Leemreize, Hanna; Almer, Jonathan D.; Stock, Stuart R.; Birkedal, Henrik
2013-01-01
Biological materials display complicated three-dimensional hierarchical structures. Determining these structures is essential in understanding the link between material design and properties. Herein, we show how diffraction tomography can be used to determine the relative placement of the calcium carbonate polymorphs calcite and aragonite in the highly mineralized holdfast system of the bivalve Anomia simplex. In addition to high fidelity and non-destructive mapping of polymorphs, we use detailed analysis of X-ray diffraction peak positions in reconstructed powder diffraction data to determine the local degree of Mg substitution in the calcite phase. These data show how diffraction tomography can provide detailed multi-length scale information on complex materials in general and of biomineralized tissues in particular. PMID:23804437
Material characterization using ultrasound tomography
NASA Astrophysics Data System (ADS)
Falardeau, Timothe; Belanger, Pierre
2018-04-01
Characterization of material properties can be performed using a wide array of methods e.g. X-ray diffraction or tensile testing. Each method leads to a limited set of material properties. This paper is interested in using ultrasound tomography to map speed of sound inside a material sample. The velocity inside the sample is directly related to its elastic properties. Recent develop-ments in ultrasound diffraction tomography have enabled velocity mapping of high velocity contrast objects using a combination of bent-ray time-of-flight tomography and diffraction tomography. In this study, ultrasound diffraction tomography was investigated using simulations in human bone phantoms. A finite element model was developed to assess the influence of the frequency, the number of transduction positions and the distance from the sample as well as to adapt the imaging algorithm. The average velocity in both regions of the bone phantoms were within 5% of the true value.
Lensless transport-of-intensity phase microscopy and tomography with a color LED matrix
NASA Astrophysics Data System (ADS)
Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian
2015-07-01
We demonstrate lens-less quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED array. Based on multi-wavelength transport-of- intensity phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of ˜3.7μm and an axial resolution of ˜5μm, over wide large imaging FOV of 24mm2. The resolution and FOV can be further improved by using a larger image sensors with small pixels straightforwardly. This compact, low-cost, robust, portable platform with a decent imaging performance may offer a cost-effective tool for telemedicine needs, or for reducing health care costs for point-of-care diagnostics in resource-limited environments.
NASA Astrophysics Data System (ADS)
Xiao, Zhili; Tan, Chao; Dong, Feng
2017-08-01
Magnetic induction tomography (MIT) is a promising technique for continuous monitoring of intracranial hemorrhage due to its contactless nature, low cost and capacity to penetrate the high-resistivity skull. The inter-tissue inductive coupling increases with frequency, which may lead to errors in multi-frequency imaging at high frequency. The effect of inter-tissue inductive coupling was investigated to improve the multi-frequency imaging of hemorrhage. An analytical model of inter-tissue inductive coupling based on the equivalent circuit was established. A set of new multi-frequency decomposition equations separating the phase shift of hemorrhage from other brain tissues was derived by employing the coupling information to improve the multi-frequency imaging of intracranial hemorrhage. The decomposition error and imaging error are both decreased after considering the inter-tissue inductive coupling information. The study reveals that the introduction of inter-tissue inductive coupling can reduce the errors of multi-frequency imaging, promoting the development of intracranial hemorrhage monitoring by multi-frequency MIT.
An Efficient Image Recovery Algorithm for Diffraction Tomography Systems
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1993-01-01
A diffraction tomography system has potential application in ultrasonic medical imaging area. It is capable of achieving imagery with the ultimate resolution of one quarter the wavelength by collecting ultrasonic backscattering data from a circular array of sensors and reconstructing the object reflectivity using a digital image recovery algorithm performed by a computer. One advantage of such a system is that is allows a relatively lower frequency wave to penetrate more deeply into the object and still achieve imagery with a reasonable resolution. An efficient image recovery algorithm for the diffraction tomography system was originally developed for processing a wide beam spaceborne SAR data...
Travel-time tomography in shallow water: experimental demonstration at an ultrasonic scale.
Roux, Philippe; Iturbe, Ion; Nicolas, Barbara; Virieux, Jean; Mars, Jérôme I
2011-09-01
Acoustic tomography in a shallow ultrasonic waveguide is demonstrated at the laboratory scale between two source-receiver arrays. At a 1/1,000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. Two coplanar arrays record the transfer matrix in the time domain of the waveguide between each pair of source-receiver transducers. A time-domain, double-beamforming algorithm is simultaneously performed on the source and receiver arrays that projects the multi-reflected acoustic echoes into an equivalent set of eigenrays, which are characterized by their travel times and their launch and arrival angles. Travel-time differences are measured for each eigenray every 0.1 s when a thermal plume is generated at a given location in the waveguide. Travel-time tomography inversion is then performed using two forward models based either on ray theory or on the diffraction-based sensitivity kernel. The spatially resolved range and depth inversion data confirm the feasibility of acoustic tomography in shallow water. Comparisons are made between inversion results at 1 and 3 MHz with the inversion procedure using ray theory or the finite-frequency approach. The influence of surface fluctuations at the air-water interface is shown and discussed in the framework of shallow-water ocean tomography. © 2011 Acoustical Society of America
Chan, Eugene; Rose, L R Francis; Wang, Chun H
2015-05-01
Existing damage imaging algorithms for detecting and quantifying structural defects, particularly those based on diffraction tomography, assume far-field conditions for the scattered field data. This paper presents a major extension of diffraction tomography that can overcome this limitation and utilises a near-field multi-static data matrix as the input data. This new algorithm, which employs numerical solutions of the dynamic Green's functions, makes it possible to quantitatively image laminar damage even in complex structures for which the dynamic Green's functions are not available analytically. To validate this new method, the numerical Green's functions and the multi-static data matrix for laminar damage in flat and stiffened isotropic plates are first determined using finite element models. Next, these results are time-gated to remove boundary reflections, followed by discrete Fourier transform to obtain the amplitude and phase information for both the baseline (damage-free) and the scattered wave fields. Using these computationally generated results and experimental verification, it is shown that the new imaging algorithm is capable of accurately determining the damage geometry, size and severity for a variety of damage sizes and shapes, including multi-site damage. Some aspects of minimal sensors requirement pertinent to image quality and practical implementation are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
A linearly frequency-swept high-speed-rate multi-wavelength laser for optical coherence tomography
NASA Astrophysics Data System (ADS)
Wang, Qiyu; Wang, Zhaoying; Yuan, Quan; Ma, Rui; Du, Tao; Yang, Tianxin
2017-02-01
We proposed and demonstrated a linearly frequency-swept multi-wavelength laser source for optical coherence tomography (OCT) eliminating the need of wavenumber space resampling in the postprocessing progress. The source consists of a multi-wavelength fiber laser source (MFS) and an optical sweeping loop. In this novel laser source, an equally spaced multi-wavelength laser is swept simultaneously by a certain step each time in the frequency domain in the optical sweeping loop. The sweeping step is determined by radio frequency (RF) signal which can be precisely controlled. Thus the sweeping behavior strictly maintains a linear relationship between time and frequency. We experimentally achieved linear time-frequency sweeping at a sweeping rate of 400 kHz with our laser source.
Gueninchault, N; Proudhon, H; Ludwig, W
2016-11-01
Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al-Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment.
Gueninchault, N.; Proudhon, H.; Ludwig, W.
2016-01-01
Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al–Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment. PMID:27787253
Design of current source for multi-frequency simultaneous electrical impedance tomography
NASA Astrophysics Data System (ADS)
Han, Bing; Xu, Yanbin; Dong, Feng
2017-09-01
Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.
NASA Astrophysics Data System (ADS)
Hao, Zhenhua; Cui, Ziqiang; Yue, Shihong; Wang, Huaxiang
2018-06-01
As an important means in electrical impedance tomography (EIT), multi-frequency phase-sensitive demodulation (PSD) can be viewed as a matched filter for measurement signals and as an optimal linear filter in the case of Gaussian-type noise. However, the additive noise usually possesses impulsive noise characteristics, so it is a challenging task to reduce the impulsive noise in multi-frequency PSD effectively. In this paper, an approach for impulsive noise reduction in multi-frequency PSD of EIT is presented. Instead of linear filters, a singular value decomposition filter is employed as the pre-stage filtering module prior to PSD, which has advantages of zero phase shift, little distortion, and a high signal-to-noise ratio (SNR) in digital signal processing. Simulation and experimental results demonstrated that the proposed method can effectively eliminate the influence of impulsive noise in multi-frequency PSD, and it was capable of achieving a higher SNR and smaller demodulation error.
Almqvist, M; Holm, A; Persson, H W; Lindström, K
2000-01-01
The aim of this work was to show the applicability of light diffraction tomography on airborne ultrasound in the frequency range 40 kHz-2 MHz. Seven different air-coupled transducers were measured to show the method's performance regarding linearity, absolute pressure measurements, phase measurements, frequency response, S/N ratio and spatial resolution. A calibrated microphone and the pulse-echo method were used to evaluate the results. The absolute measurements agreed within the calibrated microphone's uncertainty range. Pulse waveforms and corresponding FFT diagrams show the method's higher bandwidth compared with the microphone. Further, the method offers non-perturbing measurements with high spatial resolution, which was especially advantageous for measurements close to the transducer surfaces. The S/N ratio was higher than or in the same range as that of the two comparison methods.
Lensfree diffractive tomography for the imaging of 3D cell cultures
NASA Astrophysics Data System (ADS)
Berdeu, Anthony; Momey, Fabien; Dinten, Jean-Marc; Gidrol, Xavier; Picollet-D'hahan, Nathalie; Allier, Cédric
2017-02-01
New microscopes are needed to help reaching the full potential of 3D organoid culture studies by gathering large quantitative and systematic data over extended periods of time while preserving the integrity of the living sample. In order to reconstruct large volumes while preserving the ability to catch every single cell, we propose new imaging platforms based on lens-free microscopy, a technic which is addressing these needs in the context of 2D cell culture, providing label-free and non-phototoxic acquisition of large datasets. We built lens-free diffractive tomography setups performing multi-angle acquisitions of 3D organoid cultures embedded in Matrigel and developed dedicated 3D holographic reconstruction algorithms based on the Fourier diffraction theorem. Nonetheless, holographic setups do not record the phase of the incident wave front and the biological samples in Petri dish strongly limit the angular coverage. These limitations introduce numerous artefacts in the sample reconstruction. We developed several methods to overcome them, such as multi-wavelength imaging or iterative phase retrieval. The most promising technic currently developed is based on a regularised inverse problem approach directly applied on the 3D volume to reconstruct. 3D reconstructions were performed on several complex samples such as 3D networks or spheroids embedded in capsules with large reconstructed volumes up to 25 mm3 while still being able to identify single cells. To our knowledge, this is the first time that such an inverse problem approach is implemented in the context of lens-free diffractive tomography enabling to reconstruct large fully 3D volumes of unstained biological samples.
Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.
2014-01-01
Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640
Fly Eye radar: detection through high scattered media
NASA Astrophysics Data System (ADS)
Molchanov, Pavlo; Gorwara, Ashok
2017-05-01
Longer radio frequency waves better penetrating through high scattered media than millimeter waves, but imaging resolution limited by diffraction at longer wavelength. Same time frequency and amplitudes of diffracted waves (frequency domain measurement) provides information of object. Phase shift of diffracted waves (phase front in time domain) consists information about shape of object and can be applied for reconstruction of object shape or even image by recording of multi-frequency digital hologram. Spectrum signature or refracted waves allows identify the object content. Application of monopulse method with overlap closely spaced antenna patterns provides high accuracy measurement of amplitude, phase, and direction to signal source. Digitizing of received signals separately in each antenna relative to processor time provides phase/frequency independence. Fly eye non-scanning multi-frequency radar system provides simultaneous continuous observation of multiple targets and wide possibilities for stepped frequency, simultaneous frequency, chaotic frequency sweeping waveform (CFS), polarization modulation for reliable object detection. Proposed c-band fly eye radar demonstrated human detection through 40 cm concrete brick wall with human and wall material spectrum signatures and can be applied for through wall human detection, landmines, improvised explosive devices detection, underground or camouflaged object imaging.
Multifrequency measurements of core-diffracted P waves (Pdiff) for global waveform tomography
NASA Astrophysics Data System (ADS)
Hosseini, Kasra; Sigloch, Karin
2015-10-01
The lower third of the mantle is sampled extensively by body waves that diffract around the earth's core (Pdiff and Sdiff phases), which could deliver highly resolved tomographic images of this poorly understood region. But core-diffracted waves-especially Pdiff waves-are not often used in tomography because they are difficult to model adequately. Our aim is to make core-diffracted body waves usable for global waveform tomography, across their entire frequency range. Here we present the data processing part of this effort. A method is demonstrated that routinely calculates finite-frequency traveltimes of Pdiff waves by cross-correlating large quantities of waveform data with synthetic seismograms, in frequency passbands ranging from 30.0 to 2.7 s dominant period. Green's functions for 1857 earthquakes, typically comprising thousands of seismograms, are calculated by theoretically exact wave propagation through a spherically symmetric earth model, up to 1 Hz dominant period. Out of 418 226 candidates, 165 651 (39.6 per cent) source-receiver pairs yielded at least one successful passband measurement of a Pdiff traveltime anomaly, for a total of 479 559 traveltimes in the eight passbands considered. Measurements of teleseismic P waves yielded 448 178 usable source-receiver paths from 613 057 candidates (73.1 per cent success rate), for a total of 2 306 755 usable teleseismic dT in eight passbands. Observed and predicted characteristics of Pdiff traveltimes are discussed and compared to teleseismic P for this very large data set. Pdiff measurements are noise-limited due to severe wave attenuation with epicentral distance and frequency. Measurement success drops from 40-60 per cent at 80° distance, to 5-10 per cent at 140°. Frequency has a 2-3 times stronger influence on measurement success for Pdiff than for P. The fewest usable dT measurements are obtained in the microseismic noise band, whereas the fewest usable teleseismic P measurements occur at the highest frequencies. dT anomalies are larger for Pdiff than for P, and frequency dependence of dT due to 3-D heterogeneity (rather than just diffraction) is larger for Pdiff as well. Projecting the Pdiff traveltime anomalies on their core-grazing segments, we retrieve well-known, large-scale structural heterogeneities of the lowermost mantle, such as the two Large Low Shear Velocity Provinces, an Ultra-Low Velocity Zone west of Hawaii, and subducted slab accumulations under East Asia and Central America.
Aguiar Santos, Susana; Robens, Anne; Boehm, Anna; Leonhardt, Steffen; Teichmann, Daniel
2016-01-01
A new prototype of a multi-frequency electrical impedance tomography system is presented. The system uses a field-programmable gate array as a main controller and is configured to measure at different frequencies simultaneously through a composite waveform. Both real and imaginary components of the data are computed for each frequency and sent to the personal computer over an ethernet connection, where both time-difference imaging and frequency-difference imaging are reconstructed and visualized. The system has been tested for both time-difference and frequency-difference imaging for diverse sets of frequency pairs in a resistive/capacitive test unit and in self-experiments. To our knowledge, this is the first work that shows preliminary frequency-difference images of in-vivo experiments. Results of time-difference imaging were compared with simulation results and shown that the new prototype performs well at all frequencies in the tested range of 60 kHz–960 kHz. For frequency-difference images, further development of algorithms and an improved normalization process is required to correctly reconstruct and interpreted the resulting images. PMID:27463715
NASA Astrophysics Data System (ADS)
Hansen, Anders K.; Jensen, Ole B.; Sumpf, Bernd; Erbert, Götz; Unterhuber, Angelika; Drexler, Wolfgang; Andersen, Peter E.; Petersen, Paul Michael
2014-02-01
Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. In the low-power limit, such a cascade of two crystals has the theoretical potential for generation of four times as much power as a single crystal without adding significantly to the complexity of the system. The experimentally achieved power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications, such as optical coherence tomography or multimodal imaging devices, e.g., FTCARS-OCT, based on a strongly pumped ultrafast Ti:Sapphire laser.
Analysis and Correction of Diffraction Effect on the B/A Measurement at High Frequencies
NASA Astrophysics Data System (ADS)
Zhang, Dong; Gong, Xiu-Fen; Liu, Xiao-Zhou; Kushibiki, Jun-ichi; Nishino, Hideo
2004-01-01
A numerical method is developed to analyse and to correct the diffraction effect in the measurement of acoustic nonlinearity parameter B/A at high frequencies. By using the KZK nonlinear equation and the superposition approach of Gaussian beams, an analytical model is derived to describe the second harmonic generation through multi-layer medium SiO2/liquid specimen/SiO2. Frequency dependence of the nonlinear characterization curve for water in 110-155 MHz is numerically and experimentally investigated. With the measured dip position and the new model, values of B/A for water are evaluated. The results show that the present method can effectively correct the diffraction effect in the measurement.
3D Imaging with Holographic Tomography
NASA Astrophysics Data System (ADS)
Sheppard, Colin J. R.; Kou, Shan Shan
2010-04-01
There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we obtain a similar peanut, but without the line singularity.
High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Feichao; Liu, Shengguang; Zhu, Pengfei
2014-08-15
A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities inmore » various areas of sciences.« less
High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun.
Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao; Zhang, Jie; Cao, Jianming
2014-08-01
A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.
Two-Wavelength Multi-Gigahertz Frequency Comb-Based Interferometry for Full-Field Profilometry
NASA Astrophysics Data System (ADS)
Choi, Samuel; Kashiwagi, Ken; Kojima, Shuto; Kasuya, Yosuke; Kurokawa, Takashi
2013-10-01
The multi-gigahertz frequency comb-based interferometer exhibits only the interference amplitude peak without the phase fringes, which can produce a rapid axial scan for full-field profilometry and tomography. Despite huge technical advantages, there remain problems that the interference intensity undulations occurred depending on the interference phase. To avoid such problems, we propose a compensation technique of the interference signals using two frequency combs with slightly varied center wavelengths. The compensated full-field surface profile measurements of cover glass and onion skin were demonstrated experimentally to verify the advantages of the proposed method.
Bananas, Doughnuts and Seismic Traveltimes
NASA Astrophysics Data System (ADS)
Dahlen, F. A.
2002-12-01
Most of what we know about the 3-D seismic heterogeneity of the mantle is based upon ray-theoretical traveltime tomography. In this infinite-frequency approximation, a measured traveltime anomaly depends only upon the wavespeed along an infinitesimally thin geometrical ray between a seismic source and a seismographic station. In this lecture I shall describe a new formulation of the seismic traveltime inverse problem which accounts for the ability of a finite-frequency wave to ``feel'' 3-D structure off of the source-receiver ray. Finite-frequency diffraction effects associated with this off-ray sensitivity act to ``heal'' the corrugations that develop in a wavefront propagating through a heterogeneous medium. Ray-theoretical tomography is based upon the premise that a seismic wave ``remembers'' all of the traveltime advances or delays that it accrues along its path, whereas actual finite-frequency waves ``forget''. I shall describe a number of recent analytical and numerical investigations, which have led to an improved theoretical understanding of this phenomenon.
The thin hot plume beneath Iceland
Allen, R.M.; Nolet, G.; Morgan, W.J.; Vogfjord, K.; Bergsson, B.H.; Erlendsson, P.; Foulger, G.R.; Jakobsdottir, S.; Julian, B.R.; Pritchard, M.; Ragnarsson, S.; Stefansson, R.
1999-01-01
We present the results of a seismological investigation of the frequency-dependent amplitude variations across Iceland using data from the HOTSPOT array currently deployed there. The array is composed of 30 broad-band PASSCAL instruments. We use the parameter t(*), defined in the usual manner from spectral ratios (Halderman and Davis 1991), to compare observed S-wave amplitude variations with those predicted due to both anelastic attenuation and diffraction effects. Four teleseismic events at a range of azimuths are used to measure t(*). A 2-D vertical cylindrical plume model with a Gaussian-shaped velocity anomaly is used to model the variations. That part of t(*) caused by attenuation was estimated by tracing a ray through IASP91, then superimposing our plume model velocity anomaly and calculating the path integral of 1/vQ. That part of t(*) caused by diffraction was estimated using a 2-D finite difference code to generate synthetic seismograms. The same spectral ratio technique used for the data was then used to extract a predicted t(*). The t(*) variations caused by anelastic attenuation are unable to account for the variations we observe, but those caused by diffraction do. We calculate the t(*) variations caused by diffraction for different plume models and obtain our best-fit plume, which exhibits good agreement between the observed and measured t(*). The best-fit plume model has a maximum S-velocity anomaly of - 12 per cent and falls to 1/e of its maximum at 100 km from the plume centre. This is narrower than previous estimates from seismic tomography, which are broadened and damped by the methods of tomography. This velocity model would suggest greater ray theoretical traveltime delays than observed. However, we find that for such a plume, wave-front healing effects at frequencies of 0.03-0.175 Hz (the frequency range used to pick S-wave arrivals) causes a 40 per cent reduction in traveltime delay, reducing the ray theoretical delay to that observed.
Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V
2015-08-24
Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.
3D second harmonic generation imaging tomography by multi-view excitation
Campbell, Kirby R.; Wen, Bruce; Shelton, Emily M.; Swader, Robert; Cox, Benjamin L.; Eliceiri, Kevin; Campagnola, Paul J.
2018-01-01
Biological tissues have complex 3D collagen fiber architecture that cannot be fully visualized by conventional second harmonic generation (SHG) microscopy due to electric dipole considerations. We have developed a multi-view SHG imaging platform that successfully visualizes all orientations of collagen fibers. This is achieved by rotating tissues relative to the excitation laser plane of incidence, where the complete fibrillar structure is then visualized following registration and reconstruction. We evaluated high frequency and Gaussian weighted fusion reconstruction algorithms, and found the former approach performs better in terms of the resulting resolution. The new approach is a first step toward SHG tomography. PMID:29541654
Correction of electrode modelling errors in multi-frequency EIT imaging.
Jehl, Markus; Holder, David
2016-06-01
The differentiation of haemorrhagic from ischaemic stroke using electrical impedance tomography (EIT) requires measurements at multiple frequencies, since the general lack of healthy measurements on the same patient excludes time-difference imaging methods. It has previously been shown that the inaccurate modelling of electrodes constitutes one of the largest sources of image artefacts in non-linear multi-frequency EIT applications. To address this issue, we augmented the conductivity Jacobian matrix with a Jacobian matrix with respect to electrode movement. Using this new algorithm, simulated ischaemic and haemorrhagic strokes in a realistic head model were reconstructed for varying degrees of electrode position errors. The simultaneous recovery of conductivity spectra and electrode positions removed most artefacts caused by inaccurately modelled electrodes. Reconstructions were stable for electrode position errors of up to 1.5 mm standard deviation along both surface dimensions. We conclude that this method can be used for electrode model correction in multi-frequency EIT.
Ultra-wideband three-dimensional optoacoustic tomography.
Gateau, Jérôme; Chekkoury, Andrei; Ntziachristos, Vasilis
2013-11-15
Broadband optoacoustic waves generated by biological tissues excited with nanosecond laser pulses carry information corresponding to a wide range of geometrical scales. Typically, the frequency content present in the signals generated during optoacoustic imaging is much larger compared to the frequency band captured by common ultrasonic detectors, the latter typically acting as bandpass filters. To image optical absorption within structures ranging from entire organs to microvasculature in three dimensions, we implemented optoacoustic tomography with two ultrasound linear arrays featuring a center frequency of 6 and 24 MHz, respectively. In the present work, we show that complementary information on anatomical features could be retrieved and provide a better understanding on the localization of structures in the general anatomy by analyzing multi-bandwidth datasets acquired on a freshly excised kidney.
Visualization of evolving laser-generated structures by frequency domain tomography
NASA Astrophysics Data System (ADS)
Chang, Yenyu; Li, Zhengyan; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael
2011-10-01
We introduce frequency domain tomography (FDT) for single-shot visualization of time-evolving refractive index structures (e.g. laser wakefields, nonlinear index structures) moving at light-speed. Previous researchers demonstrated single-shot frequency domain holography (FDH), in which a probe-reference pulse pair co- propagates with the laser-generated structure, to obtain snapshot-like images. However, in FDH, information about the structure's evolution is averaged. To visualize an evolving structure, we use several frequency domain streak cameras (FDSCs), in each of which a probe-reference pulse pair propagates at an angle to the propagation direction of the laser-generated structure. The combination of several FDSCs constitutes the FDT system. We will present experimental results for a 4-probe FDT system that has imaged the whole-beam self-focusing of a pump pulse propagating through glass in a single laser shot. Combining temporal and angle multiplexing methods, we successfully processed data from four probe pulses in one spectrometer in a single-shot. The output of data processing is a multi-frame movie of the self- focusing pulse. Our results promise the possibility of visualizing evolving laser wakefield structures that underlie laser-plasma accelerators used for multi-GeV electron acceleration.
Tomography with energy dispersive diffraction
NASA Astrophysics Data System (ADS)
Stock, S. R.; Okasinski, J. S.; Woods, R.; Baldwin, J.; Madden, T.; Quaranta, O.; Rumaiz, A.; Kuczewski, T.; Mead, J.; Krings, T.; Siddons, P.; Miceli, A.; Almer, J. D.
2017-09-01
X-ray diffraction can be used as the signal for tomographic reconstruction and provides a cross-sectional map of the crystallographic phases and related quantities. Diffraction tomography has been developed over the last decade using monochromatic x-radiation and an area detector. This paper reports tomographic reconstruction with polychromatic radiation and an energy sensitive detector array. The energy dispersive diffraction (EDD) geometry, the instrumentation and the reconstruction process are described and related to the expected resolution. Results of EDD tomography are presented for two samples containing hydroxyapatite (hAp). The first is a 3D-printed sample with an elliptical crosssection and contains synthetic hAp. The second is a human second metacarpal bone from the Roman-era cemetery at Ancaster, UK and contains bio-hAp which may have been altered by diagenesis. Reconstructions with different diffraction peaks are compared. Prospects for future EDD tomography are also discussed.
NASA Astrophysics Data System (ADS)
Egorov, D. I.
2017-06-01
Our study focuses on an analysis of the original method of investigation biological tissues in the spectral OCT (optical coherence tomography) with usage hyperchromatic lenses. Using hyperchromatic lens, i.e. the lens with uncorrected longitudinal color allows scanning in the depth of the object by changing the wavelength of the emitter. In this case, the depth of the scan will be determined not by the microlens depth of field, but the value of axial color. In our study, we demonstrated the advantages of this method of research on biological tissues existing. Spectral OCT schemes with the hyperchromatic lens could increase the depth of spectral scanning, eliminate the use of multi-channel systems with a set of microscope objectives, reduce the time of measurement. In our paper, we show the developed method of calculation of hyperchromatic lenses and hybrid hyperchromatic lens consisting of a diffractive and refractive component in spectral OCT systems. We also demonstrate the results of aberration calculation designed microscope lenses. We show examples of developed hyperchromatic lenses with the diffractive element and without it.
Possibilities of electrical impedance tomography in gynecology
NASA Astrophysics Data System (ADS)
V, Trokhanova O.; A, Chijova Y.; B, Okhapkin M.; V, Korjenevsky A.; S, Tuykin T.
2013-04-01
The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.
Metrology measurements for large-aperture VPH gratings
NASA Astrophysics Data System (ADS)
Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen
2013-09-01
The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.
ODTbrain: a Python library for full-view, dense diffraction tomography.
Müller, Paul; Schürmann, Mirjam; Guck, Jochen
2015-11-04
Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.
Wavelet methods in multi-conjugate adaptive optics
NASA Astrophysics Data System (ADS)
Helin, T.; Yudytskiy, M.
2013-08-01
The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.
Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.
2015-01-01
Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169
Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.
Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D
2017-01-01
Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M 2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.
High-speed optical coherence tomography by circular interferometric ranging
NASA Astrophysics Data System (ADS)
Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.
2018-02-01
Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.
Diffraction scattering computed tomography: a window into the structures of complex nanomaterials
Birkbak, M. E.; Leemreize, H.; Frølich, S.; Stock, S. R.
2015-01-01
Modern functional nanomaterials and devices are increasingly composed of multiple phases arranged in three dimensions over several length scales. Therefore there is a pressing demand for improved methods for structural characterization of such complex materials. An excellent emerging technique that addresses this problem is diffraction/scattering computed tomography (DSCT). DSCT combines the merits of diffraction and/or small angle scattering with computed tomography to allow imaging the interior of materials based on the diffraction or small angle scattering signals. This allows, e.g., one to distinguish the distributions of polymorphs in complex mixtures. Here we review this technique and give examples of how it can shed light on modern nanoscale materials. PMID:26505175
A broadband terahertz ultrathin multi-focus lens
He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan
2016-01-01
Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application PMID:27346430
Raw Pressure Data from Boise Hydrogeophysical Research Site (BHRS)
David Lim
2013-07-17
Pressure data from a phreatic aquifer was collected in the summer of 2013 during Multi-frequency Oscillatory Hydraulic Tomography pumping tests. All tests were performed at the Boise Hydrogeophysical Research Site. The data will be inverted using a fast steady-periodic adjoint-based inverse code.
NASA Astrophysics Data System (ADS)
Kondalkar, Vijay V.; Ryu, Geonhee; Lee, Yongbeom; Lee, Keekeun
2018-07-01
An acousto-optic (AO) based holographic display unit was developed using surface acoustic wave (SAW) with different wavelength to modulate the diffraction angles, intensities, and phases of light. The new configurations were employed to control two beams simultaneously by using a single chirp inter-digital transducer (IDT), and a micro-lens array was integrated at the end of the waveguide layer to focus the diffracted light on to the screen. Two incident light beams were simultaneously modulated by using different refractive grating periods generated from chirp IDT. A diffraction angle of about 5° was obtained by using a SAW with a frequency of 430 MHz. The increase in the SAW input power enhances the diffraction efficiency of the light beam at the exit. The obtained maximum diffraction efficiency is ~70% at a frequency of 430 MHz. The sloped shape of the waveguide entrance and a tall rounded Ni poles help in coupling the incident light to the waveguide layer. The diffracted beam was collected through the lens, which increased the intensity of light in the viewing plane. COMSOL multi-physics and coupling of mode (COM) modeling were performed to predict the device performance and compared with the experimental results.
Aguiar Santos, Susana; Schlebusch, Thomas; Leonhardt, Steffen
2013-01-01
An accurate current source is one of the keys in the hardware of Electrical impedance Tomography systems. Limitations appear mainly at higher frequencies and for non-simple resistive loads. In this paper, we simulate an improved Howland current source with a Cole-Cole load. Simulations comparing two different op-amps (THS4021 and OPA843) were performed at 1 kHz to 1 MHz. Results show that the THS4021 performed better than the OPA843. The current source with THS4021 reaches an output impedance of 20 MΩ at 1 kHz and above 320 kΩ at 1 MHz, it provides a constant and stable output current up to 4 mA, in the complete range of frequencies, and for Cole-Cole (resistive and capacitive) load.
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R
2017-11-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.
Imaging complex objects using learning tomography
NASA Astrophysics Data System (ADS)
Lim, JooWon; Goy, Alexandre; Shoreh, Morteza Hasani; Unser, Michael; Psaltis, Demetri
2018-02-01
Optical diffraction tomography (ODT) can be described using the scattering process through an inhomogeneous media. An inherent nonlinearity exists relating the scattering medium and the scattered field due to multiple scattering. Multiple scattering is often assumed to be negligible in weakly scattering media. This assumption becomes invalid as the sample gets more complex resulting in distorted image reconstructions. This issue becomes very critical when we image a complex sample. Multiple scattering can be simulated using the beam propagation method (BPM) as the forward model of ODT combined with an iterative reconstruction scheme. The iterative error reduction scheme and the multi-layer structure of BPM are similar to neural networks. Therefore we refer to our imaging method as learning tomography (LT). To fairly assess the performance of LT in imaging complex samples, we compared LT with the conventional iterative linear scheme using Mie theory which provides the ground truth. We also demonstrate the capacity of LT to image complex samples using experimental data of a biological cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fang; Huang, Li; Porter, Lisa M.
2016-07-15
Calculated frequency distributions of atom probe tomography reconstructions (∼80 nm field of view) of very thin Al{sub x}Ga{sub 1−x}N (0.18 ≤ x ≤ 0.51) films grown via metalorganic vapor phase epitaxy on both (0001) GaN/AlN/SiC and (0001) GaN/sapphire heterostructures revealed homogeneous concentrations of Al and chemically abrupt Al{sub x}Ga{sub 1−x}N/GaN interfaces. The results of scanning transmission electron microscopy and selected area diffraction corroborated these results and revealed that neither superlattice ordering nor phase separation was present at nanometer length scales.
Measurement of 3D refractive index distribution by optical diffraction tomography
NASA Astrophysics Data System (ADS)
Chi, Weining; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu; Yuan, Yuanyuan
2018-01-01
Optical Diffraction Tomography (ODT), as a novel 3D imaging technique, can obtain a 3D refractive index (RI) distribution to reveal the important optical properties of transparent samples. According to the theory of ODT, an optical diffraction tomography setup is built based on the Mach-Zehnder interferometer. The propagation direction of object beam is controlled by a 2D translation stage, and 121 holograms based on different illumination angles are recorded by a Charge-coupled Device (CCD). In order to prove the validity and accuracy of the ODT, the 3D RI profile of microsphere with a known RI is firstly measured. An iterative constraint algorithm is employed to improve the imaging accuracy effectively. The 3D morphology and average RI of the microsphere are consistent with that of the actual situation, and the RI error is less than 0.0033. Then, an optical element fabricated by laser with a non-uniform RI is taken as the sample. Its 3D RI profile is obtained by the optical diffraction tomography system.
Ultrasound Imaging Using Diffraction Tomography in a Cylindrical Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, D H; Littrup, P
2002-01-24
Tomographic images of tissue phantoms and a sample of breast tissue have been produced from an acoustic synthetic array system for frequencies near 500 kHz. The images for sound speed and attenuation show millimeter resolution and demonstrate the feasibility of obtaining high-resolution tomographic images with frequencies that can deeply penetrate tissue. The image reconstruction method is based on the Born approximation to acoustic scattering and is a simplified version of a method previously used by Andre (Andre, et. al., Int. J. Imaging Systems and Technology, Vol 8, No. 1, 1997) for a circular acoustic array system. The images have comparablemore » resolution to conventional ultrasound images at much higher frequencies (3-5 MHz) but with lower speckle noise. This shows the potential of low frequency, deeply penetrating, ultrasound for high-resolution quantitative imaging.« less
Nanoscale Fresnel coherent diffraction imaging tomography using ptychography.
Peterson, I; Abbey, B; Putkunz, C T; Vine, D J; van Riessen, G A; Cadenazzi, G A; Balaur, E; Ryan, R; Quiney, H M; McNulty, I; Peele, A G; Nugent, K A
2012-10-22
We demonstrate Fresnel Coherent Diffractive Imaging (FCDI) tomography in the X-ray regime. The method uses an incident X-ray illumination with known curvature in combination with ptychography to overcome existing problems in diffraction imaging. The resulting tomographic reconstruction represents a 3D map of the specimen's complex refractive index at nano-scale resolution. We use this technique to image a lithographically fabricated glass capillary, in which features down to 70nm are clearly resolved.
Air transparent soundproof window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang-Hoon, E-mail: shkim@mmu.ac.kr; Lee, Seong-Hyun
2014-11-15
A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. Themore » sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.« less
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R.
2017-01-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues. PMID:29188089
NASA Astrophysics Data System (ADS)
Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.
The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.
Multi-functional angiographic OFDI using frequency-multiplexed dual-beam illumination
Kim, SunHee; Park, Taejin; Jang, Sun-Joo; Nam, Ahhyun S.; Vakoc, Benjamin J.; Oh, Wang-Yuhl
2015-01-01
Detection of blood flow inside the tissue sample can be achieved by measuring the local change of complex signal over time in angiographic optical coherence tomography (OCT). In conventional angiographic OCT, the transverse displacement of the imaging beam during the time interval between a pair of OCT signal measurements must be significantly reduced to minimize the noise due to the beam scanning-induced phase decorrelation at the expense of the imaging speed. Recent introduction of dual-beam scan method either using polarization encoding or two identical imaging systems in spectral-domain (SD) OCT scheme shows potential for high-sensitivity vasculature imaging without suffering from spurious phase noise caused by the beam scanning-induced spatial decorrelation. In this paper, we present multi-functional angiographic optical frequency domain imaging (OFDI) using frequency-multiplexed dual-beam illumination. This frequency multiplexing scheme, utilizing unique features of OFDI, provides spatially separated dual imaging beams occupying distinct electrical frequency bands that can be demultiplexed in the frequency domain processing. We demonstrate the 3D multi-functional imaging of the normal mouse skin in the dorsal skin fold chamber visualizing distinct layer structures from the intensity imaging, information about mechanical integrity from the polarization-sensitive imaging, and depth-resolved microvasculature from the angiographic imaging that are simultaneously acquired and automatically co-registered. PMID:25968731
Shi, Xianbo; Reininger, Ruben; Sanchez del Rio, Manuel; ...
2014-05-15
A new method for beamline simulation combining ray-tracing and wavefront propagation is described. The 'Hybrid Method' computes diffraction effects when the beam is clipped by an aperture or mirror length and can also simulate the effect of figure errors in the optical elements when diffraction is present. The effect of different spatial frequencies of figure errors on the image is compared withSHADOWresults pointing to the limitations of the latter. The code has been benchmarked against the multi-electron version ofSRWin one dimension to show its validity in the case of fully, partially and non-coherent beams. The results demonstrate that the codemore » is considerably faster than the multi-electron version ofSRWand is therefore a useful tool for beamline design and optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frølich, S.; Leemreize, H.; Jakus, A.
A model sample consisting of two different hydroxyapatite (hAp) powders was used as a bone phantom to investigate the extent to which X-ray diffraction tomography could map differences in hAp lattice constants and crystallite size. The diffraction data were collected at beamline 1-ID, the Advanced Photon Source, using monochromatic 65 keV X-radiation, a 25 × 25 µm pinhole beam and translation/rotation data collection. The diffraction pattern was reconstructed for each volume element (voxel) in the sample, and Rietveld refinement was used to determine the hAp lattice constants. The crystallite size for each voxel was also determined from the 00.2 hApmore » diffraction peak width. The results clearly show that differences between hAp powders could be measured with diffraction tomography.« less
Programmable diffractive optic for multi-beam processing: applications and limitations
NASA Astrophysics Data System (ADS)
Gretzki, Patrick; Gillner, Arnold
2017-08-01
In the field of laser ablation, especially in the field of micro-structuring, the current challenge is the improvement of productivity. While many applications, e.g. surface fictionalization and structuring, drilling and thin film ablation, use relatively low pulse energies, industrial laser sources provide considerably higher average powers and pulse energies. The main challenge consist of the effective energy distribution and depositions. There are essential two complementary approaches for the up-scaling of (ultra) short pulse laser processes: Higher repetition frequency or higher pulse energies. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper we pursuit the second approach by using diffractive optics for parallel processing. We will discuss, which technologies can be used and which applications will benefit from the multi-beam approach and which increase in productivity can be expected. Additionally we will show, which quality attributes can be used to rate the performance of a diffractive optic and and which limitations and restrictions this technology has.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepoittevin, Christophe, E-mail: christophe.lepoittevin@neel.cnrs.fr
2016-10-15
The crystal structure of the strontium ferrite Sr{sub 5}Fe{sub 6}O{sub 15.4}, was solved by direct methods on electron diffraction tomography data acquired on a transmission electron microscope. The refined cell parameters are a=27.4047(3) Å, b=5.48590(7) Å and c=42.7442(4) Å in Fm2m symmetry. Its structure is built up from the intergrowth sequence between a quadruple perovskite-type layer with a complex rock-salt (RS)-type block. In the latter iron atoms are found in two different environments : tetragonal pyramid and tetrahedron. The structural model was refined by Rietveld method based on the powder X-ray diffraction pattern. - Highlights: • Complex structure of Sr{submore » 5}Fe{sub 6}O{sub 15.4} solved by electron diffraction tomography. • Observed Fourier maps allow determining missing oxygen atoms in the structure. • Structural model refined from powder X-ray diffraction data. • Intergrowth between quadruple perovskite layer with double rock-salt-type layer.« less
Application of process tomography in gas-solid fluidised beds in different scales and structures
NASA Astrophysics Data System (ADS)
Wang, H. G.; Che, H. Q.; Ye, J. M.; Tu, Q. Y.; Wu, Z. P.; Yang, W. Q.; Ocone, R.
2018-04-01
Gas-solid fluidised beds are commonly used in particle-related processes, e.g. for coal combustion and gasification in the power industry, and the coating and granulation process in the pharmaceutical industry. Because the operation efficiency depends on the gas-solid flow characteristics, it is necessary to investigate the flow behaviour. This paper is about the application of process tomography, including electrical capacitance tomography (ECT) and microwave tomography (MWT), in multi-scale gas-solid fluidisation processes in the pharmaceutical and power industries. This is the first time that both ECT and MWT have been applied for this purpose in multi-scale and complex structure. To evaluate the sensor design and image reconstruction and to investigate the effects of sensor structure and dimension on the image quality, a normalised sensitivity coefficient is introduced. In the meantime, computational fluid dynamic (CFD) analysis based on a computational particle fluid dynamic (CPFD) model and a two-phase fluid model (TFM) is used. Part of the CPFD-TFM simulation results are compared and validated by experimental results from ECT and/or MWT. By both simulation and experiment, the complex flow hydrodynamic behaviour in different scales is analysed. Time-series capacitance data are analysed both in time and frequency domains to reveal the flow characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohli, K; Liu, F; Krishnan, K
Purpose: Multi-frequency EIT has been reported to be a potential tool in distinguishing a tissue anomaly from background. In this study, we investigate the feasibility of acquiring functional information by comparing multi-frequency EIT images in reference to the structural information from the CT image through fusion. Methods: EIT data was acquired from a slice of winter melon using sixteen electrodes around the phantom, injecting a current of 0.4mA at 100, 66, 24.8 and 9.9 kHz. Differential EIT images were generated by considering different combinations of pair frequencies, one serving as reference data and the other as test data. The experimentmore » was repeated after creating an anomaly in the form of an off-centered cavity of diameter 4.5 cm inside the melon. All EIT images were reconstructed using Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS) package in 2-D differential imaging mode using one-step Gaussian Newton minimization solver. CT image of the melon was obtained using a Phillips CT Scanner. A segmented binary mask image was generated based on the reference electrode position and the CT image to define the regions of interest. The region selected by the user was fused with the CT image through logical indexing. Results: Differential images based on the reference and test signal frequencies were reconstructed from EIT data. Result illustrated distinct structural inhomogeneity in seeded region compared to fruit flesh. The seeded region was seen as a higherimpedance region if the test frequency was lower than the base frequency in the differential EIT reconstruction. When the test frequency was higher than the base frequency, the signal experienced less electrical impedance in the seeded region during the EIT data acquisition. Conclusion: Frequency-based differential EIT imaging can be explored to provide additional functional information along with structural information from CT for identifying different tissues.« less
Simple and versatile long range swept source for optical coherence tomography applications
NASA Astrophysics Data System (ADS)
Bräuer, Bastian; Lippok, Norman; Murdoch, Stuart G.; Vanholsbeeck, Frédérique
2015-12-01
We present a versatile long coherence length swept-source laser design for optical coherence tomography applications. This design consists of a polygonal spinning mirror and an optical gain chip in a modified Littman-Metcalf cavity. A narrowband intra-cavity filter is implemented through multiple passes off a diffraction grating set at grazing incidence. The key advantage of this design is that it can be readily adapted to any wavelength regions for which broadband gain chips are available. We demonstrate this by implementing sources at 1650 nm, 1550 nm, 1310 nm and 1050 nm. In particular, we present a 1310 nm swept source laser with 24 mm coherence length, 95 nm optical bandwidth, 2 kHz maximum sweep frequency and 7.5 mW average output power. These parameters make it a suitable source for the imaging of biological samples.
Probing the structure of heterogeneous diluted materials by diffraction tomography.
