    Purpose: The ACR now requires that the CT radiation profile width be measured at all clinically used collimations. We developed a method for measuring the profile width using dosimetry alone to allow a faster and simpler measurement of beam widths. Methods: A pencil ionization chamber is used to take two dose-length product measurements in air for a wide collimation. One of these is taken with a 1cm tungsten mask on the pencil chamber. The difference between these measurements is the calibration factor, or the DLP in air per unit length. By dividing the doselength product for any given collimation by this factor, we can rapidly determine the beam profile width.We measured the beam width for all available detector configurations and focal spot sizes on three different CT scanners from two different manufacturers. The measurements were done using film, CR cassette, and the present dosimetric method. Results: The beam widths measured dosimetrically are approximately 2% wider than those measured using film or computed radiography; this difference is believed due to off-focus or scattered radiation. After correcting for this, the dosimetric beam widths match the film and CR widths with an RMS difference of approximately 0.2mm. The measured beam widths are largely insensitive to errors in positioning of the mask, or to tilt errors in the pencil chamber. Conclusion: Using the present method, radiation profile widths can be measured quickly, with an accuracy better than 1mm.

  9. Use of Flattening Filter-Free Photon Beams in Treating Medulloblastoma: A Dosimetric Evaluation

    PubMed Central

    Anchineyan, Pichandi; Mani, Ganesh K.; Amalraj, Jerrin; Karthik, Balaji; Anbumani, Surega

    2014-01-01

    Aim. To evaluate the dosimetric benefits of flattening filter-free (FFF) photon beams in intensity modulated radiation therapy (IMRT) and Rapid Arc (RA) over conventional CSI methods. Methods and Materials. Five patients treated with IMRT using static multileaf collimators (MLC) were randomly selected for this retrospective study. Dynamic MLC IMRT, RA, and conformal therapy (3DCRT) were iterated with the same CT data sets with and without flattening filter photons. Total dose prescribed was 28.80 Gy in 16 fractions. Dosimetric parameters such as D max⁡, D min⁡, D mean, V 95%, V 107%, DHI, and CI for PTV and D max⁡, D mean, V 80%, V 50%, V 30%, and V 10% for OARs were extracted from DVHs. Beam on time (BOT) for various plans was also compared. Results. FFF RA therapy (6F_RA) resulted in highly homogeneous and conformal doses throughout the craniospinal axis. 3DCRT resulted in the highest V 107% (SD) 46.97 ± 28.6, whereas flattening filter (FF) and FFF dynamic IMRT had a minimum V 107%. 6F_RA and 6F_DMLC resulted in lesser doses to thyroid, eyes, esophagus, liver, lungs, and kidneys. Conclusion. FFF IMRT and FFF RA for CSI have definite dosimetric advantages over 3DCRT technique in terms of target coverage and OAR sparing. Use of FFF in IMRT resulted in 50% reduction in BOT, thereby increasing the treatment efficiency. PMID:24579052

  10. Dosimetric property of mineral extracted from calamari and exposed to gamma rays

    NASA Astrophysics Data System (ADS)

    Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Pérez; Furetta, C.; Chiaravalle, E.; Mangiacotti, M.; Marchesani, G.

    2013-07-01

    Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays (60Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 °C and 128-138 °C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.

  11. Dosimetric property of mineral extracted from calamari and exposed to gamma rays

    SciTech Connect

    Cruz-Zaragoza, E.; Roman-Lopez, J.; Cruz, L. Perez; Furetta, C.; Chiaravalle, E.; Mangiacotti, M.; Marchesani, G.

    2013-07-03

    Dosimetric property of polymineral fraction, quartz mainly, obtained from calamari was investigated. The commercial calamari samples from China and Sud Africa were collected in the markets of Italy. All polymineral debris were extracted and isolated from the whole body of calamari. The surface of the polymineral samples was analyzed by using the Scanning Electron Microscopy (SEM) and their chemical composition was determined using Energy Dispersive Spectroscopy (EDS). The polymineral was exposed to gamma rays ({sup 60}Co) at different doses (0.5-80 Gy) to determine dosimetric property. Thermoluminescent (TL) glow curves showed two peaks centered at around 98-100 Degree-Sign C and 128-138 Degree-Sign C temperature range. The glow curves have been analyzed by using a deconvolution program. A linear dose response between 0.5 to 20 Gy was observed. The TL response of the samples as a function of the time storage, fading, presented a reduction of about 36-40 % at the end of 24 h. The reproducibility of the TL response after ten cycles of irradiation-readout showed an acceptable standard deviation in dosimetry. The polimineral fraction obtained from calamari shows an interesting dosimetric property and it may be useful for dosimetry in gamma radiation field.

  12. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy

    NASA Astrophysics Data System (ADS)

    Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B.; Gu, Xuejun

    2015-11-01

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient’s unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient’s geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.

  13. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms

    SciTech Connect

    Baptista, Mariana Di Maria, Salvatore; Barros, Sílvia; Vaz, Pedro; Figueira, Catarina; Sarmento, Marta; Orvalho, Lurdes

    2015-07-15

    Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to study the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode

  14. Geometric and dosimetric accuracy of dynamic tumor-tracking conformal arc irradiation with a gimbaled x-ray head

    SciTech Connect

    Ono, Tomohiro; Miyabe, Yuki Yamada, Masahiro; Kaneko, Shuji; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro; Shiinoki, Takehiro; Sawada, Akira; Kokubo, Masaki

    2014-03-15

    Purpose: The Vero4DRT system has the capability for dynamic tumor-tracking (DTT) stereotactic irradiation using a unique gimbaled x-ray head. The purposes of this study were to develop DTT conformal arc irradiation and to estimate its geometric and dosimetric accuracy. Methods: The gimbaled x-ray head, supported on an O-ring gantry, was moved in the pan and tilt directions during O-ring gantry rotation. To evaluate the mechanical accuracy, the gimbaled x-ray head was moved during the gantry rotating according to input command signals without a target tracking, and a machine log analysis was performed. The difference between a command and a measured position was calculated as mechanical error. To evaluate beam-positioning accuracy, a moving phantom, which had a steel ball fixed at the center, was driven based on a sinusoidal wave (amplitude [A]: 20 mm, time period [T]: 4 s), a patient breathing motion with a regular pattern (A: 16 mm, average T: 4.5 s), and an irregular pattern (A: 7.2–23.0 mm, T: 2.3–10.0 s), and irradiated with DTT during gantry rotation. The beam-positioning error was evaluated as the difference between the centroid position of the irradiated field and the steel ball on images from an electronic portal imaging device. For dosimetric accuracy, dose distributions in static and moving targets were evaluated with DTT conformal arc irradiation. Results: The root mean squares (RMSs) of the mechanical error were up to 0.11 mm for pan motion and up to 0.14 mm for tilt motion. The RMSs of the beam-positioning error were within 0.23 mm for each pattern. The dose distribution in a moving phantom with tracking arc irradiation was in good agreement with that in static conditions. Conclusions: The gimbal positional accuracy was not degraded by gantry motion. As in the case of a fixed port, the Vero4DRT system showed adequate accuracy of DTT conformal arc irradiation.

  15. Dosimetric Consequences of Interobserver Variability in Delineating the Organs at Risk in Gynecologic Interstitial Brachytherapy

    PubMed Central

    Damato, Antonio L.; Townamchai, Kanopkis; Albert, Michele; Bair, Ryan J.; Cormack, Robert A.; Jang, Joanne; Kovacs, Arpad; Lee, Larissa J.; Mak, Kimberley S.; Mirabeau-Beale, Kristina L.; Mouw, Kent W.; Phillips, John G.; Pretz, Jennifer L.; Russo, Andrea L.; Lewis, John H.; Viswanathan, Akila N.

    2014-01-01

    Purpose To investigate the dosimetric variability associated with interobserver organ-at-risk delineation differences on computed tomography in patients undergoing gynecologic interstitial brachytherapy. Methods and Materials The rectum, bladder and sigmoid of 14 patients treated with gynecologic interstitial brachytherapy were retrospectively contoured by 13 physicians. Geometric variability was calculated using κ statistics, conformity index (CIgen), and coefficient of variation (CV) of volumes contoured across physicians. Dosimetric variability of the single-fraction D0.1cc and D2cc was assessed through CV across physicians, and the standard deviation of the total EQD2 (equivalent dose in 2 Gy per fraction) brachytherapy dose (SDTOT) was calculated. Results The population mean ± 1 standard deviation of κ, CIgen and volume CV were, respectively: 0.77 ± 0.06, 0.70 ± 0.08 and 20% ± 6% for bladder; 0.74 ± 06, 0.67 ± 0.08 and 20% ± 5% for rectum, and 0.33 ± 0.20, 0.26 ± 0.17 and 82% ± 42% for sigmoid. Dosimetric variability was: for bladder, CV = 31% ± 19% (SDTOT = 72 ± 64 Gy) for D0.1cc and CV = 16% + 10% (SDTOT = 9 ± 6 Gy) for D2cc; for rectum, CV = 11% ± 5% (SDTOT = 16 ± 17 Gy) for D0.1cc and CV = 7% ± 2% (SDTOT = 4 ± 3 Gy) for D2cc; for sigmoid, CV = 39% ± 28% (SDTOT = 12 ± 18 Gy) for D0.1cc and CV = 34% ± 19% (SDTOT = 4 ± 4 Gy) for D2cc. Conclusions Delineation of bladder and rectum by 13 physicians demonstrated substantial geometric agreement and resulted in good dosimetric agreement for all dose-volume histogram parameters except bladder D0.1cc. Small delineation differences in high-dose regions by the posterior bladder wall may explain these results. The delineation of sigmoid showed fair geometric agreement. The higher dosimetric variability for sigmoid compared with rectum and bladder did not correlate with higher variability in the total brachytherapy dose but rather may be due to the sigmoid being positioned in low-dose regions in

  16. Using measurable dosimetric quantities to characterize the inter-structural tradeoff in inverse planning

    NASA Astrophysics Data System (ADS)

