NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1990-01-01
The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.
On Multifunctional Collaborative Methods in Engineering Science
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.
2001-01-01
Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.
A Mixed Multi-Field Finite Element Formulation for Thermopiezoelectric Composite Shells
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Saravanos, Dimitris A.
1999-01-01
Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite shell structures. A new mixed multi-field laminate theory is developed which combines "single layer" assumptions for the displacements along with layerwise fields for the electric potential and temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of linear thermopiezoelectricity. The mechanics have the inherent capability to explicitly model both the active and sensory responses of piezoelectric composite shells in thermal environment. Finite element equations are derived and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered plate with an attached piezoelectric layer are com- pared with corresponding results from a commercial finite element code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric structures.
NASA Astrophysics Data System (ADS)
Casadei, F.; Ruzzene, M.
2011-04-01
This work illustrates the possibility to extend the field of application of the Multi-Scale Finite Element Method (MsFEM) to structural mechanics problems that involve localized geometrical discontinuities like cracks or notches. The main idea is to construct finite elements with an arbitrary number of edge nodes that describe the actual geometry of the damage with shape functions that are defined as local solutions of the differential operator of the specific problem according to the MsFEM approach. The small scale information are then brought to the large scale model through the coupling of the global system matrices that are assembled using classical finite element procedures. The efficiency of the method is demonstrated through selected numerical examples that constitute classical problems of great interest to the structural health monitoring community.
The Blended Finite Element Method for Multi-fluid Plasma Modeling
2016-07-01
Briefing Charts 3. DATES COVERED (From - To) 07 June 2016 - 01 July 2016 4. TITLE AND SUBTITLE The Blended Finite Element Method for Multi-fluid Plasma...BLENDED FINITE ELEMENT METHOD FOR MULTI-FLUID PLASMA MODELING Éder M. Sousa1, Uri Shumlak2 1ERC INC., IN-SPACE PROPULSION BRANCH (RQRS) AIR FORCE RESEARCH...MULTI-FLUID PLASMA MODEL 2 BLENDED FINITE ELEMENT METHOD Blended Finite Element Method Nodal Continuous Galerkin Modal Discontinuous Galerkin Model
A blended continuous–discontinuous finite element method for solving the multi-fluid plasma model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousa, E.M., E-mail: sousae@uw.edu; Shumlak, U., E-mail: shumlak@uw.edu
The multi-fluid plasma model represents electrons, multiple ion species, and multiple neutral species as separate fluids that interact through short-range collisions and long-range electromagnetic fields. The model spans a large range of temporal and spatial scales, which renders the model stiff and presents numerical challenges. To address the large range of timescales, a blended continuous and discontinuous Galerkin method is proposed, where the massive ion and neutral species are modeled using an explicit discontinuous Galerkin method while the electrons and electromagnetic fields are modeled using an implicit continuous Galerkin method. This approach is able to capture large-gradient ion and neutralmore » physics like shock formation, while resolving high-frequency electron dynamics in a computationally efficient manner. The details of the Blended Finite Element Method (BFEM) are presented. The numerical method is benchmarked for accuracy and tested using two-fluid one-dimensional soliton problem and electromagnetic shock problem. The results are compared to conventional finite volume and finite element methods, and demonstrate that the BFEM is particularly effective in resolving physics in stiff problems involving realistic physical parameters, including realistic electron mass and speed of light. The benefit is illustrated by computing a three-fluid plasma application that demonstrates species separation in multi-component plasmas.« less
NASA Astrophysics Data System (ADS)
Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.
2017-06-01
A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.
Multi-Scale Computational Modeling of Two-Phased Metal Using GMC Method
NASA Technical Reports Server (NTRS)
Moghaddam, Masoud Ghorbani; Achuthan, A.; Bednacyk, B. A.; Arnold, S. M.; Pineda, E. J.
2014-01-01
A multi-scale computational model for determining plastic behavior in two-phased CMSX-4 Ni-based superalloys is developed on a finite element analysis (FEA) framework employing crystal plasticity constitutive model that can capture the microstructural scale stress field. The generalized method of cells (GMC) micromechanics model is used for homogenizing the local field quantities. At first, GMC as stand-alone is validated by analyzing a repeating unit cell (RUC) as a two-phased sample with 72.9% volume fraction of gamma'-precipitate in the gamma-matrix phase and comparing the results with those predicted by finite element analysis (FEA) models incorporating the same crystal plasticity constitutive model. The global stress-strain behavior and the local field quantity distributions predicted by GMC demonstrated good agreement with FEA. High computational saving, at the expense of some accuracy in the components of local tensor field quantities, was obtained with GMC. Finally, the capability of the developed multi-scale model linking FEA and GMC to solve real life sized structures is demonstrated by analyzing an engine disc component and determining the microstructural scale details of the field quantities.
NASA Astrophysics Data System (ADS)
Witteveen, Jeroen A. S.; Bijl, Hester
2009-10-01
The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.
Phase-space finite elements in a least-squares solution of the transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less
Finite element methods in a simulation code for offshore wind turbines
NASA Astrophysics Data System (ADS)
Kurz, Wolfgang
1994-06-01
Offshore installation of wind turbines will become important for electricity supply in future. Wind conditions above sea are more favorable than on land and appropriate locations on land are limited and restricted. The dynamic behavior of advanced wind turbines is investigated with digital simulations to reduce time and cost in development and design phase. A wind turbine can be described and simulated as a multi-body system containing rigid and flexible bodies. Simulation of the non-linear motion of such a mechanical system using a multi-body system code is much faster than using a finite element code. However, a modal representation of the deformation field has to be incorporated in the multi-body system approach. The equations of motion of flexible bodies due to deformation are generated by finite element calculations. At Delft University of Technology the simulation code DUWECS has been developed which simulates the non-linear behavior of wind turbines in time domain. The wind turbine is divided in subcomponents which are represented by modules (e.g. rotor, tower etc.).
2013-01-01
Based Micropolar Single Crystal Plasticity: Comparison of Multi - and Single Criterion Theories. J. Mech. Phys. Solids 2011, 59, 398–422. ALE3D ...element boundaries in a multi -step constitutive evaluation (Becker, 2011). The results showed the desired effects of smoothing the deformation field...Implementation The model was implemented in the large-scale parallel, explicit finite element code ALE3D (2012). The crystal plasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gartling, D.K.
The theoretical and numerical background for the finite element computer program, TORO II, is presented in detail. TORO II is designed for the multi-dimensional analysis of nonlinear, electromagnetic field problems described by the quasi-static form of Maxwell`s equations. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in TORO II are also outlined. Instructions for the use of the code are documented in SAND96-0903; examples of problems analyzed with the code are also provided in the user`s manual. 24 refs., 8 figs.
NASA Astrophysics Data System (ADS)
Becker, P.; Idelsohn, S. R.; Oñate, E.
2015-06-01
This paper describes a strategy to solve multi-fluid and fluid-structure interaction (FSI) problems using Lagrangian particles combined with a fixed finite element (FE) mesh. Our approach is an extension of the fluid-only PFEM-2 (Idelsohn et al., Eng Comput 30(2):2-2, 2013; Idelsohn et al., J Numer Methods Fluids, 2014) which uses explicit integration over the streamlines to improve accuracy. As a result, the convective term does not appear in the set of equations solved on the fixed mesh. Enrichments in the pressure field are used to improve the description of the interface between phases.
Reference Models for Multi-Layer Tissue Structures
2016-09-01
simulation, finite element analysis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC...Physiologically realistic, fully specimen-specific, nonlinear reference models. Tasks. Finite element analysis of non-linear mechanics of cadaver...models. Tasks. Finite element analysis of non-linear mechanics of multi-layer tissue regions of human subjects. Deliverables. Partially subject- and
A Hybrid Numerical Analysis Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Staroselsky, Alexander
2001-01-01
A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.
electromagnetics, eddy current, computer codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gartling, David
TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.
Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)
2001-01-01
Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are interfaced. This capability rapidly provides the high-fidelity results needed in the early design phase. Moreover, the capability is applicable to the general field of engineering science and mechanics. Hence, it provides a collaborative capability that accounts for interactions among engineering analysis methods.
Physics-Based Computational Algorithm for the Multi-Fluid Plasma Model
2014-06-30
applying it to study laser - 20 Physics-Based Multi-Fluid Plasma Algorithm Shumlak Figure 6: Blended finite element method applied to the species...separation problem in capsule implosions. Number densities and electric field are shown after the laser drive has compressed the multi-fluid plasma and...6 after the laser drive has started the compression. A separation clearly develops. The solution is found using an explicit advance (CFL=1) for the
Characterization of a plasma photonic crystal using a multi-fluid plasma model
NASA Astrophysics Data System (ADS)
Thomas, W. R.; Shumlak, U.; Wang, B.; Righetti, F.; Cappelli, M. A.; Miller, S. T.
2017-10-01
Plasma photonic crystals have the potential to significantly expand the capabilities of current microwave filtering and switching technologies by providing high speed (μs) control of energy band-gap/pass characteristics in the GHz through low THz range. While photonic crystals consisting of dielectric, semiconductor, and metallic matrices have seen thousands of articles published over the last several decades, plasma-based photonic crystals remain a relatively unexplored field. Numerical modeling efforts so far have largely used the standard methods of analysis for photonic crystals (the Plane Wave Expansion Method, Finite Difference Time Domain, and ANSYS finite element electromagnetic code HFSS), none of which capture nonlinear plasma-radiation interactions. In this study, a 5N-moment multi-fluid plasma model is implemented using University of Washington's WARPXM finite element multi-physics code. A two-dimensional plasma-vacuum photonic crystal is simulated and its behavior is characterized through the generation of dispersion diagrams and transmission spectra. These results are compared with theory, experimental data, and ANSYS HFSS simulation results. This research is supported by a Grant from United States Air Force Office of Scientific Research.
2016-01-01
The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308
Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
2000-01-01
"Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).
Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2005-01-01
A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.
Modeling Intracochlear Magnetic Stimulation: A Finite-Element Analysis.
Mukesh, S; Blake, D T; McKinnon, B J; Bhatti, P T
2017-08-01
This study models induced electric fields, and their gradient, produced by pulsatile current stimulation of submillimeter inductors for cochlear implantation. Using finite-element analysis, the lower chamber of the cochlea, scala tympani, is modeled as a cylindrical structure filled with perilymph bounded by tissue, bone, and cochlear neural elements. Single inductors as well as an array of inductors are modeled. The coil strength (~100 nH) and excitation parameters (peak current of 1-5 A, voltages of 16-20 V) are based on a formative feasibility study conducted by our group. In that study, intracochlear micromagnetic stimulation achieved auditory activation as measured through the auditory brainstem response in a feline model. With respect to the finite element simulations, axial symmetry of the inductor geometry is exploited to improve computation time. It is verified that the inductor coil orientation greatly affects the strength of the induced electric field and thereby the ability to affect the transmembrane potential of nearby neural elements. Furthermore, upon comparing an array of micro-inductors with a typical multi-site electrode array, magnetically excited arrays retain greater focus in terms of the gradient of induced electric fields. Once combined with further in vivo analysis, this modeling study may enable further exploration of the mechanism of magnetically induced, and focused neural stimulation.
Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications
2016-10-17
finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16
Wang, Yawei; Wang, Lizhen; Du, Chengfei; Mo, Zhongjun; Fan, Yubo
2016-06-01
In contrast to numerous researches on static or quasi-static stiffness of cervical spine segments, very few investigations on their dynamic stiffness were published. Currently, scale factors and estimated coefficients were usually used in multi-body models for including viscoelastic properties and damping effects, meanwhile viscoelastic properties of some tissues were unavailable for establishing finite element models. Because dynamic stiffness of cervical spine segments in these models were difficult to validate because of lacking in experimental data, we tried to gain some insights on current modeling methods through studying dynamic stiffness differences between these models. A finite element model and a multi-body model of C6-C7 segment were developed through using available material data and typical modeling technologies. These two models were validated with quasi-static response data of the C6-C7 cervical spine segment. Dynamic stiffness differences were investigated through controlling motions of C6 vertebrae at different rates and then comparing their reaction forces or moments. Validation results showed that both the finite element model and the multi-body model could generate reasonable responses under quasi-static loads, but the finite element segment model exhibited more nonlinear characters. Dynamic response investigations indicated that dynamic stiffness of this finite element model might be underestimated because of the absence of dynamic stiffen effect and damping effects of annulus fibrous, while representation of these effects also need to be improved in current multi-body model. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Field testing of the Wolf Creek curved girder bridge : part I : vibration tests.
DOT National Transportation Integrated Search
2009-01-01
The Wolf Creek Bridge is a curved, multi-girder three span steel composite bridge located south of Narrows, Virginia, that was completed in 2006. A finite element model of the bridge revealed that pier flexibility may be important in modeling the bri...
Field testing of the Wolf Creek curved girder bridge : part II : strain measurements.
DOT National Transportation Integrated Search
2009-01-01
The Wolf Creek Bridge is a curved, multi-girder three span steel composite bridge located south of Narrows, Virginia, that was completed in 2006. A finite element (FE) model of the bridge revealed that pier flexibility may be important in modeling th...
A Dynamic Finite Element Method for Simulating the Physics of Faults Systems
NASA Astrophysics Data System (ADS)
Saez, E.; Mora, P.; Gross, L.; Weatherley, D.
2004-12-01
We introduce a dynamic Finite Element method using a novel high level scripting language to describe the physical equations, boundary conditions and time integration scheme. The library we use is the parallel Finley library: a finite element kernel library, designed for solving large-scale problems. It is incorporated as a differential equation solver into a more general library called escript, based on the scripting language Python. This library has been developed to facilitate the rapid development of 3D parallel codes, and is optimised for the Australian Computational Earth Systems Simulator Major National Research Facility (ACcESS MNRF) supercomputer, a 208 processor SGI Altix with a peak performance of 1.1 TFlops. Using the scripting approach we obtain a parallel FE code able to take advantage of the computational efficiency of the Altix 3700. We consider faults as material discontinuities (the displacement, velocity, and acceleration fields are discontinuous at the fault), with elastic behavior. The stress continuity at the fault is achieved naturally through the expression of the fault interactions in the weak formulation. The elasticity problem is solved explicitly in time, using the Saint Verlat scheme. Finally, we specify a suitable frictional constitutive relation and numerical scheme to simulate fault behaviour. Our model is based on previous work on modelling fault friction and multi-fault systems using lattice solid-like models. We adapt the 2D model for simulating the dynamics of parallel fault systems described to the Finite-Element method. The approach uses a frictional relation along faults that is slip and slip-rate dependent, and the numerical integration approach introduced by Mora and Place in the lattice solid model. In order to illustrate the new Finite Element model, single and multi-fault simulation examples are presented.
3-d finite element model development for biomechanics: a software demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollerbach, K.; Hollister, A.M.; Ashby, E.
1997-03-01
Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models,more » using human hand and knee examples, and will demonstrate their software tools.« less
Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element
NASA Technical Reports Server (NTRS)
Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.
2010-01-01
Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.
NASA Astrophysics Data System (ADS)
Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie
2016-06-01
High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show that the trend of the simulated 1/3 octave band sound pressure spectrum agrees well with that of the on-site-measured one. The deviation between the simulated and measured overall sound pressure level (SPL) is 2.6 dB(A) and well controlled below the engineering tolerance limit, which has validated the SAEF model in the full-spectrum analysis of the high speed train interior noise.
Hunt, R.J.; Anderson, M.P.; Kelson, V.A.
1998-01-01
This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.
A motionless actuation system for magnetic shape memory devices
NASA Astrophysics Data System (ADS)
Armstrong, Andrew; Finn, Kevin; Hobza, Anthony; Lindquist, Paul; Rafla, Nader; Müllner, Peter
2017-10-01
Ni-Mn-Ga is a Magnetic Shape Memory (MSM) alloy that changes shape in response to a variable magnetic field. We can intentionally manipulate the shape of the material to function as an actuator, and the material can thus replace complicated small electromechanical systems. In previous work, a very simple and precise solid-state micropump was developed, but a mechanical rotation was required to translate the position of the magnetic field. This mechanical rotation defeats the purpose of the motionless solid-state device. Here we present a solid-state electromagnetic driver to linearly progress the position of the applied magnetic field and the associated shrinkage. The generated magnetic field was focused at either of two pole pieces, providing a mechanism for moving the localized shrinkage in the MSM element. We confirmed that our driver has sufficient strength to actuate the MSM element using optical microscopy. We validated the whole design by comparing results obtained with finite element analysis with the experimentally measured flux density. This drive system serves as a possible replacement to the mechanical rotation of the magnetic field by using a multi-pole electromagnet that sweeps the magnetic field across the MSM micropump element, solid-state switching the current to each pole piece in the multi-pole electromagnet.
NASA Technical Reports Server (NTRS)
Lang, Christapher G.; Bey, Kim S. (Technical Monitor)
2002-01-01
This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.
NASA Technical Reports Server (NTRS)
Karlovitz, L. A.; Atluri, S. N.; Xue, W.-M.
1985-01-01
The extensions of Reissner's two-field (stress and displacement) principle to the cases wherein the displacement field is discontinuous and/or the stress field results in unreciprocated tractions, at a finite number of surfaces ('interelement boundaries') in a domain (as, for instance, when the domain is discretized into finite elements), is considered. The conditions for the existence, uniqueness, and stability of mixed-hybrid finite element solutions based on such discontinuous fields, are summarized. The reduction of these global conditions to local ('element') level, and the attendant conditions on the ranks of element matrices, are discussed. Two examples of stable, invariant, least-order elements - a four-node square planar element and an eight-node cubic element - are discussed in detail.
Chanda, Debashis; Abolghasemi, Ladan E; Haque, Moez; Ng, Mi Li; Herman, Peter R
2008-09-29
We present a novel multi-level diffractive optical element for diffractive optic near-field lithography based fabrication of large-area diamond-like photonic crystal structure in a single laser exposure step. A multi-level single-surface phase element was laser fabricated on a thin polymer film by two-photon polymerization. A quarter-period phase shift was designed into the phase elements to generate a 3D periodic intensity distribution of double basis diamond-like structure. Finite difference time domain calculation of near-field diffraction patterns and associated isointensity surfaces are corroborated by definitive demonstration of a diamond-like woodpile structure formed inside thick photoresist. A large number of layers provided a strong stopband in the telecom band that matched predictions of numerical band calculation. SEM and spectral observations indicate good structural uniformity over large exposure area that promises 3D photonic crystal devices with high optical quality for a wide range of motif shapes and symmetries. Optical sensing is demonstrated by spectral shifts of the Gamma-Zeta stopband under liquid emersion.
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truong, Samson S.
2014-01-01
Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.
NASA Astrophysics Data System (ADS)
Guo, Hongbo; He, Xiaowei; Liu, Muhan; Zhang, Zeyu; Hu, Zhenhua; Tian, Jie
2017-03-01
Cerenkov luminescence tomography (CLT), as a promising optical molecular imaging modality, can be applied to cancer diagnostic and therapeutic. Most researches about CLT reconstruction are based on the finite element method (FEM) framework. However, the quality of FEM mesh grid is still a vital factor to restrict the accuracy of the CLT reconstruction result. In this paper, we proposed a multi-grid finite element method framework, which was able to improve the accuracy of reconstruction. Meanwhile, the multilevel scheme adaptive algebraic reconstruction technique (MLS-AART) based on a modified iterative algorithm was applied to improve the reconstruction accuracy. In numerical simulation experiments, the feasibility of our proposed method were evaluated. Results showed that the multi-grid strategy could obtain 3D spatial information of Cerenkov source more accurately compared with the traditional single-grid FEM.
NASA Technical Reports Server (NTRS)
Xue, W.-M.; Atluri, S. N.
1985-01-01
In this paper, all possible forms of mixed-hybrid finite element methods that are based on multi-field variational principles are examined as to the conditions for existence, stability, and uniqueness of their solutions. The reasons as to why certain 'simplified hybrid-mixed methods' in general, and the so-called 'simplified hybrid-displacement method' in particular (based on the so-called simplified variational principles), become unstable, are discussed. A comprehensive discussion of the 'discrete' BB-conditions, and the rank conditions, of the matrices arising in mixed-hybrid methods, is given. Some recent studies aimed at the assurance of such rank conditions, and the related problem of the avoidance of spurious kinematic modes, are presented.
A VLSI architecture for performing finite field arithmetic with reduced table look-up
NASA Technical Reports Server (NTRS)
Hsu, I. S.; Truong, T. K.; Reed, I. S.
1986-01-01
A new table look-up method for finding the log and antilog of finite field elements has been developed by N. Glover. In his method, the log and antilog of a field element is found by the use of several smaller tables. The method is based on a use of the Chinese Remainder Theorem. The technique often results in a significant reduction in the memory requirements of the problem. A VLSI architecture is developed for a special case of this new algorithm to perform finite field arithmetic including multiplication, division, and the finding of an inverse element in the finite field.
Stress Recovery and Error Estimation for 3-D Shell Structures
NASA Technical Reports Server (NTRS)
Riggs, H. R.
2000-01-01
The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).
Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram
2018-03-01
Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.
NASA Astrophysics Data System (ADS)
Zhao, Jifeng; Kontsevoi, Oleg Y.; Xiong, Wei; Smith, Jacob
2017-05-01
In this work, a multi-scale computational framework has been established in order to investigate, refine and validate constitutive behaviors in the context of the Gurson-Tvergaard-Needleman (GTN) void mechanics model. The eXtended Finite Element Method (XFEM) has been implemented in order to (1) develop statistical volume elements (SVE) of a matrix material with subscale inclusions and (2) to simulate the multi-void nucleation process due to interface debonding between the matrix and particle phases. Our analyses strongly suggest that under low stress triaxiality the nucleation rate of the voids f˙ can be well described by a normal distribution function with respect to the matrix equivalent stress (σe), as opposed to that proposed (σbar + 1 / 3σkk) in the original form of the single void GTN model. The modified form of the multi-void nucleation model has been validated based on a series of numerical experiments with different loading conditions, material properties, particle shape/size and spatial distributions. The utilization of XFEM allows for an invariant finite element mesh to represent varying microstructures, which implies suitability for drastically reducing complexity in generating the finite element discretizations for large stochastic arrays of microstructure configurations. The modified form of the multi-void nucleation model is further applied to study high strength steels by incorporating first principles calculations. The necessity of using a phenomenological interface separation law has been fully eliminated and replaced by the physics-based cohesive relationship obtained from Density Functional Theory (DFT) calculations in order to provide an accurate macroscopic material response.
Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation
Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; ...
1995-01-01
In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less
Du, Chengfei; Mo, Zhongjun; Tian, Shan; Wang, Lizhen; Fan, Jie; Liu, Songyang; Fan, Yubo
2014-11-01
The aim of this study is to investigate the dynamic response of a multi-segment model of the thoracolumbar spine and determine how the sitting posture affects the response under the impact of ejection. A nonlinear finite element model of the thoracolumbar-pelvis complex (T9-S1) was developed and validated. A multi-body dynamic model of a pilot was also constructed so an ejection seat restraint system could be incorporated into the finite element model. The distribution of trunk mass on each vertebra was also considered in the model. Dynamics analysis showed that ejection impact induced obvious axial compression and anterior flexion of the spine, which may contribute to spinal injuries. Compared with a normal posture, the relaxed posture led to an increase in stress on the cortical wall, endplate, and intradiscal pressure of 43%, 10%, 13%, respectively, and accordingly increased the risk of inducing spinal injuries. Copyright © 2014 John Wiley & Sons, Ltd.
Finite element solution for energy conservation using a highly stable explicit integration algorithm
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1972-01-01
Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.
Using Multi-threading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Saini, Subhash (Technical Monitor)
1998-01-01
In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the adaption phase of FE applications oil triangular meshes and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments oil EARTH-SP2, on implementation of EARTH on the IBM SP2 with different load balancing strategies that are built into the runtime system.
2007-01-01
CONTRACT NUMBER Problems: Finite -Horizon and State-Feedback Cost-Cumulant Control Paradigm (PREPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...cooperative cost-cumulant control regime for the class of multi-person single-objective decision problems characterized by quadratic random costs and... finite -horizon integral quadratic cost associated with a linear stochastic system . Since this problem formation is parameterized by the number of cost
A parallel algorithm for generation and assembly of finite element stiffness and mass matrices
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Carmona, E. A.; Nguyen, D. T.; Baddourah, M. A.
1991-01-01
A new algorithm is proposed for parallel generation and assembly of the finite element stiffness and mass matrices. The proposed assembly algorithm is based on a node-by-node approach rather than the more conventional element-by-element approach. The new algorithm's generality and computation speed-up when using multiple processors are demonstrated for several practical applications on multi-processor Cray Y-MP and Cray 2 supercomputers.
Finite Element Analysis of Particle Ionization within Carbon Nanotube Ion Micro Thruster
2017-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. FINITE ELEMENT ...AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FINITE ELEMENT ANALYSIS OF PARTICLE IONIZATION WITHIN CARBON NANOTUBE ION MICRO THRUSTER 5...simulation, carbon nanotube simulation, microsatellite, finite element analysis, electric field, particle tracing 15. NUMBER OF PAGES 55 16. PRICE
Natural Crack Sizing Based on Eddy Current Image and Electromagnetic Field Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endo, H.; Uchimoto, T.; Takagi, T.
2006-03-06
An eddy current testing (ECT) system with multi-coil type probes is applied to size up cracks fabricated on austenite stainless plates. We have developed muti-channel ECT system to produce data as digital images. The probes consist of transmit-receive type sensors as elements to classify crack directions, working as two scan direction modes simultaneously. Template matching applied to the ECT images determines regions of interest in sizing up cracks. Finite element based inversion sizes up the crack depth from the measured ECT signal. The present paper demonstrates this approach for fatigue crack and stress corrosion cracking.
NASA Astrophysics Data System (ADS)
Jin, Qiyun; Thompson, David J.; Lurcock, Daniel E. J.; Toward, Martin G. R.; Ntotsios, Evangelos
2018-05-01
A numerical model is presented for the ground-borne vibration produced by trains running in tunnels. The model makes use of the assumption that the geometry and material properties are invariant in the axial direction. It is based on the so-called two-and-a-half dimensional (2.5D) coupled Finite Element and Boundary Element methodology, in which a two-dimensional cross-section is discretised into finite elements and boundary elements and the third dimension is represented by a Fourier transform over wavenumbers. The model is applied to a particular case of a metro line built with a cast-iron tunnel lining. An equivalent continuous model of the tunnel is developed to allow it to be readily implemented in the 2.5D framework. The tunnel structure and the track are modelled using solid and beam finite elements while the ground is modelled using boundary elements. The 2.5D track-tunnel-ground model is coupled with a train consisting of several vehicles, which are represented by multi-body models. The response caused by the passage of a train is calculated as the sum of the dynamic component, excited by the combined rail and wheel roughness, and the quasi-static component, induced by the constant moving axle loads. Field measurements have been carried out to provide experimental validation of the model. These include measurements of the vibration of the rail, the tunnel invert and the tunnel wall. In addition, simultaneous measurements were made on the ground surface above the tunnel. Rail roughness and track characterisation measurements were also made. The prediction results are compared with measured vibration obtained during train passages, with good agreement.
Fully three-dimensional analysis of high-speed train-track-soil-structure dynamic interaction
NASA Astrophysics Data System (ADS)
Galvín, P.; Romero, A.; Domínguez, J.
2010-11-01
In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the boundary element method. This methodology could be used to take into account local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line. The nonlinear behaviour of the structures could be also considered. In the present paper, in order to test the model, vibrations induced by high-speed train passage are evaluated for a ballasted track. The quasi-static and dynamic load components are studied and the influence of the suspended mass on the vertical loads is analyzed. The numerical model is validated by comparison with experimental records from two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast track and a slab track is analyzed and the obtained results from the proposed model are compared with those obtained from a model with invariant geometry with respect to the track direction.
Geng, Xiaoqi; Liu, Xiaoyu; Liu, Songyang; Xu, Yan; Zhao, Xianliang; Wang, Jie; Fan, Yubo
2017-04-01
An unequal loss of peripheral vision may happen with high sustaining multi-axis acceleration, leading to a great potential flight safety hazard. In the present research, finite element method was used to study the mechanism of unequal loss of peripheral vision. Firstly, a 3D geometric model of skull was developed based on the adult computer tomography (CT) images. The model of double eyes was created by mirroring with the previous right eye model. Then, the double-eye model was matched to the skull model, and fat was filled between eyeballs and skull. Acceleration loads of head-to-foot (G z ), right-to-left (G y ), chest-to-back (G x ) and multi-axis directions were applied to the current model to simulate dynamic response of retina by explicit dynamics solution. The results showed that the relative strain of double eyes was 25.7% under multi-axis acceleration load. Moreover, the strain distributions showed a significant difference among acceleration loaded in different directions. It indicated that a finite element model of double eyes was an effective means to study the mechanism of an unequal loss of peripheral vision at sustaining high multi-axis acceleration.
Multi-dimensional Fokker-Planck equation analysis using the modified finite element method
NASA Astrophysics Data System (ADS)
Náprstek, J.; Král, R.
2016-09-01
The Fokker-Planck equation (FPE) is a frequently used tool for the solution of cross probability density function (PDF) of a dynamic system response excited by a vector of random processes. FEM represents a very effective solution possibility, particularly when transition processes are investigated or a more detailed solution is needed. Actual papers deal with single degree of freedom (SDOF) systems only. So the respective FPE includes two independent space variables only. Stepping over this limit into MDOF systems a number of specific problems related to a true multi-dimensionality must be overcome. Unlike earlier studies, multi-dimensional simplex elements in any arbitrary dimension should be deployed and rectangular (multi-brick) elements abandoned. Simple closed formulae of integration in multi-dimension domain have been derived. Another specific problem represents the generation of multi-dimensional finite element mesh. Assembling of system global matrices should be subjected to newly composed algorithms due to multi-dimensionality. The system matrices are quite full and no advantages following from their sparse character can be profited from, as is commonly used in conventional FEM applications in 2D/3D problems. After verification of partial algorithms, an illustrative example dealing with a 2DOF non-linear aeroelastic system in combination with random and deterministic excitations is discussed.
Array-based Hierarchical Mesh Generation in Parallel
Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; ...
2015-11-03
In this paper, we describe an array-based hierarchical mesh generation capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial mesh that can be used for a number of purposes such as multi-level methods to generating large meshes. The capability is developed under the parallel mesh framework “Mesh Oriented dAtaBase” a.k.a MOAB. We describe the underlying data structures and algorithms to generate such hierarchies and present numerical results for computational efficiency and mesh quality. Inmore » conclusion, we also present results to demonstrate the applicability of the developed capability to a multigrid finite-element solver.« less
Toward transient finite element simulation of thermal deformation of machine tools in real-time
NASA Astrophysics Data System (ADS)
Naumann, Andreas; Ruprecht, Daniel; Wensch, Joerg
2018-01-01
Finite element models without simplifying assumptions can accurately describe the spatial and temporal distribution of heat in machine tools as well as the resulting deformation. In principle, this allows to correct for displacements of the Tool Centre Point and enables high precision manufacturing. However, the computational cost of FE models and restriction to generic algorithms in commercial tools like ANSYS prevents their operational use since simulations have to run faster than real-time. For the case where heat diffusion is slow compared to machine movement, we introduce a tailored implicit-explicit multi-rate time stepping method of higher order based on spectral deferred corrections. Using the open-source FEM library DUNE, we show that fully coupled simulations of the temperature field are possible in real-time for a machine consisting of a stock sliding up and down on rails attached to a stand.
Multi-scale Methods in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Polyzou, W. N.; Michlin, Tracie; Bulut, Fatih
2018-05-01
Daubechies wavelets are used to make an exact multi-scale decomposition of quantum fields. For reactions that involve a finite energy that take place in a finite volume, the number of relevant quantum mechanical degrees of freedom is finite. The wavelet decomposition has natural resolution and volume truncations that can be used to isolate the relevant degrees of freedom. The application of flow equation methods to construct effective theories that decouple coarse and fine scale degrees of freedom is examined.
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2013-01-01
Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.
Hollaus, K; Weiss, B; Magele, Ch; Hutten, H
2004-02-01
The acceleration of the solution of the quasi-static electric field problem considering anisotropic complex conductivity simulated by tetrahedral finite elements of first order is investigated by geometric multigrid.
Experimental evidence of non-Amontons behaviour at a multi-contact interface
NASA Astrophysics Data System (ADS)
Scheibert, J.; Prevost, A.; Frelat, J.; Rey, P.; Debrégeas, G.
2008-08-01
We report on normal stress field measurements at the multicontact interface between a rough elastomeric film and a smooth glass sphere under normal load, using an original MEMS-based stress-sensing device. These measurements are compared to Finite-Elements Method (FEM) calculations with boundary conditions obeying locally Amontons' rigid-plastic-like friction law with a uniform friction coefficient. In dry contact conditions, significant deviations are observed which decrease with increasing load. In lubricated conditions, the measured profile recovers almost perfectly the predicted profile. These results are interpreted as a consequence of the finite compliance of the multicontact interface, a mechanism which is not taken into account in Amontons' law.
Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard
2018-03-29
The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.
2008-01-01
element method (BEM). Reynolds averaged Navier-Stokes (RANS) and the particle finite element method ( PFEM ) will be used in the water/mine/sand domain...and deformable sandy seabed (median grain diameter: 0.2 mm) 12 SOLID/FEM SAND/SPH GEOMATERIALS FNPF/BEM FNPF/BEMRANS/ PFEM
A new multipartite plate system for anterior cervical spine surgery; finite element analysis.
Şimşek, Hakan; Zorlu, Emre; Kaya, Serdar; Baydoğan, Murat; Atabey, Cem; Çolak, Ahmet
2017-12-19
There are numerous available plates, almost all of which are compact one-piece plates. During the placement of relatively long plates in the treatment of multi-level cervical pathologies, instrument related complications might appear. In order to overcome this potential problem, a novel 'articulated plate system' is designed. We aimed to delineate finite element analysis and mechanical evaluations. A new plate system consisting of multi partite structure for anterior cervical stabilization was designed. Segmental plates were designed for application onto the ventral surface of the vertebral body. Plates differed from 9 to13 mm in length. There are rods at one end and hooks at the other end. Terminal points consisted of either hooks or rods at one end but the other ends are blind. Finite element and mechanical tests of the construct were performed applying bending, axial loading, and distraction forces. Finite element and mechanical testing results yielded the cut off values for functional failure and breakage of the system. The articulated system proved to be mechanically safe and it lets extension of the system on either side as needed. Ease of application needs further verification via a cadaveric study.
Implementing Capsule Representation in a Total Hip Dislocation Finite Element Model
Stewart, Kristofer J; Pedersen, Douglas R; Callaghan, John J; Brown, Thomas D
2004-01-01
Previously validated hardware-only finite element models of THA dislocation have clarified how various component design and surgical placement variables contribute to resisting the propensity for implant dislocation. This body of work has now been enhanced with the incorporation of experimentally based capsule representation, and with anatomic bone structures. The current form of this finite element model provides for large deformation multi-body contact (including capsule wrap-around on bone and/or implant), large displacement interfacial sliding, and large deformation (hyperelastic) capsule representation. In addition, the modular nature of this model now allows for rapid incorporation of current or future total hip implant designs, accepts complex multi-axial physiologic motion inputs, and outputs case-specific component/bone/soft-tissue impingement events. This soft-tissue-augmented finite element model is being used to investigate the performance of various implant designs for a range of clinically-representative soft tissue integrities and surgical techniques. Preliminary results show that capsule enhancement makes a substantial difference in stability, compared to an otherwise identical hardware-only model. This model is intended to help put implant design and surgical technique decisions on a firmer scientific basis, in terms of reducing the likelihood of dislocation. PMID:15296198
Fluid-structure interaction with the entropic lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Dorschner, B.; Chikatamarla, S. S.; Karlin, I. V.
2018-02-01
We propose a fluid-structure interaction (FSI) scheme using the entropic multi-relaxation time lattice Boltzmann (KBC) model for the fluid domain in combination with a nonlinear finite element solver for the structural part. We show the validity of the proposed scheme for various challenging setups by comparison to literature data. Beyond validation, we extend the KBC model to multiphase flows and couple it with a finite element method (FEM) solver. Robustness and viability of the entropic multi-relaxation time model for complex FSI applications is shown by simulations of droplet impact on elastic superhydrophobic surfaces.
Concurrent design of an RTP chamber and advanced control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, P.; Schaper, C.; Kermani, A.
1995-12-31
A concurrent-engineering approach is applied to the development of an axisymmetric rapid-thermal-processing (RTP) reactor and its associated temperature controller. Using a detailed finite-element thermal model as a surrogate for actual hardware, the authors have developed and tested a multi-input multi-output (MIMO) controller. Closed-loop simulations are performed by linking the control algorithm with the finite-element code. Simulations show that good temperature uniformity is maintained on the wafer during both steady and transient conditions. A numerical study shows the effect of ramp rate, feedback gain, sensor placement, and wafer-emissivity patterns on system performance.
Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2000-01-01
An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.
NASA Technical Reports Server (NTRS)
Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.
Energy and technology review: Engineering modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabayan, H.S.; Goudreau, G.L.; Ziolkowski, R.W.
1986-10-01
This report presents information concerning: Modeling Canonical Problems in Electromagnetic Coupling Through Apertures; Finite-Element Codes for Computing Electrostatic Fields; Finite-Element Modeling of Electromagnetic Phenomena; Modeling Microwave-Pulse Compression in a Resonant Cavity; Lagrangian Finite-Element Analysis of Penetration Mechanics; Crashworthiness Engineering; Computer Modeling of Metal-Forming Processes; Thermal-Mechanical Modeling of Tungsten Arc Welding; Modeling Air Breakdown Induced by Electromagnetic Fields; Iterative Techniques for Solving Boltzmann's Equations for p-Type Semiconductors; Semiconductor Modeling; and Improved Numerical-Solution Techniques in Large-Scale Stress Analysis.
NASA Astrophysics Data System (ADS)
Zhao, Bin
2015-02-01
Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.
Method for calculating internal radiation and ventilation with the ADINAT heat-flow code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butkovich, T.R.; Montan, D.N.
1980-04-01
One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation andmore » ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.« less
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ahmed, Saad; Masters, Sarah; Ounaies, Zoubeida; Frecker, Mary
2017-10-01
The incorporation of smart materials such as electroactive polymers and magnetoactive elastomers in origami structures can result in active folding using external electric and magnetic stimuli, showing promise in many origami-inspired engineering applications. In this study, 3D finite element analysis (FEA) models are developed using COMSOL Multiphysics software for three configurations that incorporate a combination of active and passive material layers, namely: (1) a single-notch unimorph folding configuration actuated using only external electric field, (2) a double-notch unimorph folding configuration actuated using only external electric field, and (3) a bifold configuration which is actuated using multi-field (electric and magnetic) stimuli. The objectives of the study are to verify the effectiveness of the FEA models to simulate folding behavior and to investigate the influence of geometric parameters on folding quality. Equivalent mechanical pressure and surface stress are used as external loads in the FEA to simulate electric and magnetic fields, respectively. Compared quantitatively with experimental data, FEA captured the folding performance of electric actuation well for notched configurations and magnetic actuation for a bifold structure, but underestimated electric actuation for the bifold structure. By investigating the impact of geometric parameters and locations to place smart materials, FEA can be used in design, avoiding trial-and-error iterations of experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Eric M.
2004-05-20
The YAP software library computes (1) electromagnetic modes, (2) electrostatic fields, (3) magnetostatic fields and (4) particle trajectories in 2d and 3d models. The code employs finite element methods on unstructured grids of tetrahedral, hexahedral, prism and pyramid elements, with linear through cubic element shapes and basis functions to provide high accuracy. The novel particle tracker is robust, accurate and efficient, even on unstructured grids with discontinuous fields. This software library is a component of the MICHELLE 3d finite element gun code.
Analysis of electrical tomography sensitive field based on multi-terminal network and electric field
NASA Astrophysics Data System (ADS)
He, Yongbo; Su, Xingguo; Xu, Meng; Wang, Huaxiang
2010-08-01
Electrical tomography (ET) aims at the study of the conductivity/permittivity distribution of the interested field non-intrusively via the boundary voltage/current. The sensor is usually regarded as an electric field, and finite element method (FEM) is commonly used to calculate the sensitivity matrix and to optimize the sensor architecture. However, only the lumped circuit parameters can be measured by the data acquisition electronics, it's very meaningful to treat the sensor as a multi terminal network. Two types of multi terminal network with common node and common loop topologies are introduced. Getting more independent measurements and making more uniform current distribution are the two main ways to minimize the inherent ill-posed effect. By exploring the relationships of network matrixes, a general formula is proposed for the first time to calculate the number of the independent measurements. Additionally, the sensitivity distribution is analyzed with FEM. As a result, quasi opposite mode, an optimal single source excitation mode, that has the advantages of more uniform sensitivity distribution and more independent measurements, is proposed.
Traction free finite elements with the assumed stress hybrid model. M.S. Thesis, 1981
NASA Technical Reports Server (NTRS)
Kafie, Kurosh
1991-01-01
An effective approach in the finite element analysis of the stress field at the traction free boundary of a solid continuum was studied. Conventional displacement and assumed stress finite elements were used in the determination of stress concentrations around circular and elliptical holes. Specialized hybrid elements were then developed to improve the satisfaction of prescribed traction boundary conditions. Results of the stress analysis indicated that finite elements which exactly satisfy the free stress boundary conditions are the most accurate and efficient in such problems. A general approach for hybrid finite elements which incorporate traction free boundaries of arbitrary geometry was formulated.
OpenSeesPy: Python library for the OpenSees finite element framework
NASA Astrophysics Data System (ADS)
Zhu, Minjie; McKenna, Frank; Scott, Michael H.
2018-01-01
OpenSees, an open source finite element software framework, has been used broadly in the earthquake engineering community for simulating the seismic response of structural and geotechnical systems. The framework allows users to perform finite element analysis with a scripting language and for developers to create both serial and parallel finite element computer applications as interpreters. For the last 15 years, Tcl has been the primary scripting language to which the model building and analysis modules of OpenSees are linked. To provide users with different scripting language options, particularly Python, the OpenSees interpreter interface was refactored to provide multi-interpreter capabilities. This refactoring, resulting in the creation of OpenSeesPy as a Python module, is accomplished through an abstract interface for interpreter calls with concrete implementations for different scripting languages. Through this approach, users are able to develop applications that utilize the unique features of several scripting languages while taking advantage of advanced finite element analysis models and algorithms.