Bleuet, Pierre; Welcomme, Eléonore; Dooryhée, Eric; Susini, Jean; Hodeau, Jean-Louis; Walter, Philippe
2008-06-01
The advent of nanosciences calls for the development of local structural probes, in particular to characterize ill-ordered or heterogeneous materials. Furthermore, because materials properties are often related to their heterogeneity and the hierarchical arrangement of their structure, different structural probes covering a wide range of scales are required. X-ray diffraction is one of the prime structural methods but suffers from a relatively poor detection limit, whereas transmission electron analysis involves destructive sample preparation. Here we show the potential of coupling pencil-beam tomography with X-ray diffraction to examine unidentified phases in nanomaterials and polycrystalline materials. The demonstration is carried out on a high-pressure pellet containing several carbon phases and on a heterogeneous powder containing chalcedony and iron pigments. The present method enables a non-invasive structural refinement with a weight sensitivity of one part per thousand. It enables the extraction of the scattering patterns of amorphous and crystalline compounds with similar atomic densities and compositions. Furthermore, such a diffraction-tomography experiment can be carried out simultaneously with X-ray fluorescence, Compton and absorption tomographies, enabling a multimodal analysis of prime importance in materials science, chemistry, geology, environmental science, medical science, palaeontology and cultural heritage.
NASA Astrophysics Data System (ADS)
Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing
2015-09-01
The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α2 ≃ 2α1.
Handheld microwave bomb-detecting imaging system
NASA Astrophysics Data System (ADS)
Gorwara, Ashok; Molchanov, Pavlo
2017-05-01
Proposed novel imaging technique will provide all weather high-resolution imaging and recognition capability for RF/Microwave signals with good penetration through highly scattered media: fog, snow, dust, smoke, even foliage, camouflage, walls and ground. Image resolution in proposed imaging system is not limited by diffraction and will be determined by processor and sampling frequency. Proposed imaging system can simultaneously cover wide field of view, detect multiple targets and can be multi-frequency, multi-function. Directional antennas in imaging system can be close positioned and installed in cell phone size handheld device, on small aircraft or distributed around protected border or object. Non-scanning monopulse system allows dramatically decrease in transmitting power and at the same time provides increased imaging range by integrating 2-3 orders more signals than regular scanning imaging systems.
NASA Astrophysics Data System (ADS)
Nakamura, Yuichi; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru
2014-09-01
A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective to achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.
A frequency dependent preconditioned wavelet method for atmospheric tomography
NASA Astrophysics Data System (ADS)
Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny
2013-12-01
Atmospheric tomography, i.e. the reconstruction of the turbulence in the atmosphere, is a main task for the adaptive optics systems of the next generation telescopes. For extremely large telescopes, such as the European Extremely Large Telescope, this problem becomes overly complex and an efficient algorithm is needed to reduce numerical costs. Recently, a conjugate gradient method based on wavelet parametrization of turbulence layers was introduced [5]. An iterative algorithm can only be numerically efficient when the number of iterations required for a sufficient reconstruction is low. A way to achieve this is to design an efficient preconditioner. In this paper we propose a new frequency-dependent preconditioner for the wavelet method. In the context of a multi conjugate adaptive optics (MCAO) system simulated on the official end-to-end simulation tool OCTOPUS of the European Southern Observatory we demonstrate robustness and speed of the preconditioned algorithm. We show that three iterations are sufficient for a good reconstruction.
High frame-rate MR-guided near-infrared tomography system to monitor breast hemodynamics
NASA Astrophysics Data System (ADS)
Li, Zhiqiu; Jiang, Shudong; Krishnaswamy, Venkataramanan; Davis, Scott C.; Srinivasan, Subhadra; Paulsen, Keith D.; Pogue, Brian W.
2011-02-01
A near-infrared (NIR) tomography system with spectral-encoded sources at two wavelength bands was built to quantify the temporal contrast at 20 Hz bandwidth, while imaging breast tissue. The NIR system was integrated with a magnetic resonance (MR) machine through a custom breast coil interface, and both NIR data and MR images were acquired simultaneously. MR images provided breast tissue structural information for NIR reconstruction. Acquisition of finger pulse oximeter (PO) plethysmogram was synchronized with the NIR system in the experiment to offer a frequency-locked reference. The recovered absorption coefficients of the breast at two wavelengths showed identical temporal frequency as the PO output, proving this multi-modality design can recover the small pulsatile variation of absorption property in breast tissue related to the heartbeat. And it also showed the system's ability on novel contrast imaging of fast flow signals in deep tissue.
Quantitative damage imaging using Lamb wave diffraction tomography
NASA Astrophysics Data System (ADS)
Zhang, Hai-Yan; Ruan, Min; Zhu, Wen-Fa; Chai, Xiao-Dong
2016-12-01
In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474195, 11274226, 11674214, and 51478258).
Interlaced X-ray diffraction computed tomography
Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.
2016-01-01
An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305
Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography
NASA Astrophysics Data System (ADS)
Bahcivan, H.; Leveque, K.; Doe, R. A.
2013-12-01
The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can sort the frequencies and de-trend the phase variations due to spacecraft motion. For a single channel and a spacecraft-DTV transmitter path scan, TEC can be determined from the incremental phase variations for each channel. Determination of the absolute TEC requires knowledge of the absolute phase, i.e., including the number of 2π cycles. The absolute TEC can be determined in the case of multi-channel transmissions from a single tower (most towers house multiple television stations). A CubeSat constellation using DTV transmissions as signals of opportunity is a composite instrument for frontier ionospheric research. It is a novel application of CubeSats to understand the ionospheric response to solar, magnetospheric and upper atmospheric forcing. Combined tomographic measurements of ionospheric density can be used to study the global-scale ionospheric circulation and small-scale ionospheric structures that cause scintillation of trans-ionospheric signals. The data can support a wide range of studies, including Sub-auroral Polarization Streams (SAPS), low latitude plasma instabilities and the generation of equatorial spread F bubbles, and the role of atmospheric waves and layers and sudden stratospheric warming (SSW) events in traveling ionospheric disturbances (TID).
Moore, S A; Le Coz, J; Hurther, D; Paquier, A
2013-04-01
Multi-frequency acoustic backscatter profiles recorded with side-looking acoustic Doppler current profilers are used to monitor the concentration and size of sedimentary particles suspended in fluvial environments. Data at 300, 600, and 1200 kHz are presented from the Isère River in France where the dominant particles in suspension are silt and clay sizes. The contribution of suspended sediment to the through-water attenuation was determined for three high concentration (> 100 mg/L) events and compared to theoretical values for spherical particles having size distributions that were measured by laser diffraction in water samples. Agreement was good for the 300 kHz data, but it worsened with increasing frequency. A method for the determination of grain size using multi-frequency attenuation data is presented considering models for spherical and oblate spheroidal particles. When the resulting size estimates are used to convert sediment attenuation to concentration, the spheroidal model provides the best agreement with optical estimates of concentration, but the aspect ratio and grain size that provide the best fit differ between events. The acoustic estimates of size were one-third the values from laser grain sizing. This agreement is encouraging considering optical and acoustical instruments measure different parameters.
de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.
2014-01-01
X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992
Large area sub-micron chemical imaging of magnesium in sea urchin teeth.
Masic, Admir; Weaver, James C
2015-03-01
The heterogeneous and site-specific incorporation of inorganic ions can profoundly influence the local mechanical properties of damage tolerant biological composites. Using the sea urchin tooth as a research model, we describe a multi-technique approach to spatially map the distribution of magnesium in this complex multiphase system. Through the combined use of 16-bit backscattered scanning electron microscopy, multi-channel energy dispersive spectroscopy elemental mapping, and diffraction-limited confocal Raman spectroscopy, we demonstrate a new set of high throughput, multi-spectral, high resolution methods for the large scale characterization of mineralized biological materials. In addition, instrument hardware and data collection protocols can be modified such that several of these measurements can be performed on irregularly shaped samples with complex surface geometries and without the need for extensive sample preparation. Using these approaches, in conjunction with whole animal micro-computed tomography studies, we have been able to spatially resolve micron and sub-micron structural features across macroscopic length scales on entire urchin tooth cross-sections and correlate these complex morphological features with local variability in elemental composition. Copyright © 2015 Elsevier Inc. All rights reserved.
Long-range monostatic remote sensing of geomaterial structure weak vibrations
NASA Astrophysics Data System (ADS)
Heifetz, Alexander; Bakhtiari, Sasan; Gopalsami, Nachappa; Elmer, Thomas W.; Mukherjee, Souvik
2018-04-01
We study analytically and numerically signal sensitivity in remote sensing measurements of weak mechanical vibration of structures made of typical construction geomaterials, such as concrete. The analysis includes considerations of electromagnetic beam atmospheric absorption, reflection, scattering, diffraction and losses. Comparison is made between electromagnetic frequencies of 35GHz (Ka-band), 94GHz (W-band) and 260GHz (WR-3 waveguide band), corresponding to atmospheric transparency windows of the electromagnetic spectrum. Numerical simulations indicate that 94GHz frequency is optimal in terms of signal sensitivity and specificity for long-distance (>1.5km) sensing of weak multi-mode vibrations.
NASA Astrophysics Data System (ADS)
Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu
2016-11-01
A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Yuichi, E-mail: nakamura@ee.tut.ac.jp; Takagi, Hiroyuki; Lim, Pang Boey
A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective tomore » achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.« less
Geophysical investigations at the Paleolitic site Grotta delle Veneri near Parabita (Lecce, Italy)
NASA Astrophysics Data System (ADS)
Carrozzo, M. T.; Leucci, G.; Negri, S.; Nuzzo, L.
2003-04-01
The human presence in Apulia (southern Italy) is documented since 80.000 years before present. In 1966 near Parabita (Lecce, Italy) in a cave subsequently named "Grotta delle Veneri" human remains belonging to Homo Sapiens Neanderthalensis (Neanderthal) and Homo Sapiens-Sapiens (Cro-Magnon) were recovered together with two small statues of pregnant women ("Veneri") referable to 12.000--10.000 b.C. The local Archaeological Superintendence was interested in assessing the possibility to reconstruct by means of geophysical methods the planimetric position of the cave and further development of its burrows beyond those accessible to speleologists and reported in the underground topographic survey. Both electromagnetic (EM) and electric methods were tested using Ground Penetrating Radar (GPR) with 200 and 500 MHz antennas, GEM300 multi-frequency EM induction device and 2D Electrical Resistivity Tomography (ERT). Despite the rough surface and the presence of numerous obstacles (trees, stone walls and stone piles) limiting the accessible survey area and often preventing a good ground-coupling, the GPR survey successfully located the top of the karstic cave and identified zones of high density of diffraction hyperbolas, interpreted as highly fractured and karstified limestone, in a layer ranging from about 2 m to 6 m below ground. Zones characterised by high density of diffractions due to presence of voids were found also outside the known development of the cave. By means of the GEM 300, both in-phase and quadrature components of the induced EM signal were simultaneously collected at 8 frequencies, from 2025 to 19975 Hz, respectively related to the magnetic susceptibility and apparent conductivity of the soil down to a depth decreasing as the frequency increase. A presumable low contrast in the sought parameter between the highly fractured rock and karstic voids or refilled cavities as well as the presence of metallic debris on the ground allowed a difficult identification of only few anomalies in the EM map probably linked, by surface evidences, to underground interesting features. More interesting were the ETR results, revealing the presence of a high-resistive body (>2000 Ωm) in the same depth layer evidenced by GPR, with very high-resistive localised anomalies in good correspondence of known burrows and, more importantly, also in external zones, especially to the east of the cave.
NASA Astrophysics Data System (ADS)
Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.
2010-12-01
The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.
Breaking the acoustic diffraction barrier with localization optoacoustic tomography
NASA Astrophysics Data System (ADS)
Deán-Ben, X. Luís.; Razansky, Daniel
2018-02-01
Diffraction causes blurring of high-resolution features in images and has been traditionally associated to the resolution limit in light microscopy and other imaging modalities. The resolution of an imaging system can be generally assessed via its point spread function, corresponding to the image acquired from a point source. However, the precision in determining the position of an isolated source can greatly exceed the diffraction limit. By combining the estimated positions of multiple sources, localization-based imaging has resulted in groundbreaking methods such as super-resolution fluorescence optical microscopy and has also enabled ultrasound imaging of microvascular structures with unprecedented spatial resolution in deep tissues. Herein, we introduce localization optoacoustic tomography (LOT) and discuss on the prospects of using localization imaging principles in optoacoustic imaging. LOT was experimentally implemented by real-time imaging of flowing particles in 3D with a recently-developed volumetric optoacoustic tomography system. Provided the particles were separated by a distance larger than the diffraction-limited resolution, their individual locations could be accurately determined in each frame of the acquired image sequence and the localization image was formed by superimposing a set of points corresponding to the localized positions of the absorbers. The presented results demonstrate that LOT can significantly enhance the well-established advantages of optoacoustic imaging by breaking the acoustic diffraction barrier in deep tissues and mitigating artifacts due to limited-view tomographic acquisitions.
Groby, J-P; Lauriks, W; Vigran, T E
2010-05-01
The acoustic properties of a low resistivity porous layer backed by a rigid plate containing periodic rectangular irregularities, creating a multicomponent diffraction gratings, are investigated. Numerical and experimental results show that the structure possesses a total absorption peak at the frequency of the modified mode of the layer, when designed as proposed in the article. These results are explained by an analysis of the acoustic response of the whole structure and especially by the modal analysis of the configuration. When more than one irregularity per spatial period is considered, additional higher frequency peaks are observed.
NASA Astrophysics Data System (ADS)
Palomeras, Imma; Thurner, Sally; Levander, Alan; Bezada, Maximiliano; Villasenor, Antonio; Humphreys, Eugene; Carbonell, Ramon; Gallart, Josep
2013-04-01
Since Cenozoic times the Western Mediterranean has been affected by complex subduction and slab rollback, during African-European convergence. The deformed region occupies a wide area from the Atlas mountains in northwest Africa to the southern Iberian Massif in Spain. Evolutionary models of the Western Mediterranean invoke extensive slab rollback and compression, as well as likely upper mantle delamination/convective drip scenarios during formation of the Alboran domain, the Betics, Rif, and Atlas Mountains. We report on a multidisciplinary, international investigation of the Alboran System and surrounding areas. In this study we have analyzed teleseismic data from the roughly 240 temporary and permanent broadband seismographs operated in this region by more than a dozen different cooperating research groups. Here we present combined results from Rayleigh wave tomography and Ps receiver functions. Receiver functions were made in 3 frequency bands (2 Hz, 1 Hz, 0.5 Hz) using iterative time-domain and water-level frequency-domain methods. We measured Rayleigh phase velocities using the two-plane-wave method and finite-frequency kernels to remove complications due to multi-pathing and to improve lateral resolution, respectively. The resulting 3D shear velocity model was used to create 3D image volumes of the Ps receiver functions. The RF and tomography images are consistent with one another and withteleseismic body wave tomography (Bezada et al., submitted) Our results show high velocities from ~70 km to 230 km depth in an elliptical area just west of the Gibraltar straits which is interpreted as a near vertical slab beneath the Alboran Domain and the adjacent Spanish continental margin. The surface wave results map out the top of a 600+ km deep nearly vertical slab seen in the P body wave tomography. The RF images suggest that the top of this slab is still attached to the Alboran domain Moho beneath Gibraltar, a complex region where lower crustal velocities (
Multi-frequency EIT system with radially symmetric architecture: KHU Mark1.
Oh, Tong In; Woo, Eung Je; Holder, David
2007-07-01
We describe the development of a multi-frequency electrical impedance tomography (EIT) system (KHU Mark1) with a single balanced current source and multiple voltmeters. It was primarily designed for imaging brain function with a flexible strategy for addressing electrodes and a frequency range from 10 Hz-500 kHz. The maximal number of voltmeters is 64, and all of them can simultaneously acquire and demodulate voltage signals. Each voltmeter measures a differential voltage between a pair of electrodes. All voltmeters are configured in a radially symmetric architecture in order to optimize the routing of wires and minimize cross-talk. We adopted several techniques from existing EIT systems including digital waveform generation, a Howland current generator with a generalized impedance converter (GIC), digital phase-sensitive demodulation and tri-axial cables. New features of the KHU Mark1 system include multiple GIC circuits to maximize the output impedance of the current source at multiple frequencies. The voltmeter employs contact impedance measurements, data overflow detection, spike noise rejection, automatic gain control and programmable data averaging. The KHU Mark1 system measures both in-phase and quadrature components of trans-impedances. By using a script file describing an operating mode, the system setup can be easily changed. The performance of the developed multi-frequency EIT system was evaluated in terms of a common-mode rejection ratio, signal-to-noise ratio, linearity error and reciprocity error. Time-difference and frequency-difference images of a saline phantom with a banana object are presented showing a frequency-dependent complex conductivity of the banana. Future design of a more innovative system is suggested including miniaturization and wireless techniques.
Model Equation for Acoustic Nonlinear Measurement of Dispersive Specimens at High Frequency
NASA Astrophysics Data System (ADS)
Zhang, Dong; Kushibiki, Junichi; Zou, Wei
2006-10-01
We present a theoretical model for acoustic nonlinearity measurement of dispersive specimens at high frequency. The nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation governs the nonlinear propagation in the SiO2/specimen/SiO2 multi-layer medium. The dispersion effect is considered in a special manner by introducing the frequency-dependant sound velocity in the KZK equation. Simple analytic solutions are derived by applying the superposition technique of Gaussian beams. The solutions are used to correct the diffraction and dispersion effects in the measurement of acoustic nonlinearity of cottonseed oil in the frequency range of 33-96 MHz. Regarding two different ultrasonic devices, the accuracies of the measurements are improved to ±2.0% and ±1.3% in comparison with ±9.8% and ±2.9% obtained from the previous plane wave model.
Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography
Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael
2012-01-01
We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108
Song, Hajun; Hwang, Sejin; Song, Jong-In
2017-05-15
This study presents an optical frequency switching scheme for a high-speed broadband terahertz (THz) measurement system based on the photomixing technique. The proposed system can achieve high-speed broadband THz measurements using narrow optical frequency scanning of a tunable laser source combined with a wavelength-switchable laser source. In addition, this scheme can provide a larger output power of an individual THz signal compared with that of a multi-mode THz signal generated by multiple CW laser sources. A swept-source THz tomography system implemented with a two-channel wavelength-switchable laser source achieves a reduced time for acquisition of a point spread function and a higher depth resolution in the same amount of measurement time compared with a system with a single optical source.
NASA Astrophysics Data System (ADS)
Weigand, Maximilian; Kemna, Andreas
2017-02-01
A better understanding of root-soil interactions and associated processes is essential in achieving progress in crop breeding and management, prompting the need for high-resolution and non-destructive characterization methods. To date, such methods are still lacking or restricted by technical constraints, in particular the charactization and monitoring of root growth and function in the field. A promising technique in this respect is electrical impedance tomography (EIT), which utilizes low-frequency (< 1 kHz)- electrical conduction- and polarization properties in an imaging framework. It is well established that cells and cell clusters exhibit an electrical polarization response in alternating electric-current fields due to electrical double layers which form at cell membranes. This double layer is directly related to the electrical surface properties of the membrane, which in turn are influenced by nutrient dynamics (fluxes and concentrations on both sides of the membranes). Therefore, it can be assumed that the electrical polarization properties of roots are inherently related to ion uptake and translocation processes in the root systems. We hereby propose broadband (mHz to hundreds of Hz) multi-frequency EIT as a non-invasive methodological approach for the monitoring and physiological, i.e., functional, characterization of crop root systems. The approach combines the spatial-resolution capability of an imaging method with the diagnostic potential of electrical-impedance spectroscopy. The capability of multi-frequency EIT to characterize and monitor crop root systems was investigated in a rhizotron laboratory experiment, in which the root system of oilseed plants was monitored in a water-filled rhizotron, that is, in a nutrient-deprived environment. We found a low-frequency polarization response of the root system, which enabled the successful delineation of its spatial extension. The magnitude of the overall polarization response decreased along with the physiological decay of the root system due to the stress situation. Spectral polarization parameters, as derived from a pixel-based Debye decomposition analysis of the multi-frequency imaging results, reveal systematic changes in the spatial and spectral electrical response of the root system. In particular, quantified mean relaxation times (of the order of 10 ms) indicate changes in the length scales on which the polarization processes took place in the root system, as a response to the prolonged induced stress situation. Our results demonstrate that broadband EIT is a capable, non-invasive method to image root system extension as well as to monitor changes associated with the root physiological processes. Given its applicability on both laboratory and field scales, our results suggest an enormous potential of the method for the structural and functional imaging of root systems for various applications. This particularly holds for the field scale, where corresponding methods are highly desired but to date are lacking.
Subwavelength resolution from multilayered structure (Conference Presentation)
NASA Astrophysics Data System (ADS)
Cheng, Bo Han; Jen, Yi-Jun; Liu, Wei-Chih; Lin, Shan-wen; Lan, Yung-Chiang; Tsai, Din Ping
2016-10-01
Breaking optical diffraction limit is one of the most important issues needed to be overcome for the demand of high-density optoelectronic components. Here, a multilayered structure which consists of alternating semiconductor and dielectric layers for breaking optical diffraction limitation at THz frequency region are proposed and analyzed. We numerically demonstrate that such multilayered structure not only can act as a hyperbolic metamaterial but also a birefringence material via the control of the external temperature (or magnetic field). A practical approach is provided to control all the diffraction signals toward a specific direction by using transfer matrix method and effective medium theory. Numerical calculations and computer simulation (based on finite element method, FEM) are carried out, which agree well with each other. The temperature (or magnetic field) parameter can be tuned to create an effective material with nearly flat isofrequency feature to transfer (project) all the k-space signals excited from the object to be resolved to the image plane. Furthermore, this multilayered structure can resolve subwavelength structures at various incident THz light sources simultaneously. In addition, the resolution power for a fixed operating frequency also can be tuned by only changing the magnitude of external magnetic field. Such a device provides a practical route for multi-functional material, photolithography and real-time super-resolution image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haishuang; Krysiak, Yaşar; Hoffmann, Kristin
The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along themore » b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.« less
Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.
La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M
2017-04-01
The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.
Single-exposure color digital holography
NASA Astrophysics Data System (ADS)
Feng, Shaotong; Wang, Yanhui; Zhu, Zhuqing; Nie, Shouping
2010-11-01
In this paper, we report a method for color image reconstruction by recording only one single multi-wavelength hologram. In the recording process, three lasers of different wavelengths emitting in the red, green and blue regions are used for illuminating on the object and the object diffraction fields will arrive at the hologram plane simultaneously. Three reference beams with different spatial angles will interfere with the corresponding object diffraction fields on the hologram plane, respectively. Finally, a series of sub-holograms incoherently overlapped on the CCD to be recorded as a multi-wavelength hologram. Angular division multiplexing is employed to reference beams so that the spatial spectra of the multiple recordings will be separated in the Fourier plane. In the reconstruction process, the multi-wavelength hologram will be Fourier transformed into its Fourier plane, where the spatial spectra of different wavelengths are separated and can be easily extracted by employing frequency filtering. The extracted spectra are used to reconstruct the corresponding monochromatic complex amplitudes, which will be synthesized to reconstruct the color image. For singleexposure recording technique, it is convenient for applications on the real-time image processing fields. However, the quality of the reconstructed images is affected by speckle noise. How to improve the quality of the images needs for further research.
A new probe using hybrid virus-dye nanoparticles for near-infrared fluorescence tomography
NASA Astrophysics Data System (ADS)
Wu, Changfeng; Barnhill, Hannah; Liang, Xiaoping; Wang, Qian; Jiang, Huabei
2005-11-01
A fluorescent probe based on bionanoparticle cowpea mosaic virus has been developed for near-infrared fluorescence tomography. A unique advantage of this probe is that over 30 dye molecules can be loaded onto each viral nanoparticle with an average diameter of 30 nm, making high local dye concentration (∼1.8 mM) possible without significant fluorescence quenching. This ability of high loading of local dye concentration would increase the signal-to-noise ratio considerably, thus sensitivity for detection. We demonstrate successful tomographic fluorescence imaging of a target containing the virus-dye nanoparticles embedded in a tissue-like phantom. Tomographic fluorescence data were obtained through a multi-channel frequency-domain system and the spatial maps of fluorescence quantum yield were recovered with a finite-element-based reconstruction algorithm.
Böhnke, Frank; Bretan, Theodor; Lehner, Stefan; Strenger, Tobias
2013-10-22
The transfer characteristic of the human middle ear with an applied middle ear implant (floating mass transducer) is examined computationally with a Multi-body System approach and compared with experimental results. For this purpose, the geometry of the middle ear was reconstructed from μ-computer tomography slice data and prepared for a Multi-body System simulation. The transfer function of the floating mass transducer, which is the ratio of the input voltage and the generated force, is derived based on a physical context. The numerical results obtained with the Multi-body System approach are compared with experimental results by Laser Doppler measurements of the stapes footplate velocities of five different specimens. Although slightly differing anatomical structures were used for the calculation and the measurement, a high correspondence with respect to the course of stapes footplate displacement along the frequency was found. Notably, a notch at frequencies just below 1 kHz occurred. Additionally, phase courses of stapes footplate displacements were determined computationally if possible and compared with experimental results. The examinations were undertaken to quantify stapes footplate displacements in the clinical practice of middle ear implants and, also, to develop fitting strategies on a physical basis for hearing impaired patients aided with middle ear implants.
NASA Astrophysics Data System (ADS)
Leonard, Kevin Raymond
This dissertation concentrates on the development of two new tomographic techniques that enable wide-area inspection of pipe-like structures. By envisioning a pipe as a plate wrapped around upon itself, the previous Lamb Wave Tomography (LWT) techniques are adapted to cylindrical structures. Helical Ultrasound Tomography (HUT) uses Lamb-like guided wave modes transmitted and received by two circumferential arrays in a single crosshole geometry. Meridional Ultrasound Tomography (MUT) creates the same crosshole geometry with a linear array of transducers along the axis of the cylinder. However, even though these new scanning geometries are similar to plates, additional complexities arise because they are cylindrical structures. First, because it is a single crosshole geometry, the wave vector coverage is poorer than in the full LWT system. Second, since waves can travel in both directions around the circumference of the pipe, modes can also constructively and destructively interfere with each other. These complexities necessitate improved signal processing algorithms to produce accurate and unambiguous tomographic reconstructions. Consequently, this work also describes a new algorithm for improving the extraction of multi-mode arrivals from guided wave signals. Previous work has relied solely on the first arriving mode for the time-of-flight measurements. In order to improve the LWT, HUT and MUT systems reconstructions, improved signal processing methods are needed to extract information about the arrival times of the later arriving modes. Because each mode has different through-thickness displacement values, they are sensitive to different types of flaws, and the information gained from the multi-mode analysis improves understanding of the structural integrity of the inspected material. Both tomographic frequency compounding and mode sorting algorithms are introduced. It is also shown that each of these methods improve the reconstructed images both qualitatively and quantitatively.
NASA Astrophysics Data System (ADS)
Shin, Seungwoo; Kim, Kyoohyun; Kim, Taeho; Yoon, Jonghee; Hong, Kihyun; Park, Jinah; Park, YongKeun
2016-03-01
Optical diffraction tomography (ODT) is an interferometric microscopy technique capable of measuring 3-D refractive index (RI) distribution of transparent samples. Multiple 2-D holograms of a sample illuminated with various angles are measured, from which 3-D RI map of the sample is reconstructed via the diffraction theory. ODT has been proved as a powerful tool for the study of biological cells, due to its non-invasiveness, label-free and quantitative imaging capability. Recently, our group has demonstrated that a digital micromirror device (DMD) can be exploited for fast and precise control of illumination beams for ODT. In this work, we systematically study the precision and stability of the ODT system equipped with a DMD and present measurements of 3-D and 4-D RI maps of various types of live cells including human red blood cells, white blood cells, hepatocytes, and HeLa cells. Furthermore, we also demonstrate the effective visualization of 3-D RI maps of live cells utilizing the measured information about the values and gradient of RI tomograms.
NASA Astrophysics Data System (ADS)
Hunter, Allen H.; Farren, Jeffrey D.; DuPont, John N.; Seidman, David N.
2015-07-01
An experimental steel with the composition Fe-1.39Cu-2.70Ni-0.58Al-0.48Mn-0.48Si-0.065Nb-0.05C (wt pct) or alternatively Fe-1.43Cu-2.61Ni-1.21Al-0.48Mn-0.98Si-0.039Nb-0.23C (at. pct) has been developed at Northwestern University, which has both high toughness and high strength after quenching and aging treatments. Simulated heat-affected zone (HAZ) samples are utilized to analyze the microstructures typically obtained after gas metal arc welding (GMAW). Dissolution within the HAZ of cementite (Fe3C) and NbC (F.C.C.) is revealed using synchrotron X-ray diffraction, while dissolution of Cu precipitates is measured employing local electrode atom probe tomography. The results are compared to Thermo-Calc equilibrium calculations. Comparison of measured Cu precipitate radii, number density, and volume fraction with similar measurements from a GMAW sample suggests that the cooling rate in the simulations is faster than in the experimental GMAW sample, resulting in significantly less Cu precipitate nucleation and growth during the cooling part of the weld thermal cycle. The few Cu precipitates detected in the simulated samples are primarily located on grain boundaries resulting from heterogeneous nucleation. The dissolution of NbC precipitates and the resultant austenite coarsening in the highest-temperature sample, coupled with a rapid cooling rate, results in the growth of bainite, and an increase in the strength of the matrix in the absence of significant Cu precipitation.
Diffraction Contrast Tomography: A Novel 3D Polycrystalline Grain Imaging Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuettner, Lindsey Ann
2017-06-06
Diffraction contrast tomography (DCT) is a non-destructive way of imaging microstructures of polycrystalline materials such as metals or crystalline organics. It is a useful technique to map 3D grain structures as well as providing crystallographic information such as crystal orientation, grain shape, and strain. Understanding the internal microstructure of a material is important in understanding the bulk material properties. This report gives a general overview of the similar techniques, DCT data acquisition, and analysis processes. Following the short literature review, potential work and research at Los Alamos National Laboratory (LANL) is discussed.
NASA Astrophysics Data System (ADS)
Zhou, Renjie; So, Peter T. C.; Yaqoob, Zahid; Jin, Di; Hosseini, Poorya; Kuang, Cuifang; Singh, Vijay Raj; Kim, Yang-Hyo; Dasari, Ramachandra R.
2017-02-01
Most of the quantitative phase microscopy systems are unable to provide depth-resolved information for measuring complex biological structures. Optical diffraction tomography provides a non-trivial solution to it by 3D reconstructing the object with multiple measurements through different ways of realization. Previously, our lab developed a reflection-mode dynamic speckle-field phase microscopy (DSPM) technique, which can be used to perform depth resolved measurements in a single shot. Thus, this system is suitable for measuring dynamics in a layer of interest in the sample. DSPM can be also used for tomographic imaging, which promises to solve the long-existing "missing cone" problem in 3D imaging. However, the 3D imaging theory for this type of system has not been developed in the literature. Recently, we have developed an inverse scattering model to rigorously describe the imaging physics in DSPM. Our model is based on the diffraction tomography theory and the speckle statistics. Using our model, we first precisely calculated the defocus response and the depth resolution in our system. Then, we further calculated the 3D coherence transfer function to link the 3D object structural information with the axially scanned imaging data. From this transfer function, we found that in the reflection mode excellent sectioning effect exists in the low lateral spatial frequency region, thus allowing us to solve the "missing cone" problem. Currently, we are working on using this coherence transfer function to reconstruct layered structures and complex cells.
Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.
Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T
2013-06-01
This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).
Renversade, Loïc; Quey, Romain; Ludwig, Wolfgang; Menasche, David; Maddali, Siddharth; Suter, Robert M; Borbély, András
2016-01-01
The grain structure of an Al-0.3 wt%Mn alloy deformed to 1% strain was reconstructed using diffraction contrast tomography (DCT) and high-energy diffraction microscopy (HEDM). 14 equally spaced HEDM layers were acquired and their exact location within the DCT volume was determined using a generic algorithm minimizing a function of the local disorientations between the two data sets. The microstructures were then compared in terms of the mean crystal orientations and shapes of the grains. The comparison shows that DCT can detect subgrain boundaries with disorientations as low as 1° and that HEDM and DCT grain boundaries are on average 4 µm apart from each other. The results are important for studies targeting the determination of grain volume. For the case of a polycrystal with an average grain size of about 100 µm, a relative deviation of about ≤10% was found between the two techniques.
Broadening microwave absorption via a multi-domain structure
NASA Astrophysics Data System (ADS)
Liu, Zhengwang; Che, Renchao; Wei, Yong; Liu, Yupu; Elzatahry, Ahmed A.; Dahyan, Daifallah Al.; Zhao, Dongyuan
2017-04-01
Materials with a high saturation magnetization have gained increasing attention in the field of microwave absorption; therefore, the magnetization value depends on the magnetic configuration inside them. However, the broad-band absorption in the range of microwave frequency (2-18 GHz) is a great challenge. Herein, the three-dimensional (3D) Fe/C hollow microspheres are constructed by iron nanocrystals permeating inside carbon matrix with a saturation magnetization of 340 emu/g, which is 1.55 times as that of bulk Fe, unexpectedly. Electron tomography, electron holography, and Lorentz transmission electron microscopy imaging provide the powerful testimony about Fe/C interpenetration and multi-domain state constructed by vortex and stripe domains. Benefiting from the unique chemical and magnetic microstructures, the microwave minimum absorption is as strong as -55 dB and the bandwidth (<-10 dB) spans 12.5 GHz ranging from 5.5 to 18 GHz. Morphology and distribution of magnetic nano-domains can be facilely regulated by a controllable reduction sintering under H2/Ar gas and an optimized temperature over 450-850 °C. The findings might shed new light on the synthesis strategies of the materials with the broad-band frequency and understanding the association between multi-domain coupling and microwave absorption performance.
NASA Astrophysics Data System (ADS)
Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew
2018-04-01
Continuous monitoring of the patient's breathing by the method of multi-angle electric impedance tomography allows to obtain images of conduction change in the chest cavity during the monitoring. Direct analysis of images is difficult due to the large amount of information and low resolution images obtained by multi-angle electrical impedance tomography. This work presents a method for obtaining a graph of respiratory activity of the lungs based on the results of continuous lung monitoring using the multi-angle electrical impedance tomography method. The method makes it possible to obtain a graph of the respiratory activity of the left and right lungs separately, as well as a summary graph, to which it is possible to apply methods of processing the results of spirography.
XPATCH: a high-frequency electromagnetic scattering prediction code using shooting and bouncing rays
NASA Astrophysics Data System (ADS)
Hazlett, Michael; Andersh, Dennis J.; Lee, Shung W.; Ling, Hao; Yu, C. L.
1995-06-01
This paper describes an electromagnetic computer prediction code for generating radar cross section (RCS), time domain signatures, and synthetic aperture radar (SAR) images of realistic 3-D vehicles. The vehicle, typically an airplane or a ground vehicle, is represented by a computer-aided design (CAD) file with triangular facets, curved surfaces, or solid geometries. The computer code, XPATCH, based on the shooting and bouncing ray technique, is used to calculate the polarimetric radar return from the vehicles represented by these different CAD files. XPATCH computes the first-bounce physical optics plus the physical theory of diffraction contributions and the multi-bounce ray contributions for complex vehicles with materials. It has been found that the multi-bounce contributions are crucial for many aspect angles of all classes of vehicles. Without the multi-bounce calculations, the radar return is typically 10 to 15 dB too low. Examples of predicted range profiles, SAR imagery, and radar cross sections (RCS) for several different geometries are compared with measured data to demonstrate the quality of the predictions. The comparisons are from the UHF through the Ka frequency ranges. Recent enhancements to XPATCH for MMW applications and target Doppler predictions are also presented.
A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System
Avery, James; Dowrick, Thomas; Faulkner, Mayo; Goren, Nir; Holder, David
2017-01-01
A highly versatile Electrical Impedance Tomography (EIT) system, nicknamed the ScouseTom, has been developed. The system allows control over current amplitude, frequency, number of electrodes, injection protocol and data processing. Current is injected using a Keithley 6221 current source, and voltages are recorded with a 24-bit EEG system with minimum bandwidth of 3.2 kHz. Custom PCBs interface with a PC to control the measurement process, electrode addressing and triggering of external stimuli. The performance of the system was characterised using resistor phantoms to represent human scalp recordings, with an SNR of 77.5 dB, stable across a four hour recording and 20 Hz to 20 kHz. In studies of both haeomorrhage using scalp electrodes, and evoked activity using epicortical electrode mats in rats, it was possible to reconstruct images matching established literature at known areas of onset. Data collected using scalp electrode in humans matched known tissue impedance spectra and was stable over frequency. The experimental procedure is software controlled and is readily adaptable to new paradigms. Where possible, commercial or open-source components were used, to minimise the complexity in reproduction. The hardware designs and software for the system have been released under an open source licence, encouraging contributions and allowing for rapid replication. PMID:28146122
NASA Astrophysics Data System (ADS)
Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun
2014-01-01
We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.
Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.
2013-01-01
Abstract. We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated. PMID:23797986
Multi-contrast imaging of human posterior eye by Jones matrix optical coherence tomography
NASA Astrophysics Data System (ADS)
Yasuno, Yoshiaki
2017-04-01
A multi-contrast imaging of pathologic posterior eyes is demonstrated by Jones matrix optical coherence tomography (Jones matrix OCT). The Jones matrix OCT provides five tomographies, which includes scattering, local attenuation, birefringence, polarization uniformity, and optical coherence angiography, by a single scan. The hardware configuration, algorithms of the Jones matrix OCT as well as its application to ophthalmology is discussed.
Rius, Jordi; Mugnaioli, Enrico; Vallcorba, Oriol; Kolb, Ute
2013-07-01
δ Recycling is a simple procedure for directly extracting phase information from Patterson-type functions [Rius (2012). Acta Cryst. A68, 399-400]. This new phasing method has a clear theoretical basis and was developed with ideal single-crystal X-ray diffraction data. On the other hand, introduction of the automated diffraction tomography (ADT) technique has represented a significant advance in electron diffraction data collection [Kolb et al. (2007). Ultramicroscopy, 107, 507-513]. When combined with precession electron diffraction, it delivers quasi-kinematical intensity data even for complex inorganic compounds, so that single-crystal diffraction data of nanometric volumes are now available for structure determination by direct methods. To check the tolerance of δ recycling to missing data-collection corrections and to deviations from kinematical behaviour of ADT intensities, δ recycling has been applied to differently shaped nanocrystals of various inorganic materials. The results confirm that it can phase ADT data very efficiently. In some cases even more complete structure models than those derived from conventional direct methods and least-squares refinement have been found. During this study it has been demonstrated that the Wilson-plot scaling procedure is largely insensitive to sample thickness variations and missing absorption corrections affecting electron ADT intensities.
Reflective afocal broadband adaptive optics scanning ophthalmoscope
Dubra, Alfredo; Sulai, Yusufu
2011-01-01
A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035
Reflective afocal broadband adaptive optics scanning ophthalmoscope.
Dubra, Alfredo; Sulai, Yusufu
2011-06-01
A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other.
Status of the Neutron Imaging and Diffraction Instrument IMAT
NASA Astrophysics Data System (ADS)
Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.
A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.
Image degradation characteristics and restoration based on regularization for diffractive imaging
NASA Astrophysics Data System (ADS)
Zhi, Xiyang; Jiang, Shikai; Zhang, Wei; Wang, Dawei; Li, Yun
2017-11-01
The diffractive membrane optical imaging system is an important development trend of ultra large aperture and lightweight space camera. However, related investigations on physics-based diffractive imaging degradation characteristics and corresponding image restoration methods are less studied. In this paper, the model of image quality degradation for the diffraction imaging system is first deduced mathematically based on diffraction theory and then the degradation characteristics are analyzed. On this basis, a novel regularization model of image restoration that contains multiple prior constraints is established. After that, the solving approach of the equation with the multi-norm coexistence and multi-regularization parameters (prior's parameters) is presented. Subsequently, the space-variant PSF image restoration method for large aperture diffractive imaging system is proposed combined with block idea of isoplanatic region. Experimentally, the proposed algorithm demonstrates its capacity to achieve multi-objective improvement including MTF enhancing, dispersion correcting, noise and artifact suppressing as well as image's detail preserving, and produce satisfactory visual quality. This can provide scientific basis for applications and possesses potential application prospects on future space applications of diffractive membrane imaging technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brázda, Petr, E-mail: brazda@fzu.cz; Palatinus, Lukáš; Klementová, Mariana
2015-07-15
We have used electron diffraction tomography and powder X-ray diffraction to elucidate the structural properties of layered cobaltate γ-La{sub 0.30}CoO{sub 2}. The structure consists of hexagonal sheets of edge-sharing CoO{sub 6} octahedra interleaved by lanthanum monolayers. The La{sup 3+} cations occupy only one third of available P2 sites, forming a 2-dimensional a√3×a√3 superstructure in a–b plane. The results show that there exists no order in the mutual relative shift between the neighbouring La interlayers within the a–b plane. This is manifested in the observed monotonous decrease of the diffracted intensity of the superstructure diffractions along c{sup ⁎} in both X-raymore » and electron diffraction data. The observed lack of stacking order differentiates the La{sub x}CoO{sub 2} from its Ca and Sr analogues where at least a partial stacking order of the cationic interlayers is manifested in experimental data published in literature. - Highlights: • We use electron diffraction tomography for reciprocal space mapping of La{sub 0.30}CoO{sub 2}. • We observed a complete disorder of the stacking of Lanthanum interlayers. • Co{sub 3}O{sub 4} intergrown with La{sub 0.30}CoO{sub 2} crystals brings about fake superstructure diffractions. • Twinning of Co{sub 3}O{sub 4} enhances the problem of fake superstructure diffractions.« less
Dahlen Receives 2003 Inge Lehmann Medal
NASA Astrophysics Data System (ADS)
Nolet, Guust; Dahlen, Francis A., Jr.
2004-01-01
``I feel honored and pleased to cite my friend and Princeton colleague Tony Dahlen for the Inge Lehmann medal. Given Tony's wide range of important contributions, there is actually a choice of AGU honors one might cite him for; his influence extends well beyond those fields that are primarily associated with the Lehmann Medal. ``Tony started his scientific journey as an undergraduate at Caltech. By the time he moved on to graduate studies with George Backus and Freeman Gilbert at Scripps he was already applying his many talents to geophysics. He soon pioneered a series of papers on normal modes that represent the first substantial step away from Earth's spherical symmetry. In fact, all of the current research on the use of low-frequency seismic data for the determination of the Earth's three-dimensional structure is based on this early work, its extension to an inverse problem, and subsequent research with Martin Smith and John Woodhouse. His interest in the theory of global tomography has survived until this day: Recently he developed a very elegant and efficient theory to include the frequency-dependent effects of diffraction into body wave tomography, a theoretical improvement that was almost immediately rewarded by the imaging of a large number of mantle plumes. These represent the first concrete seismological evidence that many hot spots originate deep in the mantle, confirming Jason Morgan's long-standing hypothesis.
Henschke, Claudia I; Yip, Rowena; Yankelevitz, David F; Smith, James P
2013-02-19
Low-dose computed tomography screening for lung cancer can reduce mortality among high-risk persons, but "false-positive" findings may result in unnecessary evaluations with attendant risks. The effect of alternative thresholds for defining a positive result on the rates of positive results and cancer diagnoses is unknown. To assess the frequency of positive results and potential delays in diagnosis in the baseline round of screening by using more restrictive thresholds. Prospective cohort study. Multi-institutional International Early Lung Cancer Action Program. 21 136 participants with baseline computed tomography performed between 2006 and 2010. The frequency of solid and part-solid pulmonary nodules and the rate of lung cancer diagnosis by using current (5 mm) and more restrictive thresholds of nodule diameter. The frequency of positive results in the baseline round by using the current definition of positive result (any parenchymal, solid or part-solid, noncalcified nodule ≥5.0 mm) was 16% (3396/21 136). When alternative threshold values of 6.0, 7.0, 8.0 and 9.0 mm were used, the frequencies of positive results were 10.2% (95% CI, 9.8% to 10.6%), 7.1% (CI, 6.7% to 7.4%), 5.1% (CI, 4.8% to 5.4%), and 4.0% (CI, 3.7% to 4.2%), respectively. Use of these alternative definitions would have reduced the work-up by 36%, 56%, 68%, and 75%, respectively. Concomitantly, lung cancer diagnostics would have been delayed by at most 9 months for 0%, 5.0% (CI, 1.1% to 9.0%), 5.9% (CI, 1.7 to 10.1%), and 6.7% (CI, 2.2% to 11.2%) of the cases of cancer, respectively. This was a retrospective analysis and thus whether delays in diagnosis would have altered outcomes cannot be determined. These findings suggest that using a threshold of 7 or 8 mm to define positive results in the baseline round of computed tomography screening for lung cancer should be prospectively evaluated to determine whether the benefits of decreasing further work-up outweigh the consequent delay in diagnosis in some patients.