    Liu, Hongcheng; Dong, Peng; Xing, Lei

    2017-08-01

    Traditional inverse planning relies on the use of weighting factors to balance the conflicting requirements of different structures. Manual trial-and-error determination of weighting factors has long been recognized as a time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the dosimetric tradeoff among the structures with physically meaningful quantities to simplify the search for clinically sensible plans. In this formalism, instead of using weighting factors, the permissible variation range of the prescription dose or dose volume histogram (DVH) of the involved structures are used to characterize the ‘importance’ of the structures. The inverse planning is then formulated into a convex feasibility problem, called the dosimetric variation-controlled model (DVCM), whose goal is to generate plans with dosimetric or DVH variations of the structures consistent with the pre-specified values. For simplicity, the dosimetric variation range for a structure is extracted from a library of previous cases which possess similar anatomy and prescription. A two-phase procedure (TPP) is designed to solve the model. The first phase identifies a physically feasible plan to satisfy the prescribed dosimetric variation, and the second phase automatically improves the plan in case there is room for further improvement. The proposed technique is applied to plan two prostate cases and two head-and-neck cases and the results are compared with those obtained using a conventional CVaR approach and with a moment-based optimization scheme. Our results show that the strategy is able to generate clinically sensible plans with little trial and error. In all cases, the TPP generates a very competitive plan as compared to those obtained using the alternative approaches. Particularly, in the planning of one of the head-and-neck cases, the TPP leads to a non-trivial improvement in the resultant dose distribution

  17. Dosimetric Consequences of Interobserver Variability in Delineating the Organs at Risk in Gynecologic Interstitial Brachytherapy

    SciTech Connect

    Damato, Antonio L.; Bair, Ryan J.; Cormack, Robert A.; Kovacs, Arpad; Lee, Larissa J.; Lewis, John H.; Viswanathan, Akila N.

    2014-07-01

    Purpose: To investigate the dosimetric variability associated with interobserver organ-at-risk delineation differences on computed tomography in patients undergoing gynecologic interstitial brachytherapy. Methods and Materials: The rectum, bladder, and sigmoid of 14 patients treated with gynecologic interstitial brachytherapy were retrospectively contoured by 13 physicians. Geometric variability was calculated using κ statistics, conformity index (CI{sub gen}), and coefficient of variation (CV) of volumes contoured across physicians. Dosimetric variability of the single-fraction D{sub 0.1cc} and D{sub 2cc} was assessed through CV across physicians, and the standard deviation of the total EQD2 (equivalent dose in 2 Gy per fraction) brachytherapy dose (SD{sup TOT}) was calculated. Results: The population mean ± 1 standard deviation of κ, CI{sub gen}, and volume CV were, respectively: 0.77 ± 0.06, 0.70 ± 0.08, and 20% ± 6% for bladder; 0.74 ± 06, 0.67 ± 0.08, and 20% ± 5% for rectum; and 0.33 ± 0.20, 0.26 ± 0.17, and 82% ± 42% for sigmoid. Dosimetric variability was as follows: for bladder, CV = 31% ± 19% (SD{sup TOT} = 72 ± 64 Gy) for D{sub 0.1cc} and CV = 16% ± 10% (SD{sup TOT} = 9 ± 6 Gy) for D{sub 2cc}; for rectum, CV = 11% ± 5% (SD{sup TOT} = 16 ± 17 Gy) for D{sub 0.1cc} and CV = 7% ± 2% (SD{sup TOT} = 4 ± 3 Gy) for D{sub 2cc}; for sigmoid, CV = 39% ± 28% (SD{sup TOT} = 12 ± 18 Gy) for D{sub 0.1cc} and CV = 34% ± 19% (SD{sup TOT} = 4 ± 4 Gy) for D{sub 2cc.} Conclusions: Delineation of bladder and rectum by 13 physicians demonstrated substantial geometric agreement and resulted in good dosimetric agreement for all dose-volume histogram parameters except bladder D{sub 0.1cc.} Small delineation differences in high-dose regions by the posterior bladder wall may explain these results. The delineation of sigmoid showed fair geometric agreement. The higher dosimetric variability for sigmoid compared with rectum and bladder did not correlate with

  18. A motion phantom study on helical tomotherapy: the dosimetric impacts of delivery technique and motion

    NASA Astrophysics Data System (ADS)

    Kanagaki, Brian; Read, Paul W.; Molloy, Janelle A.; Larner, James M.; Sheng, Ke

    2007-01-01

    Helical tomotherapy (HT) can potentially be used for lung cancer treatment including stereotactic radiosurgery because of its advanced image guidance and its ability to deliver highly conformal dose distributions. However, previous theoretical and simulation studies reported that the effect of respiratory motion on statically planned tomotherapy treatments may cause substantial differences between the calculated and actual delivered radiation isodose distribution, particularly when the treatment is hypofractionated. In order to determine the dosimetric effects of motion upon actual HT treatment delivery, phantom film dosimetry measurements were performed under static and moving conditions using a clinical HT treatment unit. The motion phantom system was constructed using a programmable motor, a base, a moving platform and a life size lung heterogeneity phantom with wood inserts representing lung tissue with a 3.0 cm diameter spherical tumour density equivalent insert. In order to determine the effects of different motion and tomotherapy delivery parameters, treatment plans were created using jaw sizes of 1.04 cm and 2.47 cm, with incremental gantry rotation periods between the minimum allowed (10 s) and the maximum allowed (60 s). The couch speed varied from 0.009 cm s-1 to 0.049 cm s-1, and delivered to a phantom under static and dynamic conditions with peak-to-peak motion amplitudes of 1.2 cm and 2 cm and periods of 3 and 5 s to simulate human respiratory motion of lung tumours. A cylindrical clinical target volume (CTV) was contoured to tightly enclose the tumour insert. 2.0 Gy was prescribed to 95% of the CTV. Two-dimensional dose was measured by a Kodak EDR2 film. Dynamic phantom doses were then quantitatively compared to static phantom doses in terms of axial dose profiles, cumulative dose volume histograms (DVH), percentage of CTV receiving the prescription dose and the minimum dose received by 95% of the CTV. The larger motion amplitude resulted in more

  19. Spatial variation of dosimetric leaf gap and its impact on dose delivery

    SciTech Connect

    Kumaraswamy, Lalith K.; Schmitt, Jonathan D.; Bailey, Daniel W.; Xu, Zheng Zheng; Podgorsak, Matthew B.

    2014-11-01

    Purpose: During dose calculation, the Eclipse treatment planning system (TPS) retracts the multileaf collimator (MLC) leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. Methods: 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicular to MLC motion) to 13.0 cm off axis distance at dmax. The measurements were performed on two Varian linear accelerators, both employing the Millennium 120-leaf MLCs. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. Results: The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3–0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs are 0.32 and 0.65 mm, respectively. Conclusions: The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width

  20. SU-E-T-291: Dosimetric Accuracy of Multitarget Single Isocenter Radiosurgery

    SciTech Connect

    Tannazi, F; Huang, M; Thomas, E; Duan, J; Wu, X; Shen, S; Cardan, R; Fiveash, J; Brezovich, I; Popple, R

    2015-06-15

    Purpose: To evaluate the accuracy of single-isocenter multiple-target VMAT radiosurgery (SIMT-VMAT-SRS) by analysis of pre-treatment verification measurements. Methods: Our QA procedure used a phantom having a coronal plane for EDR2 film and a 0.125 cm3 ionization chamber. Film measurements were obtained for the largest and smallest targets for each plan. An ionization chamber measurement (ICM) was obtained for sufficiently large targets. Films were converted to dose using a patient-specific calibration curve and compared to treatment planning system calculations. Alignment error was estimated using image registration. The gamma index was calculated for 3%/3 and 3%/1 mm criteria. The median dose in the target region and, for plans having an ICM, the average dose in the central 5 mm was calculated. Results: The average equivalent target diameter of the 48 targets was 15 mm (3–43 mm). Twenty of the 24 plans had an ICM for the plan corresponding to the largest target (diameter 11–43 mm) with a mean ratio of chamber reading to expected dose (ED) and the mean ratio of film to ED (averaged over the central 5 mm) was 1.001 (0.025 SD) and 1.000 (0.029 SD), respectively. For all plans, the mean film to ED (from the median dose in the target region) was 0.997 (0.027 SD). The mean registration vector was (0.15,0.29) mm, with an average magnitude of 0.96 mm. Before (after) registration, the average fraction of pixels having gamma < 1 was 99.3% (99.6%) and 89.1% (97.6%) for 3%/3mm and 3%/1mm, respectively. Conclusion: Our results demonstrate dosimetric accuracy of SIMT-VMAT-SRS for targets as small as 3 mm. Film dosimetry provides accurate assessment of the absolute dose delivered to targets too small for an ionization chamber measurement; however, the relatively large registration vector indicates that image-guidance should replace laser-based setup for patient-specific evaluation of geometric accuracy.

  1. Dosimetric feasibility of an "off-breast isocenter" technique for whole-breast cancer radiotherapy.

    PubMed

    Calvo-Ortega, Juan-Francisco; Moragues, Sandra; Pozo, Miquel; Casals, Joan

    2016-01-01

    To investigate the viability of placing the treatment isocenter at the patient midline for breast cancer radiotherapy in order to avoid the risk of collisions during image-guided setup and treatment delivery. The use of kilovoltage orthogonal setup images has spread in last years in breast radiotherapy. There is a potential risk of an imaging system-patient collision when the isocenter is laterally placed. Twenty IMRT plans designed by placing the isocenter within the breast volume ("plan_ref"), were retrospectively replanned by shifting the isocenter at the patient's midline ("plan_off-breast"). An integrated simultaneous boost (SIB) technique was used. Multiple metrics for the planning target volumes (PTVs) and organs at risk (OARs) were compared for both approaches using a paired t test. Comparing plan_ref vs. plan_off-breast, no significant differences in PTV coverage (V95%) were found (96.5% vs. 96.2%; p = 0.361 to PTVbreast; 97.0% vs. 97.0%; p = 0.977 to PTVtumor_bed). With regard to OARs, no substantial differences were observed in any analyzed metric: V5Gy (30.3% vs. 31.4%; p = 0.486), V20Gy (10.3% vs. 10.3%; p = 0.903) and mean dose (7.1 Gy vs. 7.1 Gy; p = 0.924) to the ipsilateral lung; V5Gy (11.2% vs. 10.0%; p = 0.459), V30Gy (0.7% vs. 0.6%; p = 0.251) and mean dose (2.3 Gy vs. 2.2 Gy; p = 0.400) to the heart; and average dose to the contralateral breast (0.4 Gy vs. 0.5 Gy; p = 0.107). The off-breast isocenter solution resulted in dosimetrically comparable plans as the reference technique, avoiding the collision risk during the treatment session.