2011-12-01
UU NSN 7540–01–280–5500 Standard Form 298 (Rev. 8–98) Prescribed by ANSI Std. Z39.18 ii THIS PAGE INTENTIONALLY LEFT BLANK iii Approved for...modeled using the finite element analysis simulation code, ANSYS 13.0. The main objective of these simulations was to determine the location at which...transient response of the test plate under FSI conditions, computational studies were carried out in ANSYS 13.0 Multi-field (MFX) simulation
NASA Astrophysics Data System (ADS)
Mead, Denys J.
2009-01-01
A general theory for the forced vibration of multi-coupled one-dimensional periodic structures is presented as a sequel to a much earlier general theory for free vibration. Starting from the dynamic stiffness matrix of a single multi-coupled periodic element, it derives matrix equations for the magnitudes of the characteristic free waves excited in the whole structure by prescribed harmonic forces and/or displacements acting at a single periodic junction. The semi-infinite periodic system excited at its end is first analysed to provide the basis for analysing doubly infinite and finite periodic systems. In each case, total responses are found by considering just one periodic element. An already-known method of reducing the size of the computational problem is reexamined, expanded and extended in detail, involving reduction of the dynamic stiffness matrix of the periodic element through a wave-coordinate transformation. Use of the theory is illustrated in a combined periodic structure+finite element analysis of the forced harmonic in-plane motion of a uniform flat plate. Excellent agreement between the computed low-frequency responses and those predicted by simple engineering theories validates the detailed formulations of the paper. The primary purpose of the paper is not towards a specific application but to present a systematic and coherent forced vibration theory, carefully linked with the existing free-wave theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
The objective of this study is to develop a finite element continuum damage model suitable for modeling deformation, cracking, and crack bridging for W-Cu, W-Ni-Fe, and other ductile phase toughened W-composites, or more generally, any multi-phase composite structure where two or more phases undergo cooperative deformation in a composite system.
NASA Astrophysics Data System (ADS)
Sizov, Gennadi Y.
In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow one to expand the optimization problem to achieve more complex and comprehensive design objectives. The method is used in the design process of several interior permanent magnet industrial motors. The presented case studies demonstrate that the developed finite element-based approach practically eliminates the need for using less accurate analytical and lumped parameter equivalent circuit models for electric machine design optimization. The design process and experimental validation of the case-study machines are detailed in the dissertation.
Probabilistic finite elements for transient analysis in nonlinear continua
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
NASA Astrophysics Data System (ADS)
Li, Xun; Li, Xu; Zhu, Shanan; He, Bin
2009-05-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, a three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulae describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for the model calibration and evaluation of the corresponding acoustic field.
Li, Xun; Li, Xu; Zhu, Shanan; He, Bin
2010-01-01
Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulas describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for model calibration and evaluation of the corresponding acoustic field. PMID:19351978
Multi-scale finite element modeling of strain localization in geomaterials with strong discontinuity
NASA Astrophysics Data System (ADS)
Lai, Timothy Yu
2002-01-01
Geomaterials such as soils and rocks undergo strain localization during various loading conditions. Strain localization manifests itself in the form of a shear band, a narrow zone of intense straining. It is now generally recognized that these localized deformations lead to an accelerated softening response and influence the response of structures at or near failure. In order to accurately predict the behavior of geotechnical structures, the effects of strain localization must be included in any model developed. In this thesis, a multi-scale Finite Element (FE) model has been developed that captures the macro- and micro-field deformation patterns present during strain localization. The FE model uses a strong discontinuity approach where a jump in the displacement field is assumed. The onset of strain localization is detected using bifurcation theory that checks when the governing equations lose ellipticity. Two types of bifurcation, continuous and discontinuous are considered. Precise conditions for plane strain loading conditions are reported for each type of bifurcation. Post-localization behavior is governed by the traction relations on the band. Different plasticity models such as Mohr-Coulomb, Drucker-Prager and a Modified Mohr-Coulomb yield were implemented together with cohesion softening and cutoff for the post-localization behavior. The FE model is implemented into a FORTRAN code SPIN2D-LOC using enhanced constant strain triangular (CST) elements. The model is formulated using standard Galerkin finite element method, applicable to problems under undrained conditions and small deformation theory. A band-tracing algorithm is implemented to track the propagation of the shear band. To validate the model, several simulations are performed from simple compression test of soft rock to simulation of a full-scale geosynthetic reinforced soil wall model undergoing strain localization. Results from both standard and enhanced FE method are included for comparison. The resulting load-displacement curves show that the model can represent the softening behavior of geomaterials once strain localization is detected. The orientation of the shear band is found to depend on both the friction and dilation angle of the geomaterial. For most practical problems, slight mesh dependency can be expected but is associated with the standard FE interpolation rather than the strong discontinuity enhancements.
Performance of low-rank QR approximation of the finite element Biot-Savart law
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D A; Fasenfest, B J
2006-01-12
We are concerned with the computation of magnetic fields from known electric currents in the finite element setting. In finite element eddy current simulations it is necessary to prescribe the magnetic field (or potential, depending upon the formulation) on the conductor boundary. In situations where the magnetic field is due to a distributed current density, the Biot-Savart law can be used, eliminating the need to mesh the nonconducting regions. Computation of the Biot-Savart law can be significantly accelerated using a low-rank QR approximation. We review the low-rank QR method and report performance on selected problems.
NASA Astrophysics Data System (ADS)
Bause, Markus
2008-02-01
In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.
Fast propagation of electromagnetic fields through graded-index media.
Zhong, Huiying; Zhang, Site; Shi, Rui; Hellmann, Christian; Wyrowski, Frank
2018-04-01
Graded-index (GRIN) media are widely used for modeling different situations: some components are designed considering GRIN modulation, e.g., multi-mode fibers, optical lenses, or acousto-optical modulators; on the other hand, there are other components where the refractive-index variation is undesired due to, e.g., stress or heating; and finally, some effects in nature are characterized by a GRIN variation, like turbulence in air or biological tissues. Modeling electromagnetic fields propagating in GRIN media is then of high importance for optical simulation and design. Though ray tracing can be used to evaluate some basic effects in GRIN media, the field properties are not considered and evaluated. The general physical optics techniques, like finite element method or finite difference time domain, can be used to calculate fields in GRIN media, but they need great numerical effort or may even be impractical for large-scale components. Therefore, there still exists a demand for a fast physical optics model of field propagation through GRIN media on a large scale, which will be explored in this paper.
On conforming mixed finite element methods for incompressible viscous flow problems
NASA Technical Reports Server (NTRS)
Gunzburger, M. D; Nicolaides, R. A.; Peterson, J. S.
1982-01-01
The application of conforming mixed finite element methods to obtain approximate solutions of linearized Navier-Stokes equations is examined. Attention is given to the convergence rates of various finite element approximations of the pressure and the velocity field. The optimality of the convergence rates are addressed in terms of comparisons of the approximation convergence to a smooth solution in relation to the best approximation available for the finite element space used. Consideration is also devoted to techniques for efficient use of a Gaussian elimination algorithm to obtain a solution to a system of linear algebraic equations derived by finite element discretizations of linear partial differential equations.
A quantitative study on magnesium alloy stent biodegradation.
Gao, Yuanming; Wang, Lizhen; Gu, Xuenan; Chu, Zhaowei; Guo, Meng; Fan, Yubo
2018-06-06
Insufficient scaffolding time in the process of rapid corrosion is the main problem of magnesium alloy stent (MAS). Finite element method had been used to investigate corrosion of MAS. However, related researches mostly described all elements suffered corrosion in view of one-dimensional corrosion. Multi-dimensional corrosions significantly influence mechanical integrity of MAS structures such as edges and corners. In this study, the effects of multi-dimensional corrosion were studied using experiment quantitatively, then a phenomenological corrosion model was developed to consider these effects. We implemented immersion test with magnesium alloy (AZ31B) cubes, which had different numbers of exposed surfaces to analyze differences of dimension. It was indicated that corrosion rates of cubes are almost proportional to their exposed-surface numbers, especially when pitting corrosions are not marked. The cubes also represented the hexahedron elements in simulation. In conclusion, corrosion rate of every element accelerates by increasing corrosion-surface numbers in multi-dimensional corrosion. The damage ratios among elements with the same size are proportional to the ratios of corrosion-surface numbers under uniform corrosion. The finite element simulation using proposed model provided more details of changes of morphology and mechanics in scaffolding time by removing 25.7% of elements of MAS. The proposed corrosion model reflected the effects of multi-dimension on corrosions. It would be used to predict degradation process of MAS quantitatively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Finite element modeling of truss structures with frequency-dependent material damping
NASA Technical Reports Server (NTRS)
Lesieutre, George A.
1991-01-01
A physically motivated modelling technique for structural dynamic analysis that accommodates frequency dependent material damping was developed. Key features of the technique are the introduction of augmenting thermodynamic fields (AFT) to interact with the usual mechanical displacement field, and the treatment of the resulting coupled governing equations using finite element analysis methods. The AFT method is fully compatible with current structural finite element analysis techniques. The method is demonstrated in the dynamic analysis of a 10-bay planar truss structure, a structure representative of those contemplated for use in future space systems.
NASA Technical Reports Server (NTRS)
Nakajima, Yukio; Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element methodology is formulated to handle traveling load problems involving large deformation fields in structure composed of viscoelastic media. The main thrust of this paper is to develop an overall finite element methodology and associated solution algorithms to handle the transient aspects of moving problems involving contact impact type loading fields. Based on the methodology and algorithms formulated, several numerical experiments are considered. These include the rolling/sliding impact of tires with road obstructions.
Using Multithreading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Bailey, David H. (Technical Monitor)
1998-01-01
In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes. The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the question phase of FE applications on triangular meshes, and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments on EARTH-SP2, an implementation of EARTH on the IBM SP2, with different load balancing strategies that are built into the runtime system.
Improved Finite Element Modeling of the Turbofan Engine Inlet Radiation Problem
NASA Technical Reports Server (NTRS)
Roy, Indranil Danda; Eversman, Walter; Meyer, H. D.
1993-01-01
Improvements have been made in the finite element model of the acoustic radiated field from a turbofan engine inlet in the presence of a mean flow. The problem of acoustic radiation from a turbofan engine inlet is difficult to model numerically because of the large domain and high frequencies involved. A numerical model with conventional finite elements in the near field and wave envelope elements in the far field has been constructed. By employing an irrotational mean flow assumption, both the mean flow and the acoustic perturbation problem have been posed in an axisymmetric formulation in terms of the velocity potential; thereby minimizing computer storage and time requirements. The finite element mesh has been altered in search of an improved solution. The mean flow problem has been reformulated with new boundary conditions to make it theoretically rigorous. The sound source at the fan face has been modeled as a combination of positive and negative propagating duct eigenfunctions. Therefore, a finite element duct eigenvalue problem has been solved on the fan face and the resulting modal matrix has been used to implement a source boundary condition on the fan face in the acoustic radiation problem. In the post processing of the solution, the acoustic pressure has been evaluated at Gauss points inside the elements and the nodal pressure values have been interpolated from them. This has significantly improved the results. The effect of the geometric position of the transition circle between conventional finite elements and wave envelope elements has been studied and it has been found that the transition can be made nearer to the inlet than previously assumed.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Horowitz, S. J.
1982-01-01
An iterative finite element integral technique is used to predict the sound field radiated from the JT15D turbofan inlet. The sound field is divided into two regions: the sound field within and near the inlet which is computed using the finite element method and the radiation field beyond the inlet which is calculated using an integral solution technique. The velocity potential formulation of the acoustic wave equation was employed in the program. For some single mode JT15D data, the theory and experiment are in good agreement for the far field radiation pattern as well as suppressor attenuation. Also, the computer program is used to simulate flight effects that cannot be performed on a ground static test stand.
NASA Astrophysics Data System (ADS)
Zhang, Yunpeng; Ho, Siu-lau; Fu, Weinong
2018-05-01
This paper proposes a dynamic multi-level optimal design method for power transformer design optimization (TDO) problems. A response surface generated by second-order polynomial regression analysis is updated dynamically by adding more design points, which are selected by Shifted Hammersley Method (SHM) and calculated by finite-element method (FEM). The updating stops when the accuracy requirement is satisfied, and optimized solutions of the preliminary design are derived simultaneously. The optimal design level is modulated through changing the level of error tolerance. Based on the response surface of the preliminary design, a refined optimal design is added using multi-objective genetic algorithm (MOGA). The effectiveness of the proposed optimal design method is validated through a classic three-phase power TDO problem.
Frasson, L; Neubert, J; Reina, S; Oldfield, M; Davies, B L; Rodriguez Y Baena, F
2010-01-01
The popularity of minimally invasive surgical procedures is driving the development of novel, safer and more accurate surgical tools. In this context a multi-part probe for soft tissue surgery is being developed in the Mechatronics in Medicine Laboratory at Imperial College, London. This study reports an optimization procedure using finite element methods, for the identification of an interlock geometry able to limit the separation of the segments composing the multi-part probe. An optimal geometry was obtained and the corresponding three-dimensional finite element model validated experimentally. Simulation results are shown to be consistent with the physical experiments. The outcome of this study is an important step in the provision of a novel miniature steerable probe for surgery.
Multi-channel unidirectional transmission of phononic crystal heterojunctions
NASA Astrophysics Data System (ADS)
Xu, Zhenlong; Tong, Jie; Wu, Fugen
2018-02-01
Two square steel columns are arranged in air to form two-dimensional square lattice phononic crystals (PNCs). Two PNCs can be combined into a non-orthogonal 45∘ heterojunction when the difference in the directional band gaps of the two PNC types is utilized. The finite element method is used to calculate the acoustic band structure, the heterogeneous junction transmission characteristics, acoustic field distribution, and many others. Results show that a non-orthogonal PNC heterojunction can produce a multi-channel unidirectional transmission of acoustic waves. With the square scatterer rotated, the heterojunction can select a frequency band for unidirectional transmission performance. This capability is particularly useful for constructing acoustic diodes with wide-bands and high-efficiency unidirectional transmission characteristics.
2008-02-01
combined thermal g effect and initial current field. The model is implemented using Abaqus user element subroutine and verified against the experimental...Finite Element Formulation The proposed model is implemented with ABAQUS general purpose finite element program using thermal -displacement analysis...option. ABAQUS and other commercially available finite element codes do not have the capability to solve general electromigration problem directly. Thermal
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
Marine Controlled-Source Electromagnetic 2D Inversion for synthetic models.
NASA Astrophysics Data System (ADS)
Liu, Y.; Li, Y.
2016-12-01
We present a 2D inverse algorithm for frequency domain marine controlled-source electromagnetic (CSEM) data, which is based on the regularized Gauss-Newton approach. As a forward solver, our parallel adaptive finite element forward modeling program is employed. It is a self-adaptive, goal-oriented grid refinement algorithm in which a finite element analysis is performed on a sequence of refined meshes. The mesh refinement process is guided by a dual error estimate weighting to bias refinement towards elements that affect the solution at the EM receiver locations. With the use of the direct solver (MUMPS), we can effectively compute the electromagnetic fields for multi-sources and parametric sensitivities. We also implement the parallel data domain decomposition approach of Key and Ovall (2011), with the goal of being able to compute accurate responses in parallel for complicated models and a full suite of data parameters typical of offshore CSEM surveys. All minimizations are carried out by using the Gauss-Newton algorithm and model perturbations at each iteration step are obtained by using the Inexact Conjugate Gradient iteration method. Synthetic test inversions are presented.
NASA Astrophysics Data System (ADS)
Shamshuddin, MD.; Anwar Bég, O.; Sunder Ram, M.; Kadir, A.
2018-02-01
Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic, incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland's diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.
NASA Astrophysics Data System (ADS)
Li, Gangqiang; Zhu, Zheng H.; Ruel, Stephane; Meguid, S. A.
2017-08-01
This paper developed a new multiphysics finite element method for the elastodynamic analysis of space debris deorbit by a bare flexible electrodynamic tether. Orbital motion limited theory and dynamics of flexible electrodynamic tethers are discretized by the finite element method, where the motional electric field is variant along the tether and coupled with tether deflection and motion. Accordingly, the electrical current and potential bias profiles of tether are solved together with the tether dynamics by the nodal position finite element method. The newly proposed multiphysics finite element method is applied to analyze the deorbit dynamics of space debris by electrodynamic tethers with a two-stage energy control strategy to ensure an efficient and stable deorbit process. Numerical simulations are conducted to study the coupled effect between the motional electric field and the tether dynamics. The results reveal that the coupling effect has a significant influence on the tether stability and the deorbit performance. It cannot be ignored when the libration and deflection of the tether are significant.
Eigenvalues of Rectangular Waveguide Using FEM With Hybrid Elements
NASA Technical Reports Server (NTRS)
Deshpande, Manohar D.; Hall, John M.
2002-01-01
A finite element analysis using hybrid triangular-rectangular elements is developed to estimate eigenvalues of a rectangular waveguide. Use of rectangular vector-edge finite elements in the vicinity of the PEC boundary and triangular elements in the interior region more accurately models the physical nature of the electromagnetic field, and consequently quicken the convergence.
Dynamic and thermal response finite element models of multi-body space structural configurations
NASA Technical Reports Server (NTRS)
Edighoffer, Harold H.
1987-01-01
Presented is structural dynamics modeling of two multibody space structural configurations. The first configuration is a generic space station model of a cylindrical habitation module, two solar array panels, radiator panel, and central connecting tube. The second is a 15-m hoop-column antenna. Discussed is the special joint elimination sequence used for these large finite element models, so that eigenvalues could be extracted. The generic space station model aided test configuration design and analysis/test data correlation. The model consisted of six finite element models, one of each substructure and one of all substructures as a system. Static analysis and tests at the substructure level fine-tuned the finite element models. The 15-m hoop-column antenna is a truss column and structural ring interconnected with tension stabilizing cables. To the cables, pretensioned mesh membrane elements were attached to form four parabolic shaped antennae, one per quadrant. Imposing thermal preloads in the cables and mesh elements produced pretension in the finite element model. Thermal preload variation in the 96 control cables was adjusted to maintain antenna shape within the required tolerance and to give pointing accuracy.
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Korvink, Jan G.
2016-01-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
NASA Technical Reports Server (NTRS)
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
Upadhyay, Manas V.; Patra, Anirban; Wen, Wei; ...
2018-05-08
In this paper, we propose a multi-scale modeling approach that can simulate the microstructural and mechanical behavior of metal or alloy parts with complex geometries subjected to multi-axial load path changes. The model is used to understand the biaxial load path change behavior of 316L stainless steel cruciform samples. At the macroscale, a finite element approach is used to simulate the cruciform geometry and numerically predict the gauge stresses, which are difficult to obtain analytically. At each material point in the finite element mesh, the anisotropic viscoplastic self-consistent model is used to simulate the role of texture evolution on themore » mechanical response. At the single crystal level, a dislocation density based hardening law that appropriately captures the role of multi-axial load path changes on slip activity is used. The combined approach is experimentally validated using cruciform samples subjected to uniaxial load and unload followed by different biaxial reloads in the angular range [27º, 90º]. Polycrystalline yield surfaces before and after load path changes are generated using the full-field elasto-viscoplastic fast Fourier transform model to study the influence of the deformation history and reloading direction on the mechanical response, including the Bauschinger effect, of these cruciform samples. Results reveal that the Bauschinger effect is strongly dependent on the first loading direction and strain, intergranular and macroscopic residual stresses after first load, and the reloading angle. The microstructural origins of the mechanical response are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Manas V.; Patra, Anirban; Wen, Wei
In this paper, we propose a multi-scale modeling approach that can simulate the microstructural and mechanical behavior of metal or alloy parts with complex geometries subjected to multi-axial load path changes. The model is used to understand the biaxial load path change behavior of 316L stainless steel cruciform samples. At the macroscale, a finite element approach is used to simulate the cruciform geometry and numerically predict the gauge stresses, which are difficult to obtain analytically. At each material point in the finite element mesh, the anisotropic viscoplastic self-consistent model is used to simulate the role of texture evolution on themore » mechanical response. At the single crystal level, a dislocation density based hardening law that appropriately captures the role of multi-axial load path changes on slip activity is used. The combined approach is experimentally validated using cruciform samples subjected to uniaxial load and unload followed by different biaxial reloads in the angular range [27º, 90º]. Polycrystalline yield surfaces before and after load path changes are generated using the full-field elasto-viscoplastic fast Fourier transform model to study the influence of the deformation history and reloading direction on the mechanical response, including the Bauschinger effect, of these cruciform samples. Results reveal that the Bauschinger effect is strongly dependent on the first loading direction and strain, intergranular and macroscopic residual stresses after first load, and the reloading angle. The microstructural origins of the mechanical response are discussed.« less
Computing Gravitational Fields of Finite-Sized Bodies
NASA Technical Reports Server (NTRS)
Quadrelli, Marco
2005-01-01
A computer program utilizes the classical theory of gravitation, implemented by means of the finite-element method, to calculate the near gravitational fields of bodies of arbitrary size, shape, and mass distribution. The program was developed for application to a spacecraft and to floating proof masses and associated equipment carried by the spacecraft for detecting gravitational waves. The program can calculate steady or time-dependent gravitational forces, moments, and gradients thereof. Bodies external to a proof mass can be moving around the proof mass and/or deformed under thermoelastic loads. An arbitrarily shaped proof mass is represented by a collection of parallelepiped elements. The gravitational force and moment acting on each parallelepiped element of a proof mass, including those attributable to the self-gravitational field of the proof mass, are computed exactly from the closed-form equation for the gravitational potential of a parallelepiped. The gravitational field of an arbitrary distribution of mass external to a proof mass can be calculated either by summing the fields of suitably many point masses or by higher-order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a finite-element mesh. This computer program is compatible with more general finite-element codes, such as NASTRAN, because it is configured to read a generic input data file, containing the detailed description of the finiteelement mesh.
An RF phased array applicator designed for hyperthermia breast cancer treatments
Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V
2007-01-01
An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2015-11-01
This work extends a fiber-based immersed boundary (IB) model of esophageal transport by incorporating a continuum model of the deformable esophageal wall. The continuum-based esophagus model adopts finite element approach that is capable of describing more complex and realistic material properties and geometries. The leakage from mismatch between Lagrangian and Eulerian meshes resulting from large deformations of the esophageal wall is avoided by careful choice of interaction points. The esophagus model, which is described as a multi-layered, fiber-reinforced nonlinear elastic material, is coupled to bolus and muscle-activation models using the IB approach to form the esophageal transport model. Cases of esophageal transport with different esophagus models are studied. Results on the transport characteristics, including pressure field and esophageal wall kinematics and stress, are analyzed and compared. Support from NIH grant R01 DK56033 and R01 DK079902 is gratefully acknowledged. BEG is supported by NSF award ACI 1460334.
VALIDATION OF ANSYS FINITE ELEMENT ANALYSIS SOFTWARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAMM, E.R.
2003-06-27
This document provides a record of the verification and Validation of the ANSYS Version 7.0 software that is installed on selected CH2M HILL computers. The issues addressed include: Software verification, installation, validation, configuration management and error reporting. The ANSYS{reg_sign} computer program is a large scale multi-purpose finite element program which may be used for solving several classes of engineering analysis. The analysis capabilities of ANSYS Full Mechanical Version 7.0 installed on selected CH2M Hill Hanford Group (CH2M HILL) Intel processor based computers include the ability to solve static and dynamic structural analyses, steady-state and transient heat transfer problems, mode-frequency andmore » buckling eigenvalue problems, static or time-varying magnetic analyses and various types of field and coupled-field applications. The program contains many special features which allow nonlinearities or secondary effects to be included in the solution, such as plasticity, large strain, hyperelasticity, creep, swelling, large deflections, contact, stress stiffening, temperature dependency, material anisotropy, and thermal radiation. The ANSYS program has been in commercial use since 1970, and has been used extensively in the aerospace, automotive, construction, electronic, energy services, manufacturing, nuclear, plastics, oil and steel industries.« less
Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems
NASA Astrophysics Data System (ADS)
Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark
2017-11-01
Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.
Multi-scale and multi-physics simulations using the multi-fluid plasma model
2017-04-25
small The simulation uses 512 second-order elements Bz = 1.0, Te = Ti = 0.01, ui = ue = 0 ne = ni = 1.0 + e−10(x−6) 2 Baboolal, Math . and Comp. Sim. 55...DISTRIBUTION Clearance No. 17211 23 / 31 SUMMARY The blended finite element method (BFEM) is presented DG spatial discretization with explicit Runge...Kutta (i+, n) CG spatial discretization with implicit Crank-Nicolson (e−, fileds) DG captures shocks and discontinuities CG is efficient and robust for
A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.
Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less
A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes
Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.
2017-02-05
Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Xinping, E-mail: exping@126.com
Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in eachmore » subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in certain conditions. • Integrating MsFEM and multi-element least square HDMR can significantly reduce computation complexity.« less
NASA Astrophysics Data System (ADS)
Grujicic, M.; Bell, W. C.; Arakere, G.; He, T.; Xie, X.; Cheeseman, B. A.
2010-02-01
A meso-scale ballistic material model for a prototypical plain-woven single-ply flexible armor is developed and implemented in a material user subroutine for the use in commercial explicit finite element programs. The main intent of the model is to attain computational efficiency when calculating the mechanical response of the multi-ply fabric-based flexible-armor material during its impact with various projectiles without significantly sacrificing the key physical aspects of the fabric microstructure, architecture, and behavior. To validate the new model, a comparative finite element method analysis is carried out in which: (a) the plain-woven single-ply fabric is modeled using conventional shell elements and weaving is done in an explicit manner by snaking the yarns through the fabric and (b) the fabric is treated as a planar continuum surface composed of conventional shell elements to which the new meso-scale unit-cell based material model is assigned. The results obtained show that the material model provides a reasonably good description for the fabric deformation and fracture behavior under different combinations of fixed and free boundary conditions. Finally, the model is used in an investigation of the ability of a multi-ply soft-body armor vest to protect the wearer from impact by a 9-mm round nose projectile. The effects of inter-ply friction, projectile/yarn friction, and the far-field boundary conditions are revealed and the results explained using simple wave mechanics principles, high-deformation rate material behavior, and the role of various energy-absorbing mechanisms in the fabric-based armor systems.
Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang
2016-12-01
Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.
Analysis of Rapid Multi-Focal Zone ARFI Imaging
Rosenzweig, Stephen; Palmeri, Mark; Nightingale, Kathryn
2015-01-01
Acoustic radiation force impulse (ARFI) imaging has shown promise for visualizing structure and pathology within multiple organs; however, because the contrast depends on the push beam excitation width, image quality suffers outside of the region of excitation. Multi-focal zone ARFI imaging has previously been used to extend the region of excitation (ROE), but the increased acquisition duration and acoustic exposure have limited its utility. Supersonic shear wave imaging has previously demonstrated that through technological improvements in ultrasound scanners and power supplies, it is possible to rapidly push at multiple locations prior to tracking displacements, facilitating extended depth of field shear wave sources. Similarly, ARFI imaging can utilize these same radiation force excitations to achieve tight pushing beams with a large depth of field. Finite element method simulations and experimental data are presented demonstrating that single- and rapid multi-focal zone ARFI have comparable image quality (less than 20% loss in contrast), but the multi-focal zone approach has an extended axial region of excitation. Additionally, as compared to single push sequences, the rapid multi-focal zone acquisitions improve the contrast to noise ratio by up to 40% in an example 4 mm diameter lesion. PMID:25643078
ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Charles R.; Anderson, Andrew T.; Barton, Nathan R.
ALE3D is a multi-physics numerical simulation software tool utilizing arbitrary-Lagrangian- Eulerian (ALE) techniques. The code is written to address both two-dimensional (2D plane and axisymmetric) and three-dimensional (3D) physics and engineering problems using a hybrid finite element and finite volume formulation to model fluid and elastic-plastic response of materials on an unstructured grid. As shown in Figure 1, ALE3D is a single code that integrates many physical phenomena.
Coupled NASTRAN/boundary element formulation for acoustic scattering
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Henderson, Francis M.; Schuetz, Luise S.
1987-01-01
A coupled finite element/boundary element capability is described for calculating the sound pressure field scattered by an arbitrary submerged 3-D elastic structure. Structural and fluid impedances are calculated with no approximation other than discretization. The surface fluid pressures and normal velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior field. Far field pressures are then evaluated from the surface solution using the Helmholtz exterior integral equation. The overall approach is illustrated and validated using a known analytic solution for scattering from submerged spherical shells.
The finite element method in low speed aerodynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1975-01-01
The finite element procedure is shown to be of significant impact in design of the 'computational wind tunnel' for low speed aerodynamics. The uniformity of the mathematical differential equation description, for viscous and/or inviscid, multi-dimensional subsonic flows about practical aerodynamic system configurations, is utilized to establish the general form of the finite element algorithm. Numerical results for inviscid flow analysis, as well as viscous boundary layer, parabolic, and full Navier Stokes flow descriptions verify the capabilities and overall versatility of the fundamental algorithm for aerodynamics. The proven mathematical basis, coupled with the distinct user-orientation features of the computer program embodiment, indicate near-term evolution of a highly useful analytical design tool to support computational configuration studies in low speed aerodynamics.
Compatible-strain mixed finite element methods for incompressible nonlinear elasticity
NASA Astrophysics Data System (ADS)
Faghih Shojaei, Mostafa; Yavari, Arash
2018-05-01
We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.
NASA Astrophysics Data System (ADS)
Liu, Ying; Xu, Zhenhuan; Li, Yuguo
2018-04-01
We present a goal-oriented adaptive finite element (FE) modelling algorithm for 3-D magnetotelluric fields in generally anisotropic conductivity media. The model consists of a background layered structure, containing anisotropic blocks. Each block and layer might be anisotropic by assigning to them 3 × 3 conductivity tensors. The second-order partial differential equations are solved using the adaptive finite element method (FEM). The computational domain is subdivided into unstructured tetrahedral elements, which allow for complex geometries including bathymetry and dipping interfaces. The grid refinement process is guided by a global posteriori error estimator and is performed iteratively. The system of linear FE equations for electric field E is solved with a direct solver MUMPS. Then the magnetic field H can be found, in which the required derivatives are computed numerically using cubic spline interpolation. The 3-D FE algorithm has been validated by comparisons with both the 3-D finite-difference solution and 2-D FE results. Two model types are used to demonstrate the effects of anisotropy upon 3-D magnetotelluric responses: horizontal and dipping anisotropy. Finally, a 3D sea hill model is modelled to study the effect of oblique interfaces and the dipping anisotropy.
Chen, Ning; Yu, Dejie; Xia, Baizhan; Liu, Jian; Ma, Zhengdong
2017-04-01
This paper presents a homogenization-based interval analysis method for the prediction of coupled structural-acoustic systems involving periodical composites and multi-scale uncertain-but-bounded parameters. In the structural-acoustic system, the macro plate structure is assumed to be composed of a periodically uniform microstructure. The equivalent macro material properties of the microstructure are computed using the homogenization method. By integrating the first-order Taylor expansion interval analysis method with the homogenization-based finite element method, a homogenization-based interval finite element method (HIFEM) is developed to solve a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters. The corresponding formulations of the HIFEM are deduced. A subinterval technique is also introduced into the HIFEM for higher accuracy. Numerical examples of a hexahedral box and an automobile passenger compartment are given to demonstrate the efficiency of the presented method for a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters.
NASA Astrophysics Data System (ADS)
Fredette, Luke; Singh, Rajendra
2017-02-01
A spectral element approach is proposed to determine the multi-axis dynamic stiffness terms of elastomeric isolators with fractional damping over a broad range of frequencies. The dynamic properties of a class of cylindrical isolators are modeled by using the continuous system theory in terms of homogeneous rods or Timoshenko beams. The transfer matrix type dynamic stiffness expressions are developed from exact harmonic solutions given translational or rotational displacement excitations. Broadband dynamic stiffness magnitudes (say up to 5 kHz) are computationally verified for axial, torsional, shear, flexural, and coupled stiffness terms using a finite element model. Some discrepancies are found between finite element and spectral element models for the axial and flexural motions, illustrating certain limitations of each method. Experimental validation is provided for an isolator with two cylindrical elements (that work primarily in the shear mode) using dynamic measurements, as reported in the prior literature, up to 600 Hz. Superiority of the fractional damping formulation over structural or viscous damping models is illustrated via experimental validation. Finally, the strengths and limitations of the spectral element approach are briefly discussed.
Generalized fourier analyses of the advection-diffusion equation - Part II: two-dimensional domains
NASA Astrophysics Data System (ADS)
Voth, Thomas E.; Martinez, Mario J.; Christon, Mark A.
2004-07-01
Part I of this work presents a detailed multi-methods comparison of the spatial errors associated with the one-dimensional finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. In Part II we extend the analysis to two-dimensional domains and also consider the effects of wave propagation direction and grid aspect ratio on the phase speed, and the discrete and artificial diffusivities. The observed dependence of dispersive and diffusive behaviour on propagation direction makes comparison of methods more difficult relative to the one-dimensional results. For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics are introduced to facilitate comparison among the various methods. With respect to these metrics, the consistent mass Galerkin and consistent mass control-volume finite element methods, and their streamline upwind derivatives, exhibit comparable accuracy, and generally out-perform their lumped mass counterparts and finite-difference based schemes. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework. Published in 2004 by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.
2018-04-01
Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.
Detailed finite element method modeling of evaporating multi-component droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diddens, Christian, E-mail: C.Diddens@tue.nl
The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet.more » Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.« less
NASA Astrophysics Data System (ADS)
Crâştiu, I.; Nyaguly, E.; Deac, S.; Gozman-Pop, C.; Bârgău, A.; Bereteu, L.
2018-01-01
The purpose of this paper is the development and validation of an impulse excitation technique to determine flexural critical speeds of a single rotor shaft and multy-rotor shaft. The experimental measurement of the vibroacoustic response is carried out by using a condenser microphone as a transducer. By the means of Modal Analysis using Finite Element Method (FEM), the natural frequencies and shape modes of one rotor and three rotor specimens are determined. The vibration responses of the specimens, in simple supported conditions, are carried out using algorithms based on Fast Fourier Transform (FFT). To validate the results of the modal parameters estimated using Finite Element Analysis (FEA) these are compared with experimental ones.
Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism.
Liu, Donghuan; Zhang, Jing
2018-01-01
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model.
Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism
Zhang, Jing
2018-01-01
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model. PMID:29547651
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation, deformation of a cantilever bracket, and Boycott effects). The applicability of the method is not limited to flow in porous media, but can also be employed to describe many other physical systems governed by a similar set of equations, including e.g. multi-component materials.
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.
2002-01-01
A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.
Structural Analysis of a Magnetically Actuated Silicon Nitride Micro-Shutter for Space Applications
NASA Technical Reports Server (NTRS)
Loughlin, James P.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Mott, D. Brent; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
Finite element models have been created to simulate the electrostatic and electromagnetic actuation of a 0.5 micrometers silicon nitride micro-shutter for use in a spacebased Multi-object Spectrometer (MOS). The microshutter uses a torsion hinge to go from the closed, 0 degree, position, to the open, 90 degree position. Stresses in the torsion hinge are determined with a large deformation nonlinear finite element model. The simulation results are compared to experimental measurements of fabricated micro-shutter devices.
Lagrangian continuum dynamics in ALEGRA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Michael K. W.; Love, Edward
Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
Application of Finite Element Method in Traffic Injury and Its Prospect in Forensic Science.
Liu, C G; Lu, Y J; Gao, J; Liu, Q
2016-06-01
The finite element method (FEM) is a numerical computation method based on computer technology, and has been gradually applied in the fields of medicine and biomechanics. The finite element analysis can be used to explore the loading process and injury mechanism of human body in traffic injury. FEM is also helpful for the forensic investigation in traffic injury. This paper reviews the development of the finite element models and analysis of brain, cervical spine, chest and abdomen, pelvis, limbs at home and aboard in traffic injury in recent years. Copyright© by the Editorial Department of Journal of Forensic Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.
In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct linkmore » between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.« less
NASA Astrophysics Data System (ADS)
Sahai, A.; Mansour, N. N.; Lopez, B.; Panesi, M.
2017-05-01
This work addresses the modeling of high pressure electric discharge in an arc-heated wind tunnel. The combined numerical solution of Poisson’s equation, radiative transfer equations, and the set of Favre-averaged thermochemical nonequilibrium Navier-Stokes equations allows for the determination of the electric, radiation, and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles with the Chapman-Enskog method. A multi-temperature formulation is used to account for thermal non-equilibrium. Finally, the turbulence closure of the flow equations is obtained by means of the Spalart-Allmaras model, which requires the solution of an additional scalar transport equation. A Streamline upwind Petrov-Galerkin stabilized finite element formulation is employed to solve the Navier-Stokes equation. The electric field equation is solved using the standard Galerkin formulation. A stable formulation for the radiative transfer equations is obtained using the least-squares finite element method. The developed simulation framework has been applied to investigate turbulent plasma flows in the 20 MW Aerodynamic Heating Facility at NASA Ames Research Center. The current model is able to predict the process of energy addition and re-distribution due to Joule heating and thermal radiation, resulting in a hot central core surrounded by colder flow. The use of an unsteady three-dimensional treatment also allows the asymmetry due to a dynamic electric arc attachment point in the cathode chamber to be captured accurately. The current work paves the way for detailed estimation of operating characteristics for arc-heated wind tunnels which are critical in testing thermal protection systems.
Adaptive Mesh Refinement for Microelectronic Device Design
NASA Technical Reports Server (NTRS)
Cwik, Tom; Lou, John; Norton, Charles
1999-01-01
Finite element and finite volume methods are used in a variety of design simulations when it is necessary to compute fields throughout regions that contain varying materials or geometry. Convergence of the simulation can be assessed by uniformly increasing the mesh density until an observable quantity stabilizes. Depending on the electrical size of the problem, uniform refinement of the mesh may be computationally infeasible due to memory limitations. Similarly, depending on the geometric complexity of the object being modeled, uniform refinement can be inefficient since regions that do not need refinement add to the computational expense. In either case, convergence to the correct (measured) solution is not guaranteed. Adaptive mesh refinement methods attempt to selectively refine the region of the mesh that is estimated to contain proportionally higher solution errors. The refinement may be obtained by decreasing the element size (h-refinement), by increasing the order of the element (p-refinement) or by a combination of the two (h-p refinement). A successful adaptive strategy refines the mesh to produce an accurate solution measured against the correct fields without undue computational expense. This is accomplished by the use of a) reliable a posteriori error estimates, b) hierarchal elements, and c) automatic adaptive mesh generation. Adaptive methods are also useful when problems with multi-scale field variations are encountered. These occur in active electronic devices that have thin doped layers and also when mixed physics is used in the calculation. The mesh needs to be fine at and near the thin layer to capture rapid field or charge variations, but can coarsen away from these layers where field variations smoothen and charge densities are uniform. This poster will present an adaptive mesh refinement package that runs on parallel computers and is applied to specific microelectronic device simulations. Passive sensors that operate in the infrared portion of the spectrum as well as active device simulations that model charge transport and Maxwell's equations will be presented.
NASA Technical Reports Server (NTRS)
Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.
1996-01-01
The Integrated Force Method has been developed in recent years for the analysis of structural mechanics problems. This method treats all independent internal forces as unknown variables that can be calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper a finite element library for analyzing two-dimensional problems by the Integrated Force Method is presented. Triangular- and quadrilateral-shaped elements capable of modeling arbitrary domain configurations are presented. The element equilibrium and flexibility matrices are derived by discretizing the expressions for potential and complementary energies, respectively. The displacement and stress fields within the finite elements are independently approximated. The displacement field is interpolated as it is in the standard displacement method, and the stress field is approximated by using complete polynomials of the correct order. A procedure that uses the definitions of stress components in terms of an Airy stress function is developed to derive the stress interpolation polynomials. Such derived stress fields identically satisfy the equations of equilibrium. Moreover, the resulting element matrices are insensitive to the orientation of local coordinate systems. A method is devised to calculate the number of rigid body modes, and the present elements are shown to be free of spurious zero-energy modes. A number of example problems are solved by using the present library, and the results are compared with corresponding analytical solutions and with results from the standard displacement finite element method. The Integrated Force Method not only gives results that agree well with analytical and displacement method results but also outperforms the displacement method in stress calculations.
NASA Technical Reports Server (NTRS)
Cwik, Tom; Zuffada, Cinzia; Jamnejad, Vahraz
1996-01-01
Finite element modeling has proven useful for accurtely simulating scattered or radiated fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of a wavelength.
Cho, Yi-Gil; Kim, Jin-You; Cho, Hoon-Hwe; Cha, Pil-Ryung; Suh, Dong-Woo; Lee, Jae Kon; Han, Heung Nam
2012-01-01
An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation. PMID:22558295
Convergence rates for finite element problems with singularities. Part 1: Antiplane shear. [crack
NASA Technical Reports Server (NTRS)
Plunkett, R.
1980-01-01
The problem of a finite crack in an infinite medium under antiplane shear load is considered. It is shown that the nodal forces at the tip of the crack accurately gives the order of singularity, that n energy release methods can give the strength to better than 1 percent with element size 1/10 the crack length, and that nodal forces give a much better estimate of the stress field than do the elements themselves. The finite element formulation and the factoring of tridiagonal matrices are discussed.
Newmark local time stepping on high-performance computing architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch; Institute of Geophysics, ETH Zurich; Grote, Marcus, E-mail: marcus.grote@unibas.ch
In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strongmore » element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.« less
NASA Astrophysics Data System (ADS)
Qin, Shanlin; Liu, Fawang; Turner, Ian W.
2018-03-01
The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.
Multi-cathode unbalanced magnetron sputtering systems
NASA Technical Reports Server (NTRS)
Sproul, William D.