MMX-I: data-processing software for multimodal X-ray imaging and tomography.
Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea
2016-05-01
A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors' knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments.
Transurethral Ultrasound Diffraction Tomography
2007-03-01
the covariance matrix was derived. The covariance reduced to that of the X- ray CT under the assumptions of linear operator and real data.[5] The...the covariance matrix in the linear x- ray computed tomography is a special case of the inverse scattering matrix derived in this paper. The matrix was...is derived in Sec. IV, and its relation to that of the linear x- ray computed tomography appears in Sec. V. In Sec. VI, the inverse scattering
Liu, Mengyang; Chen, Zhe; Zabihian, Behrooz; Sinz, Christoph; Zhang, Edward; Beard, Paul C.; Ginner, Laurin; Hoover, Erich; Minneman, Micheal P.; Leitgeb, Rainer A.; Kittler, Harald; Drexler, Wolfgang
2016-01-01
Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive human skin vasculature and morphology imaging in vivo. PMID:27699106
NASA Astrophysics Data System (ADS)
Bradford, J. H.
2009-12-01
Commercial development of multi-channel ground-penetrating radar (GPR) systems has made acquisition of continuous multi-offset (CMO) data more cost effective than ever. However, additional operator training, equipment costs, field and analysis time, and computation requirements necessarily remain substantially higher than conventional fixed offset GPR surveys. The choice to conduct a CMO survey is a target driven optimization problem where in many cases the added value outweighs the additional cost. Drawing examples from surface water, groundwater, snow, and glacier hydrology, I demonstrate a range of information that can be derived from CMO data with particular emphasis on estimating material properties of relevance to hydrological problems. Careful data acquisition is key to accurate property measurements. CMO geometries can be constructed with a single-channel system although with a significant loss of time and personnel efficiency relative to modern multi-channel systems. Using procedures such as common-midpoint stacking and pre-stack velocity filtering, it is possible to substantially improve the signal-to-noise ratio in GPR reflection images. However, the primary advantage of CMO data is dense sampling of a wide aperture of travelpaths through the subsurface. These data provide the basis for applying tomographic imaging techniques. Reflection velocity tomography in the pre-stack migration domain provides a robust approach to constructing accurate and detailed electromagnetic velocity models. These models in turn are used in conjunction with petrophysical models to estimate hydrologic properties such as porosity. Additionally, we can utilize the velocity models in conjunction with analysis of the frequency dependent attenuation to evaluate real and complex dielectric permittivity. The real and complex components of dielectric permittivity may have differing sensitivity to different components of the hydrologic system. Understanding this behavior may lead to improved understanding of relevant lithologic properties such as bulk clay content or fluid chemical composition during biodegradation of hydrocarbon contaminants. In addition to velocity tomography, CMO data enable reflection attenuation difference tomography. While time-lapse attenuation difference tomography using crosswell GPR transmission data is a well established technique for imaging conductive tracers in groundwater systems, it is not common for reflection data. Numerical examples based on a realistic aquifer model show that surface data can provide resolution of conductive tracer zones that is comparable to cross well data, thereby minimizing the need for invasive and expensive boreholes.
Optimal Tikhonov Regularization in Finite-Frequency Tomography
NASA Astrophysics Data System (ADS)
Fang, Y.; Yao, Z.; Zhou, Y.
2017-12-01
The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.
NASA Astrophysics Data System (ADS)
Chen, K. Y.; Su, S. Y.; Liu, C. H.; Basu, S.
2005-06-01
Quasiperiodic (QP) diffraction pattern in scintillation patches has been known to highly correlate with the edge structures of a plasma bubble (Franke et al., 1984). A new time-frequency analysis method of Hilbert-Huang transform (HHT) has been applied to analyze the scintillation data taken at Ascension Island to understand the characteristics of corresponding ionosphere irregularities. The HHT method enables us to extract the quasiperiodic diffraction signals embedded inside the scintillation data and to obtain the characteristics of such diffraction signals. The cross correlation of the two sets of diffraction signals received by two stations at each end of Ascension Island indicates that the density irregularity pattern that causes the diffraction pattern should have an eastward drift velocity of ˜130 m/s. The HHT analysis of the instantaneous frequency in the QP diffraction patterns also reveals some frequency shifts in their peak frequencies. For the QP diffraction pattern caused by the leading edge of the large density gradient at the east wall of a structured bubble, an ascending note in the peak frequency is observed, and for the trailing edge a descending note is observed. The linear change in the transient of the peak frequency in the QP diffraction pattern is consistent with the theory and the simulation result of Franke et al. Estimate of the slope in the transient frequency provides us the information that allows us to identify the locations of plasma walls, and the east-west scale of the irregularity can be estimated. In our case we obtain about 24 km in the east-west scale. Furthermore, the height location of density irregularities that cause the diffraction pattern is estimated to be between 310 and 330 km, that is, around the F peak during observation.
MMX-I: data-processing software for multimodal X-ray imaging and tomography
Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea
2016-01-01
A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors’ knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments. PMID:27140159
Long-pulse-width narrow-bandwidth solid state laser
Dane, C. Brent; Hackel, Lloyd A.
1997-01-01
A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.
Long-pulse-width narrow-bandwidth solid state laser
Dane, C.B.; Hackel, L.A.
1997-11-18
A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.
NASA Astrophysics Data System (ADS)
Chmiel, Malgorzata; Roux, Philippe; Herrmann, Philippe; Rondeleux, Baptiste; Wathelet, Marc
2018-05-01
We investigated the construction of diffraction kernels for surface waves using two-point convolution and/or correlation from land active seismic data recorded in the context of exploration geophysics. The high density of controlled sources and receivers, combined with the application of the reciprocity principle, allows us to retrieve two-dimensional phase-oscillation diffraction kernels (DKs) of surface waves between any two source or receiver points in the medium at each frequency (up to 15 Hz, at least). These DKs are purely data-based as no model calculations and no synthetic data are needed. They naturally emerge from the interference patterns of the recorded wavefields projected on the dense array of sources and/or receivers. The DKs are used to obtain multi-mode dispersion relations of Rayleigh waves, from which near-surface shear velocity can be extracted. Using convolution versus correlation with a grid of active sources is an important step in understanding the physics of the retrieval of surface wave Green's functions. This provides the foundation for future studies based on noise sources or active sources with a sparse spatial distribution.
Local reconstruction in computed tomography of diffraction enhanced imaging
NASA Astrophysics Data System (ADS)
Huang, Zhi-Feng; Zhang, Li; Kang, Ke-Jun; Chen, Zhi-Qiang; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia
2007-07-01
Computed tomography of diffraction enhanced imaging (DEI-CT) based on synchrotron radiation source has extremely high sensitivity of weakly absorbing low-Z samples in medical and biological fields. The authors propose a modified backprojection filtration(BPF)-type algorithm based on PI-line segments to reconstruct region of interest from truncated refraction-angle projection data in DEI-CT. The distribution of refractive index decrement in the sample can be directly estimated from its reconstruction images, which has been proved by experiments at the Beijing Synchrotron Radiation Facility. The algorithm paves the way for local reconstruction of large-size samples by the use of DEI-CT with small field of view based on synchrotron radiation source.
High-energy cryo x-ray nano-imaging at the ID16A beamline of ESRF
NASA Astrophysics Data System (ADS)
da Silva, Julio C.; Pacureanu, Alexandra; Yang, Yang; Fus, Florin; Hubert, Maxime; Bloch, Leonid; Salome, Murielle; Bohic, Sylvain; Cloetens, Peter
2017-09-01
The ID16A beamline at ESRF offers unique capabilities for X-ray nano-imaging, and currently produces the worlds brightest high energy diffraction-limited nanofocus. Such a nanoprobe was designed for quantitative characterization of the morphology and the elemental composition of specimens at both room and cryogenic temperatures. Billions of photons per second can be delivered in a diffraction-limited focus spot size down to 13 nm. Coherent X-ray imaging techniques, as magnified holographic-tomography and ptychographic-tomography, are implemented as well as X-ray fluorescence nanoscopy. We will show the latest developments in coherent and spectroscopic X-ray nanoimaging implemented at the ID16A beamline
Mesoscale Science with High Energy X-ray Diffraction Microscopy at the Advanced Photon Source
NASA Astrophysics Data System (ADS)
Suter, Robert
2014-03-01
Spatially resolved diffraction of monochromatic high energy (> 50 keV) x-rays is used to map microstructural quantities inside of bulk polycrystalline materials. The non-destructive nature of High Energy Diffraction Microscopy (HEDM) measurements allows tracking of responses as samples undergo thermo-mechanical or other treatments. Volumes of the order of a cubic millimeter are probed with micron scale spatial resolution. Data sets allow direct comparisons to computational models of responses that frequently involve long-ranged, multi-grain interactions; such direct comparisons have only become possible with the development of HEDM and other high energy x-ray methods. Near-field measurements map the crystallographic orientation field within and between grains using a computational reconstruction method that simulates the experimental geometry and matches orientations in micron sized volume elements to experimental data containing projected grain images in large numbers of Bragg peaks. Far-field measurements yield elastic strain tensors through indexing schemes that sort observed diffraction peaks into sets associated with individual crystals and detect small radial motions in large numbers of such peaks. Combined measurements, facilitated by a new end station hutch at Advanced Photon Source beamline 1-ID, are mutually beneficial and result in accelerated data reduction. Further, absorption tomography yields density contrast that locates secondary phases, void clusters, and cracks, and tracks sample shape during deformation. A collaboration led by the Air Force Research Laboratory and including the Advanced Photon Source, Lawrence Livermore National Laboratory, Carnegie Mellon University, Petra-III, and Cornell University and CHESS is developing software and hardware for combined measurements. Examples of these capabilities include tracking of grain boundary migrations during thermal annealing, tensile deformation of zirconium, and combined measurements of nickel superalloys and a titanium alloy under tensile forces. Work supported by NSF grant DMR-1105173
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, A N; Turchin, I V
2013-12-31
The method of optical coherence tomography with the scheme of parallel reception of the interference signal (P-OCT) is developed on the basis of spatial paralleling of the reference wave by means of a phase diffraction grating producing the appropriate time delay in the Mach–Zehnder interferometer. The absence of mechanical variation of the optical path difference in the interferometer essentially reduces the time required for 2D imaging of the object internal structure, as compared to the classical OCT that uses the time-domain method of the image construction, the sensitivity and the dynamic range being comparable in both approaches. For the resultingmore » field of the interfering object and reference waves an analytical expression is derived that allows the calculation of the autocorrelation function in the plane of photodetectors. For the first time a method of linear phase modulation by 2π is proposed for P-OCT systems, which allows the use of compact high-frequency (a few hundred kHz) piezoelectric cell-based modulators. For the demonstration of the P-OCT method an experimental setup was created, using which the images of the inner structure of biological objects at the depth up to 1 mm with the axial spatial resolution of 12 μm were obtained. (optical coherence tomography)« less
Skvortsova, V I; Burenchev, D V; Tvorogova, T V; Guseva, O I; Prokhorov, A V; Smirnov, A M; Kupriianov, D A; Pirogov, Iu A
2009-01-01
An objective of the study was to compare sensitivity of low- and extra high-field frequency magnetic resonance (MR) tomography of acutest intracerebral hematomas (ICH) and to assess differences between symptoms in obtained images. A study was conducted using experimental ICH in rats (n=6). Hematomas were formed by two injections of autologic blood into the brain. MR-devices "Bio Spec 70/30" with magnetic field strength of 7 T and "Ellipse-150" with magnetic field strength of 0,15 T were used in the study. MR-tomography was carried out 3-5 h after the injections. Both MR-devices revealed the presence of pathological lesion in all animals. Extra highfield frequency MR-tomography showed the specific signs of ICH caused by the paramagnetic effect of deoxyhemoglobin in T2 and T2*-weighted images (WI) and low frequency MR-tomography - in T2*-WI only. The comparable sensitivity of low- and extra high-field frequency MR-devices in acutest ICH was established.
An ultra-wideband microwave tomography system: preliminary results.
Gilmore, Colin; Mojabi, Puyan; Zakaria, Amer; Ostadrahimi, Majid; Kaye, Cam; Noghanian, Sima; Shafai, Lotfollah; Pistorius, Stephen; LoVetri, Joe
2009-01-01
We describe a 2D wide-band multi-frequency microwave imaging system intended for biomedical imaging. The system is capable of collecting data from 2-10 GHz, with 24 antenna elements connected to a vector network analyzer via a 2 x 24 port matrix switch. Through the use of two different nonlinear reconstruction schemes: the Multiplicative-Regularized Contrast Source Inversion method and an enhanced version of the Distorted Born Iterative Method, we show preliminary imaging results from dielectric phantoms where data were collected from 3-6 GHz. The early inversion results show that the system is capable of quantitatively reconstructing dielectric objects.
Novel diamond cells for neutron diffraction using multi-carat CVD anvils.
Boehler, R; Molaison, J J; Haberl, B
2017-08-01
Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ∼0.15 mm 3 . High quality spectra were obtained in 1 h for crystalline Ni and in ∼8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.
Iteration and superposition encryption scheme for image sequences based on multi-dimensional keys
NASA Astrophysics Data System (ADS)
Han, Chao; Shen, Yuzhen; Ma, Wenlin
2017-12-01
An iteration and superposition encryption scheme for image sequences based on multi-dimensional keys is proposed for high security, big capacity and low noise information transmission. Multiple images to be encrypted are transformed into phase-only images with the iterative algorithm and then are encrypted by different random phase, respectively. The encrypted phase-only images are performed by inverse Fourier transform, respectively, thus new object functions are generated. The new functions are located in different blocks and padded zero for a sparse distribution, then they propagate to a specific region at different distances by angular spectrum diffraction, respectively and are superposed in order to form a single image. The single image is multiplied with a random phase in the frequency domain and then the phase part of the frequency spectrums is truncated and the amplitude information is reserved. The random phase, propagation distances, truncated phase information in frequency domain are employed as multiple dimensional keys. The iteration processing and sparse distribution greatly reduce the crosstalk among the multiple encryption images. The superposition of image sequences greatly improves the capacity of encrypted information. Several numerical experiments based on a designed optical system demonstrate that the proposed scheme can enhance encrypted information capacity and make image transmission at a highly desired security level.
Multi-scale mechanics of granular solids from grain-resolved X-ray measurements
NASA Astrophysics Data System (ADS)
Hurley, R. C.; Hall, S. A.; Wright, J. P.
2017-11-01
This work discusses an experimental technique for studying the mechanics of three-dimensional (3D) granular solids. The approach combines 3D X-ray diffraction and X-ray computed tomography to measure grain-resolved strains, kinematics and contact fabric in the bulk of a granular solid, from which continuum strains, grain stresses, interparticle forces and coarse-grained elasto-plastic moduli can be determined. We demonstrate the experimental approach and analysis of selected results on a sample of 1099 stiff, frictional grains undergoing multiple uniaxial compression cycles. We investigate the inter-particle force network, elasto-plastic moduli and associated length scales, reversibility of mechanical responses during cyclic loading, the statistics of microscopic responses and microstructure-property relationships. This work serves to highlight both the fundamental insight into granular mechanics that is furnished by combined X-ray measurements and describes future directions in the field of granular materials that can be pursued with such approaches.
The GKSS beamlines at PETRA III and DORIS III
NASA Astrophysics Data System (ADS)
Haibel, A.; Beckmann, F.; Dose, T.; Herzen, J.; Utcke, S.; Lippmann, T.; Schell, N.; Schreyer, A.
2008-08-01
Due to the high brilliance of the new storage ring PETRA III at DESY in Hamburg, the low emittance of 1 nmrad and the high fraction of coherent photons also in the hard X-ray range extremely intense and sharply focused X-ray light will be provided. These advantages of the beam fulfill excellently the qualifications for the planned Imaging BeamLine IBL and the High Energy Materials Science Beamline (HEMS) at PETRA III, i.e. for absorption tomography, phase enhanced and phase contrast experiments, for diffraction, for nano focusing, for nano tomography, and for high speed or in-situ experiments with highest spatial resolution. The existing HARWI II beamline at the DORIS III storage ring at DESY completes the GKSS beamline concept with setups for high energy tomography (16-150 keV) and diffraction (16-250 keV), characterized by a large field of view and an excellent absorption contrast with spatial resolutions down to 2 μm.
Jin, Di; Zhou, Renjie; Yaqoob, Zahid; So, Peter T C
2018-01-08
Optical diffraction tomography (ODT) is an emerging microscopy technique for three-dimensional (3D) refractive index (RI) mapping of transparent specimens. Recently, the digital micromirror device (DMD) based scheme for angle-controlled plane wave illumination has been proposed to improve the imaging speed and stability of ODT. However, undesired diffraction noise always exists in the reported DMD-based illumination scheme, which leads to a limited contrast ratio of the measurement fringe and hence inaccurate RI mapping. Here we present a novel spatial filtering method, based on a second DMD, to dynamically remove the diffraction noise. The reported results illustrate significantly enhanced image quality of the obtained interferograms and the subsequently derived phase maps. And moreover, with this method, we demonstrate mapping of 3D RI distribution of polystyrene beads as well as biological cells with high accuracy. Importantly, with the proper hardware configuration, our method does not compromise the 3D imaging speed advantage promised by the DMD-based illumination scheme. Specifically, we have been able to successfully obtain interferograms at over 1 kHz speed, which is critical for potential high-throughput label-free 3D image cytometry applications.
Integrated Multi-Point Space Plasma Measurements With Four Ionospheric Satellites
NASA Astrophysics Data System (ADS)
Siefring, C. L.; Bernhardt, P. A.; Selcher, C.; Wilkens, M. R.; McHarg, M. G.; Krause, L.; Chun, F.; Enloe, L.; Panholzer, R.; Sakoda, D.; Phelps, R.; D Roussel-Dupre, D.; Colestock, P.; Close, S.
2006-12-01
The STP-1 launch scheduled for late 2006 will place four satellites with ionospheric plasma diagnostics into the same nearly circular orbit with an altitude of 560 km and inclination of 35.4°. The satellites will allow for unique multipoint measurements of ionospheric scintillations and their causes. Both the radio and in-situ diagnostics will provide coverage of low- and mid-latitudes. The four satellites, STPSat1, NPSat1, FalconSat3, and CFE will follow the same ground-track but because of drag and mass differences their relative velocities will be different and vary during the lifetime of the satellites. The four satellites will start close together; separate over a few months and coming back together with near conjunctions at six and eight months. Two satellite conjunctions between NPSat1 and STPSat1 will occur most often, approximately one month apart at the end of the mission. STPSat1 is equipped with CITRIS (sCintillation and TEC Receiver In Space) which will measure scintillations in the VHF, UHF and L-band along with measuring Total Electron Content (TEC) along the propagation path. NPSat1 will carry a three-frequency CERTO (Coherent Electromagnetic Radio TOmography) Beacon which broadcasts phase-coherent signals at 150.012 MHz, 400.032 MHz, and 1066.752 MHz. CITRIS will be able to measure TEC and Scintillations along the orbital path (propagation path from NPSat1 to STPSat1) as well as between the CITRIS and the ground. NPSat1 carries electron and ion saturation Langmuir Probes, while FalconSat3 carries the FLAPS (FLAt Plasma Spectrometer) and PLANE (Plasma Local Anomalous Noise Environment). The in-situ diagnostic complement the CITRIS/CERTO radio techniques in many ways. The CIBOLA Flight Experiment (CFE) contains a wide band receiver covering 100 to 500 MHz. The CFE data can be processed to show distortion of wide-band modulations by ionospheric irregularities. CFE and CITRIS can record ground transmissions from the French DORIS beacons which radiate at 401.25 and 2036.25 MHz. The multi-point techniques provide redundant measurements of radio scintillations and other ionospheric distortions. The causative density irregularities will be imaged using computerized ionospheric tomographic and inverse-diffraction algorithms. The STP-1 sensors in low-earth-orbit will relate electron and ion density fluctuations and radio scintillation effects over a wide range of frequencies. This research supported at NRL by ONR.
Frozen Gaussian approximation for 3D seismic tomography
NASA Astrophysics Data System (ADS)
Chai, Lihui; Tong, Ping; Yang, Xu
2018-05-01
Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.
Yoshida, Kenta; Shimodaira, Masaki; Toyama, Takeshi; Shimizu, Yasuo; Inoue, Koji; Yoshiie, Toshimasa; Milan, Konstantinovic J; Gerard, Robert; Nagai, Yasuyoshi
2017-04-01
To evaluate dislocations induced by neutron irradiation, we developed a weak-beam scanning transmission electron microscopy (WB-STEM) system by installing a novel beam selector, an annular detector, a high-speed CCD camera and an imaging filter in the camera chamber of a spherical aberration-corrected transmission electron microscope. The capabilities of the WB-STEM with respect to wide-view imaging, real-time diffraction monitoring and multi-contrast imaging are demonstrated using typical reactor pressure vessel steel that had been used in an European nuclear reactor for 30 years as a surveillance test piece with a fluence of 1.09 × 1020 neutrons cm-2. The quantitatively measured size distribution (average loop size = 3.6 ± 2.1 nm), number density of the dislocation loops (3.6 × 1022 m-3) and dislocation density (7.8 × 1013 m m-3) were carefully compared with the values obtained via conventional weak-beam transmission electron microscopy studies. In addition, cluster analysis using atom probe tomography (APT) further demonstrated the potential of the WB-STEM for correlative electron tomography/APT experiments. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Priors for X-ray in-line phase tomography of heterogeneous objects.
Langer, Max; Cloetens, Peter; Hesse, Bernhard; Suhonen, Heikki; Pacureanu, Alexandra; Raum, Kay; Peyrin, Françoise
2014-03-06
We present a new prior for phase retrieval from X-ray Fresnel diffraction patterns. Fresnel diffraction patterns are achieved by letting a highly coherent X-ray beam propagate in free space after interaction with an object. Previously, either homogeneous or multi-material object assumptions have been used. The advantage of the homogeneous object assumption is that the prior can be introduced in the Radon domain. Heterogeneous object priors, on the other hand, have to be applied in the object domain. Here, we let the relationship between attenuation and refractive index vary as a function of the measured attenuation index. The method is evaluated using images acquired at beamline ID19 (ESRF, Grenoble, France) of a phantom where the prior is calculated by linear interpolation and of a healing bone obtained from a rat osteotomy model. It is shown that the ratio between attenuation and refractive index in bone for different levels of mineralization follows a power law. Reconstruction was performed using the mixed approach but is compatible with other, more advanced models. We achieve more precise reconstructions than previously reported in literature. We believe that the proposed method will find application in biomedical imaging problems where the object is strongly heterogeneous, such as bone healing and biomaterials engineering.
Novel diamond cells for neutron diffraction using multi-carat CVD anvils
Boehler, R.; Molaison, J. J.; Haberl, B.
2017-08-17
Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed in this paper new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ~0.15 mm 3.more » High quality spectra were obtained in 1 h for crystalline Ni and in ~8 h for disordered glassy carbon. Finally, these new techniques will open the way for routine megabar neutron diffraction experiments.« less
NASA Astrophysics Data System (ADS)
Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Reed, Stephen; Dong, Peng; Downer, Michael C.
2010-11-01
We demonstrate a prototype Frequency Domain Streak Camera (FDSC) that can capture the picosecond time evolution of the plasma accelerator structure in a single shot. In our prototype Frequency-Domain Streak Camera, a probe pulse propagates obliquely to a sub-picosecond pump pulse that creates an evolving nonlinear index "bubble" in fused silica glass, supplementing a conventional Frequency Domain Holographic (FDH) probe-reference pair that co-propagates with the "bubble". Frequency Domain Tomography (FDT) generalizes Frequency-Domain Streak Camera by probing the "bubble" from multiple angles and reconstructing its morphology and evolution using algorithms similar to those used in medical CAT scans. Multiplexing methods (Temporal Multiplexing and Angular Multiplexing) improve data storage and processing capability, demonstrating a compact Frequency Domain Tomography system with a single spectrometer.
Frequency characteristics of standing-wave acoustooptic modulators
NASA Astrophysics Data System (ADS)
Apolonskii, A. A.; Shchebetov, S. D.
1991-10-01
Experimental data are presented on the performance of wide-aperture standing-wave acoustooptic modulators used as laser mode lockers. In particular, attention is given to the acoustooptic and electrical frequency characteristics of the modulators. The existence of a large effective diffraction frequency region below the fundamental frequency is demonstrated. Individual frequency regions of effective diffraction do not correspond to the even and odd harmonics.
Shemesh, Noam; Alvarez, Gonzalo A; Frydman, Lucio
2013-12-01
Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N-1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N-1)x+y≡TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.
Laser Scattering Tomography for the Study of Defects in Protein Crystals
NASA Technical Reports Server (NTRS)
Feigelson, Robert S.; DeLucas, Lawrence; DeMattei, R. C.
1997-01-01
The goal of this research is to explore the application of the non-destructive technique of Laser Scattering Tomography (LST) to study the defects in protein crystals and relate them to the x-ray diffraction performance of the crystals. LST has been used successfully for the study of defects in inorganic crystals and. in the case of lysozyme, for protein crystals.
NASA Astrophysics Data System (ADS)
Rai, A. K.; Kumar, A.; Hies, T.; Nguyen, H. H.
2016-11-01
High sediment load passing through hydropower components erodes the hydraulic components resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance, especially in Himalayan regions. The size and concentration of sediment play a major role in silt erosion. The traditional process of collecting samples manually to analyse in laboratory cannot suffice the need of monitoring temporal variation in sediment properties. In this study, a multi-frequency acoustic instrument was applied at desilting chamber to monitor sediment size and concentration entering the turbine. The sediment size and concentration entering the turbine were also measured with manual samples collected twice daily. The samples collected manually were analysed in laboratory with a laser diffraction instrument for size and concentration apart from analysis by drying and filtering methods for concentration. A conductivity probe was used to calculate total dissolved solids, which was further used in results from drying method to calculate suspended solid content of the samples. The acoustic instrument was found to provide sediment concentration values similar to drying and filtering methods. However, no good match was found between mean grain size from the acoustic method with the current status of development and laser diffraction method in the first field application presented here. The future versions of the software and significant sensitivity improvements of the ultrasonic transducers are expected to increase the accuracy in the obtained results. As the instrument is able to capture the concentration and in the future most likely more accurate mean grain size of the suspended sediments, its application for monitoring silt erosion in hydropower plant shall be highly useful.
Piwnica-Worms, David; Kesarwala, Aparna H; Pichler, Andrea; Prior, Julie L; Sharma, Vijay
2006-11-01
Overexpression of multi-drug resistant P-glycoprotein (Pgp) remains an important barrier to successful chemotherapy in cancer patients and impacts the pharmacokinetics of many important drugs. Pgp is also expressed on the luminal surface of brain capillary endothelial cells wherein Pgp functionally comprises a major component of the blood-brain barrier by limiting central nervous system penetration of various therapeutic agents. In addition, Pgp in brain capillary endothelial cells removes amyloid-beta from the brain. Several single photon emission computed tomography and positron emission tomography radiopharmaceutical have been shown to be transported by Pgp, thereby enabling the noninvasive interrogation of Pgp-mediated transport activity in vivo. Therefore, molecular imaging of Pgp activity may enable noninvasive dynamic monitoring of multi-drug resistance in cancer, guide therapeutic choices in cancer chemotherapy, and identify transporter deficiencies of the blood-brain barrier in Alzheimer's disease.
An integral equation formulation for the diffraction from convex plates and polyhedra.
Asheim, Andreas; Svensson, U Peter
2013-06-01
A formulation of the problem of scattering from obstacles with edges is presented. The formulation is based on decomposing the field into geometrical acoustics, first-order, and multiple-order edge diffraction components. An existing secondary-source model for edge diffraction from finite edges is extended to handle multiple diffraction of all orders. It is shown that the multiple-order diffraction component can be found via the solution to an integral equation formulated on pairs of edge points. This gives what can be called an edge source signal. In a subsequent step, this edge source signal is propagated to yield a multiple-order diffracted field, taking all diffraction orders into account. Numerical experiments demonstrate accurate response for frequencies down to 0 for thin plates and a cube. No problems with irregular frequencies, as happen with the Kirchhoff-Helmholtz integral equation, are observed for this formulation. For the axisymmetric scattering from a circular disc, a highly effective symmetric formulation results, and results agree with reference solutions across the entire frequency range.
RF Tomography for Tunnel Detection: Principles and Inversion Schemes
NASA Astrophysics Data System (ADS)
Lo Monte, L.; Erricolo, D.; Inan, U. S.; Wicks, M. C.
2008-12-01
We propose a novel way to detect underground tunnels based on classical seismic tomography, Ground Penetrating Radar (GPR), inverse scattering principles, and the deployment of distributed sensors, which we call "Distributed RF Tomography". Tunnel detection has been a critical problem that cannot be considered fully solved. Presently, tunnel detection is performed by methods that include seismic sensors, electrical impedance, microgravity, boreholes, and GPR. All of these methods have drawbacks that make them not applicable for use in unfriendly environments, such as battlefields. Specifically, they do not cover wide surface areas, they are generally shallow, they are limited to vertical prospecting, and require the user to be in situ, which may jeopardize one's safety. Additional application of the proposed distributed RF tomography include monitoring sensitive areas, (e.g. banks, power plants, military bases, prisons, national borders) and civil applications (e.g. environmental engineering, mine safety, search and rescue, speleology, archaeology and geophysics). The novelty of a Distributed RF tomography system consists of the following. 1) Sensors are scattered randomly above the ground, thus saving time and money compared to the use of boreholes. 2) The use of lower operating frequency (around HF), which allows for deeper penetration. 3) The use of CW diffraction tomography, which increases the resolution to sub-wavelength values, independently from the sensor displacement, and increases the SNR. 4) Use of linear inversion schemes that are suited for tunnel detection. 5) The use of modulation schemes and signal processing algorithms to mitigate interferences and noise. This presentation will cover: 1. Current physical limits of existing techniques for tunnel detection. 2. Concept of Distributed RF Tomography. 3. Inversion theories and strategies a. Proper forward model for voids buried into an homogeneous medium b. Extended matched filtering inversion c. Near field formulation : Dyadic representation d. Fourier approach: principles and techniques aimed at improving the reconstructed image. e. Theoretical Limits f. Super-Resolution : Singular Values Decomposition and MUSIC 4. Propagation Model and theoretical limitations. 5. Transmitting and Receiving design, with signal processing and modulation. 6. Numerical Simulations using FDTD tools.
Soft x-ray holographic tomography for biological specimens
NASA Astrophysics Data System (ADS)
Gao, Hongyi; Chen, Jianwen; Xie, Honglan; Li, Ruxin; Xu, Zhizhan; Jiang, Shiping; Zhang, Yuxuan
2003-10-01
In this paper, we present some experimental results on X -ray holography, holographic tomography, and a new holographic tomography method called pre-amplified holographic tomography is proposed. Due to the shorter wavelength and the larger penetration depths, X-rays provide the potential of higher resolution in imaging techniques, and have the ability to image intact, living, hydrated cells w ithout slicing, dehydration, chemical fixation or stain. Recently, using X-ray source in National Synchrotron Radiation Laboratory in Hefei, we have successfully performed some soft X-ray holography experiments on biological specimen. The specimens used in the experiments was the garlic clove epidermis, we got their X-ray hologram, and then reconstructed them by computer programs, the feature of the cell walls, the nuclei and some cytoplasm were clearly resolved. However, there still exist some problems in realization of practical 3D microscopic imaging due to the near-unity refractive index of the matter. There is no X-ray optics having a sufficient high numerical aperture to achieve a depth resolution that is comparable to the transverse resolution. On the other hand, computer tomography needs a record of hundreds of views of the test object at different angles for high resolution. This is because the number of views required for a densely packed object is equal to the object radius divided by the desired depth resolution. Clearly, it is impractical for a radiation-sensitive biological specimen. Moreover, the X-ray diffraction effect makes projection data blur, this badly degrades the resolution of the reconstructed image. In order to observe 3D structure of the biological specimens, McNulty proposed a new method for 3D imaging called "holographic tomography (HT)" in which several holograms of the specimen are recorded from various illumination directions and combined in the reconstruction step. This permits the specimens to be sampled over a wide range of spatial frequencies to improve the depth resolution. In NSRL, we performed soft X-ray holographic tomography experiments. The specimen was the spider filaments and PM M A as recording medium. By 3D CT reconstruction of the projection data, three dimensional density distribution of the specimen was obtained. Also, we developed a new X-ray holographic tomography m ethod called pre-amplified holographic tomography. The method permits a digital real-time 3D reconstruction with high-resolution and a simple and compact experimental setup as well.
Energy transport towards magnetosphere: current background and perspectives
NASA Astrophysics Data System (ADS)
Savin, Sergey; Zelenyi, Lev
On the background of rising number of multi-scale magnetospheric constellations of satellites (e.g. MMS, ROY, SCOPE etc.), we discuss realistic options for the future experimental efforts in the current international framework. Now space weather predictions require cross-scale (i.e. multi-point) and micro-scale (down to the electron inertial length and gyroradius, i.e. few km and 0.1 s) measurements, which should facilitate the fundamental turbulence explorations impacting e.g. fusion and astrophysical tasks. Both ROY and SCOPE could provide 4-6 space-craft under wide international collaboration. For SCOPE near-equatorial plane is the region for the multi-scale studies, while ROY will start from high latitudes and finish at the intermediate and, hopefully, low ones. We suggest a new strategy for the correlated measurements instead of a multi-tetrahedron configuration: -place spacecraft along magnetospheric boundaries: magne-topause, neutral sheet, bow shock et. instead of tetrahedron Cluster-like configuration trying to get the multi-scale measurements along the natural boundaries; -monitor the processes along the streamlines in magnetosheath; -use extra 2-8 nano/ pico-satellites for campaigns of the multi-spacecraft explorations, -utilize multi-frequency radio-tomography for monitoring of the inter-spacecraft processes Both SCOPE and ROY launchers have respective payload resources, which, with the respective international cooperation, should provide a new step in the magnetospheric plasma explorations.
Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization
NASA Technical Reports Server (NTRS)
Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.
1999-01-01
Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses tha_ may not be important in longer wavelength designs. This paper describes the design of multi-bandwidth filters operating in the I-5 micrometer wavelength range. This work follows on previous design [1,2]. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using micro-lithographic techniques and used ir spectral imaging applications will be presented.
Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization
NASA Technical Reports Server (NTRS)
Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.
1998-01-01
Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses that may not be important in longer wavelength designs. This paper describes the design of multi- bandwidth filters operating in the 1-5 micrometer wavelength range. This work follows on a previous design. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using microlithographic techniques and used in spectral imaging applications will be presented.
Finegan, Donal P; Scheel, Mario; Robinson, James B; Tjaden, Bernhard; Di Michiel, Marco; Hinds, Gareth; Brett, Dan J L; Shearing, Paul R
2016-11-16
Catastrophic failure of lithium-ion batteries occurs across multiple length scales and over very short time periods. A combination of high-speed operando tomography, thermal imaging and electrochemical measurements is used to probe the degradation mechanisms leading up to overcharge-induced thermal runaway of a LiCoO 2 pouch cell, through its interrelated dynamic structural, thermal and electrical responses. Failure mechanisms across multiple length scales are explored using a post-mortem multi-scale tomography approach, revealing significant morphological and phase changes in the LiCoO 2 electrode microstructure and location dependent degradation. This combined operando and multi-scale X-ray computed tomography (CT) technique is demonstrated as a comprehensive approach to understanding battery degradation and failure.
Demonstration of universal parametric entangling gates on a multi-qubit lattice
Reagor, Matthew; Osborn, Christopher B.; Tezak, Nikolas; Staley, Alexa; Prawiroatmodjo, Guenevere; Scheer, Michael; Alidoust, Nasser; Sete, Eyob A.; Didier, Nicolas; da Silva, Marcus P.; Acala, Ezer; Angeles, Joel; Bestwick, Andrew; Block, Maxwell; Bloom, Benjamin; Bradley, Adam; Bui, Catvu; Caldwell, Shane; Capelluto, Lauren; Chilcott, Rick; Cordova, Jeff; Crossman, Genya; Curtis, Michael; Deshpande, Saniya; El Bouayadi, Tristan; Girshovich, Daniel; Hong, Sabrina; Hudson, Alex; Karalekas, Peter; Kuang, Kat; Lenihan, Michael; Manenti, Riccardo; Manning, Thomas; Marshall, Jayss; Mohan, Yuvraj; O’Brien, William; Otterbach, Johannes; Papageorge, Alexander; Paquette, Jean-Philip; Pelstring, Michael; Polloreno, Anthony; Rawat, Vijay; Ryan, Colm A.; Renzas, Russ; Rubin, Nick; Russel, Damon; Rust, Michael; Scarabelli, Diego; Selvanayagam, Michael; Sinclair, Rodney; Smith, Robert; Suska, Mark; To, Ting-Wai; Vahidpour, Mehrnoosh; Vodrahalli, Nagesh; Whyland, Tyler; Yadav, Kamal; Zeng, William; Rigetti, Chad T.
2018-01-01
We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity with the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all these permutations, an average fidelity of ℱ = 91.6 ± 2.6% is observed. These results thus offer a path to a scalable architecture with high selectivity and low cross-talk. PMID:29423443
Automatic pickup of arrival time of channel wave based on multi-channel constraints
NASA Astrophysics Data System (ADS)
Wang, Bao-Li
2018-03-01
Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhengyan; Zgadzaj, Rafal; Wang Xiaoming
2010-11-04
We demonstrate a prototype Frequency Domain Streak Camera (FDSC) that can capture the picosecond time evolution of the plasma accelerator structure in a single shot. In our prototype Frequency-Domain Streak Camera, a probe pulse propagates obliquely to a sub-picosecond pump pulse that creates an evolving nonlinear index 'bubble' in fused silica glass, supplementing a conventional Frequency Domain Holographic (FDH) probe-reference pair that co-propagates with the 'bubble'. Frequency Domain Tomography (FDT) generalizes Frequency-Domain Streak Camera by probing the 'bubble' from multiple angles and reconstructing its morphology and evolution using algorithms similar to those used in medical CAT scans. Multiplexing methods (Temporalmore » Multiplexing and Angular Multiplexing) improve data storage and processing capability, demonstrating a compact Frequency Domain Tomography system with a single spectrometer.« less
Shin, Seungwoo; Kim, Doyeon; Kim, Kyoohyun; Park, YongKeun
2018-06-15
We present a multimodal approach for measuring the three-dimensional (3D) refractive index (RI) and fluorescence distributions of live cells by combining optical diffraction tomography (ODT) and 3D structured illumination microscopy (SIM). A digital micromirror device is utilized to generate structured illumination patterns for both ODT and SIM, which enables fast and stable measurements. To verify its feasibility and applicability, the proposed method is used to measure the 3D RI distribution and 3D fluorescence image of various samples, including a cluster of fluorescent beads, and the time-lapse 3D RI dynamics of fluorescent beads inside a HeLa cell, from which the trajectory of the beads in the HeLa cell is analyzed using spatiotemporal correlations.
Computational optical tomography using 3-D deep convolutional neural networks
NASA Astrophysics Data System (ADS)
Nguyen, Thanh; Bui, Vy; Nehmetallah, George
2018-04-01
Deep convolutional neural networks (DCNNs) offer a promising performance for many image processing areas, such as super-resolution, deconvolution, image classification, denoising, and segmentation, with outstanding results. Here, we develop for the first time, to our knowledge, a method to perform 3-D computational optical tomography using 3-D DCNN. A simulated 3-D phantom dataset was first constructed and converted to a dataset of phase objects imaged on a spatial light modulator. For each phase image in the dataset, the corresponding diffracted intensity image was experimentally recorded on a CCD. We then experimentally demonstrate the ability of the developed 3-D DCNN algorithm to solve the inverse problem by reconstructing the 3-D index of refraction distributions of test phantoms from the dataset from their corresponding diffraction patterns.
NASA Astrophysics Data System (ADS)
Guignot, N.; Itié, J.; Zerbino, P.; Delmotte, A.; Moreno, T.
2013-12-01
The PSICHE beamline (for 'Pressure, Structure and Imaging by Contrast at High Energy') is a new facility opened for high pressure experiments at synchrotron SOLEIL (St-Aubin, France). With its source, optics, detectors and 3 experimental stations, it can handle a large variety of experimental setups. High energy photons are produced with an in-vacuum wiggler. The white beam obtained, with photons energy ranging continuously from 15 to 80 keV (from a 2.75 GeV machine), is used on the first experimental station for energy dispersive X-ray diffraction (EDX) measurements using different pressure cells. The main setup is a 1200 tons load capacity multi-anvil press featuring a (100) DIA compression module with a 15° horizontal aperture, allowing measurements up to 30° in 2theta by rotating the press. Other setups are a Paris-Edinburgh (PE) large volume press and diamond anvil cells (DACs). On the detection side we have a rotating Ge detector, based on the CAESAR design described by Wang et al. (2004) (combination of EDX and angular dispersive X-ray diffraction, ADX). One of the difficulties when building such setups is the rotation mechanism which cannot be physically attached to the rotation axis, potentially leading to large circle of confusions on the horizontal position of this axis. Thanks to translation corrections done at each angle step, the circle of confusion is minimized to 3x6 μm2 along the 35° travel, making possible measurements on very small objects. Combining EDX and ADX has a lot of advantages and we will present our first results obtained using this setup. The PSICHE focusing optics and monochromator are also used to focus monochromatic beams (up to 52 keV) on 2 different experimental stations. The first focal point at 31 m gives a beam size of 100x50 μm2 (HxV) and is useful for low pressure experiments and experiments done with the PE press associated with Soller slits. A PerkinElmer flatpanel detector can be precisely scanned in 3 directions, making ADX measurements at the highest possible resolution on this beamline. This station will also be used for diffraction tomography experiments. The second focal point at 37.6 m is located behind KB mirrors on the third experimental station. 10x10 μm2 beam sizes (full width) are expected. This station will be used for DAC experiments, with or without our future laser heating setup. Finally, parallel beams can be produced with sizes up to 15x5 mm2 (HxV) for tomography experiments, in pink (filtered white) beam or monochromatic beam. We plan to use rotating anvils presses such as the rotoPEc (J. Philippe et al., 2013) to take full advantage of this beam mode, but it can be opened to other techniques. The PSICHE beamline is opened for users since July 2013. Some stations are not available yet, and will be opened through 2014 and 2015. References X. Dong et al., Ray tracing application in hard x-ray optical development: Soleil first wiggler beamline (PSICHÉ) case" (2011), Proc. SPIE 8141, 814113 Y. Wang et al., A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation (2004), J. Appl. Cryst. 37, 947-956 J. Philippe, Y. Le Godec, F. Bergame et M. Morand, Patent INPI 11 62335 (2013)
Choi, Dong-hak; Hiro-Oka, Hideaki; Shimizu, Kimiya; Ohbayashi, Kohji
2012-01-01
An ultrafast frequency domain optical coherence tomography system was developed at A-scan rates between 2.5 and 10 MHz, a B-scan rate of 4 or 8 kHz, and volume-rates between 12 and 41 volumes/second. In the case of the worst duty ratio of 10%, the averaged A-scan rate was 1 MHz. Two optical demultiplexers at a center wavelength of 1310 nm were used for linear-k spectral dispersion and simultaneous differential signal detection at 320 wavelengths. The depth-range, sensitivity, sensitivity roll-off by 6 dB, and axial resolution were 4 mm, 97 dB, 6 mm, and 23 μm, respectively. Using FPGAs for FFT and a GPU for volume rendering, a real-time 4D display was demonstrated at a rate up to 41 volumes/second for an image size of 256 (axial) × 128 × 128 (lateral) voxels. PMID:23243560
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Rudenko, A. A.; Saltuganov, P. N.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.