  2. SU-E-T-323: Dosimetric Evaluation of Small Fields for SBRT Treatment

    SciTech Connect

    Gupta, R; Eldib, A; Wang, B; Ma, C; Li, J

    2015-06-15

    Purpose: Stereotactic body radiation therapy (SBRT) is commonly employed to treat small targets for effective tumor control with radiation beams of small field sizes. The goal of this work was to evaluate dosimetrically a treatment planning system (TPS) by comparing the calculated dose for SBRT treatment with ion-chamber measurements. Methods: 3D images of a solid-water phantom with a pinpoint ion-chamber (0.015cm3) inside were acquired with a CT scanner. Active volume of the ion-chamber was delineated on CT images. Targets with a diameter of 1.5cm, 2cm, 3cm, 4cm and 5cm were drawn around the chamber. 3DCRT plans were generated for each target size with centrally opened 6MV beams and off-axis beams by changing the isocenter location, respectively, using a TPS with the Analytical Anisotropic Algorithm. A 21iX linear accelerator was employed for plan delivery. The measured and calculated doses were compared. To evaluate the dose calculations in heterogeneity for small fields SBRT treatment, similar plans were also generated and delivered on a heterogeneous thoracic phantom for 5 different size targets in the lung. Results: Dose comparisons between measurements and calculations showed 5.2%, 1.88%, 1.34%, 1.01% and 0.85% difference for SBRT plans with small central axis beams and 0.96%, 0.15%, 0.58%, 0.22% and 0.77% difference for plans with off-axis beams for five different size targets. For the thoracic phantom, the differences on dose between measurements and calculations are bigger, which are 8%, 5.9%, 4.5%, 3.9% and 4.5%, respectively. Conclusion: Dose verification for small fields used in the SBRT treatment has been performed based on ion-chamber measurements in both homogenous and heterogeneous phantoms. More than a 5% difference has been observed in the heterogeneous phantom, especially for very small fields. To meet the ICRU recommendation on a dose difference of no more than 5%, some corrections on the commissioning parameters of the TPS are needed.

  3. Spatial Variation of Dosimetric Leaf Gap and Its Impact on Absolute Dose Delivery in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Kumaraswamy, Lalith

    During dose calculation, the Eclipse Treatment Planning system (TPS) retracts the MLC leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicular to MLC motion) to 13.0 cm off axis distance at depth of dose maximum. The measurements were performed on two Varian LINACs, both employing the Millennium 120-leaf MLC. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3 to 0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs is 0.32 mm and 0.65 mm, respectively. The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off-axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need

  4. Dosimetric effect of intrafraction tumor motion in phase gated lung stereotactic body radiotherapy

    SciTech Connect

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E.; Huq, M. Saiful

    2012-11-15

    Purpose: A major concern for lung intensity modulated radiation therapy delivery is the deviation of actually delivered dose distribution from the planned one due to simultaneous movements of multileaf collimator (MLC) leaves and tumor. For gated lung stereotactic body radiotherapy treatment (SBRT), the situation becomes even more complicated because of SBRT's characteristics such as fewer fractions, smaller target volume, higher dose rate, and extended fractional treatment time. The purpose of this work is to investigate the dosimetric effect of intrafraction tumor motion during gated lung SBRT delivery by reconstructing the delivered dose distribution with real-time tumor motion considered. Methods: The tumor motion data were retrieved from six lung patients. Each of them received three fractions of stereotactic radiotherapy treatments with Cyberknife Synchrony (Accuray, Sunnyvale, CA). Phase gating through an external surrogate was simulated with a gating window of 5 mm. The resulting residual tumor motion curves during gating (beam-on) were retrieved. Planning target volume (PTV) was defined as physician-contoured clinical target volume (CTV) surrounded by an isotropic 5 mm margin. Each patient was prescribed with 60 Gy/3 fractions. The authors developed an algorithm to reconstruct the delivered dose with tumor motion. The DMLC segments, mainly leaf position and segment weighting factor, were recalculated according to the probability density function of tumor motion curve. The new DMLC sequence file was imported back to treatment planning system to reconstruct the dose distribution. Results: Half of the patients in the study group experienced PTV D95% deviation up to 26% for fractional dose and 14% for total dose. CTV mean dose dropped by 1% with tumor motion. Although CTV is almost covered by prescribed dose with 5 mm margin, qualitative comparison on the dose distributions reveals that CTV is on the verge of underdose. The discrepancy happens due to tumor

  5. Comparative dosimetric evaluation of the simultaneous integrated boost with photon intensity modulation in head and neck cancer patients.

    PubMed

    Fogliata, Antonella; Bolsi, Alessandra; Cozzi, Luca; Bernier, Jacques

    2003-12-01

    The objective of this study is to evaluate, at planning and dosimetric level, the potential benefits of the simultaneous integrated boost (SIB) concept with intensity-modulated radiation therapy (IMRT), using a comparative analysis on physical dose distributions corrected for radiobiological models. The concept of SIB at the end of the treatment has been analysed as an alternative acceleration scheme. Physical dose distributions were computed on a commercial planning system (Varian Cadplan-Helios) for five patients presenting with advanced head and neck carcinomas. Treatment plans were designed using five IMRT beams. Three fractionation strategies were compared in the study: the standard sequential irradiation SEQ of elective and boost volumes, the pure SIB, and a modified SIB (SEQ/SIB), where the actual SIB follows a first phase of conventional fractionation to the elective volume. All physical dose distributions were corrected using a linear quadratic biological model, taking into account also repopulation and time at repopulation onset. Objective quantities, derived from biological dose volume histograms, were used for the analysis. Physical doses equivalent to 50 and 80 Gy (in fractions of 2 Gy) to elective volume and boost were calculated for the SIB and SEQ/SIB regimes. With SIB 54 and 72 Gy dose levels have to be delivered in 30 fractions, while in the SEQ/SIB scheme 36 Gy are delivered in 20 sessions to the elective volume, and further 18 and 35.5 Gy during the last 10 fractions are delivered to elective volume and boost, respectively (for a total physical dose of 71.5 Gy). The comparison showed: (1) the boost target homogeneity resulted in generally acceptable and comparable among sequential and modified SIB schemes, while it was statistically worse for the pure SIB approach; (2) the fraction of elective target volume not included in the boost volume was characterised by a higher level of dose heterogeneity; (3) the spinal cord never reached tolerance

  6. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    PubMed Central

    Pommer, Tobias; Falk, Marianne; Poulsen, Per R.; Keall, Paul J.; O’Brien, Ricky T.; Petersen, Peter Meidahl; Rosenschöld, Per Munck af

    2013-01-01

    This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose to the target volume and an intraprostatic lesion (IPL) boosted approach with an increased dose to a subvolume of the prostate. The impact on plan quality of optimizations with a leaf position constraint, which limited the distance between neighbouring adjacent MLC leaves, was also investigated. Deliveries were done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm during the first 75 seconds. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average pass rate with DMLC tracking was 99.9% (range 98.7–100%, measurement as reference), whereas the pass rate for untracked deliveries decreased distinctly as the average displacement increased, with an average pass rate of 61.3% (range 32.7–99.3%). Dose-volume histograms showed that DMLC tracking maintained the planned dose distributions in the presence of motion whereas traces with > 3 mm average displacement caused clear plan degradation for untracked deliveries. The dose to the rectum and bladder had an evident dependence on the motion direction and amplitude for untracked deliveries, and the dose to the rectum was slightly increased for IPL boosted plans compared to conventional plans for anterior motion with large amplitude. In conclusion, optimization using a leaf

  7. SU-E-J-228: MRI-Based Planning: Dosimetric Feasibility of Dose Painting for ADCDefined Intra-Prostatic Tumor

    SciTech Connect

    Chen, X; Dalah, E; Prior, P; Lawton, C; Li, X

    2015-06-15

    Purpose: Apparent diffusion coefficient (ADC) map may help to delineate the gross tumor volume (GTV) in prostate gland. Dose painting with external beam radiotherapy for GTV might increase the local tumor control. The purpose of this study is to explore the maximum boosting dose on GTV using VMAT without sacrificing sparing of organs at risk (OARs) in MRI based planning. Methods: VMAT plans for 5 prostate patients were generated following the commonly used dose volume (DV) criteria based on structures contoured on T2 weighted MRI with bulk electron density assignment using electron densities derived from ICRU46. GTV for each patient was manually delineated based on ADC maps and fused to T2-weighted image set for planning study. A research planning system with Monte Carlo dose engine (Monaco, Elekta) was used to generate the VMAT plans with boosting dose on GTV gradually increased from 85Gy to 100Gy. DV parameters, including V(boosting-dose) (volume covered by boosting dose) for GTV, V75.6Gy for PTV, V45Gy, V70Gy, V72Gy and D1cc (Maximum dose to 1cc volume) for rectum and bladder, were used to measure plan quality. Results: All cases achieve at least 99.0% coverage of V(boosting-dose) on GTV and 95% coverage of V75.6Gy to the PTV. All the DV criteria, V45Gy≤50% and V70Gy≤15% for bladder and rectum, D1cc ≤77Gy (Rectum) and ≤80Gy (Bladder), V72Gy≤5% (rectum and bladder) were maintained when boosting GTV to 95Gy for all cases studied. Except for two patients, all the criteria were also met when the boosting dose goes to 100Gy. Conclusion: It is dosimetrically feasible safe to boost the dose to at least 95Gy to ADC defined GTV in prostate cancer using MRI guided VMAT delivery. Conclusion: It is dosimetrically feasible safe to boost the dose to at least 95Gy to ADC defined GTV in prostate cancer using MRI guided VMAT delivery. This research is partially supported by Elekta Inc.