1991-01-01
Ion bombardment of a growing film during deposition is necessary in many instances to ensure a fully dense coating, particularly for hard coatings. Until the recent advent of unbalanced magnetron (UBM) cathodes, reactive sputtering had not been able to achieve the same degree of ion bombardment as other physical vapor deposition processes. The amount of ion bombardment of the substrate depends on the plasma density at the substrate, and in a UBM system the amount of bombardment will depend on the degree of unbalance of the cathode. In multi-cathode systems, the magnetic fields between the cathodes must be linked to confine the fast electrons that collide with the gas atoms. Any break in this linkage results in electrons being lost and a low plasma density. Modeling of the magnetic fields in a UBM cathode using a finite element analysis program has provided great insight into the interaction between the magnetic fields in multi-cathode systems. Large multi-cathode systems will require very strong magnets or many cathodes in order to maintain the magnetic field strength needed to achieve a high plasma density. Electromagnets offer the possibility of independent control of the plasma density. Such a system would be a large-scale version of an ion beam enhanced deposition (IBED) system, but, for the UBM system where the plasma would completely surround the substrate, the acronym IBED might now stand for Ion Blanket Enhanced Deposition.
Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members.
Ann, Ki Yong; Cho, Chang-Geun
2013-09-10
The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test.
NASA Astrophysics Data System (ADS)
Martins, J. M. P.; Thuillier, S.; Andrade-Campos, A.
2018-05-01
The identification of material parameters, for a given constitutive model, can be seen as the first step before any practical application. In the last years, the field of material parameters identification received an important boost with the development of full-field measurement techniques, such as Digital Image Correlation. These techniques enable the use of heterogeneous displacement/strain fields, which contain more information than the classical homogeneous tests. Consequently, different techniques have been developed to extract material parameters from full-field measurements. In this study, two of these techniques are addressed, the Finite Element Model Updating (FEMU) and the Virtual Fields Method (VFM). The main idea behind FEMU is to update the parameters of a constitutive model implemented in a finite element model until both numerical and experimental results match, whereas VFM makes use of the Principle of Virtual Work and does not require any finite element simulation. Though both techniques proved their feasibility in linear and non-linear constitutive models, it is rather difficult to rank their robustness in plasticity. The purpose of this work is to perform a comparative study in the case of elasto-plastic models. Details concerning the implementation of each strategy are presented. Moreover, a dedicated code for VFM within a large strain framework is developed. The reconstruction of the stress field is performed through a user subroutine. A heterogeneous tensile test is considered to compare FEMU and VFM strategies.
Global-Local Finite Element Analysis for Thermo-Mechanical Stresses in Bonded Joints
NASA Technical Reports Server (NTRS)
Shkarayev, S.; Madenci, Erdogan; Camarda, C. J.
1997-01-01
An analysis of adhesively bonded joints using conventional finite elements does not capture the singular behavior of the stress field in regions where two or three dissimilar materials form a junction with or without free edges. However, these regions are characteristic of the bonded joints and are prone to failure initiation. This study presents a method to capture the singular stress field arising from the geometric and material discontinuities in bonded composites. It is achieved by coupling the local (conventional) elements with global (special) elements whose interpolation functions are constructed from the asymptotic solution.
Computation of noise radiation from turbofans: A parametric study
NASA Technical Reports Server (NTRS)
Nallasamy, M.
1995-01-01
This report presents the results of a parametric study of the turbofan far-field noise radiation using a finite element technique. Several turbofan noise radiation characteristics of both the inlet and the aft ducts have been examined through the finite element solutions. The predicted far-field principal lobe angle variations with duct Mach number and cut-off ratio compare very well with the available analytical results. The solutions also show that the far-field lobe angle is only a function of cut-off ratio, and nearly independent of the mode number. These results indicate that the finite element codes are well suited for the prediction of noise radiation characteristics of a turbofan. The effects of variations in the aft duct geometry are examined. The ability of the codes to handle ducts with acoustic treatments is also demonstrated.
NASA Astrophysics Data System (ADS)
Nguyen, Thi-Thuy-My; Gandin, Charles-André; Combeau, Hervé; Založnik, Miha; Bellet, Michel
2018-02-01
The transport of solid crystals in the liquid pool during solidification of large ingots is known to have a significant effect on their final grain structure and macrosegregation. Numerical modeling of the associated physics is challenging since complex and strong interactions between heat and mass transfer at the microscopic and macroscopic scales must be taken into account. The paper presents a finite element multi-scale solidification model coupling nucleation, growth, and solute diffusion at the microscopic scale, represented by a single unique grain, while also including transport of the liquid and solid phases at the macroscopic scale of the ingots. The numerical resolution is based on a splitting method which sequentially describes the evolution and interaction of quantities into a transport and a growth stage. This splitting method reduces the non-linear complexity of the set of equations and is, for the first time, implemented using the finite element method. This is possible due to the introduction of an artificial diffusion in all conservation equations solved by the finite element method. Simulations with and without grain transport are compared to demonstrate the impact of solid phase transport on the solidification process as well as the formation of macrosegregation in a binary alloy (Sn-5 wt pct Pb). The model is also applied to the solidification of the binary alloy Fe-0.36 wt pct C in a domain representative of a 3.3-ton steel ingot.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.; Watson, Brian C.
1992-02-01
The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80
NASA Technical Reports Server (NTRS)
Kamat, Manohar P.; Watson, Brian C.
1992-01-01
The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.
A mixed parallel strategy for the solution of coupled multi-scale problems at finite strains
NASA Astrophysics Data System (ADS)
Lopes, I. A. Rodrigues; Pires, F. M. Andrade; Reis, F. J. P.
2018-02-01
A mixed parallel strategy for the solution of homogenization-based multi-scale constitutive problems undergoing finite strains is proposed. The approach aims to reduce the computational time and memory requirements of non-linear coupled simulations that use finite element discretization at both scales (FE^2). In the first level of the algorithm, a non-conforming domain decomposition technique, based on the FETI method combined with a mortar discretization at the interface of macroscopic subdomains, is employed. A master-slave scheme, which distributes tasks by macroscopic element and adopts dynamic scheduling, is then used for each macroscopic subdomain composing the second level of the algorithm. This strategy allows the parallelization of FE^2 simulations in computers with either shared memory or distributed memory architectures. The proposed strategy preserves the quadratic rates of asymptotic convergence that characterize the Newton-Raphson scheme. Several examples are presented to demonstrate the robustness and efficiency of the proposed parallel strategy.
Chan, Eugene; Rose, L R Francis; Wang, Chun H
2015-05-01
Existing damage imaging algorithms for detecting and quantifying structural defects, particularly those based on diffraction tomography, assume far-field conditions for the scattered field data. This paper presents a major extension of diffraction tomography that can overcome this limitation and utilises a near-field multi-static data matrix as the input data. This new algorithm, which employs numerical solutions of the dynamic Green's functions, makes it possible to quantitatively image laminar damage even in complex structures for which the dynamic Green's functions are not available analytically. To validate this new method, the numerical Green's functions and the multi-static data matrix for laminar damage in flat and stiffened isotropic plates are first determined using finite element models. Next, these results are time-gated to remove boundary reflections, followed by discrete Fourier transform to obtain the amplitude and phase information for both the baseline (damage-free) and the scattered wave fields. Using these computationally generated results and experimental verification, it is shown that the new imaging algorithm is capable of accurately determining the damage geometry, size and severity for a variety of damage sizes and shapes, including multi-site damage. Some aspects of minimal sensors requirement pertinent to image quality and practical implementation are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Astrophysics Data System (ADS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-08-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1987-01-01
Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
GEMPIC: geometric electromagnetic particle-in-cell methods
NASA Astrophysics Data System (ADS)
Kraus, Michael; Kormann, Katharina; Morrison, Philip J.; Sonnendrücker, Eric
2017-08-01
We present a novel framework for finite element particle-in-cell methods based on the discretization of the underlying Hamiltonian structure of the Vlasov-Maxwell system. We derive a semi-discrete Poisson bracket, which retains the defining properties of a bracket, anti-symmetry and the Jacobi identity, as well as conservation of its Casimir invariants, implying that the semi-discrete system is still a Hamiltonian system. In order to obtain a fully discrete Poisson integrator, the semi-discrete bracket is used in conjunction with Hamiltonian splitting methods for integration in time. Techniques from finite element exterior calculus ensure conservation of the divergence of the magnetic field and Gauss' law as well as stability of the field solver. The resulting methods are gauge invariant, feature exact charge conservation and show excellent long-time energy and momentum behaviour. Due to the generality of our framework, these conservation properties are guaranteed independently of a particular choice of the finite element basis, as long as the corresponding finite element spaces satisfy certain compatibility conditions.
Load Diffusion in Composite and Smart Structures
NASA Technical Reports Server (NTRS)
Horgan, C. O.
2003-01-01
The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies. Special purpose analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and in assessing results from general purpose finite element analyses. For example, a rational basis is needed in choosing where to use three-dimensional to two-dimensional transition finite elements in analyzing stiffened plates and shells. The decay behavior of stresses and other field quantities furnished by this research provides a significant aid towards this element transition issue. A priori knowledge of the extent of boundary-layers induced by edge effects is also useful in determination of the instrumentation location in structural verification tests or in material characterization tests.
Research on burnout fault of moulded case circuit breaker based on finite element simulation
NASA Astrophysics Data System (ADS)
Xue, Yang; Chang, Shuai; Zhang, Penghe; Xu, Yinghui; Peng, Chuning; Shi, Erwei
2017-09-01
In the failure event of molded case circuit breaker, overheating of the molded case near the wiring terminal has a very important proportion. The burnout fault has become an important factor restricting the development of molded case circuit breaker. This paper uses the finite element simulation software to establish the model of molded case circuit breaker by coupling multi-physics field. This model can simulate the operation and study the law of the temperature distribution. The simulation results show that the temperature near the wiring terminal, especially the incoming side of the live wire, of the molded case circuit breaker is much higher than that of the other areas. The steady-state and transient simulation results show that the temperature at the wiring terminals is abnormally increased by increasing the contact resistance of the wiring terminals. This is consistent with the frequent occurrence of burnout of the molded case in this area. Therefore, this paper holds that the burnout failure of the molded case circuit breaker is mainly caused by the abnormal increase of the contact resistance of the wiring terminal.
Finite element modeling of sound transmission with perforations of tympanic membrane
Gan, Rong Z.; Cheng, Tao; Dai, Chenkai; Yang, Fan; Wood, Mark W.
2009-01-01
A three-dimensional finite element (FE) model of human ear with structures of the external ear canal, middle ear, and cochlea has been developed recently. In this paper, the FE model was used to predict the effect of tympanic membrane (TM) perforations on sound transmission through the middle ear. Two perforations were made in the posterior-inferior quadrant and inferior site of the TM in the model with areas of 1.33 and 0.82 mm2, respectively. These perforations were also created in human temporal bones with the same size and location. The vibrations of the TM (umbo) and stapes footplate were calculated from the model and measured from the temporal bones using laser Doppler vibrometers. The sound pressure in the middle ear cavity was derived from the model and measured from the bones. The results demonstrate that the TM perforations can be simulated in the FE model with geometrical visualization. The FE model provides reasonable predictions on effects of perforation size and location on middle ear transfer function. The middle ear structure-function relationship can be revealed with multi-field coupled FE analysis. PMID:19603881
A novel finite element analysis of three-dimensional circular crack
NASA Astrophysics Data System (ADS)
Ping, X. C.; Wang, C. G.; Cheng, L. P.
2018-06-01
A novel singular element containing a part of the circular crack front is established to solve the singular stress fields of circular cracks by using the numerical series eigensolutions of singular stress fields. The element is derived from the Hellinger-Reissner variational principle and can be directly incorporated into existing 3D brick elements. The singular stress fields are determined as the system unknowns appearing as displacement nodal values. The numerical studies are conducted to demonstrate the simplicity of the proposed technique in handling fracture problems of circular cracks. The usage of the novel singular element can avoid mesh refinement near the crack front domain without loss of calculation accuracy and velocity of convergence. Compared with the conventional finite element methods and existing analytical methods, the present method is more suitable for dealing with complicated structures with a large number of elements.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Curiel-Sosa, Jose L.; Bui, Tinh Quoc
2018-04-01
In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.
NASA Technical Reports Server (NTRS)
Carlson, F. M.; Chin, L.-Y.; Fripp, A. L.; Crouch, R. K.
1982-01-01
The effect of solid-liquid interface shape on lateral solute segregation during steady-state unidirectional solidification of a binary mixture is calculated under the assumption of no convection in the liquid. A finite element technique is employed to compute the concentration field in the liquid and the lateral segregation in the solid with a curved boundary between the liquid and solid phases. The computational model is constructed assuming knowledge of the solid-liquid interface shape; no attempt is made to relate this shape to the thermal field. The influence of interface curvature on the lateral compositional variation is investigated over a range of system parameters including diffusivity, growth speed, distribution coefficient, and geometric factors of the system. In the limiting case of a slightly nonplanar interface, numerical results from the finite element technique are in good agreement with the analytical solutions of Coriell and Sekerka obtained by using linear theory. For the general case of highly non-planar interface shapes, the linear theory fails and the concentration field in the liquid as well as the lateral solute segregation in the solid can be calculated by using the finite element method.
The use of Galerkin finite-element methods to solve mass-transport equations
Grove, David B.
1977-01-01
The partial differential equation that describes the transport and reaction of chemical solutes in porous media was solved using the Galerkin finite-element technique. These finite elements were superimposed over finite-difference cells used to solve the flow equation. Both convection and flow due to hydraulic dispersion were considered. Linear and Hermite cubic approximations (basis functions) provided satisfactory results: however, the linear functions were computationally more efficient for two-dimensional problems. Successive over relaxation (SOR) and iteration techniques using Tchebyschef polynomials were used to solve the sparce matrices generated using the linear and Hermite cubic functions, respectively. Comparisons of the finite-element methods to the finite-difference methods, and to analytical results, indicated that a high degree of accuracy may be obtained using the method outlined. The technique was applied to a field problem involving an aquifer contaminated with chloride, tritium, and strontium-90. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Pan, Yanqiao; Huang, YongAn; Guo, Lei; Ding, Yajiang; Yin, Zhouping
2015-04-01
It is critical and challenging to achieve the individual jetting ability and high consistency in multi-nozzle electrohydrodynamic jet printing (E-jet printing). We proposed multi-level voltage method (MVM) to implement the addressable E-jet printing using multiple parallel nozzles with high consistency. The fabricated multi-nozzle printhead for MVM consists of three parts: PMMA holder, stainless steel capillaries (27G, outer diameter 400 μm) and FR-4 extractor layer. The key of MVM is to control the maximum meniscus electric field on each nozzle. The individual jetting control can be implemented when the rings under the jetting nozzles are 0 kV and the other rings are 0.5 kV. The onset electric field for each nozzle is ˜3.4 kV/mm by numerical simulation. Furthermore, a series of printing experiments are performed to show the advantage of MVM in printing consistency than the "one-voltage method" and "improved E-jet method", by combination with finite element analyses. The good dimension consistency (274μm, 276μm, 280μm) and position consistency of the droplet array on the hydrophobic Si substrate verified the enhancements. It shows that MVM is an effective technique to implement the addressable E-jet printing with multiple parallel nozzles in high consistency.
NASA Astrophysics Data System (ADS)
Hano, Mitsuo; Hotta, Masashi
A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barham, M; White, D; Steigmann, D
2009-04-08
Recently a new class of biocompatible elastic polymers loaded with small ferrous particles (magnetoelastomer) was developed at Lawrence Livermore National Laboratory. This new material was formed as a thin film using spin casting. The deformation of this material using a magnetic field has many possible applications to microfluidics. Two methods will be used to calculate the deformation of a circular magneto-elastomeric film subjected to a magnetic field. The first method is an arbitrary Lagrangian-Eulerian (ALE) finite element method (FEM) and the second is based on nonlinear continuum electromagnetism and continuum elasticity in the membrane limit. The comparison of these twomore » methods is used to test/validate the finite element method.« less
Development of new vibration energy flow analysis software and its applications to vehicle systems
NASA Astrophysics Data System (ADS)
Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.
2005-09-01
The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.
NASA Astrophysics Data System (ADS)
Guo, L.; Yin, Y.; Deng, M.; Guo, L.; Yan, J.
2017-12-01
At present, most magnetotelluric (MT) forward modelling and inversion codes are based on finite difference method. But its structured mesh gridding cannot be well adapted for the conditions with arbitrary topography or complex tectonic structures. By contrast, the finite element method is more accurate in calculating complex and irregular 3-D region and has lower requirement of function smoothness. However, the complexity of mesh gridding and limitation of computer capacity has been affecting its application. COMSOL Multiphysics is a cross-platform finite element analysis, solver and multiphysics full-coupling simulation software. It achieves highly accurate numerical simulations with high computational performance and outstanding multi-field bi-directional coupling analysis capability. In addition, its AC/DC and RF module can be used to easily calculate the electromagnetic responses of complex geological structures. Using the adaptive unstructured grid, the calculation is much faster. In order to improve the discretization technique of computing area, we use the combination of Matlab and COMSOL Multiphysics to establish a general procedure for calculating the MT responses for arbitrary resistivity models. The calculated responses include the surface electric and magnetic field components, impedance components, magnetic transfer functions and phase tensors. Then, the reliability of this procedure is certificated by 1-D, 2-D and 3-D and anisotropic forward modeling tests. Finally, we establish the 3-D lithospheric resistivity model for the Proterozoic Wutai-Hengshan Mts. within the North China Craton by fitting the real MT data collected there. The reliability of the model is also verified by induced vectors and phase tensors. Our model shows more details and better resolution, compared with the previously published 3-D model based on the finite difference method. In conclusion, COMSOL Multiphysics package is suitable for modeling the 3-D lithospheric resistivity structures under complex tectonic deformation backgrounds, which could be a good complement to the existing finite-difference inversion algorithms.
Deformation of two-phase aggregates using standard numerical methods
NASA Astrophysics Data System (ADS)
Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.
2013-04-01
Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.
Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm
NASA Astrophysics Data System (ADS)
Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun
2017-10-01
A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.
Sairyo, Koichi; Sakai, Toshinori; Yasui, Natsuo; Kiapour, Ali; Biyani, Ashok; Ebraheim, Nabil; Goel, Vijay K
2009-10-01
Case series and a biomechanical study using a finite element (FE) analysis. To report three cases with multi-level spondylolysis and to understand the mechanism biomechanically. Multi-level spondylolysis is a very rare condition. There have been few reports in the literature on multi-level spondylolysis among sports players. We reviewed three cases of the condition, clinically. These patients were very active young sports players and had newly developed fresh L4 spondylolysis and pre-existing L5 terminal stage spondylolysis. Thus, we assumed that L5 spondylolysis may have increased the pars stress at the cranial adjacent levels, leading to newly developed spondylolysis at these levels. Biomechanically, we investigated pars stress at L4 with or without spondylolysis at L5 using the finite element technique. L4 pars stress decreased in the presence of L5 spondylolysis, which does not support our first hypothesis. It seems that multi-level spondylolysis may occur due to genetic and not biomechanical reasons.
NASA Astrophysics Data System (ADS)
Herrington, A. R.; Lauritzen, P. H.; Reed, K. A.
2017-12-01
The spectral element dynamical core of the Community Atmosphere Model (CAM) has recently been coupled to an approximately isotropic, finite-volume grid per implementation of the conservative semi-Lagrangian multi-tracer transport scheme (CAM-SE-CSLAM; Lauritzen et al. 2017). In this framework, the semi-Lagrangian transport of tracers are computed on the finite-volume grid, while the adiabatic dynamics are solved using the spectral element grid. The physical parameterizations are evaluated on the finite-volume grid, as opposed to the unevenly spaced Gauss-Lobatto-Legendre nodes of the spectral element grid. Computing the physics on the finite-volume grid reduces numerical artifacts such as grid imprinting, possibly because the forcing terms are no longer computed at element boundaries where the resolved dynamics are least smooth. The separation of the physics grid and the dynamics grid allows for a unique opportunity to understand the resolution sensitivity in CAM-SE-CSLAM. The observed large sensitivity of CAM to horizontal resolution is a poorly understood impediment to improved simulations of regional climate using global, variable resolution grids. Here, a series of idealized moist simulations are presented in which the finite-volume grid resolution is varied relative to the spectral element grid resolution in CAM-SE-CSLAM. The simulations are carried out at multiple spectral element grid resolutions, in part to provide a companion set of simulations, in which the spectral element grid resolution is varied relative to the finite-volume grid resolution, but more generally to understand if the sensitivity to the finite-volume grid resolution is consistent across a wider spectrum of resolved scales. Results are interpreted in the context of prior ideas regarding resolution sensitivity of global atmospheric models.
Mathematical Aspects of Finite Element Methods for Incompressible Viscous Flows.
1986-09-01
respectively. Here h is a parameter which is usually related to the size of the grid associated with the finite element partitioning of Q. Then one... grid and of not at least performing serious mesh refinement studies. It also points out the usefulness of rigorous results concerning the stability...overconstrained the .1% approximate velocity field. However, by employing different grids for the ’z pressure and velocity fields, the linear-constant
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.
1990-01-01
A numerical technique is proposed for the electromagnetic characterization of the scattering by a three-dimensional cavity-backed aperture in an infinite ground plane. The technique combines the finite element and boundary integral methods to formulate a system of equations for the solution of the aperture fields and those inside the cavity. Specifically, the finite element method is employed to formulate the fields in the cavity region and the boundary integral approach is used in conjunction with the equivalence principle to represent the fields above the ground plane. Unlike traditional approaches, the proposed technique does not require knowledge of the cavity's Green's function and is, therefore, applicable to arbitrary shape depressions and material fillings. Furthermore, the proposed formulation leads to a system having a partly full and partly sparse as well as symmetric and banded matrix which can be solved efficiently using special algorithms.
NASA Technical Reports Server (NTRS)
Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.
2012-01-01
Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.
2.5D Finite/infinite Element Approach for Simulating Train-Induced Ground Vibrations
NASA Astrophysics Data System (ADS)
Yang, Y. B.; Hung, H. H.; Kao, J. C.
2010-05-01
The 2.5D finite/infinite element approach for simulating the ground vibrations by surface or underground moving trains will be briefly summarized in this paper. By assuming the soils to be uniform along the direction of the railway, only a two-dimensional profile of the soil perpendicular to the railway need be considered in the modeling. Besides the two in-plane degrees of freedom (DOFs) per node conventionally used for plane strain elements, an extra DOF is introduced to account for the out-of-plane wave transmission. The profile of the half-space is divided into a near field and a semi-infinite far field. The near field containing the train loads and irregular structures is simulated by the finite elements, while the far field covering the soils with infinite boundary by the infinite elements, by which due account is taken of the radiation effects for the moving loads. Enhanced by the automated mesh expansion procedure proposed previously by the writers, the far field impedances for all the lower frequencies are generated repetitively from the mesh created for the highest frequency considered. Finally, incorporated with a proposed load generation mechanism that takes the rail irregularity and dynamic properties of trains into account, an illustrative case study was performed. This paper investigates the vibration isolation effect of the elastic foundation that separates the concrete slab track from the underlying soil or tunnel structure. In addition, the advantage of the 2.5D approach was clearly demonstrated in that the three-dimensional wave propagation effect can be virtually captured using a two-dimensional finite/infinite element mesh. Compared with the conventional 3D approach, the present approach appears to be simple, efficient and generally accurate.
Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members
Ann, Ki Yong; Cho, Chang-Geun
2013-01-01
The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test. PMID:28788312
NASA Astrophysics Data System (ADS)
Papagiannis, P.; Azariadis, P.; Papanikos, P.
2017-10-01
Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.
Large Angle Transient Dynamics (LATDYN) user's manual
NASA Technical Reports Server (NTRS)
Abrahamson, A. Louis; Chang, Che-Wei; Powell, Michael G.; Wu, Shih-Chin; Bingel, Bradford D.; Theophilos, Paula M.
1991-01-01
A computer code for modeling the large angle transient dynamics (LATDYN) of structures was developed to investigate techniques for analyzing flexible deformation and control/structure interaction problems associated with large angular motions of spacecraft. This type of analysis is beyond the routine capability of conventional analytical tools without simplifying assumptions. In some instances, the motion may be sufficiently slow and the spacecraft (or component) sufficiently rigid to simplify analyses of dynamics and controls by making pseudo-static and/or rigid body assumptions. The LATDYN introduces a new approach to the problem by combining finite element structural analysis, multi-body dynamics, and control system analysis in a single tool. It includes a type of finite element that can deform and rotate through large angles at the same time, and which can be connected to other finite elements either rigidly or through mechanical joints. The LATDYN also provides symbolic capabilities for modeling control systems which are interfaced directly with the finite element structural model. Thus, the nonlinear equations representing the structural model are integrated along with the equations representing sensors, processing, and controls as a coupled system.
Deformation analysis of rotary combustion engine housings
NASA Technical Reports Server (NTRS)
Vilmann, Carl
1991-01-01
This analysis of the deformation of rotary combustion engine housings targeted the following objectives: (1) the development and verification of a finite element model of the trochoid housing, (2) the prediction of the stress and deformation fields present within the trochoid housing during operating conditions, and (3) the development of a specialized preprocessor which would shorten the time necessary for mesh generation of a trochoid housing's FEM model from roughly one month to approximately two man hours. Executable finite element models were developed for both the Mazda and the Outboard Marine Corporation trochoid housings. It was also demonstrated that a preprocessor which would hasten the generation of finite element models of a rotary engine was possible to develop. The above objectives are treated in detail in the attached appendices. The first deals with finite element modeling of a Wankel engine center housing, and the second with the development of a preprocessor that generates finite element models of rotary combustion engine center housings. A computer program, designed to generate finite element models of user defined rotary combustion engine center housing geometries, is also included.
NASA Astrophysics Data System (ADS)
Chen, M.; Wei, S.
2016-12-01
The serious damage of Mexico City caused by the 1985 Michoacan earthquake 400 km away indicates that urban areas may be affected by remote earthquakes. To asses earthquake risk of urban areas imposed by distant earthquakes, we developed a hybrid Frequency Wavenumber (FK) and Finite Difference (FD) code implemented with MPI, since the computation of seismic wave propagation from a distant earthquake using a single numerical method (e.g. Finite Difference, Finite Element or Spectral Element) is very expensive. In our approach, we compute the incident wave field (ud) at the boundaries of the excitation box, which surrounding the local structure, using a paralleled FK method (Zhu and Rivera, 2002), and compute the total wave field (u) within the excitation box using a parallelled 2D FD method. We apply perfectly matched layer (PML) absorbing condition to the diffracted wave field (u-ud). Compared to previous Generalized Ray Theory and Finite Difference (Wen and Helmberger, 1998), Frequency Wavenumber and Spectral Element (Tong et al., 2014), and Direct Solution Method and Spectral Element hybrid method (Monteiller et al., 2013), our absorbing boundary condition dramatically suppress the numerical noise. The MPI implementation of our method can greatly speed up the calculation. Besides, our hybrid method also has a potential use in high resolution array imaging similar to Tong et al. (2014).
NASA Technical Reports Server (NTRS)
Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.
2014-01-01
A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.
Finite Element Analysis of Reverberation Chambers
NASA Technical Reports Server (NTRS)
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
Simulation of one-sided heating of boiler unit membrane-type water walls
NASA Astrophysics Data System (ADS)
Kurepin, M. P.; Serbinovskiy, M. Yu.
2017-03-01
This study describes the results of simulation of the temperature field and the stress-strain state of membrane-type gastight water walls of boiler units using the finite element method. The methods of analytical and standard calculation of one-sided heating of fin-tube water walls by a radiative heat flux are analyzed. The methods and software for input data calculation in the finite-element simulation, including thermoelastic moments in welded panels that result from their one-sided heating, are proposed. The method and software modules are used for water wall simulation using ANSYS. The results of simulation of the temperature field, stress field, deformations and displacement of the membrane-type panel for the boiler furnace water wall using the finite-element method, as well as the results of calculation of the panel tube temperature, stresses and deformations using the known methods, are presented. The comparison of the known experimental results on heating and bending by given moments of membrane-type water walls and numerical simulations is performed. It is demonstrated that numerical results agree with high accuracy with the experimental data. The relative temperature difference does not exceed 1%. The relative difference of the experimental fin mutual turning angle caused by one-sided heating by radiative heat flux and the results obtained in the finite element simulation does not exceed 8.5% for nondisplaced fins and 7% for fins with displacement. The same difference for the theoretical results and the simulation using the finite-element method does not exceed 3% and 7.1%, respectively. The proposed method and software modules for simulation of the temperature field and stress-strain state of the water walls are verified and the feasibility of their application in practical design is proven.
NASA Astrophysics Data System (ADS)
Wang, Meihua; Li, Rongshuai; Zhang, Wenze
2017-11-01
Multi-function construction platforms (MCPs) as an “old construction technology, new application” of the building facade construction equipment, its efforts to reduce labour intensity, improve labour productivity, ensure construction safety, shorten the duration of construction and other aspects of the effect are significant. In this study, the functional analysis of the multi-function construction platforms is carried out in the construction of the assembly building. Based on the general finite element software ANSYS, the static calculation and dynamic characteristics analysis of the MCPs structure are analysed, the simplified finite element model is constructed, and the selection of the unit, the processing and solution of boundary are under discussion and research. The maximum deformation value, the maximum stress value and the structural dynamic characteristic model are obtained. The dangerous parts of the platform structure are analysed, too. Multiple types of MCPs under engineering construction conditions are calculated, so as to put forward the rationalization suggestions for engineering application of the MCPs.
Nonlinear crack analysis with finite elements
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Saleme, E.; Pifko, A.; Levine, H. S.
1973-01-01
The application of finite element techniques to the analytic representation of the nonlinear behavior of arbitrary two-dimensional bodies containing cracks is discussed. Specific methods are proposed using which it should be possible to obtain information concerning: the description of the maximum, minimum, and residual near-tip stress and strain fields; the effects of crack closure on the near-tip behavior of stress and strain fields during cyclic loading into the plastic range; the stress-strain and displacement field behavior associated with a nonstationary crack; and the effects of large rotation near the crack tip.
NASA Astrophysics Data System (ADS)
Li, Gen; Tang, Chun-An; Liang, Zheng-Zhao
2017-01-01
Multi-scale high-resolution modeling of rock failure process is a powerful means in modern rock mechanics studies to reveal the complex failure mechanism and to evaluate engineering risks. However, multi-scale continuous modeling of rock, from deformation, damage to failure, has raised high requirements on the design, implementation scheme and computation capacity of the numerical software system. This study is aimed at developing the parallel finite element procedure, a parallel rock failure process analysis (RFPA) simulator that is capable of modeling the whole trans-scale failure process of rock. Based on the statistical meso-damage mechanical method, the RFPA simulator is able to construct heterogeneous rock models with multiple mechanical properties, deal with and represent the trans-scale propagation of cracks, in which the stress and strain fields are solved for the damage evolution analysis of representative volume element by the parallel finite element method (FEM) solver. This paper describes the theoretical basis of the approach and provides the details of the parallel implementation on a Windows - Linux interactive platform. A numerical model is built to test the parallel performance of FEM solver. Numerical simulations are then carried out on a laboratory-scale uniaxial compression test, and field-scale net fracture spacing and engineering-scale rock slope examples, respectively. The simulation results indicate that relatively high speedup and computation efficiency can be achieved by the parallel FEM solver with a reasonable boot process. In laboratory-scale simulation, the well-known physical phenomena, such as the macroscopic fracture pattern and stress-strain responses, can be reproduced. In field-scale simulation, the formation process of net fracture spacing from initiation, propagation to saturation can be revealed completely. In engineering-scale simulation, the whole progressive failure process of the rock slope can be well modeled. It is shown that the parallel FE simulator developed in this study is an efficient tool for modeling the whole trans-scale failure process of rock from meso- to engineering-scale.
Electric Field Distribution in High Voltage Power Modules Using Finite Element Simulations
NASA Astrophysics Data System (ADS)
Wang, Zhao; Liu, Yaoning
2018-03-01
With the development of the high voltage insulated gate bipolar transistor (IGBT) power module, it leads to serious problems concerning the electric field insulation. The electric field capabilities of the silicone gels used in the power module encapsulation directly affect the module insulation. Some solutions have been developed to optimize the electric field and reliability. In this letter, the finite element simulation was used to analyze and localize the maximum electric field position; solutions were proposed to improve the module insulation. It’s demonstrated that BaTiO3 silicone composite is a promising insulation material for high voltage power device.
NASA Astrophysics Data System (ADS)
Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.
2016-12-01
The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air/water flow via operator splitting (fractional step) schemes. Particular attention will be given to verification and validation of the numerical model and important qualitative features of the numerical methods including phase conservation, wave energy dissipation, and computational efficiency in regimes of interest.
Reliability analysis of laminated CMC components through shell subelement techniques
NASA Technical Reports Server (NTRS)
Starlinger, A.; Duffy, S. F.; Gyekenyesi, J. P.
1992-01-01
An updated version of the integrated design program C/CARES (composite ceramic analysis and reliability evaluation of structures) was developed for the reliability evaluation of CMC laminated shell components. The algorithm is now split in two modules: a finite-element data interface program and a reliability evaluation algorithm. More flexibility is achieved, allowing for easy implementation with various finite-element programs. The new interface program from the finite-element code MARC also includes the option of using hybrid laminates and allows for variations in temperature fields throughout the component.
NASA Technical Reports Server (NTRS)
Rismantab-Sany, J.; Chang, B.; Shabana, A. A.
1989-01-01
A total Lagrangian finite element formulation for the deformable bodies in multibody mechanical systems that undergo finite relative rotations is developed. The deformable bodies are discretized using finite element methods. The shape functions that are used to describe the displacement field are required to include the rigid body modes that describe only large translational displacements. This does not impose any limitations on the technique because most commonly used shape functions satisfy this requirement. The configuration of an element is defined using four sets of coordinate systems: Body, Element, Intermediate element, Global. The body coordinate system serves as a unique standard for the assembly of the elements forming the deformable body. The element coordinate system is rigidly attached to the element and therefore it translates and rotates with the element. The intermediate element coordinate system, whose axes are initially parallel to the element axes, has an origin which is rigidly attached to the origin of the body coordinate system and is used to conveniently describe the configuration of the element in undeformed state with respect to the body coordinate system.
An inverse method to determine the mechanical properties of the iris in vivo
2014-01-01
Background Understanding the mechanical properties of the iris can help to have an insight into the eye diseases with abnormalities of the iris morphology. Material parameters of the iris were simply calculated relying on the ex vivo experiment. However, the mechanical response of the iris in vivo is different from that ex vivo, therefore, a method was put forward to determine the material parameters of the iris using the optimization method in combination with the finite element method based on the in vivo experiment. Material and methods Ocular hypertension was induced by rapid perfusion to the anterior chamber, during perfusion intraocular pressures in the anterior and posterior chamber were record by sensors, images of the anterior segment were captured by the ultrasonic system. The displacement of the characteristic points on the surface of the iris was calculated. A finite element model of the anterior chamber was developed using the ultrasonic image before perfusion, the multi-island genetic algorithm was employed to determine the material parameters of the iris by minimizing the difference between the finite element simulation and the experimental measurements. Results Material parameters of the iris in vivo were identified as the iris was taken as a nearly incompressible second-order Ogden solid. Values of the parameters μ1, α1, μ2 and α2 were 0.0861 ± 0.0080 MPa, 54.2546 ± 12.7180, 0.0754 ± 0.0200 MPa, and 48.0716 ± 15.7796 respectively. The stability of the inverse finite element method was verified, the sensitivity of the model parameters was investigated. Conclusion Material properties of the iris in vivo could be determined using the multi-island genetic algorithm coupled with the finite element method based on the experiment. PMID:24886660
[Application of Finite Element Method in Thoracolumbar Spine Traumatology].
Zhang, Min; Qiu, Yong-gui; Shao, Yu; Gu, Xiao-feng; Zeng, Ming-wei
2015-04-01
The finite element method (FEM) is a mathematical technique using modern computer technology for stress analysis, and has been gradually used in simulating human body structures in the biomechanical field, especially more widely used in the research of thoracolumbar spine traumatology. This paper reviews the establishment of the thoracolumbar spine FEM, the verification of the FEM, and the thoracolumbar spine FEM research status in different fields, and discusses its prospects and values in forensic thoracolumbar traumatology.
Elsaadany, Mostafa; Yan, Karen Chang; Yildirim-Ayan, Eda
2017-06-01
Successful tissue engineering and regenerative therapy necessitate having extensive knowledge about mechanical milieu in engineered tissues and the resident cells. In this study, we have merged two powerful analysis tools, namely finite element analysis and stochastic analysis, to understand the mechanical strain within the tissue scaffold and residing cells and to predict the cell viability upon applying mechanical strains. A continuum-based multi-length scale finite element model (FEM) was created to simulate the physiologically relevant equiaxial strain exposure on cell-embedded tissue scaffold and to calculate strain transferred to the tissue scaffold (macro-scale) and residing cells (micro-scale) upon various equiaxial strains. The data from FEM were used to predict cell viability under various equiaxial strain magnitudes using stochastic damage criterion analysis. The model validation was conducted through mechanically straining the cardiomyocyte-encapsulated collagen constructs using a custom-built mechanical loading platform (EQUicycler). FEM quantified the strain gradients over the radial and longitudinal direction of the scaffolds and the cells residing in different areas of interest. With the use of the experimental viability data, stochastic damage criterion, and the average cellular strains obtained from multi-length scale models, cellular viability was predicted and successfully validated. This methodology can provide a great tool to characterize the mechanical stimulation of bioreactors used in tissue engineering applications in providing quantification of mechanical strain and predicting cellular viability variations due to applied mechanical strain.
Revisiting and Extending Interface Penalties for Multi-Domain Summation-by-Parts Operators
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Nordstrom, Jan; Gottlieb, David
2007-01-01
General interface coupling conditions are presented for multi-domain collocation methods, which satisfy the summation-by-parts (SBP) spatial discretization convention. The combined interior/interface operators are proven to be L2 stable, pointwise stable, and conservative, while maintaining the underlying accuracy of the interior SBP operator. The new interface conditions resemble (and were motivated by) those used in the discontinuous Galerkin finite element community, and maintain many of the same properties. Extensive validation studies are presented using two classes of high-order SBP operators: 1) central finite difference, and 2) Legendre spectral collocation.
NASA Astrophysics Data System (ADS)
Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik
2018-05-01
Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.
Yoon, Kyungho; Lee, Wonhye; Croce, Phillip; Cammalleri, Amanda; Yoo, Seung-Schik
2018-05-10
Transcranial focused ultrasound (tFUS) is emerging as a non-invasive brain stimulation modality. Complicated interactions between acoustic pressure waves and osseous tissue introduce many challenges in the accurate targeting of an acoustic focus through the cranium. Image-guidance accompanied by a numerical simulation is desired to predict the intracranial acoustic propagation through the skull; however, such simulations typically demand heavy computation, which warrants an expedited processing method to provide on-site feedback for the user in guiding the acoustic focus to a particular brain region. In this paper, we present a multi-resolution simulation method based on the finite-difference time-domain formulation to model the transcranial propagation of acoustic waves from a single-element transducer (250 kHz). The multi-resolution approach improved computational efficiency by providing the flexibility in adjusting the spatial resolution. The simulation was also accelerated by utilizing parallelized computation through the graphic processing unit. To evaluate the accuracy of the method, we measured the actual acoustic fields through ex vivo sheep skulls with different sonication incident angles. The measured acoustic fields were compared to the simulation results in terms of focal location, dimensions, and pressure levels. The computational efficiency of the presented method was also assessed by comparing simulation speeds at various combinations of resolution grid settings. The multi-resolution grids consisting of 0.5 and 1.0 mm resolutions gave acceptable accuracy (under 3 mm in terms of focal position and dimension, less than 5% difference in peak pressure ratio) with a speed compatible with semi real-time user feedback (within 30 s). The proposed multi-resolution approach may serve as a novel tool for simulation-based guidance for tFUS applications.
NASA Astrophysics Data System (ADS)
Güner, F.; Sofuoğlu, H.
2018-01-01
Powder metallurgy (PM) has been widely used in several industries; especially automotive and aerospace industries and powder metallurgy products grow up every year. The mechanical properties of the final product that is obtained by cold compaction and sintering in powder metallurgy are closely related to the final relative density of the process. The distribution of the relative density in the die is affected by parameters such as compaction velocity, friction coefficient and temperature. Moreover, most of the numerical studies utilizing finite element approaches treat the examined environment as a continuous media with uniformly homogeneous porosity whereas Multi-Particle Finite Element Method (MPFEM) treats every particles as an individual body. In MPFEM, each of the particles can be defined as an elastic- plastic deformable body, so the interactions of the particles with each other and the die wall can be investigated. In this study, each particle was modelled and analyzed as individual deformable body with 3D tetrahedral elements by using MPFEM approach. This study, therefore, was performed to investigate the effects of different temperatures and compaction velocities on stress distribution and deformations of copper powders of 200 µm-diameter in compaction process. Furthermore, 3-D MPFEM model utilized von Mises material model and constant coefficient of friction of μ=0.05. In addition to MPFEM approach, continuum modelling approach was also performed for comparison purposes.
Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol
2010-12-01
Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.
2007-01-01
Stokes (RANS) and the particle finite element method ( PFEM ) will be used in the water/mine/sand domain. Sand and the geomaterials around the sand will...wave propagation over a bottom mine at various time steps (Soil and Foam model) 8 SOLID/FEM SAND/SPH GEOMATERIALS FNPF/BEM FNPF/BEM RANS/ PFEM
Extended depth of field integral imaging using multi-focus fusion
NASA Astrophysics Data System (ADS)
Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua
2018-03-01
In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.
NASA Astrophysics Data System (ADS)
Sheng, Lizeng
The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.
NASA Astrophysics Data System (ADS)
Chen, Yu-Quan; Ma, Li-Zhen; Wu, Wei; Guan, Ming-Zhi; Wu, Bei-Min; Mei, En-Ming; Xin, Can-Jie
2015-12-01
A conduction-cooled superconducting magnet producing a transverse field of 4 T has been designed for a new generation multi-field coupling measurement system, which will be used to study the mechanical behavior of superconducting samples at cryogenic temperatures and intense magnetic fields. A compact cryostat with a two-stage GM cryocooler is designed and manufactured for the superconducting magnet. The magnet is composed of a pair of flat racetrack coils wound by NbTi/Cu superconducting composite wires, a copper and stainless steel combinational former and two Bi2Sr2CaCu2Oy superconducting current leads. The two coils are connected in series and can be powered with a single power supply. In order to support the high stress and attain uniform thermal distribution in the superconducting magnet, a detailed finite element (FE) analysis has been performed. The results indicate that in the operating status the designed magnet system can sufficiently bear the electromagnetic forces and has a uniform temperature distribution. Supported by National Natural Science Foundation of China (11327802, 11302225), China Postdoctoral Science Foundation (2014M560820) and National Scholarship Foundation of China (201404910172)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seefeldt, Ben; Sondak, David; Hensinger, David M.