2014-02-01
Relief ripples with sub-diffraction periods (≈λlas/3, λlas/4) were produced on a aluminum surface immersed in water and irradiated in a multi-filamentation regime by focused 744 nm femtosecond laser pulses with highly supercritical, multi-GW peak powers. For the VUV (8.5 eV) surface plasmon resonance on the wet aluminum surface, such small-scale surface nanogratings can be produced by high - second and third - optical harmonics, coming to the surface from the optical filaments in the water layer. Then, the sub-diffraction surface ripples may appear through interference of their transverse electric fields with the longitudinal electric fields of their counterparts, scattered on the surface roughness and appeared as the corresponding high-energy, high-wavenumber surface polaritons.
NASA Astrophysics Data System (ADS)
Enguita, Jose M.; Álvarez, Ignacio; González, Rafael C.; Cancelas, Jose A.
2018-01-01
The problem of restoration of a high-resolution image from several degraded versions of the same scene (deconvolution) has been receiving attention in the last years in fields such as optics and computer vision. Deconvolution methods are usually based on sets of images taken with small (sub-pixel) displacements or slightly different focus. Techniques based on sets of images obtained with different point-spread-functions (PSFs) engineered by an optical system are less popular and mostly restricted to microscopic systems, where a spot of light is projected onto the sample under investigation, which is then scanned point-by-point. In this paper, we use the effect of conical diffraction to shape the PSFs in a full-field macroscopic imaging system. We describe a series of simulations and real experiments that help to evaluate the possibilities of the system, showing the enhancement in image contrast even at frequencies that are strongly filtered by the lens transfer function or when sampling near the Nyquist frequency. Although results are preliminary and there is room to optimize the prototype, the idea shows promise to overcome the limitations of the image sensor technology in many fields, such as forensics, medical, satellite, or scientific imaging.
Multi-detector row computed tomography angiography of peripheral arterial disease
Dijkshoorn, Marcel L.; Pattynama, Peter M. T.; Myriam Hunink, M. G.
2007-01-01
With the introduction of multi-detector row computed tomography (MDCT), scan speed and image quality has improved considerably. Since the longitudinal coverage is no longer a limitation, multi-detector row computed tomography angiography (MDCTA) is increasingly used to depict the peripheral arterial runoff. Hence, it is important to know the advantages and limitations of this new non-invasive alternative for the reference test, digital subtraction angiography. Optimization of the acquisition parameters and the contrast delivery is important to achieve a reliable enhancement of the entire arterial runoff in patients with peripheral arterial disease (PAD) using fast CT scanners. The purpose of this review is to discuss the different scanning and injection protocols using 4-, 16-, and 64-detector row CT scanners, to propose effective methods to evaluate and to present large data sets, to discuss its clinical value and major limitations, and to review the literature on the validity, reliability, and cost-effectiveness of multi-detector row CT in the evaluation of PAD. PMID:17882427
Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.
2017-01-01
Sub-diffraction resolution imaging has played a pivotal role in biological research by visualizing key, but previously unresolvable, sub-cellular structures. Unfortunately, applications of far-field sub-diffraction resolution are currently divided between fluorescent and coherent-diffraction regimes, and a multimodal sub-diffraction technique that bridges this gap has not yet been demonstrated. Here we report that structured illumination (SI) allows multimodal sub-diffraction imaging of both coherent quantitative-phase (QP) and fluorescence. Due to SI’s conventionally fluorescent applications, we first demonstrate the principle of SI-enabled three-dimensional (3D) QP sub-diffraction imaging with calibration microspheres. Image analysis confirmed enhanced lateral and axial resolutions over diffraction-limited QP imaging, and established striking parallels between coherent SI and conventional optical diffraction tomography. We next introduce an optical system utilizing SI to achieve 3D sub-diffraction, multimodal QP/fluorescent visualization of A549 biological cells fluorescently tagged for F-actin. Our results suggest that SI has a unique utility in studying biological phenomena with significant molecular, biophysical, and biochemical components. PMID:28663887
Advances in 6d diffraction contrast tomography
NASA Astrophysics Data System (ADS)
Viganò, N.; Ludwig, W.
2018-04-01
The ability to measure 3D orientation fields and to determine grain boundary character plays a key role in understanding many material science processes, including: crack formation and propagation, grain coarsening, and corrosion processes. X-ray diffraction imaging techniques offer the ability to retrieve such information in a non-destructive manner. Among them, Diffraction Contrast Tomography (DCT) is a monochromatic beam, near-field technique, that uses an extended beam and offers fast mapping of 3D sample volumes. It was previously shown that the six-dimensional extension of DCT can be applied to moderately deformed samples (<= 5% total strain), made from materials that exhibit low levels of elastic deformation of the unit cell (<= 1%). In this article, we improved over the previously proposed 6D-DCT reconstruction method, through the introduction of both a more advanced forward model and reconstruction algorithm. The results obtained with the proposed improvements are compared against the reconstructions previously published in [1], using Electron Backscatter Diffraction (EBSD) measurements as a reference. The result was a noticeably higher quality reconstruction of the grain boundary positions and local orientation fields. The achieved reconstruction quality, together with the low acquisition times, render DCT a valuable tool for the stop-motion study of polycrystalline microstructures, evolving as a function of applied strain or thermal annealing treatments, for selected materials.
Multi scale imaging of the Cloudy Zone in the Tazewell IIICD Meteorite
NASA Astrophysics Data System (ADS)
Einsle, J. F.; Harrison, R. J.; Nichols, C. I. O.; Blukis, R.; Midgley, P. A.; Eggeman, A.; Saghi, Z.; Bagot, P.
2015-12-01
Paleomagnetic studies of iron and stony iron meteorites suggest that many small planetary bodies possessed molten cores resulting in the generation of a magnetic field. As these bodies cooled, Fe-Ni metal trapped within their mantle underwent a series of low-temperature transitions, leading to the familiar Widmanstatten intergrowth of kamacite and taenite. Adjacent to the kamacite/taenite interface is the so-called "cloudy zone" (CZ): a nanoscale intergrowth of tetrataenite islands in an Fe-rich matrix phase formed via spinodal decomposition. It has recently been shown (Bryson et al. 2015, Nature) that the CZ encodes a time-series record of the evolution of the magnetic field generated by the molten core of the planetary body. Extracting meaningful paleomagnetic data from the CZ relies, on a thorough understanding of the 3D chemical and magnetic properties of the intergrowth focsusing on the interactions between the magnetically hard tetrataenite islands and the magnetically soft matrix. Here we present a multi scale study of the chemical and crystallographic make up of the CZ in the Tazewell IIICD meteorite, using a range of advanced microscopy techniques. The results provide unprecedented insight into the architecture of the CZ, with implications for how the CZ acquires chemical transformation remanance during cooling on the parent body. Previous 2D transmission electron microscope studies of the CZ suggested that the matrix is an ordered Fe3Ni phase with the L12 structure. Interpretation of the electron diffraction patterns and chemical maps in these studies was hindered by a failure to resolve signals from overlapping island and matrix phases. Here we obtain high resolution electron diffraction and 3D chemical maps with near atomic resolution using a combination of scanning precession electron diffraction, 3D STEM EDS and atom probe tomography. Using this combined methodology we reslove for the first time the phenomena of secondary precipitation in the tetrataenite islands and chemical partitioning of trace elements between the island and matrix phases. The new crystallographic and compositional measurements present a quantitative picture of low-temperature local equilibrium in the Fe-Ni system. This leads to an improved understanding of the magnetic models used to perform paleomagnetism of the CZ.
Non-invasive imaging of the crystalline structure within a human tooth.
Egan, Christopher K; Jacques, Simon D M; Di Michiel, Marco; Cai, Biao; Zandbergen, Mathijs W; Lee, Peter D; Beale, Andrew M; Cernik, Robert J
2013-09-01
The internal crystalline structure of a human molar tooth has been non-destructively imaged in cross-section using X-ray diffraction computed tomography. Diffraction signals from high-energy X-rays which have large attenuation lengths for hard biomaterials have been collected in a transmission geometry. Coupling this with a computed tomography data acquisition and mathematically reconstructing their spatial origins, diffraction patterns from every voxel within the tooth can be obtained. Using this method we have observed the spatial variations of some key material parameters including nanocrystallite size, organic content, lattice parameters, crystallographic preferred orientation and degree of orientation. We have also made a link between the spatial variations of the unit cell lattice parameters and the chemical make-up of the tooth. In addition, we have determined how the onset of tooth decay occurs through clear amorphization of the hydroxyapatite crystal, and we have been able to map the extent of decay within the tooth. The described method has strong prospects for non-destructive probing of mineralized biomaterials. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stock, Stuart R.; Almer, Jonathan D.; Birkedal, Henrik
2016-10-01
Scattered x-radiation can be used for computed tomographic reconstruction of the distribution of crystallographic phases within the interior of specimens, and diffraction patterns can be measured for each volume element (voxel) within a reconstructed slice. This modality has been applied to systems as diverse as mineralized tissues and inorganic composites. Use of high energy x-rays (E < 40 keV) offers advantages including the ability to study volumes deep with specimens and to sample large ranges of reciprocal space, i.e., many reflections. The bases of diffraction tomography are reviewed, and the power of the technique is illustrated by the results obtained for specimens containing: a) different materials (SiC/Al composite), b) different polytypes (calcite/aragonite in a bivalve attachment system); c) mixtures of nanocrystalline and amorphous phases; d) a single phase, but volumes with different lattice parameters (hydroxyapatite, hAp, the mineral in bone and tooth); e) a single phase containing a spatial distribution of crystallographic texture (bone); a single phase with a spatial distribution of strains produced by in situ loading (bone). Finally, challenges and future directions are discussed.
Neutron Radiography, Tomography, and Diffraction of Commercial Lithium-ion Polymer Batteries
NASA Astrophysics Data System (ADS)
Butler, Leslie G.; Lehmann, Eberhard H.; Schillinger, Burkhard
Imaging an intact, commercial battery as it cycles and wears is proved possible with neutron imaging. The wavelength range of imaging neutrons corresponds nicely with crystallographic dimensions of the electrochemically active species and the metal elec- trodes are relatively transparent. The time scale of charge/discharge cycling is well matched to dynamic tomography as performed with a golden ratio based projection angle ordering. The hydrogen content does create scatter which tends to blur internal struc- ture. In this report, three neutron experiments will be described: 3D images of charged and discharged batteries were obtained with monochromatic neutrons at the FRM II reactor. 2D images (PSI) of fresh and worn batteries as a function of charge state may show a new wear pattern. In situ neutron diffraction (SNS) of the intact battery provides more information about the concentrations of electrochemical species within the battery as a function of charge state and wear. The combination of 2D imaging, 3D imaging, and diffraction data show how neutron imaging can contribute to battery development and wear monitoring.
3D high-resolution radar imaging of small body interiors
NASA Astrophysics Data System (ADS)
Sava, Paul; Asphaug, Erik
2017-10-01
Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their interior structure in detail and at high resolution (Asphaug, 2009). We often infer internal structure from surface observations, e.g. that comet 67P/Churyumov-Gerasimenko is a primordial agglomeration of cometesimals (Massironi et al., 2015). However, the interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data, as suggested by the CONSERT experiment on Rosetta. Interior imaging depends on observations from multiple viewpoints, as in medical tomography.We discuss radar imaging using methodology adapted from terrestrial exploration seismology (Sava et al., 2015). We primarily focus on full wavefield methods that facilitate high quality imaging of small body interiors characterized by complex structure and large contrasts of physical properties. We consider the case of a monostatic system (co-located transmitters and receivers) operated at two frequency bands, centered around 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Assuming that the spin period is significantly (e.g. 5x) faster than the orbital period, this configuration allows repeated views from multiple directions (Safaeinili et al., 2002)Using realistic numerical experiments, we argue that (1) the comet/asteroid imaging problem is intrinsically 3D and conventional SAR methodology does not satisfy imaging, sampling and resolution requirements; (2) imaging at different frequency bands can provide information about internal surfaces (through migration) and internal volumes (through tomography); (3) interior imaging can be accomplished progressively as data are being acquired through successive orbits around the studied object; (4) imaging resolution can go beyond the apparent radar frequency band by deconvolution of the point-spread-function characterizing the imaging system; and (5) exploiting the known (and complex) exterior shape of the studied body facilitates high-resolution imaging and tomography comparable with what could be accomplished by bi/multi-static systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayoral-Astorga, L. A.; Gaspar-Armenta, J. A.; Ramos-Mendieta, F.
2016-04-15
We have studied numerically the diffraction of a surface plasmon polariton (SPP) when it encounters a wide multi-wavelength slit in conducting films. As a jump process a SPP is excited beyond the slit by wave scattering at the second slit edge. The exciting radiation is produced when the incident SPP collapses at the first slit edge. We have found that the transmitted SPP supports inherent and unavoidable interference with grazing scattered radiation; the spatial modulation extends to the fields in the diffraction region where a series of low intensity spots arises. We demonstrate that the SPP generated on the secondmore » slab depends on the frequency but not on the wave vector of the collapsed SPP; a SPP is transmitted even when the two metals forming the slit are different. The numerical results were obtained using the Finite Difference Time Domain (FDTD) method with a grid size λ/100.« less
NASA Technical Reports Server (NTRS)
Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor); Wysocki, Gerard (Inventor)
2010-01-01
A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.
Time-marching multi-grid seismic tomography
NASA Astrophysics Data System (ADS)
Tong, P.; Yang, D.; Liu, Q.
2016-12-01
From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.
Frequency Domain Ultrasound Waveform Tomography: Breast Imaging Using a Ring Transducer
Sandhu, G Y; Li, C; Roy, O; Schmidt, S; Duric, N
2016-01-01
Application of the frequency domain acoustic wave equation on data acquired from ultrasound tomography scans is shown to yield high resolution sound speed images on the order of the wavelength of the highest reconstructed frequency. Using a signal bandwidth of 0.4–1 MHz and an average sound speed of 1500 m/s, the resolution is approximately 1.5 mm. The quantitative sound speed values and morphology provided by these images have the potential to inform diagnosis and classification of breast disease. In this study, we present the formalism, practical application, and in vivo results of waveform tomography applied to breast data gathered by two different ultrasound tomography scanners that utilize ring transducers. The formalism includes a review of frequency domain modeling of the wave equation using finite difference operators as well as a review of the gradient descent method for the iterative reconstruction scheme. It is shown that the practical application of waveform tomography requires an accurate starting model, careful data processing, and a method to gradually incorporate higher frequency information into the sound speed reconstruction. Following these steps resulted in high resolution quantitative sound speed images of the breast. These images show marked improvement relative to commonly used ray tomography reconstruction methods. The robustness of the method is demonstrated by obtaining similar results from two different ultrasound tomography devices. We also compare our method to MRI to demonstrate concordant findings. The clinical data used in this work was obtained from a HIPAA compliant clinical study (IRB 040912M1F). PMID:26110909
NASA Astrophysics Data System (ADS)
Bonnet, M.; Collino, F.; Demaldent, E.; Imperiale, A.; Pesudo, L.
2018-05-01
Ultrasonic Non-Destructive Testing (US NDT) has become widely used in various fields of applications to probe media. Exploiting the surface measurements of the ultrasonic incident waves echoes after their propagation through the medium, it allows to detect potential defects (cracks and inhomogeneities) and characterize the medium. The understanding and interpretation of those experimental measurements is performed with the help of numerical modeling and simulations. However, classical numerical methods can become computationally very expensive for the simulation of wave propagation in the high frequency regime. On the other hand, asymptotic techniques are better suited to model high frequency scattering over large distances but nevertheless do not allow accurate simulation of complex diffraction phenomena. Thus, neither numerical nor asymptotic methods can individually solve high frequency diffraction problems in large media, as those involved in UNDT controls, both quickly and accurately, but their advantages and limitations are complementary. Here we propose a hybrid strategy coupling the surface integral equation method and the ray tracing method to simulate high frequency diffraction under speed and accuracy constraints. This strategy is general and applicable to simulate diffraction phenomena in acoustic or elastodynamic media. We provide its implementation and investigate its performances for the 2D acoustic diffraction problem. The main features of this hybrid method are described and results of 2D computational experiments discussed.
... Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agatston ... table that slides into the center of the CT scanner. You will lie on your back with ...
Resolution Study of a Hyperspectral Sensor using Computed Tomography in the Presence of Noise
2012-06-14
diffraction efficiency is dependent on wavelength. Compared to techniques developed by later work, simple algebraic reconstruction techniques were used...spectral di- mension, using computed tomography (CT) techniques with only a finite number of diverse images. CTHIS require a reconstruction algorithm in...many frames are needed to reconstruct the spectral cube of a simple object using a theoretical lower bound. In this research a new algorithm is derived
Chemical and morphological characterization of III-V strained layered heterostructures
NASA Astrophysics Data System (ADS)
Gray, Allen Lindsay
This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.
DMD-based quantitative phase microscopy and optical diffraction tomography
NASA Astrophysics Data System (ADS)
Zhou, Renjie
2018-02-01
Digital micromirror devices (DMDs), which offer high speed and high degree of freedoms in steering light illuminations, have been increasingly applied to optical microscopy systems in recent years. Lately, we introduced DMDs into digital holography to enable new imaging modalities and break existing imaging limitations. In this paper, we will first present our progress in using DMDs for demonstrating laser-illumination Fourier ptychographic microscopy (FPM) with shotnoise limited detection. After that, we will present a novel common-path quantitative phase microscopy (QPM) system based on using a DMD. Building on those early developments, a DMD-based high speed optical diffraction tomography (ODT) system has been recently demonstrated, and the results will also be presented. This ODT system is able to achieve video-rate 3D refractive-index imaging, which can potentially enable observations of high-speed 3D sample structural changes.
Sparse-View Ultrasound Diffraction Tomography Using Compressed Sensing with Nonuniform FFT
2014-01-01
Accurate reconstruction of the object from sparse-view sampling data is an appealing issue for ultrasound diffraction tomography (UDT). In this paper, we present a reconstruction method based on compressed sensing framework for sparse-view UDT. Due to the piecewise uniform characteristics of anatomy structures, the total variation is introduced into the cost function to find a more faithful sparse representation of the object. The inverse problem of UDT is iteratively resolved by conjugate gradient with nonuniform fast Fourier transform. Simulation results show the effectiveness of the proposed method that the main characteristics of the object can be properly presented with only 16 views. Compared to interpolation and multiband method, the proposed method can provide higher resolution and lower artifacts with the same view number. The robustness to noise and the computation complexity are also discussed. PMID:24868241
Characterization of a neutron imaging setup at the INES facility
NASA Astrophysics Data System (ADS)
Durisi, E. A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.; Nervo, M.; Pastrone, N.; Prino, F.; Ramello, L.; Re, A.; Romero, A.; Sacchi, R.; Salvemini, F.; Scherillo, A.; Staiano, A.
2013-10-01
The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field.
Electromagnetic wave absorbing properties of amorphous carbon nanotubes.
Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing
2014-07-10
Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7-50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was -25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at -10 dB was up to 5.8 GHz within the frequency range of 2-18 GHz.
Ultra-high density diffraction grating
Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.
2012-12-11
A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.
Quantum games with a multi-slit electron diffraction set-up
NASA Astrophysics Data System (ADS)
Iqbal, A.
2003-05-01
A set-up is proposed to play a quantum version of the famous bimatrix game of Prisoners' Dilemma. Multi-slit electron diffraction with each player's pure strategy consisting of opening one of the two slits at his/her disposal are essential features of the set-up. Instead of entanglement the association of waves with travelling material objects is suggested as another resource to play quantum games.
NASA Astrophysics Data System (ADS)
Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew
2018-04-01
With continuous monitoring of the lungs using multi-angle electric impedance tomography method, a large array of images of impedance changes in the patient's chest cavity is accumulated. This article proposes a method for evaluating the regional ventilation function of lungs based on the results of continuous monitoring using the multi-angle electric impedance tomography method, which allows one image of the thoracic cavity to be formed on the basis of a large array of images of the impedance change in the patient's chest cavity. In the presence of pathologies in the lungs (neoplasms, fluid, pneumothorax, etc.) in these areas, air filling will be disrupted, which will be displayed on the generated image. When conducting continuous monitoring in several sections, a three-dimensional pattern of air filling of the thoracic cavity is possible.
A gantry-based tri-modality system for bioluminescence tomography
Yan, Han; Lin, Yuting; Barber, William C.; Unlu, Mehmet Burcin; Gulsen, Gultekin
2012-01-01
A gantry-based tri-modality system that combines bioluminescence (BLT), diffuse optical (DOT), and x-ray computed tomography (XCT) into the same setting is presented here. The purpose of this system is to perform bioluminescence tomography using a multi-modality imaging approach. As parts of this hybrid system, XCT and DOT provide anatomical information and background optical property maps. This structural and functional a priori information is used to guide and restrain bioluminescence reconstruction algorithm and ultimately improve the BLT results. The performance of the combined system is evaluated using multi-modality phantoms. In particular, a cylindrical heterogeneous multi-modality phantom that contains regions with higher optical absorption and x-ray attenuation is constructed. We showed that a 1.5 mm diameter bioluminescence inclusion can be localized accurately with the functional a priori information while its source strength can be recovered more accurately using both structural and the functional a priori information. PMID:22559540
Multi-Grid and Resolution Full-Wave Tomography and Moment Tensor Inversion (Postprint)
2012-06-04
Denver: University of Colorado. Chen, P., L. Zhao, and T.H. Jordan (2007). Full 3D tomography for crustal structure of the Los Angeles Region, Bull...M.J.R. Wortel, and W. Spakman (2006). Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions, J. Geophys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, L. W.; Lin, L.; Huang, S. L.
We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.
Chanda, Debashis; Abolghasemi, Ladan E; Haque, Moez; Ng, Mi Li; Herman, Peter R
2008-09-29
We present a novel multi-level diffractive optical element for diffractive optic near-field lithography based fabrication of large-area diamond-like photonic crystal structure in a single laser exposure step. A multi-level single-surface phase element was laser fabricated on a thin polymer film by two-photon polymerization. A quarter-period phase shift was designed into the phase elements to generate a 3D periodic intensity distribution of double basis diamond-like structure. Finite difference time domain calculation of near-field diffraction patterns and associated isointensity surfaces are corroborated by definitive demonstration of a diamond-like woodpile structure formed inside thick photoresist. A large number of layers provided a strong stopband in the telecom band that matched predictions of numerical band calculation. SEM and spectral observations indicate good structural uniformity over large exposure area that promises 3D photonic crystal devices with high optical quality for a wide range of motif shapes and symmetries. Optical sensing is demonstrated by spectral shifts of the Gamma-Zeta stopband under liquid emersion.
NASA Astrophysics Data System (ADS)
Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.
2018-02-01
Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.
High resolution multiplexed functional imaging in live embryos (Conference Presentation)
NASA Astrophysics Data System (ADS)
Xu, Dongli; Zhou, Weibin; Peng, Leilei
2017-02-01
Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.
A computerized tomography system for transcranial ultrasound imaging.
Tang, Sai Chun; Clement, Gregory T
Hardware for tomographic imaging presents both challenge and opportunity for simplification when compared with traditional pulse-echo imaging systems. Specifically, point diffraction tomography does not require simultaneous powering of elements, in theory allowing just a single transmit channel and a single receive channel to be coupled with a switching or multiplexing network. In our ongoing work on transcranial imaging, we have developed a 512-channel system designed to transmit and/or receive a high voltage signal from/to arbitrary elements of an imaging array. The overall design follows a hierarchy of modules including a software interface, microcontroller, pulse generator, pulse amplifier, high-voltage power converter, switching mother board, switching daughter board, receiver amplifier, analog-to-digital converter, peak detector, memory, and USB communication. Two pulse amplifiers are included, each capable of producing up to 400Vpp via power MOSFETS. Switching is based around mechanical relays that allow passage of 200V, while still achieving switching times of under 2ms, with an operating frequency ranging from below 100kHz to 10MHz. The system is demonstrated through ex vivo human skulls using 1MHz transducers. The overall system design is applicable to planned human studies in transcranial image acquisition, and may have additional tomographic applications for other materials necessitating a high signal output.
NASA Astrophysics Data System (ADS)
Davis, P. M.; Foote, E. J.; Stubailo, I.; Phillips, K. E.; Clayton, R. W.; Skinner, S.; Audin, L.; Tavera, H.; Dominguez Ramirez, L. A.; Lukac, M. L.
2010-12-01
This work describes preliminary tomography results from the Peru Seismic Experiment (PERUSE) a 100 station broadband seismic network installed in Peru. The network consists a linear array of broadband seismic stations that was installed mid-2008 that runs from the Peruvian coast near Mollendo to Lake Titicaca. A second line was added in late 2009 between Lake Titicaca and Cusco. Teleseismic and local earthquake travel time residuals are being combined in the tomographic inversions. The crust under the Andes is found to be 70-80 km thick decreasing to 30 km near the coast. The morphology of the Moho is consistent with the receiver function images (Phillips et al., 2010; this meeting) and also gravity. Ray tracing through the heterogeneous structure is used to locate earthquakes. However the rapid spatial variation in crustal thickness, possibly some of the most rapid in the world, generates shadow zones when using conventional ray tracing for the tomography. We use asymptotic ray theory that approximates effects from finite frequency kernels to model diffracted waves in these regions. The observation of thickened crust suggests that models that attribute the recent acceleration of the Altiplano uplift to crustal delamination are less likely than those that attribute it to crustal compression.
Anisotropic light diffraction in crystals with a large acoustic-energy walk-off
NASA Astrophysics Data System (ADS)
Balakshy, V. I.; Voloshin, A. S.; Molchanov, V. Ya.
2014-11-01
The influence of energy walk-off in an acoustic beam on the characteristic of anisotropic Bragg diffraction of light has been investigated by the example of paratellurite crystal. The angular and frequency characteristics of acousto-optic diffraction have been calculated in wide ranges of ultrasound frequencies and Bragg angles using the modified Raman-Nath equations. It is shown that the walk-off of an acoustic beam may change (either widen or narrow) significantly the frequency and angular ranges. The calculation results have been experimentally checked on an acousto-optic cell made of 10.5°-cut paratellurite crystal.
Llinás, Rodolfo R.; Ustinin, Mikhail N.; Rykunov, Stanislav D.; Boyko, Anna I.; Sychev, Vyacheslav V.; Walton, Kerry D.; Rabello, Guilherme M.; Garcia, John
2015-01-01
A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in 10 healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in 10 healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject's head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space. PMID:26528119
NASA Astrophysics Data System (ADS)
Brenders, A. J.; Pratt, R. G.
2007-01-01
We provide a series of numerical experiments designed to test waveform tomography under (i) a reduction in the number of input data frequency components (`efficient' waveform tomography), (ii) sparse spatial subsampling of the input data and (iii) an increase in the minimum data frequency used. These results extend the waveform tomography results of a companion paper, using the same third-party, 2-D, wide-angle, synthetic viscoelastic seismic data, computed in a crustal geology model 250 km long and 40 km deep, with heterogeneous P-velocity, S-velocity, density and Q-factor structure. Accurate velocity models were obtained using efficient waveform tomography and only four carefully selected frequency components of the input data: 0.8, 1.7, 3.6 and 7.0 Hz. This strategy avoids the spectral redundancy present in `full' waveform tomography, and yields results that are comparable with those in the companion paper for an 88 per cent decrease in total computational cost. Because we use acoustic waveform tomography, the results further justify the use of the acoustic wave equation in calculating P-wave velocity models from viscoelastic data. The effect of using sparse survey geometries with efficient waveform tomography were investigated for both increased receiver spacing, and increased source spacing. Sampling theory formally requires spatial sampling at maximum interval of one half-wavelength (2.5 km at 0.8 Hz): For data with receivers every 0.9 km (conforming to this criterion), artefacts in the tomographic images were still minimal when the source spacing was as large as 7.6 km (three times the theoretical maximum). Larger source spacings led to an unacceptable degradation of the results. When increasing the starting frequency, image quality was progressively degraded. Acceptable image quality within the central portion of the model was nevertheless achieved using starting frequencies up to 3.0 Hz. At 3.0 Hz the maximum theoretical sample interval is reduced to 0.67 km due to the decreased wavelengths; the available sources were spaced every 5.0 km (more than seven times the theoretical maximum), and receivers were spaced every 0.9 km (1.3 times the theoretical maximum). Higher starting frequencies than 3.0 Hz again led to unacceptable degradation of the results.
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements
Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.; ...
2017-08-08
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here, in this paper, a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focusedmore » ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Lastly, our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.« less
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here, in this paper, a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focusedmore » ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Lastly, our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.« less
Micro-beam Laue alignment of multi-reflection Bragg coherent diffraction imaging measurements.
Hofmann, Felix; Phillips, Nicholas W; Harder, Ross J; Liu, Wenjun; Clark, Jesse N; Robinson, Ian K; Abbey, Brian
2017-09-01
Multi-reflection Bragg coherent diffraction imaging has the potential to allow three-dimensional (3D) resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here a different approach is demonstrated, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focused ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples.
Micro-beam Laue Alignment of Multi-Reflection Bragg Coherent Diffraction Imaging Measurements
Hofmann, Felix; Phillips, Nicholas W.; Harder, Ross J.; Liu, Wenjun; Clark, Jesse N.; Robinson, Ian K.; Abbey, Brian
2017-01-01
Multi-reflection Bragg coherent diffraction imaging has the potential to allow 3D resolved measurements of the full lattice strain tensor in specific micro-crystals. Until now such measurements were hampered by the need for laborious, time-intensive alignment procedures. Here we demonstrate a different approach, using micro-beam Laue X-ray diffraction to first determine the lattice orientation of the micro-crystal. This information is then used to rapidly align coherent diffraction measurements of three or more reflections from the crystal. Based on these, 3D strain and stress fields in the crystal are successfully determined. This approach is demonstrated on a focussed ion beam milled micro-crystal from which six reflections could be measured. Since information from more than three independent reflections is available, the reliability of the phases retrieved from the coherent diffraction data can be assessed. Our results show that rapid, reliable 3D coherent diffraction measurements of the full lattice strain tensor in specific micro-crystals are now feasible and can be successfully carried out even in heavily distorted samples. PMID:28862628
Flow in Coal Seams: An Unconventional Challenge
NASA Astrophysics Data System (ADS)
Armstrong, R. T.; Mostaghimi, P.; Jing, Y.; Gerami, A.
2016-12-01
A significant unconventional resource for energy is the methane gas stored in shallow coal beds, known as coal seam gas. An integrated imaging and modelling framework is developed for analysing petrophysical behaviour of coals. X-ray micro-computed tomography (micro-CT) is applied using a novel contrast agent method for visualising micrometer-sized fractures in coal. The technique allows for the visualisation of coal features not visible with conventional imaging methods. A Late Permian medium volatile bituminous coal from Moura Coal Mine (Queensland, Australia) is imaged and the resulting three-dimensional coal fracture system is extracted for fluid flow simulations. The results demonstrate a direct relationship between coal lithotype and permeability. Scanning electron microscope and energy dispersive spectrometry (SEM-EDS) together with X-ray diffraction (XRD) methods are used for identifying mineral matters at high resolution. SEM high-resolution images are also used to calibrate the micro-CT images and measure the exact aperture size of fractures. This leads to a more accurate estimation of permeability using micro-CT images. To study the significance of geometry and topology of the fracture system, a fracture reconstruction method based on statistical properties of coal is also developed. The network properties including the frequency, aperture size distribution, length, and spacing of the imaged coal fracture system. This allows for a sensitivity analysis on the effects that coal fracture topology and geometry has on coal petrophysical properties. Furthermore, we generate microfluidic chips based on coal fracture observations. The chip is used for flow experiments to visualise multi-fluid processes and measure recovery of gas. A combined numerical and experimental approach is applied to obtain relative permeability curves for different regions of interest. A number of challenges associated with coal samples are discussed and insights are provided for better understanding of these complex porous media systems.
Multi-channel electrical impedance tomography for regional tissue hydration monitoring.
Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M
2014-06-01
Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical settings for helping optimize patient fluid management during hemodialysis as well as for home monitoring of patients with congestive heart failure, chronic kidney disease, diabetes and other diseases with peripheral edema symptoms.
Full-color, large area, transmissive holograms enabled by multi-level diffractive optics.
Mohammad, Nabil; Meem, Monjurul; Wan, Xiaowen; Menon, Rajesh
2017-07-19
We show that multi-level diffractive microstructures can enable broadband, on-axis transmissive holograms that can project complex full-color images, which are invariant to viewing angle. Compared to alternatives like metaholograms, diffractive holograms utilize much larger minimum features (>10 µm), much smaller aspect ratios (<0.2) and thereby, can be fabricated in a single lithography step over relatively large areas (>30 mm ×30 mm). We designed, fabricated and characterized holograms that encode various full-color images. Our devices demonstrate absolute transmission efficiencies of >86% across the visible spectrum from 405 nm to 633 nm (peak value of about 92%), and excellent color fidelity. Furthermore, these devices do not exhibit polarization dependence. Finally, we emphasize that our devices exhibit negligible absorption and are phase-only holograms with high diffraction efficiency.
Frequency-domain ultrasound waveform tomography breast attenuation imaging
NASA Astrophysics Data System (ADS)
Sandhu, Gursharan Yash Singh; Li, Cuiping; Roy, Olivier; West, Erik; Montgomery, Katelyn; Boone, Michael; Duric, Neb
2016-04-01
Ultrasound waveform tomography techniques have shown promising results for the visualization and characterization of breast disease. By using frequency-domain waveform tomography techniques and a gradient descent algorithm, we have previously reconstructed the sound speed distributions of breasts of varying densities with different types of breast disease including benign and malignant lesions. By allowing the sound speed to have an imaginary component, we can model the intrinsic attenuation of a medium. We can similarly recover the imaginary component of the velocity and thus the attenuation. In this paper, we will briefly review ultrasound waveform tomography techniques, discuss attenuation and its relations to the imaginary component of the sound speed, and provide both numerical and ex vivo examples of waveform tomography attenuation reconstructions.
Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A
2017-01-23
We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.
Advantages of phase retrieval for fast x-ray tomographic microscopy
NASA Astrophysics Data System (ADS)
Mokso, R.; Marone, F.; Irvine, S.; Nyvlt, M.; Schwyn, D.; Mader, K.; Taylor, G. K.; Krapp, H. G.; Skeren, M.; Stampanoni, M.
2013-12-01
In near-field imaging with partially coherent x-rays, the phase shifting properties of the sample are encoded in the diffraction fringes that appear as an additional intensity modulation in the x-ray projection images. These Fresnel fringes are often regarded as purely an enhancement of the visibility at the interfaces. We show that retrieving the phase information contained in these patterns significantly advances the developments in fast micro-tomography. Improving temporal resolution without intensifying radiation damage implies a shortening of the exposure time rather than increasing the photon flux on the sample. Phase retrieval, to a large extent, compensates the consequent photon count moderation in the images, by fully exploiting the stronger refraction effect as compared with absorption. Two single-distance phase retrieval methods are evaluated for the case of an in situ 3 Hz micro-tomography of a rapidly evolving liquid foam, and an in vivo 6 Hz micro-tomography of a blowfly. A new dual-detector setup is introduced for simultaneous acquisition of two near-field diffraction patterns. Our goal is to couple high temporal, spatial and density resolution in a single imaging system in a dose-efficient manner, opening further options for dynamic four-dimensional studies.
Micro- and nano-tomography at the DIAMOND beamline I13L imaging and coherence
NASA Astrophysics Data System (ADS)
Rau, C.; Bodey, A.; Storm, M.; Cipiccia, S.; Marathe, S.; Zdora, M.-C.; Zanette, I.; Wagner, U.; Batey, D.; Shi, X.
2017-10-01
The Diamond Beamline I13L is dedicated to imaging on the micro- and nano-lengthsale, operating in the energy range between 6 and 30keV. For this purpose two independently operating branchlines and endstations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometre resolution. Grating interferometry is currently implemented, adding the capability of measuring phase and small-angle information. For tomography with increased resolution a full-field microscope providing 50nm spatial resolution with a field of view of 100μm is being tested. The instrument provides a large working distance between optics and sample to adapt a wide range of customised sample environments. On the coherence branch coherent diffraction imaging techniques such as ptychography, coherent X-ray diffraction (CXRD) are currently developed for three dimensional imaging with the highest resolution. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline. The scientific applications cover a large area including bio-medicine, materials science, chemistry geology and more. The present paper provides an overview about the current status of the beamline and the science addressed.
Connor, D M; Hallen, H D; Lalush, D S; Sumner, D R; Zhong, Z
2009-10-21
Diffraction-enhanced imaging (DEI) is an x-ray-based medical imaging modality that, when used in tomography mode (DECT), can generate a three-dimensional map of both the apparent absorption coefficient and the out-of-plane gradient of the index of refraction of the sample. DECT is known to have contrast gains over monochromatic synchrotron radiation CT (SRCT) for soft tissue structures. The goal of this experiment was to compare contrast-to-noise ratio (CNR) and resolution in images of human trabecular bone acquired using SRCT with images acquired using DECT. All images were acquired at the National Synchrotron Light Source (Upton, NY, USA) at beamline X15 A at an x-ray energy of 40 keV and the silicon [3 3 3] reflection. SRCT, apparent absorption DECT and refraction DECT slice images of the trabecular bone were created. The apparent absorption DECT images have significantly higher spatial resolution and CNR than the corresponding SRCT images. Thus, DECT will prove to be a useful tool for imaging applications in which high contrast and high spatial resolution are required for both soft tissue features and bone.
Liu, Jiaen; Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Schmitter, Sebastian
2013-01-01
Electrical Property Tomography (EPT) is a recently developed noninvasive technology to image the electrical conductivity and permittivity of biological tissues at Larmor frequency in Magnetic Resonance (MR) scanners. The absolute phase of the complex radio-frequency (RF) magnetic field (B1) is necessary for electrical property calculation. However, due to the lack of practical methods to directly measure the absolute B1 phases, current EPT techniques have been achieved with B1 phase estimation based on certain assumptions on object anatomy, coil structure and/or electromagnetic wave behavior associated with the main magnetic field, limiting EPT from a larger variety of applications. In this study, using a multi-channel transmit/receive coil, the framework of a new general approach for EPT has been introduced, which is independent on the assumptions utilized in previous studies. Using a human head model with realistic geometry, a series of computer simulations at 7T were conducted to evaluate the proposed method under different noise levels. Results showed that the proposed method can be used to reconstruct the conductivity and permittivity images with noticeable accuracy and stability. The feasibility of this approach was further evaluated in a phantom experiment at 7T. PMID:23743673
Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Liqing; Zhang, Jizong; Chen, Kaiyun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn
2015-12-15
Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting modemore » structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.« less
Lappi, T.; Venugopalan, R.; Mantysaari, H.
2015-02-25
We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multi-parton Fock states in the nuclear wavefunctions. In particular, the saturation scale that characterizes this multi-parton dynamics is significantly larger in central events relative to minimum bias events. As an application, we examine the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model.
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
Body position alters human resting-state: Insights from multi-postural magnetoencephalography.
Thibault, Robert T; Lifshitz, Michael; Raz, Amir
2016-09-01
Neuroimaging researchers tacitly assume that body-position scantily affects neural activity. However, whereas participants in most psychological experiments sit upright, many modern neuroimaging techniques (e.g., fMRI) require participants to lie supine. Sparse findings from electroencephalography and positron emission tomography suggest that body position influences cognitive processes and neural activity. Here we leverage multi-postural magnetoencephalography (MEG) to further unravel how physical stance alters baseline brain activity. We present resting-state MEG data from 12 healthy participants in three orthostatic conditions (i.e., lying supine, reclined at 45°, and sitting upright). Our findings demonstrate that upright, compared to reclined or supine, posture increases left-hemisphere high-frequency oscillatory activity over common speech areas. This proof-of-concept experiment establishes the feasibility of using MEG to examine the influence of posture on brain dynamics. We highlight the advantages and methodological challenges inherent to this approach and lay the foundation for future studies to further investigate this important, albeit little-acknowledged, procedural caveat.
Hong, Hongwei; Rahal, Mohamad; Demosthenous, Andreas; Bayford, Richard H
2009-10-01
Multi-frequency electrical impedance tomography (MF-EIT) systems require current sources that are accurate over a wide frequency range (1 MHz) and with large load impedance variations. The most commonly employed current source design in EIT systems is the modified Howland circuit (MHC). The MHC requires tight matching of resistors to achieve high output impedance and may suffer from instability over a wide frequency range in an integrated solution. In this paper, we introduce a new integrated current source design in CMOS technology and compare its performance with the MHC. The new integrated design has advantages over the MHC in terms of power consumption and area. The output current and the output impedance of both circuits were determined through simulations and measurements over the frequency range of 10 kHz to 1 MHz. For frequencies up to 1 MHz, the measured maximum variation of the output current for the integrated current source is 0.8% whereas for the MHC the corresponding value is 1.5%. Although the integrated current source has an output impedance greater than 1 MOmega up to 1 MHz in simulations, in practice, the impedance is greater than 160 kOmega up to 1 MHz due to the presence of stray capacitance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Hui-Lin, E-mail: tuhl-uestc@163.com, E-mail: xiaoshaoqiu@uestc.edu.cn; Xiao, Shao-Qiu, E-mail: tuhl-uestc@163.com, E-mail: xiaoshaoqiu@uestc.edu.cn
The resonant metalens consisting of metal-wire resonators with equally finite length can break the diffraction barrier well suited for super-resolution imaging. In this study, a basic combination constructed by two metal-wire resonators with different lengths is proposed, and its resonant characteristics is analyzed using the method of moments (MoM). Based on the time reversal (TR) technique, this kind of combination can be applied to a sub-wavelength two-element antenna array with a 1/40-wavelength interval to make the elements work simultaneously with little interference in the frequency band of 1.0-1.5 GHz and 1.5-2.0 GHz, respectively. The simulations and experiments show that analysismore » of MoM and the application of the resonators can be used to design multi-frequency sub-wavelength antenna arrays efficiently. This general design method is convenient and can be used for many applications, such as weakening jamming effectiveness in communication systems, and sub-wavelength imaging in a broad frequency band.« less
Multi-channel photon counting DOT system based on digital lock-in detection technique
NASA Astrophysics Data System (ADS)
Wang, Tingting; Zhao, Huijuan; Wang, Zhichao; Hou, Shaohua; Gao, Feng
2011-02-01
Relying on deeper penetration of light in the tissue, Diffuse Optical Tomography (DOT) achieves organ-level tomography diagnosis, which can provide information on anatomical and physiological features. DOT has been widely used in imaging of breast, neonatal cerebral oxygen status and blood oxygen kinetics observed by its non-invasive, security and other advantages. Continuous wave DOT image reconstruction algorithms need the measurement of the surface distribution of the output photon flow inspired by more than one driving source, which means that source coding is necessary. The most currently used source coding in DOT is time-division multiplexing (TDM) technology, which utilizes the optical switch to switch light into optical fiber of different locations. However, in case of large amounts of the source locations or using the multi-wavelength, the measurement time with TDM and the measurement interval between different locations within the same measurement period will therefore become too long to capture the dynamic changes in real-time. In this paper, a frequency division multiplexing source coding technology is developed, which uses light sources modulated by sine waves with different frequencies incident to the imaging chamber simultaneously. Signal corresponding to an individual source is obtained from the mixed output light using digital phase-locked detection technology at the detection end. A digital lock-in detection circuit for photon counting measurement system is implemented on a FPGA development platform. A dual-channel DOT photon counting experimental system is preliminary established, including the two continuous lasers, photon counting detectors, digital lock-in detection control circuit, and codes to control the hardware and display the results. A series of experimental measurements are taken to validate the feasibility of the system. This method developed in this paper greatly accelerates the DOT system measurement, and can also obtain the multiple measurements in different source-detector locations.
Parallel Computing for the Computed-Tomography Imaging Spectrometer
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2008-01-01
This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.