  8. Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases

    SciTech Connect

    Yang, Jun; Ma, Lin; Wang, Xiao-Shen; Xu, Wei Xu; Cong, Xiao-Hu; Xu, Shou-Ping; Ju, Zhong-Jian; Du, Lei; Cai, Bo-Ning; Yang, Jack

    2016-07-01

    To investigate the dosimetric characteristics of 4 SBRT-capable dose delivery systems, CyberKnife (CK), Helical TomoTherapy (HT), Volumetric Modulated Arc Therapy (VMAT) by Varian RapidArc (RA), and segmental step-and-shoot intensity-modulated radiation therapy (IMRT) by Elekta, on isolated thoracic spinal lesions. CK, HT, RA, and IMRT planning were performed simultaneously for 10 randomly selected patients with 6 body types and 6 body + pedicle types with isolated thoracic lesions. The prescription was set with curative intent and dose of either 33 Gy in 3 fractions (3F) or 40 Gy in 5F to cover at least 90% of the planning target volume (PTV), correspondingly. Different dosimetric indices, beam-on time, and monitor units (MUs) were evaluated to compare the advantages/disadvantages of each delivery modality. In ensuring the dose-volume constraints for cord and esophagus of the premise, CK, HT, and RA all achieved a sharp conformity index (CI) and a small penumbra volume compared to IMRT. RA achieved a CI comparable to those from CK, HT, and IMRT. CK had a heterogeneous dose distribution in the target as its radiosurgical nature with less dose uniformity inside the target. CK had the longest beam-on time and the largest MUs, followed by HT and RA. IMRT presented the shortest beam-on time and the least MUs delivery. For the body-type lesions, CK, HT, and RA satisfied the target coverage criterion in 6 cases, but the criterion was satisfied in only 3 (50%) cases with the IMRT technique. For the body + pedicle-type lesions, HT satisfied the criterion of the target coverage of ≥90% in 4 of the 6 cases, and reached a target coverage of 89.0% in another case. However, the criterion of the target coverage of ≥90% was reached in 2 cases by CK and RA, and only in 1 case by IMRT. For curative-intent SBRT of isolated thoracic spinal lesions, RA is the first choice for the body-type lesions owing to its delivery efficiency (time); the second choice is CK or HT; HT is the

  9. SU-E-T-120: Dosimetric Characteristics Study of NanoDotâ,,¢ for In-Vivo Dosimetry

    SciTech Connect

    Hussain, A; Wasaye, A; Gohar, R; Rehman, L; Hussein, S

    2014-06-01

    Purpose: The purpose of the study was to analyze the dosimetric characteristics (energy dependence, reproducibility and dose linearity) of nanoDot™ optically stimulated luminescence dosimeters (OSLDs) and validate their potential use during in-vivo dosimetry, specifically TBI. The manufacturer stated accuracy is ±10% for standard nanoDot™. Methods: At AKUH, the InLight microStar OSL dosimetry system for patient in-vivo dosimetry is in use since 2012. Twenty-five standard nanoDot™ were used in the analysis. Sensitivity and reproducibility was tested in the first part with 6MV and 18 MV Varian x-ray beams. Each OSLD was irradiated to 100cGy dose at nominal SSD (100 cm). All the OSLDs were read 3 times for average reading. Dose linearity and calibration were also performed with same beams in common clinical dose range of 0 - 500 cGy. In addition, verification of TBI absolute dose at extended SSD (500cm) was also performed. Results: The reproducibility observed with the OSLD was better than the manufacturer stated limits. Measured doses vary less than ±2% in 19(76%) OSLDs, whereas less than ±3% in 6(24%) OSLDs. Their sensitivity was approximately 525 counts per cGy. Better agreement was observed between measurements, with a standard deviation of 1.8%. A linear dose response was observed with OSLDs for both 6 and 18MV beams in 0 - 500 cGy dose range. TBI measured doses at 500 cm SSD were also confirmed to be within ±0.5% and ±1.3% of the ion chamber measured doses for 6 and 18MV beams respectively. Conclusion: The dosimetric results demonstrate that nanoDot™ can be potentially used for in-vivo dosimetry verification in various clinical situations, with a high degree of accuracy and precision. In addition OSLDs exhibit better dose reproducibility with standard deviation of 1.8%. There was no significant difference in their response to 6 and 18MV beams. The dose response was also linear.

  10. Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases.

    PubMed

    Yang, Jun; Ma, Lin; Wang, Xiao-Shen; Xu, Wei Xu; Cong, Xiao-Hu; Xu, Shou-Ping; Ju, Zhong-Jian; Du, Lei; Cai, Bo-Ning; Yang, Jack

    2016-01-01

    To investigate the dosimetric characteristics of 4 SBRT-capable dose delivery systems, CyberKnife (CK), Helical TomoTherapy (HT), Volumetric Modulated Arc Therapy (VMAT) by Varian RapidArc (RA), and segmental step-and-shoot intensity-modulated radiation therapy (IMRT) by Elekta, on isolated thoracic spinal lesions. CK, HT, RA, and IMRT planning were performed simultaneously for 10 randomly selected patients with 6 body types and 6 body + pedicle types with isolated thoracic lesions. The prescription was set with curative intent and dose of either 33Gy in 3 fractions (3F) or 40Gy in 5F to cover at least 90% of the planning target volume (PTV), correspondingly. Different dosimetric indices, beam-on time, and monitor units (MUs) were evaluated to compare the advantages/disadvantages of each delivery modality. In ensuring the dose-volume constraints for cord and esophagus of the premise, CK, HT, and RA all achieved a sharp conformity index (CI) and a small penumbra volume compared to IMRT. RA achieved a CI comparable to those from CK, HT, and IMRT. CK had a heterogeneous dose distribution in the target as its radiosurgical nature with less dose uniformity inside the target. CK had the longest beam-on time and the largest MUs, followed by HT and RA. IMRT presented the shortest beam-on time and the least MUs delivery. For the body-type lesions, CK, HT, and RA satisfied the target coverage criterion in 6 cases, but the criterion was satisfied in only 3 (50%) cases with the IMRT technique. For the body + pedicle-type lesions, HT satisfied the criterion of the target coverage of ≥90% in 4 of the 6 cases, and reached a target coverage of 89.0% in another case. However, the criterion of the target coverage of ≥90% was reached in 2 cases by CK and RA, and only in 1 case by IMRT. For curative-intent SBRT of isolated thoracic spinal lesions, RA is the first choice for the body-type lesions owing to its delivery efficiency (time); the second choice is CK or HT; HT is the

  11. Evaluation of Dosimetric Parameters for Various {sup 192}Ir Brachytherapy Sources Under Unbounded Phantom Geometry by Monte Carlo Simulation

    SciTech Connect

    Devan, Krishnamurthy; Aruna, Prakasarao; Manigandan, Durai; Bharanidharan, Ganesan; Subbaiah, Kamatam Venkata; Sunny, Chiravath Sunil; Ganesan, Singaravelu

    2007-01-01

    As per TG-43 dose calculation formalism, it is essential to obtain various dosimetric parameters such as the air-kerma strength, dose rate constant, radial dose function, and anisotropy function, as they account for accurate determination of dose rate distribution around brachytherapy sources. Most of the available reported Monte Carlo simulations were performed in liquid water phantoms with a bounded region of 30-cm diameter. In this context, an attempt was made to report the dosimetric parameters for various commercially available pulsed-dose rate (PDR) and high-dose rate (HDR) sources under unbounded phantom conditions, as the data may be used as input to treatment planning systems (TPSs) for quality control assistance. The air-kerma strength per unit activity, S{sub k}/A, was computed for various Iridium-192 ({sup 192}Ir) sources in dry air medium. The air-kerma strength and dose rate constant for old PDR is (9.77 {+-} 0.03) 10{sup -8} U/Bq and 1.124 {+-} 0.001 cGyh{sup -1}U{sup -1}; for new PDR, the values are (9.96 {+-} 0.03) 10{sup -8} U/Bq and 1.124 {+-} 0.001 cGyh{sup -1}U{sup -1}; for old MHDR, the values are (9.80 {+-} 0.01) 10{sup -8} U/Bq and 1.115 {+-} 0.001 cGyh{sup -1}U{sup -1}; for new MHDR, (9.80 {+-} 0.01) 10{sup -8} U/Bq and 1.112 {+-} 0.001cGyh{sup -1}U{sup -1}; for old VHDR, the values are (10.32 {+-} 0.01) 10{sup -8} U/Bq and 1.035 {+-} 0.002 cGyh{sup -1}U{sup -1}; for new VHDR, the values are (10.34 {+-} 0.02) 10{sup -8} U/Bq and 1.096 {+-} 0.001 cGyh{sup -1}U{sup -1}. The computed radial dose function values and anisotropy function values are also in good agreement with available data.

  12. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    NASA Astrophysics Data System (ADS)

    Pommer, Tobias; Falk, Marianne; Poulsen, Per R.; Keall, Paul J.; O'Brien, Ricky T.; Meidahl Petersen, Peter; Rosenschöld, Per Munck af

    2013-04-01

    This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose to the target volume and an intraprostatic lesion (IPL) boosted approach with an increased dose to a subvolume of the prostate. The impact on plan quality of optimizations with a leaf position constraint, which limited the distance between neighbouring adjacent MLC leaves, was also investigated. Deliveries were done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm during the first 75 s. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average pass rate with DMLC tracking was 99.9% (range 98.7-100%, measurement as reference), whereas the pass rate for untracked deliveries decreased distinctly as the average displacement increased, with an average pass rate of 61.3% (range 32.7-99.3%). Dose-volume histograms showed that DMLC tracking maintained the planned dose distributions in the presence of motion whereas traces with >3 mm average displacement caused clear plan degradation for untracked deliveries. The dose to the rectum and bladder had an evident dependence on the motion direction and amplitude for untracked deliveries, and the dose to the rectum was slightly increased for IPL boosted plans compared to conventional plans for anterior motion with large amplitude. In conclusion, optimization using a leaf position

  13. Potential benefits of dosimetric VMAT tracking verified with 3D film measurements.

    PubMed

    Crijns, Wouter; Defraene, Gilles; Van Herck, Hans; Depuydt, Tom; Haustermans, Karin; Maes, Frederik; Van den Heuvel, Frank

    2016-05-01

    To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution's position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback

  14. Design and dosimetric considerations of a modified COMS plaque: The reusable 'seed-guide' insert

    SciTech Connect

    Astrahan, Melvin A.; Szechter, Andrzej; Finger, Paul T.