Drekar is an application code that solves partial differential equations for fluids that can be optionally coupled to electromagnetics. Drekar solves low-mach compressible and incompressible computational fluid dynamics (CFD), compressible and incompressible resistive magnetohydrodynamics (MHD), and multiple species plasmas interacting with electromagnetic fields. Drekar discretization technology includes continuous and discontinuous finite element formulations, stabilized finite element formulations, mixed integration finite element bases (nodal, edge, face, volume) and an initial arbitrary Lagrangian Eulerian (ALE) capability. Drekar contains the implementation of the discretized physics and leverages the open source Trilinos project for both parallel solver capabilities and general finite element discretization tools.more » The code will be released open source under a BSD license. The code is used for fundamental research for simulation of fluids and plasmas on high performance computing environments.« less
Finite element modelling of crash response of composite aerospace sub-floor structures
NASA Astrophysics Data System (ADS)
McCarthy, M. A.; Harte, C. G.; Wiggenraad, J. F. M.; Michielsen, A. L. P. J.; Kohlgrüber, D.; Kamoulakos, A.
Composite energy-absorbing structures for use in aircraft are being studied within a European Commission research programme (CRASURV - Design for Crash Survivability). One of the aims of the project is to evaluate the current capabilities of crashworthiness simulation codes for composites modelling. This paper focuses on the computational analysis using explicit finite element analysis, of a number of quasi-static and dynamic tests carried out within the programme. It describes the design of the structures, the analysis techniques used, and the results of the analyses in comparison to the experimental test results. It has been found that current multi-ply shell models are capable of modelling the main energy-absorbing processes at work in such structures. However some deficiencies exist, particularly in modelling fabric composites. Developments within the finite element code are taking place as a result of this work which will enable better representation of composite fabrics.
Gras, Laure-Lise; Mitton, David; Crevier-Denoix, Nathalie; Laporte, Sébastien
2012-01-01
Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.
A new technique for simulating composite material
NASA Technical Reports Server (NTRS)
Volakis, John L.
1991-01-01
This project dealt with the development on new methodologies and algorithms for the multi-spectrum electromagnetic characterization of large scale nonmetallic airborne vehicles and structures. A robust, low memory, and accurate methodology was developed which is particularly suited for modern machine architectures. This is a hybrid finite element method that combines two well known numerical solution approaches. That of the finite element method for modeling volumes and the boundary integral method which yields exact boundary conditions for terminating the finite element mesh. In addition, a variety of high frequency results were generated (such as diffraction coefficients for impedance surfaces and material layers) and a class of boundary conditions were developed which hold promise for more efficient simulations. During the course of this project, nearly 25 detailed research reports were generated along with an equal number of journal papers. The reports, papers, and journal articles are listed in the appendices along with their abstracts.
NASA Astrophysics Data System (ADS)
Treyssède, Fabien
2018-01-01
Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the dynamics of cable bridges.
NASA Astrophysics Data System (ADS)
Nasedkin, A. V.
2017-01-01
This research presents the new size-dependent models of piezoelectric materials oriented to finite element applications. The proposed models include the facilities of taking into account different mechanisms of damping for mechanical and electric fields. The coupled models also incorporate the equations of the theory of acoustics for viscous fluids. In particular cases, these models permit to use the mode superposition method with full separation of the finite element systems into independent equations for the independent modes for transient and harmonic problems. The main boundary conditions were supplemented with the facilities of taking into account the coupled surface effects, allowing to explore the nanoscale piezoelectric materials in the framework of theories of continuous media with surface stresses and their generalizations. For the considered problems we have implemented the finite element technologies and various numerical algorithms to maintain a symmetrical structure of the finite element quasi-definite matrices (matrix structure for the problems with a saddle point).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk; Seaid, Mohammed; Trevelyan, Jon
2013-10-15
We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach canmore » be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.« less
NASA Astrophysics Data System (ADS)
Zhang, Fei; Huang, Weizhang; Li, Xianping; Zhang, Shicheng
2018-03-01
A moving mesh finite element method is studied for the numerical solution of a phase-field model for brittle fracture. The moving mesh partial differential equation approach is employed to dynamically track crack propagation. Meanwhile, the decomposition of the strain tensor into tensile and compressive components is essential for the success of the phase-field modeling of brittle fracture but results in a non-smooth elastic energy and stronger nonlinearity in the governing equation. This makes the governing equation much more difficult to solve and, in particular, Newton's iteration often fails to converge. Three regularization methods are proposed to smooth out the decomposition of the strain tensor. Numerical examples of fracture propagation under quasi-static load demonstrate that all of the methods can effectively improve the convergence of Newton's iteration for relatively small values of the regularization parameter but without compromising the accuracy of the numerical solution. They also show that the moving mesh finite element method is able to adaptively concentrate the mesh elements around propagating cracks and handle multiple and complex crack systems.
Creating a Test Validated Structural Dynamic Finite Element Model of the X-56A Aircraft
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truong, Samson
2014-01-01
Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the Multi Utility Technology Test-bed, X-56A aircraft, is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is created in this study. The structural dynamic finite element model of the X-56A aircraft is improved using a model tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, while other properties such as center of gravity location, total weight, and offdiagonal terms of the mass orthogonality matrix were used as constraints. The end result was a more improved and desirable structural dynamic finite element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.
Creating a Test-Validated Finite-Element Model of the X-56A Aircraft Structure
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truong, Samson
2014-01-01
Small modeling errors in a finite-element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the X-56A Multi-Utility Technology Testbed aircraft is the flight demonstration of active flutter suppression and, therefore, in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground-vibration test-validated structural dynamic finite-element model of the X-56A aircraft is created in this study. The structural dynamic finite-element model of the X-56A aircraft is improved using a model-tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, whereas other properties such as c.g. location, total weight, and off-diagonal terms of the mass orthogonality matrix were used as constraints. The end result was an improved structural dynamic finite-element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.
Finite element analysis of a micromechanical deformable mirror device
NASA Technical Reports Server (NTRS)
Sheerer, T. J.; Nelson, W. E.; Hornbeck, L. J.
1989-01-01
A monolithic spatial light modulator chip was developed consisting of a large number of micrometer-scale mirror cells which can be rotated through an angle by application of an electrostatic field. The field is generated by electronics integral to the chip. The chip has application in photoreceptor based non-impact printing technologies. Chips containing over 16000 cells were fabricated, and were tested to several billions of cycles. Finite Element Analysis (FEA) of the device was used to model both the electrical and mechanical characteristics.
NASA Astrophysics Data System (ADS)
Komodromos, A.; Tekkaya, A. E.; Hofmann, J.; Fleischer, J.
2018-05-01
Since electric motors are gaining in importance in many fields of application, e.g. hybrid electric vehicles, optimization of the linear coil winding process greatly contributes to an increase in productivity and flexibility. For the investigation of the forming behavior of the winding wire the material behavior is characterized in different experimental setups. Numerical examinatons of the linear winding process are carried out in a case study for a rectangular bobbin in order to analyze the influence of forming parameters on the resulting properties of the wound coil. Besides the numerical investigation of the linear winding method by using the finite element method (FEM), a multi-body dynamics (MBD) simulation is carried out. The multi-body dynamics simulation is necessary to represent the movement of the bodies as well as the connection of the components during winding. The finite element method is used to represent the material behavior of the copper wire and the plastic strain distribution within the wire. It becomes clear that the MBD simulation is not sufficient for analyzing the process and the wire behavior in its entirety. Important parameters that define the final coil properties cannot be analyzed in the manner of a precise manifestation, e.g. the clearance between coil bobbin and wire as well as the wire deformation behavior in form of a diameter reduction which negatively affects the ohmic resistance. Finally, the numerical investigations are validated experimentally by linear winding tests.
Computation of three-dimensional nozzle-exhaust flow fields with the GIM code
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Anderson, P. G.
1978-01-01
A methodology is introduced for constructing numerical analogs of the partial differential equations of continuum mechanics. A general formulation is provided which permits classical finite element and many of the finite difference methods to be derived directly. The approach, termed the General Interpolants Method (GIM), can combined the best features of finite element and finite difference methods. A quasi-variational procedure is used to formulate the element equations, to introduce boundary conditions into the method and to provide a natural assembly sequence. A derivation is given in terms of general interpolation functions from this procedure. Example computations for transonic and supersonic flows in two and three dimensions are given to illustrate the utility of GIM. A three-dimensional nozzle-exhaust flow field is solved including interaction with the freestream and a coupled treatment of the shear layer. Potential applications of the GIM code to a variety of computational fluid dynamics problems is then discussed in terms of existing capability or by extension of the methodology.
The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory
Bosbach, Wolfram A.
2015-01-01
Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603
Benchmark model correction of monitoring system based on Dynamic Load Test of Bridge
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Fan, Jiang
2018-03-01
Structural health monitoring (SHM) is a field of research in the area, and it’s designed to achieve bridge safety and reliability assessment, which needs to be carried out on the basis of the accurate simulation of the finite element model. Bridge finite element model is simplified of the structural section form, support conditions, material properties and boundary condition, which is based on the design and construction drawings, and it gets the calculation models and the results.But according to the design and specification requirements established finite element model due to its cannot fully reflect the true state of the bridge, so need to modify the finite element model to obtain the more accurate finite element model. Based on Da-guan river crossing of Ma - Zhao highway in Yunnan province as the background to do the dynamic load test test, we find that the impact coefficient of the theoretical model of the bridge is very different from the coefficient of the actual test, and the change is different; according to the actual situation, the calculation model is adjusted to get the correct frequency of the bridge, the revised impact coefficient found that the modified finite element model is closer to the real state, and provides the basis for the correction of the finite model.
A survey of parametrized variational principles and applications to computational mechanics
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.
1993-01-01
This survey paper describes recent developments in the area of parametrized variational principles (PVP's) and selected applications to finite-element computational mechanics. A PVP is a variational principle containing free parameters that have no effect on the Euler-Lagrange equations. The theory of single-field PVP's based on gauge functions (also known as null Lagrangians) is a subset of the inverse problem of variational calculus that has limited value. On the other hand, multifield PVP's are more interesting from theoretical and practical standpoints. Following a tutorial introduction, the paper describes the recent construction of multifield PVP's in several areas of elasticity and electromagnetics. It then discusses three applications to finite-element computational mechanics: the derivation of high-performance finite elements, the development of element-level error indicators, and the constructions of finite element templates. The paper concludes with an overview of open research areas.
Advanced graphical user interface for multi-physics simulations using AMST
NASA Astrophysics Data System (ADS)
Hoffmann, Florian; Vogel, Frank
2017-07-01
Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.
Estimating Small-Body Gravity Field from Shape Model and Navigation Data
NASA Technical Reports Server (NTRS)
Park, Ryan S.; Werner, Robert A.; Bhaskaran, Shyam
2008-01-01
This paper presents a method to model the external gravity field and to estimate the internal density variation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and internal density distribution are given, and model the body interior using finite elements definitions, such as cubes and spheres. The gravitational attractions computed from these approaches are compared with the true uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse problem where we assume the body shape, radiometric measurements, and a priori density constraints are given, and estimate the internal density variation by estimating the density of each finite element. The result shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit altitude, finite-element resolution, and measurement accuracy.
NASA Astrophysics Data System (ADS)
Geddes, Earl Russell
The details of the low frequency sound field for a rectangular room can be studied by the use of an established analytic technique--separation of variables. The solution is straightforward and the results are well-known. A non -rectangular room has boundary conditions which are not separable and therefore other solution techniques must be used. This study shows that the finite element method can be adapted for use in the study of sound fields in arbitrary shaped enclosures. The finite element acoustics problem is formulated and the modification of a standard program, which is necessary for solving acoustic field problems, is examined. The solution of the semi-non-rectangular room problem (one where the floor and ceiling remain parallel) is carried out by a combined finite element/separation of variables approach. The solution results are used to construct the Green's function for the low frequency sound field in five rooms (or data cases): (1) a rectangular (Louden) room; (2) The smallest wall of the Louden room canted 20 degrees from normal; (3) The largest wall of the Louden room canted 20 degrees from normal; (4) both the largest and the smallest walls are canted 20 degrees; and (5) a five-sided room variation of Case 4. Case 1, the rectangular room was calculated using both the finite element method and the separation of variables technique. The results for the two methods are compared in order to access the accuracy of the finite element method models. The modal damping coefficient are calculated and the results examined. The statistics of the source and receiver average normalized RMS P('2) responses in the 80 Hz, 100 Hz, and 125 Hz one-third octave bands are developed. The receiver averaged pressure response is developed to determine the effect of the source locations on the response. Twelve source locations are examined and the results tabulated for comparison. The effect of a finite sized source is looked at briefly. Finally, the standard deviation of the spatial pressure response is studied. The results for this characteristic show that it not significantly different in any of the rooms. The conclusions of the study are that only the frequency variations of the pressure response are affected by a room's shape. Further, in general, the simplest modification of a rectangular room (i.e., changing the angle of only one of the smallest walls), produces the most pronounced decrease of the pressure response variations in the low frequency region.
Steffen, Michael; Curtis, Sean; Kirby, Robert M; Ryan, Jennifer K
2008-01-01
Streamline integration of fields produced by computational fluid mechanics simulations is a commonly used tool for the investigation and analysis of fluid flow phenomena. Integration is often accomplished through the application of ordinary differential equation (ODE) integrators--integrators whose error characteristics are predicated on the smoothness of the field through which the streamline is being integrated--smoothness which is not available at the inter-element level of finite volume and finite element data. Adaptive error control techniques are often used to ameliorate the challenge posed by inter-element discontinuities. As the root of the difficulties is the discontinuous nature of the data, we present a complementary approach of applying smoothness-enhancing accuracy-conserving filters to the data prior to streamline integration. We investigate whether such an approach applied to uniform quadrilateral discontinuous Galerkin (high-order finite volume) data can be used to augment current adaptive error control approaches. We discuss and demonstrate through numerical example the computational trade-offs exhibited when one applies such a strategy.
Multi-Scale Modeling of Liquid Phase Sintering Affected by Gravity: Preliminary Analysis
NASA Technical Reports Server (NTRS)
Olevsky, Eugene; German, Randall M.
2012-01-01
A multi-scale simulation concept taking into account impact of gravity on liquid phase sintering is described. The gravity influence can be included at both the micro- and macro-scales. At the micro-scale, the diffusion mass-transport is directionally modified in the framework of kinetic Monte-Carlo simulations to include the impact of gravity. The micro-scale simulations can provide the values of the constitutive parameters for macroscopic sintering simulations. At the macro-scale, we are attempting to embed a continuum model of sintering into a finite-element framework that includes the gravity forces and substrate friction. If successful, the finite elements analysis will enable predictions relevant to space-based processing, including size and shape and property predictions. Model experiments are underway to support the models via extraction of viscosity moduli versus composition, particle size, heating rate, temperature and time.
NASA Astrophysics Data System (ADS)
Abedian, A.; Poursina, M.; Golestanian, H.
2007-05-01
Radial forging is an open die forging process used for reducing the diameter of shafts, tubes, stepped shafts and axels, and creating internal profiles for tubes such as rifling of gun barrels. In this work, a comprehensive study of multi-pass hot radial forging of short hollow and solid products are presented using 2-D axisymmetric finite element simulation. The workpiece is modeled as an elastic-viscoplastic material. A mixture of Coulomb law and constant limit shear is used to model the die-workpiece and mandrel-workpiece contacts. Thermal effects are also taken in to account. Three-pass radial forging of solid cylinders and tube products are considered. Temperature, stress, strain and metal flow distribution are obtained in each pass through thermo-mechanical simulation. The numerical results are compared with available experimental data and are in good agreement with them.
NASA Astrophysics Data System (ADS)
Soons, Joris; Dirckx, Joris; Steele, Charles; Puria, Sunil
2015-12-01
A multi-scale finite element (FE) model of the mouse cochlea, based on its anatomy and material properties is presented. The important feature in the model is a lattice of 400 Y-shaped structures in the longitudinal direction, each formed by Deiters cells, phalangeal processes and outer hair cells (OHC). OHC somatic motility is modeled by an expansion force proportional to the shear on the stereocilia, which in turn is proportional to the pressure difference between the scala vestibule and scala tympani. Basilar membrane (BM) and reticular lamina (RL) velocity compare qualitatively very well with recent in vivo measurements in guinea pig [2]. Compared to the BM, the RL is shown to have higher amplification and a shift to higher frequencies. This comes naturally from the realistic Y-shaped cell organization without tectorial membrane tuning.
Advances and future directions of research on spectral methods
NASA Technical Reports Server (NTRS)
Patera, A. T.
1986-01-01
Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.
Mechanical Pre-Stressing a Transducer through a Negative DC Biasing Field
2017-04-21
13 ii LIST OF ABBREVIATIONS AND ACRONYMS AC Alternating Current DC Direct Currant FEA Finite Element Analysis NUWC Naval...at resonance into tension is shown in figure 3; it was estimated from finite element analysis (FEA) that the tensional stresses exceeded 2000 psi...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Stephen C. Butler 5.d PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION
NASA Technical Reports Server (NTRS)
Yang, Charles; Sun, Wenjun; Tomblin, John S.; Smeltzer, Stanley S., III
2007-01-01
A semi-analytical method for determining the strain energy release rate due to a prescribed interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is presented. The field equations in terms of displacements within the joint are formulated by using first-order shear deformable, laminated plate theory together with kinematic relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. Based on the adhesive stress distributions, the forces at the crack tip are obtained and the strain energy release rate of the crack is determined by using the virtual crack closure technique (VCCT). Additionally, the test specimen geometry from both the ASTM D3165 and D1002 test standards are utilized during the derivation of the field equations in order to correlate analytical models with future test results. The system of second-order differential field equations is solved to provide the adherend and adhesive stress response using the symbolic computation tool, Maple 9. Finite element analyses using J-integral as well as VCCT were performed to verify the developed analytical model. The finite element analyses were conducted using the commercial finite element analysis software ABAQUS. The results determined using the analytical method correlated well with the results from the finite element analyses.
NASA Astrophysics Data System (ADS)
Beheshti, Alireza
2018-03-01
The contribution addresses the finite element analysis of bending of plates given the Kirchhoff-Love model. To analyze the static deformation of plates with different loadings and geometries, the principle of virtual work is used to extract the weak form. Following deriving the strain field, stresses and resultants may be obtained. For constructing four-node quadrilateral plate elements, the Hermite polynomials defined with respect to the variables in the parent space are applied explicitly. Based on the approximated field of displacement, the stiffness matrix and the load vector in the finite element method are obtained. To demonstrate the performance of the subparametric 4-node plate elements, some known, classical examples in structural mechanics are solved and there are comparisons with the analytical solutions available in the literature.
NASA Technical Reports Server (NTRS)
Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.
2014-01-01
Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.
Highly accurate adaptive finite element schemes for nonlinear hyperbolic problems
NASA Astrophysics Data System (ADS)
Oden, J. T.
1992-08-01
This document is a final report of research activities supported under General Contract DAAL03-89-K-0120 between the Army Research Office and the University of Texas at Austin from July 1, 1989 through June 30, 1992. The project supported several Ph.D. students over the contract period, two of which are scheduled to complete dissertations during the 1992-93 academic year. Research results produced during the course of this effort led to 6 journal articles, 5 research reports, 4 conference papers and presentations, 1 book chapter, and two dissertations (nearing completion). It is felt that several significant advances were made during the course of this project that should have an impact on the field of numerical analysis of wave phenomena. These include the development of high-order, adaptive, hp-finite element methods for elastodynamic calculations and high-order schemes for linear and nonlinear hyperbolic systems. Also, a theory of multi-stage Taylor-Galerkin schemes was developed and implemented in the analysis of several wave propagation problems, and was configured within a general hp-adaptive strategy for these types of problems. Further details on research results and on areas requiring additional study are given in the Appendix.
Stenmark, Theodore; Word, R. C.; Konenkamp, R.
2016-02-16
Photoemission Electron Microscopy (PEEM) is a versatile tool that relies on the photoelectric effect to produce high-resolution images. Pulse lasers allow for multi-photon PEEM where multiple photons are required excite a single electron. This non-linear process can directly image the near field region of electromagnetic fields in materials. We use this ability here to analyze wave propagation in a linear dielectric waveguide with wavelengths of 410nm and 780nm. The propagation constant of the waveguide can be extracted from the interference pattern created by the coupled and incident light and shows distinct polarization dependence. Furthermore, the electromagnetic field interaction at themore » boundaries can then be deduced which is essential to understand power flow in wave guiding structures. These results match well with simulations using finite element techniques.« less
NASA Astrophysics Data System (ADS)
You, Shuangrong; Chi, Changxin; Guo, Yanqun; Bai, Chuanyi; Liu, Zhiyong; Lu, Yuming; Cai, Chuanbing
2018-07-01
This paper presents the numerical simulation of a high-temperature superconductor electromagnet consisting of REBCO (RE-Ba2Cu3O7‑x, RE: rare earth) superconducting tapes and a ferromagnetic iron yoke. The REBCO coils with multi-width design are operating at 77 K, with the iron yoke at room temperature, providing a magnetic space with a 32 mm gap between two poles. The finite element method is applied to compute the 3D model of the studied magnet. Simulated results show that the magnet generates a 1.5 T magnetic field at an operating current of 38.7 A, and the spatial inhomogeneity of the field is 0.8% in a Φ–20 mm diameter sphere volume. Compared with the conventional iron electromagnet, the present compact design is more suitable for practical application.
Generalized Fourier analyses of the advection-diffusion equation - Part I: one-dimensional domains
NASA Astrophysics Data System (ADS)
Christon, Mark A.; Martinez, Mario J.; Voth, Thomas E.
2004-07-01
This paper presents a detailed multi-methods comparison of the spatial errors associated with finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. The errors are reported in terms of non-dimensional phase and group speed, discrete diffusivity, artificial diffusivity, and grid-induced anisotropy. It is demonstrated that Fourier analysis provides an automatic process for separating the discrete advective operator into its symmetric and skew-symmetric components and characterizing the spectral behaviour of each operator. For each of the numerical methods considered, asymptotic truncation error and resolution estimates are presented for the limiting cases of pure advection and pure diffusion. It is demonstrated that streamline upwind Petrov-Galerkin and its control-volume finite element analogue, the streamline upwind control-volume method, produce both an artificial diffusivity and a concomitant phase speed adjustment in addition to the usual semi-discrete artifacts observed in the phase speed, group speed and diffusivity. The Galerkin finite element method and its streamline upwind derivatives are shown to exhibit super-convergent behaviour in terms of phase and group speed when a consistent mass matrix is used in the formulation. In contrast, the CVFEM method and its streamline upwind derivatives yield strictly second-order behaviour. In Part II of this paper, we consider two-dimensional semi-discretizations of the advection-diffusion equation and also assess the affects of grid-induced anisotropy observed in the non-dimensional phase speed, and the discrete and artificial diffusivities. Although this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common analysis framework. Published in 2004 by John Wiley & Sons, Ltd.
Finite Element Modeling of Magnetically-Damped Convection during Solidification
NASA Technical Reports Server (NTRS)
deGroh, H. C.; Li, B. Q.; Lu, X.
1998-01-01
A fully 3-D, transient finite element model is developed to represent the magnetic damping effects on complex fluid flow, heat transfer and electromagnetic field distributions in a Sn- 35.5%Pb melt undergoing unidirectional solidification. The model is developed based on our in- house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The numerical model is tested against numerical and experimental results for water as reported in literature. Various numerical simulations are carried out for the melt convection and temperature distribution with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to stabilize melt flow, reduce turbulence and flow levels in the melt and over a certain threshold value a higher magnetic field resulted in a greater reduction in velocity. Also, for the study of melt flow instability, a long enough running time is needed to ensure the final fluid flow recirculation pattern. Moreover, numerical results suggest that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the 0 convection in the melt is actually enhanced.
NASA Astrophysics Data System (ADS)
Kraus, Hal G.
1993-02-01
Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.
Tourab, Wafa; Babouri, Abdesselam
2016-06-01
This work presents an experimental and modeling study of the electromagnetic environment in the vicinity of a high voltage substation located in eastern Algeria (Annaba city) specified with a very high population density. The effects of electromagnetic fields emanating from the coupled multi-lines high voltage power systems (MLHV) on the health of the workers and people living in proximity of substations has been analyzed. Experimental Measurements for the Multi-lines power system proposed have been conducted in the free space under the high voltage lines. Field's intensities were measured using a referenced and calibrated electromagnetic field meter PMM8053B for the levels 0 m, 1 m, 1.5 m and 1.8 m witch present the sensitive's parts as organs and major functions (head, heart, pelvis and feet) of the human body. The measurement results were validated by numerical simulation using the finite element method and these results are compared with the limit values of the international standards. We project to set own national standards for exposure to electromagnetic fields, in order to achieve a regional database that will be at the disposal of partners concerned to ensure safety of people and mainly workers inside high voltage electrical substations.
NASA Astrophysics Data System (ADS)
Brock, Kristy K.; Ménard, Cynthia; Hensel, Jennifer; Jaffray, David A.
2006-03-01
Magnetic resonance imaging (MRI) with an endorectal receiver coil (ERC) provides superior visualization of the prostate gland and its surrounding anatomy at the expense of large anatomical deformation. The ability to correct for this deformation is critical to integrate the MR images into the CT-based treatment planning for radiotherapy. The ability to quantify and understand the physiological motion due to large changes in rectal filling can also improve the precision of image-guided procedures. The purpose of this study was to understand the biomechanical relationship between the prostate, rectum, and bladder using a finite element-based multi-organ deformable image registration method, 'Morfeus' developed at our institution. Patients diagnosed with prostate cancer were enrolled in the study. Gold seed markers were implanted in the prostate and MR scans performed with the ERC in place and its surrounding balloon inflated to varying volumes (0-100cc). The prostate, bladder, and rectum were then delineated, converted into finite element models, and assigned appropriate material properties. Morfeus was used to assign surface interfaces between the adjacent organs and deform the bladder and rectum from one position to another, obtaining the position of the prostate through finite element analysis. This approach achieves sub-voxel accuracy of image co-registration in the context of a large ERC deformation, while providing a biomechanical understanding of the multi-organ physiological relationship between the prostate, bladder, and rectum. The development of a deformable registration strategy is essential to integrate the superior information offered in MR images into the treatment planning process.
Three-Dimensional Field Solutions for Multi-Pole Cylindrical Halbach Arrays in an Axial Orientation
NASA Technical Reports Server (NTRS)
Thompson, William K.
2006-01-01
This article presents three-dimensional B field solutions for the cylindrical Halbach array in an axial orientation. This arrangement has applications in the design of axial motors and passive axial magnetic bearings and couplers. The analytical model described here assumes ideal magnets with fixed and uniform magnetization. The field component functions are expressed as sums of 2-D definite integrals that are easily computed by a number of mathematical analysis software packages. The analysis is verified with sample calculations and the results are compared to equivalent results from traditional finite-element analysis (FEA). The field solutions are then approximated for use in flux linkage and induced EMF calculations in nearby stator windings by expressing the field variance with angular displacement as pure sinusoidal function whose amplitude depends on radial and axial position. The primary advantage of numerical implementation of the analytical approach presented in the article is that it lends itself more readily to parametric analysis and design tradeoffs than traditional FEA models.
Modal element method for scattering of sound by absorbing bodies
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1992-01-01
The modal element method for acoustic scattering from 2-D body is presented. The body may be acoustically soft (absorbing) or hard (reflecting). The infinite computational region is divided into two subdomains - the bounded finite element domain, which is characterized by complicated geometry and/or variable material properties, and the surrounding unbounded homogeneous domain. The acoustic pressure field is represented approximately in the finite element domain by a finite element solution, and is represented analytically by an eigenfunction expansion in the homogeneous domain. The two solutions are coupled by the continuity of pressure and velocity across the interface between the two subdomains. Also, for hard bodies, a compact modal ring grid system is introduced for which computing requirements are drastically reduced. Analysis for 2-D scattering from solid and coated (acoustically treated) bodies is presented, and several simple numerical examples are discussed. In addition, criteria are presented for determining the number of modes to accurately resolve the scattered pressure field from a solid cylinder as a function of the frequency of the incoming wave and the radius of the cylinder.
NASA Astrophysics Data System (ADS)
Bürger, Raimund; Kumar, Sarvesh; Ruiz-Baier, Ricardo
2015-10-01
The sedimentation-consolidation and flow processes of a mixture of small particles dispersed in a viscous fluid at low Reynolds numbers can be described by a nonlinear transport equation for the solids concentration coupled with the Stokes problem written in terms of the mixture flow velocity and the pressure field. Here both the viscosity and the forcing term depend on the local solids concentration. A semi-discrete discontinuous finite volume element (DFVE) scheme is proposed for this model. The numerical method is constructed on a baseline finite element family of linear discontinuous elements for the approximation of velocity components and concentration field, whereas the pressure is approximated by piecewise constant elements. The unique solvability of both the nonlinear continuous problem and the semi-discrete DFVE scheme is discussed, and optimal convergence estimates in several spatial norms are derived. Properties of the model and the predicted space accuracy of the proposed formulation are illustrated by detailed numerical examples, including flows under gravity with changing direction, a secondary settling tank in an axisymmetric setting, and batch sedimentation in a tilted cylindrical vessel.
Construction of hexahedral finite element mesh capturing realistic geometries of a petroleum reserve
Park, Byoung Yoon; Roberts, Barry L.; Sobolik, Steven R.
2017-07-27
The three-dimensional finite element mesh capturing realistic geometries of the Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh consists of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time while maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill,more » Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for various civil and geological structures.« less
Construction of hexahedral finite element mesh capturing realistic geometries of a petroleum reserve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Byoung Yoon; Roberts, Barry L.; Sobolik, Steven R.
The three-dimensional finite element mesh capturing realistic geometries of the Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh consists of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time while maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill,more » Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for various civil and geological structures.« less
Finite-element modeling and micromagnetic modeling of perpendicular writers
NASA Astrophysics Data System (ADS)
Heinonen, Olle; Bozeman, Steven P.
2006-04-01
We compare finite-element modeling (FEM) and fully micromagnetic modeling results of four prototypical writers for perpendicular recording. In general, the agreement between the two models is quite good in the vicinity of saturated or near-saturated magnetic material, such as the pole tip, for quantities such as the magnetic field, the gradient of the magnetic field and the write width. However, in the vicinity of magnetic material far from saturation, e.g., return pole or trailing edge write shield, there can be large qualitative and quantitative differences.
Simulation of Needle-Type Corona Electrodes by the Finite Element Method
NASA Astrophysics Data System (ADS)
Yang, Shiyou; José Márcio, Machado; Nancy Mieko, Abe; Angelo, Passaro
2007-12-01
This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of self-adaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.
A comparative study of an ABC and an artificial absorber for truncating finite element meshes
NASA Technical Reports Server (NTRS)
Oezdemir, T.; Volakis, John L.
1993-01-01
The type of mesh termination used in the context of finite element formulations plays a major role on the efficiency and accuracy of the field solution. The performance of an absorbing boundary condition (ABC) and an artificial absorber (a new concept) for terminating the finite element mesh was evaluated. This analysis is done in connection with the problem of scattering by a finite slot array in a thick ground plane. The two approximate mesh truncation schemes are compared with the exact finite element-boundary integral (FEM-BI) method in terms of accuracy and efficiency. It is demonstrated that both approximate truncation schemes yield reasonably accurate results even when the mesh is extended only 0.3 wavelengths away from the array aperture. However, the artificial absorber termination method leads to a substantially more efficient solution. Moreover, it is shown that the FEM-BI method remains quite competitive with the FEM-artificial absorber method when the FFT is used for computing the matrix-vector products in the iterative solution algorithm. These conclusions are indeed surprising and of major importance in electromagnetic simulations based on the finite element method.
magnum.fe: A micromagnetic finite-element simulation code based on FEniCS
NASA Astrophysics Data System (ADS)
Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter
2013-11-01
We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.
Solving the incompressible surface Navier-Stokes equation by surface finite elements
NASA Astrophysics Data System (ADS)
Reuther, Sebastian; Voigt, Axel
2018-01-01
We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g (S ) . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.
Ultrasound finite element simulation sensitivity to anisotropic titanium microstructures
NASA Astrophysics Data System (ADS)
Freed, Shaun; Blackshire, James L.; Na, Jeong K.
2016-02-01
Analytical wave models are inadequate to describe complex metallic microstructure interactions especially for near field anisotropic property effects and through geometric features smaller than the wavelength. In contrast, finite element ultrasound simulations inherently capture microstructure influences due to their reliance on material definitions rather than wave descriptions. To better understand and quantify heterogeneous crystal orientation effects to ultrasonic wave propagation, a finite element modeling case study has been performed with anisotropic titanium grain structures. A parameterized model has been developed utilizing anisotropic spheres within a bulk material. The resulting wave parameters are analyzed as functions of both wavelength and sphere to bulk crystal mismatch angle.
Fatigue assessment of an existing steel bridge by finite element modelling and field measurements
NASA Astrophysics Data System (ADS)
Kwad, J.; Alencar, G.; Correia, J.; Jesus, A.; Calçada, R.; Kripakaran, P.
2017-05-01
The evaluation of fatigue life of structural details in metallic bridges is a major challenge for bridge engineers. A reliable and cost-effective approach is essential to ensure appropriate maintenance and management of these structures. Typically, local stresses predicted by a finite element model of the bridge are employed to assess the fatigue life of fatigue-prone details. This paper illustrates an approach for fatigue assessment based on measured data for a connection in an old bascule steel bridge located in Exeter (UK). A finite element model is first developed from the design information. The finite element model of the bridge is calibrated using measured responses from an ambient vibration test. The stress time histories are calculated through dynamic analysis of the updated finite element model. Stress cycles are computed through the rainflow counting algorithm, and the fatigue prone details are evaluated using the standard SN curves approach and the Miner’s rule. Results show that the proposed approach can estimate the fatigue damage of a fatigue prone detail in a structure using measured strain data.
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...
2015-11-12
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
NASA Astrophysics Data System (ADS)
Ma, Yong; Qin, Jianfeng; Zhang, Xiangyu; Lin, Naiming; Huang, Xiaobo; Tang, Bin
2015-07-01
Using the impact test and finite element simulation, the failure behavior of the Mo-modified layer on pure Ti was investigated. In the impact test, four loads of 100, 300, 500, and 700 N and 104 impacts were adopted. The three-dimensional residual impact dents were examined using an optical microscope (Olympus-DSX500i), indicating that the impact resistance of the Ti surface was improved. Two failure modes cohesive and wearing were elucidated by electron backscatter diffraction and energy-dispersive spectrometer performed in a field-emission scanning electron microscope. Through finite element forward analysis performed at a typical impact load of 300 N, stress-strain distributions in the Mo-modified Ti were quantitatively determined. In addition, the failure behavior of the Mo-modified layer was determined and an ideal failure model was proposed for high-load impact, based on the experimental and finite element forward analysis results.
Free Mesh Method: fundamental conception, algorithms and accuracy study
YAGAWA, Genki
2011-01-01
The finite element method (FEM) has been commonly employed in a variety of fields as a computer simulation method to solve such problems as solid, fluid, electro-magnetic phenomena and so on. However, creation of a quality mesh for the problem domain is a prerequisite when using FEM, which becomes a major part of the cost of a simulation. It is natural that the concept of meshless method has evolved. The free mesh method (FMM) is among the typical meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, especially on parallel processors. FMM is an efficient node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm for the finite element calculations. In this paper, FMM and its variation are reviewed focusing on their fundamental conception, algorithms and accuracy. PMID:21558752
A novel simulation theory and model system for multi-field coupling pipe-flow system
NASA Astrophysics Data System (ADS)
Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu
2017-09-01
Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.
Design and Fabrication of Orthotropic Deck Details
DOT National Transportation Integrated Search
2016-02-01
The objectives of the research were to verify the design and fabrication of the orthotropic deck details proposed for the lift bridge, for infinite fatigue life. Multi-level 3D finite element analyses (FEA) of the proposed deck were performed to dete...
Treatment of singularities in a middle-crack tension specimen
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1990-01-01
A three-dimensional finite-element analysis of a middle-crack tension specimen subjected to mode I loading was performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements with collapsed nonsingular elements at the crack front. The displacements and stresses from the analysis were used to estimate the power of singularities, by a log-log regression analysis, along the crack front. Analyses showed that finite-sized cracked bodies have two singular stress fields. Because of two singular stress fields near the free surface and the classical square root singularity elsewhere, the strain energy release rate appears to be an appropriate parameter all along the crack front.
A finite element beam propagation method for simulation of liquid crystal devices.
Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal
2009-06-22
An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX-80
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.; Watson, Brian C.
1992-11-01
The finite element method has proven to be an invaluable tool for analysis and design of complex, high performance systems, such as bladed-disk assemblies in aircraft turbofan engines. However, as the problem size increase, the computation time required by conventional computers can be prohibitively high. Parallel processing computers provide the means to overcome these computation time limits. This report summarizes the results of a research activity aimed at providing a finite element capability for analyzing turbomachinery bladed-disk assemblies in a vector/parallel processing environment. A special purpose code, named with the acronym SAPNEW, has been developed to perform static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements. SAPNEW provides a stand alone capability for static and eigen analysis on the Alliant FX/80, a parallel processing computer. A preprocessor, named with the acronym NTOS, has been developed to accept NASTRAN input decks and convert them to the SAPNEW format to make SAPNEW more readily used by researchers at NASA Lewis Research Center.
Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siefert, Christopher; Bochev, Pavel Blagoveston; Kramer, Richard Michael Jack
Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these modelsmore » can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.« less
A coupled model of transport-reaction-mechanics with trapping. Part I - Small strain analysis
NASA Astrophysics Data System (ADS)
Salvadori, A.; McMeeking, R.; Grazioli, D.; Magri, M.
2018-05-01
A fully coupled model for mass and heat transport, mechanics, and chemical reactions with trapping is proposed. It is rooted in non-equilibrium rational thermodynamics and assumes that displacements and strains are small. Balance laws for mass, linear and angular momentum, energy, and entropy are stated. Thermodynamic restrictions are identified, based on an additive strain decomposition and on the definition of the Helmholtz free energy. Constitutive theory and chemical kinetics are studied in order to finally write the governing equations for the multi-physics problem. The field equations are solved numerically with the finite element method, stemming from a three-fields variational formulation. Three case-studies on vacancies redistribution in metals, hydrogen embrittlement, and the charge-discharge of active particles in Li-ion batteries demonstrate the features and the potential of the proposed model.
NASA Astrophysics Data System (ADS)
Aldakheel, Fadi
2017-11-01
The coupled thermo-mechanical strain gradient plasticity theory that accounts for microstructure-based size effects is outlined within this work. It extends the recent work of Miehe et al. (Comput Methods Appl Mech Eng 268:704-734, 2014) to account for thermal effects at finite strains. From the computational viewpoint, the finite element design of the coupled problem is not straightforward and requires additional strategies due to the difficulties near the elastic-plastic boundaries. To simplify the finite element formulation, we extend it toward the micromorphic approach to gradient thermo-plasticity model in the logarithmic strain space. The key point is the introduction of dual local-global field variables via a penalty method, where only the global fields are restricted by boundary conditions. Hence, the problem of restricting the gradient variable to the plastic domain is relaxed, which makes the formulation very attractive for finite element implementation as discussed in Forest (J Eng Mech 135:117-131, 2009) and Miehe et al. (Philos Trans R Soc A Math Phys Eng Sci 374:20150170, 2016).
End-to-end workflow for finite element analysis of tumor treating fields in glioblastomas
NASA Astrophysics Data System (ADS)
Timmons, Joshua J.; Lok, Edwin; San, Pyay; Bui, Kevin; Wong, Eric T.
2017-11-01
Tumor Treating Fields (TTFields) therapy is an approved modality of treatment for glioblastoma. Patient anatomy-based finite element analysis (FEA) has the potential to reveal not only how these fields affect tumor control but also how to improve efficacy. While the automated tools for segmentation speed up the generation of FEA models, multi-step manual corrections are required, including removal of disconnected voxels, incorporation of unsegmented structures and the addition of 36 electrodes plus gel layers matching the TTFields transducers. Existing approaches are also not scalable for the high throughput analysis of large patient volumes. A semi-automated workflow was developed to prepare FEA models for TTFields mapping in the human brain. Magnetic resonance imaging (MRI) pre-processing, segmentation, electrode and gel placement, and post-processing were all automated. The material properties of each tissue were applied to their corresponding mask in silico using COMSOL Multiphysics (COMSOL, Burlington, MA, USA). The fidelity of the segmentations with and without post-processing was compared against the full semi-automated segmentation workflow approach using Dice coefficient analysis. The average relative differences for the electric fields generated by COMSOL were calculated in addition to observed differences in electric field-volume histograms. Furthermore, the mesh file formats in MPHTXT and NASTRAN were also compared using the differences in the electric field-volume histogram. The Dice coefficient was less for auto-segmentation without versus auto-segmentation with post-processing, indicating convergence on a manually corrected model. An existent but marginal relative difference of electric field maps from models with manual correction versus those without was identified, and a clear advantage of using the NASTRAN mesh file format was found. The software and workflow outlined in this article may be used to accelerate the investigation of TTFields in glioblastoma patients by facilitating the creation of FEA models derived from patient MRI datasets.