Takayanagi, Tomoya; Arai, Takehiro; Amanuma, Makoto; Sano, Tomonari; Ichiba, Masato; Ishizaka, Kazumasa; Sekine, Takako; Matsutani, Hideyuki; Morita, Hitomi; Takase, Shinichi
2017-01-01
Coronary computed tomography angiography (CCTA) in patients with pacemaker suffers from metallic lead-induced artifacts, which often interfere with accurate assessment of coronary luminal stenosis. The purpose of this study was to assess a frequency of the lead-induced artifacts and artifact-suppression effect by the single energy metal artifact reduction (SEMAR) technique. Forty-one patients with a dual-chamber pacemaker were evaluated using a 320 multi-detector row CT (MDCT). Among them, 22 patients with motion-free full data reconstruction images were the final candidates. Images with and without the SMEAR technique were subjectively compared, and the degree of metallic artifacts was compared. On images without SEMAR, severe metallic artifacts were often observed in the right coronary artery (#1, #2, #3) and distal anterior descending branch (#8). These artifacts were effectively suppressed by SEMAR, and the luminal accessibility was significantly improved in #3 and #8. While pacemaker leads often cause metallic-induced artifacts, SEMAR technique reduced the artifacts and significantly improved the accessibility of coronary lumen in #3 and #8.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashida, Misa; Malac, Marek; Egerton, Ray F.
Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy ofmore » the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.« less
NASA Astrophysics Data System (ADS)
Gasc, J.; Brantut, N.; Schubnel, A.; Brunet, F.; Mueller, H.
2008-12-01
We have monitored from in-situ X-ray diffraction coupled to Acoustic Emission (AE) imaging, the behavior of a fine grained synthetic calcite aggregate, at 0.66 GPa and for temperatures ranging from ambient to 1200° C. The powder sample was placed in a boron-epoxy assembly with an 8 mm edge-length and loaded in the MAX80 cubic multi-anvil press installed on the German synchrotron (HASYLAB-DESY, Hamburg). AE were recorded using five piezoceramic transducers (5 MHz eigen frequency) glued on each of the five WC anvils (4 side anvils and upper one). Full waveforms were acquired using an eight channel digital oscilloscope and located using the software Insite (ASC Ltd). Beyond 600° C, calcite grains started growing as evidenced by huge changes in the relative intensity of the diffraction lines. This is correlated to a sudden burst of AE which all located within the sample volume. These AE may indicate that stress relaxation, going on as intra-crystalline plasticity mechanisms were activated, released enough acoustic energy to be recorded and located. Although the diffraction data showed that grain growth continued beyond 800° C, the acoustic activity progressively decreased to below the sensitivity of our recording device (i.e. the triggering level). However, at temperature higher than 1000° C, a large number of AE were recorded again ( 2000 events). AE location revealed that the AE front progressed inwards the sample. The complete loss of diffraction signal and the post-mortem recovery of small amounts of CaO suggest that the second AE burst may be related to calcite melting/decarbonation. Perspectives include thorough microstructural analysis of the samples using electron microscopies (SEM and TEM) as well as a statistical and mechanical analysis of the acoustic data.
Sedelnikova, O V; Korovin, E Yu; Dorozhkin, K V; Kanygin, M A; Arkhipov, V E; Shubin, Yu V; Zhuravlev, V A; Suslyaev, V I; Bulusheva, L G; Okotrub, A V
2018-04-27
Interface interactions in multicomponent nanoparticles can affect electromagnetic properties of an absorbing system. In this work, we investigate the electromagnetic response of multi-walled carbon nanotubes (MWCNTs) filled with iron-containing nanoparticles (ICNs) in the terahertz frequency range. MWCNTs with different iron content have been synthesized by aerosol-assisted catalytic chemical vapour deposition method from toluene containing a certain quantity of ferrocene used as a catalyst. According to the x-ray diffraction analysis, encapsulated ICNs were mainly in the form of iron carbide. Thin composite films were prepared from the iron-filled MWCNTs and polymethylmethacrylate (PMMA) by casting and stretching methods. The composites showed an enhanced permittivity and anisotropy in the transmittance spectra when iron content increased. This behaviour was related to the mechanism based on electrical conductivity and polarization of ICNs and ICN/MWCNT interfaces. Since terahertz field penetrates inside MWCNTs, the filling of their cavities can be a way of varying the electromagnetic properties of MWCNT-containing composites.
Exploring cosmic origins with CORE: The instrument
NASA Astrophysics Data System (ADS)
de Bernardis, P.; Ade, P. A. R.; Baselmans, J. J. A.; Battistelli, E. S.; Benoit, A.; Bersanelli, M.; Bideaud, A.; Calvo, M.; Casas, F. J.; Castellano, M. G.; Catalano, A.; Charles, I.; Colantoni, I.; Columbro, F.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; Delabrouille, J.; Doyle, S.; Franceschet, C.; Gomez, A.; Goupy, J.; Hanany, S.; Hills, M.; Lamagna, L.; Macias-Perez, J.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; McCarthy, D.; Mennella, A.; Monfardini, A.; Noviello, F.; Paiella, A.; Piacentini, F.; Piat, M.; Pisano, G.; Signorelli, G.; Tan, C. Y.; Tartari, A.; Trappe, N.; Triqueneaux, S.; Tucker, C.; Vermeulen, G.; Young, K.; Zannoni, M.; Achúcarro, A.; Allison, R.; Artall, E.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z. Y.; Carvalho, C. S.; Challinor, A.; Chluba, J.; Clesse, S.; De Gasperis, G.; De Zotti, G.; Di Valentino, E.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Hagstotz, S.; Greenslade, J.; Handley, W.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Martins, C. J. A. P.; Matarrese, S.; Melchiorri, A.; Melin, J. B.; Molinari, D.; Natoli, P.; Negrello, M.; Notari, A.; Paoletti, D.; Patanchon, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rubiño-Martín, J. A.; Salvati, L.; Tomasi, M.; Tramonte, D.; Trombetti, T.; Väliviita, J.; Van de Weyjgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.
2018-04-01
We describe a space-borne, multi-band, multi-beam polarimeter aiming at a precise and accurate measurement of the polarization of the Cosmic Microwave Background. The instrument is optimized to be compatible with the strict budget requirements of a medium-size space mission within the Cosmic Vision Programme of the European Space Agency. The instrument has no moving parts, and uses arrays of diffraction-limited Kinetic Inductance Detectors to cover the frequency range from 60 GHz to 600 GHz in 19 wide bands, in the focal plane of a 1.2 m aperture telescope cooled at 40 K, allowing for an accurate extraction of the CMB signal from polarized foreground emission. The projected CMB polarization survey sensitivity of this instrument, after foregrounds removal, is 1.7 μKṡarcmin. The design is robust enough to allow, if needed, a downscoped version of the instrument covering the 100 GHz to 600 GHz range with a 0.8 m aperture telescope cooled at 85 K, with a projected CMB polarization survey sensitivity of 3.2 μKṡarcmin.
NASA Astrophysics Data System (ADS)
Sedelnikova, O. V.; Korovin, E. Yu; Dorozhkin, K. V.; Kanygin, M. A.; Arkhipov, V. E.; Shubin, Yu V.; Zhuravlev, V. A.; Suslyaev, V. I.; Bulusheva, L. G.; Okotrub, A. V.
2018-04-01
Interface interactions in multicomponent nanoparticles can affect electromagnetic properties of an absorbing system. In this work, we investigate the electromagnetic response of multi-walled carbon nanotubes (MWCNTs) filled with iron-containing nanoparticles (ICNs) in the terahertz frequency range. MWCNTs with different iron content have been synthesized by aerosol-assisted catalytic chemical vapour deposition method from toluene containing a certain quantity of ferrocene used as a catalyst. According to the x-ray diffraction analysis, encapsulated ICNs were mainly in the form of iron carbide. Thin composite films were prepared from the iron-filled MWCNTs and polymethylmethacrylate (PMMA) by casting and stretching methods. The composites showed an enhanced permittivity and anisotropy in the transmittance spectra when iron content increased. This behaviour was related to the mechanism based on electrical conductivity and polarization of ICNs and ICN/MWCNT interfaces. Since terahertz field penetrates inside MWCNTs, the filling of their cavities can be a way of varying the electromagnetic properties of MWCNT-containing composites.
Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography
NASA Astrophysics Data System (ADS)
Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea
2013-09-01
Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.
Fernandez, Elena; Fuentes, Rosa; Belendez, Augusto; Pascual, Inmaculada
2016-01-01
Holographic transmission gratings with a spatial frequency of 2658 lines/mm and reflection gratings with a spatial frequency of 4553 lines/mm were stored in a polyvinyl alcohol (PVA)/acrylamide (AA) based photopolymer. This material can reach diffraction efficiencies close to 100% for spatial frequencies about 1000 lines/mm. However, for higher spatial frequencies, the diffraction efficiency decreases considerably as the spatial frequency increases. To enhance the material response at high spatial frequencies, a chain transfer agent, the 4,4’-azobis (4-cyanopentanoic acid), ACPA, is added to the composition of the material. Different concentrations of ACPA are incorporated into the main composition of the photopolymer to find the concentration value that provides the highest diffraction efficiency. Moreover, the refractive index modulation and the optical thickness of the transmission and reflection gratings were obtained, evaluated and compared to procure more information about the influence of the ACPA on them. PMID:28773322
Enhancing multi-step quantum state tomography by PhaseLift
NASA Astrophysics Data System (ADS)
Lu, Yiping; Zhao, Qing
2017-09-01
Multi-photon system has been studied by many groups, however the biggest challenge faced is the number of copies of an unknown state are limited and far from detecting quantum entanglement. The difficulty to prepare copies of the state is even more serious for the quantum state tomography. One possible way to solve this problem is to use adaptive quantum state tomography, which means to get a preliminary density matrix in the first step and revise it in the second step. In order to improve the performance of adaptive quantum state tomography, we develop a new distribution scheme of samples and extend it to three steps, that is to correct it once again based on the density matrix obtained in the traditional adaptive quantum state tomography. Our numerical results show that the mean square error of the reconstructed density matrix by our new method is improved to the level from 10-4 to 10-9 for several tested states. In addition, PhaseLift is also applied to reduce the required storage space of measurement operator.
NASA Astrophysics Data System (ADS)
Tang, Qinggong; Frank, Aaron; Wang, Jianting; Chen, Chao-wei; Jin, Lily; Lin, Jon; Chan, Joanne M.; Chen, Yu
2016-03-01
Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is unable to detect those subsurface lesions. Since cancer development is associated with both morphological and molecular alterations, imaging technologies that can quantitative image tissue's morphological and molecular biomarkers and assess the depth extent of a lesion in real time, without the need for tissue excision, would be a major advance in GI cancer diagnostics and therapy. In this research, we investigated the feasibility of multi-modal optical imaging including high-resolution optical coherence tomography (OCT) and depth-resolved high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. APC (adenomatous polyposis coli) mice model were imaged using OCT and FLOT and the correlated histopathological diagnosis was obtained. Quantitative structural (the scattering coefficient) and molecular imaging parameters (fluorescence intensity) from OCT and FLOT images were developed for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 87.4% (87.3%) for sensitivity (specificity) which gives the most optimal diagnosis (the largest area under receiver operating characteristic (ROC) curve). This project results in a new non-invasive multi-modal imaging platform for improved GI cancer detection, which is expected to have a major impact on detection, diagnosis, and characterization of GI cancers, as well as a wide range of epithelial cancers.
Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light
NASA Astrophysics Data System (ADS)
Flores, Angel; Ehrehreich, Thomas; Holten, Roger; Anderson, Brian; Dajani, Iyad
2016-03-01
We report efficient coherent beam combining of five kilowatt-class fiber amplifiers with a diffractive optical element (DOE). Based on a master oscillator power amplifier (MOPA) configuration, the amplifiers were seeded with pseudo random phase modulated light. Each non-polarization maintaining fiber amplifier was optically path length matched and provides approximately 1.2 kW of near diffraction-limited output power (measured M2<1.1). Consequently, a low power sample of each laser was utilized for active linear polarization control. A low power sample of the combined beam after the DOE provided an error signal for active phase locking which was performed via Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging (LOCSET). After phase stabilization, the beams were coherently combined via the 1x5 DOE. A total combined output power of 4.9 kW was achieved with 82% combining efficiency and excellent beam quality (M2<1.1). The intrinsic DOE splitter loss was 5%. Similarly, losses due in part to non-ideal polarization, ASE content, uncorrelated wavefront errors, and misalignment errors contributed to the efficiency reduction.
Kuen, Jihyeon; Woo, Eung Je; Seo, Jin Keun
2009-06-01
We evaluated the performance of the lately developed electrical impedance tomography (EIT) system KHU Mark1 through time-difference imaging experiments of canine and human lungs. We derived a multi-frequency time-difference EIT (mftdEIT) image reconstruction algorithm based on the concept of the equivalent homogeneous complex conductivity. Imaging experiments were carried out at three different frequencies of 10, 50 and 100 kHz with three different postures of right lateral, sitting (or prone) and left lateral positions. For three normal canine subjects, we controlled the ventilation using a ventilator at three tidal volumes of 100, 150 and 200 ml. Three human subjects were asked to breath spontaneously at a normal tidal volume. Real- and imaginary-part images of the canine and human lungs were reconstructed at three frequencies and three postures. Images showed different stages of breathing cycles and we could interpret them based on the understanding of the proposed mftdEIT image reconstruction algorithm. Time series of images were further analyzed by using the functional EIT (fEIT) method. Images of human subjects showed the gravity effect on air distribution in two lungs. In the canine subjects, the morphological change seems to dominate the gravity effect. We could also observe that two different types of ventilation should have affected the results. The KHU Mark1 EIT system is expected to provide reliable mftdEIT images of the human lungs. In terms of the image reconstruction algorithm, it would be worthwhile including the effects of three-dimensional current flows inside the human thorax. We suggest clinical trials of the KHU Mark1 for pulmonary applications.
Detonation Diffraction in a Multi-Step Channel
2010-12-01
openings. This allowed the detonation wave diffraction transmission limits to be determined for hydrogen/air mixtures and to better understand...imaging systems to provide shock wave detail and velocity information. The images were observed through a newly designed explosive proof optical section...stepped openings. This allowed the detonation wave diffraction transmission limits to be determined for hydrogen/air mixtures and to better
Krysiak, Yaşar; Barton, Bastian; Marler, Bernd; Neder, Reinhard B; Kolb, Ute
2018-03-01
Nanoscaled porous materials such as zeolites have attracted substantial attention in industry due to their catalytic activity, and their performance in sorption and separation processes. In order to understand the properties of such materials, current research focuses increasingly on the determination of structural features beyond the averaged crystal structure. Small particle sizes, various types of disorder and intergrown structures render the description of structures at atomic level by standard crystallographic methods difficult. This paper reports the characterization of a strongly disordered zeolite structure, using a combination of electron exit-wave reconstruction, automated diffraction tomography (ADT), crystal disorder modelling and electron diffraction simulations. Zeolite beta was chosen for a proof-of-principle study of the techniques, because it consists of two different intergrown polymorphs that are built from identical layer types but with different stacking sequences. Imaging of the projected inner Coulomb potential of zeolite beta crystals shows the intergrowth of the polymorphs BEA and BEB. The structures of BEA as well as BEB could be extracted from one single ADT data set using direct methods. A ratio for BEA/BEB = 48:52 was determined by comparison of the reconstructed reciprocal space based on ADT data with simulated electron diffraction data for virtual nanocrystals, built with different ratios of BEA/BEB. In this way, it is demonstrated that this smart interplay of the above-mentioned techniques allows the elaboration of the real structures of functional materials in detail - even if they possess a severely disordered structure.
Apparatus for X-ray diffraction microscopy and tomography of cryo specimens
Beetz, T.; Howells, M. R.; Jacobsen, C.; ...
2005-03-14
An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore » computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less
Electron coherent diffraction tomography of a nanocrystal
NASA Astrophysics Data System (ADS)
Dronyak, Roman; Liang, Keng S.; Tsai, Jin-Sheng; Stetsko, Yuri P.; Lee, Ting-Kuo; Chen, Fu-Rong
2010-05-01
Coherent diffractive imaging (CDI) with electron or x-ray sources is a promising technique for investigating the structure of nanoparticles down to the atomic scale. In electron CDI, a two-dimensional reconstruction is demonstrated using highly coherent illumination from a field-emission gun as a source of electrons. In a three-dimensional (3D) electron CDI, we experimentally determine the morphology of a single MgO nanocrystal using the Bragg diffraction geometry. An iterative algorithm is applied to invert the 3D diffraction pattern about a (200) reflection of the nanoparticle measured at an angular range of 1.8°. The results reveal a 3D image of the sample at ˜8 nm resolution, and agree with a simulation. Our work demonstrates an alternative approach to obtain the 3D structure of nanocrystals with an electron microscope.
Parametric phase conjugation for the second harmonic of a nonlinear ultrasonic beam
NASA Astrophysics Data System (ADS)
Brysev, A. P.; Bunkin, F. V.; Hamilton, M. F.; Klopotov, R. V.; Krutyanskii, L. M.; Yan, K.
2003-01-01
The effect of phase conjugation for the second harmonic of a focused ultrasonic beam was investigated experimentally and by numerical simulation. An ultrasonic pulse with the carrier frequency f=3 MHz was emitted into water and focused at a point between the source and the phase conjugating system. The phase conjugation for the second harmonic of the incident wave (2 f=6 MHz) was performed in a magnetostrictive ceramic as a result of the parametric interaction of the incident wave with the pumping magnetic field (the pumping frequency was f p=4 f=12 MHz). The axial and focal distributions of sound pressure in the incident and conjugated beams were measured using a broadband PVDF membrane hydrophone. The corresponding calculations were performed by solving numerically the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation allowing for the nonlinearity, diffraction, and thermoviscous absorption. The results of measurements agreed well with the calculations and showed that the field of a conjugate wave adequately reproduces the field of the second harmonic of the incident wave. A certain advantage of focusing with the phase conjugation for the second harmonic was demonstrated in comparison with the operation at the doubled frequency of the incident wave. The results of this study can serve as a basis for the utilization of the phase conjugation of harmonics in ultrasonic tomography and nondestructive testing.
Optical diffraction tomography: accuracy of an off-axis reconstruction
NASA Astrophysics Data System (ADS)
Kostencka, Julianna; Kozacki, Tomasz
2014-05-01
Optical diffraction tomography is an increasingly popular method that allows for reconstruction of three-dimensional refractive index distribution of semi-transparent samples using multiple measurements of an optical field transmitted through the sample for various illumination directions. The process of assembly of the angular measurements is usually performed with one of two methods: filtered backprojection (FBPJ) or filtered backpropagation (FBPP) tomographic reconstruction algorithm. The former approach, although conceptually very simple, provides an accurate reconstruction for the object regions located close to the plane of focus. However, since FBPJ ignores diffraction, its use for spatially extended structures is arguable. According to the theory of scattering, more precise restoration of a 3D structure shall be achieved with the FBPP algorithm, which unlike the former approach incorporates diffraction. It is believed that with this method one is allowed to obtain a high accuracy reconstruction in a large measurement volume exceeding depth of focus of an imaging system. However, some studies have suggested that a considerable improvement of the FBPP results can be achieved with prior propagation of the transmitted fields back to the centre of the object. This, supposedly, enables reduction of errors due to approximated diffraction formulas used in FBPP. In our view this finding casts doubt on quality of the FBPP reconstruction in the regions far from the rotation axis. The objective of this paper is to investigate limitation of the FBPP algorithm in terms of an off-axis reconstruction and compare its performance with the FBPJ approach. Moreover, in this work we propose some modifications to the FBPP algorithm that allow for more precise restoration of a sample structure in off-axis locations. The research is based on extensive numerical simulations supported with wave-propagation method.
Experimental observation of acoustic sub-harmonic diffraction by a grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jingfei, E-mail: benjamin.jf.liu@gatech.edu; Declercq, Nico F., E-mail: declercqdepatin@gatech.edu
2014-06-28
A diffraction grating is a spatial filter causing sound waves or optical waves to reflect in directions determined by the frequency of the waves and the period of the grating. The classical grating equation is the governing principle that has successfully described the diffraction phenomena caused by gratings. However, in this work, we show experimental observation of the so-called sub-harmonic diffraction in acoustics that cannot be explained by the classical grating equation. Experiments indicate two physical phenomena causing the effect: internal scattering effects within the corrugation causing a phase shift and nonlinear acoustic effects generating new frequencies. This discovery expandsmore » our current understanding of the diffraction phenomenon, and it also makes it possible to better design spatial diffraction spectra, such as a rainbow effect in optics with a more complicated color spectrum than a traditional rainbow. The discovery reveals also a possibly new technique to study nonlinear acoustics by exploitation of the natural spatial filtering effect inherent to an acoustic diffraction grating.« less
Edge Diffraction Coefficients around Critical Rays
NASA Astrophysics Data System (ADS)
Fradkin, L.; Harmer, M.; Darmon, M.
2014-04-01
The classical GTD (Geometrical Theory of Diffraction) gives a recipe, based on high-frequency asymptotics, for calculating edge diffraction coefficients in the geometrical regions where only diffracted waves propagate. The Uniform GTD extends this recipe to transition zones between irradiated and silent regions, known as penumbra. For many industrial materials, e.g. steels, and frequencies utlized in industrial ultrasonic transducers, that is, around 5 MHz, asymptotics suggested for description of geometrical regions supporting the head waves or transition regions surrounding their boundaries, known as critical rays, prove unsatisfactory. We present a numerical extension of GTD, which is based on a regularized, variable step Simpson's method for evaluating the edge diffraction coefficients in the regions of interference between head waves, diffracted waves and/or reflected waves. In mathematical terms, these are the regions of coalescence of three critical points - a branch point, stationary point and/or pole, respectively. We show that away from the shadow boundaries, near the critical rays the GTD still produces correct values of the edge diffraction coefficients.
Imaging density and seismic velocities in the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Fichtner, A.; Blom, N.; Gokhberg, A.
2017-12-01
The Mediterranean domain is a geologically complicated region, a result of its complex tectonic and geodynamic evolution. Our understanding of it draws from surface geology, modeling and imaging of the subsurface. Here, we present a seismic waveform tomography of the Eastern Mediterranean. While computationally more expensive than ray-based imaging methods, the advantage of waveform methods lies in their ability to incorporate in a consistent manner all the information in seismograms - not just the arrivals of certain, specified phases. As a result, body and multimode surface waves, source effects, frequency-dependence, wavefront healing, anisotropy and attenuation are naturally and coherently incorporated. This not only allows us to image P- and S-wave velocity jointly for the crust and mantle, but also makes it possible to put constraints on density that ray tomography cannot provide. This is of special interest because heterogeneities in density drive geodynamics, and the combined knowledge of all parameters can help to distinguish between thermal and compositional effect.Our tomography makes use of a multi-scale approach, initially using only the very lowest frequency signals with periods of 100-150 s. The low-frequency data is not only important in order to avoid local minima in the optimisation, also the recovery of density relies crucially on it. As the model is updated and more of the data is explained by it, higher-frequency data is added and more parts of the seismogram are included. Only those parts are used in which data and synthetics are similar enough to allow for meaningful comparison. Our aim is to go down to periods of 10 s, which corresponds to structures of 15 km size in the crust to 25 km in the mantle. Resolution of the final model is assessed using a resolution analysis strategy developed by Fichtner & van Leeuwen (JGR, 2015). This helps us to evaluate the effects of smearing and heterogeneous ray coverage in a quantitative manner and gives an indication of trade-offs between parameters. Our work aims to provide a coherent model for the crust and upper mantle in the Eastern Mediterranean that includes seismic velocities, anisotropy and density. Taken together, these parameters may help shed light on the nature of anomalies as slabs, thermal provinces or compositional heterogeneity.
NASA Astrophysics Data System (ADS)
Hegymegi, Erika; Gyöngy, Miklós; Bodolai, Tamás; Divós, Ferenc; Barta, Edit; Gribovszki, Katalin; Bokelmann, Götz; Hegymegi, Csaba; Lednická, Markéta; Kovács, Károly
2016-04-01
Intact and vulnerable, candle-stick type stalagmites can be used as prehistoric-earthquake indicators during seismic-hazard analysis of a given region, because they are old enough to survive several earthquakes. The continued intactness of the stalagmites indicates a lack of earthquakes that had the strength to destroy them. To make sure that the stalagmites are intact, we have to image their internal structure in order to estimate the steadiness more accurate and potential failure in the last few thousand years, during their evolution. These stalagmites play an important indicator role and carry fundamental information; however, legally they are strictly protected natural objects in Europe. Therefore it is impossible to examine them in the laboratory by conventional equipment such as computer tomography (CT) or X-ray, because this would require taking samples. With the presented non-destructive methods (ultrasound and acoustic tomography) we tried to detect macroholes, cracks and velocity anomalies inside the stalagmites on the mm scale in situ, in the cave. The acoustic tomography applied in the current work is an existing method in forest research. Forest researchers use it to non-destructively detect the size and location of decayed or hollow parts in the trunk and this technique is able to detect the velocity changing of wave propagation and anomalies in the stalagmites as well. The other method that we use is ultrasound imaging, which uses (and is able to calculate) the velocity of sound propagation. Here, the frequency used is much higher (typically 250 kHz to 5 MHz), which increases resolution but at the same time decreases penetration depth compared to acoustic tomography. In this latter work, through transmission and TOFD (time-of-flight-diffraction) ultrasound methods are using thickness-mode ultrasound transducers (Panametrics, Olympus). Such equipment is well-adapted to the cave environment and this is the first time that it has been used for these aims and in situ in cave environment.
Spatiotemporal optical pulse transformation by a resonant diffraction grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru
The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has beenmore » obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.« less
NASA Astrophysics Data System (ADS)
Qu, P.; Chen, Y. J.; Yu, Y.
2017-12-01
South China Continent is major formed from the Paleo-South China plate. The continent has experienced complicated tectonic history after Neoproterozoic. Previous studies suggested some possible model for the collision between South China Continent and North China Continent. Body wave tomography and surface wave tomography are widely used to inverse upper mantle velocity structure. In our study, finite frequency tomography were carried on to get explanation more correctly. We gathered nearly 60000 pieces of teleseismic event records by 166 broad band seismic stations with Mw > 5.5. Here sensitive kernel of ak135 velocity structure was calculated, which is based on Born approximation, and then we applied multi-channel cross-correlation to pick arrival time difference under 3 frequency band. Combining with crust thickness correct from receiver function, we solve the inversion matrix by LSQR method, and get accurate upper mantle structure of P, S velocity. For more accurate results, we apply a method to calculate Vp/Vs ratio, to help to verify the velocity anomaly. The result in this research shows: 1. A strong velocity anomaly exists in the northern of South China Continent, in an area 31°N between 112°-118°E. The anomaly is about . We suggest that, this anomaly is related to the collision from North China Continent. It implies the collision underthrusted to southward. 2. A clearly slow velocity anomaly exists in the northern of Cathaysia block. This low velocity anomaly exist on the boundary of Yangtz block and Cathysian block, it is related to the left over of block collision in early phanerozoic. 3. We recognized some little velocity anomaly exit in the research area. Comparing these velocity anomaly with U-Pb zircon ages, we suggest complicated orogenesis in Phanerozoic is the cause of the formation of these little anomaly. The result in our study support the collision model, which shows the underthrust direction is southward, on the south of Qinling-Dabie Orogen. The anomaly mass is larger than the composite orogenic in Yangtze block.
Sivanandam, S E; Mathew, Georgie; Bhat, Sanjay H
2009-07-01
Persistent hematuria is one of the most dreaded complications following percutanous nephrolithotomy (PCNL). Although invasive, a catheter-based angiogram is usually used to localize the bleeding vessel and subsequently embolize it. Advances in imaging technology have now made it possible to use a non invasive multi-detector computed tomography (MDCT) angiogram with 3-D reconstruction to establish the diagnosis. We report a case of post-PCNL hemorrhage due to a pseudo aneurysm that was missed by a conventional angiogram and subsequently detected on MDCT angiogram.
Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers
NASA Astrophysics Data System (ADS)
Bollmann, Tjeerd R. J.
2018-04-01
Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.
An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography
NASA Astrophysics Data System (ADS)
Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.
2014-09-01
A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.
Phononic crystal diffraction gratings
NASA Astrophysics Data System (ADS)
Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent
2012-02-01
When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.
Exploring actinide materials through synchrotron radiation techniques.
Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang
2014-12-10
Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of the inclined femto laser incidence at the phase mask on FBG carving
NASA Astrophysics Data System (ADS)
Wang, Jian; Wu, Shengli; Zhang, Jintao; Ren, Wenyi
2015-12-01
The inclined incidence of the femto laser on the phase mask in fiber Bragg grating (FBG) carving has a significant effect on the quality of FBG fabrication. Based on that the infrared femto laser has highly spatial coherence and the order walk-off will happen behind the phase mask, the interferogram generated at the fiber core by the inclined femto laser beam has been analyzed using the multi-beam interference principle. The influence of beam inclination on the coherence of the 0th and ± 1st orders diffraction with different exposure distance, the visibility of interferogram and the frequency component of the transverse interferogram intensity has also been analyzed. It is meaningful for the FBG fabricating with the femto laser.
Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes
Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing
2014-01-01
Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783
Multi-modal STEM-based tomography of HT-9 irradiated in FFTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Eftink, Benjamin Paul; Saleh, Tarik A.
Under irradiation, point defects and defect clusters can agglomerate to form extended two and three dimensional (2D/3D) defects. The formation of defects can be synergistic in nature with one defect or defect-type influencing the formation and/or evolution of another. The resul is a need exists to perform advanced characterization where microstructures are accurately reproduced in 3D. Here, HT-9 neutron irradiated in the FFTF was used to evaluate the ability of multi-tilt STEM-based tomography to reproduce the fine-scale radiation-induced microstructure. High-efficiency STEM-EDS was used to provide both structural and chemical information during the 3D reconstruction. The results show similar results tomore » a previous two-tilt tomography study on the same material; the α' phase is denuded around the Ni-Si-Mn rich G-phase and cavities. It is concluded both tomography reconstruction techniques are readily viable and could add significant value to the advanced characterization capabilities for irradiated materials.« less
[The clinical economic analysis of the methods of ischemic heart disease diagnostics].
Kalashnikov, V Iu; Mitriagina, S N; Syrkin, A L; Poltavskaia, M G; Sorokina, E G
2007-01-01
The clinical economical analysis was applied to assess the application of different techniques of ischemic heart disease diagnostics - the electro-cardiographic monitoring, the treadmill-testing, the stress-echo cardiographic with dobutamine, the single-photon computerized axial tomography with load, the multi-spiral computerized axial tomography with coronary arteries staining in patients with different initial probability of disease occurrence. In all groups, the best value of "cost-effectiveness" had the treadmill-test. The patients with low risk needed 17.4 rubles to precise the probability of ischemic heart disease occurrence at 1%. In the group with medium and high risk this indicator was 9.4 and 24.7 rubles correspondingly. It is concluded that to precise the probability of ischemic heart disease occurrence after tredmil-test in the patients with high probability it is appropriate to use the single-photon computerized axial tomography with load and in the case of patients with low probability the multi-spiral computerized axial tomography with coronary arteries staining.
McDonald, S A; Holzner, C; Lauridsen, E M; Reischig, P; Merkle, A P; Withers, P J
2017-07-12
Pressureless sintering of loose or compacted granular bodies at elevated temperature occurs by a combination of particle rearrangement, rotation, local deformation and diffusion, and grain growth. Understanding of how each of these processes contributes to the densification of a powder body is still immature. Here we report a fundamental study coupling the crystallographic imaging capability of laboratory diffraction contrast tomography (LabDCT) with conventional computed tomography (CT) in a time-lapse study. We are able to follow and differentiate these processes non-destructively and in three-dimensions during the sintering of a simple copper powder sample at 1050 °C. LabDCT quantifies particle rotation (to <0.05° accuracy) and grain growth while absorption CT simultaneously records the diffusion and deformation-related morphological changes of the sintering particles. We find that the rate of particle rotation is lowest for the more highly coordinated particles and decreases during sintering. Consequently, rotations are greater for surface breaking particles than for more highly coordinated interior ones. Both rolling (cooperative) and sliding particle rotations are observed. By tracking individual grains the grain growth/shrinkage kinetics during sintering are quantified grain by grain for the first time. Rapid, abnormal grain growth is observed for one grain while others either grow or are consumed more gradually.
Digital holographic tomography based on spectral interferometry.
Yu, Lingfeng; Chen, Zhongping
2007-10-15
A digital holographic tomography system has been developed with the use of an inexpensive broadband light source and a fiber-based spectral interferometer. Multiple synthesized holograms (or object wave fields) of different wavelengths are obtained by transversely scanning a probe beam. The acquisition speed is improved compared with conventional wavelength-scanning digital holographic systems. The optical field of a volume around the object location is calculated by numerical diffraction from each synthesized hologram, and all such field volumes are numerically superposed to create the three-dimensional tomographic image. Experiments were performed to demonstrate the idea.
NASA Astrophysics Data System (ADS)
Dumon, M.; Van Ranst, E.
2016-01-01
This paper presents a free and open-source program called PyXRD (short for Python X-ray diffraction) to improve the quantification of complex, poly-phasic mixed-layer phyllosilicate assemblages. The validity of the program was checked by comparing its output with Sybilla v2.2.2, which shares the same mathematical formalism. The novelty of this program is the ab initio incorporation of the multi-specimen method, making it possible to share phases and (a selection of) their parameters across multiple specimens. PyXRD thus allows for modelling multiple specimens side by side, and this approach speeds up the manual refinement process significantly. To check the hypothesis that this multi-specimen set-up - as it effectively reduces the number of parameters and increases the number of observations - can also improve automatic parameter refinements, we calculated X-ray diffraction patterns for four theoretical mineral assemblages. These patterns were then used as input for one refinement employing the multi-specimen set-up and one employing the single-pattern set-ups. For all of the assemblages, PyXRD was able to reproduce or approximate the input parameters with the multi-specimen approach. Diverging solutions only occurred in single-pattern set-ups, which do not contain enough information to discern all minerals present (e.g. patterns of heated samples). Assuming a correct qualitative interpretation was made and a single pattern exists in which all phases are sufficiently discernible, the obtained results indicate a good quantification can often be obtained with just that pattern. However, these results from theoretical experiments cannot automatically be extrapolated to all real-life experiments. In any case, PyXRD has proven to be useful when X-ray diffraction patterns are modelled for complex mineral assemblages containing mixed-layer phyllosilicates with a multi-specimen approach.
Atom Probe Tomography Studies on the Cu(In,Ga)Se2 Grain Boundaries
Cojocaru-Mirédin, Oana; Schwarz, Torsten; Choi, Pyuck-Pa; Herbig, Michael; Wuerz, Roland; Raabe, Dierk
2013-01-01
Compared with the existent techniques, atom probe tomography is a unique technique able to chemically characterize the internal interfaces at the nanoscale and in three dimensions. Indeed, APT possesses high sensitivity (in the order of ppm) and high spatial resolution (sub nm). Considerable efforts were done here to prepare an APT tip which contains the desired grain boundary with a known structure. Indeed, site-specific sample preparation using combined focused-ion-beam, electron backscatter diffraction, and transmission electron microscopy is presented in this work. This method allows selected grain boundaries with a known structure and location in Cu(In,Ga)Se2 thin-films to be studied by atom probe tomography. Finally, we discuss the advantages and drawbacks of using the atom probe tomography technique to study the grain boundaries in Cu(In,Ga)Se2 thin-film solar cells. PMID:23629452
NASA Astrophysics Data System (ADS)
Tibuleac, Sorin
In this dissertation, new reflection and transmission filters are developed and characterized in the optical and microwave spectral regions. These guided-mode resonance (GMR) filters are implemented by integrating diffraction gratings into classical thin-film multilayers to produce high efficiency filter response and low sidebands extended over a large spectral range. Diffraction from phase-shifted gratings and gratings with different periods is analyzed using rigorous coupled-wave theory yielding a new approach to filter linewidth broadening, line-shaping, and multi-line filters at normal incidence. New single-grating transmission filters presented have narrow linewidth, high peak transmittance, and low sideband reflectance. A comparison with classical thin-film filters shows that GMR devices require significantly fewer layers to obtain narrow linewidth and high peak response. All-dielectric microwave frequency- selective surfaces operating in reflection or transmission are shown to be realizable with only a few layers using common microwave materials. Single-layer and multilayer waveguide gratings operating as reflection and transmission filters, respectively, were built and tested in the 4-20 GHz frequency range. The presence of GMR notches and peaks is clearly established by the experimental results, and their spectral location and lineshape found to be in excellent agreement with the theoretical predictions. A new computer program using genetic algorithms and rigorous coupled-wave analysis was developed for optimization of multilayer structures containing homogeneous and diffractive layers. This program was utilized to find GMR filters possessing features not previously known. Thus, numerous examples of transmission filters with peaks approaching 100%, narrow linewidths (~0.03%), and low sidebands have been found in structures containing only 1-3 layers. A new type of GMR device integrating a waveguide grating with subwavelength period on the endface of an optical fiber is developed for high-resolution biomedical or chemical sensors and spectral filtering applications. Diffraction gratings with submicron periods exhibiting high efficiencies have been recorded for the first time on coated and uncoated endfaces of single-mode and multimode fibers. Guided-mode resonance transmittance notches of ~18% were experimentally obtained with structures consisting of photoresist gratings on thin films of Si3N4 deposited on optical fiber endfaces.
Multi-Mounted X-Ray Computed Tomography.
Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng
2016-01-01
Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT.
Minimal-scan filtered backpropagation algorithms for diffraction tomography.
Pan, X; Anastasio, M A
1999-12-01
The filtered backpropagation (FBPP) algorithm, originally developed by Devaney [Ultrason. Imaging 4, 336 (1982)], has been widely used for reconstructing images in diffraction tomography. It is generally known that the FBPP algorithm requires scattered data from a full angular range of 2 pi for exact reconstruction of a generally complex-valued object function. However, we reveal that one needs scattered data only over the angular range 0 < or = phi < or = 3 pi/2 for exact reconstruction of a generally complex-valued object function. Using this insight, we develop and analyze a family of minimal-scan filtered backpropagation (MS-FBPP) algorithms, which, unlike the FBPP algorithm, use scattered data acquired from view angles over the range 0 < or = phi < or = 3 pi/2. We show analytically that these MS-FBPP algorithms are mathematically identical to the FBPP algorithm. We also perform computer simulation studies for validation, demonstration, and comparison of these MS-FBPP algorithms. The numerical results in these simulation studies corroborate our theoretical assertions.
Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography.
Baruchel, J; Cloetens, P; Härtwig, J; Ludwig, W; Mancini, L; Pernot, P; Schlenker, M
2000-05-01
Several hard X-rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the 'long' (145 m) ID19 'imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample ('effective divergence' approximately microradians). When using the ;propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the 'edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro-heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three-dimensional density mapping of the sample ('holotomography'). The combination of diffraction topography and phase-contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination.
NASA Astrophysics Data System (ADS)
Hou, Zhenlong; Huang, Danian
2017-09-01
In this paper, we make a study on the inversion of probability tomography (IPT) with gravity gradiometry data at first. The space resolution of the results is improved by multi-tensor joint inversion, depth weighting matrix and the other methods. Aiming at solving the problems brought by the big data in the exploration, we present the parallel algorithm and the performance analysis combining Compute Unified Device Architecture (CUDA) with Open Multi-Processing (OpenMP) based on Graphics Processing Unit (GPU) accelerating. In the test of the synthetic model and real data from Vinton Dome, we get the improved results. It is also proved that the improved inversion algorithm is effective and feasible. The performance of parallel algorithm we designed is better than the other ones with CUDA. The maximum speedup could be more than 200. In the performance analysis, multi-GPU speedup and multi-GPU efficiency are applied to analyze the scalability of the multi-GPU programs. The designed parallel algorithm is demonstrated to be able to process larger scale of data and the new analysis method is practical.
Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials
NASA Astrophysics Data System (ADS)
Qin, Chengzhi; Zhou, Feng; Peng, Yugui; Sounas, Dimitrios; Zhu, Xuefeng; Wang, Bing; Dong, Jianji; Zhang, Xinliang; Alù; , Andrea; Lu, Peixiang
2018-03-01
By using optical phase modulators in a fiber-optical circuit, we theoretically and experimentally demonstrate large control over the spectrum of an impinging signal, which may evolve analogously to discrete diffraction in spatial waveguide arrays. The modulation phase acts as a photonic gauge potential in the frequency dimension, realizing efficient control of the central frequency and bandwidth of frequency combs. We experimentally achieve a 50 GHz frequency shift and threefold bandwidth expansion of an impinging comb, as well as the frequency analogue of various refraction phenomena, including negative refraction and perfect focusing in the frequency domain, both for discrete and continuous incident spectra. Our study paves a promising way towards versatile frequency management for optical communications and signal processing using time modulation schemes.
Global Sky Model (GSM): A Model of Diffuse Galactic Radio Emission from 10 MHz to 100 GHz
NASA Astrophysics Data System (ADS)
de Oliveira-Costa, Angelica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia
2010-11-01
Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. The data compilation and software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at the link below.
Flat nonlinear optics: metasurfaces for efficient frequency mixing
NASA Astrophysics Data System (ADS)
Nookala, Nishant; Lee, Jongwon; Liu, Yingnan; Bishop, Wells; Tymchenko, Mykhailo; Gomez-Diaz, J. Sebastian; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus-Christian; Wolf, Omri; Brener, Igal; Alu, Andrea; Belkin, Mikhail A.
2017-02-01
Gradient metasurfaces, or ultrathin optical components with engineered transverse impedance gradients along the surface, are able to locally control the phase and amplitude of the scattered fields over subwavelength scales, enabling a broad range of linear components in a flat, integrable platform1-4. On the contrary, due to the weakness of their nonlinear optical responses, conventional nonlinear optical components are inherently bulky, with stringent requirements associated with phase matching and poor control over the phase and amplitude of the generated beam. Nonlinear metasurfaces have been recently proposed to enable frequency conversion in thin films without phase-matching constraints and subwavelength control of the local nonlinear phase5-8. However, the associated optical nonlinearities are far too small to produce significant nonlinear conversion efficiency and compete with conventional nonlinear components for pump intensities below the materials damage threshold. Here, we report multi-quantum-well based gradient nonlinear metasurfaces with second-order nonlinear susceptibility over 106 pm/V for second harmonic generation at a fundamental pump wavelength of 10 μm, 5-6 orders of magnitude larger than traditional crystals. Further, we demonstrate the efficacy of this approach to designing metasurfaces optimized for frequency conversion over a large range of wavelengths, by reporting multi-quantum-well and metasurface structures optimized for a pump wavelength of 6.7 μm. Finally, we demonstrate how the phase of this nonlinearly generated light can be locally controlled well below the diffraction limit using the Pancharatnam-Berry phase approach5,7,9, opening a new paradigm for ultrathin, flat nonlinear optical components.
GPR and ERT detection and characterization of a mass burial, Spanish Civil War, Northern Spain.
Rubio-Melendi, David; Gonzalez-Quirós, Andrés; Roberts, Daniel; García García, María Del Carmen; Caunedo Domínguez, Amaya; Pringle, Jamie K; Fernández-Álvarez, José-Paulino
2018-06-01
Around 27,000 people were killed in the province of Asturias during the Spanish Civil War, with several thousands killed after the war ended. There are currently over 2,000 known mass burial locations throughout Spain, but many more are unknown. Geophysics is a useful tool employed to help in the active attempts to document and improve knowledge about victims from this conflict. This paper details a non-invasive study of the Cementerio de El Salvador, in the city of Oviedo, Northern Spain. Part of the cemetery contains a known mass burial with approximately 1,300 individuals from the Spanish Civil War and post-war repression eras. Multi-frequency near-surface geophysical techniques were undertaken, after permission, to enhance knowledge about which, if any, techniques should be used to detect, delineate and analyse such mass graves. Multi-frequency (250MHz and 500MHz) ground-penetrating radar surveys were acquired together with 2D and 3D Electrical Resistivity Tomography datasets. The results have established the limits of the mass grave and improve the knowledge of the internal mass grave structure. The paper also shows the importance of considering the climatic conditions during data acquisition. This has important implications for the successful detection of recent historical mass burials using near-surface geophysics. Copyright © 2018 Elsevier B.V. All rights reserved.