    2005-08-15

    The Collaborative Ocular Melanoma Study (COMS) developed a standardized set of eye plaques that consist of a 0.5 mm thick bowl-like gold alloy backing with a cylindrical collimating lip. A Silastic seed carrier into which {sup 125}I seeds are loaded was designed to fit within the backing. The carrier provides a standardized seed pattern and functions to offset the seeds by 1.0 mm from the concave (front) surface of the carrier. These Silastic carriers have been found to be difficult to load, preclude flash sterilization, and are a source of dosimetric uncertainty because the effective atomic number of Silastic is significantly higher than that of water. The main dosimetric effect of the Silastic carrier is a dose-reduction (compared to homogeneous water) of approximately 10%-15% for {sup 125}I radiation. The dose reduction is expected to be even greater for {sup 103}Pd radiation. In an attempt to improve upon, yet retain as much of the familiar COMS design as possible, we have developed a thin 'seed-guide' insert made of gold alloy. This new insert has cutouts which match the seed pattern of the Silastic carrier, but allows the seeds to be glued directly to the inner surface of the gold backing using either dental acrylic or a cyanoacrylate adhesive. When glued directly to the gold backing the seeds are offset a few tenths of a millimeter further away from the scleral surface compared to using the Silastic carrier. From a dosimetric perspective, the space formerly occupied by the Silastic carrier is now assumed to be water equivalent. Water equivalency is a desirable attribute for this space because it eliminates the dosimetric uncertainties related to the atomic composition of Silastic and thereby facilitates the use of either {sup 125}I and/or {sup 103}Pd seeds. The caveat is that a new source of dosimetric uncertainty would be introduced were an air bubble to become trapped in this space during or after the surgical insertion. The presence of air in this space

  15. Potential benefits of dosimetric VMAT tracking verified with 3D film measurements

    SciTech Connect

    Crijns, Wouter Depuydt, Tom; Haustermans, Karin; Defraene, Gilles; Van Herck, Hans; Maes, Frederik; Van den Heuvel, Frank

    2016-05-15

    Purpose: To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. Methods: A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Results: Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution’s position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously

  16. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification.

    PubMed

    Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J; Xie, C

    2015-03-01

    To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose-volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time.

  17. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification

    PubMed Central

    Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J

    2015-01-01

    Objective: To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). Methods: %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose–volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Results: Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. Conclusions: There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Advances in knowledge: Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time. PMID:25494412

  18. Development of radiochromic film for spatially quantitative dosimetric analysis of indirect ionizing radiation fields

    NASA Astrophysics Data System (ADS)

    Brady, Samuel Loren

    sensors measured < 2% and < 7% deviation in pixel light intensities for 50 consecutive scans, respectively. Both scanner light sources were shown to be uniform in transmission and reflection scan modes along the center axis of light source translation. Additionally, RCFs demonstrated a larger dynamic range in pixel light intensities, and to be less sensitive to off axis light inhomogeneity, when scanned in landscape mode (long axis of film parallel with axis of light source translation). The EPSON 10000XL demonstrated slightly better light source/CCD temporal stability and provided a capacity to scan larger film formats at the center of the scanner in landscape mode. However, the EPSON V700 only measured an overall difference in accuracy and precision by 2%, and though smaller in size, at the time of this work, was one sixth the cost of the 10000XL. A scan protocol was developed to maximize RCF digitization accuracy and precision, and a calibration fitting function was developed for RCF absolute dosimetry. The fitting function demonstrated a superior goodness of fit for both RCF types over a large range of absorbed dose levels as compared to the currently accepted function found in literature. The RCF dosimetry system was applied to three novel areas from which a benefit could be derived for 2D or 3D dosimetric information. The first area was for a 3D dosimetry of a pendant breast in 3D-CT mammography. The novel method of developing a volumetric image of the breast from a CT acquisition technique was empirically measured for its dosimetry and compared to standard dual field digital mammography. The second area was dose reduction in CT for pediatric and adult scan protocols. In this application, novel methodologies were developed to measure 3D organ dosimetry and characterize a dose reduction scan protocol for pediatric and adult body habitus. The third area was in the field of small animal irradiation for radiobiology purposes and cancer patient treatment verification. In

  19. Dosimetric evaluation of the OneDose MOSFET for measuring kilovoltage imaging dose from image-guided radiotherapy procedures

    SciTech Connect

    Ding, George X.; Coffey, Charles W.

    2010-09-15

    Purpose: The purpose of this study is to investigate the feasibility of using a single-use dosimeter, OneDose MOSFET designed for in vivo patient dosimetry, for measuring the radiation dose from kilovoltage (kV) x rays resulting from image-guided procedures. Methods: The OneDose MOSFET dosimeters were precalibrated by the manufacturer using Co-60 beams. Their energy response and characteristics for kV x rays were investigated by using an ionization chamber, in which the air-kerma calibration factors were obtained from an Accredited Dosimetry Calibration Laboratory (ADCL). The dosimetric properties have been tested for typical kV beams used in image-guided radiation therapy (IGRT). Results: The direct dose reading from the OneDose system needs to be multiplied by a correction factor ranging from 0.30 to 0.35 for kilovoltage x rays ranging from 50 to 125 kVp, respectively. In addition to energy response, the OneDose dosimeter has up to a 20% reduced sensitivity for beams (70-125 kVp) incident from the back of the OneDose detector. Conclusions: The uncertainty in measuring dose resulting from a kilovoltage beam used in IGRT is approximately 20%; this uncertainty is mainly due to the sensitivity dependence of the incident beam direction relative to the OneDose detector. The ease of use may allow the dosimeter to be suitable for estimating the dose resulting from image-guided procedures.

  20. Technical and dosimetric considerations in multi-isocenter intensity modulated radiotherapy for nasopharyngeal carcinoma with small multileaf collimator.

    PubMed

    Xiance, Jin; Shixiu, Wu; Jianyi, Yu; Jinling, Yi

    2009-01-01

    Multileaf collimator (MLC)-assisted intensity modulated radiotherapy (IMRT) has greatly improved the target coverage and avoidance of organs at risk (OAR) for the treatment of nasopharyngeal carcinoma; however, its implementation is also constrained by the features of the MLC. Nasopharyngeal carcinoma tends to have a large gross target volume (GTV) and clinical target volume (CTV) due to its biological characteristics. More than one isocenter may be needed when small MLCs (i.e., BrainLAB M3, whose largest field is 10 x 10 cm(2)) are used to treat the nasopharyngeal carcinoma. The BrainLAB IMRT system was used to evaluate the effectiveness of a multi-isocenter IMRT plan for treating nasopharyngeal cancers. Dose coverage of GTVs and CTVs were compared among IMRT plans with 1, 2 and 3 isocenters, as were dose objectives for OARs including brainstem, cord, and parotids. The dosimetric variation and the delivery time were also measured with a phantom. IMRT plans with more than 1 isocenter achieved a better dose coverage, homogeneity, and conformity on GTVs and CTVs; however, with risk of higher doses given to OARs. In most cases, one can generate satisfactory IMRT plans using the 2-isocenter IMRT planning strategy. Two-isocenter planning strategy may be a suitable compromise when more isocenters are needed.

  1. Technical and Dosimetric Considerations in Multi-Isocenter Intensity Modulated Radiotherapy for Nasopharyngeal carcinoma with Small Multileaf Collimator

    SciTech Connect

    Jin Xiance Wu Shixiu; Yu Jianyi; Yi Jinling

    2009-04-01

    Multileaf collimator (MLC)-assisted intensity modulated radiotherapy (IMRT) has greatly improved the target coverage and avoidance of organs at risk (OAR) for the treatment of nasopharyngeal carcinoma; however, its implementation is also constrained by the features of the MLC. Nasopharyngeal carcinoma tends to have a large gross target volume (GTV) and clinical target volume (CTV) due to its biological characteristics. More than one isocenter may be needed when small MLCs (i.e., BrainLAB M3, whose largest field is 10 x 10 cm{sup 2}) are used to treat the nasopharyngeal carcinoma. The BrainLAB IMRT system was used to evaluate the effectiveness of a multi-isocenter IMRT plan for treating nasopharyngeal cancers. Dose coverage of GTVs and CTVs were compared among IMRT plans with 1, 2 and 3 isocenters, as were dose objectives for OARs including brainstem, cord, and parotids. The dosimetric variation and the delivery time were also measured with a phantom. IMRT plans with more than 1 isocenter achieved a better dose coverage, homogeneity, and conformity on GTVs and CTVs; however, with risk of higher doses given to OARs. In most cases, one can generate satisfactory IMRT plans using the 2-isocenter IMRT planning strategy. Two-isocenter planning strategy may be a suitable compromise when more isocenters are needed.

  2. Preliminary evaluation of the dosimetric accuracy of cone-beam computed tomography for cases with respiratory motion

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Bae, Sunhyun; Chung, Weon Kuu; Lee, Yoonhee

    2014-04-01

    Cone-beam computed tomography (CBCT) images are currently used for patient positioning and adaptive dose calculation; however, the degree of CBCT uncertainty in cases of respiratory motion remains an interesting issue. This study evaluated the uncertainty of CBCT-based dose calculations for a moving target. Using a phantom, we estimated differences in the geometries and the Hounsfield units (HU) between CT and CBCT. The calculated dose distributions based on CT and CBCT images were also compared using a radiation treatment planning system, and the comparison included cases with respiratory motion. The geometrical uncertainties of the CT and the CBCT images were less than 0.15 cm. The HU differences between CT and CBCT images for standard-dose-head, high-quality-head, normal-pelvis, and low-dose-thorax modes were 31, 36, 23, and 33 HU, respectively. The gamma (3%, 0.3 cm)-dose distribution between CT and CBCT was greater than 1 in 99% of the area. The gamma-dose distribution between CT and CBCT during respiratory motion was also greater than 1 in 99% of the area. The uncertainty of the CBCT-based dose calculation was evaluated for cases with respiratory motion. In conclusion, image distortion due to motion did not significantly influence dosimetric parameters.