NASA Astrophysics Data System (ADS)
Costantini, Mario; Malvarosa, Fabio; Minati, Federico
2010-03-01
Phase unwrapping and integration of finite differences are key problems in several technical fields. In SAR interferometry and differential and persistent scatterers interferometry digital elevation models and displacement measurements can be obtained after unambiguously determining the phase values and reconstructing the mean velocities and elevations of the observed targets, which can be performed by integrating differential estimates of these quantities (finite differences between neighboring points).In this paper we propose a general formulation for robust and efficient integration of finite differences and phase unwrapping, which includes standard techniques methods as sub-cases. The proposed approach allows obtaining more reliable and accurate solutions by exploiting redundant differential estimates (not only between nearest neighboring points) and multi-dimensional information (e.g. multi-temporal, multi-frequency, multi-baseline observations), or external data (e.g. GPS measurements). The proposed approach requires the solution of linear or quadratic programming problems, for which computationally efficient algorithms exist.The validation tests obtained on real SAR data confirm the validity of the method, which was integrated in our production chain and successfully used also in massive productions.
Akrami, Mohammad; Qian, Zhihui; Zou, Zhemin; Howard, David; Nester, Chris J; Ren, Lei
2018-04-01
The objective of this study was to develop and validate a subject-specific framework for modelling the human foot. This was achieved by integrating medical image-based finite element modelling, individualised multi-body musculoskeletal modelling and 3D gait measurements. A 3D ankle-foot finite element model comprising all major foot structures was constructed based on MRI of one individual. A multi-body musculoskeletal model and 3D gait measurements for the same subject were used to define loading and boundary conditions. Sensitivity analyses were used to investigate the effects of key modelling parameters on model predictions. Prediction errors of average and peak plantar pressures were below 10% in all ten plantar regions at five key gait events with only one exception (lateral heel, in early stance, error of 14.44%). The sensitivity analyses results suggest that predictions of peak plantar pressures are moderately sensitive to material properties, ground reaction forces and muscle forces, and significantly sensitive to foot orientation. The maximum region-specific percentage change ratios (peak stress percentage change over parameter percentage change) were 1.935-2.258 for ground reaction forces, 1.528-2.727 for plantar flexor muscles and 4.84-11.37 for foot orientations. This strongly suggests that loading and boundary conditions need to be very carefully defined based on personalised measurement data.
Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie
2010-09-13
In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.
Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse
2008-01-01
Tapered composite poles with biomimicry features as in bamboo are a new generation of wood laminated composite poles that may some day be considered as an alternative to solid wood poles that are widely used in the transmission and telecommunication fields. Five finite element models were developed with ANSYS to predict and assess the performance of five types of...
NASA Astrophysics Data System (ADS)
Kim, S. Y.; Yoo, J. H.; Kim, H. K.; Shin, K. Y.; Yoon, S. J.
2018-06-01
In this paper, we discussed the structural behavior of bolted lap-joint connections in pultruded FRP structural members. Especially, bolted connections in pultruded FRP members are investigated for their failure modes and strength. Specimens with single and multiple bolt-holes are tested in tension under bolt-loading conditions. All of the specimens are instrumented with strain gages and the load-strain responses are monitored. The failed specimens are examined for the cracks and failure patterns. The purpose of this paper is to predict the failure strength by using the ratio of the results obtained by the experiment and the finite element analysis. In the study, several tests are conducted to determine the mechanical properties of pultruded FRP materials before the main experiment. The results are used in the finite element analysis for single and multiple bolted lap-joint specimens. The results obtained by the experiment are compared with the results obtained by the finite element analysis.
Stress analysis of rotating propellers subject to forced excitations
NASA Astrophysics Data System (ADS)
Akgun, Ulas
Turbine blades experience vibrations due to the flow disturbances. These vibrations are the leading cause for fatigue failure in turbine blades. This thesis presents the finite element analysis methods to estimate the maximum vibrational stresses of rotating structures under forced excitation. The presentation included starts with the derived equations of motion for vibration of rotating beams using energy methods under the Euler Bernoulli beam assumptions. The nonlinear large displacement formulation captures the centrifugal stiffening and gyroscopic effects. The weak form of the equations and their finite element discretization are shown. The methods implemented were used for normal modes analyses and forced vibration analyses of rotating beam structures. The prediction of peak stresses under simultaneous multi-mode excitation show that the maximum vibrational stresses estimated using the linear superposition of the stresses can greatly overestimate the stresses if the phase information due to damping (physical and gyroscopic effects) are neglected. The last section of this thesis also presents the results of a practical study that involves finite element analysis and redesign of a composite propeller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamshidian, M., E-mail: jamshidian@cc.iut.ac.ir; Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar; Thamburaja, P., E-mail: prakash.thamburaja@gmail.com
A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substratemore » and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.« less
Coupled Aerodynamic and Structural Sensitivity Analysis of a High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Mason, B. H.; Walsh, J. L.
2001-01-01
An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite-element structural analysis and computational fluid dynamics aerodynamic analysis. In a previous study, a multi-disciplinary analysis system for a high-speed civil transport was formulated to integrate a set of existing discipline analysis codes, some of them computationally intensive, This paper is an extension of the previous study, in which the sensitivity analysis for the coupled aerodynamic and structural analysis problem is formulated and implemented. Uncoupled stress sensitivities computed with a constant load vector in a commercial finite element analysis code are compared to coupled aeroelastic sensitivities computed by finite differences. The computational expense of these sensitivity calculation methods is discussed.
3D digital image correlation methods for full-field vibration measurement
NASA Astrophysics Data System (ADS)
Helfrick, Mark N.; Niezrecki, Christopher; Avitabile, Peter; Schmidt, Timothy
2011-04-01
In the area of modal test/analysis/correlation, significant effort has been expended over the past twenty years in order to make reduced models and to expand test data for correlation and eventual updating of the finite element models. This has been restricted by vibration measurements which are traditionally limited to the location of relatively few applied sensors. Advances in computers and digital imaging technology have allowed 3D digital image correlation (DIC) methods to measure the shape and deformation of a vibrating structure. This technique allows for full-field measurement of structural response, thus providing a wealth of simultaneous test data. This paper presents some preliminary results for the test/analysis/correlation of data measured using the DIC approach along with traditional accelerometers and a scanning laser vibrometer for comparison to a finite element model. The results indicate that all three approaches correlated well with the finite element model and provide validation for the DIC approach for full-field vibration measurement. Some of the advantages and limitations of the technique are presented and discussed.
Magnetic Frequency Response of HL-LHC Beam Screens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrone, M.; Martino, M.; De Maria, R.
Magnetic fields used to control particle beams in accelerators are usually controlled by regulating the electrical current of the power converters. In order to minimize lifetime degradation and ultimately luminosity loss in circular colliders, current-noise is a highly critical figure of merit of power converters, in particular for magnets located in areas with high beta-function, like the High Luminosity Large Hadron Collider (HL-LHC) insertions. However, what is directly acting upon the beam is the magnetic field and not the current of the power converter, which undergoes several frequency-dependent transformations until the desired magnetic field, seen by the beam, is obtained.more » Beam screens are very rarely considered when assessing or specifying the noise figure of merit, but their magnetic frequency response is such that they realize relatively effective low pass filtering of the magnetic field produced by the system magnet-power converter. This work aims at filling this gap by quantifying the expected impact of different beam screen layouts for the most relevant HL-LHC insertion magnets. A welldefined post-processing technique is used to derive the frequency response of the different multipoles from multi-physics Finite Element Method (FEM) simulation results. In addition, a well approximated analytical formula for the low-frequency range of multi-layered beam screens is presented.« less
NASA Astrophysics Data System (ADS)
Xia, D.; Xia, Z.
2017-12-01
The ability for the excitation system to adjust quickly plays a very important role in maintaining the normal operation of superconducting machines and power systems. However, the eddy currents in the electromagnetic shield of superconducting machines hinder the exciting magnetic field change and weaken the adjustment capability of the excitation system. To analyze this problem, a finite element calculation model for the transient electromagnetic field with moving parts is established. The effects of three different electromagnetic shields on the exciting magnetic field are analyzed using finite element method. The results show that the electromagnetic shield hinders the field changes significantly, the better its conductivity, the greater the effect on the superconducting machine excitation.
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Wang, R.; Secunde, R.
1992-01-01
A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.
Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R
2018-02-01
This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shih, D.; Yeh, G.
2009-12-01
This paper applies two numerical approximations, the particle tracking technique and Galerkin finite element method, to solve the diffusive wave equation in both one-dimensional and two-dimensional flow simulations. The finite element method is one of most commonly approaches in numerical problems. It can obtain accurate solutions, but calculation times may be rather extensive. The particle tracking technique, using either single-velocity or average-velocity tracks to efficiently perform advective transport, could use larger time-step sizes than the finite element method to significantly save computational time. Comparisons of the alternative approximations are examined in this poster. We adapt the model WASH123D to examine the work. WASH123D is an integrated multimedia, multi-processes, physics-based computational model suitable for various spatial-temporal scales, was first developed by Yeh et al., at 1998. The model has evolved in design capability and flexibility, and has been used for model calibrations and validations over the course of many years. In order to deliver a locally hydrological model in Taiwan, the Taiwan Typhoon and Flood Research Institute (TTFRI) is working with Prof. Yeh to develop next version of WASH123D. So, the work of our preliminary cooperationx is also sketched in this poster.
Mass-conservative reconstruction of Galerkin velocity fields for transport simulations
NASA Astrophysics Data System (ADS)
Scudeler, C.; Putti, M.; Paniconi, C.
2016-08-01
Accurate calculation of mass-conservative velocity fields from numerical solutions of Richards' equation is central to reliable surface-subsurface flow and transport modeling, for example in long-term tracer simulations to determine catchment residence time distributions. In this study we assess the performance of a local Larson-Niklasson (LN) post-processing procedure for reconstructing mass-conservative velocities from a linear (P1) Galerkin finite element solution of Richards' equation. This approach, originally proposed for a-posteriori error estimation, modifies the standard finite element velocities by imposing local conservation on element patches. The resulting reconstructed flow field is characterized by continuous fluxes on element edges that can be efficiently used to drive a second order finite volume advective transport model. Through a series of tests of increasing complexity that compare results from the LN scheme to those using velocity fields derived directly from the P1 Galerkin solution, we show that a locally mass-conservative velocity field is necessary to obtain accurate transport results. We also show that the accuracy of the LN reconstruction procedure is comparable to that of the inherently conservative mixed finite element approach, taken as a reference solution, but that the LN scheme has much lower computational costs. The numerical tests examine steady and unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases along with initial and boundary conditions that include dry soil infiltration, alternating solute and water injection, and seepage face outflow. Typical problems that arise with velocities derived from P1 Galerkin solutions include outgoing solute flux from no-flow boundaries, solute entrapment in zones of low hydraulic conductivity, and occurrences of anomalous sources and sinks. In addition to inducing significant mass balance errors, such manifestations often lead to oscillations in concentration values that can moreover cause the numerical solution to explode. These problems do not occur when using LN post-processed velocities.
On Finite Groups and Finite Fields.
ERIC Educational Resources Information Center
Reid, J. D.
1991-01-01
Given a multiplicative group of nonzero elements with order n, the explicit relationship between the number of cyclic subgroups of order d, which divides n, is used in the proof concerning the cyclic nature of that given multiplicative group. (JJK)
2015-12-28
Masoud Anahid, Mahendra K. Samal , and Somnath Ghosh. Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of...induced crack nucleation in polycrystals. Model. Simul. Mater. Sci. Eng., 17, 064009. 19. Anahid, M., Samal , M. K. & Ghosh, S. (2011). Dwell fatigue...Jour. Plas., 24:428–454, 2008. 4. M. Anahid, M. K. Samal , and S. Ghosh. Dwell fatigue crack nucleation model based on crystal plasticity finite
NASA Astrophysics Data System (ADS)
Bazaz Behbahani, Sanaz; Tan, Xiaobo
2017-08-01
Fish actively control their stiffness in different swimming conditions. Inspired by such an adaptive behavior, in this paper we study the design, prototyping, and dynamic modeling of compact, tunable-stiffness fins for robotic fish, where electrorheological (ER) fluid serves as the enabling element. A multi-layer composite fin with an ER fluid core is prototyped and utilized to investigate the influence of electrical field on its performance. Hamilton's principle is used to derive the dynamic equations of motion of the flexible fin, and Lighthill's large-amplitude elongated-body theory is adopted to estimate the hydrodynamic force when the fin undergoes base-actuated rotation. The dynamic equations are then discretized using the finite element method, to obtain an approximate numerical solution. Experiments are conducted on the prototyped flexible ER fluid-filled beam for parameter identification and validation of the proposed model, and for examining the effectiveness of electrically controlled stiffness tuning. In particular, it is found that the natural frequency is increased by almost 40% when the applied electric field changes from 0 to 1.5× {10}6 {{V}} {{{m}}}-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryashov, Nikolay A.; Shilnikov, Kirill E.
Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumormore » tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.« less
Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods
NASA Astrophysics Data System (ADS)
Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco
2015-04-01
The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface resistivity. The Hessian of the regularization term is used as preconditioner which requires an additional PDE solution in each iteration step. As it turns out, the relevant PDEs are naturally formulated in the finite element framework. Using the domain decomposition method provided in Escript, the inversion scheme has been parallelized for distributed memory computers with multi-core shared memory nodes. We show numerical examples from simple layered models to complex 3D models and compare with the results from other methods. The inversion scheme is furthermore tested on a field data example to characterise localised freshwater discharge in a coastal environment.. References: L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306
Demonstration Of Ultra HI-FI (UHF) Methods
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2004-01-01
Computational aero-acoustics (CAA) requires efficient, high-resolution simulation tools. Most current techniques utilize finite-difference approaches because high order accuracy is considered too difficult or expensive to achieve with finite volume or finite element methods. However, a novel finite volume approach (Ultra HI-FI or UHF) which utilizes Hermite fluxes is presented which can achieve both arbitrary accuracy and fidelity in space and time. The technique can be applied to unstructured grids with some loss of fidelity or with multi-block structured grids for maximum efficiency and resolution. In either paradigm, it is possible to resolve ultra-short waves (less than 2 PPW). This is demonstrated here by solving the 4th CAA workshop Category 1 Problem 1.
NASA Astrophysics Data System (ADS)
Raju, R. Srinivasa; Ramesh, K.
2018-05-01
The purpose of this work is to study the grid independence of finite element method on MHD Casson fluid flow past a vertically inclined plate filled in a porous medium in presence of chemical reaction, heat absorption, an external magnetic field and slip effect has been investigated. For this study of grid independence, a mathematical model is developed and analyzed by using appropriate mathematical technique, called finite element method. Grid study discussed with the help of numerical values of velocity, temperature and concentration profiles in tabular form. avourable comparisons with previously published work on various special cases of the problem are obtained.
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk
2014-07-28
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to supportmore » the design of optimised electrocaloric units and operating conditions.« less
Axisymmetric analysis of a tube-type acoustic levitator by a finite element method.
Hatano, H
1994-01-01
A finite element approach was taken for the study of the sound field and positioning force in a tube-type acoustic levitator. An axisymmetric model, where a rigid sphere is suspended on the tube axis, was introduced to model a cylindrical chamber of a levitation tube furnace. Distributions of velocity potential, magnitudes of positioning force, and resonance frequency shifts of the chamber due to the presence of the sphere were numerically estimated in relation to the sphere's position and diameter. Experiments were additionally made to compare with the simulation. The finite element method proved to be a useful tool for analyzing and designing the tube-type levitator.
Plastic mechanism of multi-pass double-roller clamping spinning for arc-shaped surface flange
NASA Astrophysics Data System (ADS)
Fan, Shuqin; Zhao, Shengdun; Zhang, Qi; Li, Yongyi
2013-11-01
Compared with the conventional single-roller spinning process, the double-roller clamping spinning(DRCS) process can effectively prevent the sheet metal surface wrinkling and improve the the production efficiency and the shape precision of final spun part. Based on ABAQUS/Explicit nonlinear finite element software, the finite element model of the multi-pass DRCS for the sheet metal is established, and the material model, the contact definition, the mesh generation, the loading trajectory and other key technical problems are solved. The simulations on the multi-pass DRCS of the ordinary Q235A steel cylindrical part with the arc-shaped surface flange are carried out. The effects of number of spinning passes on the production efficiency, the spinning moment, the shape error of the workpiece, and the wall thickness distribution of the final part are obtained. It is indicated definitely that with the increase of the number of spinning passes the geometrical precision of the spun part increases while the production efficiency reduces. Moreover, the variations of the spinning forces and the distributions of the stresses, strains, wall thickness during the multi-pass DRCS process are revealed. It is indicated that during the DRCS process the radical force is the largest, and the whole deformation area shows the tangential tensile strain and the radial compressive strain, while the thickness strain changes along the generatrix directions from the compressive strain on the outer edge of the flange to the tensile strain on the inner edge of the flange. Based on the G-CNC6135 NC lathe, the three-axis linkage computer-controlled experimental device for DRCS which is driven by the AC servo motor is developed. And then using the experimental device, the Q235A cylindrical parts with the arc-shape surface flange are formed by the DRCS. The simulation results of spun parts have good consistency with the experimental results, which verifies the feasibility of DRCS process and the reliability of the finite element model for DRCS.
Accurate evaluation of exchange fields in finite element micromagnetic solvers
NASA Astrophysics Data System (ADS)
Chang, R.; Escobar, M. A.; Li, S.; Lubarda, M. V.; Lomakin, V.
2012-04-01
Quadratic basis functions (QBFs) are implemented for solving the Landau-Lifshitz-Gilbert equation via the finite element method. This involves the introduction of a set of special testing functions compatible with the QBFs for evaluating the Laplacian operator. The results by using QBFs are significantly more accurate than those via linear basis functions. QBF approach leads to significantly more accurate results than conventionally used approaches based on linear basis functions. Importantly QBFs allow reducing the error of computing the exchange field by increasing the mesh density for structured and unstructured meshes. Numerical examples demonstrate the feasibility of the method.
Finite Element Method Applied to Fuse Protection Design
NASA Astrophysics Data System (ADS)
Li, Sen; Song, Zhiquan; Zhang, Ming; Xu, Liuwei; Li, Jinchao; Fu, Peng; Wang, Min; Dong, Lin
2014-03-01
In a poloidal field (PF) converter module, fuse protection is of great importance to ensure the safety of the thyristors. The fuse is pre-selected in a traditional way and then verified by finite element analysis. A 3D physical model is built by ANSYS software to solve the thermal-electric coupled problem of transient process in case of external fault. The result shows that this method is feasible.
Edge equilibrium code for tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xujing; Zakharov, Leonid E.; Drozdov, Vladimir V.
2014-01-15
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Dunn, Patrick
1995-01-01
A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.
Yang, R; Zelyak, O; Fallone, B G; St-Aubin, J
2018-01-30
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
NASA Astrophysics Data System (ADS)
Yang, R.; Zelyak, O.; Fallone, B. G.; St-Aubin, J.
2018-02-01
Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.
Coilgun Acceleration Model Containing Interactions Between Multiple Coils
NASA Technical Reports Server (NTRS)
Liu, Connie; Polzin, Kurt; Martin, Adam
2017-01-01
Electromagnetic (EM) accelerators have the potential to fill a performance range not currently being met by conventional chemical and electric propulsion systems by providing a specific impulse of 600-1000 seconds and a thrust-to-power ratio greater than 200 mN/kW. A propulsion system based on EM acceleration of small projectiles has the traditional advantages of using a pulsed system, including precise control over a range of thrust and power levels as well as rapid response and repetition rates. Furthermore, EM accelerators have lower power requirements than conventional electric propulsion systems since no plasma creation is necessary. A coilgun is a specific type of EM device where a high-current pulse through a coil of wire interacts with a conductive projectile via an induced magnetic field to accelerate the projectile. There are no physical or electrical connections to the projectile, which leads to less system degradation and a longer life expectancy. Multi-staging a coilgun by adding multiple turns on a single coil or on the projectile increases the inductance, thus permitting acceleration of the projectile to higher velocities. Previously, a simplified problem of modeling an inductively-coupled, single-coil coilgun using a circuit-based analysis coupled to the one-dimensional momentum equation through Lenz's law was solved; however, the analysis was only conducted on uncoupled coils. The problem is significantly more complicated when multiple, independently-powered coils simultaneously operate and interact with each other and the projectile through induced magnetic fields. This paper presents a multi-coil model developed with the magnetostatic finite element solver QuickField. In the model, mutual inductance values between pairs of conductors were found by first computing the magnetic field energy for different cases where individual coils or multiple coils carry current, then integrating over the entire finite element domain for each case, and finally using the definition of inductive energy storage to solve for the self and mutual inductance. The electric circuit model is coupled to the projectile through Lenz's law, with the coils coupled through mutual inductance but able to be independently triggered at different times to optimize the acceleration profile. This initial model to predict the behavior of a projectile's acceleration through a coupled, multi-coil coilgun increases the potential of building a highly efficient coilgun thruster with key advantages over other EM thruster systems, thus making it a promising candidate for satellite main propulsion or attitude control thrusters.
Chaudhry, Jehanzeb Hameed; Comer, Jeffrey; Aksimentiev, Aleksei; Olson, Luke N.
2013-01-01
The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-Planck equations by modeling electric field-driven transport of ions through a nanopore. We describe a novel, robust finite element solver that combines the applications of the Newton's method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to appropriately handle the drift-diffusion processes. To make direct comparison with particle-based simulations possible, our method is specifically designed to produce solutions under periodic boundary conditions and to conserve the number of ions in the solution domain. We test our finite element solver on a set of challenging numerical experiments that include calculations of the ion distribution in a volume confined between two charged plates, calculations of the ionic current though a nanopore subject to an external electric field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current. PMID:24363784
Bondy, Matthew; Altenhof, William; Chen, Xilin; Snowdon, Anne; Vrkljan, Brenda
2014-01-01
A finite element/multi-body model of a newborn infant has been developed by researchers at the University of Windsor. The geometry of this model is derived from a Nita newborn hospital training mannequin. It consists of 17 parts: eight upper and lower limb segments, the torso, head, and a seven-segment neck with seven translational and eight rotational joints. Anthropometry is consistent with hospital growth charts, measurements requested from health professionals and data from the open literature. The biomechanical properties of the model (i.e. joint stiffnesses) are implementations of data identified in the open literature. The model has been validated with respect to studies of the biomechanics of shaken baby syndrome, infant falls and the Q0 anthropomorphic testing device. A significant conclusion of this study is that the kinetics of the Q0 neck is not biofidelic. This model is currently used in an analysis of airway patency for infants in modern automotive child restraints.
NASA Astrophysics Data System (ADS)
Khebbab, Mohamed; Feliachi, Mouloud; El Hadi Latreche, Mohamed
2018-03-01
In this present paper, a simulation of eddy current non-destructive testing (EC NDT) on unidirectional carbon fiber reinforced polymer is performed; for this magneto-dynamic formulation in term of magnetic vector potential is solved using finite element heterogeneous multi-scale method (FE HMM). FE HMM has as goal to compute the homogenized solution without calculating the homogenized tensor explicitly, the solution is based only on the physical characteristic known in micro domain. This feature is well adapted to EC NDT to evaluate defect in carbon composite material in microscopic scale, where the defect detection is performed by coil impedance measurement; the measurement value is intimately linked to material characteristic in microscopic level. Based on this, our model can handle different defects such as: cracks, inclusion, internal electrical conductivity changes, heterogeneities, etc. The simulation results were compared with the solution obtained with homogenized material using mixture law, a good agreement was found.
NASA Astrophysics Data System (ADS)
Hu, Zhong; Hossan, Mohammad Robiul
2013-06-01
In this paper, short carbon fiber reinforced nylon spur gear pairs, and steel and unreinforced nylon spur gear pairs have been selected for study and comparison. A 3D finite element model was developed to simulate the multi-axial stress-strain behaviors of the gear tooth. Failure prediction has been conducted based on the different failure criteria, including Tsai-Wu criterion. The tooth roots, where has stress concentration and the potential for failure, have been carefully investigated. The modeling results show that the short carbon fiber reinforced nylon gear fabricated by properly controlled injection molding processes can provide higher strength and better performance.
Buckling Analysis of Single and Multi Delamination In Composite Beam Using Finite Element Method
NASA Astrophysics Data System (ADS)
Simanjorang, Hans Charles; Syamsudin, Hendri; Giri Suada, Muhammad
2018-04-01
Delamination is one type of imperfection in structure which found usually in the composite structure. Delamination may exist due to some factors namely in-service condition where the foreign objects hit the composite structure and creates inner defect and poor manufacturing that causes the initial imperfections. Composite structure is susceptible to the compressive loading. Compressive loading leads the instability phenomenon in the composite structure called buckling. The existence of delamination inside of the structure will cause reduction in buckling strength. This paper will explain the effect of delamination location to the buckling strength. The analysis will use the one-dimensional modelling approach using two- dimensional finite element method.
Study on Edge Thickening Flow Forming Using the Finite Elements Analysis
NASA Astrophysics Data System (ADS)
Kim, Young Jin; Park, Jin Sung; Cho, Chongdu
2011-08-01
This study is to examine the forming features of flow stress property and the incremental forming method with increasing the thickness of material. Recently, the optimized forming method is widely studied through the finite element analysis to optimize forming process conditions in many different forming fields. The optimal forming method should be adopted to meet geometric requirements as the reduction in volume per unit length of material such as forging, rolling, spinning etc. However conventional studies have not dealt with issue regarding volume per unit length. For the study we use the finite element method and model a gear part of an automotive engine flywheel as the study model, which is a weld assembly of a plate and a gear with respective different thickness. In simulation of the present study, a optimized forming condition for gear machining, considering the thickness of the outer edge of flywheel is studied using the finite elements analysis for the increasing thickness of the forming method. It is concluded from the study that forming method to increase the thickness per unit length for gear machining is reasonable using the finite elements analysis and forming test.
NASA Astrophysics Data System (ADS)
Castaldo, Raffaele; Tizzani, Pietro
2016-04-01
Many numerical models have been developed to simulate the deformation and stress changes associated to the faulting process. This aspect is an important topic in fracture mechanism. In the proposed study, we investigate the impact of the deep fault geometry and tectonic setting on the co-seismic ground deformation pattern associated to different earthquake phenomena. We exploit the impact of the structural-geological data in Finite Element environment through an optimization procedure. In this framework, we model the failure processes in a physical mechanical scenario to evaluate the kinematics associated to the Mw 6.1 L'Aquila 2009 earthquake (Italy), the Mw 5.9 Ferrara and Mw 5.8 Mirandola 2012 earthquake (Italy) and the Mw 8.3 Gorkha 2015 earthquake (Nepal). These seismic events are representative of different tectonic scenario: the normal, the reverse and thrust faulting processes, respectively. In order to simulate the kinematic of the analyzed natural phenomena, we assume, under the plane stress approximation (is defined to be a state of stress in which the normal stress, sz, and the shear stress sxz and syz, directed perpendicular to x-y plane are assumed to be zero), the linear elastic behavior of the involved media. The performed finite element procedure consist of through two stages: (i) compacting under the weight of the rock successions (gravity loading), the deformation model reaches a stable equilibrium; (ii) the co-seismic stage simulates, through a distributed slip along the active fault, the released stresses. To constrain the models solution, we exploit the DInSAR deformation velocity maps retrieved by satellite data acquired by old and new generation sensors, as ENVISAT, RADARSAT-2 and SENTINEL 1A, encompassing the studied earthquakes. More specifically, we first generate 2D several forward mechanical models, then, we compare these with the recorded ground deformation fields, in order to select the best boundaries setting and parameters. Finally, the performed multi-parametric finite element models allow us to verify the effect of the crustal structures on the ground deformation and evaluate the stress-drop associated to the studied earthquakes on the surrounding structures.
NASA Astrophysics Data System (ADS)
Sivasubramaniam, Kiruba
This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is explored and implemented.
Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics
Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.; ...
2016-04-27
We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less
Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.
We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less
A combined finite element-boundary element formulation for solution of axially symmetric bodies
NASA Technical Reports Server (NTRS)
Collins, Jeffrey D.; Volakis, John L.
1991-01-01
A new method is presented for the computation of electromagnetic scattering from axially symmetric bodies. To allow the simulation of inhomogeneous cross sections, the method combines the finite element and boundary element techniques. Interior to a fictitious surface enclosing the scattering body, the finite element method is used which results in a sparce submatrix, whereas along the enclosure the Stratton-Chu integral equation is enforced. By choosing the fictitious enclosure to be a right circular cylinder, most of the resulting boundary integrals are convolutional and may therefore be evaluated via the FFT with which the system is iteratively solved. In view of the sparce matrix associated with the interior fields, this reduces the storage requirement of the entire system to O(N) making the method attractive for large scale computations. The details of the corresponding formulation and its numerical implementation are described.
Tahmasebibirgani, Mohammad Javad; Maskani, Reza; Behrooz, Mohammad Ali; Zabihzadeh, Mansour; Shahbazian, Hojatollah; Fatahiasl, Jafar; Chegeni, Nahid
2017-01-01
Introduction In radiotherapy, megaelectron volt (MeV) electrons are employed for treatment of superficial cancers. Magnetic fields can be used for deflection and deformation of the electron flow. A magnetic field is composed of non-uniform permanent magnets. The primary electrons are not mono-energetic and completely parallel. Calculation of electron beam deflection requires using complex mathematical methods. In this study, a device was made to apply a magnetic field to an electron beam and the path of electrons was simulated in the magnetic field using finite element method. Methods A mini-applicator equipped with two neodymium permanent magnets was designed that enables tuning the distance between magnets. This device was placed in a standard applicator of Varian 2100 CD linear accelerator. The mini-applicator was simulated in CST Studio finite element software. Deflection angle and displacement of the electron beam was calculated after passing through the magnetic field. By determining a 2 to 5cm distance between two poles, various intensities of transverse magnetic field was created. The accelerator head was turned so that the deflected electrons became vertical to the water surface. To measure the displacement of the electron beam, EBT2 GafChromic films were employed. After being exposed, the films were scanned using HP G3010 reflection scanner and their optical density was extracted using programming in MATLAB environment. Displacement of the electron beam was compared with results of simulation after applying the magnetic field. Results Simulation results of the magnetic field showed good agreement with measured values. Maximum deflection angle for a 12 MeV beam was 32.9° and minimum deflection for 15 MeV was 12.1°. Measurement with the film showed precision of simulation in predicting the amount of displacement in the electron beam. Conclusion A magnetic mini-applicator was made and simulated using finite element method. Deflection angle and displacement of electron beam were calculated. With the method used in this study, a good prediction of the path of high-energy electrons was made before they entered the body. PMID:28607652
3D Finite Element Analysis of Particle-Reinforced Aluminum
NASA Technical Reports Server (NTRS)
Shen, H.; Lissenden, C. J.
2002-01-01
Deformation in particle-reinforced aluminum has been simulated using three distinct types of finite element model: a three-dimensional repeating unit cell, a three-dimensional multi-particle model, and two-dimensional multi-particle models. The repeating unit cell model represents a fictitious periodic cubic array of particles. The 3D multi-particle (3D-MP) model represents randomly placed and oriented particles. The 2D generalized plane strain multi-particle models were obtained from planar sections through the 3D-MP model. These models were used to study the tensile macroscopic stress-strain response and the associated stress and strain distributions in an elastoplastic matrix. The results indicate that the 2D model having a particle area fraction equal to the particle representative volume fraction of the 3D models predicted the same macroscopic stress-strain response as the 3D models. However, there are fluctuations in the particle area fraction in a representative volume element. As expected, predictions from 2D models having different particle area fractions do not agree with predictions from 3D models. More importantly, it was found that the microscopic stress and strain distributions from the 2D models do not agree with those from the 3D-MP model. Specifically, the plastic strain distribution predicted by the 2D model is banded along lines inclined at 45 deg from the loading axis while the 3D model prediction is not. Additionally, the triaxial stress and maximum principal stress distributions predicted by 2D and 3D models do not agree. Thus, it appears necessary to use a multi-particle 3D model to accurately predict material responses that depend on local effects, such as strain-to-failure, fracture toughness, and fatigue life.
A three-dimensional finite element model of near-field scanning microwave microscopy
NASA Astrophysics Data System (ADS)
Balusek, Curtis; Friedman, Barry; Luna, Darwin; Oetiker, Brian; Babajanyan, Arsen; Lee, Kiejin
2012-10-01
A three-dimensional finite element model of an experimental near-field scanning microwave microscope (NSMM) has been developed and compared to experiment on non conducting samples. The microwave reflection coefficient S11 is calculated as a function of frequency with no adjustable parameters. There is qualitative agreement with experiment in that the resonant frequency can show a sizable increase with sample dielectric constant; a result that is not obtained with a two-dimensional model. The most realistic model shows a semi-quantitative agreement with experiment. The effect of different sample thicknesses and varying tip sample distances is investigated numerically and shown to effect NSMM performance in a way consistent with experiment. Visualization of the electric field indicates that the field is primarily determined by the shape of the coupling hooks.
Coupled BE/FE/BE approach for scattering from fluid-filled structures
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.
1990-01-01
NASHUA is a coupled finite element/boundary element capability built around NASTRAN for calculating the low frequency far-field acoustic pressure field radiated or scattered by an arbitrary, submerged, three-dimensional, elastic structure subjected to either internal time-harmonic mechanical loads or external time-harmonic incident loadings. Described here are the formulation and use of NASHUA for solving such structural acoustics problems when the structure is fluid-filled. NASTRAN is used to generate the structural finite element model and to perform most of the required matrix operations. Both fluid domains are modeled using the boundary element capability in NASHUA, whose matrix formulation (and the associated NASTRAN DMAP) for evacuated structures can be used with suitable interpretation of the matrix definitions. After computing surface pressures and normal velocities, far-field pressures are evaluated using an asymptotic form of the Helmholtz exterior integral equation. The proposed numerical approach is validated by comparing the acoustic field scattered from a submerged fluid-filled spherical thin shell to that obtained with a series solution, which is also derived here.
NASA Astrophysics Data System (ADS)
Yamazaki, Katsumi
In this paper, we propose a method to calculate the equivalent circuit parameters of interior permanent magnet motors including iron loss resistance using the finite element method. First, the finite element analysis considering harmonics and magnetic saturation is carried out to obtain time variations of magnetic fields in the stator and the rotor core. Second, the iron losses of the stator and the rotor are calculated from the results of the finite element analysis with the considerations of harmonic eddy current losses and the minor hysteresis losses of the core. As a result, we obtain the equivalent circuit parameters i.e. the d-q axis inductance and the iron loss resistance as functions of operating condition of the motor. The proposed method is applied to an interior permanent magnet motor to calculate the characteristics based on the equivalent circuit obtained by the proposed method. The calculated results are compared with the experimental results to verify the accuracy.
Coupled thermomechanical behavior of graphene using the spring-based finite element approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgantzinos, S. K., E-mail: sgeor@mech.upatras.gr; Anifantis, N. K., E-mail: nanif@mech.upatras.gr; Giannopoulos, G. I., E-mail: ggiannopoulos@teiwest.gr
The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations aremore » analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.« less
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Workshop on Computational Structural Mechanics 1987, part 3
NASA Technical Reports Server (NTRS)
Sykes, Nancy P. (Editor)
1989-01-01
Computational Structural Mechanics (CSM) topics are explored. Algorithms and software for nonlinear structural dynamics, concurrent algorithms for transient finite element analysis, computational methods and software systems for dynamics and control of large space structures, and the use of multi-grid for structural analysis are discussed.
Edge Equilibrium Code (EEC) For Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xujling
2014-02-24
The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids
Development and applications of a flat triangular element for thin laminated shells
NASA Astrophysics Data System (ADS)
Mohan, P.
Finite element analysis of thin laminated shells using a three-noded flat triangular shell element is presented. The flat shell element is obtained by combining the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element similar to the Allman element, but derived from the Linear Strain Triangular (LST) element. The major drawback of the DKT plate bending element is that the transverse displacement is not explicitly defined within the interior of the element. In the present research, free vibration analysis is performed both by using a lumped mass matrix and a so called consistent mass matrix, obtained by borrowing shape functions from an existing element, in order to compare the performance of the two methods. Several numerical examples are solved to demonstrate the accuracy of the formulation for both small and large rotation analysis of laminated plates and shells. The results are compared with those available in the existing literature and those obtained using the commercial finite element package ABAQUS and are found to be in good agreement. The element is employed for two main applications involving large flexible structures. The first application is the control of thermal deformations of a spherical mirror segment, which is a segment of a multi-segmented primary mirror used in a space telescope. The feasibility of controlling the surface distortions of the mirror segment due to arbitrary thermal fields, using discrete and distributed actuators, is studied. The second application is the analysis of an inflatable structure, being considered by the US Army for housing vehicles and personnel. The updated Lagrangian formulation of the flat shell element has been developed primarily for the nonlinear analysis of the tent structure, since such a structure is expected to undergo large deformations and rotations under the action of environmental loads like the wind and snow loads. The follower effects of the pressure load have been included in the updated Lagrangian formulation of the flat shell element and have been validated using standard examples in the literature involving deformation-dependent pressure loads. The element can be used to obtain the nonlinear response of the tent structure under wind and snow loads. (Abstract shortened by UMI.)
LATDYN - PROGRAM FOR SIMULATION OF LARGE ANGLE TRANSIENT DYNAMICS OF FLEXIBLE AND RIGID STRUCTURES
NASA Technical Reports Server (NTRS)
Housner, J. M.
1994-01-01
LATDYN is a computer code for modeling the Large Angle Transient DYNamics of flexible articulating structures and mechanisms involving joints about which members rotate through large angles. LATDYN extends and brings together some of the aspects of Finite Element Structural Analysis, Multi-Body Dynamics, and Control System Analysis; three disciplines that have been historically separate. It combines significant portions of their distinct capabilities into one single analysis tool. The finite element formulation for flexible bodies in LATDYN extends the conventional finite element formulation by using a convected coordinate system for constructing the equation of motion. LATDYN's formulation allows for large displacements and rotations of finite elements subject to the restriction that deformations within each are small. Also, the finite element approach implemented in LATDYN provides a convergent path for checking solutions simply by increasing mesh density. For rigid bodies and joints LATDYN borrows extensively from methodology used in multi-body dynamics where rigid bodies may be defined and connected together through joints (hinges, ball, universal, sliders, etc.). Joints may be modeled either by constraints or by adding joint degrees of freedom. To eliminate error brought about by the separation of structural analysis and control analysis, LATDYN provides symbolic capabilities for modeling control systems which are integrated with the structural dynamic analysis itself. Its command language contains syntactical structures which perform symbolic operations which are also interfaced directly with the finite element structural model, bypassing the modal approximation. Thus, when the dynamic equations representing the structural model are integrated, the equations representing the control system are integrated along with them as a coupled system. This procedure also has the side benefit of enabling a dramatic simplification of the user interface for modeling control systems. Three FORTRAN computer programs, the LATDYN Program, the Preprocessor, and the Postprocessor, make up the collective LATDYN System. The Preprocessor translates user commands into a form which can be used while the LATDYN program provides the computational core. The Postprocessor allows the user to interactively plot and manage a database of LATDYN transient analysis results. It also includes special facilities for modeling control systems and for programming changes to the model which take place during analysis sequence. The documentation includes a Demonstration Problem Manual for the evaluation and verification of results and a Postprocessor guide. Because the program should be viewed as a byproduct of research on technology development, LATDYN's scope is limited. It does not have a wide library of finite elements, and 3-D Graphics are not available. Nevertheless, it does have a measure of "user friendliness". The LATDYN program was developed over a period of several years and was implemented on a CDC NOS/VE & Convex Unix computer. It is written in FORTRAN 77 and has a virtual memory requirement of 1.46 MB. The program was validated on a DEC MICROVAX operating under VMS 5.2.
Van Theemsche, Achim; Deconinck, Johan; Van den Bossche, Bart; Bortels, Leslie
2002-10-01
A new more general numerical model for the simulation of electrokinetic flow in rectangular microchannels is presented. The model is based on the dilute solution model and the Navier-Stokes equations and has been implemented in a finite-element-based C++ code. The model includes the ion distribution in the Helmholtz double layer and considers only one single electrical' potential field variable throughout the domain. On a charged surface(s) the surface charge density, which is proportional to the local electrical field, is imposed. The zeta potential results, then, from this boundary condition and depends on concentrations, temperature, ion valence, molecular diffusion coefficients, and geometric conditions. Validation cases show that the model predicts accurately known analytical results, also for geometries having dimensions comparable to the Debye length. As a final study, the electro-osmotic flow in a controlled cross channel is investigated.
Design and analysis of magneto rheological fluid brake for an all terrain vehicle
NASA Astrophysics Data System (ADS)
George, Luckachan K.; Tamilarasan, N.; Thirumalini, S.
2018-02-01
This work presents an optimised design for a magneto rheological fluid brake for all terrain vehicles. The actuator consists of a disk which is immersed in the magneto rheological fluid surrounded by an electromagnet. The braking torque is controlled by varying the DC current applied to the electromagnet. In the presence of a magnetic field, the magneto rheological fluid particle aligns in a chain like structure, thus increasing the viscosity. The shear stress generated causes friction in the surfaces of the rotating disk. Electromagnetic analysis of the proposed system is carried out using finite element based COMSOL multi-physics software and the amount of magnetic field generated is calculated with the help of COMSOL. The geometry is optimised and performance of the system in terms of braking torque is carried out. Proposed design reveals better performance in terms of braking torque from the existing literature.
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)
2002-01-01
Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.
Stress concentration investigations using NASTRAN
NASA Technical Reports Server (NTRS)
Gillcrist, M. C.; Parnell, L. A.
1986-01-01
Parametic investigations are performed using several two dimensional finite element formulations to determine their suitability for use in predicting extremum stresses in marine propellers. Comparisons are made of two NASTRAN elements (CTRIM6 and CTRAIA2) wherein elasticity properties have been modified to yield plane strain results. The accuracy of the elements is investigated by comparing finite element stress predictions with experimentally determined stresses in two classical cases: (1) tension in a flat plate with a circular hole; and (2) a filleted flat bar subjected to in-plane bending. The CTRIA2 element is found to provide good results. The displacement field from a three dimensional finite element model of a representative marine propeller is used as the boundary condition for the two dimensional plane strain investigations of stresses in the propeller blade and fillet. Stress predictions from the three dimensional analysis are compared with those from the two dimensional models. The validity of the plane strain modifications to the NASTRAN element is checked by comparing the modified CTRIA2 element stress predictions with those of the ABAQUS plane strain element, CPE4.