New methods for indexing multi-lattice diffraction data
Gildea, Richard J.; Waterman, David G.; Parkhurst, James M.; Axford, Danny; Sutton, Geoff; Stuart, David I.; Sauter, Nicholas K.; Evans, Gwyndaf; Winter, Graeme
2014-01-01
A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of diffraction data. The method takes advantage of a simplification of Fourier transform-based methods that is applicable when the unit-cell dimensions are known a priori. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from crystals of ∼1 µm in size, where it is shown that up to six lattices can be successfully indexed and subsequently integrated from a 1° wedge of data. Analysis is presented which shows that improvements in data-quality indicators can be obtained through accurate identification and rejection of overlapping reflections prior to scaling. PMID:25286849
New methods for indexing multi-lattice diffraction data.
Gildea, Richard J; Waterman, David G; Parkhurst, James M; Axford, Danny; Sutton, Geoff; Stuart, David I; Sauter, Nicholas K; Evans, Gwyndaf; Winter, Graeme
2014-10-01
A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of diffraction data. The method takes advantage of a simplification of Fourier transform-based methods that is applicable when the unit-cell dimensions are known a priori. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from crystals of ∼1 µm in size, where it is shown that up to six lattices can be successfully indexed and subsequently integrated from a 1° wedge of data. Analysis is presented which shows that improvements in data-quality indicators can be obtained through accurate identification and rejection of overlapping reflections prior to scaling.
New methods for indexing multi-lattice diffraction data
Gildea, Richard J.; Waterman, David G.; Parkhurst, James M.; ...
2014-09-27
A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of diffraction data. The method takes advantage of a simplification of Fourier transform-based methods that is applicable when the unit-cell dimensions are known a priori. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from crystals of ~1 µm in size, where it is shown that up to six lattices can be successfully indexed and subsequently integrated from a 1° wedge of data. Analysis is presented which shows that improvements in data-quality indicators can bemore » obtained through accurate identification and rejection of overlapping reflections prior to scaling.« less
NASA Astrophysics Data System (ADS)
Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.
2016-10-01
X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.
New methods for indexing multi-lattice diffraction data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gildea, Richard J.; Waterman, David G.; CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA
2014-10-01
A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of data. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from microcrystals of ∼1 µm in size. A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of diffraction data. The method takes advantage of a simplification of Fourier transform-based methods that is applicable when the unit-cell dimensions are known a priori. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-latticemore » data recorded from crystals of ∼1 µm in size, where it is shown that up to six lattices can be successfully indexed and subsequently integrated from a 1° wedge of data. Analysis is presented which shows that improvements in data-quality indicators can be obtained through accurate identification and rejection of overlapping reflections prior to scaling.« less
Millimeter Wave Holographical Inspection of Honeycomb Composites
NASA Technical Reports Server (NTRS)
Case, J. T.; Kharkovsky, S.; Zoughi, R.; Stefes, G.; Hepburn, Frank L.; Hepburn, Frank L.
2007-01-01
Multi-layered composite structures manufactured with honeycomb, foam or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as disbond, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz - 300 GHz with corresponding wavelengths of 10 - 1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.
Millimeter Wave Holographical Inspection of Honeycomb Composites
NASA Astrophysics Data System (ADS)
Case, J. T.; Kharkovsky, S.; Zoughi, R.; Steffes, G.; Hepburn, F. L.
2008-02-01
Multi-layered composite structures manufactured with honeycomb, foam, or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites, standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as isband, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz-300 GHz with corresponding wavelengths of 10-1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.
Diffraction-based BioCD biosensor for point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Choi, H.; Chang, C.; Savran, C.; Nolte, D.
2018-02-01
The BioCD platform technology uses spinning-disk interferometry to detect molecular binding to target molecular probes in biological samples. Interferometric configurations have included differential phase contrast and in-line quadrature detection. For the detection of extremely low analyte concentrations, nano- or microparticles can enhance the signal through background-free diffraction detection. Diffraction signal measurements on BioCD biosensors are achieved by forming gratings on a disc surface. The grating pattern was printed with biotinylated bovine serum albumin (BSA) and streptavidin coated beads were deployed. The diameter of the beads was 1 micron and strong protein bonding occurs between BSA and streptavidin-coated beads at the printed location. The wavelength for the protein binding detection was 635 nm. The periodic pattern on the disc amplified scattered light into the first-order diffraction position. The diffracted signal contains Mie scattering and a randomly-distributed-bead noise contributions. Variation of the grating pattern periodicity modulates the diffraction efficiency. To test multiple spatial frequencies within a single scan, we designed a fan-shaped grating to perform frequency filter multiplexing on a diffraction-based BioCD.
NASA Astrophysics Data System (ADS)
King, A.; Guignot, N.; Boulard, E.; Deslandes, J. P.; Clark, A. N.; Morard, G.; Itié, J. P.
2017-12-01
Synchrotron diffraction is an ideal technique for investigating materials at high pressure and temperature, because the penetrating nature of high-energy X-rays allows measurements to be made inside pressure cells or sample environments. Wang et al. described the CAESAR acquisition strategy, in which energy and angular dispersive techniques are combined to produce an instrument particularly suitable for quantitative measurements from samples inside high-pressure apparati [1]. The PSICHE beam line of the SOLEIL Synchrotron is equipped with such a CAESAR system. Uniquely, this system allows energy dispersive diffraction spectra to be acquired at scattering angles between -5 and +30 degrees two theta, while maintaining a sphere of confusion at the measurement position in the order of 10 microns. The slits used to define the scattering angle act as Soller slits and select the diffracted volume, separating the sample from its environment. By developing an optimised acquisition strategy we are able to obtain data covering a very wide Q range (to 160nm-1 or more), while minimising the total acquisition time (one hour per complete acquisition). In addition, the 2D nature (angle and energy) of the acquired dataset enables the effective incident spectrum to be efficiently determined with no addition measurements, in order to normalise the acquired data. The resulting profile of scattered intensity as a function of Q is suitable for Fourier transform analysis of liquid or amorphous structures. PSICHE is a multi technique beam line, with a part of the beam time dedicated to parallel beam absorption and phase contrast radiography and tomography [2]. Examples will be given to show how these techniques can be combined with diffraction techniques to greatly enrich studies of materials at extreme conditions. [1] Wang, Y., Uchida, T., Von Dreele, R., Rivers, M. L., Nishiyama, N., Funakoshi, K., Nozawa, A., and Keneko, H., J. Appl. Crystallogr. 37, 947 (2004). [2] King, A., Guignot, N., Zerbino, P., Boulard, E., Desjardins, K., Bourdessoule, M., Leclerq, N., Le, S., Renaud, G., Cerato, M., Bornert, M., Lenoir, N., Delzon, S., Perrillat, J.-P., Legodec, Y., Itié, J.-P. Rev. Sci. Instrum. 87, 093704 (2016).
NASA Astrophysics Data System (ADS)
McMackin, Lenore; Herman, Matthew A.; Weston, Tyler
2016-02-01
We present the design of a multi-spectral imager built using the architecture of the single-pixel camera. The architecture is enabled by the novel sampling theory of compressive sensing implemented optically using the Texas Instruments DLP™ micro-mirror array. The array not only implements spatial modulation necessary for compressive imaging but also provides unique diffractive spectral features that result in a multi-spectral, high-spatial resolution imager design. The new camera design provides multi-spectral imagery in a wavelength range that extends from the visible to the shortwave infrared without reduction in spatial resolution. In addition to the compressive imaging spectrometer design, we present a diffractive model of the architecture that allows us to predict a variety of detailed functional spatial and spectral design features. We present modeling results, architectural design and experimental results that prove the concept.
NASA Technical Reports Server (NTRS)
Heedy, D. J.; Burnside, W. D.
1984-01-01
The moment method and the uniform geometrical theory of diffraction are utilized to obtain two separate solutions for the E-plane field pattern of an aperture-matched horn antenna. This particular horn antenna consists of a standard pyramidal horn with the following modifications: a rolled edge section attached to the aperture edges and a curved throat section. The resulting geometry provides significantly better performance in terms of the pattern, impedance, and frequency characteristics than normally obtainable. The moment method is used to calculate the E-plane pattern and BSWR of the antenna. However, at higher frequencies, large amounts of computation time are required. The uniform geometrical theory of diffraction provides a quick and efficient high frequency solution for the E-plane field pattern. In fact, the uniform geometrical theory of diffraction may be used to initially design the antenna; then, the moment method may be applied to fine tune the design. This procedure has been successfully applied to a compact range feed design.
Minimizing Experimental Setup Time and Effort at APS beamline 1-ID through Instrumentation Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benda, Erika; Almer, Jonathan; Kenesei, Peter
2016-01-01
Sector 1-ID at the APS accommodates a number of dif-ferent experimental techniques in the same spatial enve-lope of the E-hutch end station. These include high-energy small and wide angle X-ray scattering (SAXS and WAXS), high-energy diffraction microscopy (HEDM, both near and far field modes) and high-energy X-ray tomography. These techniques are frequently combined to allow the users to obtain multimodal data, often attaining 1 μm spatial resolution and <0.05º angular resolution. Furthermore, these techniques are utilized while the sam-ple is thermo-mechanically loaded to mimic real operat-ing conditions. The instrumentation required for each of these techniques and environments has been designedmore » and configured in a modular way with a focus on stability and repeatability between changeovers. This approach allows the end station to be more versatile, capable of collecting multi-modal data in-situ while reducing time and effort typically required for set up and alignment, resulting in more efficient beam time use. Key instrumentation de-sign features and layout of the end station are presented.« less
Design and characterization of MEMS interferometric sensing
NASA Astrophysics Data System (ADS)
Snyder, R.; Siahmakoun, A.
2010-02-01
A MEMS-based interferometric sensor is produced using the multi-user MEMS processing standard (MUMPS) micromirrors, movable by thermal actuation. The interferometer is comprised of gold reflection surfaces, polysilicon thermal actuators, hinges, latches and thin film polarization beam splitters. A polysilicon film of 3.5 microns reflects and transmits incident polarized light from an external laser source coupled to a multi-mode optical fiber. The input beam is shaped to a diameter of 10 to 20 microns for incidence upon the 100 micron mirrors. Losses in the optical path include diffraction effects from etch holes created in the manufacturing process, surface roughness of both gold and polysilicon layers, and misalignment of micro-scale optical components. Numerous optical paths on the chip vary by length, number of reflections, and mirror subsystems employed. Subsystems include thermal actuator batteries producing lateral position displacement, angularly tunable mirrors, double reflection surfaces, and static vertical mirrors. All mirror systems are raised via manual stimulation using two micron, residue-free probe tips and some may be aligned using electrical signals causing resistive heating in thermal actuators. The characterization of thermal actuator batteries includes maximum displacement, deflection, and frequency response that coincides with theoretical thermodynamic simulations using finite-element analysis. Maximum deflection of 35 microns at 400 mW input electrical power is shown for three types of actuator batteries as is deflection dependent frequency response data for electrical input signals up to 10 kHz.
Computer modeling of electromagnetic problems using the geometrical theory of diffraction
NASA Technical Reports Server (NTRS)
Burnside, W. D.
1976-01-01
Some applications of the geometrical theory of diffraction (GTD), a high frequency ray optical solution to electromagnetic problems, are presented. GTD extends geometric optics, which does not take into account the diffractions occurring at edges, vertices, and various other discontinuities. Diffraction solutions, analysis of basic structures, construction of more complex structures, and coupling using GTD are discussed.
Optical Tweezers for Sample Fixing in Micro-Diffraction Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenitsch, H.; Rappolt, M.; Sartori, B.
2007-01-19
In order to manipulate, characterize and measure the micro-diffraction of individual structural elements down to single phospholipid liposomes we have been using optical tweezers (OT) combined with an imaging microscope. We were able to install the OT system at the microfocus beamline ID13 at the ESRF and trap clusters of about 50 multi-lamellar liposomes (< 10 {mu}m large cluster). Further we have performed a scanning diffraction experiment with a 1 micrometer beam to demonstrate the fixing capabilities and to confirm the size of the liposome cluster by X-ray diffraction.
Hyperspectral tomography based on multi-mode absorption spectroscopy (MUMAS)
NASA Astrophysics Data System (ADS)
Dai, Jinghang; O'Hagan, Seamus; Liu, Hecong; Cai, Weiwei; Ewart, Paul
2017-10-01
This paper demonstrates a hyperspectral tomographic technique that can recover the temperature and concentration field of gas flows based on multi-mode absorption spectroscopy (MUMAS). This method relies on the recently proposed concept of nonlinear tomography, which can take full advantage of the nonlinear dependency of MUMAS signals on temperature and enables 2D spatial resolution of MUMAS which is naturally a line-of-sight technique. The principles of MUMAS and nonlinear tomography, as well as the mathematical formulation of the inversion problem, are introduced. Proof-of-concept numerical demonstrations are presented using representative flame phantoms and assuming typical laser parameters. The results show that faithful reconstruction of temperature distribution is achievable when a signal-to-noise ratio of 20 is assumed. This method can potentially be extended to simultaneously reconstructing distributions of temperature and the concentration of multiple flame species.
NASA Astrophysics Data System (ADS)
Kuang, Zheng; Lyon, Elliott; Cheng, Hua; Page, Vincent; Shenton, Tom; Dearden, Geoff
2017-03-01
We report on a study into multi-location laser ignition (LI) with a Spatial Light Modulator (SLM), to improve the performance of a single cylinder automotive gasoline engine. Three questions are addressed: i/ How to deliver a multi-beam diffracted pattern into an engine cylinder, through a small opening, while avoiding clipping? ii/ How much incident energy can a SLM handle (optical damage threshold) and how many simultaneous beam foci could thus be created? ; iii/ Would the multi-location sparks created be sufficiently intense and stable to ignite an engine and, if so, what would be their effect on engine performance compared to single-location LI? Answers to these questions were determined as follows. Multi-beam diffracted patterns were created by applying computer generated holograms (CGHs) to the SLM. An optical system for the SLM was developed via modelling in ZEMAX, to cleanly deliver the multi-beam patterns into the combustion chamber without clipping. Optical damage experiments were carried out on Liquid Crystal on Silicon (LCoS) samples provided by the SLM manufacturer and the maximum safe pulse energy to avoid SLM damage found to be 60 mJ. Working within this limit, analysis of the multi-location laser induced sparks showed that diffracting into three identical beams gave slightly insufficient energy to guarantee 100% sparking, so subsequent engine experiments used 2 equal energy beams laterally spaced by 4 mm. The results showed that dual-location LI gave more stable combustion and higher engine power output than single-location LI, for increasingly lean air-fuel mixtures. The paper concludes by a discussion of how these results may be exploited.
Multi-scale 3D characterization of long period stacking ordered structure in Mg-Zn-Gd cast alloys.
Ishida, Masahiro; Yoshioka, Satoru; Yamamoto, Tomokazu; Yasuda, Kazuhiro; Matsumura, Syo
2014-11-01
Magnesium alloys containing rare earth elements are attractive as lightweight structural materials due to their low density, high-specific strength and recycling efficiency. Mg-Zn-Gd system is one of promising systems because of their high creep-resistant property[1]. It is reported that the coherent precipitation formation of the 14H long period stacking ordered structure (LPSO) in Mg-Zn-Gd system at temperatures higher than 623 K[2,3]. In this study, the 14H LPSO phase formed in Mg-Zn-Gd alloys were investigated by multi-scale characterization with X-ray computer tomography (X-CT), focused ion beam (FIB) tomography and aberration-corrected STEM observation for further understanding of the LPSO formation mechanism.The Mg89.5 Zn4.5 Gd6 alloy ingots were cast using high-frequency induction heating in argon atmosphere. The specimens were aged at 753 K for 24 h in air. The aged specimen were cut and polished mechanically for microstructural analysis. The micrometer resolution X-CT observation was performed by conventional scaner (Bruker SKY- SCAN1172) at 80 kV. The FIB tomography and energy dispersive x-ray spectroscopy (EDS) were carried out by a dual beam FIB-SEM system (Hitachi MI-4000L) with silicon drift detector (SDD) (Oxford X-Max(N)). The electron acceleration voltages were used with 3 kV for SEM observation and 10 kV for EDX spectroscopy. The 3D reconstruction from image series was performed by Avizo Fire 8.0 software (FEI). TEM/STEM observations were also performed by transmission electron microscopes (JEOL JEM 2100, JEM-ARM 200F) at the acceleration voltage of 200 keV.The LPSO phase was observed clearly in SEM image of the Mg89.5Zn4.5Gd6 alloy at 753 K for 2h (Fig.1 (a)). The atomic structure of LPSO phase observed as white gray region of SEM image was also confirmed as 14H LPSO structure by using selected electron diffraction patterns and high-resolution STEM observations. The elemental composition of LPSO phase was determined as Mg97Zn1Gd2 by EDS analyses. The 3D representation of the LPSO phase shown in Fig.1 (b) reveals that the shape of LPSO phase was disk-like. The calculated volume fraction of LPSO was about 20%, which is consistent with estimated value from initial composition. The stacked LPSO disks were distributed along 3D network. It is suggested that this 3D structure is concerned with the distribution of Mg3Gd compounds observed in as-cast specimens.jmicro;63/suppl_1/i25-a/DFU068F1F1DFU068F1Fig. 1.(a) SEM image of the Mg89.5Zn4.5Gd6 alloy aged at 753 K for 2h. (b) 3D representation of the tomographic reconstruction from SEM images. The soiled parts of the 3D volume are 14 H LPSO phase. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Quantitative reconstructions in multi-modal photoacoustic and optical coherence tomography imaging
NASA Astrophysics Data System (ADS)
Elbau, P.; Mindrinos, L.; Scherzer, O.
2018-01-01
In this paper we perform quantitative reconstruction of the electric susceptibility and the Grüneisen parameter of a non-magnetic linear dielectric medium using measurement of a multi-modal photoacoustic and optical coherence tomography system. We consider the mathematical model presented in Elbau et al (2015 Handbook of Mathematical Methods in Imaging ed O Scherzer (New York: Springer) pp 1169-204), where a Fredholm integral equation of the first kind for the Grüneisen parameter was derived. For the numerical solution of the integral equation we consider a Galerkin type method.
NASA Astrophysics Data System (ADS)
Deng, Zijian; Li, Changhui
2016-06-01
Imaging small blood vessels and measuring their functional information in finger joint are still challenges for clinical imaging modalities. In this study, we developed a multi-transducer functional photoacoustic tomography (PAT) system and successfully imaged human finger-joint vessels from ˜1 mm to <0.2 mm in diameter. In addition, the oxygen saturation (SO2) values of these vessels were also measured. Our results demonstrate that PAT can provide both anatomical and functional information of individual finger-joint vessels with different sizes, which might help the study of finger-joint diseases, such as rheumatoid arthritis.
Integrated optical signal processing with magnetostatic waves
NASA Technical Reports Server (NTRS)
Fisher, A. D.; Lee, J. N.
1984-01-01
Magneto-optical devices based on Bragg diffraction of light by magnetostatic waves (MSW's) offer the potential of large time-bandwidth optical signal processing at microwave frequencies of 1 to 20 GHz and higher. A thin-film integrated-optical configuration, with the interacting MSW and guided-optical wave both propagating in a common ferrite layer, is necessary to avoid shape-factor demagnetization effects. The underlying theory of the MSW-optical interaction is outlined, including the development of expressions for optical diffraction efficiency as a function of MSW power and other relevant parameters. Bradd diffraction of guided-optical waves by transversely-propagating magnetostatic waves and collinear TE/TM mode conversion included by MSW's have been demonstrated in yttrium iron garnet (YIG) thin films. Diffraction levels as large as 4% (7 mm interaction length) and a modulation dynamic range of approx 30 dB have been observed. Advantages of these MSW-based devices over the analogous acousto-optical devices include: much greater operating frequencies, tunability of the MSW dispersion relation by varying either the RF frequency or the applied bias magnetic field, simple broad-band MSW transducer structures (e.g., a single stripline), and the potential for very high diffraction efficiencies.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
Schowalter, Marco; Schmidt, Martin U.; Czank, Michael; Depmeier, Wulf; Rosenauer, Andreas
2017-01-01
Denisovite is a rare mineral occurring as aggregates of fibres typically 200–500 nm diameter. It was confirmed as a new mineral in 1984, but important facts about its chemical formula, lattice parameters, symmetry and structure have remained incompletely known since then. Recently obtained results from studies using microprobe analysis, X-ray powder diffraction (XRPD), electron crystallography, modelling and Rietveld refinement will be reported. The electron crystallography methods include transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-angle annular dark-field imaging (HAADF), high-resolution transmission electron microscopy (HRTEM), precession electron diffraction (PED) and electron diffraction tomography (EDT). A structural model of denisovite was developed from HAADF images and later completed on the basis of quasi-kinematic EDT data by ab initio structure solution using direct methods and least-squares refinement. The model was confirmed by Rietveld refinement. The lattice parameters are a = 31.024 (1), b = 19.554 (1) and c = 7.1441 (5) Å, β = 95.99 (3)°, V = 4310.1 (5) Å3 and space group P12/a1. The structure consists of three topologically distinct dreier silicate chains, viz. two xonotlite-like dreier double chains, [Si6O17]10−, and a tubular loop-branched dreier triple chain, [Si12O30]12−. The silicate chains occur between three walls of edge-sharing (Ca,Na) octahedra. The chains of silicate tetrahedra and the octahedra walls extend parallel to the z axis and form a layer parallel to (100). Water molecules and K+ cations are located at the centre of the tubular silicate chain. The latter also occupy positions close to the centres of eight-membered rings in the silicate chains. The silicate chains are geometrically constrained by neighbouring octahedra walls and present an ambiguity with respect to their z position along these walls, with displacements between neighbouring layers being either Δz = c/4 or −c/4. Such behaviour is typical for polytypic sequences and leads to disorder along [100]. In fact, the diffraction pattern does not show any sharp reflections with l odd, but continuous diffuse streaks parallel to a* instead. Only reflections with l even are sharp. The diffuse scattering is caused by (100) nanolamellae separated by stacking faults and twin boundaries. The structure can be described according to the order–disorder (OD) theory as a stacking of layers parallel to (100). PMID:28512570
Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano-Furukawa, A., E-mail: sano.asami@jaea.go.jp; Hattori, T.; J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195
2014-11-15
We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use themore » aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.« less
Radar attenuation tomography using the centroid frequency downshift method
Liu, L.; Lane, J.W.; Quan, Y.
1998-01-01
A method for tomographically estimating electromagnetic (EM) wave attenuation based on analysis of centroid frequency downshift (CFDS) of impulse radar signals is described and applied to cross-hole radar data. The method is based on a constant-Q model, which assumes a linear frequency dependence of attenuation for EM wave propagation above the transition frequency. The method uses the CFDS to construct the projection function. In comparison with other methods for estimating attenuation, the CFDS method is relatively insensitive to the effects of geometric spreading, instrument response, and antenna coupling and radiation pattern, but requires the data to be broadband so that the frequency shift and variance can be easily measured. The method is well-suited for difference tomography experiments using electrically conductive tracers. The CFDS method was tested using cross-hole radar data collected at the U.S. Geological Survey Fractured Rock Research Site at Mirror Lake, New Hampshire (NH) during a saline-tracer injection experiment. The attenuation-difference tomogram created with the CFDS method outlines the spatial distribution of saline tracer within the tomography plane. ?? 1998 Elsevier Science B.V. All rights reserved.
Multi-energy spectral CT: adding value in emergency body imaging.
Punjabi, Gopal V
2018-04-01
Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.
Radial reflection diffraction tomography
Lehman, Sean K.
2012-12-18
A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.
Long, Chang; Yin, Sheng; Wang, Wei; Li, Wei; Zhu, Jianfei; Guan, Jianguo
2016-02-18
By investigating a square-shaped metamaterial structure we discover that wave diffraction at diagonal corners of such a structure excites transverse magnetic harmonics of 210 mode (TM210 harmonics). Multi-layer overlapping and deliberately regulating period length between adjacent unit cells can significantly enhance TM210 harmonics, leading to a strong absorption waveband. On such a basis, a design strategy is proposed to achieve broadband, thin-thickness multi-layered metamaterial absorbers (MMAs). In this strategy big pyramidal arrays placed in the "white blanks" of a chessboard exhibit two isolated absorption bands due to their fundamental and TM210 harmonics, which are further connected by another absorption band from small pyramidal arrays in the "black blanks" of the chessboard. The as-designed MMA at a total thickness (h) of 4.36 mm shows an absorption of above 0.9 in the whole frequency range of 7-18 GHz, which is 38% broader with respect to previous design methods at the same h. This strategy provides an effective route to extend the absorption bandwidth of MMAs without increasing h.
Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films
Della Gaspera, Enrico; Menin, Enrico; Sada, Cinzia
2018-01-01
Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors. PMID:29538338
Exploring Divisibility and Summability of 'Photon' Wave Packets in Nonlinear Optical Phenomena
NASA Technical Reports Server (NTRS)
Prasad, Narasimha; Roychoudhuri, Chandrasekhar
2009-01-01
Formulations for second and higher harmonic frequency up and down conversions, as well as multi photon processes directly assume summability and divisibility of photons. Quantum mechanical (QM) interpretations are completely congruent with these assumptions. However, for linear optical phenomena (interference, diffraction, refraction, material dispersion, spectral dispersion, etc.), we have a profound dichotomy. Most optical engineers innovate and analyze all optical instruments by propagating pure classical electromagnetic (EM) fields using Maxwell s equations and gives only lip-service to the concept "indivisible light quanta". Further, irrespective of linearity or nonlinearity of the phenomena, the final results are always registered through some photo-electric or photo-chemical effects. This is mathematically well modeled by a quadratic action (energy absorption) relation. Since QM does not preclude divisibility or summability of photons in nonlinear & multi-photon effects, it cannot have any foundational reason against these same possibilities in linear optical phenomena. It implies that we must carefully revisit the fundamental roots behind all light-matter interaction processes and understand the common origin of "graininess" and "discreteness" of light energy.
Galactic foreground science: Faraday Tomography at low frequencies
NASA Astrophysics Data System (ADS)
Haverkorn, Marijke
2018-05-01
This contribution describes how low-frequency radio-spectropolarimetric imaging as done for Epoch of Reionization detection is used to investigate the nearby Galactic interstellar medium. The method of Faraday Tomography allows disentangling of every line of sight into various components in Faraday depth, which is a proxy for density-weighted magnetic field. I discuss instrumental biases and side effects of this method, and early results it has yielded.
Hydrogen positions in single nanocrystals revealed by electron diffraction
NASA Astrophysics Data System (ADS)
Palatinus, L.; Brázda, P.; Boullay, P.; Perez, O.; Klementová, M.; Petit, S.; Eigner, V.; Zaarour, M.; Mintova, S.
2017-01-01
The localization of hydrogen atoms is an essential part of crystal structure analysis, but it is difficult because of their small scattering power. We report the direct localization of hydrogen atoms in nanocrystalline materials, achieved using the recently developed approach of dynamical refinement of precession electron diffraction tomography data. We used this method to locate hydrogen atoms in both an organic (paracetamol) and an inorganic (framework cobalt aluminophosphate) material. The results demonstrate that the technique can reliably reveal fine structural details, including the positions of hydrogen atoms in single crystals with micro- to nanosized dimensions.
NASA Astrophysics Data System (ADS)
Born, Max; Wolf, Emil
1999-10-01
Principles of Optics is one of the classic science books of the twentieth century, and probably the most influential book in optics published in the past forty years. This edition has been thoroughly revised and updated, with new material covering the CAT scan, interference with broad-band light and the so-called Rayleigh-Sommerfeld diffraction theory. This edition also details scattering from inhomogeneous media and presents an account of the principles of diffraction tomography to which Emil Wolf has made a basic contribution. Several new appendices are also included. This new edition will be invaluable to advanced undergraduates, graduate students and researchers working in most areas of optics.
Fluorescence diffuse tomography of small animals with DsRed2 fluorescent protein
NASA Astrophysics Data System (ADS)
Turchin, I. V.; Plehanov, V. I.; Orlova, A. G.; Kamenskiy, V. A.; Kleshnin, M. S.; Shirmanova, M. V.; Shakhova, N. M.; Balalaeva, I. V.; Savitskiy, A. P.
2006-05-01
Fluorescent compounds are used as markers to diagnose oncological diseases, to study molecular processes typical for carcinogenesis, and to investigate metastasis formation and tumor regress under the influence of therapeutics. Different types of tomography, such as continuous wave (CW), frequency-domain (FD), and time-domain (TD) tomography, allow fluorescence imaging of tumors located deep in human or animal tissue. In this work, preliminary results of the frequency domain fluorescent diffuse tomography (FDT) method in application to DsRed2 protein as a fluorescent agent are presented. For the first step of our experiments, we utilized low-frequency amplitude modulation (1 kHz) of second harmonic of Nd: YAG (532 nm). The transilluminative configuration was used in the setup. The results of post mortem experiments with capsules containing DsRed2 inserted inside the esophagus of a 3-day-old hairless rat to simulate tumor are shown. An algorithm of processing fluorescent images based on calculating the zero of maximum curvature has been applied to detect fluorescent inclusion boundaries in the image. This work demonstrates the potential capability of the FDT method for imaging deep fluorescent tumors in human tissue or animal models of human cancer. Improvement of the setup can be accomplished by using high-frequency modulation (using a 110-MHz acoustooptical modulator).
Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography
NASA Astrophysics Data System (ADS)
Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.
2014-11-01
Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru
2017-03-15
The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinationsmore » of these phonon modes in the Sb sample have also been experimentally observed.« less
Ultrafast X-ray diffraction probe of terahertz field-driven soft mode dynamics in SrTiO 3
Kozina, M.; van Driel, T.; Chollet, M.; ...
2017-05-03
We use ultrafast x-ray pulses to characterize the lattice response of SrTiO 3 when driven by strong terahertz (THz) fields. We observe transient changes in the diffraction intensity with a delayed onset with respect to the driving field. Fourier analysis reveals two frequency components corresponding to the two lowest energy zone-center optical modes in SrTiO 3. Lastly, the lower frequency mode exhibits clear softening as the temperature is decreased while the higher frequency mode shows slight temperature dependence.
Ultrafast X-ray diffraction probe of terahertz field-driven soft mode dynamics in SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozina, M.; van Driel, T.; Chollet, M.
We use ultrafast x-ray pulses to characterize the lattice response of SrTiO 3 when driven by strong terahertz (THz) fields. We observe transient changes in the diffraction intensity with a delayed onset with respect to the driving field. Fourier analysis reveals two frequency components corresponding to the two lowest energy zone-center optical modes in SrTiO 3. Lastly, the lower frequency mode exhibits clear softening as the temperature is decreased while the higher frequency mode shows slight temperature dependence.
A Next-Generation Hard X-Ray Nanoprobe Beamline for In Situ Studies of Energy Materials and Devices
NASA Astrophysics Data System (ADS)
Maser, Jörg; Lai, Barry; Buonassisi, Tonio; Cai, Zhonghou; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Jacobsen, Chris; Preissner, Curt; Roehrig, Chris; Rose, Volker; Shu, Deming; Vine, David; Vogt, Stefan
2014-01-01
The Advanced Photon Source is developing a suite of new X-ray beamlines to study materials and devices across many length scales and under real conditions. One of the flagship beamlines of the APS upgrade is the In Situ Nanoprobe (ISN) beamline, which will provide in situ and operando characterization of advanced energy materials and devices under varying temperatures, gas ambients, and applied fields, at previously unavailable spatial resolution and throughput. Examples of materials systems include inorganic and organic photovoltaic systems, advanced battery systems, fuel cell components, nanoelectronic devices, advanced building materials and other scientifically and technologically relevant systems. To characterize these systems at very high spatial resolution and trace sensitivity, the ISN will use both nanofocusing mirrors and diffractive optics to achieve spots sizes as small as 20 nm. Nanofocusing mirrors in Kirkpatrick-Baez geometry will provide several orders of magnitude increase in photon flux at a spatial resolution of 50 nm. Diffractive optics such as zone plates and/or multilayer Laue lenses will provide a highest spatial resolution of 20 nm. Coherent diffraction methods will be used to study even small specimen features with sub-10 nm relevant length scale. A high-throughput data acquisition system will be employed to significantly increase operations efficiency and usability of the instrument. The ISN will provide full spectroscopy capabilities to study the chemical state of most materials in the periodic table, and enable X-ray fluorescence tomography. In situ electrical characterization will enable operando studies of energy and electronic devices such as photovoltaic systems and batteries. We describe the optical concept for the ISN beamline, the technical design, and the approach for enabling a broad variety of in situ studies. We furthermore discuss the application of hard X-ray microscopy to study defects in multi-crystalline solar cells, one of the lines of inquiries for which the ISN is being developed.
Targeted post-mortem computed tomography cardiac angiography: proof of concept.
Saunders, Sarah L; Morgan, Bruno; Raj, Vimal; Robinson, Claire E; Rutty, Guy N
2011-07-01
With the increasing use and availability of multi-detector computed tomography and magnetic resonance imaging in autopsy practice, there has been an international push towards the development of the so-called near virtual autopsy. However, currently, a significant obstacle to the consideration as to whether or not near virtual autopsies could one day replace the conventional invasive autopsy is the failure of post-mortem imaging to yield detailed information concerning the coronary arteries. To date, a cost-effective, practical solution to allow high throughput imaging has not been presented within the forensic literature. We present a proof of concept paper describing a simple, quick, cost-effective, manual, targeted in situ post-mortem cardiac angiography method using a minimally invasive approach, to be used with multi-detector computed tomography for high throughput cadaveric imaging which can be used in permanent or temporary mortuaries.
Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.
Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B
2015-03-21
How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, GwangSik; Shin, SeungWoo; Kim, Kyoohyun; Park, YongKeun
2017-02-01
Optical diffraction tomography (ODT) has been an emerging optical technique for label-free imaging of three-dimensional (3-D) refractive index (RI) distribution of biological samples. ODT employs interferometric microscopy for measuring multiple holograms of samples with various incident angles, from which the Fourier diffraction theorem reconstructs the 3-D RI distribution of samples from retrieved complex optical fields. Since the RI value is linearly proportional to the protein concentration of biological samples where the proportional coefficient is called as refractive index increment (RII), reconstructed 3-D RI tomograms provide precise structural and biochemical information of individual biological samples. Because most proteins have similar RII value, however, ODT has limited molecular specificity, especially for imaging eukaryotic cells having various types of proteins and subcellular organelles. Here, we present an ODT system combined with structured illumination microscopy which can measure the 3-D RI distribution of biological samples as well as 3-D super-resolution fluorescent images in the same optical setup. A digital micromirror device (DMD) controls the incident angle of the illumination beam for tomogram reconstruction, and the same DMD modulates the structured illumination pattern of the excitation beam for super-resolution fluorescent imaging. We first validate the proposed method for simultaneous optical diffraction tomographic imaging and super-resolution fluorescent imaging of fluorescent beads. The proposed method is also exploited for various biological samples.
NASA Astrophysics Data System (ADS)
Meng, Yang; Yu, Zhongyuan; Jia, Fangda; Zhang, Chunyu; Wang, Ye; Liu, Yumin; Ye, Han; Chen, Laurence Lujun
2017-10-01
A multi-view autostereoscopic three-dimensional (3D) system is built by using a 2D display screen and a customized parallax-barrier shutter (PBS) screen. The shutter screen is controlled dynamically by address driving matrix circuit and it is placed in front of the display screen at a certain location. The system could achieve densest viewpoints due to its specially optical and geometric design which is based on concept of "eye space". The resolution of 3D imaging is not reduced compared to 2D mode by using limited time division multiplexing technology. The diffraction effects may play an important role in 3D display imaging quality, especially when applied to small screen, such as iPhone screen etc. For small screen, diffraction effects may contribute crosstalk between binocular views, image brightness uniformity etc. Therefore, diffraction effects are analyzed and considered in a one-dimensional shutter screen model of the 3D display, in which the numerical simulation of light from display pixels on display screen through parallax barrier slits to each viewing zone in eye space, is performed. The simulation results provide guidance for criteria screen size over which the impact of diffraction effects are ignorable, and below which diffraction effects must be taken into account. Finally, the simulation results are compared to the corresponding experimental measurements and observation with discussion.
Liu, Jinjun; Leng, Yonggang; Lai, Zhihui; Fan, Shengbo
2018-04-25
Mechanical fault diagnosis usually requires not only identification of the fault characteristic frequency, but also detection of its second and/or higher harmonics. However, it is difficult to detect a multi-frequency fault signal through the existing Stochastic Resonance (SR) methods, because the characteristic frequency of the fault signal as well as its second and higher harmonics frequencies tend to be large parameters. To solve the problem, this paper proposes a multi-frequency signal detection method based on Frequency Exchange and Re-scaling Stochastic Resonance (FERSR). In the method, frequency exchange is implemented using filtering technique and Single SideBand (SSB) modulation. This new method can overcome the limitation of "sampling ratio" which is the ratio of the sampling frequency to the frequency of target signal. It also ensures that the multi-frequency target signals can be processed to meet the small-parameter conditions. Simulation results demonstrate that the method shows good performance for detecting a multi-frequency signal with low sampling ratio. Two practical cases are employed to further validate the effectiveness and applicability of this method.
Revealing the sub-nanometere three-dimensional microscture of a metallic meteorite
NASA Astrophysics Data System (ADS)
Einsle, J. F.; Harrison, R.; Blukis, R.; Eggeman, A.; Saghi, Z.; Martineau, B.; Bagot, P.; Collins, S. M.; Midgley, P. A.
2017-12-01
Coming from from the core of differentiated planetesimals, iron-nickel meteorites provide some of the only direct material artefacts from planetary cores. Iron - nickel meteorites contain a record of their thermal and magnetic history, written in the intergrowth of iron-rich and nickel-rich phases that formed during slow cooling over millions of years. Of intense interest for understanding the thermal and magnetic history is the `'cloudy zone''. This nanoscale intergrowth that has recently been used to provide a record of magnetic activity on the parent body of stony-iron meteorites. The cloudy zone consists of islands of tetrataenite surrounded by a matrix phase, Here we use a multi-scale and multidimensional comparative study using high-resolution electron diffraction, scanning transmission electron tomography with chemical mapping, atom probe tomography and micromagnetic simulations to reveal the three-dimensional architecture of the cloudy zone with sub-nanometre spatial resolution. Machine learning data deconvolution strategies enable the three microanalytical techniques to converge on a consistent microstructural description for the cloudy zone. Isolated islands of tetrataenite are found, embedded in a continuous matrix of an FCC-supercell of Fe27Ni5 structure, never before identified in nature. The tetrataenite islands are arranged in clusters of three crystallographic variants, which control how magnetic information is encoded into the nanostructure during slow cooling. The new compositional, crystallographic and micromagnetic data have profound implications for how the cloudy zone acquires magnetic remanence, and requires a revision of the low-temperature metastable phase diagram of the Fe-Ni system. This can lead to a refinement of core dynamics in small planetoids.
Multi-Mounted X-Ray Computed Tomography
Fu, Jian; Liu, Zhenzhong; Wang, Jingzheng
2016-01-01
Most existing X-ray computed tomography (CT) techniques work in single-mounted mode and need to scan the inspected objects one by one. It is time-consuming and not acceptable for the inspection in a large scale. In this paper, we report a multi-mounted CT method and its first engineering implementation. It consists of a multi-mounted scanning geometry and the corresponding algebraic iterative reconstruction algorithm. This approach permits the CT rotation scanning of multiple objects simultaneously without the increase of penetration thickness and the signal crosstalk. Compared with the conventional single-mounted methods, it has the potential to improve the imaging efficiency and suppress the artifacts from the beam hardening and the scatter. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed multi-mounted X-ray CT prototype system. We believe that this technique is of particular interest for pushing the engineering applications of X-ray CT. PMID:27073911
NASA Astrophysics Data System (ADS)
Wang, Yihan; Lu, Tong; Zhang, Songhe; Song, Shaoze; Wang, Bingyuan; Li, Jiao; Zhao, Huijuan; Gao, Feng
2018-02-01
Quantitative photoacoustic tomography (q-PAT) is a nontrivial technique can be used to reconstruct the absorption image with a high spatial resolution. Several attempts have been investigated by setting point sources or fixed-angle illuminations. However, in practical applications, these schemes normally suffer from low signal-to-noise ratio (SNR) or poor quantification especially for large-size domains, due to the limitation of the ANSI-safety incidence and incompleteness in the data acquisition. We herein present a q-PAT implementation that uses multi-angle light-sheet illuminations and a calibrated iterative multi-angle reconstruction. The approach can acquire more complete information on the intrinsic absorption and SNR-boosted photoacoustic signals at selected planes from the multi-angle wide-field excitations of light-sheet. Therefore, the sliced absorption maps over whole body can be recovered in a measurementflexible, noise-robust and computation-economic way. The proposed approach is validated by the phantom experiment, exhibiting promising performances in image fidelity and quantitative accuracy.
NASA Astrophysics Data System (ADS)
Thapa, Damber; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan
2015-12-01
In this paper, we propose a speckle noise reduction method for spectral-domain optical coherence tomography (SD-OCT) images called multi-frame weighted nuclear norm minimization (MWNNM). This method is a direct extension of weighted nuclear norm minimization (WNNM) in the multi-frame framework since an adequately denoised image could not be achieved with single-frame denoising methods. The MWNNM method exploits multiple B-scans collected from a small area of a SD-OCT volumetric image, and then denoises and averages them together to obtain a high signal-to-noise ratio B-scan. The results show that the image quality metrics obtained by denoising and averaging only five nearby B-scans with MWNNM method is considerably better than those of the average image obtained by registering and averaging 40 azimuthally repeated B-scans.
NASA Astrophysics Data System (ADS)
Guo, Hongbo; He, Xiaowei; Liu, Muhan; Zhang, Zeyu; Hu, Zhenhua; Tian, Jie
2017-03-01
Cerenkov luminescence tomography (CLT), as a promising optical molecular imaging modality, can be applied to cancer diagnostic and therapeutic. Most researches about CLT reconstruction are based on the finite element method (FEM) framework. However, the quality of FEM mesh grid is still a vital factor to restrict the accuracy of the CLT reconstruction result. In this paper, we proposed a multi-grid finite element method framework, which was able to improve the accuracy of reconstruction. Meanwhile, the multilevel scheme adaptive algebraic reconstruction technique (MLS-AART) based on a modified iterative algorithm was applied to improve the reconstruction accuracy. In numerical simulation experiments, the feasibility of our proposed method were evaluated. Results showed that the multi-grid strategy could obtain 3D spatial information of Cerenkov source more accurately compared with the traditional single-grid FEM.
Miller, Julie M; Dewey, Marc; Vavere, Andrea L; Rochitte, Carlos E; Niinuma, Hiroyuki; Arbab-Zadeh, Armin; Paul, Narinder; Hoe, John; de Roos, Albert; Yoshioka, Kunihiro; Lemos, Pedro A; Bush, David E; Lardo, Albert C; Texter, John; Brinker, Jeffery; Cox, Christopher; Clouse, Melvin E; Lima, João A C
2009-04-01
Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective "CORE-64" trial ("Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors"). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.
Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki
2014-01-01
The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.
Multi-Spacecraft 3D differential emission measure tomography of the solar corona: STEREO results.
NASA Astrophysics Data System (ADS)
Vásquez, A. M.; Frazin, R. A.
We have recently developed a novel technique (called DEMT) for the em- pirical determination of the three-dimensional (3D) distribution of the so- lar corona differential emission measure through multi-spacecraft solar ro- tational tomography of extreme-ultaviolet (EUV) image time series (like those provided by EIT/SOHO and EUVI/STEREO). The technique allows, for the first time, to develop global 3D empirical maps of the coronal elec- tron temperature and density, in the height range 1.0 to 1.25 RS . DEMT constitutes a simple and powerful 3D analysis tool that obviates the need for structure specific modeling.
The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brockhauser, Sandor; UJF–EMBL–CNRS UMI 3265, 6 Rue Jules Horowitz, 38043 Grenoble; Ravelli, Raimond B. G.