  3. Dosimetric comparison between 3DCRT and IMRT using different multileaf collimators in the treatment of brain tumors.

    PubMed

    Ding, Meisong; Newman, Francis; Chen, Changhu; Stuhr, Kelly; Gaspar, Laurie E

    2009-01-01

    We investigated the differences between 3-dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT), and the impact of collimator leaf-width on IMRT plans for the treatment of nonspherical brain tumors. Eight patients treated by 3DCRT with Novalis were selected. We developed 3 IMRT plans with different multileaf collimators (Novalis m3, Varian MLC-120, and Varian MLC-80) with the same treatment margins, number of beams, and gantry positions as in the 3DCRT treatment plans. Treatment planning utilized the BrainLAB treatment planning system. For each patient, the dose constraints and optimization parameters remained identical for all plans. The heterogeneity index, the percentage target coverage, critical structures, and normal tissue volumes receiving 50% of the prescription dose were calculated to compare the dosimetric difference. Equivalent uniform dose (EUD) and tumor control probability (TCP) were also introduced to evaluate the radiobiological effect for different plans. We found that IMRT significantly improved the target dose homogeneity compared to the 3DCRT. However, IMRT showed the same radiobiological effect as 3DCRT. For the brain tumors adjacent to (or partially overlapping with) critical structures, IMRT dramatically spared the volume of the critical structures to be irradiated. In IMRT plans, the smaller collimator leaf width could reduce the volume of critical structures irradiated to the 50% level for those partially overlapping with the brain tumors. For relatively large and spherical brain tumors, the smaller collimator leaf widths give no significant benefit.

  4. Dosimetric comparison between intra-cavitary breast brachytherapy techniques for accelerated partial breast irradiation and a novel stereotactic radiotherapy device for breast cancer: GammaPod™

    NASA Astrophysics Data System (ADS)

    Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X.; Feigenberg, Steven J.; Regine, William F.; Mutaf, Yildirim D.

    2013-07-01

    The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally

  5. Development and evaluation of an end-to-end test for head and neck IMRT with a novel multiple-dosimetric modality phantom.

    PubMed

    Zakjevskii, Viatcheslav V; Knill, Cory S; Rakowski, Joseph T; Snyder, Michael G

    2016-03-08

    A comprehensive end-to-end test for head and neck IMRT treatments was developed using a custom phantom designed to utilize multiple dosimetry devices. Initial end-to-end test and custom H&N phantom were designed to yield maximum information in anatomical regions significant to H&N plans with respect to: (i) geometric accuracy, (ii) dosimetric accuracy, and (iii) treatment reproducibility. The phantom was designed in collaboration with Integrated Medical Technologies. The phantom was imaged on a CT simulator and the CT was reconstructed with 1 mm slice thickness and imported into Varian's Eclipse treatment planning system. OARs and the PTV were contoured with the aid of Smart Segmentation. A clinical template was used to create an eight-field IMRT plan and dose was calculated with heterogeneity correction on. Plans were delivered with a TrueBeam equipped with a high definition MLC. Preliminary end-to-end results were measured using film, ion chambers, and optically stimulated luminescent dosimeters (OSLDs). Ion chamber dose measurements were compared to the treatment planning system. Films were analyzed with FilmQA Pro using composite gamma index. OSLDs were read with a MicroStar reader using a custom calibration curve. Final phantom design incorporated two axial and one coronal film planes with 18 OSLD locations adjacent to those planes as well as four locations for IMRT ionization chambers below inferior film plane. The end-to-end test was consistently reproducible, resulting in average gamma pass rate greater than 99% using 3%/3 mm analysis criteria, and average OSLD and ion chamber measurements within 1% of planned dose. After initial calibration of OSLD and film systems, the end-to-end test provides next-day results, allowing for integration in routine clinical QA. Preliminary trials have demonstrated that our end-to-end is a reproducible QA tool that enables the ongoing evaluation of dosimetric and geometric accuracy of clinical head and neck treatments.

  6. Assessment of the dosimetric accuracies of CATPhan 504 and CIRS 062 using kV-CBCT for performing direct calculations.

    PubMed

    Annkah, James Kwame; Rosenberg, Ivan; Hindocha, Naina; Moinuddin, Syed Ali; Ricketts, Kate; Adeyemi, Abiodun; Royle, Gary

    2014-07-01

    The dosimetric accuracies of CATPhan 504 and CIRS 062 have been evaluated using the kV-CBCT of Varian TrueBeam linac and Eclipse TPS. The assessment was done using the kV-CBCT as a standalone tool for dosimetric calculations towards Adaptive replanning. Dosimetric calculations were made without altering the HU-ED curves of the planning computed tomography (CT) scanner that is used by the Eclipse TPS. All computations were done using the images and dataset from kV-CBCT while maintaining the HU-ED calibration curve of the planning CT (pCT), assuming pCT was used for the initial treatment plan. Results showed that the CIRS phantom produces doses within ±5% of the CT-based plan while CATPhan 504 produces a variation of ±14% of the CT-based plan.

  7. Assessment of the dosimetric accuracies of CATPhan 504 and CIRS 062 using kV-CBCT for performing direct calculations

    PubMed Central

    Annkah, James Kwame; Rosenberg, Ivan; Hindocha, Naina; Moinuddin, Syed Ali; Ricketts, Kate; Adeyemi, Abiodun; Royle, Gary

    2014-01-01

    The dosimetric accuracies of CATPhan 504 and CIRS 062 have been evaluated using the kV-CBCT of Varian TrueBeam linac and Eclipse TPS. The assessment was done using the kV-CBCT as a standalone tool for dosimetric calculations towards Adaptive replanning. Dosimetric calculations were made without altering the HU-ED curves of the planning computed tomography (CT) scanner that is used by the Eclipse TPS. All computations were done using the images and dataset from kV-CBCT while maintaining the HU-ED calibration curve of the planning CT (pCT), assuming pCT was used for the initial treatment plan. Results showed that the CIRS phantom produces doses within ±5% of the CT-based plan while CATPhan 504 produces a variation of ±14% of the CT-based plan. PMID:25190991

  8. Dosimetric optimization of a conical breast brachytherapy applicator for improved skin dose sparing

    SciTech Connect

    Yang Yun; Rivard, Mark J.

    2010-11-15

    Purpose: Both the AccuBoost D-shaped and round applicators have been dosimetrically characterized and clinically used to treat patients with breast cancer. While the round applicators provide conformal dose coverage, under certain clinical circumstances the breast skin dose may be higher than preferred. The purpose of this study was to modify the round applicators to minimize skin dose while not substantially affecting dose uniformity within the target volume and reducing the treatment time. Methods: In order to irradiate the intended volume while sparing critical structures such as the skin, the current round applicator design has been augmented through the addition of an internal truncated cone (i.e., frustum) shield. Monte Carlo methods and clinical constraints were used to design the optimal cone applicator. With the cone applicator now defined as the entire assembly including the surrounding tungsten-alloy shell holding the HDR {sup 192}Ir source catheter, the applicator height was reduced to diminish the treatment time while minimizing skin dose. Monte Carlo simulation results were validated using both radiochromic film and ionization chamber measurements based on established techniques. Results: The optimal cone applicators diminished the maximum skin dose by 15%-32% (based on the applicator diameter and breast separation) with the tumor dose reduced by less than 3% for a constant exposure time. Furthermore, reduction in applicator height diminished the treatment time by up to 30%. Radiochromic film and ionization chamber dosimetric results in phantom agreed with Monte Carlo simulation results typically within 3%. Larger differences were outside the treatment volume in low dose regions or associated with differences between the measurement and Monte Carlo simulation environments. Conclusions: A new radiotherapy treatment device was developed and dosimetrically characterized. This set of applicators significantly reduces the skin dose and treatment time while

  9. Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases.

    PubMed

    Chan, Mark; Grehn, Melanie; Cremers, Florian; Siebert, Frank-Andre; Wurster, Stefan; Huttenlocher, Stefan; Dunst, Jürgen; Hildebrandt, Guido; Schweikard, Achim; Rades, Dirk; Ernst, Floris; Blanck, Oliver

    2017-03-15

    Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase-related residual tracking errors. In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with the original planned dose distribution. The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, -7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, -1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. SU-E-T-123: Dosimetric Comparison Between Portrait and Landscape Orientations in Radiochromic Film Dosimetry

    SciTech Connect

    Kakinohana, Y; Toita, T; Kasuya, G; Ariga, T; Heianna, J; Murayama, S

    2014-06-01

    Purpose: To compare the dosimetric properties of radiochromic films with different orientation. Methods: A sheet of EBT3 film was cut into eight pieces with the following sizes: 15×15 cm2 (one piece), 5x15 cm{sup 2} (two) and 4×5 cm{sup 2} (five). A set of two EBT3 sheets was used at each dose level. Two sets were used changing the delivered doses (1 and 2 Gy). The 5×15 cm{sup 2} pieces were rotated by 90 degrees in relation to each other, such that one had landscape orientation and the other had portrait orientation. All 5×15 cm2 pieces were irradiated with their long side aligned with the x-axis of the radiation field. The 15×15 cm{sup 2} pieces were irradiated rotated at 90 degrees to each other. Five pieces, (a total of ten from two sheets) were used to obtain a calibration curve. The irradiated films were scanned using an Epson ES-2200 scanner and were analyzed using ImageJ software. In this study, no correction was applied for the nonuniform scanner signal that is evident in the direction of the scanner lamp. Each film piece was scanned both in portrait and landscape orientations. Dosimetric comparisons of the beam profiles were made in terms of the film orientations (portrait and landscape) and scanner bed directions (perpendicular and parallel to the scanner movement). Results: In general, portrait orientation exhibited higher noise than landscape and was adversely affected to a great extent by the nonuniformity in the direction of the scanner lamp. A significant difference in the measured field widths between the perpendicular and parallel directions was found for both orientations. Conclusion: Without correction for the nonuniform scanner signal in the direction of the scanner lamp, a landscape orientation is preferable. A more detailed investigation is planned to evaluate quantitatively the effect of orientation on the dosimetric properties of a film.