Experimental analysis and simulation calculation of the inductances of loosely coupled transformer
NASA Astrophysics Data System (ADS)
Kerui, Chen; Yang, Han; Yan, Zhang; Nannan, Gao; Ying, Pei; Hongbo, Li; Pei, Li; Liangfeng, Guo
2017-11-01
The experimental design of iron-core wireless power transmission system is designed, and an experimental model of loosely coupled transformer is built. Measuring the air gap on both sides of the transformer 15mm inductor under the parameters. The feasibility and feasibility of using the finite element method to calculate the coil inductance parameters of the loosely coupled transformer are analyzed. The system was modeled by ANSYS, and the magnetic field was calculated by finite element method, and the inductance parameters were calculated. The finite element method is used to calculate the inductive parameters of the loosely coupled transformer, and the basis for the accurate compensation of the capacitance of the wireless power transmission system is established.
NASA Astrophysics Data System (ADS)
Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei
2018-04-01
A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.
A fast finite-difference algorithm for topology optimization of permanent magnets
NASA Astrophysics Data System (ADS)
Abert, Claas; Huber, Christian; Bruckner, Florian; Vogler, Christoph; Wautischer, Gregor; Suess, Dieter
2017-09-01
We present a finite-difference method for the topology optimization of permanent magnets that is based on the fast-Fourier-transform (FFT) accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparison to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.
Numerical investigation of diffraction of acoustic waves by phononic crystals
NASA Astrophysics Data System (ADS)
Moiseyenko, Rayisa P.; Declercq, Nico F.; Laude, Vincent
2012-05-01
Diffraction as well as transmission of acoustic waves by two-dimensional phononic crystals (PCs) composed of steel rods in water are investigated in this paper. The finite element simulations were performed in order to compute pressure fields generated by a line source that are incident on a finite size PC. Such field maps are analyzed based on the complex band structure for the infinite periodic PC. Finite size computations indicate that the exponential decrease of the transmission at deaf frequencies is much stronger than that in Bragg band gaps.
Theoretical study on surface plasmon properties of gold nanostars
NASA Astrophysics Data System (ADS)
Shan, Feng; Zhang, Tong
2018-03-01
With the rapid development of nanotechnology, the surface plasmon properties of metal nanostructures have become the focus of research. In this paper, a multi-tip gold nanostars (GNSs) structure is designed theoretically, and its surface plasmon properties are simulated by using the finite element method (FEM), which is practical and versatile. Compared with the traditional spherical and triangular plate particles, the results show that the tip structure of the GNSs has a stronger hot spots effect, resulting in greater local field enhancement properties. The relationship between the structure parameters of GNSs and their resonance peaks was also studied. The results indicate that the resonance peaks of GNSs depend strongly on the size, spacing between two GNSs, quantity and refractive index of the GNSs.
High dimensional model representation method for fuzzy structural dynamics
NASA Astrophysics Data System (ADS)
Adhikari, S.; Chowdhury, R.; Friswell, M. I.
2011-03-01
Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.
Nonlinear thermo-mechanical analysis of stiffened composite laminates by a new finite element
NASA Astrophysics Data System (ADS)
Barut, Atila
A new stiffened shell element combining shallow beam and shallow shell elements is developed for geometrically nonlinear analysis of stiffened composite laminates under thermal and/or mechanical loading. The formulation of this element is based on the principal of virtual displacements in conjunction with the co-rotational form of the total Lagrangian description of motion. In the finite element formulation, both the shell and the beam (stiffener) elements account for transverse shear deformations and material anisotropy. The cross-section of the stiffener (beam) can be arbitrary in geometry and lamination. In order to combine the stiffener with the shell element, constraint conditions are applied to the displacement and rotation fields of the stiffener. These constraint conditions ensure that the cross-section of the stiffener remains co-planar with the shell section after deformation. The resulting expressions for the displacement and rotation fields of the stiffener involve only the nodal unknowns of the shell element, thus reducing the total number of degrees of freedom. Also, the discretization of the entire stiffened shell structure becomes more flexible.
Thermal Transport Model for Heat Sink Design
NASA Technical Reports Server (NTRS)
Chervenak, James A.; Kelley, Richard L.; Brown, Ari D.; Smith, Stephen J.; Kilbourne, Caroline a.
2009-01-01
A document discusses the development of a finite element model for describing thermal transport through microcalorimeter arrays in order to assist in heat-sinking design. A fabricated multi-absorber transition edge sensor (PoST) was designed in order to reduce device wiring density by a factor of four. The finite element model consists of breaking the microcalorimeter array into separate elements, including the transition edge sensor (TES) and the silicon substrate on which the sensor is deposited. Each element is then broken up into subelements, whose surface area subtends 10 10 microns. The heat capacity per unit temperature, thermal conductance, and thermal diffusivity of each subelement are the model inputs, as are the temperatures of each subelement. Numerical integration using the Finite in Time Centered in Space algorithm of the thermal diffusion equation is then performed in order to obtain a temporal evolution of the subelement temperature. Thermal transport across interfaces is modeled using a thermal boundary resistance obtained using the acoustic mismatch model. The document concludes with a discussion of the PoST fabrication. PoSTs are novel because they enable incident x-ray position sensitivity with good energy resolution and low wiring density.
NASA Astrophysics Data System (ADS)
Safdernejad, Morteza S.; Karpenko, Oleksii; Ye, Chaofeng; Udpa, Lalita; Udpa, Satish
2016-02-01
The advent of Giant Magneto-Resistive (GMR) technology permits development of novel highly sensitive array probes for Eddy Current (EC) inspection of multi-layer riveted structures. Multi-frequency GMR measurements with different EC pene-tration depths show promise for detection of bottom layer notches at fastener sites. However, the distortion of the induced magnetic field due to flaws is dominated by the strong fastener signal, which makes defect detection and classification a challenging prob-lem. This issue is more pronounced for ferromagnetic fasteners that concentrate most of the magnetic flux. In the present work, a novel multi-frequency mixing algorithm is proposed to suppress rivet signal response and enhance defect detection capability of the GMR array probe. The algorithm is baseline-free and does not require any assumptions about the sample geometry being inspected. Fastener signal suppression is based upon the random sample consensus (RANSAC) method, which iteratively estimates parameters of a mathematical model from a set of observed data with outliers. Bottom layer defects at fastener site are simulated as EDM notches of different length. Performance of the proposed multi-frequency mixing approach is evaluated on finite element data and experimental GMR measurements obtained with unidirectional planar current excitation. Initial results are promising demonstrating the feasibility of the approach.
Yoshikawa, Masanobu; Kosaka, Kenichi; Seki, Hirohumi; Kimoto, Tsunenobu
2016-07-01
We measured the depolarized and polarized Raman spectra of a 4H-SiC metal-oxide-semiconductor field-effect transistor (MOSFET) and found that compressive stress of approximately 20 MPa occurs under the source and gate electrodes and tensile stress of approximately 10 MPa occurs between the source and gate electrodes. The experimental result was in close agreement with the result obtained by calculation using the finite element method (FEM). A combination of Raman spectroscopy and FEM provides much data on the stresses in 4H-SiC MOSFET. © The Author(s) 2016.
Finite element design for the HPHT synthesis of diamond
NASA Astrophysics Data System (ADS)
Li, Rui; Ding, Mingming; Shi, Tongfei
2018-06-01
The finite element method is used to simulate the steady-state temperature field in diamond synthesis cell. The 2D and 3D models of the China-type cubic press with large deformation of the synthesis cell was established successfully, which has been verified by situ measurements of synthesis cell. The assembly design, component design and process design for the HPHT synthesis of diamond based on the finite element simulation were presented one by one. The temperature field in a high-pressure synthetic cavity for diamond production is optimized by adjusting the cavity assembly. A series of analysis about the influence of the pressure media parameters on the temperature field are examined through adjusting the model parameters. Furthermore, the formation mechanism of wasteland was studied in detail. It indicates that the wasteland is inevitably exists in the synthesis sample, the distribution of growth region of the diamond with hex-octahedral is move to the center of the synthesis sample from near the heater as the power increasing, and the growth conditions of high quality diamond is locating at the center of the synthesis sample. These works can offer suggestion and advice to the development and optimization of a diamond production process.
NASA Technical Reports Server (NTRS)
Tessler, Alexander; DiSciuva, Marco; Gherlone, marco
2010-01-01
The Refined Zigzag Theory (RZT) for homogeneous, laminated composite, and sandwich plates is presented from a multi-scale formalism starting with the inplane displacement field expressed as a superposition of coarse and fine contributions. The coarse kinematic field is that of first-order shear-deformation theory, whereas the fine kinematic field has a piecewise-linear zigzag distribution through the thickness. The condition of limiting homogeneity of transverse-shear properties is proposed and yields four distinct sets of zigzag functions. By examining elastostatic solutions for highly heterogeneous sandwich plates, the best-performing zigzag functions are identified. The RZT predictive capabilities to model homogeneous and highly heterogeneous sandwich plates are critically assessed, demonstrating its superior efficiency, accuracy ; and a wide range of applicability. The present theory, which is derived from the virtual work principle, is well-suited for developing computationally efficient CO-continuous finite elements, and is thus appropriate for the analysis and design of high-performance load-bearing aerospace structures.
Modelling bucket excavation by finite element
NASA Astrophysics Data System (ADS)
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the rectangular profile appears the "clogging" phenomenon of the cutting edge and at the polygonal profile the point of application remains constant without going inside. From the finite element method done in this paper it can be concluded that the polygonal profiles made of dihedral angles are much more durable and asymmetric cups tend to have uniform tension along the entire perimeter.
NASA Technical Reports Server (NTRS)
Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander
2011-01-01
A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.
Reconstructing photorealistic 3D models from image sequence using domain decomposition method
NASA Astrophysics Data System (ADS)
Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei
2009-11-01
In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Structured light and photogrammetry are two main methods to acquire 3D information, and both are expensive. Even if these expensive instruments are used, photorealistic 3D models are seldom available. In this paper, a new method to reconstruction photorealistic 3D models using a single camera is proposed. A square plate glued with coded marks is used to place the objects, and a sequence of about 20 images is taken. From the coded marks, the images are calibrated, and a snake algorithm is used to segment object from the background. A rough 3d model is obtained using shape from silhouettes algorithm. The silhouettes are decomposed into a combination of convex curves, which are used to partition the rough 3d model into some convex mesh patches. For each patch, the multi-view photo consistency constraints and smooth regulations are expressed as a finite element formulation, which can be resolved locally, and the information can be exchanged along the patches boundaries. The rough model is deformed into a fine 3d model through such a domain decomposition finite element method. The textures are assigned to each element mesh, and a photorealistic 3D model is got finally. A toy pig is used to verify the algorithm, and the result is exciting.
Three-dimensional eddy current solution of a polyphase machine test model (abstract)
NASA Astrophysics Data System (ADS)
Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado
1994-05-01
This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the current redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes eddy currents to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced currents are calculated and compared with the values found from the analytical solution. The distribution of the eddy currents is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.
Analysis and Calculation of the Fluid Flow and the Temperature Field by Finite Element Modeling
NASA Astrophysics Data System (ADS)
Dhamodaran, M.; Jegadeesan, S.; Kumar, R. Praveen
2018-04-01
This paper presents a fundamental and accurate approach to study numerical analysis of fluid flow and heat transfer inside a channel. In this study, the Finite Element Method is used to analyze the channel, which is divided into small subsections. The small subsections are discretized using higher number of domain elements and the corresponding number of nodes. MATLAB codes are developed to be used in the analysis. Simulation results showed that the analyses of fluid flow and temperature are influenced significantly by the changing entrance velocity. Also, there is an apparent effect on the temperature fields due to the presence of an energy source in the middle of the domain. In this paper, the characteristics of flow analysis and heat analysis in a channel have been investigated.
A Finite Element Method for Simulation of Compressible Cavitating Flows
NASA Astrophysics Data System (ADS)
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad
2016-11-01
This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.
Finite element based contact analysis of radio frequency MEMs switch membrane surfaces
NASA Astrophysics Data System (ADS)
Liu, Jin-Ya; Chalivendra, Vijaya; Huang, Wenzhen
2017-10-01
Finite element simulations were performed to determine the contact behavior of radio frequency (RF) micro-electro-mechanical (MEM) switch contact surfaces under monotonic and cyclic loading conditions. Atomic force microscopy (AFM) was used to capture the topography of RF-MEM switch membranes and later they were analyzed for multi-scale regular as well as fractal structures. Frictionless, non-adhesive contact 3D finite element analysis was carried out at different length scales to investigate the contact behavior of the regular-fractal surface using an elasto-plastic material model. Dominant micro-scale regular patterns were found to significantly change the contact behavior. Contact areas mainly cluster around the regular pattern. The contribution from the fractal structure is not significant. Under cyclic loading conditions, plastic deformation in the 1st loading/unloading cycle smooth the surface. The subsequent repetitive loading/unloading cycles undergo elastic contact without changing the morphology of the contacting surfaces. The work is expected to shed light on the quality of the switch surface contact as well as the optimum design of RF MEM switch surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yidong; Andrs, David; Martineau, Richard Charles
This document presents the theoretical background for a hybrid finite-element / finite-volume fluid flow solver, namely BIGHORN, based on the Multiphysics Object Oriented Simulation Environment (MOOSE) computational framework developed at the Idaho National Laboratory (INL). An overview of the numerical methods used in BIGHORN are discussed and followed by a presentation of the formulation details. The document begins with the governing equations for the compressible fluid flow, with an outline of the requisite constitutive relations. A second-order finite volume method used for solving the compressible fluid flow problems is presented next. A Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) formulation for timemore » integration is also presented. The multi-fluid formulation is being developed. Although multi-fluid is not fully-developed, BIGHORN has been designed to handle multi-fluid problems. Due to the flexibility in the underlying MOOSE framework, BIGHORN is quite extensible, and can accommodate both multi-species and multi-phase formulations. This document also presents a suite of verification & validation benchmark test problems for BIGHORN. The intent for this suite of problems is to provide baseline comparison data that demonstrates the performance of the BIGHORN solution methods on problems that vary in complexity from laminar to turbulent flows. Wherever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using BIGHORN.« less
CELFE/NASTRAN Code for the Analysis of Structures Subjected to High Velocity Impact
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1978-01-01
CELFE (Coupled Eulerian Lagrangian Finite Element)/NASTRAN Code three-dimensional finite element code has the capability for analyzing of structures subjected to high velocity impact. The local response is predicted by CELFE and, for large problems, the far-field impact response is predicted by NASTRAN. The coupling of the CELFE code with NASTRAN (CELFE/NASTRAN code) and the application of the code to selected three-dimensional high velocity impact problems are described.
Application of finite element method in mechanical design of automotive parts
NASA Astrophysics Data System (ADS)
Gu, Suohai
2017-09-01
As an effective numerical analysis method, finite element method (FEM) has been widely used in mechanical design and other fields. In this paper, the development of FEM is introduced firstly, then the specific steps of FEM applications are illustrated and the difficulties of FEM are summarized in detail. Finally, applications of FEM in automobile components such as automobile wheel, steel plate spring, body frame, shaft parts and so on are summarized, compared with related research experiments.
NASA Astrophysics Data System (ADS)
Kang, Yeon June
In this thesis an elastic-absorption finite element model of isotropic elastic porous noise control materials is first presented as a means of investigating the effects of finite dimension and edge constraints on the sound absorption by, and transmission through, layers of acoustical foams. Methods for coupling foam finite elements with conventional acoustic and structural finite elements are also described. The foam finite element model based on the Biot theory allows for the simultaneous propagation of the three types of waves known to exist in an elastic porous material. Various sets of boundary conditions appropriate for modeling open, membrane-sealed and panel-bonded foam surfaces are formulated and described. Good agreement was achieved when finite element predictions were compared with previously established analytical results for the plane wave absorption coefficient and transmission loss in the case of wave propagation both in foam-filled waveguides and through foam-lined double panel structures of infinite lateral extent. The primary effect of the edge constraints of a foam layer was found to be an acoustical stiffening of the foam. Constraining the ends of the facing panels in foam-lined double panel systems was also found to increase the sound transmission loss significantly in the low frequency range. In addition, a theoretical multi-dimensional model for wave propagation in anisotropic elastic porous materials was developed to study the effect of anisotropy on the sound transmission of foam-lined noise control treatments. The predictions of the theoretical anisotropic model have been compared with experimental measurements for the random incidence sound transmission through double panel structure lined with polyimide foam. The predictions were made by using the measured and estimated macroscopic physical parameters of polyimide foam samples which were known to be anisotropic. It has been found that the macroscopic physical parameters in the direction normal to the face of foam layer play the principal role in determining the acoustical behavior of polyimide foam layers, although more satisfactory agreement between experimental measurements and theoretical predictions of transmission loss is obtained when the anisotropic properties are allowed in the model.
Finite Element Based HWB Centerbody Structural Optimization and Weight Prediction
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2012-01-01
This paper describes a scalable structural model suitable for Hybrid Wing Body (HWB) centerbody analysis and optimization. The geometry of the centerbody and primary wing structure is based on a Vehicle Sketch Pad (VSP) surface model of the aircraft and a FLOPS compatible parameterization of the centerbody. Structural analysis, optimization, and weight calculation are based on a Nastran finite element model of the primary HWB structural components, featuring centerbody, mid section, and outboard wing. Different centerbody designs like single bay or multi-bay options are analyzed and weight calculations are compared to current FLOPS results. For proper structural sizing and weight estimation, internal pressure and maneuver flight loads are applied. Results are presented for aerodynamic loads, deformations, and centerbody weight.
NASA Astrophysics Data System (ADS)
Liu, Shichen; Lang, Lihui; Guan, Shiwei; Alexandrov, Seigei; Zeng, Yipan
2018-04-01
Fiber-metal laminates (FMLs) such as Kevlar reinforced aluminum laminate (ARALL), Carbon reinforced aluminum laminate (CARALL), and Glass reinforced aluminum laminate (GLARE) offer great potential for weight reduction applications in automobile and aerospace construction. In order to investigate the feasibility for utilizing such materials in the form of laminates, sheet hydroforming technology are studied under the condition of uniform blank holder force for three-layered aluminum and aluminum-composite laminates using orthogonal carbon and Kevlar as well as glass fiber in the middle. The experimental results validate the finite element results and they exhibited that the forming limit of glass fiber in the middle is the highest among the studied materials, while carbon fiber material performs the worst. Furthermore, the crack modes are different for the three kinds of fiber materials investigated in the research. This study provides fundamental guidance for the selection of multi-layer sheet materials in the future manufacturing field.
Multi-harmonic quantum dot optomechanics in fused LiNbO3-(Al)GaAs hybrids
NASA Astrophysics Data System (ADS)
Nysten, Emeline D. S.; Huo, Yong Heng; Yu, Hailong; Song, Guo Feng; Rastelli, Armando; Krenner, Hubert J.
2017-11-01
We fabricated an acousto-optic semiconductor hybrid device for strong optomechanical coupling of individual quantum emitters and a surface acoustic wave. Our device comprises of a surface acoustic wave chip made from highly piezoelectric LiNbO3 and a GaAs-based semiconductor membrane with an embedded layer of quantum dots. Employing multi-harmonic transducers, we generated sound waves on LiNbO3 over a wide range of radio frequencies. We monitored their coupling to and propagation across the semiconductor membrane, both in the electrical and optical domain. We demonstrate the enhanced optomechanical tuning of the embedded quantum dots with increasing frequencies. This effect was verified by finite element modelling of our device geometry and attributed to an increased localization of the acoustic field within the semiconductor membrane. For moderately high acoustic frequencies, our simulations predict strong optomechanical coupling, making our hybrid device ideally suited for applications in semiconductor based quantum acoustics.
NASA Astrophysics Data System (ADS)
Wu, F.; Wu, T.-H.; Li, X.-Y.
2018-03-01
This article aims to present a systematic indentation theory on a half-space of multi-ferroic composite medium with transverse isotropy. The effect of sliding friction between the indenter and substrate is taken into account. The cylindrical flat-ended indenter is assumed to be electrically/magnetically conducting or insulating, which leads to four sets of mixed boundary-value problems. The indentation forces in the normal and tangential directions are related to the Coulomb friction law. For each case, the integral equations governing the contact behavior are developed by means of the generalized method of potential theory, and the corresponding coupling field is obtained in terms of elementary functions. The effect of sliding on the contact behavior is investigated. Finite element method (FEM) in the context of magneto-electro-elasticity is developed to discuss the validity of the analytical solutions. The obtained analytical solutions may serve as benchmarks to various simplified analyses and numerical codes and as a guide for future experimental studies.
Multiscale Concrete Modeling of Aging Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammi, Yousseff; Gullett, Philipp; Horstemeyer, Mark F.
In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Ginermore » et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].« less
The Overshoot Phenomenon in Geodynamics Codes
NASA Astrophysics Data System (ADS)
Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.
2013-12-01
The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection simulation implemented in FEniCS that investigates the effect of using DG elements in reducing the overshoot problem.
Haueisen, J; Ramon, C; Eiselt, M; Brauer, H; Nowak, H
1997-08-01
Modeling in magnetoencephalography (MEG) and electroencephalography (EEG) requires knowledge of the in vivo tissue resistivities of the head. The aim of this paper is to examine the influence of tissue resistivity changes on the neuromagnetic field and the electric scalp potential. A high-resolution finite element method (FEM) model (452,162 elements, 2-mm resolution) of the human head with 13 different tissue types is employed for this purpose. Our main finding was that the magnetic fields are sensitive to changes in the tissue resistivity in the vicinity of the source. In comparison, the electric surface potentials are sensitive to changes in the tissue resistivity in the vicinity of the source and in the vicinity of the position of the electrodes. The magnitude (strength) of magnetic fields and electric surface potentials is strongly influenced by tissue resistivity changes, while the topography is not as strongly influenced. Therefore, an accurate modeling of magnetic field and electric potential strength requires accurate knowledge of tissue resistivities, while for source localization procedures this knowledge might not be a necessity.
Significance of Strain in Formulation in Theory of Solid Mechanics
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.
2003-01-01
The basic theory of solid mechanics was deemed complete circa 1860 when St. Venant provided the strain formulation or the field compatibility condition. The strain formulation was incomplete. The missing portion has been formulated and identified as the boundary compatibility condition (BCC). The BCC, derived through a variational formulation, has been verified through integral theorem and solution of problems. The BCC, unlike the field counterpart, do not trivialize when expressed in displacements. Navier s method and the stiffness formulation have to account for the extra conditions especially at the inter-element boundaries in a finite element model. Completion of the strain formulation has led to the revival of the direct force calculation methods: the Integrated Force Method (IFM) and its dual (IFMD) for finite element analysis, and the completed Beltrami-Michell formulation (CBMF) in elasticity. The benefits from the new methods in elasticity, in finite element analysis, and in design optimization are discussed. Existing solutions and computer codes may have to be adjusted for the compliance of the new conditions. Complacency because the discipline is over a century old and computer codes have been developed for half a century can lead to stagnation of the discipline.
NASA Astrophysics Data System (ADS)
Dash, S.; Satish, S.; Parida, B.; Satapathy, S.; Ipsita, N. S.; Joshi, R. S.
2018-04-01
We demonstrate the tailoring of anisotropy in magnetic nano-wire element using finite element method based micromagnetic simulation. We calculate the magentostatic properties for the structure by simulating hysteresis for these nano wire elements. The angular variation of remanence for the structures of different dimensions is used as the depiction to establish fourfold magnetic anisotropy. The change of anisotropy strength, which is the ratio of squareness of hysteresis loop in hard axis to easy axis, is demonstrated in this study which is one of the most important parameters to utilize these nanowire elements in multi state magnetic memory application.
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
NASA Technical Reports Server (NTRS)
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
NASA Astrophysics Data System (ADS)
Hemmatian, M.; Sedaghati, R.
2017-04-01
This study aims at developing a finite element model to predict the sound transmission loss (STL) of a multilayer panel partially treated with a Magnetorheological (MR) fluid core layer. MR fluids are smart materials with promising controllable rheological characteristics in which the application of an external magnetic field instantly changes their rheological properties. Partial treatment of sandwich panels with MR fluid core layer provides an opportunity to change stiffness and damping of the structure without significantly increasing the mass. The STL of a finite sandwich panel partially treated with MR fluid is modeled using the finite element (FE) method. Circular sandwich panels with clamped boundary condition and elastic face sheets in which the core layer is segmented circumferentially is considered. The MR fluid core layer is considered as a viscoelastic material with complex shear modulus with the magnetic field and frequency dependent storage and loss moduli. Neglecting the effect of the panel's vibration on the pressure forcing function, the work done by the acoustic pressure is expressed as a function of the blocked pressure in order to calculate the force vector in the equation of the motion of the panel. The governing finite element equation of motion of the MR sandwich panel is then developed to predict the transverse vibration of the panel which can then be utilized to obtain the radiated sound using Green's function. The developed model is used to conduct a systematic parametric study on the effect of different locations of MR fluid treatment on the natural frequencies and the STL.
Use of adjoint methods in the probabilistic finite element approach to fracture mechanics
NASA Technical Reports Server (NTRS)
Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted
1988-01-01
The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.
Comparison of radiated noise from shrouded and unshrouded propellers
NASA Technical Reports Server (NTRS)
Eversman, Walter
1992-01-01
The ducted propeller in a free field is modeled using the finite element method. The generation, propagation, and radiation of sound from a ducted fan is described by the convened wave equation with volumetric body forces. Body forces are used to introduce the blade loading for rotating blades and stationary exit guide vanes. For an axisymmetric nacelle or shroud, the problem is formulated in cylindrical coordinates. For a specified angular harmonic, the angular coordinate is eliminated, resulting in a two-dimensional representation. A finite element discretization based on nine-node quadratic isoparametric elements is used.
Efficient Computation Of Behavior Of Aircraft Tires
NASA Technical Reports Server (NTRS)
Tanner, John A.; Noor, Ahmed K.; Andersen, Carl M.
1989-01-01
NASA technical paper discusses challenging application of computational structural mechanics to numerical simulation of responses of aircraft tires during taxing, takeoff, and landing. Presents details of three main elements of computational strategy: use of special three-field, mixed-finite-element models; use of operator splitting; and application of technique reducing substantially number of degrees of freedom. Proposed computational strategy applied to two quasi-symmetric problems: linear analysis of anisotropic tires through use of two-dimensional-shell finite elements and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry and combinations exhibited by response of tire identified.
Finite element analysis of Mercury slosh in the solar electric propulsion stage
NASA Technical Reports Server (NTRS)
Singh, J. N.
1975-01-01
The static equilibrium shapes of the neoprene bladder have been established corresponding to various ullage and gravity configurations under specified boundary conditions. The hemispherical bladder is taken to be attached at the diametral plane of the sphere with zero relative slope. With these shapes, the spherical tank with bladder and mercury has been modeled as an assemblage of finite elements. The properties of these elements have then been calculated using a linear displacement field. The dynamic characteristics were obtained to be used to define a mechanical analog which will reproduce the sloshing phenomenon of the system.
Structural Anomaly Detection Using Fiber Optic Sensors and Inverse Finite Element Method
NASA Technical Reports Server (NTRS)
Quach, Cuong C.; Vazquez, Sixto L.; Tessler, Alex; Moore, Jason P.; Cooper, Eric G.; Spangler, Jan. L.
2005-01-01
NASA Langley Research Center is investigating a variety of techniques for mitigating aircraft accidents due to structural component failure. One technique under consideration combines distributed fiber optic strain sensing with an inverse finite element method for detecting and characterizing structural anomalies anomalies that may provide early indication of airframe structure degradation. The technique identifies structural anomalies that result in observable changes in localized strain but do not impact the overall surface shape. Surface shape information is provided by an Inverse Finite Element Method that computes full-field displacements and internal loads using strain data from in-situ fiberoptic sensors. This paper describes a prototype of such a system and reports results from a series of laboratory tests conducted on a test coupon subjected to increasing levels of damage.
Weak Galerkin method for the Biot’s consolidation model
Hu, Xiaozhe; Mu, Lin; Ye, Xiu
2017-08-23
In this study, we develop a weak Galerkin (WG) finite element method for the Biot’s consolidation model in the classical displacement–pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure withoutmore » special treatment. Lastlyl, numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method.« less
Weak Galerkin method for the Biot’s consolidation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiaozhe; Mu, Lin; Ye, Xiu
In this study, we develop a weak Galerkin (WG) finite element method for the Biot’s consolidation model in the classical displacement–pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure withoutmore » special treatment. Lastlyl, numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method.« less
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.
1992-01-01
A hybrid numerical technique is presented for a characterization of the scattering and radiation properties of three-dimensional cavity arrays recessed in a ground plane. The technique combines the finite element and boundary integral methods and invokes Floquet's representation to formulate a system of equations for the fields at the apertures and those inside the cavities. The system is solved via the conjugate gradient method in conjunction with the Fast Fourier Transform (FFT) thus achieving an O(N) storage requirement. By virtue of the finite element method, the proposed technique is applicable to periodic arrays comprised of cavities having arbitrary shape and filled with inhomogeneous dielectrics. Several numerical results are presented, along with new measured data, which demonstrate the validity, efficiency, and capability of the technique.
Mechanics of low-dimensional carbon nanostructures: Atomistic, continuum, and multi-scale approaches
NASA Astrophysics Data System (ADS)
Mahdavi, Arash
A new multiscale modeling technique called the Consistent Atomic-scale Finite Element (CAFE) method is introduced. Unlike traditional approaches for linking the atomic structure to its equivalent continuum, this method directly connects the atomic degrees of freedom to a reduced set of finite element degrees of freedom without passing through an intermediate homogenized continuum. As a result, there is no need to introduce stress and strain measures at the atomic level. The Tersoff-Brenner interatomic potential is used to calculate the consistent tangent stiffness matrix of the structure. In this finite element formulation, all local and non-local interactions between carbon atoms are taken into account using overlapping finite elements. In addition, a consistent hierarchical finite element modeling technique is developed for adaptively coarsening and refining the mesh over different parts of the model. This process is consistent with the underlying atomic structure and, by refining the mesh to the scale of atomic spacing, molecular dynamic results can be recovered. This method is valid across the scales and can be used to concurrently model atomistic and continuum phenomena so, in contrast with most other multi-scale methods, there is no need to introduce artificial boundaries for coupling atomistic and continuum regions. Effect of the length scale of the nanostructure is also included in the model by building the hierarchy of elements from bottom up using a finite size atom cluster as the building block. To be consistent with the bravais multi-lattice structure of sp2-bonded carbon, two independent displacement fields are used for reducing the order of the model. Sparse structure of the stiffness matrix of these nanostructures is exploited to reduce the memory requirement and to speed up the formation of the system matrices and solution of the equilibrium equations. Applicability of the method is shown with several examples of the nonlinear mechanics of carbon nanotubes and carbon nanocones subject to different loadings and boundary conditions. This finite element technique is also used to study the natural frequencies of low-dimensional carbon nanostructures and comparing the results with those of a homogenized isotropic continuum shell. Conclusion is that, replacing the atomic lattice with an isotropic continuum shell for a graphene sheet does not significantly affect the vibration frequencies while in the case of carbon nanotubes and carbon nanocones there is a significant difference between the natural frequencies of the atomistic model and its continuum counterpart. In the case of the carbon nanotube, continuum model successfully captures the beam bending vibration modes while overestimating frequencies of the modes in which the cross-section undergoes significant deformation. Furthermore, in the case of carbon nanotubes, the continuum shell exhibits a torsional mode which appears to be an artifact resulting from the small nominal thickness typically used in the continuum shell approximation of these nanostructures. Results of this study indicate that isotropic continuum shell models, while simple and useful in static analysis, cannot accurately predict the vibration frequencies of these nanostructures. We have studied the bistable nature of single-walled carbon nanotubes by investigating the change in the tube's energy as it is compressed between flat rigid indenters of various widths. Assuming the nanotube deformed uniformly along its length and modeling the cross-section as an inextensible, non-linear beam we found that tubes with a radius greater than 12 A are bistable and that tubes with a radius greater than 25 A have a lower energy in the collapsed state than in the inflated state. The difference in energy between the collapsed and inflated states decreases nearly linearly with increasing tube radius. While the inflated state remains stable for tubes of all diameters, the energy barrier keeping the tube from collapsing approaches zero as the tube radius increases. We also demonstrate why collapse with a wide indenter may be difficult to observe in narrow tubes. A reduced-order model is developed for the dynamics of the carbon nanotube atomic force microscope probes. Bending behavior of the nanotube probe is modeled using Euler's elastica. A nonlinear moment-curvature relationship is implemeneted to account for the ovalization of the cross section of the nanotube during bending. Van der Waal forces acting between tube and the substrate is integrated over the surface of the tube and used as distributed follower forces acting on the equivalent elastica. Approximating the behavior of the nanotube with an elastica proved to be a very effiecient technique for modeling these nanostructures.
Multi-scale Finite Element Modeling of Eustachian Tube Function: Influence of Mucosal Adhesion
Malik, J.E.; Swarts, J.D.; Ghadiali, S. N.
2017-01-01
The inability to open the collapsible Eustachian tube (ET) leads to the development of chronic Otitis Media (OM). Although mucosal inflammation during OM leads to increased mucin gene expression and elevated adhesion forces within the ET lumen, it is not known how changes in mucosal adhesion alter the biomechanical mechanisms of ET function. In this study, we developed a novel multi-scale finite element model of ET function in adults that utilizes adhesion spring elements to simulate changes in mucosal adhesion. Models were created for six adult subjects and dynamic patterns in muscle contraction were used to simulate the wave-like opening of the ET that occurs during swallowing. Results indicate that ET opening is highly sensitive to the level of mucosal adhesion and that exceeding a critical value of adhesion leads to rapid ET dysfunction. Parameter variation studies and sensitivity analysis indicate that increased mucosal adhesion alters the relative importance of several tissue biomechanical properties. For example, increases in mucosal adhesion reduced the sensitivity of ET function to tensor veli palatini muscle forces but did not alter the insensitivity of ET function to levator veli palatini muscle forces. Interestingly, although changes in cartilage stiffness did not significantly influence ET opening under low adhesion conditions, ET opening was highly sensitive to changes in cartilage stiffness under high adhesion conditions. Therefore, our multi-scale computational models indicate that changes in mucosal adhesion as would occur during inflammatory OM alter the biomechanical mechanisms of ET function. PMID:26891171
VLSI architectures for computing multiplications and inverses in GF(2m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.
1985-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
VLSI architectures for computing multiplications and inverses in GF(2-m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.; Reed, I. S.
1983-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
Design and modeling of energy generated magneto rheological damper
NASA Astrophysics Data System (ADS)
Ahamed, Raju; Rashid, Muhammad Mahbubur; Ferdaus, Md Meftahul; Yusof, Hazlina Md.
2016-02-01
In this paper an energy generated mono tube MR damper model has been developed for vehicle suspension systems. A 3D model of energy generated MR damper is developed in Solid Works electromagnetic simulator (EMS) where it is analyzed extensively by finite element method. This dynamic simulation clearly illustrates the power generation ability of the damper. Two magnetic fields are induced inside this damper. One is in the outer coil of the power generator and another is in the piston head coils. The complete magnetic isolation between these two fields is accomplished here, which can be seen in the finite element analysis. The induced magnetic flux densities, magnetic field intensities of this damper are analyzed for characterizing the damper's power generation ability. Finally, the proposed MR damper's energy generation ability was studied experimentally.
VLSI architectures for computing multiplications and inverses in GF(2m).
Wang, C C; Truong, T K; Shao, H M; Deutsch, L J; Omura, J K; Reed, I S
1985-08-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that can be easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. In this paper, a pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal basis representation used together with this multiplier, a pipeline architecture is developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable, and therefore, naturally suitable for VLSI implementation.
Extrusion Process by Finite Volume Method Using OpenFoam Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose
The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.
Three dimensional flow computations in a turbine scroll
NASA Technical Reports Server (NTRS)
Hamed, A.; Ghantous, C. A.
1982-01-01
The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.
Numerical simulation and experimental investigation about internal and external flows†
NASA Astrophysics Data System (ADS)
Wang, Tao; Yang, Guowei; Huang, Guojun; Zhou, Liandi
2006-06-01
In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (Re=5.6×106) around axisymmetric body with duct. The governing equation is a RANS equation with standard k ɛ turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.
Primal-mixed formulations for reaction-diffusion systems on deforming domains
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo
2015-10-01
We propose a finite element formulation for a coupled elasticity-reaction-diffusion system written in a fully Lagrangian form and governing the spatio-temporal interaction of species inside an elastic, or hyper-elastic body. A primal weak formulation is the baseline model for the reaction-diffusion system written in the deformed domain, and a finite element method with piecewise linear approximations is employed for its spatial discretization. On the other hand, the strain is introduced as mixed variable in the equations of elastodynamics, which in turn acts as coupling field needed to update the diffusion tensor of the modified reaction-diffusion system written in a deformed domain. The discrete mechanical problem yields a mixed finite element scheme based on row-wise Raviart-Thomas elements for stresses, Brezzi-Douglas-Marini elements for displacements, and piecewise constant pressure approximations. The application of the present framework in the study of several coupled biological systems on deforming geometries in two and three spatial dimensions is discussed, and some illustrative examples are provided and extensively analyzed.
High-frequency sum rules for classical one-component plasma in a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genga, R.O.
A high-frequency sum-rule expansion is derived for all elements of a classical plasma dielectric tensor in the presence of an external magnetic field. Omega/sub 4//sup 13/ is found to be the only coefficient of omega/sup -4/ that has no correlational and finite-radiation-temperature contributions. The finite-radiation-temperature effect results in an upward renormalization of the frequencies of the modes; it also leads to either reduction of the negative correlational effect on the positive thermal dispersion or, together with correlation, enhancement of the positive thermal dispersion for finite k, depending on the direction of propagation. Further, for the extraordinary mode, the finite-radiation-temperature effectmore » increases the positive refractive dispersion for finite k.« less
Crack Turning and Arrest Mechanisms for Integral Structure
NASA Technical Reports Server (NTRS)
Pettit, Richard; Ingraffea, Anthony
1999-01-01
In the course of several years of research efforts to predict crack turning and flapping in aircraft fuselage structures and other problems related to crack turning, the 2nd order maximum tangential stress theory has been identified as the theory most capable of predicting the observed test results. This theory requires knowledge of a material specific characteristic length, and also a computation of the stress intensity factors and the T-stress, or second order term in the asymptotic stress field in the vicinity of the crack tip. A characteristic length, r(sub c), is proposed for ductile materials pertaining to the onset of plastic instability, as opposed to the void spacing theories espoused by previous investigators. For the plane stress case, an approximate estimate of r(sub c), is obtained from the asymptotic field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR). A previous study using of high order finite element methods to calculate T-stresses by contour integrals resulted in extremely high accuracy values obtained for selected test specimen geometries, and a theoretical error estimation parameter was defined. In the present study, it is shown that a large portion of the error in finite element computations of both K and T are systematic, and can be corrected after the initial solution if the finite element implementation utilizes a similar crack tip discretization scheme for all problems. This scheme is applied for two-dimensional problems to a both a p-version finite element code, showing that sufficiently accurate values of both K(sub I) and T can be obtained with fairly low order elements if correction is used. T-stress correction coefficients are also developed for the singular crack tip rosette utilized in the adaptive mesh finite element code FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress intensity factor correction was not attempted for FRANC2D because it employs a highly accurate quarter-point scheme to obtain stress intensity factors.
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Zapp, John; Hsa, Chang-Yu; Volakis, John L.
1990-01-01
An extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation (FFT) is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. By virtue of the finite element method, the algorithm is applicable to structures of arbitrary material composition. Several improvements to the two dimensional algorithm are also described. These include: (1) modifications for terminating the mesh at circular boundaries without distorting the convolutionality of the boundary integrals; (2) the development of nonproprietary mesh generation routines for two dimensional applications; (3) the development of preprocessors for interfacing SDRC IDEAS with the main algorithm; and (4) the development of post-processing algorithms based on the public domain package GRAFIC to generate two and three dimensional gray level and color field maps.
NASA Astrophysics Data System (ADS)
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Zhdanov, Michael S.
2017-12-01
The induced polarization (IP) method has been widely used in geophysical exploration to identify the chargeable targets such as mineral deposits. The inversion of the IP data requires modeling the IP response of 3D dispersive conductive structures. We have developed an edge-based finite-element time-domain (FETD) modeling method to simulate the electromagnetic (EM) fields in 3D dispersive medium. We solve the vector Helmholtz equation for total electric field using the edge-based finite-element method with an unstructured tetrahedral mesh. We adopt the backward propagation Euler method, which is unconditionally stable, with semi-adaptive time stepping for the time domain discretization. We use the direct solver based on a sparse LU decomposition to solve the system of equations. We consider the Cole-Cole model in order to take into account the frequency-dependent conductivity dispersion. The Cole-Cole conductivity model in frequency domain is expanded using a truncated Padé series with adaptive selection of the center frequency of the series for early and late time. This approach can significantly increase the accuracy of FETD modeling.
Numerical simulation of temperature field in K9 glass irradiated by ultraviolet pulse laser
NASA Astrophysics Data System (ADS)
Wang, Xi; Fang, Xiaodong
2015-10-01
The optical component of photoelectric system was easy to be damaged by irradiation of high power pulse laser, so the effect of high power pulse laser irradiation on K9 glass was researched. A thermodynamic model of K9 glass irradiated by ultraviolet pulse laser was established using the finite element software ANSYS. The article analyzed some key problems in simulation process of ultraviolet pulse laser damage of K9 glass based on ANSYS from the finite element models foundation, meshing, loading of pulse laser, setting initial conditions and boundary conditions and setting the thermal physical parameters of material. The finite element method (FEM) model was established and a numerical analysis was performed to calculate temperature field in K9 glass irradiated by ultraviolet pulse laser. The simulation results showed that the temperature of irradiation area exceeded the melting point of K9 glass, while the incident laser energy was low. The thermal damage dominated in the damage mechanism of K9 glass, the melting phenomenon should be much more distinct.
NASA Technical Reports Server (NTRS)
Pahr, D. H.; Arnold, S. M.
2001-01-01
The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident, that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with (1) simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as (2) finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.
NASA Technical Reports Server (NTRS)
Pahr, D. H.; Arnold, S. M.
2001-01-01
The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.