2013-07-01
Hardware and software solutions for MX data-collection strategies using the EMBL/ESRF miniaturized multi-axis goniometer head are presented. Most macromolecular crystallography (MX) diffraction experiments at synchrotrons use a single-axis goniometer. This markedly contrasts with small-molecule crystallography, in which the majority of the diffraction data are collected using multi-axis goniometers. A novel miniaturized κ-goniometer head, the MK3, has been developed to allow macromolecular crystals to be aligned. It is available on the majority of the structural biology beamlines at the ESRF, as well as elsewhere. In addition, the Strategy for the Alignment of Crystals (STAC) software package has been developed to facilitatemore » the use of the MK3 and other similar devices. Use of the MK3 and STAC is streamlined by their incorporation into online analysis tools such as EDNA. The current use of STAC and MK3 on the MX beamlines at the ESRF is discussed. It is shown that the alignment of macromolecular crystals can result in improved diffraction data quality compared with data obtained from randomly aligned crystals.« less
Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J Alexander; Bargmann, Cornelia I
2016-03-01
Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a "precise color" MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans.
A multi-dataset data-collection strategy produces better diffraction data
Liu, Zhi-Jie; Chen, Lirong; Wu, Dong; Ding, Wei; Zhang, Hua; Zhou, Weihong; Fu, Zheng-Qing; Wang, Bi-Cheng
2011-01-01
A multi-dataset (MDS) data-collection strategy is proposed and analyzed for macromolecular crystal diffraction data acquisition. The theoretical analysis indicated that the MDS strategy can reduce the standard deviation (background noise) of diffraction data compared with the commonly used single-dataset strategy for a fixed X-ray dose. In order to validate the hypothesis experimentally, a data-quality evaluation process, termed a readiness test of the X-ray data-collection system, was developed. The anomalous signals of sulfur atoms in zinc-free insulin crystals were used as the probe to differentiate the quality of data collected using different data-collection strategies. The data-collection results using home-laboratory-based rotating-anode X-ray and synchrotron X-ray systems indicate that the diffraction data collected with the MDS strategy contain more accurate anomalous signals from sulfur atoms than the data collected with a regular data-collection strategy. In addition, the MDS strategy offered more advantages with respect to radiation-damage-sensitive crystals and better usage of rotating-anode as well as synchrotron X-rays. PMID:22011470
NASA Astrophysics Data System (ADS)
Dvorak, Steven L.; Sternberg, Ben K.; Feng, Wanjie
2017-03-01
In this paper we discuss the design and verification of wide-band, multi-frequency, tuning circuits for large-moment Transmitter (TX) loops. Since these multi-frequency, tuned-TX loops allow for the simultaneous transmission of multiple frequencies at high-current levels, they are ideally suited for frequency-domain geophysical systems that collect data while moving, such as helicopter mounted systems. Furthermore, since multi-frequency tuners use the same TX loop for all frequencies, instead of using separate tuned-TX loops for each frequency, they allow for the use of larger moment TX loops. In this paper we discuss the design and simulation of one- and three-frequency tuned TX loops and then present measurement results for a three-frequency, tuned-TX loop.
Gallego, Sergi; Márquez, André; Méndez, David; Marini, Stephan; Beléndez, Augusto; Pascual, Inmaculada
2009-08-01
Photopolymers are appealing materials for the fabrication of diffractive optical elements (DOEs). We evaluate the possibilities of polyvinyl-alcohol/acrylamide-based photopolymers to store diffractive elements with low spatial frequencies. We record gratings with different spatial frequencies in the material and analyze the material behavior measuring the transmitted and the reflected orders as a function of exposition. We study two different compositions for the photopolymer, with and without a cross-linker. The values of diffraction efficiency achieved for both compositions make the material suitable to record DOEs with long spatial periods. Assuming a Fermi-Dirac-function-based profile, we fitted the diffracted intensities (up to the eighth order) to obtain the phase profile of the recorded gratings. This analysis shows that it is possible to achieve a phase shift larger than 2pi rad with steep edges in the periodic phase profile. In the case of the measurements in reflection, we have obtained information dealing with the surface profile, which show that it has a smooth shape with an extremely large phase-modulation depth.
Robust diffraction correction method for high-frequency ultrasonic tissue characterization
NASA Astrophysics Data System (ADS)
Raju, Balasundar
2004-05-01
The computation of quantitative ultrasonic parameters such as the attenuation or backscatter coefficient requires compensation for diffraction effects. In this work a simple and accurate diffraction correction method for skin characterization requiring only a single focal zone is developed. The advantage of this method is that the transducer need not be mechanically repositioned to collect data from several focal zones, thereby reducing the time of imaging and preventing motion artifacts. Data were first collected under controlled conditions from skin of volunteers using a high-frequency system (center frequency=33 MHz, BW=28 MHz) at 19 focal zones through axial translation. Using these data, mean backscatter power spectra were computed as a function of the distance between the transducer and the tissue, which then served as empirical diffraction correction curves for subsequent data. The method was demonstrated on patients patch-tested for contact dermatitis. The computed attenuation coefficient slope was significantly (p<0.05) lower at the affected site (0.13+/-0.02 dB/mm/MHz) compared to nearby normal skin (0.2+/-0.05 dB/mm/MHz). The mean backscatter level was also significantly lower at the affected site (6.7+/-2.1 in arbitrary units) compared to normal skin (11.3+/-3.2). These results show diffraction corrected ultrasonic parameters can differentiate normal from affected skin tissues.
Texture classification of normal tissues in computed tomography using Gabor filters
NASA Astrophysics Data System (ADS)
Dettori, Lucia; Bashir, Alia; Hasemann, Julie
2007-03-01
The research presented in this article is aimed at developing an automated imaging system for classification of normal tissues in medical images obtained from Computed Tomography (CT) scans. Texture features based on a bank of Gabor filters are used to classify the following tissues of interests: liver, spleen, kidney, aorta, trabecular bone, lung, muscle, IP fat, and SQ fat. The approach consists of three steps: convolution of the regions of interest with a bank of 32 Gabor filters (4 frequencies and 8 orientations), extraction of two Gabor texture features per filter (mean and standard deviation), and creation of a Classification and Regression Tree-based classifier that automatically identifies the various tissues. The data set used consists of approximately 1000 DIACOM images from normal chest and abdominal CT scans of five patients. The regions of interest were labeled by expert radiologists. Optimal trees were generated using two techniques: 10-fold cross-validation and splitting of the data set into a training and a testing set. In both cases, perfect classification rules were obtained provided enough images were available for training (~65%). All performance measures (sensitivity, specificity, precision, and accuracy) for all regions of interest were at 100%. This significantly improves previous results that used Wavelet, Ridgelet, and Curvelet texture features, yielding accuracy values in the 85%-98% range The Gabor filters' ability to isolate features at different frequencies and orientations allows for a multi-resolution analysis of texture essential when dealing with, at times, very subtle differences in the texture of tissues in CT scans.
Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.
Prosa, Ty J; Larson, David J
2017-04-01
Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.
A Novel CMOS Multi-band THz Detector with Embedded Ring Antenna
NASA Astrophysics Data System (ADS)
Xu, Lei-jun; Guan, Jia-ning; Bai, Xue; Li, Qin; Mao, Han-ping
2017-10-01
To overcome the large chip area occupation for the traditional terahertz multi-frequency detector by using the antenna elements in a different frequency, a novel structure for a multi-frequency detector is proposed and studied. Based on the ring antenna detector, an embedded multi-ring antenna with multi-port is proposed for the multi-frequency detector. A single-ring and dual-ring detectors are analyzed and designed in 0.18 μ m CMOS. For the single-ring detector, the best responsivity and NEP is 701 V/W and 261 pW/Hz0.5 at the frequency of 290 GHz. For the dual-ring detector, the best responsivity is 367 V/W and 297 V/W, NEP is 578 pW/Hz0.5 and 713pW/Hz0.5, at the frequency of 600 GHz and 806 GHz, respectively. This embedded multi-ring detector has a simple structure which can be expanded easily in a compact size.
Dynamic performance of MEMS deformable mirrors for use in an active/adaptive two-photon microscope
NASA Astrophysics Data System (ADS)
Zhang, Christian C.; Foster, Warren B.; Downey, Ryan D.; Arrasmith, Christopher L.; Dickensheets, David L.
2016-03-01
Active optics can facilitate two-photon microscopic imaging deep in tissue. We are investigating fast focus control mirrors used in concert with an aberration correction mirror to control the axial position of focus and system aberrations dynamically during scanning. With an adaptive training step, sample-induced aberrations may be compensated as well. If sufficiently fast and precise, active optics may be able to compensate under-corrected imaging optics as well as sample aberrations to maintain diffraction-limited performance throughout the field of view. Toward this end we have measured a Boston Micromachines Corporation Multi-DM 140 element deformable mirror, and a Revibro Optics electrostatic 4-zone focus control mirror to characterize dynamic performance. Tests for the Multi-DM included both step response and sinusoidal frequency sweeps of specific Zernike modes. For the step response we measured 10%-90% rise times for the target Zernike amplitude, and wavefront rms error settling times. Frequency sweeps identified the 3dB bandwidth of the mirror when attempting to follow a sinusoidal amplitude trajectory for a specific Zernike mode. For five tested Zernike modes (defocus, spherical aberration, coma, astigmatism and trefoil) we find error settling times for mode amplitudes up to 400nm to be less than 52 us, and 3 dB frequencies range from 6.5 kHz to 10 kHz. The Revibro Optics mirror was tested for step response only, with error settling time of 80 μs for a large 3 um defocus step, and settling time of only 18 μs for a 400nm spherical aberration step. These response speeds are sufficient for intra-scan correction at scan rates typical of two-photon microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Dario Ferreira; Weleguela, Monica Larissa Djomeni; Audoit, Guillaume
2014-10-28
Here, white X-ray μ-beam Laue diffraction is developed and applied to investigate elastic strain distributions in three-dimensional (3D) materials, more specifically, for the study of strain in Cu 10 μm diameter–80 μm deep through-silicon vias (TSVs). Two different approaches have been applied: (i) two-dimensional μ-Laue scanning and (ii) μ-beam Laue tomography. 2D μ-Laue scans provided the maps of the deviatoric strain tensor integrated along the via length over an array of TSVs in a 100 μm thick sample prepared by Focused Ion Beam. The μ-beam Laue tomography analysis enabled to obtain the 3D grain and elemental distribution of both Cu and Si. Themore » position, size (about 3 μm), shape, and orientation of Cu grains were obtained. Radial profiles of the equivalent deviatoric strain around the TSVs have been derived through both approaches. The results from both methods are compared and discussed.« less
Deformation and spallation of a magnesium alloy under high strain rate loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, M.; Lu, L.; Li, C.
2016-04-01
We investigate deformation and damage of a magnesium alloy, AZ91, under high strain rate (similar to 10(5) s(-1)) loading via planar impact. The soft-recovered specimens are examined with electron back-scatter diffraction (EBSD). EBSD analysis reveals three types of twinning: {1012} extension, {10 (1) over bar1} contraction, and {10 (1) over bar1}-{10 (1) over bar2) double twinning, and their number density increases with increasing impact velocity. The extension twins dominate contraction and double twins in size and number. Dislocation densities of the recovered specimens are evaluated with x-ray diffraction, and increase with increasing impact velocity. X-ray tomography is used to resolvemore » three-dimensional microstructure of shock-recovered samples. The EBSD and tomography results demonstrate that the second phase, Mg17Al12, plays an important role in both deformation twinning and tensile cracking. Deformation twinning appears to be a common mechanism in deformation of magnesium alloys at low, medium and high strain rates, in addition to dislocation motion. (C) 2016 Elsevier B.V. All rights reserved.« less
Impurity precipitation in atomized particles evidenced by nano x-ray diffraction computed tomography
NASA Astrophysics Data System (ADS)
Bonnin, Anne; Wright, Jonathan P.; Tucoulou, Rémi; Palancher, Hervé
2014-08-01
Performances and physical properties of high technology materials are influenced or even determined by their initial microstructure and by the behavior of impurity phases. Characterizing these impurities and their relations with the surrounding matrix is therefore of primary importance but it unfortunately often requires a destructive approach, with the risk of misinterpreting the observations. The improvement we have done in high resolution X-ray diffraction computed tomography combined with the use of an X-ray nanoprobe allows non-destructive crystallographic description of materials with microscopic heterogeneous microstructure (with a grain size between 10 nm and 10 μm). In this study, the grain localization in a 2D slice of a 20 μm solidified atomized γU-Mo particle is shown and a minority U(C,O) phase (1 wt. %) with sub-micrometer sized grains was characterized inside. Evidence is presented showing that the onset of U(C,O) grain crystallization can be described by a precipitation mechanism since one single U-Mo grain has direct orientation relationship with more than one surrounding U(C,O) grains.
EIT image regularization by a new Multi-Objective Simulated Annealing algorithm.
Castro Martins, Thiago; Sales Guerra Tsuzuki, Marcos
2015-01-01
Multi-Objective Optimization can be used to produce regularized Electrical Impedance Tomography (EIT) images where the weight of the regularization term is not known a priori. This paper proposes a novel Multi-Objective Optimization algorithm based on Simulated Annealing tailored for EIT image reconstruction. Images are reconstructed from experimental data and compared with images from other Multi and Single Objective optimization methods. A significant performance enhancement from traditional techniques can be inferred from the results.
Single shot multi-wavelength phase retrieval with coherent modulation imaging.
Dong, Xue; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang
2018-04-15
A single shot multi-wavelength phase retrieval method is proposed by combining common coherent modulation imaging (CMI) and a low rank mixed-state algorithm together. A radiation beam consisting of multi-wavelength is illuminated on the sample to be observed, and the exiting field is incident on a random phase plate to form speckle patterns, which is the incoherent superposition of diffraction patterns of each wavelength. The exiting complex amplitude of the sample including both the modulus and phase of each wavelength can be reconstructed simultaneously from the recorded diffraction intensity using a low rank mixed-state algorithm. The feasibility of this proposed method was verified with visible light experimentally. This proposed method not only makes CMI realizable with partially coherent illumination but also can extend its application to various traditionally unrelated fields, where several wavelengths should be considered simultaneously.
NASA Astrophysics Data System (ADS)
Balakshiĭ, V. I.; Kazar'yan, A. Y.; Lee, A. A.
1995-10-01
An investigation was made of an acousto-optical system with hybrid feedback used to control the frequency of ultrasonic waves excited in an acousto-optical cell. An amplitude transparency, placed in front of a photodetector, ensured a nonlinear dependence of the intensity of the diffracted radiation reaching the detector on the ultrasound frequency. Conditions were found under which this nonlinearity gave rise to multistable states differing in respect of the amplitude, frequency, and direction of propagation of the diffracted beam. An analysis was made of various uses of such a system as an optical channel switch and in stabilisation of the direction of propagation of a light beam.
Leng, Yonggang; Fan, Shengbo
2018-01-01
Mechanical fault diagnosis usually requires not only identification of the fault characteristic frequency, but also detection of its second and/or higher harmonics. However, it is difficult to detect a multi-frequency fault signal through the existing Stochastic Resonance (SR) methods, because the characteristic frequency of the fault signal as well as its second and higher harmonics frequencies tend to be large parameters. To solve the problem, this paper proposes a multi-frequency signal detection method based on Frequency Exchange and Re-scaling Stochastic Resonance (FERSR). In the method, frequency exchange is implemented using filtering technique and Single SideBand (SSB) modulation. This new method can overcome the limitation of "sampling ratio" which is the ratio of the sampling frequency to the frequency of target signal. It also ensures that the multi-frequency target signals can be processed to meet the small-parameter conditions. Simulation results demonstrate that the method shows good performance for detecting a multi-frequency signal with low sampling ratio. Two practical cases are employed to further validate the effectiveness and applicability of this method. PMID:29693577
van Genderen, E; Clabbers, M T B; Das, P P; Stewart, A; Nederlof, I; Barentsen, K C; Portillo, Q; Pannu, N S; Nicolopoulos, S; Gruene, T; Abrahams, J P
2016-03-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).
NASA Astrophysics Data System (ADS)
Vyunishev, A. M.; Arkhipkin, V. G.; Baturin, I. S.; Akhmatkhanov, A. R.; Shur, V. Ya; Chirkin, A. S.
2018-04-01
The frequency doubling of femtosecond laser pulses in a two-dimensional (2D) rectangular nonlinear photonic lattice with hexagonal domains is studied experimentally and theoretically. The broad fundamental spectrum enables frequency conversion under nonlinear Bragg diffraction for a series of transverse orders at a fixed longitudinal quasi-phase-matching order. The consistent nonstationary theory of the frequency doubling of femtosecond laser pulses is developed using the representation based on the reciprocal lattice of the structure. The calculated spatial distribution of the second-harmonic spectral intensity agrees well with the experimental data. The condition for multiple nonlinear Bragg diffraction in a 2D nonlinear photonic lattice is offered. The hexagonal shape of the domains contributes to multibeam second harmonic excitation. The maximum conversion efficiency for a series of transverse orders in the range 0.01%-0.03% is obtained.
NASA Astrophysics Data System (ADS)
Slabu, I.; Wirch, N.; Caumanns, T.; Theissmann, R.; Krüger, M.; Schmitz-Rode, T.; Weirich, T. E.
2017-08-01
Superparamagnetic iron oxide nanoparticles (SPIONPs) incorporated into the base material of implants are used as contrast agents in magnetic resonance imaging for the delineation of the implants from the surrounding tissue. However, the delineation quality is strongly related to the structural characteristics of the incorporated SPIONPs and their interparticle interaction as well as their interaction with the polymer matrix of the implant. Consequently, a profound knowledge of the formation of aggregates inside the polymer matrix, which are responsible for strong interparticle interactions, and of their structural characteristics, is required for controlling the magnetic resonance image quality of the implants. In this work, transmission electron microscopy methods such as electron tomography and nano-electron diffraction were used to depict SPIONP aggregates inside the melt-spin polyvinylidene fluoride fibers used for the assembly of implants and to determine the crystal structure of individual nanocrystals inside these aggregates, respectively. Using these techniques it was possible for the first time to characterize the aggregates inside the fibers of implants and to validate the magnetization measurements that have been previously used to assess the interaction phenomena inside the fibers of implants. With electron tomography, inhomogeneously sized distributed aggregates were delineated and 3D models of these aggregates were constructed. Furthermore, the distribution of the aggregates inside the fibers was verified by means of magnetic force microscopy. With nano-diffraction measurements, the SPIONP crystal structure inside the fibers of the implant could not be clearly assigned to that of magnetite (Fe3O4) or maghemite (γ-Fe2O3). Therefore, additional electron energy loss spectroscopy measurements were performed, which revealed the presence of both phases of Fe3O4 and γ-Fe2O3, probably caused by oxidation processes during the manufacture of the fibers by melt-spinning.
Tassin, Philippe; Van der Sande, Guy; Veretennicoff, Irina; Kockaert, Pascal; Tlidi, Mustapha
2009-05-25
We consider a degenerate optical parametric oscillator containing a left-handed material. We show that the inclusion of a left-handed material layer allows for controlling the strength and sign of the diffraction coefficient at either the pump or the signal frequency. Subsequently, we demonstrate the existence of stable dissipative structures without diffraction matching, i.e., without the usual relationship between the diffraction coefficients of the signal and pump fields. Finally, we investigate the size scaling of these light structures with decreasing diffraction strength.
Research of frequency converters energy characteristics of drilling rigs
NASA Astrophysics Data System (ADS)
Vasiliev, B. Y.; Kalashnikov, O. V.; Oleynikova, A. M.; Ivanovsky, A. I.; Grudinin, N. N.
2017-10-01
The investigation deals with multi-motor electric drives with frequency converters of various structures: with a common converter, with an individual converter, with a multi-inverter frequency converter. Their shortcomings and advantages were analyzed and there were drawn conclusions about the expediency of using each structure. Expediency of using multi-inverter frequency converters with an active frond end was shown to ensure the highest power characteristics of multi-motor electric drives of drilling rigs’ main mechanisms.
Wang, Gordon; Smith, Stephen J.
2012-01-01
Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nλ/NA2 (n = refractive index of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is ∼220 nm and ∼600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT), with its native 50–100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes. PMID:22956902
Wang, Gordon; Smith, Stephen J
2012-01-01
Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nλ/NA(2) (n = refractive index of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is -220 nm and -600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT), with its native 50-100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes.
NASA Astrophysics Data System (ADS)
van der Bilt, Willem G. M.; Rea, Brice; Spagnolo, Matteo; Roerdink, Desiree L.; Jørgensen, Steffen L.; Bakke, Jostein
2018-05-01
The Arctic warms faster than any other region of our planet. Besides melting glaciers, thawing permafrost and decreasing sea-ice, this amplified response affects earth surface processes. This geomorphological expression of climate change may alter landscapes and increase the frequency and magnitude of geohazards like floods or mass-movements. Beyond the short span of sparse monitoring time series, geological archives provide a valuable long-term context for future risk assessment. Lake sediment sequences are particularly promising in this respect as continuous recorders of surface process change. Over the past decade, the emergence of new techniques that characterize depositional signatures in more detail has enhanced this potential. Here, we present a well-dated Holocene-length lake sediment sequence from Ammassalik Island on southeast Greenland. This area is particularly sensitive to regional shifts in the Arctic climate system due to its location near the sea-ice limit, the Greenland Ice Sheet and the convergence of polar and Atlantic waters. The expression of Holocene change is fingerprinted using physical (grain size, organic content, density), visual (3-D Computed Tomography) and geochemical (X-Ray Fluorescence, X-Ray Diffraction) evidence. We show that three sharp transitions characterize the Holocene evolution of Ymer Lake. Between 10 and 9.5 cal. ka BP, rapid local glacier loss from the lake catchment culminated in an outburst flood. Following a quiescent Holocene climatic optimum, Neoglacial cooling, lengthening lake ice cover and shifting wind patterns prompted in-lake avalanching of sediments from 4.2 cal. ka BP onwards. Finally, glaciers reformed in the catchment around 1.2 cal. ka BP. The timing of these shifts is consistent with the regional expression of deglaciation, Neoglacial cooling and Little Ice Age-type glacier growth, respectively. The novel multi-proxy approach applied in this study rigorously links depositional sediment signatures to surface processes and thereby provides a key step towards a process-based understanding of climate responses.
Laser-induced Multi-energy Processing in Diamond Growth
2012-05-01
microscopy (SEM) and energy dispersive X - ray (EDX) measurements, Drs. Yi Liu and Shah Valloppilly from Nebraska Center for Materials and Nanoscience...NCMN) at UNL for help on X - Ray diffraction (XRD) measurements, and Professor Steve W. Martin and Dr. Young Sik Kim from the Department of Material...spectroscopy and X - ray diffraction ................... 62 4.4 Conclusions
NASA Astrophysics Data System (ADS)
Witteveen, Jeroen A. S.; Bijl, Hester
2009-10-01
The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.
Multi-functional optical signal processing using optical spectrum control circuit
NASA Astrophysics Data System (ADS)
Hayashi, Shuhei; Ikeda, Tatsuhiko; Mizuno, Takayuki; Takahashi, Hiroshi; Tsuda, Hiroyuki
2015-02-01
Processing ultra-fast optical signals without optical/electronic conversion is in demand and time-to-space conversion has been proposed as an effective solution. We have designed and fabricated an arrayed-waveguide grating (AWG) based optical spectrum control circuit (OSCC) using silica planar lightwave circuit (PLC) technology. This device is composed of an AWG, tunable phase shifters and a mirror. The principle of signal processing is to spatially decompose the signal's frequency components by using the AWG. Then, the phase of each frequency component is controlled by the tunable phase shifters. Finally, the light is reflected back to the AWG by the mirror and synthesized. Amplitude of each frequency component can be controlled by distributing the power to high diffraction order light. The spectral controlling range of the OSCC is 100 GHz and its resolution is 1.67 GHz. This paper describes equipping the OSCC with optical coded division multiplex (OCDM) encoder/decoder functionality. The encoding principle is to apply certain phase patterns to the signal's frequency components and intentionally disperse the signal. The decoding principle is also to apply certain phase patterns to the frequency components at the receiving side. If the applied phase pattern compensates the intentional dispersion, the waveform is regenerated, but if the pattern is not appropriate, the waveform remains dispersed. We also propose an arbitrary filter function by exploiting the OSCC's amplitude and phase control attributes. For example, a filtered optical signal transmitted through multiple optical nodes that use the wavelength multiplexer/demultiplexer can be equalized.
Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound.
Suo, Dingjie; Govind, Bala; Zhang, Shengqi; Jing, Yun
2018-03-01
Through the introduction of multi-frequency sonication in High Intensity Focused Ultrasound (HIFU), enhancement of efficiency has been noted in several applications including thrombolysis, tissue ablation, sonochemistry, and sonoluminescence. One key experimental observation is that multi-frequency ultrasound can help lower the inertial cavitation threshold, thereby improving the power efficiency. However, this has not been well corroborated by the theory. In this paper, a numerical investigation on the inertial cavitation threshold of microbubbles (MBs) under multi-frequency ultrasound irradiation is conducted. The relationships between the cavitation threshold and MB size at various frequencies and in different media are investigated. The results of single-, dual and triple frequency sonication show reduced inertial cavitation thresholds by introducing additional frequencies which is consistent with previous experimental work. In addition, no significant difference is observed between dual frequency sonication with various frequency differences. This study, not only reaffirms the benefit of using multi-frequency ultrasound for various applications, but also provides a possible route for optimizing ultrasound excitations for initiating inertial cavitation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Laubscher, Markus; Bourquin, Stéphane; Froehly, Luc; Karamata, Boris; Lasser, Theo
2004-07-01
Current spectroscopic optical coherence tomography (OCT) methods rely on a posteriori numerical calculation. We present an experimental alternative for accessing spectroscopic information in OCT without post-processing based on wavelength de-multiplexing and parallel detection using a diffraction grating and a smart pixel detector array. Both a conventional A-scan with high axial resolution and the spectrally resolved measurement are acquired simultaneously. A proof-of-principle demonstration is given on a dynamically changing absorbing sample. The method's potential for fast spectroscopic OCT imaging is discussed. The spectral measurements obtained with this approach are insensitive to scan non-linearities or sample movements.
THz computed tomography system with zero-order Bessel beam
NASA Astrophysics Data System (ADS)
Niu, Liting; Wu, Qiao; Wang, Kejia; Liu, Jinsong; Yang, Zhengang
2018-01-01
Terahertz (THz) waves can penetrate many optically opaque dielectric materials such as plastics, ceramics and colorants. It is effective to reveal the internal structures of these materials. We have built a THz Computed Tomography (CT) system with 0.3 THz zero-order Bessel beam to improve the depth of focus of this imaging system for the non-diffraction property of Bessel beam. The THz CT system has been used to detect a paper cup with a metal rod inside. Finally, the acquired projection data have been processed by the filtered back-projection algorithm and the reconstructed image of the sample has been obtained.
Ramaz, F; Forget, B; Atlan, M; Boccara, A C; Gross, M; Delaye, P; Roosen, G
2004-11-01
We present a new and simple method to obtain ultrasound modulated optical tomography images in thick biological tissues with the use of a photorefractive crystal. The technique offers the advantage of spatially adapting the output speckle wavefront by analysing the signal diffracted by the interference pattern between this output field and a reference beam, recorded inside the photorefractive crystal. Averaging out due to random phases of the speckle grains vanishes, and we can use a fast single photodetector to measure the ultrasound modulated optical contrast. This technique offers a promising way to make direct measurements within the decorrelation time scale of living tissues.
Dynamic ultrasound modulated optical tomography by self-referenced photorefractive holography.
Benoit a la Guillaume, Emilie; Bortolozzo, Umberto; Huignard, Jean-Pierre; Residori, Stefania; Ramaz, Francois
2013-02-01
Photorefractive Bi(12)SiO(20) single crystal is used for acousto-optic imaging in thick scattering media in the green part of the spectrum, in an adaptive speckle correlation configuration. Light fields at the output of the scattering sample exhibit typical speckle grains of 1 μm size within the volume of the nonlinear crystal. This heterogeneous illumination induces a complex refractive index structure without applying a reference beam on the crystal, leading to a self-referenced diffraction correlation scheme. We demonstrate that this simple and robust configuration is able to perform axially resolved ultrasound modulated optical tomography of thick scattering media with an improved optical etendue.
Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector.
Muir, Ryan D; Pogranichniy, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J
2015-03-12
Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.
Spectral x-ray diffraction using a 6 megapixel photon counting array detector
NASA Astrophysics Data System (ADS)
Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.
2015-03-01
Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.
Arisan, Volkan; Karabuda, Zihni Cüneyt; Avsever, Hakan; Özdemir, Tayfun
2013-12-01
The relationship of conventional multi-slice computed tomography (CT)- and cone beam CT (CBCT)-based gray density values and the primary stability parameters of implants that were placed by stereolithographic surgical guides were analyzed in this study. Eighteen edentulous jaws were randomly scanned by a CT (CT group) or a CBCT scanner (CBCT group) and radiographic gray density was measured from the planned implants. A total of 108 implants were placed, and primary stability parameters were measured by insertion torque value (ITV) and resonance frequency analysis (RFA). Radiographic and subjective bone quality classification (BQC) was also classified. Results were analyzed by correlation tests and multiple regressions (p < .05). CBCT-based gray density values (765 ± 97.32 voxel value) outside the implants were significantly higher than those of CT-based values (668.4 ± 110 Hounsfield unit, p < .001). Significant relations were found among the gray density values outside the implants, ITV (adjusted r(2) = 0.6142, p = .001 and adjusted r(2) = 0.5166, p = .0021), and RFA (adjusted r(2) = 0.5642, p = .0017 and adjusted r(2) = 0.5423, p = .0031 for CT and CBCT groups, respectively). Data from radiographic and subjective BQC were also in agreement. Similar to the gray density values of CT, that of CBCT could also be predictive for the subjective BQC and primary implant stability. Results should be confirmed on different CBCT scanners. © 2012 Wiley Periodicals, Inc.
Beam-splitter switches based on zenithal bistable liquid-crystal gratings.
Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E
2014-10-01
The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.
NASA Astrophysics Data System (ADS)
Horesh, Lior
Electrical Impedance Tomography (EIT) is a recently developed imaging technique. Small insensible currents are injected into the body using electrodes. Measured voltages are used for reconstruction of images of the internal dielectric properties of the body. This imaging technique is portable, safe, rapid, inexpensive and has the potential to provide a new method for imaging in remote or acute situations, where other large scanners, such as MRI, are either impractical or unavailable. It has been in use in clinical research for about two decades but has not yet been adopted into routine clinical practice. One potentially powerful clinical application lies in its use for imaging acute stroke, where it could be used to distinguish haemorrhage from infarction. Hitherto, image reconstruction has mainly been for the more tractable case of changes in impedance over time. For acute stroke, it is best operated in multiple frequency mode, where data is collected at multiple frequencies and images can be recovered with higher fidelity. Whereas the eventual idea appears to be good, there are several important issues which affect the likelihood of its success in producing clinically reliable images. These include limitations in accuracy of finite element modelling, image reconstruction, and accuracy of recorded voltage data due to noise and confounding factors. The purpose of this work was to address these issues in the hope that, at the end, a clinical study of EIT in acute stroke would have a much greater chance of success. In order to address the feasibility of this application, a comprehensive literature review regarding the dielectric properties of human head tissues in normal and pathological states was conducted in this thesis. Novel generic tools were developed in order to enable modelling and non-linear image reconstruction of large-scale problems, such as those arising from the head EIT problem.
Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium
Beller, Laurence S.
1993-01-01
A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjichristov, Georgi B., E-mail: georgibh@issp.bas.bg; Marinov, Yordan G.; Petrov, Alexander G.
2016-03-25
We present a study on electrically- and spatially-controllable laser beam diffraction, electrooptic (EO) phase modulation, as well as amplitude-frequency EO modulation by single-layer microscale polymer-dispersed liquid crystal (PDLC) phase gratings (PDLC SLPGs) of interest for device applications. PDLC SLPGs were produced from nematic liquid crystal (LC) E7 in photo-curable NOA65 polymer. The wedge-formed PDLC SLPGs have a continuously variable thickness (2–25 µm). They contain LC droplets of diameters twice as the layer thickness, with a linear-gradient size distribution along the wedge. By applying alternating-current (AC) electric field, the PDLC SLPGs produce efficient: (i) diffraction splitting of transmitted laser beams; (ii)more » spatial redistribution of diffracted light intensity; (iii) optical phase modulation; (iv) amplitude-frequency modulation, all controllable by the driven AC field and the droplet size gradient.« less
Fisk, Mark D.; Pasyanos, Michael E.
2016-05-03
Characterizing regional seismic signals continues to be a difficult problem due to their variability. Calibration of these signals is very important to many aspects of monitoring underground nuclear explosions, including detecting seismic signals, discriminating explosions from earthquakes, and reliably estimating magnitude and yield. Amplitude tomography, which simultaneously inverts for source, propagation, and site effects, is a leading method of calibrating these signals. A major issue in amplitude tomography is the data quality of the input amplitude measurements. Pre-event and prephase signal-to-noise ratio (SNR) tests are typically used but can frequently include bad signals and exclude good signals. The deficiencies ofmore » SNR criteria, which are demonstrated here, lead to large calibration errors. To ameliorate these issues, we introduce a semi-automated approach to assess the bandwidth of a spectrum where it behaves physically. We determine the maximum frequency (denoted as F max) where it deviates from this behavior due to inflections at which noise or spurious signals start to bias the spectra away from the expected decay. We compare two amplitude tomography runs using the SNR and new F max criteria and show significant improvements to the stability and accuracy of the tomography output for frequency bands higher than 2 Hz by using our assessments of valid S-wave bandwidth. We compare Q estimates, P/S residuals, and some detailed results to explain the improvements. Lastly, for frequency bands higher than 4 Hz, needed for effective P/S discrimination of explosions from earthquakes, the new bandwidth criteria sufficiently fix the instabilities and errors so that the residuals and calibration terms are useful for application.« less
NASA Astrophysics Data System (ADS)
Gorodzha, S. N.; Surmeneva, M. A.; Prymak, O.; Wittmar, A.; Ulbricht, M.; Epple, M.; Teresov, A.; Koval, N.; Surmenev, R. A.
2015-11-01
The influence of surface properties of radio-frequency (RF) magnetron deposited hydroxyapatite (HA) and Si-containing HA coatings on wettability was studied. The composition and morphology of the coatings fabricated on titanium (Ti) were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface wettability was studied using contact angle analysis. Different geometric parameters of acid-etched (AE) and pulse electron beam (PEB)-treated Ti substrates and silicate content in the HA films resulted in the different morphology of the coatings at micro- and nano- length scales. Water contact angles for the HA coated Ti samples were evaluated as a combined effect of micro roughness of the substrate and nano-roughness of the HA films resulting in higher water contact angles compared with acid-etched (AE) or pulse electron beam (PEB) treated Ti substrates.
Realization of intermode oscillations in open resonator of diffraction radiation generator
NASA Astrophysics Data System (ADS)
Kurin, V. G.; Skrynnik, V. G.; Shestopalov, V. P.
1993-11-01
The results of an experimental study of oscillation interaction in the open resonator of a diffraction radiation generator (DRG) are presented. Interaction is obtained in the region of oscillation splitting in the electrodynamic system of the DRG in the diffraction-radiation mode. The possibility of improving the generator's frequency stability in the vicinities of Morse critical points is shown.
Research on Near Field Pattern Effects.
1981-01-01
block numbr) High frequency solutions Prolate spheroid mounted antennas Uniform Geometrical Theory of Diffraction Airborne antenna pattern predicti...Geometrical Theory of Diffraction solutions which were developed previously were DD 1473 EDITION OF I NOV 66 IS OBSOLETE UCASFE SECURITY CLASSIFICATION...be used later to simulate the fuselage of a general aircraft. The general uniform Geometrical Theory of Diffraction (GTD) solutions [1i which are
Diffraction Effects in the SOFIA Telescope and Cavity Door
NASA Astrophysics Data System (ADS)
Erickson, E. F.; Haas, M. R.; Davis, P. K.
2005-12-01
Calculations of diffraction phenomena for SOFIA (the Stratospheric Observatory for Infrared Astronomy) are described. The analyses establish the diffraction-limited point-spread function for the planned central obscuration of the telescope, confirm the specification for the oversized primary mirror diameter, evaluate spider diffraction effects, and determine the variation in focal-plane flux with position of the telescope relative to the cavity door. The latter is a concern because motion between the door aperture and the telescope can vary the flux from a point source and the sky background by diffraction (even when the door aperture does not physically obstruct the geometrical beam). We find all these effects to be acceptable in terms of observatory performance, with the possible exception of fractional background variations 3E-3 at wavelengths 1mm. Fractional background variations larger than 1E-6 can exceed photon shot noise in one second for broad-band, background-limited infrared detectors systems. However, we expect that synchronous signal demodulation using the telescope's chopping secondary mirror will obviate this effect, assuming modulation of the diffracted sky radiation by the relative motion of the door and telescope occurs at frequencies well below the chopoper frequency. This work is supported by the National Aeronautics and Space Administration.
Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S
2018-06-06
A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.
HIT collaborative base project at APS of Argonne
NASA Astrophysics Data System (ADS)
Liu, H.; Wang, L.
2012-12-01
Harbin Institute of Technology (HIT) launched collaborative base project at Argonne National Laboratory in 2010, and progress will be presented in this paper. The staff and students from HIT involved in advanced technological developments, which included tomography. high energy PDF, diffraction and scattering, and inelastic scattering techniques in APS to study structures changes under high pressure conditions.
From Data to Images:. a Shape Based Approach for Fluorescence Tomography
NASA Astrophysics Data System (ADS)
Dorn, O.; Prieto, K. E.
2012-12-01
Fluorescence tomography is treated as a shape reconstruction problem for a coupled system of two linear transport equations in 2D. The shape evolution is designed in order to minimize the least squares data misfit cost functional either in the excitation frequency or in the emission frequency. Furthermore, a level set technique is employed for numerically modelling the evolving shapes. Numerical results are presented which demonstrate the performance of this novel technique in the situation of noisy simulated data in 2D.
NASA Astrophysics Data System (ADS)
Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.
2013-01-01
Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.
NASA Astrophysics Data System (ADS)
Panigrahi, Suraj Kumar; Mishra, Ashok Kumar
2018-02-01
White light excitation fluorescence (WLEF) is known to possess analytical advantage in terms of enhanced sensitivity and facile capture of the entire fluorescence spectral signature of multi component fluorescence systems. Using the zero order diffraction of the grating monochromator on the excitation side of a commercial spectrofluorimeter, it has been shown that WLEF spectral measurements can be conveniently carried out. Taking analyte multi-fluorophoric systems like (i) drugs and vitamins spiked in urine sample, (ii) adulteration of extra virgin olive oil with olive pomace oil and (iii) mixture of fabric dyes, it was observed that there is a significant enhancement of measurement sensitivity. The total fluorescence spectral response could be conveniently analysed using PLS2 regression. This work brings out the ease of the use of a conventional fluorimeter for WLEF measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cil, Mehmet B.; Alshibli, Khalid A.; Kenesei, Peter
3D synchrotron X-ray diffraction (3DXRD) and synchrotron micro-computed tomography (SMT) techniques were used to measure and monitor the lattice strain evolution and fracture behavior of natural Ottawa sand particles subjected to 1D compression loading. The particle-averaged lattice strain within sand particles was measured using 3DXRD and then was used to calculate the corresponding lattice stress tensor. In addition, the evolution and mode of fracture of sand particles was investigated using high-resolution 3D SMT images. The results of diffraction data analyses revealed that the major principal component of the lattice strain or stress tensor increased in most of the particles asmore » the global applied compressive load increased until the onset of fracture. Particle fracture and subsequent rearrangements caused significant variation and fluctuations in measured lattice strain/stress values from one particle to another and from one load step to the next one. SMT image analysis at the particle-scale showed that cracks in fractured sand particles generally initiate and propagate along the plane that connects the two contact points. Fractured particles initially split into two or three major fragments followed by disintegration into multiple smaller fragments in some cases. In conclusion, microscale analysis of fractured particles showed that particle position, morphology, the number and location of contact points play a major role in the occurrence of particle fracture in confined comminution of the sand assembly.« less
Cil, Mehmet B.; Alshibli, Khalid A.; Kenesei, Peter
2017-05-27
3D synchrotron X-ray diffraction (3DXRD) and synchrotron micro-computed tomography (SMT) techniques were used to measure and monitor the lattice strain evolution and fracture behavior of natural Ottawa sand particles subjected to 1D compression loading. The particle-averaged lattice strain within sand particles was measured using 3DXRD and then was used to calculate the corresponding lattice stress tensor. In addition, the evolution and mode of fracture of sand particles was investigated using high-resolution 3D SMT images. The results of diffraction data analyses revealed that the major principal component of the lattice strain or stress tensor increased in most of the particles asmore » the global applied compressive load increased until the onset of fracture. Particle fracture and subsequent rearrangements caused significant variation and fluctuations in measured lattice strain/stress values from one particle to another and from one load step to the next one. SMT image analysis at the particle-scale showed that cracks in fractured sand particles generally initiate and propagate along the plane that connects the two contact points. Fractured particles initially split into two or three major fragments followed by disintegration into multiple smaller fragments in some cases. In conclusion, microscale analysis of fractured particles showed that particle position, morphology, the number and location of contact points play a major role in the occurrence of particle fracture in confined comminution of the sand assembly.« less
NASA Astrophysics Data System (ADS)
Karkra, Rashmi; Kumar, Prashant; Bansod, Baban K. S.; Bagchi, Sudeshna; Sharma, Pooja; Krishna, C. Rama
2017-11-01
Access to potable water for the common people is one of the most challenging tasks in the present era. Contamination of drinking water has become a serious problem due to various anthropogenic and geogenic events. The paper demonstrates the application of evolutionary algorithms, viz., particle swan optimization and genetic algorithm to 24 water samples containing eight different heavy metal ions (Cd, Cu, Co, Pb, Zn, Ar, Cr and Ni) for the optimal estimation of electrode and frequency to classify the heavy metal ions. The work has been carried out on multi-variate data, viz., single electrode multi-frequency, single frequency multi-electrode and multi-frequency multi-electrode water samples. The electrodes used are platinum, gold, silver nanoparticles and glassy carbon electrodes. Various hazardous metal ions present in the water samples have been optimally classified and validated by the application of Davis Bouldin index. Such studies are useful in the segregation of hazardous heavy metal ions found in water resources, thereby quantifying the degree of water quality.
Electrical Capacitance Volume Tomography: Design and Applications
Wang, Fei; Marashdeh, Qussai; Fan, Liang-Shih; Warsito, Warsito
2010-01-01
This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research. PMID:22294905
NASA Astrophysics Data System (ADS)
Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Liu, Hong; Zheng, Bin
2015-03-01
Glucose metabolism relates to biochemical processes in living organisms and plays an important role in diabetes and cancer-metastasis. Although many methods are available for measuring glucose metabolism-activities, from simple blood tests to positron emission tomography, currently there is no robust and affordable device that enables monitoring of glucose levels in real-time. In this study we tested feasibility of applying a unique resonance-frequency based electronic impedance spectroscopy (REIS) device that has been, recently developed to measure and monitor glucose metabolism levels using a phantom study. In this new testing model, a multi-frequency electrical signal sequence is applied and scanned through the subject. When the positive reactance of an inductor inside the device cancels out the negative reactance of the capacitance of the subject, the electrical impedance reaches a minimum value and this frequency is defined as the resonance frequency. The REIS system has a 24-bit analog-to-digital signal convertor and a frequency-resolution of 100Hz. In the experiment, two probes are placed inside a 100cc container initially filled with distilled water. As we gradually added liquid-glucose in increments of 1cc (250mg), we measured resonance frequencies and minimum electrical signal values (where A/D was normalized to a full scale of 1V). The results showed that resonance frequencies monotonously decreased from 243kHz to 178kHz, while the minimum voltages increased from 405mV to 793mV as the added amount of glucose increased from 0 to 5cc. The study demonstrated the feasibility of applying this new REIS technology to measure and/or monitor glucose levels in real-time in future.