  11. Dosimetric optimization of a conical breast brachytherapy applicator for improved skin dose sparing.

    PubMed

    Yang, Yun; Rivard, Mark J

    2010-11-01

    Both the AccuBoost D-shaped and round applicators have been dosimetrically characterized and clinically used to treat patients with breast cancer. While the round applicators provide conformal dose coverage, under certain clinical circumstances the breast skin dose may be higher than preferred. The purpose of this study was to modify the round applicators to minimize skin dose while not substantially affecting dose uniformity within the target volume and reducing the treatment time. In order to irradiate the intended volume while sparing critical structures such as the skin, the current round applicator design has been augmented through the addition of an internal truncated cone (i.e., frustum) shield. Monte Carlo methods and clinical constraints were used to design the optimal cone applicator. With the cone applicator now defined as the entire assembly including the surrounding tungsten-alloy shell holding the HDR 192Ir source catheter, the applicator height was reduced to diminish the treatment time while minimizing skin dose. Monte Carlo simulation results were validated using both radiochromic film and ionization chamber measurements based on established techniques. The optimal cone applicators diminished the maximum skin dose by 15%-32% (based on the applicator diameter and breast separation) with the tumor dose reduced by less than 3% for a constant exposure time. Furthermore, reduction in applicator height diminished the treatment time by up to 30%. Radiochromic film and ionization chamber dosimetric results in phantom agreed with Monte Carlo simulation results typically within 3%. Larger differences were outside the treatment volume in low dose regions or associated with differences between the measurement and Monte Carlo simulation environments. A new radiotherapy treatment device was developed and dosimetrically characterized. This set of applicators significantly reduces the skin dose and treatment time while retaining uniform target dose.

  12. Craniospinal Irradiation Techniques: A Dosimetric Comparison of Proton Beams With Standard and Advanced Photon Radiotherapy

    SciTech Connect

    Yoon, Myonggeun; Shin, Dong Ho; Kim, Jinsung; Kim, Jong Won; Kim, Dae Woong; Park, Sung Yong; Lee, Se Byeong; Kim, Joo Young; Park, Hyeon-Jin; Park, Byung Kiu; Shin, Sang Hoon

    2011-11-01

    Purpose: To evaluate the dosimetric benefits of advanced radiotherapy techniques for craniospinal irradiation in cancer in children. Methods and Materials: Craniospinal irradiation (CSI) using three-dimensional conformal radiotherapy (3D-CRT), tomotherapy (TOMO), and proton beam treatment (PBT) in the scattering mode was planned for each of 10 patients at our institution. Dosimetric benefits and organ-specific radiation-induced cancer risks were based on comparisons of dose-volume histograms (DVHs) and on the application of organ equivalent doses (OEDs), respectively. Results: When we analyzed the organ-at-risk volumes that received 30%, 60%, and 90% of the prescribed dose (PD), we found that PBT was superior to TOMO and 3D-CRT. On average, the doses delivered by PBT to the esophagus, stomach, liver, lung, pancreas, and kidney were 19.4 Gy, 0.6 Gy, 0.3 Gy, 2.5 Gy, 0.2 Gy, and 2.2 Gy for the PD of 36 Gy, respectively, which were significantly lower than the doses delivered by TOMO (22.9 Gy, 4.5 Gy, 6.1 Gy, 4.0 Gy, 13.3 Gy, and 4.9 Gy, respectively) and 3D-CRT (34.6 Gy, 3.6 Gy, 8.0 Gy, 4.6 Gy, 22.9 Gy, and 4.3 Gy, respectively). Although the average doses delivered by PBT to the chest and abdomen were significantly lower than those of 3D-CRT or TOMO, these differences were reduced in the head-and-neck region. OED calculations showed that the risk of secondary cancers in organs such as the stomach, lungs, thyroid, and pancreas was much higher when 3D-CRT or TOMO was used than when PBT was used. Conclusions: Compared with photon techniques, PBT showed improvements in most dosimetric parameters for CSI patients, with lower OEDs to organs at risk.

  13. The impact of emphysema on dosimetric parameters for stereotactic body radiotherapy of the lung

    PubMed Central

    Ochiai, Satoru; Nomoto, Yoshihito; Yamashita, Yasufumi; Inoue, Tomoki; Murashima, Shuuichi; Hasegawa, Daisuke; Kurita, Yoshie; Watanabe, Yui; Toyomasu, Yutaka; Kawamura, Tomoko; Takada, Akinori; Noriko; Kobayashi, Shigeki; Sakuma, Hajime

    2016-01-01

    The purpose of this study was to evaluate the impact of emphysematous changes in lung on dosimetric parameters in stereotactic body radiation therapy (SBRT) for lung tumor. A total of 72 treatment plans were reviewed, and dosimetric factors [including homogeneity index (HI) and conformity index (CI)] were evaluated. Emphysematous changes in lung were observed in 43 patients (60%). Patients were divided into three groups according to the severity of emphysema: no emphysema (n = 29), mild emphysema (n = 22) and moderate to severe emphysema groups (n = 21). The HI (P < 0.001) and the CI (P = 0.029) were significantly different in accordance with the severity of emphysema in one-way analysis of variance (ANOVA). The HI value was significantly higher in the moderate to severe emphysema group compared with in the no emphysema (Tukey, P < 0.001) and mild emphysema groups (P = 0.002). The CI value was significantly higher in the moderate to severe emphysema group compared with in the no emphysema group (P = 0.044). In multiple linear regression analysis, the severity of emphysema (P < 0.001) and the mean material density of the lung within the PTV (P < 0.001) were significant factors for HI, and the mean density of the lung within the PTV (P = 0.005) was the only significant factor for CI. The mean density of the lung within the PTV was significantly different in accordance with the severity of emphysema (one-way ANOVA, P = 0.008) and the severity of emphysema (P < 0.001) was one of the significant factors for the density of the lung within the PTV in multiple linear regression analysis. Our results suggest that emphysematous changes in the lung significantly impact on several dosimetric parameters in SBRT, and they should be carefully evaluated before treatment planning. PMID:27380802

  14. Dosimetric comparison of volumetric modulated arc therapy with robotic stereotactic radiation therapy in hepatocellular carcinoma

    PubMed Central

    Paik, Eun Kyung; Choi, Chul Won; Jang, Won Il; Lee, Sung Hyun; Choi, Sang Hyoun; Kim, Kum Bae; Lee, Dong Han

    2015-01-01

    Purpose To compare volumetric modulated arc therapy of RapidArc with robotic stereotactic body radiation therapy (SBRT) of CyberKnife in the planning and delivery of SBRT for hepatocellular carcinoma (HCC) treatment by analyzing dosimetric parameters. Materials and Methods Two radiation treatment plans were generated for 29 HCC patients, one using Eclipse for the RapidArc plan and the other using Multiplan for the CyberKnife plan. The prescription dose was 60 Gy in 3 fractions. The dosimetric parameters of planning target volume (PTV) coverage and normal tissue sparing in the RapidArc and the CyberKnife plans were analyzed. Results The conformity index was 1.05 ± 0.02 for the CyberKnife plan, and 1.13 ± 0.10 for the RapidArc plan. The homogeneity index was 1.23 ± 0.01 for the CyberKnife plan, and 1.10 ± 0.03 for the RapidArc plan. For the normal liver, there were significant differences between the two plans in the low-dose regions of V1 and V3. The normalized volumes of V60 for the normal liver in the RapidArc plan were drastically increased when the mean dose of the PTVs in RapidArc plan is equivalent to the mean dose of the PTVs in the CyberKnife plan. Conclusion CyberKnife plans show greater dose conformity, especially in small-sized tumors, while RapidArc plans show good dosimetric distribution of low dose sparing in the normal liver and body. PMID:26484307

  15. PROSPECTIVE ASSESSMENT OF DOSIMETRIC/PHYSIOLOGIC-BASED MODELS FOR PREDICTING RADIATION PNEUMONITIS

    PubMed Central

    Kocak, Zafer; Borst, Gerben R.; Zeng, Jing; Zhou, Sumin; Hollis, Donna R.; Zhang, Junan; Evans, Elizabeth S.; Folz, Rodney J.; Wong, Terrence; Kahn, Daniel; Belderbos, Jose S. A.; Lebesque, Joos V.; Marks, Lawrence B.