Finite element model for MOI applications using A-V formulation
NASA Astrophysics Data System (ADS)
Xuan, L.; Shanker, B.; Udpa, L.; Shih, W.; Fitzpatrick, G.
2001-04-01
Magneto-optic imaging (MOI) is a relatively new sensor application of an extension of bubble memory technology to NDT and produce easy-to-interpret, real time analog images. MOI systems use a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The instrument's capability in detecting the relatively weak magnetic fields associated with subsurface defects depends on the sensitivity of the magneto-optic sensor. The availability of a theoretical model that can simulate the MOI system performance is extremely important for optimization of the MOI sensor and hardware system. A nodal finite element model based on magnetic vector potential formulation has been developed for simulating MOI phenomenon. This model has been used for predicting the magnetic fields in simple test geometry with corrosion dome defects. In the case of test samples with multiple discontinuities, a more robust model using the magnetic vector potential Ā and electrical scalar potential V is required. In this paper, a finite element model based on A-V formulation is developed to model complex circumferential crack under aluminum rivets in dimpled countersink.
Finite element analysis of Al 2024/Cu-Al-Ni shape memory alloy composites with defects/cracks
NASA Astrophysics Data System (ADS)
Kotresh, M.; Benal, M. M., Dr; Siddalinga Swamy, N. H., Dr
2018-02-01
In this work, a numerical approach to predict the stress field behaviour of defect/crack in shape memory alloy (SMA) particles reinforced composite known as the adaptive composite is presented. Simulation is based on the finite element method. The critical stress field approach was used to determine the stresses around defect/crack. Thereby stress amplification issue is being resolved. In this paper, the effect volume % of shape memory alloy and shape memory effect of reinforcement for as-cast and SME trained composites are examined and discussed. Shape memory effect known as training is achieved by pre-straining of reinforcement particles by equivalent changes in their expansion coefficients.
Finite element solutions for crack-tip behavior in small-scale yielding
NASA Technical Reports Server (NTRS)
Tracey, D. M.
1976-01-01
The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.
NASA Astrophysics Data System (ADS)
Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin
2017-10-01
Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.
NASA Technical Reports Server (NTRS)
Reddy, J. N.
1986-01-01
An improved plate theory that accounts for the transverse shear deformation is presented, and mixed and displacement finite element models of the theory are developed. The theory is based on an assumed displacement field in which the inplane displacements are expanded in terms of the thickness coordinate up to the cubic term and the transverse deflection is assumed to be independent of the thickness coordinate. The governing equations of motion for the theory are derived from the Hamilton's principle. The theory eliminates the need for shear correction factors because the transverse shear stresses are represented parabolically. A mixed finite element model that uses independent approximations of the displacements and moments, and a displacement model that uses only displacements as degrees of freedom are developed. A comparison of the numerical results for bending with the exact solutions of the new theory and the three-dimensional elasticity theory shows that the present theory (and hence the finite element models) is more accurate than other plate-theories of the same order.
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Wing, Kam Liu
1987-01-01
In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.
Nonlinear probabilistic finite element models of laminated composite shells
NASA Technical Reports Server (NTRS)
Engelstad, S. P.; Reddy, J. N.
1993-01-01
A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.
Probabilistic finite elements for fracture and fatigue analysis
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.
1989-01-01
The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.
NASA Technical Reports Server (NTRS)
Demerdash, Nabeel A. O.; Wang, Ren-Hong
1988-01-01
The main purpose of this project is the development of computer-aided models for purposes of studying the effects of various design changes on the parameters and performance characteristics of the modified Lundell class of alternators (MLA) as components of a solar dynamic power system supplying electric energy needs in the forthcoming space station. Key to this modeling effort is the computation of magnetic field distribution in MLAs. Since the nature of the magnetic field is three-dimensional, the first step in the investigation was to apply the finite element method to discretize volume, using the tetrahedron as the basic 3-D element. Details of the stator 3-D finite element grid are given. A preliminary look at the early stage of a 3-D rotor grid is presented.
Hierarchial parallel computer architecture defined by computational multidisciplinary mechanics
NASA Technical Reports Server (NTRS)
Padovan, Joe; Gute, Doug; Johnson, Keith
1989-01-01
The goal is to develop an architecture for parallel processors enabling optimal handling of multi-disciplinary computation of fluid-solid simulations employing finite element and difference schemes. The goals, philosphical and modeling directions, static and dynamic poly trees, example problems, interpolative reduction, the impact on solvers are shown in viewgraph form.
Soons, Joris; Herrel, Anthony; Genbrugge, Annelies; Adriaens, Dominique; Aerts, Peter; Dirckx, Joris
2012-01-01
Bird beaks are layered structures, which contain a bony core and an outer keratin layer. The elastic moduli of this bone and keratin were obtained in a previous study. However, the mechanical role and interaction of both materials in stress dissipation during seed crushing remain unknown. In this paper, a multi-layered finite-element (FE) model of the Java finch's upper beak (Padda oryzivora) is established. Validation measurements are conducted using in vivo bite forces and by comparing the displacements with those obtained by digital speckle pattern interferometry. Next, the Young modulus of bone and keratin in this FE model was optimized in order to obtain the smallest peak von Mises stress in the upper beak. To do so, we created a surrogate model, which also allows us to study the impact of changing material properties of both tissues on the peak stresses. The theoretically best values for both moduli in the Java finch are retrieved and correspond well with previous experimentally obtained values, suggesting that material properties are tuned to the mechanical demands imposed during seed crushing. PMID:22337628
Finite element analysis of 6 large PMMA skull reconstructions: A multi-criteria evaluation approach
Ridwan-Pramana, Angela; Marcián, Petr; Borák, Libor; Narra, Nathaniel; Forouzanfar, Tymour; Wolff, Jan
2017-01-01
In this study 6 pre-operative designs for PMMA based reconstructions of cranial defects were evaluated for their mechanical robustness using finite element modeling. Clinical experience and engineering principles were employed to create multiple plan options, which were subsequently computationally analyzed for mechanically relevant parameters under 50N loads: stress, strain and deformation in various components of the assembly. The factors assessed were: defect size, location and shape. The major variable in the cranioplasty assembly design was the arrangement of the fixation plates. An additional study variable introduced was the location of the 50N load within the implant area. It was found that in smaller defects, it was simpler to design a symmetric distribution of plates and under limited variability in load location it was possible to design an optimal for expected loads. However, for very large defects with complex shapes, the variability in the load locations introduces complications to the intuitive design of the optimal assembly. The study shows that it can be beneficial to incorporate multi design computational analyses to decide upon the most optimal plan for a clinical case. PMID:28609471
Finite element analysis of 6 large PMMA skull reconstructions: A multi-criteria evaluation approach.
Ridwan-Pramana, Angela; Marcián, Petr; Borák, Libor; Narra, Nathaniel; Forouzanfar, Tymour; Wolff, Jan
2017-01-01
In this study 6 pre-operative designs for PMMA based reconstructions of cranial defects were evaluated for their mechanical robustness using finite element modeling. Clinical experience and engineering principles were employed to create multiple plan options, which were subsequently computationally analyzed for mechanically relevant parameters under 50N loads: stress, strain and deformation in various components of the assembly. The factors assessed were: defect size, location and shape. The major variable in the cranioplasty assembly design was the arrangement of the fixation plates. An additional study variable introduced was the location of the 50N load within the implant area. It was found that in smaller defects, it was simpler to design a symmetric distribution of plates and under limited variability in load location it was possible to design an optimal for expected loads. However, for very large defects with complex shapes, the variability in the load locations introduces complications to the intuitive design of the optimal assembly. The study shows that it can be beneficial to incorporate multi design computational analyses to decide upon the most optimal plan for a clinical case.
Multi-scale modelling of elastic moduli of trabecular bone
Hamed, Elham; Jasiuk, Iwona; Yoo, Andrew; Lee, YikHan; Liszka, Tadeusz
2012-01-01
We model trabecular bone as a nanocomposite material with hierarchical structure and predict its elastic properties at different structural scales. The analysis involves a bottom-up multi-scale approach, starting with nanoscale (mineralized collagen fibril) and moving up the scales to sub-microscale (single lamella), microscale (single trabecula) and mesoscale (trabecular bone) levels. Continuum micromechanics methods, composite materials laminate theory and finite-element methods are used in the analysis. Good agreement is found between theoretical and experimental results. PMID:22279160
Modeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach.
Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Zerbini, Sarah
2009-01-01
Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.
NASA Technical Reports Server (NTRS)
Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.
1996-01-01
Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.
Study of human phonation in a full-body domain
NASA Astrophysics Data System (ADS)
Saurabh, Shakti; Bodony, Daniel
2015-11-01
The generation and propagation of the human voice is studied in two-dimensions using a full-body domain, using direct numerical simulation. The fluid/air in the vocal tract is modeled as a compressible and viscous fluid interacting with the non-linear, viscoelastic vocal folds (VF). The VF tissue material properties are multi-layered, with varying stiffness, and a finite-strain model is utilized and implemented in a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. The full-body domain includes the near VF region, the vocal tract, a simplified model of the soft palate and mouth, and extends out into the acoustic far-field. A new kind of inflow boundary condition based upon a quasi-one-dimensional formulation with constant sub-glottal volume velocity, which is linked to the VF movement, has been adopted. The sound pressure levels (SPL) measured are realistic and we analyze their connection to the VF dynamics and glottal and vocal tract geometries. Supported by the National Science Foundation (CAREER award number 1150439).
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.
1995-01-01
A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admittance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a coaxial line are shown. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experimental data.
NASA Astrophysics Data System (ADS)
Balusu, K.; Huang, H.
2017-04-01
A combined dislocation fan-finite element (DF-FE) method is presented for efficient and accurate simulation of dislocation nodal forces in 3D elastically anisotropic crystals with dislocations intersecting the free surfaces. The finite domain problem is decomposed into half-spaces with singular traction stresses, an infinite domain, and a finite domain with non-singular traction stresses. As such, the singular and non-singular parts of the traction stresses are addressed separately; the dislocation fan (DF) method is introduced to balance the singular traction stresses in the half-spaces while the finite element method (FEM) is employed to enforce the non-singular boundary conditions. The accuracy and efficiency of the DF method is demonstrated using a simple isotropic test case, by comparing it with the analytical solution as well as the FEM solution. The DF-FE method is subsequently used for calculating the dislocation nodal forces in a finite elastically anisotropic crystal, which produces dislocation nodal forces that converge rapidly with increasing mesh resolutions. In comparison, the FEM solution fails to converge, especially for nodes closer to the surfaces.
On the Development of Multi-Step Inverse FEM with Shell Model
NASA Astrophysics Data System (ADS)
Huang, Y.; Du, R.
2005-08-01
The inverse or one-step finite element approach is increasingly used in the sheet metal stamping industry to predict strain distribution and the initial blank shape in the preliminary design stage. Based on the existing theory, there are two types of method: one is based on the principle of virtual work and the other is based on the principle of extreme work. Much research has been conducted to improve the accuracy of simulation results. For example, based on the virtual work principle, Batoz et al. developed a new method using triangular DKT shell elements. In this new method, the bending and unbending effects are considered. Based on the principle of extreme work, Majlessi and et al. proposed the multi-step inverse approach with membrane elements and applied it to an axis-symmetric part. Lee and et al. presented an axis-symmetric shell element model to solve the similar problem. In this paper, a new multi-step inverse method is introduced with no limitation on the workpiece shape. It is a shell element model based on the virtual work principle. The new method is validated by means of comparing to the commercial software system (PAMSTAMP®). The comparison results indicate that the accuracy is good.
Numerical Modelling of Foundation Slabs with use of Schur Complement Method
NASA Astrophysics Data System (ADS)
Koktan, Jiří; Brožovský, Jiří
2017-10-01
The paper discusses numerical modelling of foundation slabs with use of advanced numerical approaches, which are suitable for parallel processing. The solution is based on the Finite Element Method with the slab-type elements. The subsoil is modelled with use of Winklertype contact model (as an alternative a multi-parameter model can be used). The proposed modelling approach uses the Schur Complement method to speed-up the computations of the problem. The method is based on a special division of the analyzed model to several substructures. It adds some complexity to the numerical procedures, especially when subsoil models are used inside the finite element method solution. In other hand, this method makes possible a fast solution of large models but it introduces further problems to the process. Thus, the main aim of this paper is to verify that such method can be successfully used for this type of problem. The most suitable finite elements will be discussed, there will be also discussion related to finite element mesh and limitations of its construction for such problem. The core approaches of the implementation of the Schur Complement Method for this type of the problem will be also presented. The proposed approach was implemented in the form of a computer program, which will be also briefly introduced. There will be also presented results of example computations, which prove the speed-up of the solution - there will be shown important speed-up of solution even in the case of on-parallel processing and the ability of bypass size limitations of numerical models with use of the discussed approach.
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Ohayon, Roger
1991-01-01
A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derive semidiscrete equations of motion that account for such effects.
Vibration band gaps for elastic metamaterial rods using wave finite element method
NASA Astrophysics Data System (ADS)
Nobrega, E. D.; Gautier, F.; Pelat, A.; Dos Santos, J. M. C.
2016-10-01
Band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators are investigated. New techniques to analyze metamaterial systems are using a combination of analytical or numerical method with wave propagation. One of them, called here wave spectral element method (WSEM), consists of combining the spectral element method (SEM) with Floquet-Bloch's theorem. A modern methodology called wave finite element method (WFEM), developed to calculate dynamic behavior in periodic acoustic and structural systems, utilizes a similar approach where SEM is substituted by the conventional finite element method (FEM). In this paper, it is proposed to use WFEM to calculate band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators of multi-degree-of-freedom (M-DOF). Simulated examples with band gaps generated by Bragg scattering and local resonators are calculated by WFEM and verified with WSEM, which is used as a reference method. Results are presented in the form of attenuation constant, vibration transmittance and frequency response function (FRF). For all cases, WFEM and WSEM results are in agreement, provided that the number of elements used in WFEM is sufficient to convergence. An experimental test was conducted with a real elastic metamaterial rod, manufactured with plastic in a 3D printer, without local resonance-type effect. The experimental results for the metamaterial rod with band gaps generated by Bragg scattering are compared with the simulated ones. Both numerical methods (WSEM and WFEM) can localize the band gap position and width very close to the experimental results. A hybrid approach combining WFEM with the commercial finite element software ANSYS is proposed to model complex metamaterial systems. Two examples illustrating its efficiency and accuracy to model an elastic metamaterial rod unit-cell using 1D simple rod element and 3D solid element are demonstrated and the results present good approximation to the experimental data.
Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1999-01-01
Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.
Laminar mixing in a small floating zone
NASA Technical Reports Server (NTRS)
Harriott, George M.
1987-01-01
The relationship between the flow and solute fields during steady mass transfer of a dilute component is analyzed for multi-cellular rotating flows in the floating zone process of semiconductor growth. When the recirculating flows are weak in relation to the rate of crystal growth, a closed-form solution clearly shows the link between the convection pattern in the melt and the solute distribution across the surface of the growing solid. In the limit of strong convection, finite element calculations demonstrate the tendency of the composition to become uniform over the majority of the melt. The solute segregation in the product crystal is greatest when the recirculating motion is comparable to the rate of crystal growth, and points to the danger in attempting to grow compositionally uniform materials from a nearly convectionless melt.
Numerical Simulation of Metallic Uranium Sintering
NASA Astrophysics Data System (ADS)
Berry, Bruce
Conventional ceramic oxide nuclear fuels are limited in their thermal and life-cycle properties. The desire to operate at higher burnups as is required by current utility economics has proven a formidable challenge for oxide fuel designs. Metallic formulations have superior thermal performance but are plagued by volumetric swelling due to fission gas buildup. In this study, we consider a number of specific microstructure configurations that have been experimentally shown to exhibit considerable resistance to porosity loss. Specifically, a void sizing that is bimodally distributed was shown to resist early pore loss and could provide collection sites for fission gas buildup. We employ the phase field model of Cahn and Hilliard, solved via the finite element method using the open source Multi-User Object Oriented Simulation Environment (MOOSE) developed by INL.
NASA Astrophysics Data System (ADS)
Yi, Dake; Wang, TzuChiang
2018-06-01
In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the relationship among the three-dimensional J-integral J( z), the stress intensity factor K( z) and the tri-axial stress constraint level T z ( z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the stress field near the crack front, J( z) and T z ( z). Numerical results show that in the plane very close to the free surface, the K field solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.
Spilker, R L; de Almeida, E S; Donzelli, P S
1992-01-01
This chapter addresses computationally demanding numerical formulations in the biomechanics of soft tissues. The theory of mixtures can be used to represent soft hydrated tissues in the human musculoskeletal system as a two-phase continuum consisting of an incompressible solid phase (collagen and proteoglycan) and an incompressible fluid phase (interstitial water). We first consider the finite deformation of soft hydrated tissues in which the solid phase is represented as hyperelastic. A finite element formulation of the governing nonlinear biphasic equations is presented based on a mixed-penalty approach and derived using the weighted residual method. Fluid and solid phase deformation, velocity, and pressure are interpolated within each element, and the pressure variables within each element are eliminated at the element level. A system of nonlinear, first-order differential equations in the fluid and solid phase deformation and velocity is obtained. In order to solve these equations, the contributions of the hyperelastic solid phase are incrementally linearized, a finite difference rule is introduced for temporal discretization, and an iterative scheme is adopted to achieve equilibrium at the end of each time increment. We demonstrate the accuracy and adequacy of the procedure using a six-node, isoparametric axisymmetric element, and we present an example problem for which independent numerical solution is available. Next, we present an automated, adaptive environment for the simulation of soft tissue continua in which the finite element analysis is coupled with automatic mesh generation, error indicators, and projection methods. Mesh generation and updating, including both refinement and coarsening, for the two-dimensional examples examined in this study are performed using the finite quadtree approach. The adaptive analysis is based on an error indicator which is the L2 norm of the difference between the finite element solution and a projected finite element solution. Total stress, calculated as the sum of the solid and fluid phase stresses, is used in the error indicator. To allow the finite difference algorithm to proceed in time using an updated mesh, solution values must be transferred to the new nodal locations. This rezoning is accomplished using a projected field for the primary variables. The accuracy and effectiveness of this adaptive finite element analysis is demonstrated using a linear, two-dimensional, axisymmetric problem corresponding to the indentation of a thin sheet of soft tissue. The method is shown to effectively capture the steep gradients and to produce solutions in good agreement with independent, converged, numerical solutions.
An interface tracking model for droplet electrocoalescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Lindsay Crowl
This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms betweenmore » approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.« less
Numerical simulation using vorticity-vector potential formulation
NASA Technical Reports Server (NTRS)
Tokunaga, Hiroshi
1993-01-01
An accurate and efficient computational method is needed for three-dimensional incompressible viscous flows in engineering applications. On solving the turbulent shear flows directly or using the subgrid scale model, it is indispensable to resolve the small scale fluid motions as well as the large scale motions. From this point of view, the pseudo-spectral method is used so far as the computational method. However, the finite difference or the finite element methods are widely applied for computing the flow with practical importance since these methods are easily applied to the flows with complex geometric configurations. However, there exist several problems in applying the finite difference method to direct and large eddy simulations. Accuracy is one of most important problems. This point was already addressed by the present author on the direct simulations on the instability of the plane Poiseuille flow and also on the transition to turbulence. In order to obtain high efficiency, the multi-grid Poisson solver is combined with the higher-order, accurate finite difference method. The formulation method is also one of the most important problems in applying the finite difference method to the incompressible turbulent flows. The three-dimensional Navier-Stokes equations have been solved so far in the primitive variables formulation. One of the major difficulties of this method is the rigorous satisfaction of the equation of continuity. In general, the staggered grid is used for the satisfaction of the solenoidal condition for the velocity field at the wall boundary. However, the velocity field satisfies the equation of continuity automatically in the vorticity-vector potential formulation. From this point of view, the vorticity-vector potential method was extended to the generalized coordinate system. In the present article, we adopt the vorticity-vector potential formulation, the generalized coordinate system, and the 4th-order accurate difference method as the computational method. We present the computational method and apply the present method to computations of flows in a square cavity at large Reynolds number in order to investigate its effectiveness.
Tucker, Eric; D' Archangel, Jeffrey; Raschke, Markus B; Boreman, Glenn
2015-05-04
Mid-infrared scattering scanning near-field optical microscopy, in combination with far-field infrared spectroscopy, and simulations, was employed to investigate the effect of mutual-element coupling towards the edge of arrays of loop elements acting as frequency selective surfaces (FSSs). Two different square loop arrays on ZnS over a ground plane, resonant at 10.3 µm, were investigated. One array had elements that were closely spaced while the other array had elements with greater inter-element spacing. In addition to the dipolar resonance, we observed a new emergent resonance associated with the edge of the closely-spaced array as a finite size effect, due to the broken translational invariance.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-01-01
Although wafer-level camera lenses are a very promising technology, problems such as warpage with time and non-uniform thickness of products still exist. In this study, finite element simulation was performed to simulate the compression molding process for acquiring the pressure distribution on the product on completion of the process and predicting the deformation with respect to the pressure distribution. Results show that the single-gate compression molding process significantly increases the pressure at the center of the product, whereas the multi-gate compressing molding process can effectively distribute the pressure. This study evaluated the non-uniform thickness of product and changes in the process parameters through computer simulations, which could help to improve the compression molding process. PMID:28617315
Multi-level adaptive finite element methods. 1: Variation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1979-01-01
A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.
Study on validation method for femur finite element model under multiple loading conditions
NASA Astrophysics Data System (ADS)
Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu
2018-03-01
Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.
NASA Astrophysics Data System (ADS)
Johnson, Ryan; Kercher, Andrew; Schwer, Douglas; Corrigan, Andrew; Kailasanath, Kazhikathra
2017-11-01
This presentation focuses on the development of a Discontinuous Galerkin (DG) method for application to chemically reacting flows. The in-house code, called Propel, was developed by the Laboratory of Computational Physics and Fluid Dynamics at the Naval Research Laboratory. It was designed specifically for developing advanced multi-dimensional algorithms to run efficiently on new and innovative architectures such as GPUs. For these results, Propel solves for convection and diffusion simultaneously with detailed transport and thermodynamics. Chemistry is currently solved in a time-split approach using Strang-splitting with finite element DG time integration of chemical source terms. Results presented here show canonical unsteady reacting flow cases, such as co-flow and splitter plate, and we report performance for higher order DG on CPU and GPUs.
Experimental validation of a numerical model for subway induced vibrations
NASA Astrophysics Data System (ADS)
Gupta, S.; Degrande, G.; Lombaert, G.
2009-04-01
This paper presents the experimental validation of a coupled periodic finite element-boundary element model for the prediction of subway induced vibrations. The model fully accounts for the dynamic interaction between the train, the track, the tunnel and the soil. The periodicity or invariance of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transformation, which allows for an efficient formulation in the frequency-wavenumber domain. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The numerical model is validated by means of several experiments that have been performed at a site in Regent's Park on the Bakerloo line of London Underground. Vibration measurements have been performed on the axle boxes of the train, on the rail, the tunnel invert and the tunnel wall, and in the free field, both at the surface and at a depth of 15 m. Prior to these vibration measurements, the dynamic soil characteristics and the track characteristics have been determined. The Bakerloo line tunnel of London Underground has been modelled using the coupled periodic finite element-boundary element approach and free field vibrations due to the passage of a train at different speeds have been predicted and compared to the measurements. The correspondence between the predicted and measured response in the tunnel is reasonably good, although some differences are observed in the free field. The discrepancies are explained on the basis of various uncertainties involved in the problem. The variation in the response with train speed is similar for the measurements as well as the predictions. This study demonstrates the applicability of the coupled periodic finite element-boundary element model to make realistic predictions of the vibrations from underground railways.
NASA Astrophysics Data System (ADS)
Soloveichik, Yury G.; Persova, Marina G.; Domnikov, Petr A.; Koshkina, Yulia I.; Vagin, Denis V.
2018-03-01
We propose an approach to solving multisource induction logging problems in multidimensional media. According to the type of induction logging tools, the measurements are performed in the frequency range of 10 kHz to 14 MHz, transmitter-receiver offsets vary in the range of 0.5-8 m or more, and the trajectory length is up to 1 km. For calculating the total field, the primary-secondary field approach is used. The secondary field is calculated with the use of the finite-element method (FEM), irregular non-conforming meshes with local refinements and a direct solver. The approach to constructing basis functions with the continuous tangential components (from Hcurl(Ω)) on the non-conforming meshes from the standard shape vector functions is developed. On the basis of this method, the algorithm of generating global matrices and a vector of the finite-element equation system is proposed. We also propose the method of grouping the logging tool positions, which makes it possible to significantly increase the computational effectiveness. This is achieved due to the compromise between the possibility of using the 1-D background medium, which is very similar to the investigated multidimensional medium for a small group, and the decrease in the number of the finite-element matrix factorizations with the increasing number of tool positions in one group. For calculating the primary field, we propose the method based on the use of FEM. This method is highly effective when the 1-D field is required to be calculated at a great number of points. The use of this method significantly increases the effectiveness of the primary-secondary field approach. The proposed approach makes it possible to perform modelling both in the 2.5-D case (i.e. without taking into account a borehole and/or invasion zone effect) and the 3-D case (i.e. for models with a borehole and invasion zone). The accuracy of numerical results obtained with the use of the proposed approach is compared with the one obtained by other codes for 1-D and 3-D anisotropic models. The results of this comparison lend support to the validity of our code. We also present the numerical results proving greater effectiveness of the finite-element approach proposed for calculating the 1-D field in comparison with the known codes implementing the semi-analytical methods for the case in which the field is calculated at a large number of points. Additionally, we present the numerical results which confirm the accuracy advantages of the automatic choice of a background medium for calculating the 1-D field as well as the results of 2.5-D modelling for a geoelectrical model with anisotropic layers, a fault and long tool-movement trajectory with the varying dip angle.
Multi-dimensional multi-species modeling of transient electrodeposition in LIGA microfabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Gregory Herbert; Chen, Ken Shuang
2004-06-01
This report documents the efforts and accomplishments of the LIGA electrodeposition modeling project which was headed by the ASCI Materials and Physics Modeling Program. A multi-dimensional framework based on GOMA was developed for modeling time-dependent diffusion and migration of multiple charged species in a dilute electrolyte solution with reduction electro-chemical reactions on moving deposition surfaces. By combining the species mass conservation equations with the electroneutrality constraint, a Poisson equation that explicitly describes the electrolyte potential was derived. The set of coupled, nonlinear equations governing species transport, electric potential, velocity, hydrodynamic pressure, and mesh motion were solved in GOMA, using themore » finite-element method and a fully-coupled implicit solution scheme via Newton's method. By treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and by repeatedly performing re-meshing with CUBIT and re-mapping with MAPVAR, the moving deposition surfaces were tracked explicitly from start of deposition until the trenches were filled with metal, thus enabling the computation of local current densities that potentially influence the microstructure and frictional/mechanical properties of the deposit. The multi-dimensional, multi-species, transient computational framework was demonstrated in case studies of two-dimensional nickel electrodeposition in single and multiple trenches, without and with bath stirring or forced flow. Effects of buoyancy-induced convection on deposition were also investigated. To further illustrate its utility, the framework was employed to simulate deposition in microscreen-based LIGA molds. Lastly, future needs for modeling LIGA electrodeposition are discussed.« less
NASA Astrophysics Data System (ADS)
Tolipov, A. A.; Elghawail, A.; Shushing, S.; Pham, D.; Essa, K.
2017-09-01
There is a growing demand for flexible manufacturing techniques that meet the rapid changes in customer needs. A finite element analysis numerical optimisation technique was used to optimise the multi-point sheet forming process. Multi-point forming (MPF) is a flexible sheet metal forming technique where the same tool can be readily changed to produce different parts. The process suffers from some geometrical defects such as wrinkling and dimpling, which have been found to be the cause of the major surface quality problems. This study investigated the influence of parameters such as the elastic cushion hardness, blank holder force, coefficient of friction, cushion thickness and radius of curvature, on the quality of parts formed in a flexible multi-point stamping die. For those reasons, in this investigation, a multipoint forming stamping process using a blank holder was carried out in order to study the effects of the wrinkling, dimpling, thickness variation and forming force. The aim was to determine the optimum values of these parameters. Finite element modelling (FEM) was employed to simulate the multi-point forming of hemispherical shapes. Using the response surface method, the effects of process parameters on wrinkling, maximum deviation from the target shape and thickness variation were investigated. The results show that elastic cushion with proper thickness and polyurethane with the hardness of Shore A90. It has also been found that the application of lubrication cans improve the shape accuracy of the formed workpiece. These final results were compared with the numerical simulation results of the multi-point forming for hemispherical shapes using a blank-holder and it was found that using cushion hardness realistic to reduce wrinkling and maximum deviation.
Gonzales, Matthew J.; Sturgeon, Gregory; Krishnamurthy, Adarsh; Hake, Johan; Jonas, René; Stark, Paul; Rappel, Wouter-Jan; Narayan, Sanjiv M.; Zhang, Yongjie; Segars, W. Paul; McCulloch, Andrew D.
2013-01-01
High-order cubic Hermite finite elements have been valuable in modeling cardiac geometry, fiber orientations, biomechanics, and electrophysiology, but their use in solving three-dimensional problems has been limited to ventricular models with simple topologies. Here, we utilized a subdivision surface scheme and derived a generalization of the “local-to-global” derivative mapping scheme of cubic Hermite finite elements to construct bicubic and tricubic Hermite models of the human atria with extraordinary vertices from computed tomography images of a patient with atrial fibrillation. To an accuracy of 0.6 millimeters, we were able to capture the left atrial geometry with only 142 bicubic Hermite finite elements, and the right atrial geometry with only 90. The left and right atrial bicubic Hermite meshes were G1 continuous everywhere except in the one-neighborhood of extraordinary vertices, where the mean dot products of normals at adjacent elements were 0.928 and 0.925. We also constructed two biatrial tricubic Hermite models and defined fiber orientation fields in agreement with diagrammatic data from the literature using only 42 angle parameters. The meshes all have good quality metrics, uniform element sizes, and elements with aspect ratios near unity, and are shared with the public. These new methods will allow for more compact and efficient patient-specific models of human atrial and whole heart physiology. PMID:23602918
NASA Technical Reports Server (NTRS)
Schuler, James J.; Felippa, Carlos A.
1991-01-01
Electromagnetic finite elements are extended based on a variational principle that uses the electromagnetic four potential as primary variable. The variational principle is extended to include the ability to predict a nonlinear current distribution within a conductor. The extension of this theory is first done on a normal conductor and tested on two different problems. In both problems, the geometry remains the same, but the material properties are different. The geometry is that of a 1-D infinite wire. The first problem is merely a linear control case used to validate the new theory. The second problem is made up of linear conductors with varying conductivities. Both problems perform well and predict current densities that are accurate to within a few ten thousandths of a percent of the exact values. The fourth potential is then removed, leaving only the magnetic vector potential, and the variational principle is further extended to predict magnetic potentials, magnetic fields, the number of charge carriers, and the current densities within a superconductor. The new element produces good results for the mean magnetic field, the vector potential, and the number of superconducting charge carriers despite a relatively high system condition number. The element did not perform well in predicting the current density. Numerical problems inherent to this formulation are explored and possible remedies to produce better current predicting finite elements are presented.
Hybrid finite element/waveguide mode analysis of passive RF devices
NASA Astrophysics Data System (ADS)
McGrath, Daniel T.
1993-07-01
A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Byoung Yoon; Roberts, Barry L.
The three-dimensional finite element mesh capturing realistic geometries of Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh is consisting of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time with maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill,more » Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for not only various civil and geological structures but also biological applications such as artificial limbs.« less
NASA Astrophysics Data System (ADS)
Lee, Juhwa; Hwang, Jeongho; Bae, Dongho
2018-03-01
In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.
NASA Astrophysics Data System (ADS)
Lee, Juhwa; Hwang, Jeongho; Bae, Dongho
2018-07-01
In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Corato, M., E-mail: marco.decorato@unina.it; Slot, J.J.M., E-mail: j.j.m.slot@tue.nl; Hütter, M., E-mail: m.huetter@tue.nl
In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation–dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered withinmore » the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.« less
NASA Astrophysics Data System (ADS)
Schröder, Jörg; Viebahn, Nils; Wriggers, Peter; Auricchio, Ferdinando; Steeger, Karl
2017-09-01
In this work we investigate different mixed finite element formulations for the detection of critical loads for the possible occurrence of bifurcation and limit points. In detail, three- and two-field formulations for incompressible and quasi-incompressible materials are analyzed. In order to apply various penalty functions for the volume dilatation in displacement/pressure mixed elements we propose a new consistent scheme capturing the non linearities of the penalty constraints. It is shown that for all mixed formulations, which can be reduced to a generalized displacement scheme, a straight forward stability analysis is possible. However, problems based on the classical saddle-point structure require a different analyses based on the change of the signature of the underlying matrix system. The basis of these investigations is the work from Auricchio et al. (Comput Methods Appl Mech Eng 194:1075-1092, 2005, Comput Mech 52:1153-1167, 2013).
NASA Astrophysics Data System (ADS)
Chuluunbaatar, O.; Gusev, A. A.; Gerdt, V. P.; Rostovtsev, V. A.; Vinitsky, S. I.; Abrashkevich, A. G.; Kaschiev, M. S.; Serov, V. V.
2008-02-01
A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix elements of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adiabatic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are presented. Program summaryProgram title:POTHMF Catalogue identifier:AEAA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:8123 No. of bytes in distributed program, including test data, etc.:131 396 Distribution format:tar.gz Programming language:FORTRAN 77 Computer:Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system:OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM:Depends on the number of radial differential equations; the number and order of finite elements; the number of radial points. Test run requires 4 MB Classification:2.5 External routines:POTHMF uses some Lapack routines, copies of which are included in the distribution (see README file for details). Nature of problem:In the multi-channel adiabatic approach the Schrödinger equation for a hydrogen-like atom in a homogeneous magnetic field of strength γ ( γ=B/B, B≅2.35×10 T is a dimensionless parameter which determines the field strength B) is reduced by separating the radial coordinate, r, from the angular variables, (θ,φ), and using a basis of the angular oblate spheroidal functions [3] to a system of second-order ordinary differential equations which contain first-derivative coupling terms [4]. The purpose of this program is to calculate potential curves and matrix elements of radial coupling needed for calculating the low-lying bound and scattering states of hydrogen-like atoms in a homogeneous magnetic field of strength 0<γ⩽1000 within the adiabatic approach [5]. The program evaluates also asymptotic regular and irregular matrix radial solutions of the multi-channel scattering problem needed to extract from the R-matrix a required symmetric shortrange open-channel reaction matrix K [6] independent from matching point [7]. In addition, the program computes the dipole transition matrix elements in the length form between the basis functions that are needed for calculating the dipole transitions between the low-lying bound and scattering states and photoionization cross sections [8]. Solution method:The angular oblate spheroidal eigenvalue problem depending on the radial variable is solved using a series expansion in the Legendre polynomials [3]. The resulting tridiagonal symmetric algebraic eigenvalue problem for the evaluation of selected eigenvalues, i.e. the potential curves, is solved by the LDLT factorization using the DSTEVR program [2]. Derivatives of the eigenfunctions with respect to the radial variable which are contained in matrix elements of the coupled radial equations are obtained by solving the inhomogeneous algebraic equations. The corresponding algebraic problem is solved by using the LDLT factorization with the help of the DPTTRS program [2]. Asymptotics of the matrix elements at large values of radial variable are computed using a series expansion in the associated Laguerre polynomials [9]. The corresponding matching points between the numeric and asymptotic solutions are found automatically. These asymptotics are used for the evaluation of the asymptotic regular and irregular matrix radial solutions of the multi-channel scattering problem [7]. As a test desk, the program is applied to the calculation of the energy values of the ground and excited bound states and reaction matrix of multi-channel scattering problem for a hydrogen atom in a homogeneous magnetic field using the KANTBP program [10]. Restrictions:The computer memory requirements depend on: the number of radial differential equations; the number and order of finite elements; the total number of radial points. Restrictions due to dimension sizes can be changed by resetting a small number of PARAMETER statements before recompiling (see Introduction and listing for details). Running time:The running time depends critically upon: the number of radial differential equations; the number and order of finite elements; the total number of radial points on interval [r,r]. The test run which accompanies this paper took 7 s required for calculating of potential curves, radial matrix elements, and dipole transition matrix elements on a finite-element grid on interval [ r=0, r=100] used for solving discrete and continuous spectrum problems and obtaining asymptotic regular and irregular matrix radial solutions at r=100 for continuous spectrum problem on the Intel Pentium IV 2.4 GHz. The number of radial differential equations was equal to 6. The accompanying test run using the KANTBP program took 2 s for solving discrete and continuous spectrum problems using the above calculated potential curves, matrix elements and asymptotic regular and irregular matrix radial solutions. Note, that in the accompanied benchmark calculations of the photoionization cross-sections from the bound states of a hydrogen atom in a homogeneous magnetic field to continuum we have used interval [ r=0, r=1000] for continuous spectrum problem. The total number of radial differential equations was varied from 10 to 18. References:W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986. http://www.netlib.org/lapack/. M. Abramovits, I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965. U. Fano, Colloq. Int. C.N.R.S. 273 (1977) 127; A.F. Starace, G.L. Webster, Phys. Rev. A 19 (1979) 1629-1640; C.V. Clark, K.T. Lu, A.F. Starace, in: H.G. Beyer, H. Kleinpoppen (Eds.), Progress in Atomic Spectroscopy, Part C, Plenum, New York, 1984, pp. 247-320; U. Fano, A.R.P. Rau, Atomic Collisions and Spectra, Academic Press, Florida, 1986. M.G. Dimova, M.S. Kaschiev, S.I. Vinitsky, J. Phys. B 38 (2005) 2337-2352; O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, V.V. Serov, T.V. Tupikova, S.I. Vinitsky, Proc. SPIE 6537 (2007) 653706-1-18. M.J. Seaton, Rep. Prog. Phys. 46 (1983) 167-257. M. Gailitis, J. Phys. B 9 (1976) 843-854; J. Macek, Phys. Rev. A 30 (1984) 1277-1278; S.I. Vinitsky, V.P. Gerdt, A.A. Gusev, M.S. Kaschiev, V.A. Rostovtsev, V.N. Samoylov, T.V. Tupikova, O. Chuluunbaatar, Programming and Computer Software 33 (2007) 105-116. H. Friedrich, Theoretical Atomic Physics, Springer, New York, 1991. R.J. Damburg, R.Kh. Propin, J. Phys. B 1 (1968) 681-691; J.D. Power, Phil. Trans. Roy. Soc. London A 274 (1973) 663-702. O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Comm. 177 (2007) 649-675.
2012-08-25
Accel- erated Crystal Plasticity FEM Simulations (submitted). 5. M. Anahid, M. Samal and S. Ghosh, Dwell fatigue crack nucleation model based on using...4] M. Anahid, M. K. Samal , and S. Ghosh. Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of
Multigrid Equation Solvers for Large Scale Nonlinear Finite Element Simulations
1999-01-01
purpose of the second partitioning phase , on each SMP, is to minimize the communication within the SMP; even if a multi - threaded matrix vector product...8.7 Comparison of model with experimental data for send phase of matrix vector product on ne grid...140 8.4 Matrix vector product phase times : : : : : : : : : : : : : : : : : : : : : : : 145 9.1 Flat and
An Object-Oriented Finite Element Framework for Multiphysics Phase Field Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael R Tonks; Derek R Gaston; Paul C Millett
2012-01-01
The phase field approach is a powerful and popular method for modeling microstructure evolution. In this work, advanced numerical tools are used to create a phase field framework that facilitates rapid model development. This framework, called MARMOT, is based on Idaho National Laboratory's finite element Multiphysics Object-Oriented Simulation Environment. In MARMOT, the system of phase field partial differential equations (PDEs) are solved simultaneously with PDEs describing additional physics, such as solid mechanics and heat conduction, using the Jacobian-Free Newton Krylov Method. An object-oriented architecture is created by taking advantage of commonalities in phase fields models to facilitate development of newmore » models with very little written code. In addition, MARMOT provides access to mesh and time step adaptivity, reducing the cost for performing simulations with large disparities in both spatial and temporal scales. In this work, phase separation simulations are used to show the numerical performance of MARMOT. Deformation-induced grain growth and void growth simulations are included to demonstrate the muliphysics capability.« less
Cazon, Aitor; Kelly, Sarah; Paterson, Abby M; Bibb, Richard J; Campbell, R Ian
2017-09-01
Rheumatoid arthritis is a chronic disease affecting the joints. Treatment can include immobilisation of the affected joint with a custom-fitting splint, which is typically fabricated by hand from low temperature thermoplastic, but the approach poses several limitations. This study focused on the evaluation, by finite element analysis, of additive manufacturing techniques for wrist splints in order to improve upon the typical splinting approach. An additive manufactured/3D printed splint, specifically designed to be built using Objet Connex multi-material technology and a virtual model of a typical splint, digitised from a real patient-specific splint using three-dimensional scanning, were modelled in computer-aided design software. Forty finite element analysis simulations were performed in flexion-extension and radial-ulnar wrist movements to compare the displacements and the stresses. Simulations have shown that for low severity loads, the additive manufacturing splint has 25%, 76% and 27% less displacement in the main loading direction than the typical splint in flexion, extension and radial, respectively, while ulnar values were 75% lower in the traditional splint. For higher severity loads, the flexion and extension movements resulted in deflections that were 24% and 60%, respectively, lower in the additive manufacturing splint. However, for higher severity loading, the radial defection values were very similar in both splints and ulnar movement deflection was higher in the additive manufacturing splint. A physical prototype of the additive manufacturing splint was also manufactured and was tested under normal conditions to validate the finite element analysis data. Results from static tests showed maximum displacements of 3.46, 0.97, 3.53 and 2.51 mm flexion, extension, radial and ulnar directions, respectively. According to these results, the present research argues that from a technical point of view, the additive manufacturing splint design stands at the same or even better level of performance in displacements and stress values in comparison to the typical low temperature thermoplastic approach and is therefore a feasible approach to splint design and manufacture.