    2007-01-01

    Purpose Clinical and 3D dosimetric parameters are associated with symptomatic radiation pneumonitis rates in retrospective studies. Such parameters include: mean lung dose (MLD), radiation (RT) dose to perfused lung (via SPECT), and pre-RT lung function. Based on prior publications, we defined pre-RT criteria hypothesized to be predictive for later development of pneumonitis. We herein prospectively test the predictive abilities of these dosimetric/functional parameters on two cohorts of patients from Duke and the Netherlands Cancer Institute (NKI). Methods and Materials For the Duke cohort, 55 eligible patients treated between 1999-2005 on a prospective IRB-approved study to monitor RT-induced lung injury were analyzed. A similar group of patients treated at the NKI between 1996-2002 were identified. Patients believed to be at high and low risk for pneumonitis were defined based on: a) MLD; b) OpRP (sum of predicted perfusion reduction based on regional dose response curve); and c) pre-RT DLCO. All doses reflected tissue density heterogeneity. The rates of grade ≥2 pneumonitis in the “presumed” high and low risk groups were compared using Fisher’s exact test. Results In the Duke group, pneumonitis rates in patients prospectively deemed to be at “high” vs. “low” risk are 7/20 and 9/35, respectively; p=0.33 one tailed Fisher’s. Similarly, comparable rates for the NKI group are 4/21 and 6/44, respectively, p=0.41 one-tailed Fisher’s. Conclusion The prospective model is unable to accurately segregate patients into high vs. low risk groups. However, considered retrospectively, these data are consistent with prior studies suggesting that dosimetric (e.g. MLD) and functional (e.g. PFTs or SPECT) parameters are predictive for RT-induced pneumonitis. Additional work is needed to better identify, and prospectively assess, predictors of RT-induced lung injury. PMID:17189069

  16. Dosimetric verification and quality assurance of running-start-stop (RSS) delivery in tomotherapy.

    PubMed

    Lee, Francis Kar-Ho; Chan, Simon Kar-Yiu; Chau, Ricky Ming-Chun

    2015-11-08

    The purpose of this study was to evaluate the dosimetric profiles and delivery accuracy of running-start-stop (RSS) delivery in tomotherapy and to present initial quality assurance (QA) results on the accuracy of the dynamic jaw motion, dosimetric penumbrae of the RSS dynamic jaw and the static jaw were measured by radiographic films. Delivery accuracy of the RSS was evaluated by gamma analysis on film measurements of 12 phantom plans. Consistency in the performance of RSS was evaluated by QA procedures over the first nine months after the installation of the feature. These QA were devised to check: 1) positional accuracy of moving jaws; 2) consistency of relative radiation output collimated by discrete and continuously sweeping jaws; 3) consistency of field widths and profiles. In the longitudinal direction, the dose penumbra in RSS delivery was reduced from 17.3mm to 10.2 mm for 2.5 cm jaw, and from 33.2 mm to 9.6 mm for 5 cm jaw. Gamma analysis on the twelve plans revealed that over 90% of the voxels in the proximity of the penumbra region satisfied the gamma criteria of 2% dose difference and 2 mm distance-to-agreement. The initial QA results during the first nine months after installation of the RSS are presented. Jaw motion was shown to be accurate with maximum encoder error less than 0.42 mm. The consistency of relative output for discrete and continuously sweeping jaws was within 1.2%. Longitudinal radiation profiles agreed to the reference profile with maximum gamma < 1 and field width error < 1.8%. With the same jaw width, RSS showed better dose penumbrae compared to those from static jaw delivery. The initial QA results on the accuracy of moving jaws, reproducibility of dosimetric output and profiles were satisfactory.

  17. Effects of Dosimetrically Guided I-131 Therapy on Hematopoiesis in Patients With Differentiated Thyroid Cancer

    PubMed Central

    Bikas, Athanasios; Schneider, Mark; Desale, Sameer; Atkins, Frank; Mete, Mihriye; Burman, Kenneth D.; Wartofsky, Leonard

    2016-01-01

    Objective: The objective of the study was to evaluate the effects of dosimetrically guided I-131 prescribed activities on hematopoiesis reflected by changes in complete blood counts (CBCs). Design: This was a retrospective analysis. Setting: The study was conducted at an academic center. Patients: A total of 152 patients with differentiated thyroid cancer who had 185 dosimetrically guided I-131 treatments. Interventions: There were no interventions. Main Outcome Measures: Repeated-measure ANOVA was used for the analysis of the differences in the averages of CBCs that were documented at baseline and 1, 6, 12, 24–36, and 48–60 months after I-131 treatment. Results: All parameters decreased to their respective nadir at 1 month and then gradually returned toward baseline values. White blood cells (WBCs) and platelets (PLTs) were the most significantly affected cells. At 1 month, the decrease was 29.6% (P < .0001) for WBCs and 25% (P < .0001) for PLTs, whereas at 12 months, the decrease was 15.5% (P < .0001) and 13% (P < .0001), respectively. Lymphocytes appeared to be more susceptible to I-131 than neutrophils (ANCs). The decreases were small in absolute numbers for red blood cells, hematocrit and hemoglobin not surpassing 10%. Multivariate analysis demonstrated that the ratio of administered prescribed activity-to-maximum tolerated activity was associated with the decreases in WBCs (P = .0038), ANCs (P = .0063), and red blood cells (P = .029), with borderline significance for PLTs (P = .057) and hemoglobin (P = .057). Conclusions: Dosimetrically guided I-131 resulted in statistically significant decreases in CBC parameters, which were more prominent in WBCs and PLTs. Lymphocytes were more severely affected than ANCs, whereas all parameters reached a nadir at 1 month and then gradually returned toward baseline values over the 5-year follow-up of our study. PMID:26900639

  18. SU-D-17A-01: Geometric and Dosimetric Evaluation of a 4D-CBCT Reconstruction Technique Using Prior Knowledge

    SciTech Connect

    Zhang, Y; Yin, F; Ren, L

    2014-06-01

    .1%/120.8%/103.6% and 57.6%/118.6%/101.8%,respectively. Conclusion: The MM-FD method provides superior reconstruction accuracy both geometrically and dosimetrically, which can potentially be used for 4D target localization, dose tracking and adaptive radiation therapy. This research is supported by grant from Varian Medical Systems.

  19. SU-E-T-233: Cyberknife Versus Linac IMRT for Dose Comparision in Hypofractionated Hemi Larynx Irradiation of Early Stage True Vocal Cord Cancer: A Dosimetric Study

    SciTech Connect

    Ding, C; Lee, P; Jiang, S

    2015-06-15

    Purpose: To compare dosimetric data of patients treated for early-stage larynx cancer on Cyberknife and Linac IMRT. Methods: Nine patients were treated with Cyberknife to a dose of 45 Gy in 10 fractions of the involved hemilarynx. The prescription dose provided at least 95% of PTV coverage. After Cyberknife treatment, the CT images and contours were sent to Pinnacle treatment planning system for IMRT planning on a regular SBRT linac with same dose prescription and constrains. Dose to target and normal tissue, including the arytenoids, cord, carotid arteries, thyroid, and skin, were analyzed using dose volume histograms. Results: For Cyberknife plan, the conformity indices are within 1.11–1.33. The average dose to the contralateral arytenoids for Cyberknife plans was 28.9±6.5Gy), which is lower than the same mean dose for IMRT plans (34.0±5.2 Gy). The average maximum dose to the ipsilateral and contralateral carotid artery were 20.6 ±9.1 Gy and 10.2±6.0 Gy respectively for Cybeknife comparing with 22.1±8.0 Gy and 12.0±5.1 Gy for IMRT. The mean dose to the thyroid was 3.6±2.2 Gy for Cyberknife and 3.4±2.4 Gy for IMRT. As shown in DVH, the Cyberknife can deliver less dose to the normal tissue which is close to target area comparing with IMRT Plans. However, IMRT plan’s can give more sparing for the critical organs which is far away from the target area. Conclusion: We have compared the dosimetric parameters of Cyberknife and linac IMRT plans for patients with early-stage larynx cancer. Both Cyberknife and IMRT plans can achieve conformal dose distribution to the target area. Cyberknife was able to reduce normal tissue dose in high doses region while IMRT plans can reduce the dose of the normal tissue at the low dose region. These dosimetric parameters can be used to guide future prospective protocols using SBRT for larynx cancer.

  20. SU-E-T-296: Dosimetric Analysis of Small Animal Image-Guided Irradiator Using High Resolution Optical CT Imaging of 3D Dosimeters

    SciTech Connect

    Na, Y; Qian, X; Wuu, C; Adamovics, J

    2015-06-15

    Purpose: To verify the dosimetric characteristics of a small animal image-guided irradiator using a high-resolution of optical CT imaging of 3D dosimeters. Methods: PRESAEGE 3D dosimeters were used to determine dosimetric characteristics of a small animal image-guided irradiator and compared with EBT2 films. Cylindrical PRESAGE dosimeters with 7cm height and 6cm diameter were placed along the central axis of the beam. The films were positioned between 6×6cm{sup 2} cubed plastic water phantoms perpendicular to the beam direction with multiple depths. PRESAGE dosimeters and EBT2 films were then irradiated with the irradiator beams at 220kVp and 13mA. Each of irradiated PRESAGE dosimeters named PA1, PA2, PB1, and PB2, was independently scanned using a high-resolution single laser beam optical CT scanner. The transverse images were reconstructed with a 0.1mm high-resolution pixel. A commercial Epson Expression 10000XL flatbed scanner was used for readout of irradiated EBT2 films at a 0.4mm pixel resolution. PDD curves and beam profiles were measured for the irradiated PRESAGE dosimeters and EBT2 films. Results: The PDD agreements between the irradiated PRESAGE dosimeter PA1, PA2, PB1, PB2 and the EB2 films were 1.7, 2.3, 1.9, and 1.9% for the multiple depths at 1, 5, 10, 15, 20, 30, 40 and 50mm, respectively. The FWHM measurements for each PRESAEGE dosimeter and film agreed with 0.5, 1.1, 0.4, and 1.7%, respectively, at 30mm depth. Both PDD and FWHM measurements for the PRESAGE dosimeters and the films agreed overall within 2%. The 20%–80% penumbral widths of each PRESAGE dosimeter and the film at a given depth were respectively found to be 0.97, 0.91, 0.79, 0.88, and 0.37mm. Conclusion: Dosimetric characteristics of a small animal image-guided irradiator have been demonstrated with the measurements of PRESAGE dosimeter and EB2 film. With the high resolution and accuracy obtained from this 3D dosimetry system, precise targeting small animal irradiation can be

  1. Cardiac dosimetric evaluation of deep inspiration breath-hold level variances using computed tomography scans generated from deformable image registration displacement vectors

    SciTech Connect

    Harry, Taylor; Rahn, Doug; Semenov, Denis; Gu, Xuejun; Yashar, Catheryn; Einck, John; Jiang, Steve; Cerviño, Laura

    2016-04-01

    There is a reduction in cardiac dose for left-sided breast radiotherapy during treatment with deep inspiration breath-hold (DIBH) when compared with treatment with free breathing (FB). Various levels of DIBH may occur for different treatment fractions. Dosimetric effects due to this and other motions are a major component of uncertainty in radiotherapy in this setting. Recent developments in deformable registration techniques allow displacement vectors between various temporal and spatial patient representations to be digitally quantified. We propose a method to evaluate the dosimetric effect to the heart from variable reproducibility of DIBH by using deformable registration to create new anatomical computed tomography (CT) scans. From deformable registration, 3-dimensional deformation vectors are generated with FB and DIBH. The ob