NASA Astrophysics Data System (ADS)
Li, Jiangui; Wang, Junhua; Zhigang, Zhao; Yan, Weili
2012-04-01
In this paper, analytical analysis of the permanent magnet vernier (PMV) is presented. The key is to analytically solve the governing Laplacian/quasi-Poissonian field equations in the motor regions. By using the time-stepping finite element method, the analytical method is verified. Hence, the performances of the PMV machine are quantitatively compared with that of the analytical results. The analytical results agree well with the finite element method results. Finally, the experimental results are given to further show the validity of the analysis.
Finite element procedures for time-dependent convection-diffusion-reaction systems
NASA Technical Reports Server (NTRS)
Tezduyar, T. E.; Park, Y. J.; Deans, H. A.
1988-01-01
New finite element procedures based on the streamline-upwind/Petrov-Galerkin formulations are developed for time-dependent convection-diffusion-reaction equations. These procedures minimize spurious oscillations for convection-dominated and reaction-dominated problems. The results obtained for representative numerical examples are accurate with minimal oscillations. As a special application problem, the single-well chemical tracer test (a procedure for measuring oil remaining in a depleted field) is simulated numerically. The results show the importance of temperature effects on the interpreted value of residual oil saturation from such tests.
A probabilistic Hu-Washizu variational principle
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Besterfield, G. H.
1987-01-01
A Probabilistic Hu-Washizu Variational Principle (PHWVP) for the Probabilistic Finite Element Method (PFEM) is presented. This formulation is developed for both linear and nonlinear elasticity. The PHWVP allows incorporation of the probabilistic distributions for the constitutive law, compatibility condition, equilibrium, domain and boundary conditions into the PFEM. Thus, a complete probabilistic analysis can be performed where all aspects of the problem are treated as random variables and/or fields. The Hu-Washizu variational formulation is available in many conventional finite element codes thereby enabling the straightforward inclusion of the probabilistic features into present codes.
Implementation of reflex loops in a biomechanical finite element model.
Salin, Dorian; Arnoux, Pierre-Jean; Kayvantash, Kambiz; Behr, Michel
2016-11-01
In the field of biomechanics, the offer of models which are more and more realistic requires to integrate a physiological response, in particular, the controlled muscle bracing and the reflexes. The following work aims to suggest a unique methodology which couples together a sensory and motor loop with a finite element model. Our method is applied to the study of the oscillation of the elbow in the case of a biceps brachial stretch reflex. The results obtained are promising in the purpose of the development of reactive human body models.
A simple finite element method for the Stokes equations
Mu, Lin; Ye, Xiu
2017-03-21
The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in primal velocity-pressure formulation and is so simple such that both velocity and pressure are approximated by piecewise constant functions. Implementation issues as well as error analysis are investigated. A basis for a divergence free subspace of the velocity field is constructed so that the original saddle point problem can be reduced to a symmetric and positive definite system with much fewer unknowns. The numerical experiments indicate that the method is accurate.
A simple finite element method for the Stokes equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in primal velocity-pressure formulation and is so simple such that both velocity and pressure are approximated by piecewise constant functions. Implementation issues as well as error analysis are investigated. A basis for a divergence free subspace of the velocity field is constructed so that the original saddle point problem can be reduced to a symmetric and positive definite system with much fewer unknowns. The numerical experiments indicate that the method is accurate.
Finite element analysis of periodic transonic flow problems
NASA Technical Reports Server (NTRS)
Fix, G. J.
1978-01-01
Flow about an oscillating thin airfoil in a transonic stream was considered. It was assumed that the flow field can be decomposed into a mean flow plus a periodic perturbation. On the surface of the airfoil the usual Neumman conditions are imposed. Two computer programs were written, both using linear basis functions over triangles for the finite element space. The first program uses a banded Gaussian elimination solver to solve the matrix problem, while the second uses an iterative technique, namely SOR. The only results obtained are for an oscillating flat plate.
NASA Astrophysics Data System (ADS)
Pantale, O.; Caperaa, S.; Rakotomalala, R.
2004-07-01
During the last 50 years, the development of better numerical methods and more powerful computers has been a major enterprise for the scientific community. In the same time, the finite element method has become a widely used tool for researchers and engineers. Recent advances in computational software have made possible to solve more physical and complex problems such as coupled problems, nonlinearities, high strain and high-strain rate problems. In this field, an accurate analysis of large deformation inelastic problems occurring in metal-forming or impact simulations is extremely important as a consequence of high amount of plastic flow. In this presentation, the object-oriented implementation, using the C++ language, of an explicit finite element code called DynELA is presented. The object-oriented programming (OOP) leads to better-structured codes for the finite element method and facilitates the development, the maintainability and the expandability of such codes. The most significant advantage of OOP is in the modeling of complex physical systems such as deformation processing where the overall complex problem is partitioned in individual sub-problems based on physical, mathematical or geometric reasoning. We first focus on the advantages of OOP for the development of scientific programs. Specific aspects of OOP, such as the inheritance mechanism, the operators overload procedure or the use of template classes are detailed. Then we present the approach used for the development of our finite element code through the presentation of the kinematics, conservative and constitutive laws and their respective implementation in C++. Finally, the efficiency and accuracy of our finite element program are investigated using a number of benchmark tests relative to metal forming and impact simulations.
Field test and finite element of I-345 bridge in Dallas.
DOT National Transportation Integrated Search
2009-07-01
This report documents a field test to determine the stresses at areas where fatigue cracks had formed in the : bridges. Two bridges were instrumented and subjected to controlled truck traffic. In addition, the service fatigue : stresses were evaluate...
A finite element method based microwave heat transfer modeling of frozen multi-component foods
NASA Astrophysics Data System (ADS)
Pitchai, Krishnamoorthy
Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a frozen pizza. The root mean square error values of transient temperature profiles of five locations ranged from 5.0 °C to 12.6 °C. A methodology was developed to incorporate electromagnetic frequency spectrum in the coupled electromagnetic and heat transfer model. Implementing the electromagnetic frequency spectrum in the simulation improved the accuracy of temperature field pattern and transient temperature profile as compared to mono-chromatic frequency of 2.45 GHz. The bulk moisture diffusion coefficient of cooked pasta was calculated as a function of temperature at a constant water activity using desorption isotherms.
NASA Astrophysics Data System (ADS)
Rudmin, Daniel
Ionic polymer-metal composites (IPMCs) are some of the most well-known electro-active polymers. This is due to their large deformation provided a relatively low voltage source. IPMCs have been acknowledged as a potential candidate for biomedical applications such as cardiac catheters and surgical probes; however, there is still no existing mass manufacturing of IPMCs. This study intends to provide a theoretical framework which could be used to design practical purpose IPMCs depending on the end users interest. This study begins by investigating methodologies used to develop quantify the physical actuation of an IPMC in 3-dimensional space. This approach is taken in two separate means; however, both approaches utilize the finite element method. The first approach utilizes the finite element method in order to describe the dynamic response of a segmented IPMC actuator. The first approach manually constructs each element with a local coordinate system. Each system undergoes a rigid body motion along the element and deformation of the element is expressed in the local coordinate frame. The physical phenomenon in this system is simplified by utilizing a lumped RC model in order to simplify the electro-mechanical phenomena in the IPMC dynamics. The second study investigates 3D modeling of a rod shaped IPMC actuator by explicitly coupling electrostatics, transport phenomenon, and solid mechanics. This portion of the research will briefly discuss the mathematical background that more accurately quantifies the physical phenomena. Solving for the 3-dimensional actuation is explicitly carried out again by utilizing the finite element method. The numerical result is conducted in a software package known as COMSOL MULTIPHYSICS. This simulation allows for explicit geometric rendering as well as more explicit quantification of the physical quantities such as concentration, electric field, and deflection. The final study will conduct design optimization on the COMSOL simulation in order to provide conceptual motivation for future designs. Utilizing a multi-physics analysis approach on a three dimensional cylinder and tube type IPMC provides physically accurate results for time dependent end effector displacement given a voltage source. Simulations are conducted with the finite element method and are also validated with empirical evidences. Having an in-depth understanding of the physical coupling provides optimal design parameters that cannot be altered from a standard electro-mechanical coupling. These parameters are altered in order to determine optimal designs for end-effector displacement, maximum force, and improved mobility with limited voltage magnitude. Design alterations are conducted on the electrode patterns in order to provide greater mobility, electrode size for efficient bending, and Nafion diameter for improved force. The results of this study will provide optimal design parameters of the IPMC for different applications.
Atmospheric effect on classification of finite fields. [satellite-imaged agricultural areas
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Fraser, R. S.
1984-01-01
The atmospheric effect on the upward radiance of sunlight scattered from the earth-atmosphere system is strongly influenced by the contrasts between fields and their sizes. In this paper, the radiances above finite fields are computed to simulate radiances measured by a satellite. A simulation case including 11 agricultural fields and four natural fields (water, soil, savanah, and forest) is used to test the effect of field size, background reflectance, and optical thickness of the atmosphere on the classification accuracy. For a given atmospheric turbidity, the atmospheric effect on classification of surface features may be much stronger for nonuniform surfaces than for uniform surfaces. Therefore, the classification accuracy of agricultural fields and urban areas is dependent not only on the optical characteristics of the atmosphere, but also on the size of the surface elements to be classified and their contrasts. It is concluded that new atmospheric correction methods, which take into account the finite size of the fields, are needed.
NASA Astrophysics Data System (ADS)
Youn, Dong Joon
This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach combining XFEM and random field is named as eXtended Random Finite Element Method (XRFEM). All the numerical analysis codes in this thesis are written in Fortran 2003, and these codes are applicable as a series of sub-modules within a suite of finite element codes developed by Smith and Griffiths (2004).
NASA Astrophysics Data System (ADS)
Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.
2017-10-01
We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.
Exploiting symmetries in the modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Andersen, Carl M.; Tanner, John A.
1987-01-01
A simple and efficient computational strategy for reducing both the size of a tire model and the cost of the analysis of tires in the presence of symmetry-breaking conditions (unsymmetry in the tire material, geometry, or loading) is presented. The strategy is based on approximating the unsymmetric response of the tire with a linear combination of symmetric and antisymmetric global approximation vectors (or modes). Details are presented for the three main elements of the computational strategy, which include: use of special three-field mixed finite-element models, use of operator splitting, and substantial reduction in the number of degrees of freedom. The proposed computational stategy is applied to three quasi-symmetric problems of tires: linear analysis of anisotropic tires, through use of semianalytic finite elements, nonlinear analysis of anisotropic tires through use of two-dimensional shell finite elements, and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry (and their combinations) exhibited by the tire response are identified.
Multi-scale finite element modeling of Eustachian tube function: influence of mucosal adhesion.
Malik, J E; Swarts, J D; Ghadiali, S N
2016-12-01
The inability to open the collapsible Eustachian tube (ET) leads to the development of chronic Otitis Media (OM). Although mucosal inflammation during OM leads to increased mucin gene expression and elevated adhesion forces within the ET lumen, it is not known how changes in mucosal adhesion alter the biomechanical mechanisms of ET function. In this study, we developed a novel multi-scale finite element model of ET function in adults that utilizes adhesion spring elements to simulate changes in mucosal adhesion. Models were created for six adult subjects, and dynamic patterns in muscle contraction were used to simulate the wave-like opening of the ET that occurs during swallowing. Results indicate that ET opening is highly sensitive to the level of mucosal adhesion and that exceeding a critical value of adhesion leads to rapid ET dysfunction. Parameter variation studies and sensitivity analysis indicate that increased mucosal adhesion alters the relative importance of several tissue biomechanical properties. For example, increases in mucosal adhesion reduced the sensitivity of ET function to tensor veli palatini muscle forces but did not alter the insensitivity of ET function to levator veli palatini muscle forces. Interestingly, although changes in cartilage stiffness did not significantly influence ET opening under low adhesion conditions, ET opening was highly sensitive to changes in cartilage stiffness under high adhesion conditions. Therefore, our multi-scale computational models indicate that changes in mucosal adhesion as would occur during inflammatory OM alter the biomechanical mechanisms of ET function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander
2013-01-01
The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.
Molding acoustic, electromagnetic and water waves with a single cloak
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-01-01
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934
NASA Astrophysics Data System (ADS)
Bing, Xue; Yicai, Ji
2018-06-01
In order to understand directly and analyze accurately the detected magnetotelluric (MT) data on anisotropic infinite faults, two-dimensional partial differential equations of MT fields are used to establish a model of anisotropic infinite faults using the Fourier transform method. A multi-fault model is developed to expand the one-fault model. The transverse electric mode and transverse magnetic mode analytic solutions are derived using two-infinite-fault models. The infinite integral terms of the quasi-analytic solutions are discussed. The dual-fault model is computed using the finite element method to verify the correctness of the solutions. The MT responses of isotropic and anisotropic media are calculated to analyze the response functions by different anisotropic conductivity structures. The thickness and conductivity of the media, influencing MT responses, are discussed. The analytic principles are also given. The analysis results are significant to how MT responses are perceived and to the data interpretation of the complex anisotropic infinite faults.
Molding acoustic, electromagnetic and water waves with a single cloak.
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-06-09
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.
Forman, Jason L.; Kent, Richard W.; Mroz, Krystoffer; Pipkorn, Bengt; Bostrom, Ola; Segui-Gomez, Maria
2012-01-01
This study sought to develop a strain-based probabilistic method to predict rib fracture risk with whole-body finite element (FE) models, and to describe a method to combine the results with collision exposure information to predict injury risk and potential intervention effectiveness in the field. An age-adjusted ultimate strain distribution was used to estimate local rib fracture probabilities within an FE model. These local probabilities were combined to predict injury risk and severity within the whole ribcage. The ultimate strain distribution was developed from a literature dataset of 133 tests. Frontal collision simulations were performed with the THUMS (Total HUman Model for Safety) model with four levels of delta-V and two restraints: a standard 3-point belt and a progressive 3.5–7 kN force-limited, pretensioned (FL+PT) belt. The results of three simulations (29 km/h standard, 48 km/h standard, and 48 km/h FL+PT) were compared to matched cadaver sled tests. The numbers of fractures predicted for the comparison cases were consistent with those observed experimentally. Combining these results with field exposure informantion (ΔV, NASS-CDS 1992–2002) suggests a 8.9% probability of incurring AIS3+ rib fractures for a 60 year-old restrained by a standard belt in a tow-away frontal collision with this restraint, vehicle, and occupant configuration, compared to 4.6% for the FL+PT belt. This is the first study to describe a probabilistic framework to predict rib fracture risk based on strains observed in human-body FE models. Using this analytical framework, future efforts may incorporate additional subject or collision factors for multi-variable probabilistic injury prediction. PMID:23169122
DOUAR: A new three-dimensional creeping flow numerical model for the solution of geological problems
NASA Astrophysics Data System (ADS)
Braun, Jean; Thieulot, Cédric; Fullsack, Philippe; DeKool, Marthijn; Beaumont, Christopher; Huismans, Ritske
2008-12-01
We present a new finite element code for the solution of the Stokes and energy (or heat transport) equations that has been purposely designed to address crustal-scale to mantle-scale flow problems in three dimensions. Although it is based on an Eulerian description of deformation and flow, the code, which we named DOUAR ('Earth' in Breton language), has the ability to track interfaces and, in particular, the free surface, by using a dual representation based on a set of particles placed on the interface and the computation of a level set function on the nodes of the finite element grid, thus ensuring accuracy and efficiency. The code also makes use of a new method to compute the dynamic Delaunay triangulation connecting the particles based on non-Euclidian, curvilinear measure of distance, ensuring that the density of particles remains uniform and/or dynamically adapted to the curvature of the interface. The finite element discretization is based on a non-uniform, yet regular octree division of space within a unit cube that allows efficient adaptation of the finite element discretization, i.e. in regions of strong velocity gradient or high interface curvature. The finite elements are cubes (the leaves of the octree) in which a q1- p0 interpolation scheme is used. Nodal incompatibilities across faces separating elements of differing size are dealt with by introducing linear constraints among nodal degrees of freedom. Discontinuities in material properties across the interfaces are accommodated by the use of a novel method (which we called divFEM) to integrate the finite element equations in which the elemental volume is divided by a local octree to an appropriate depth (resolution). A variety of rheologies have been implemented including linear, non-linear and thermally activated creep and brittle (or plastic) frictional deformation. A simple smoothing operator has been defined to avoid checkerboard oscillations in pressure that tend to develop when using a highly irregular octree discretization and the tri-linear (or q1- p0) finite element. A three-dimensional cloud of particles is used to track material properties that depend on the integrated history of deformation (the integrated strain, for example); its density is variable and dynamically adapted to the computed flow. The large system of algebraic equations that results from the finite element discretization and linearization of the basic partial differential equations is solved using a multi-frontal massively parallel direct solver that can efficiently factorize poorly conditioned systems resulting from the highly non-linear rheology and the presence of the free surface. The code is almost entirely parallelized. We present example results including the onset of a Rayleigh-Taylor instability, the indentation of a rigid-plastic material and the formation of a fold beneath a free eroding surface, that demonstrate the accuracy, efficiency and appropriateness of the new code to solve complex geodynamical problems in three dimensions.
Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint
NASA Astrophysics Data System (ADS)
Auricchio, Ferdinando; Scalet, Giulia; Wriggers, Peter
2017-12-01
The present paper proposes a numerical framework for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic solids, reinforced by a single family of inextensible fibers, are considered. The kinematic constraint equation of inextensibility in the fiber direction leads to the presence of an undetermined fiber stress in the constitutive equations. To avoid locking-phenomena in the numerical solution due to the presence of the constraint, mixed finite elements based on the Lagrange multiplier, perturbed Lagrangian, and penalty method are proposed. Several boundary-value problems under plane strain conditions are solved and numerical results are compared to analytical solutions, whenever the derivation is possible. The performed simulations allow to assess the performance of the proposed finite elements and to discuss several features of the developed formulations concerning the effective approximation for the displacement and fiber stress fields, mesh convergence, and sensitivity to penalty parameters.
Developments in the Gung Ho dynamical core
NASA Astrophysics Data System (ADS)
Melvin, Thomas
2017-04-01
Gung Ho is the new dynamical core being developed for the next generation Met Office weather and climate model, suitable for meeting the exascale challenge on emerging computer architectures. It builds upon the earlier collaborative project between the Met Office, NERC and STFC Daresbury of the same name to investigate suitable numerical methods for dynamical cores. A mixed-finite element approach is used, where different finite element spaces are used to represent various fields. This method provides a number of beneficial improvements over the current model, such a compatibility and inherent conservation on quasi-uniform unstructured meshes, whilst maintaining the accuracy and good dispersion properties of the staggered grid currently used. Furthermore, the mixed finite element approach allows a large degree of flexibility in the type of mesh, order of approximation and discretisation, providing a simple way to test alternative options to obtain the best model possible.
Hollaus, K; Magele, C; Merwa, R; Scharfetter, H
2004-02-01
Magnetic induction tomography of biological tissue is used to reconstruct the changes in the complex conductivity distribution by measuring the perturbation of an alternating primary magnetic field. To facilitate the sensitivity analysis and the solution of the inverse problem a fast calculation of the sensitivity matrix, i.e. the Jacobian matrix, which maps the changes of the conductivity distribution onto the changes of the voltage induced in a receiver coil, is needed. The use of finite differences to determine the entries of the sensitivity matrix does not represent a feasible solution because of the high computational costs of the basic eddy current problem. Therefore, the reciprocity theorem was exploited. The basic eddy current problem was simulated by the finite element method using symmetric tetrahedral edge elements of second order. To test the method various simulations were carried out and discussed.
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1987-01-01
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.
Application of the finite element method in orthopedic implant design.
Saha, Subrata; Roychowdhury, Amit
2009-01-01
The finite element method (FEM) was first introduced to the field of orthopedic biomechanics in the early 1970s to evaluate stresses in human bones. By the early 1980s, the method had become well established as a tool for basic research and design analysis. Since the late 1980s and early 1990s, FEM has also been used to study bone remodeling. Today, it is one of the most reliable simulation tools for evaluating wear, fatigue, crack propagation, and so forth, and is used in many types of preoperative testing. Since the introduction of FEM to orthopedic biomechanics, there have been rapid advances in computer processing speeds, the finite element and other numerical methods, understanding of mechanical properties of soft and hard tissues and their modeling, and image-processing techniques. In light of these advances, it is accepted today that FEM will continue to contribute significantly to further progress in the design and development of orthopedic implants, as well as in the understanding of other complex systems of the human body. In the following article, different main application areas of finite element simulation will be reviewed including total hip joint arthroplasty, followed by the knee, spine, shoulder, and elbow, respectively.
A finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.; Nayani, S.
1990-01-01
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.
On the Treatment of Field Quantities and Elemental Continuity in FEM Solutions.
Jallepalli, Ashok; Docampo-Sanchez, Julia; Ryan, Jennifer K; Haimes, Robert; Kirby, Robert M
2018-01-01
As the finite element method (FEM) and the finite volume method (FVM), both traditional and high-order variants, continue their proliferation into various applied engineering disciplines, it is important that the visualization techniques and corresponding data analysis tools that act on the results produced by these methods faithfully represent the underlying data. To state this in another way: the interpretation of data generated by simulation needs to be consistent with the numerical schemes that underpin the specific solver technology. As the verifiable visualization literature has demonstrated: visual artifacts produced by the introduction of either explicit or implicit data transformations, such as data resampling, can sometimes distort or even obfuscate key scientific features in the data. In this paper, we focus on the handling of elemental continuity, which is often only continuous or piecewise discontinuous, when visualizing primary or derived fields from FEM or FVM simulations. We demonstrate that traditional data handling and visualization of these fields introduce visual errors. In addition, we show how the use of the recently proposed line-SIAC filter provides a way of handling elemental continuity issues in an accuracy-conserving manner with the added benefit of casting the data in a smooth context even if the representation is element discontinuous.
NASA Astrophysics Data System (ADS)
Paul, Prakash
2009-12-01
The finite element method (FEM) is used to solve three-dimensional electromagnetic scattering and radiation problems. Finite element (FE) solutions of this kind contain two main types of error: discretization error and boundary error. Discretization error depends on the number of free parameters used to model the problem, and on how effectively these parameters are distributed throughout the problem space. To reduce the discretization error, the polynomial order of the finite elements is increased, either uniformly over the problem domain or selectively in those areas with the poorest solution quality. Boundary error arises from the condition applied to the boundary that is used to truncate the computational domain. To reduce the boundary error, an iterative absorbing boundary condition (IABC) is implemented. The IABC starts with an inexpensive boundary condition and gradually improves the quality of the boundary condition as the iteration continues. An automatic error control (AEC) is implemented to balance the two types of error. With the AEC, the boundary condition is improved when the discretization error has fallen to a low enough level to make this worth doing. The AEC has these characteristics: (i) it uses a very inexpensive truncation method initially; (ii) it allows the truncation boundary to be very close to the scatterer/radiator; (iii) it puts more computational effort on the parts of the problem domain where it is most needed; and (iv) it can provide as accurate a solution as needed depending on the computational price one is willing to pay. To further reduce the computational cost, disjoint scatterers and radiators that are relatively far from each other are bounded separately and solved using a multi-region method (MRM), which leads to savings in computational cost. A simple analytical way to decide whether the MRM or the single region method will be computationally cheaper is also described. To validate the accuracy and savings in computation time, different shaped metallic and dielectric obstacles (spheres, ogives, cube, flat plate, multi-layer slab etc.) are used for the scattering problems. For the radiation problems, waveguide excited antennas (horn antenna, waveguide with flange, microstrip patch antenna) are used. Using the AEC the peak reduction in computation time during the iteration is typically a factor of 2, compared to the IABC using the same element orders throughout. In some cases, it can be as high as a factor of 4.
NASA Astrophysics Data System (ADS)
Fritzsch, Robert; Kennedy, Mark W.; Aune, Ragnhild E.
2018-02-01
Special induction coils used for electro magnetic priming of ceramic foam filters in liquid metal filtration have been designed using a combination of analytical and finite element modeling. Relatively simple empirical equations published by Wheeler in 1928 and 1982 have been used during the design process. The equations were found to accurately predict the z-component of the magnetic flux densities of both single- and multi-layer coils as verified both experimentally and by using COMSOL® 5.1 multiphysics simulations.
Comparative analysis of a jack-up drilling unit with different leg systems
NASA Astrophysics Data System (ADS)
Ren, Xiangang; Bai, Yong; Jia, Lusheng
2012-09-01
The jack-up unit is one of the best drilling platforms in offshore oil fields with water depth shallower than 150 meters. As the most pivotal component of the jack-up unit, the leg system can directly affect the global performance of a jack-up unit. Investigation shows that there are three kinds of leg structure forms in the world now: the reverse K, X, and mixing types. In order to clarify the advantage and defects of each one, as well as their effect on the global performance of the jack-up unit, this paper commenced to study performance targets of a deepwater jack-up unit with different leg systems (X type, reverse K type, and mixing type). In this paper a typical leg scantling dimension and identical external loads were selected, detailed finite element snalysis (FEA) models were built to simulate the jack-up unit's structural behavior, and the multi-point constraint (MPC) element together with the spring element was used to deal with the boundary condition. Finally, the above problems were solved by comparative analysis of their main performance targets (including ultimate static strength, dynamic response, and weight).
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Baumeister, Joseph F.
1994-01-01
An analytical procedure is presented, called the modal element method, that combines numerical grid based algorithms with eigenfunction expansions developed by separation of variables. A modal element method is presented for solving potential flow in a channel with two-dimensional cylindrical like obstacles. The infinite computational region is divided into three subdomains; the bounded finite element domain, which is characterized by the cylindrical obstacle and the surrounding unbounded uniform channel entrance and exit domains. The velocity potential is represented approximately in the grid based domain by a finite element solution and is represented analytically by an eigenfunction expansion in the uniform semi-infinite entrance and exit domains. The calculated flow fields are in excellent agreement with exact analytical solutions. By eliminating the grid surrounding the obstacle, the modal element method reduces the numerical grid size, employs a more precise far field boundary condition, as well as giving theoretical insight to the interaction of the obstacle with the mean flow. Although the analysis focuses on a specific geometry, the formulation is general and can be applied to a variety of problems as seen by a comparison to companion theories in aeroacoustics and electromagnetics.
Thermodynamic Modelling of Phase Transformation in a Multi-Component System
NASA Astrophysics Data System (ADS)
Vala, J.
2007-09-01
Diffusion in multi-component alloys can be characterized by the vacancy mechanism for substitutional components, by the existence of sources and sinks for vacancies and by the motion of atoms of interstitial components. The description of diffusive and massive phase transformation of a multi-component system is based on the thermodynamic extremal principle by Onsager; the finite thickness of the interface between both phases is respected. The resulting system of partial differential equations of evolution with integral terms for unknown mole fractions (and additional variables in case of non-ideal sources and sinks for vacancies), can be analyzed using the method of lines and the finite difference technique (or, alternatively, the finite element one) together with the semi-analytic and numerical integration formulae and with certain iteration procedure, making use of the spectral properties of linear operators. The original software code for the numerical evaluation of solutions of such systems, written in MATLAB, offers a chance to simulate various real processes of diffusional phase transformation. Some results for the (nearly) steady-state real processes in substitutional alloys have been published yet. The aim of this paper is to demonstrate that the same approach can handle both substitutional and interstitial components even in case of a general system of evolution.
NASA Astrophysics Data System (ADS)
Gorwade, Chandragupt V.; Ashcroft, Ian A.; Silberschmidt, Vadim V.; Hughes, Foz T. R.; Swallowe, Gerry M.
2012-12-01
Advanced polymeric materials are finding an increasing range of industrial and defence applications. These materials have the potential to improve combat survivability, whilst reducing the cost and weight of armour systems. In this paper the results from a split Hopkinson pressure bar (SHPB) test of a high density polyethylene (HDPE) sample involving multiple stress waves is discussed with aid of a finite element model of the test. It is seen that the phenomenon of impedance mismatch at interfaces plays an important role in the levels of stress and deformation seen in the sample. A multi-layer armour system is then investigated using the finite element model. This case study illustrates the role of impedance mismatch and interface engineering in the design and optimisation of armour solutions.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Fralick, D. T.; Cockrell, C. R.; Beck, F. B.
1996-01-01
Radiation pattern prediction analysis of elliptically polarized cavity-backed aperture antennas in a finite ground plane is performed using a combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction (FEM/MoM/GTD) technique. The magnetic current on the cavity-backed aperture in an infinite ground plane is calculated using the combined FEM/MoM analysis. GTD, including the slope diffraction contribution, is used to calculate the diffracted fields caused by both soft and hard polarizations at the edges of the finite ground plane. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The slope of the incident magnetic field at the diffraction points is derived and analytical expressions are presented. Numerical results for the radiation patterns of a cavity-backed circular spiral microstrip patch antenna excited by a coaxial probe in a finite rectangular ground plane are computed and compared with experimental results.
Array-based, parallel hierarchical mesh refinement algorithms for unstructured meshes
Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; ...
2016-08-18
In this paper, we describe an array-based hierarchical mesh refinement capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial coarse mesh that can be used for a variety of purposes such as in multigrid solvers/preconditioners, to do solution convergence and verification studies and to improve overall parallel efficiency by decreasing I/O bandwidth requirements (by loading smaller meshes and in memory refinement). We also describe a high-order boundary reconstruction capability that can be used tomore » project the new points after refinement using high-order approximations instead of linear projection in order to minimize and provide more control on geometrical errors introduced by curved boundaries.The capability is developed under the parallel unstructured mesh framework "Mesh Oriented dAtaBase" (MOAB Tautges et al. (2004)). We describe the underlying data structures and algorithms to generate such hierarchies in parallel and present numerical results for computational efficiency and effect on mesh quality. Furthermore, we also present results to demonstrate the applicability of the developed capability to study convergence properties of different point projection schemes for various mesh hierarchies and to a multigrid finite-element solver for elliptic problems.« less
Finite Element Analysis of Magnetic Damping Effects on G-Jitter Induced Fluid Flow
NASA Technical Reports Server (NTRS)
Pan, Bo; Li, Ben Q.; deGroh, Henry C., III
1997-01-01
This paper reports some interim results on numerical modeling and analyses of magnetic damping of g-jitter driven fluid flow in microgravity. A finite element model is developed to represent the fluid flow, thermal and solute transport phenomena in a 2-D cavity under g-jitter conditions with and without an applied magnetic field. The numerical model is checked by comparing with analytical solutions obtained for a simple parallel plate channel flow driven by g-jitter in a transverse magnetic field. The model is then applied to study the effect of steady state g-jitter induced oscillation and on the solute redistribution in the liquid that bears direct relevance to the Bridgman-Stockbarger single crystal growth processes. A selection of computed results is presented and the results indicate that an applied magnetic field can effectively damp the velocity caused by g-jitter and help to reduce the time variation of solute redistribution.
Constitutive Modeling of Porcine Liver in Indentation Using 3D Ultrasound Imaging
Jordan, P.; Socrate, S.; Zickler, T.E.; Howe, R.D.
2009-01-01
In this work we present an inverse finite-element modeling framework for constitutive modeling and parameter estimation of soft tissues using full-field volumetric deformation data obtained from 3D ultrasound. The finite-element model is coupled to full-field visual measurements by regularization springs attached at nodal locations. The free ends of the springs are displaced according to the locally estimated tissue motion and the normalized potential energy stored in all springs serves as a measure of model-experiment agreement for material parameter optimization. We demonstrate good accuracy of estimated parameters and consistent convergence properties on synthetically generated data. We present constitutive model selection and parameter estimation for perfused porcine liver in indentation and demonstrate that a quasilinear viscoelastic model with shear modulus relaxation offers good model-experiment agreement in terms of indenter displacement (0.19 mm RMS error) and tissue displacement field (0.97 mm RMS error). PMID:19627823
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
NASA Astrophysics Data System (ADS)
Abdullah, Oday I.; Schlattmann, Josef; Senatore, Adolfo; Al-Shabibi, Abdullah M.
2018-05-01
The designers of friction clutch systems in vehicular applications should always take into account a number of essential criteria. The friction clutch should be able to transfer the torque from the driving shaft to the driven one within a short time and minimum amount of shocks and vibrations to make the engagement (disengagement) as gentle as possible. Furthermore, it is well known that high surface temperatures were noticed during the beginning of engagement period due to slipping between the contacting elements of the friction clutch system with ensuing heat generation. The transient thermoelastic problem of multi-disc systems has been deeply investigated by many scientists and researchers using numerical techniques such as finite element method. In this analysis, the influence of the sliding speed on the thermoelastic behavior when the initial heat generated is constant was studied. For this purpose an axisymmetric finite element models were developed and used in the simulation shown in the paper.
NASA Astrophysics Data System (ADS)
Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter
2014-03-01
As part of a project to predict the full-field dynamic strain in rotating structures (e.g. wind turbines and helicopter blades), an experimental measurement was performed on a wind turbine attached to a 500-lb steel block and excited using a mechanical shaker. In this paper, the dynamic displacement of several optical targets mounted to a turbine placed in a semi-built-in configuration was measured by using three-dimensional point tracking. Using an expansion algorithm in conjunction with a finite element model of the blades, the measured displacements were expanded to all finite element degrees of freedom. The calculated displacements were applied to the finite element model to extract dynamic strain on the surface as well as within the interior points of the structure. To validate the technique for dynamic strain prediction, the physical strain at eight locations on the blades was measured during excitation using strain-gages. The expansion was performed by using both structural modes of an individual cantilevered blade and using modes of the entire structure (three-bladed wind turbine and the fixture) and the predicted strain was compared to the physical strain-gage measurements. The results demonstrate the ability of the technique to predict full-field dynamic strain from limited sets of measurements and can be used as a condition based monitoring tool to help provide damage prognosis of structures during operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Aubin, J., E-mail: joel.st.aubin@albertahealthservices.ca; Keyvanloo, A.; Fallone, B. G.
Purpose: The advent of magnetic resonance imaging (MRI) guided radiotherapy systems demands the incorporation of the magnetic field into dose calculation algorithms of treatment planning systems. This is due to the fact that the Lorentz force of the magnetic field perturbs the path of the relativistic electrons, hence altering the dose deposited by them. Building on the previous work, the authors have developed a discontinuous finite element space-angle treatment of the linear Boltzmann transport equation to accurately account for the effects of magnetic fields on radiotherapy doses. Methods: The authors present a detailed description of their new formalism and comparemore » its accuracy to GEANT4 Monte Carlo calculations for magnetic fields parallel and perpendicular to the radiation beam at field strengths of 0.5 and 3 T for an inhomogeneous 3D slab geometry phantom comprising water, bone, and air or lung. The accuracy of the authors’ new formalism was determined using a gamma analysis with a 2%/2 mm criterion. Results: Greater than 98.9% of all points analyzed passed the 2%/2 mm gamma criterion for the field strengths and orientations tested. The authors have benchmarked their new formalism against Monte Carlo in a challenging radiation transport problem with a high density material (bone) directly adjacent to a very low density material (dry air at STP) where the effects of the magnetic field dominate collisions. Conclusions: A discontinuous finite element space-angle approach has been proven to be an accurate method for solving the linear Boltzmann transport equation with magnetic fields for cases relevant to MRI guided radiotherapy. The authors have validated the accuracy of this novel technique against GEANT4, even in cases of strong magnetic field strengths and low density air.« less
NASA Technical Reports Server (NTRS)
Barut, A.; Madenci, Erdogan; Tessler, A.
1997-01-01
This study presents a transient nonlinear finite element analysis within the realm of a multi-body dynamics formulation for determining the dynamic response of a moderately thick laminated shell undergoing a rapid and large rotational motion and nonlinear elastic deformations. Nonlinear strain measure and rotation, as well as 'the transverse shear deformation, are explicitly included in the formulation in order to capture the proper motion-induced stiffness of the laminate. The equations of motion are derived from the virtual work principle. The analysis utilizes a shear deformable shallow shell element along with the co-rotational form of the updated Lagrangian formulation. The shallow shell element formulation is based on the Reissner-Mindlin and Marguerre theory.
NASA Astrophysics Data System (ADS)
Carrera, E.; Miglioretti, F.; Petrolo, M.
2011-11-01
This paper compares and evaluates various plate finite elements to analyse the static response of thick and thin plates subjected to different loading and boundary conditions. Plate elements are based on different assumptions for the displacement distribution along the thickness direction. Classical (Kirchhoff and Reissner-Mindlin), refined (Reddy and Kant), and other higher-order displacement fields are implemented up to fourth-order expansion. The Unified Formulation UF by the first author is used to derive finite element matrices in terms of fundamental nuclei which consist of 3×3 arrays. The MITC4 shear-locking free type formulation is used for the FE approximation. Accuracy of a given plate element is established in terms of the error vs. thickness-to-length parameter. A significant number of finite elements for plates are implemented and compared using displacement and stress variables for various plate problems. Reduced models that are able to detect the 3D solution are built and a Best Plate Diagram (BPD) is introduced to give guidelines for the construction of plate theories based on a given accuracy and number of terms. It is concluded that the UF is a valuable tool to establish, for a given plate problem, the most accurate FE able to furnish results within a certain accuracy range. This allows us to obtain guidelines and recommendations in building refined elements in the bending analysis of plates for various geometries, loadings, and boundary conditions.
Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor.
Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining
2017-01-28
Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system.
Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas
2016-08-12
Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.
NASA Astrophysics Data System (ADS)
Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas
2016-08-01
Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.
Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor
Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining
2017-01-01
Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system. PMID:28134854
NASA Astrophysics Data System (ADS)
Das, A.; Bang, H. S.; Bang, H. S.
2018-05-01
Multi-material combinations of aluminium alloy and carbon-fiber-reinforced-plastics (CFRP) have gained attention in automotive and aerospace industries to enhance fuel efficiency and strength-to-weight ratio of components. Various limitations of laser beam welding, adhesive bonding and mechanical fasteners make these processes inefficient to join metal and CFRP sheets. Friction lap joining is an alternative choice for the same. Comprehensive studies in friction lap joining of aluminium to CFRP sheets are essential and scare in the literature. The present work reports a combined theoretical and experimental study in joining of AA5052 and CFRP sheets using friction lap joining process. A three-dimensional finite element based heat transfer model is developed to compute the temperature fields and thermal cycles. The computed results are validated extensively with the corresponding experimentally measured results.
Damage percolation during stretch flange forming of aluminum alloy sheet
NASA Astrophysics Data System (ADS)
Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.
2005-12-01
A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.
Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale
NASA Astrophysics Data System (ADS)
Man, Xianfeng; Liu, Tingting; Xia, Baizhan; Luo, Zhen; Xie, Longxiang; Liu, Jian
2018-06-01
Acoustic metamaterials are remarkably different from conventional materials, as they can flexibly manipulate and control the propagation of sound waves. Unlike the locally resonant metamaterials introduced in earlier studies, we designed an ultraslow artificial structure with a sound speed much lower than that in air. In this paper, the space-coiling approach is proposed for achieving artificial metamaterial for extremely low-frequency airborne sound. In addition, the self-similar fractal technique is utilized for designing space-coiling Mie-resonance-based metamaterials (MRMMs) to obtain a band-dispersive spectrum. The band structures of two-dimensional (2D) acoustic metamaterials with different fractal levels are illustrated using the finite element method. The low-frequency bandgap can easily be formed, and multi-bandgap properties are observed in high-level fractals. Furthermore, the designed MRMMs with higher order fractal space coiling shows a good robustness against irregular arrangement. Besides, the proposed artificial structure was found to modify and control the radiation field arbitrarily. Thus, this work provides useful guidelines for the design of acoustic filtering devices and acoustic wavefront shaping applications on the subwavelength scale.
NASA Astrophysics Data System (ADS)
El-Etriby, Ahmed E.; Abdel-Meguid, Mohamed E.; Hatem, Tarek M.; Bahei-El-Din, Yehia A.
2014-03-01
Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested to predict the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to calculate the overall material properties of electrically active composite structure. Capitalizing on the calculated properties, single-phase analysis of a homogeneous structure is conducted using finite element method. The experimental work approach involves running dynamic tests on piezoelectric fiber-based composites to simulate mechanical vibrations experienced by a subway train floor tiles. Experimental results agree well with the numerical results both for static and dynamic tests.
Analysis of high speed flow, thermal and structural interactions
NASA Technical Reports Server (NTRS)
Thornton, Earl A.
1994-01-01
Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.
Drop Testing Representative Multi-Canister Overpacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Spencer D.; Morton, Dana K.
The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capablemore » of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10 -5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10 -7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.« less
Na, Okpin; Cai, Xiao-Chuan; Xi, Yunping
2017-01-01
The prediction of the chloride-induced corrosion is very important because of the durable life of concrete structure. To simulate more realistic durability performance of concrete structures, complex scientific methods and more accurate material models are needed. In order to predict the robust results of corrosion initiation time and to describe the thin layer from concrete surface to reinforcement, a large number of fine meshes are also used. The purpose of this study is to suggest more realistic physical model regarding coupled hygro-chemo transport and to implement the model with parallel finite element algorithm. Furthermore, microclimate model with environmental humidity and seasonal temperature is adopted. As a result, the prediction model of chloride diffusion under unsaturated condition was developed with parallel algorithms and was applied to the existing bridge to validate the model with multi-boundary condition. As the number of processors increased, the computational time decreased until the number of processors became optimized. Then, the computational time increased because the communication time between the processors increased. The framework of present model can be extended to simulate the multi-species de-icing salts ingress into non-saturated concrete structures in future work. PMID:28772714
Bolakis, C; Grbovic, D; Lavrik, N V; Karunasiri, G
2010-07-05
A terahertz-absorbing thin-film stack, containing a dielectric Bragg reflector and a thin chromium metal film, was fabricated on a silicon substrate for applications in bi-material terahertz (THz) sensors. The Bragg reflector is to be used for optical readout of sensor deformation under THz illumination. The THz absorption characteristics of the thin-film composite were measured using Fourier transform infrared spectroscopy. The absorption of the structure was calculated both analytically and by finite element modeling and the two approaches agreed well. Finite element modeling provides a convenient way to extract the amount of power dissipation in each layer and is used to quantify the THz absorption in the multi-layer stack. The calculation and the model were verified by experimentally characterizing the multi-layer stack in the 3-5 THz range. The measured and simulated absorption characteristics show a reasonably good agreement. It was found that the composite film absorbed about 20% of the incident THz power. The model was used to optimize the thickness of the chromium film for achieving high THz absorption and found that about 50% absorption can be achieved when film thickness is around 9 nm.