Techniques for High Contrast Imaging in Multi-Star Systems II: Multi-Star Wavefront Control
NASA Technical Reports Server (NTRS)
Sirbu, D.; Thomas, S.; Belikov, R.
2017-01-01
Direct imaging of exoplanets represents a challenge for astronomical instrumentation due to the high-contrast ratio and small angular separation between the host star and the faint planet. Multi-star systems pose additional challenges for coronagraphic instruments because of the diffraction and aberration leakage introduced by the additional stars, and as a result are not planned to be on direct imaging target lists. Multi-star wavefront control (MSWC) is a technique that uses a coronagraphic instrument's deformable mirror (DM) to create high-contrast regions in the focal plane in the presence of multiple stars. Our previous paper introduced the Super-Nyquist Wavefront Control (SNWC) technique that uses a diffraction grating to enable the DM to generate high-contrast regions beyond the nominal controllable region. These two techniques can be combined to generate high-contrast regions for multi-star systems at any angular separations. As a case study, a high-contrast wavefront control (WC) simulation that applies these techniques shows that the habitable region of the Alpha Centauri system can be imaged reaching 8 times 10(exp -9) mean contrast in 10 percent broadband light in one-sided dark holes from 1.6-5.5 lambda (wavelength) divided by D (distance).
NASA Astrophysics Data System (ADS)
Khan, Faisal; Enzmann, Frieder; Kersten, Michael
2016-03-01
Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.
Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements
NASA Astrophysics Data System (ADS)
Hesthaven, J. S.; Dinesen, P. G.; Lynov, J. P.
1999-11-01
A spectral collocation multi-domain scheme is developed for the accurate and efficient time-domain solution of Maxwell's equations within multi-layered diffractive optical elements. Special attention is being paid to the modeling of out-of-plane waveguide couplers. Emphasis is given to the proper construction of high-order schemes with the ability to handle very general problems of considerable geometric and material complexity. Central questions regarding efficient absorbing boundary conditions and time-stepping issues are also addressed. The efficacy of the overall scheme for the time-domain modeling of electrically large, and computationally challenging, problems is illustrated by solving a number of plane as well as non-plane waveguide problems.
Lens-based wavefront sensorless adaptive optics swept source OCT
NASA Astrophysics Data System (ADS)
Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.
2016-06-01
Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.
Agrawal, Anant; Chen, Chao-Wei; Baxi, Jigesh; Chen, Yu; Pfefer, T Joshua
2013-07-01
In optical coherence tomography (OCT), axial resolution is one of the most critical parameters impacting image quality. It is commonly measured by determining the point spread function (PSF) based on a specular surface reflection. The contrast transfer function (CTF) provides more insights into an imaging system's resolving characteristics and can be readily generated in a system-independent manner, without consideration for image pixel size. In this study, we developed a test method for determination of CTF based on multi-layer, thin-film phantoms, evaluated using spectral- and time-domain OCT platforms with different axial resolution values. Phantoms representing six spatial frequencies were fabricated and imaged. The fabrication process involved spin coating silicone films with precise thicknesses in the 8-40 μm range. Alternating layers were doped with a specified concentration of scattering particles. Validation of layer optical properties and thicknesses were achieved with spectrophotometry and stylus profilometry, respectively. OCT B-scans were used to calculate CTFs and results were compared with convetional PSF measurements based on specular reflections. Testing of these phantoms indicated that our approach can provide direct access to axial resolution characteristics highly relevant to image quality. Furthermore, tissue phantoms based on our thin-film fabrication approach may have a wide range of additional applications in optical imaging and spectroscopy.
Variable-permittivity linear inverse problem for the H(sub z)-polarized case
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Chew, W. C.
1993-01-01
The H(sub z)-polarized inverse problem has rarely been studied before due to the complicated way in which the unknown permittivity appears in the wave equation. This problem is equivalent to the acoustic inverse problem with variable density. We have recently reported the solution to the nonlinear variable-permittivity H(sub z)-polarized inverse problem using the Born iterative method. Here, the linear inverse problem is solved for permittivity (epsilon) and permeability (mu) using a different approach which is an extension of the basic ideas of diffraction tomography (DT). The key to solving this problem is to utilize frequency diversity to obtain the required independent measurements. The receivers are assumed to be in the far field of the object, and plane wave incidence is also assumed. It is assumed that the scatterer is weak, so that the Born approximation can be used to arrive at a relationship between the measured pressure field and two terms related to the spatial Fourier transform of the two unknowns, epsilon and mu. The term involving permeability corresponds to monopole scattering and that for permittivity to dipole scattering. Measurements at several frequencies are used and a least squares problem is solved to reconstruct epsilon and mu. It is observed that the low spatial frequencies in the spectra of epsilon and mu produce inaccuracies in the results. Hence, a regularization method is devised to remove this problem. Several results are shown. Low contrast objects for which the above analysis holds are used to show that good reconstructions are obtained for both permittivity and permeability after regularization is applied.
A state space based approach to localizing single molecules from multi-emitter images.
Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J
2017-01-28
Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.
NASA Astrophysics Data System (ADS)
Lin, Yuting; Ghijsen, Michael; Thayer, David; Nalcioglu, Orhan; Gulsen, Gultekin
2011-03-01
Dynamic contrast enhanced MRI (DCE-MRI) has been proven to be the most sensitive modality in detecting breast lesions. Currently available MR contrast agent, Gd-DTPA, is a low molecular weight extracellular agent and can diffuse freely from the vascular space into interstitial space. Due to this reason, DCE-MRI has low sensitivity in differentiating benign and malignant tumors. Meanwhile, diffuse optical tomography (DOT) can be used to provide enhancement kinetics of an FDA approved optical contrast agent, ICG, which behaves like a large molecular weight optical agent due to its binding to albumin. The enhancement kinetics of ICG may have a potential to distinguish between the malignant and benign tumors and hence improve the specificity. Our group has developed a high speed hybrid MRI-DOT system. The DOT is a fully automated, MR-compatible, multi-frequency and multi-spectral imaging system. Fischer-344 rats bearing subcutaneous R3230 tumor are injected simultaneously with Gd-DTPA (0.1nmol/kg) and IC-Green (2.5mg/kg). The enhancement kinetics of both contrast agents are recorded simultaneously with this hybrid MRI-DOT system and evaluated for different tumors.
Shape and Size of Microfine Aggregates: X-ray Microcomputed Tomgraphy vs. Laser Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdogan,S.; Garboczi, E.; Fowler, D.
Microfine rock aggregates, formed naturally or in a crushing process, pass a No. 200 ASTM sieve, so have at least two orthogonal principal dimensions less than 75 {mu}m, the sieve opening size. In this paper, for the first time, we capture true 3-D shape and size data of several different types of microfine aggregates, using X-ray microcomputed tomography ({mu}CT) with a voxel size of 2 {mu}m. This information is used to generate shape analyses of various kinds. Particle size distributions are also generated from the {mu}CT data and quantitatively compared to the results of laser diffraction, which is the leadingmore » method for measuring particle size distributions of sub-millimeter size particles. By taking into account the actual particle shape, the differences between {mu}CT and laser diffraction can be qualitatively explained.« less
van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.
2016-01-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375
Feng, Sheng; Lotz, Thomas; Chase, J Geoffrey; Hann, Christopher E
2010-01-01
Digital Image Elasto Tomography (DIET) is a non-invasive elastographic breast cancer screening technology, based on image-based measurement of surface vibrations induced on a breast by mechanical actuation. Knowledge of frequency response characteristics of a breast prior to imaging is critical to maximize the imaging signal and diagnostic capability of the system. A feasibility analysis for a non-invasive image based modal analysis system is presented that is able to robustly and rapidly identify resonant frequencies in soft tissue. Three images per oscillation cycle are enough to capture the behavior at a given frequency. Thus, a sweep over critical frequency ranges can be performed prior to imaging to determine critical imaging settings of the DIET system to optimize its tumor detection performance.
NASA Astrophysics Data System (ADS)
Shi, Wei; Fang, Qiang; Fan, Jingli; Cui, Xuelong; Zhang, Zhuo; Li, Jinhui; Zhou, Guoqing
2017-02-01
We report a single frequency, linearly polarized, near diffraction-limited, pulsed laser source at 775 nm by frequency doubling a single frequency nanosecond pulsed all fiber based master oscillator-power amplifier, seeded by a fiber coupled semiconductor DFB laser diode at 1550 nm. The laser diode was driven by a pulsed laser driver to generate 5 ns laser pulses at 260 Hz repetition rate with 50 pJ pulse energy. The pulse energy was boosted to 200 μJ using two stages of core-pumped fiber amplifiers and two stages of cladding-pumped fiber amplifiers. The multi-stage synchronous pulse pumping technique was adopted in the four stages of fiber amplifiers to mitigate the ASE. The frequency doubling is implemented in a single pass configuration using a periodically poled lithium niobate (PPLN) crystal. The crystal is 3 mm long, 1.4 mm wide, 1 mm thick, with a 19.36 μm domain period chosen for quasi-phase matching at 33°C. It was AR coated at both 1550 nm and 775 nm. The maximum pulse energy of 97 μJ was achieved when 189 μJ fundamental laser was launched. The corresponding conversion efficiency is about 51.3%. The pulse duration was measured to be 4.8 ns. So the peak power of the generated 775 nm laser pulses reached 20 kW. To the best of our knowledge, this is the first demonstration of a 100 μJ-level, tens of kilowatts-peak-power-level single frequency linearly polarized 775 nm laser based on the frequency doubling of the fiber lasers.
Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Takida, Yuma; Matsukawa, Takeshi; Minamide, Hiroaki
2015-03-23
Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.
NASA Astrophysics Data System (ADS)
Reddy, K. Sanjeeva; Krishnamurthy, C. V.; Balasubramaniam, Krishnan; Balasubramanian, T.
2010-02-01
This paper discusses the evaluation of diffracted signals from cracks in 2D based on a new Huygen-Fresnel Diffraction Model (H-FDM). The model employs the frequency-domain far-field displacement expressions derived by Miller & Pursey [1] in 2D for a line source located on the free surface of a semi-infinite elastic medium. At each frequency in the bandwidth of a pulsed excitation, the complex diffracted field is obtained by summing over the unblocked virtual sources located in the section containing a vertical crack. The time-domain diffracted signal is obtained using standard FFT procedures. The effect of beam refraction from a wedge-based finite transducer has been modeled by treating the finite transducer as an array of line sources. The model has been used for predicting diffracted signals in time-of-flight from the crack like defect. The model allows the evaluation of back wall signal amplitude and lateral wave amplitude as well. Experiments have been carried out on 10 mm thick aluminum sample with surface breaking crack of lengths 2 mm and 4 mm using shear probe shoe. The simulated A-Scan results for the aluminum sample with 2 mm and 4 mm surface breaking lengths compare very well in relative amplitudes and time of arrivals with experiments. The H-FDM model offers a tool to evaluate diffraction and related phenomena quantitatively with modest computational resources.
Non-contact photoacoustic tomography with a laser Doppler vibrometer
NASA Astrophysics Data System (ADS)
Xu, Guan; Wang, Cheng; Feng, Ting; Oliver, David E.; Wang, Xueding
2014-03-01
Most concurrent photoacoustic tomography systems are based on traditional ultrasound measurement regime, which requires the contact or acoustic coupling material between the biological tissue and the ultrasound transducer. This study investigates the feasibility of non-contact measurement of photacoustic signals generated inside biomedical tissues by observing the vibrations at the surface of the tissues with a commercial laser Doppler vibrometer. The vibrometer with 0- 2MHz measurement bandwidth and 5 MHz sampling frequency was integrated to a conventional rotational PAT data acquisition system. The data acquisition of the vibrometer was synchronized to the laser illumination from an Nd:YAG laser with output at 532nm. The laser energy was tuned to 17.5mJ per square centimeter. The PA signals were acquired at 120 angular locations uniformly distributed around the scanned objects. The frequency response of the measurement system was first calibrated. 2-inch-diamater cylindrical phantoms containing small rubber plates and biological tissues were afterwards imaged. The phantoms were made from 5% intralipid solution in 10% porcine gelatin to simulate the light scattering in biological tissue and to backscatter the measurement laser from the vibrometer. Time-domain backprojection method was used for the image reconstruction. Experiments with real-tissue phantoms show that with laser illumination of 17.5 mJ/cm2 at 532 nm, the non-contact photoacoustic (PA) imaging system with 15dB detection bandwidth of 2.5 MHz can resolve spherical optical inclusions with dimension of 500μm and multi-layered structure with optical contrast in strongly scattering medium. The experiment results prompt the potential implementation of the non-contact PAT to achieve "photoacoustic camera".
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-11-01
Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.
Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium
Beller, L.S.
1993-01-26
A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.
Samuha, Shmuel; Mugnaioli, Enrico; Grushko, Benjamin; Kolb, Ute; Meshi, Louisa
2014-12-01
The crystal structure of the novel Al77Rh15Ru8 phase (which is an approximant of decagonal quasicrystals) was determined using modern direct methods (MDM) applied to automated electron diffraction tomography (ADT) data. The Al77Rh15Ru8 E-phase is orthorhombic [Pbma, a = 23.40 (5), b = 16.20 (4) and c = 20.00 (5) Å] and has one of the most complicated intermetallic structures solved solely by electron diffraction methods. Its structural model consists of 78 unique atomic positions in the unit cell (19 Rh/Ru and 59 Al). Precession electron diffraction (PED) patterns and high-resolution electron microscopy (HRTEM) images were used for the validation of the proposed atomic model. The structure of the E-phase is described using hierarchical packing of polyhedra and a single type of tiling in the form of a parallelogram. Based on this description, the structure of the E-phase is compared with that of the ε6-phase formed in Al-Rh-Ru at close compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genderen, E. van; Clabbers, M. T. B.; Center for Cellular Imaging and NanoAnalytics
A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at roommore » temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)« less
ON MEASUREMENT OF CARBON CONTENT IN RETAINED AUSTENITE IN A NANOSTRUCTURED BAINITIC STEEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Mateo, C.; Caballero, Francesca G.; Miller, Michael K
2012-01-01
In this study, the carbon content of retained austenite in a nanostructured bainitic steel was measured by atom probe tomography and compared with data derived from the austenite lattice parameter determined by X-ray diffraction. The results provide new evidence about the heterogeneous distribution of carbon in austenite, a fundamental issue controlling ductility in this type of microstructure.
NASA Astrophysics Data System (ADS)
Yoon, Jonghee; Kim, Kyoohyun; Kim, Min-hyeok; Kang, Suk-Jo; Park, YongKeun
2016-03-01
White blood cells (WBC) have crucial roles in immune systems which defend the host against from disease conditions and harmful invaders. Various WBC subsets have been characterized and reported to be involved in many pathophysiologic conditions. It is crucial to isolate a specific WBC subset to study its pathophysiological roles in diseases. Identification methods for a specific WBC population are rely on invasive approaches, including Wright-Gimesa staining for observing cellular morphologies and fluorescence staining for specific protein markers. While these methods enable precise classification of WBC populations, they could disturb cellular viability or functions. In order to classify WBC populations in a non-invasive manner, we exploited optical diffraction tomography (ODT). ODT is a three-dimensional (3-D) quantitative phase imaging technique that measures 3-D refractive index (RI) distributions of individual WBCs. To test feasibility of label-free classification of WBC populations using ODT, we measured four subtypes of WBCs, including B cell, CD4 T cell, CD8 T cell, and natural killer (NK) cell. From measured 3-D RI tomograms of WBCs, we obtain quantitative structural and biochemical information and classify each WBC population using a machine learning algorithm.
Advances in Global Adjoint Tomography -- Massive Data Assimilation
NASA Astrophysics Data System (ADS)
Ruan, Y.; Lei, W.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Krischer, L.; Tromp, J.
2015-12-01
Azimuthal anisotropy and anelasticity are key to understanding a myriad of processes in Earth's interior. Resolving these properties requires accurate simulations of seismic wave propagation in complex 3-D Earth models and an iterative inversion strategy. In the wake of successes in regional studies(e.g., Chen et al., 2007; Tape et al., 2009, 2010; Fichtner et al., 2009, 2010; Chen et al.,2010; Zhu et al., 2012, 2013; Chen et al., 2015), we are employing adjoint tomography based on a spectral-element method (Komatitsch & Tromp 1999, 2002) on a global scale using the supercomputer ''Titan'' at Oak Ridge National Laboratory. After 15 iterations, we have obtained a high-resolution transversely isotropic Earth model (M15) using traveltime data from 253 earthquakes. To obtain higher resolution images of the emerging new features and to prepare the inversion for azimuthal anisotropy and anelasticity, we expanded the original dataset with approximately 4,220 additional global earthquakes (Mw5.5-7.0) --occurring between 1995 and 2014-- and downloaded 300-minute-long time series for all available data archived at the IRIS Data Management Center, ORFEUS, and F-net. Ocean Bottom Seismograph data from the last decade are also included to maximize data coverage. In order to handle the huge dataset and solve the I/O bottleneck in global adjoint tomography, we implemented a python-based parallel data processing workflow based on the newly developed Adaptable Seismic Data Format (ASDF). With the help of the data selection tool MUSTANG developed by IRIS, we cleaned our dataset and assembled event-based ASDF files for parallel processing. We have started Centroid Moment Tensors (CMT) inversions for all 4,220 earthquakes with the latest model M15, and selected high-quality data for measurement. We will statistically investigate each channel using synthetic seismograms calculated in M15 for updated CMTs and identify problematic channels. In addition to data screening, we also modified the conventional multi-taper method to obtain better frequency-dependent measurements of surface-wave phase and amplitude anomalies, and therefore more accurate adjoint sources, which are particularly important for anelastic tomography. We present a summary of these data culling and processing procedures for global adjoint tomography.
NASA Technical Reports Server (NTRS)
Mazumder, M. K.
1970-01-01
Laser Doppler heterodyning system for velocity measurements without directional ambiguity, employing incident beams of different frequencies through rotating diffraction grating or Bragg cell application
Development of the EM tomography system by the vertical electromagnetic profiling (VEMP) method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Y.; Osato, K.; Takasugi, S.
1995-12-31
As a part of the {open_quotes}Deep-Seated Geothermal Resources Survey{close_quotes} project being undertaken by the NEDO, the Vertical ElectroMagnetic Profiling (VEMP) method is being developed to accurately obtain deep resistivity structure. The VEMP method acquires multi-frequency three-component magnetic field data in an open hole well using controlled sources (loop sources or grounded-wire sources) emitted at the surface. Numerical simulation using EM3D demonstrated that phase data of the VEMP method is very sensitive to resistivity structure and the phase data will also indicate presence of deep anomalies. Forward modelling was also used to determine required transmitter moments for various grounded-wire and loopmore » sources for a field test using the WD-1 well in the Kakkonda geothermal area. Field logging of the well was carried out in May 1994 and the processed field data matches well the simulated data.« less
Sonification of optical coherence tomography data and images
Ahmad, Adeel; Adie, Steven G.; Wang, Morgan; Boppart, Stephen A.
2010-01-01
Sonification is the process of representing data as non-speech audio signals. In this manuscript, we describe the auditory presentation of OCT data and images. OCT acquisition rates frequently exceed our ability to visually analyze image-based data, and multi-sensory input may therefore facilitate rapid interpretation. This conversion will be especially valuable in time-sensitive surgical or diagnostic procedures. In these scenarios, auditory feedback can complement visual data without requiring the surgeon to constantly monitor the screen, or provide additional feedback in non-imaging procedures such as guided needle biopsies which use only axial-scan data. In this paper we present techniques to translate OCT data and images into sound based on the spatial and spatial frequency properties of the OCT data. Results obtained from parameter-mapped sonification of human adipose and tumor tissues are presented, indicating that audio feedback of OCT data may be useful for the interpretation of OCT images. PMID:20588846
Ectopic Multinodular Goiter: Multidetector Computed Tomography Findings
Karakaya, Afak Durur; Kantarci, Mecit; Yalcin, Ahmet; Demir, Berrin
2008-01-01
The thyroid is the first endocrine gland to form during embryogenesis. At this stage, incomplete or anomalous migration of thyroid tissue causes ectopic localization of the gland. In our case, a 55-year-old woman who was evaluated via ultrasonography (USG) and multi-detector computed tomography (MDCT) had no thyroid gland at the normal location, but did have ectopic thyroid tissue in the left submandibular and submental regions. PMID:25610021
NASA Astrophysics Data System (ADS)
Wespestad, C.; Thurber, C. H.; Zeng, X.; Bennington, N. L.; Cardona, C.; Singer, B. S.
2016-12-01
Laguna del Maule Volcanic Field is a large, restless, rhyolitic system in the Southern Andes that is being heavily studied through several methods, including seismology, by a collaborative team of research institutions. A temporary array of 52 seismometers from OVDAS (the Southern Andean Volcano Observatory), PASSCAL (Portable Array Seismic Studies of the Continental Lithosphere), and the University of Wisconsin-Madison was used to collect the 1.3 years worth of data for this preliminary study. Ambient noise tomography uses surface wave dispersion data obtained from noise correlation functions (NCFs) between pairs of seismic stations, with one of each pair acting as a virtual source, in order to image the velocity structure in 3-D. NCFs were computed for hour-long time windows, and the final NCFs were obtained with phase-weighted stacking. The Frequency-Time Analysis technique was then utilized to measure group velocity between station pairs. NCFs were also analyzed to detect temporal changes in seismic velocity related to magmatic activity at the volcano. With the surface wave data from ambient noise, our small array aperture limits our modeling to the upper crust, so we employed teleseismic tomography to study deeper structures. For picking teleseismic arrivals, we tested two different correlation and stacking programs, which utilize adaptive stacking and multi-channel cross-correlation, to get relative arrival time data for a set of high quality events. Selected earthquakes were larger than magnitude 5 and between 30 and 95 degrees away from the center of the array. Stations that consistently show late arrivals may have a low velocity body beneath them, more clearly visualized via a 3-D tomographic model. Initial results from the two tomography methods indicate the presence of low-velocity zones at several depths. Better resolved velocity models will be developed as more data are acquired.
NASA Astrophysics Data System (ADS)
Vinciguerra, S.; King, T. I.; Benson, P. M.; De Siena, L.
2017-12-01
In recent years, 3D and 4D seismic tomography have unraveled medium changes during the seismic cycle or before eruptive events. As our resolving power increases, however, complex structures increasingly affect images. Being able to interpret and understand these features requires a multi-discipline approach combining different methods, each sensitive to particular properties of the sub-surface. Rock deformation laboratory experiments can relate seismic properties to the evolving medium quantitatively. Here, an array of 1 MHz Piezo-Electric Transducers has recorded high-quality low-noise acoustic emission (AE) data during triaxial compressional experiments. Samples of Carrara Marble, Darley Dale Sandstone and Westerly Granite were deformed in saturated conditions representative of a depth of about 1 km until brittle failure. Using a time window around sample failure, AE data were filtered between 5 and 75 KHz and processed using a 3D P-coda attenuation-tomography method. Ratios of P-direct to P-coda energies calculated for each source-receiver path were inverted using the coda normalisation method for values of Q (P-wave quality factor). The results show Q-variation with respect to an average Q. Q is a combination of the effects of scattering attenuation (Qs) and intrinsic attenuation Q (Qi), which can be correlated to the sample structure. Qs primary controls energy dissipation in the presence at acoustic impedance (AI) surfaces and at fracture tips, independently of rock type, while pore fluid effects dissipate energy (Qi). Damaged zones appear as high-Q and low-Q anomalies in unsaturated and saturated samples, respectively. We have attributed frequency-dependent high-Q to resonance in the presence of AI surfaces. Low Q areas appear behind AI surfaces and are interpreted as energy shadows. These shadows can affect attenuation tomography imaging at field scale.
The use of FDEM in hydrogeophysics: A review
NASA Astrophysics Data System (ADS)
Boaga, Jacopo
2017-04-01
Hydrogeophysics is a rapidly evolving discipline emerging from geophysical methods. Geophysical methods are nowadays able to illustrate not only the fabric and the structure of the underground, but also the subsurface processes that occur within it, as fluids dynamic and biogeochemical reactions. This is a growing wide inter-disciplinary field, specifically dedicated to revealing soil properties and monitoring processes of change due to soil/bio/atmosphere interactions. The discipline involves environmental, hydrological, agricultural research and counts application for several engineering purposes. The most frequently used techniques in the hydrogeophysical framework are the electric and electromagnetic methods because they are highly sensitive to soil physical properties such as texture, salinity, mineralogy, porosity and water content. Non-invasive techniques are applied in a number of problems related to characterization of subsurface hydrology and groundwater dynamic processes. Ground based methods, as electrical tomography, proved to obtain considerable resolution but they are difficult to extend to wider exploration purposes due to their logistical limitation. Methods that don't need electrical contact with soil can be, on the contrary, easily applied to broad areas. Among these methods, a rapidly growing role is played by frequency domain electro-magnetic (FDEM) survey. This is due thanks to the improvement of multi-frequency and multi-coils instrumentation, simple time-lapse repeatability, cheap and accurate topographical referencing, and the emerging development of inversion codes. From raw terrain apparent conductivity meter, FDEM survey is becoming a key tool for 3D soil characterization and dynamics observation in near surface hydrological studies. Dozens of papers are here summarized and presented, in order to describe the promising potential of the technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaotong; Liu, Jiaen; Van de Moortele, Pierre-Francois
2014-12-15
Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate themore » feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.« less
Interactions of multi-scale heterogeneity in the lithosphere: Australia
NASA Astrophysics Data System (ADS)
Kennett, B. L. N.; Yoshizawa, K.; Furumura, T.
2017-10-01
Understanding the complex heterogeneity of the continental lithosphere involves a wide variety of spatial scales and the synthesis of multiple classes of information. Seismic surface waves and multiply reflected body waves provide the main constraints on broad-scale structure, and bounds on the extent of the lithosphere-asthenosphere transition (LAT) can be found from the vertical gradients of S wavespeed. Information on finer-scale structures comes through body wave studies, including detailed seismic tomography and P-wave reflectivity extracted from stacked autocorrelograms of continuous component records. With the inclusion of deterministic large-scale structure and realistic medium-scale stochastic features fine-scale variations are subdued. The resulting multi-scale heterogeneity model for the Australian region gives a good representation of the character of observed seismograms and their geographic variations and matches the observations of P-wave reflectivity. P reflections in the 0.5-3.0 Hz band in the uppermost mantle suggest variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. Interference of waves reflected or converted at sequences of such modest variations in physical properties produce relatively simple behaviour for lower frequencies, which can suggest simpler structures than are actually present. Vertical changes in the character of fine-scale heterogeneity can produce apparent discontinuities. In Central Australia a 'mid-lithospheric discontinuity' can be tracked via changes in frequency content of station reflectivity, with links to the broad-scale pattern of wavespeed gradients and, in particular, the gradients of radial anisotropy. Comparisons with xenolith results from southeastern Australia indicate a strong tie between geochemical stratification and P-wave reflectivity.
NASA Astrophysics Data System (ADS)
Belkebir, Kamal; Saillard, Marc
2005-12-01
This special section deals with the reconstruction of scattering objects from experimental data. A few years ago, inspired by the Ipswich database [1 4], we started to build an experimental database in order to validate and test inversion algorithms against experimental data. In the special section entitled 'Testing inversion algorithms against experimental data' [5], preliminary results were reported through 11 contributions from several research teams. (The experimental data are free for scientific use and can be downloaded from the web site.) The success of this previous section has encouraged us to go further and to design new challenges for the inverse scattering community. Taking into account the remarks formulated by several colleagues, the new data sets deal with inhomogeneous cylindrical targets and transverse electric (TE) polarized incident fields have also been used. Among the four inhomogeneous targets, three are purely dielectric, while the last one is a `hybrid' target mixing dielectric and metallic cylinders. Data have been collected in the anechoic chamber of the Centre Commun de Ressources Micro-ondes in Marseille. The experimental setup as well as the layout of the files containing the measurements are presented in the contribution by J-M Geffrin, P Sabouroux and C Eyraud. The antennas did not change from the ones used previously [5], namely wide-band horn antennas. However, improvements have been achieved by refining the mechanical positioning devices. In order to enlarge the scope of applications, both TE and transverse magnetic (TM) polarizations have been carried out for all targets. Special care has been taken not to move the target under test when switching from TE to TM measurements, ensuring that TE and TM data are available for the same configuration. All data correspond to electric field measurements. In TE polarization the measured component is orthogonal to the axis of invariance. Contributions A Abubakar, P M van den Berg and T M Habashy, Application of the multiplicative regularized contrast source inversion method TM- and TE-polarized experimental Fresnel data, present results of profile inversions obtained using the contrast source inversion (CSI) method, in which a multiplicative regularization is plugged in. The authors successfully inverted both TM- and TE-polarized fields. Note that this paper is one of only two contributions which address the inversion of TE-polarized data. A Baussard, Inversion of multi-frequency experimental data using an adaptive multiscale approach, reports results of reconstructions using the modified gradient method (MGM). It suggests that a coarse-to-fine iterative strategy based on spline pyramids. In this iterative technique, the number of degrees of freedom is reduced, which improves robustness. The introduction, during the iterative process, of finer scales inside areas of interest leads to an accurate representation of the object under test. The efficiency of this technique is shown via comparisons between the results obtained with the standard MGM and those from an adaptive approach. L Crocco, M D'Urso and T Isernia, Testing the contrast source extended Born inversion method against real data: the case of TM data, assume that the main contribution in the domain integral formulation comes from the singularity of Green's function, even though the media involved are lossless. A Fourier Bessel analysis of the incident and scattered measured fields is used to derive a model of the incident field and an estimate of the location and size of the target. The iterative procedure lies on a conjugate gradient method associated with Tikhonov regularization, and the multi-frequency data are dealt with using a frequency-hopping approach. In many cases, it is difficult to reconstruct accurately both real and imaginary parts of the permittivity if no prior information is included. M Donelli, D Franceschini, A Massa, M Pastorino and A Zanetti, Multi-resolution iterative inversion of real inhomogeneous targets, adopt a multi-resolution strategy, which, at each step, adaptive discretization of the integral equation is performed over an irregular mesh, with a coarser grid outside the regions of interest and tighter sampling where better resolution is required. Here, this procedure is achieved while keeping the number of unknowns constant. The way such a strategy could be combined with multi-frequency data, edge preserving regularization, or any technique also devoted to improve resolution, remains to be studied. As done by some other contributors, the model of incident field is chosen to fit the Fourier Bessel expansion of the measured one. A Dubois, K Belkebir and M Saillard, Retrieval of inhomogeneous targets from experimental frequency diversity data, present results of the reconstruction of targets using three different non-regularized techniques. It is suggested to minimize a frequency weighted cost function rather than a standard one. The different approaches are compared and discussed. C Estatico, G Bozza, A Massa, M Pastorino and A Randazzo, A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data, use a two nested iterative methods scheme, based on the second-order Born approximation, which is nonlinear in terms of contrast but does not involve the total field. At each step of the outer iteration, the problem is linearized and solved iteratively using the Landweber method. Better reconstructions than with the Born approximation are obtained at low numerical cost. O Feron, B Duchêne and A Mohammad-Djafari, Microwave imaging of inhomogeneous objects made of a finite number of dielectric and conductive materials from experimental data, adopt a Bayesian framework based on a hidden Markov model, built to take into account, as prior knowledge, that the target is composed of a finite number of homogeneous regions. It has been applied to diffraction tomography and to a rigorous formulation of the inverse problem. The latter can be viewed as a Bayesian adaptation of the contrast source method such that prior information about the contrast can be introduced in the prior law distribution, and it results in estimating the posterior mean instead of minimizing a cost functional. The accuracy of the result is thus closely linked to the prior knowledge of the contrast, making this approach well suited for non-destructive testing. J-M Geffrin, P Sabouroux and C Eyraud, Free space experimental scattering database continuation: experimental set-up and measurement precision, describe the experimental set-up used to carry out the data for the inversions. They report the modifications of the experimental system used previously in order to improve the precision of the measurements. Reliability of data is demonstrated through comparisons between measurements and computed scattered field with both fundamental polarizations. In addition, the reader interested in using the database will find the relevant information needed to perform inversions as well as the description of the targets under test. A Litman, Reconstruction by level sets of n-ary scattering obstacles, presents the reconstruction of targets using a level sets representation. It is assumed that the constitutive materials of the obstacles under test are known and the shape is retrieved. Two approaches are reported. In the first one the obstacles of different constitutive materials are represented in a single level set, while in the second approach several level sets are combined. The approaches are applied to the experimental data and compared. U Shahid, M Testorf and M A Fiddy, Minimum-phase-based inverse scattering algorithm applied to Institut Fresnel data, suggest a way of extending the use of minimum phase functions to 2D problems. In the kind of inverse problems we are concerned with, it consists of separating the contributions from the field and from the contrast in the so-called contrast source term, through homomorphic filtering. Images of the targets are obtained by combination with diffraction tomography. Both pre-processing and imaging are thus based on the use of Fourier transforms, making the algorithm very fast compared to classical iterative approaches. It is also pointed out that the design of appropriate filters remains an open topic. C Yu, L-P Song and Q H Liu, Inversion of multi-frequency experimental data for imaging complex objects by a DTA CSI method, use the contrast source inversion (CSI) method for the reconstruction of the targets, in which the initial guess is a solution deduced from another iterative technique based on the diagonal tensor approximation (DTA). In so doing, the authors combine the fast convergence of the DTA method for generating an accurate initial estimate for the CSI method. Note that this paper is one of only two contributions which address the inversion of TE-polarized data. Conclusion In this special section various inverse scattering techniques were used to successfully reconstruct inhomogeneous targets from multi-frequency multi-static measurements. This shows that the database is reliable and can be useful for researchers wanting to test and validate inversion algorithms. From the database, it is also possible to extract subsets to study particular inverse problems, for instance from phaseless data or from `aspect-limited' configurations. Our future efforts will be directed towards extending the database in order to explore inversions from transient fields and the full three-dimensional problem. Acknowledgments The authors would like to thank the Inverse Problems board for opening the journal to us, and offer profound thanks to Elaine Longden-Chapman and Kate Hooper for their help in organizing this special section.
Transmission function properties for multi-layered structures: application to super-resolution.
Mattiucci, N; D'Aguanno, G; Scalora, M; Bloemer, M J; Sibilia, C
2009-09-28
We discuss the properties of the transmission function in the k-space for a generic multi-layered structure. In particular we analytically demonstrate that a transmission greater than one in the evanescent spectrum (amplification of the evanescent modes) can be directly linked to the guided modes supported by the structure. Moreover we show that the slope of the phase of the transmission function in the propagating spectrum is inversely proportional to the ability of the structure to compensate the diffraction of the propagating modes. We apply these findings to discuss several examples where super-resolution is achieved thanks to the simultaneous availability of the amplification of the evanescent modes and the diffraction compensation of the propagating modes.
Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument
Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu; ...
2018-02-06
Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less
Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu
Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less
Morabito, Rosa; Colonna, Michele R; Mormina, Enricomaria; Stagno d'Alcontres, Ferdinando; Salpietro, Vincenzo; Blandino, Alfredo; Longo, Marcello; Granata, Francesca
2014-12-01
Craniofacial duplication is a very rare malformation. The phenotype comprises a wide spectrum, ranging from partial duplication of few facial structures to complete dicephalus. We report the case of a newborn with an accessory oral cavity associated to duplication of the tongue and the mandible diagnosed by multi-row detector Computed Tomography, few days after her birth. Our case of partial craniofacial duplication can be considered as Type II of Gorlin classification or as an intermediate form between Type I and Type II of Sun classification. Our experience demonstrates that CT scan, using appropriate reconstruction algorithms, permits a detailed evaluation of the different structures in an anatomical region. Multi-row CT scan is also the more accurate diagnostic procedure for the pre-surgical evaluation of craniofacial malformations. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Multi-signal FIB/SEM tomography
NASA Astrophysics Data System (ADS)
Giannuzzi, Lucille A.
2012-06-01
Focused ion beam (FIB) milling coupled with scanning electron microscopy (SEM) on the same platform enables 3D microstructural analysis of structures using FIB for serial sectioning and SEM for imaging. Since FIB milling is a destructive technique, the acquisition of multiple signals from each slice is desirable. The feasibility of collecting both an inlens backscattered electron (BSE) signal and an inlens secondary electron (SE) simultaneously from a single scan of the electron beam from each FIB slice is demonstrated. The simultaneous acquisition of two different SE signals from two different detectors (inlens vs. Everhart-Thornley (ET) detector) is also possible. Obtaining multiple signals from each FIB slice with one scan increases the acquisition throughput. In addition, optimization of microstructural and morphological information from the target is achieved using multi-signals. Examples of multi-signal FIB/SEM tomography from a dental implant will be provided where both material contrast from the bone/ceramic coating/Ti substrate phases and porosity in the ceramic coating will be characterized.
2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance.
Beltran, M A; Paganin, D M; Uesugi, K; Kitchen, M J
2010-03-29
A method of tomographic phase retrieval is developed for multi-material objects whose components each has a distinct complex refractive index. The phase-retrieval algorithm, based on the Transport-of-Intensity equation, utilizes propagation-based X-ray phase contrast images acquired at a single defocus distance for each tomographic projection. The method requires a priori knowledge of the complex refractive index for each material present in the sample, together with the total projected thickness of the object at each orientation. The requirement of only a single defocus distance per projection simplifies the experimental setup and imposes no additional dose compared to conventional tomography. The algorithm was implemented using phase contrast data acquired at the SPring-8 Synchrotron facility in Japan. The three-dimensional (3D) complex refractive index distribution of a multi-material test object was quantitatively reconstructed using a single X-ray phase-contrast image per projection. The technique is robust in the presence of noise, compared to conventional absorption based tomography.
NASA Astrophysics Data System (ADS)
Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang
2018-04-01
In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.
Wood, W.T.; Hart, P.E.; Hutchinson, D.R.; Dutta, N.; Snyder, F.; Coffin, R.B.; Gettrust, J.F.
2008-01-01
To determine the impact of seeps and focused flow on the occurrence of shallow gas hydrates, several seafloor mounds in the Atwater Valley lease area of the Gulf of Mexico were surveyed with a wide range of seismic frequencies. Seismic data were acquired with a deep-towed, Helmholz resonator source (220-820 Hz); a high-resolution, Generator-Injector air-gun (30-300 Hz); and an industrial air-gun array (10-130 Hz). Each showed a significantly different response in this weakly reflective, highly faulted area. Seismic modeling and observations of reversed-polarity reflections and small scale diffractions are consistent with a model of methane transport dominated regionally by diffusion but punctuated by intense upward advection responsible for the bathymetric mounds, as well as likely advection along pervasive filamentous fractures away from the mounds.
Study of multi-functionality of lanthanum ferrite (LaFeO{sub 3})
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaikwad, Vishwajit M.; Uikey, Pankaj; Acharya, Smita A., E-mail: saha275@yahoo.com
2015-06-24
In the present work, multifunctional behaviors of LaFeO{sub 3} (LFO) are investigated by studying its dielectric and photocatalytic properties, respectively. LFO is synthesized by microwave-assisted co-precipitation route. Orthorhombic structure is confirmed by X-ray diffraction (XRD) and data is well fitted using Rietveld refinement by Full-Prof suite. Frequency and Temperature dependence dielectric behavior are systematically studied. The dielectric constant of LFO was found to be 2500 – 3000 with dissipation factor less than 5%. Photodegradation of toxic dye (Methylene Blue) using as-prepared LFO is also investigated. UV-visible absorption spectra are used to study the photodegradation behaviour. Photodegradation of methylene blue (MB)more » taken from textile industries by LFO are reported. The colossal value of dielectric constant of LFO exhibits high potential to use as room temperature capacitive component for device miniaturization in microelectronics as well as photodegradation ability shows good photocatalyst.« less
A new technique for simulating composite material
NASA Technical Reports Server (NTRS)
Volakis, John L.
1991-01-01
This project dealt with the development on new methodologies and algorithms for the multi-spectrum electromagnetic characterization of large scale nonmetallic airborne vehicles and structures. A robust, low memory, and accurate methodology was developed which is particularly suited for modern machine architectures. This is a hybrid finite element method that combines two well known numerical solution approaches. That of the finite element method for modeling volumes and the boundary integral method which yields exact boundary conditions for terminating the finite element mesh. In addition, a variety of high frequency results were generated (such as diffraction coefficients for impedance surfaces and material layers) and a class of boundary conditions were developed which hold promise for more efficient simulations. During the course of this project, nearly 25 detailed research reports were generated along with an equal number of journal papers. The reports, papers, and journal articles are listed in the appendices along with their abstracts.
Three-dimensional analysis of the microstructure and bio-corrosion of Mg–Zn and Mg–Zn–Ca alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Y.; Chiu, Y.L.; Jones, I.P.
2016-02-15
The effects of the morphology and the distribution of secondary phases on the bio-corrosion properties of magnesium (Mg) alloys are significant. Focused Ion Beam (FIB) tomography and Micro X-Ray computed tomography (Micro-CT) have been used to characterise the morphology and distribution of (α-Mg + MgZn) and (α-Mg + Ca{sub 2} + Mg{sub 6} + Zn{sub 3}) eutectic phase mixtures in as-cast Mg–3Zn and Mg–3Zn–0.3Ca alloys, respectively. There were two different 3D distributions: (i) an interconnected network and (ii) individual spheres. The tomography informed our understanding of the relationship between the distribution of secondary phases and the development of localized corrosionmore » in magnesium alloys. - Highlights: • Multi-scale tomography was used to characterise the morphology and distribution of secondary phases in Mg alloys. • The development of localized corrosion was investigated using tomography. • An improved understanding of the microstructure and corrosion was achieved using Micro-CT tomography.« less
Meaney, Paul M.; Fox, Colleen J.; Geimer, Shireen D.; Paulsen, Keith D.
2016-01-01
We examine the broadband behavior of complex electrical properties of glycerin and water mixtures over the frequency range of 0.1 – 25.0 GHz, especially as they relate to using these liquids as coupling media for microwave tomographic imaging. Their combination is unique in that they are mutually miscible over the full range of concentrations which allows them to be tailored to dielectric property matching for biological tissues. While the resultant mixture properties are partially driven by differences in the inherent low frequency permittivity of each constituent, relaxation frequency shifts play a disproportionately larger role in increasing the permittivity dispersion while also dramatically increasing the effective conductivity over the frequency range of 1 to 3 GHz. For the full range of mixture ratios, the relaxation frequency shifts from 17.5 GHz for 0% glycerin to less than 0.1 GHz for 100% glycerin. Of particular interest is the fact that the conductivity stays above 1.0 S/m over the 1–3 GHz range for glycerin mixture ratios (70–90% glycerin) we use for microwave breast tomography. The high level of attenuation is critical for suppressing unwanted multipath signals. This paper presents a full characterization of these liquids along with a discussion of their benefits and limitations in the context of microwave tomography. PMID:28507391
Unpowered wireless ultrasound tomography system
NASA Astrophysics Data System (ADS)
Zahedi, Farshad; Huang, Haiying
2016-04-01
In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.
NASA Astrophysics Data System (ADS)
Garabito, German; Cruz, João Carlos Ribeiro; Oliva, Pedro Andrés Chira; Söllner, Walter
2017-01-01
The Common Reflection Surface stack is a robust method for simulating zero-offset and common-offset sections with high accuracy from multi-coverage seismic data. For simulating common-offset sections, the Common-Reflection-Surface stack method uses a hyperbolic traveltime approximation that depends on five kinematic parameters for each selected sample point of the common-offset section to be simulated. The main challenge of this method is to find a computationally efficient data-driven optimization strategy for accurately determining the five kinematic stacking parameters on which each sample of the stacked common-offset section depends. Several authors have applied multi-step strategies to obtain the optimal parameters by combining different pre-stack data configurations. Recently, other authors used one-step data-driven strategies based on a global optimization for estimating simultaneously the five parameters from multi-midpoint and multi-offset gathers. In order to increase the computational efficiency of the global optimization process, we use in this paper a reduced form of the Common-Reflection-Surface traveltime approximation that depends on only four parameters, the so-called Common Diffraction Surface traveltime approximation. By analyzing the convergence of both objective functions and the data enhancement effect after applying the two traveltime approximations to the Marmousi synthetic dataset and a real land dataset, we conclude that the Common-Diffraction-Surface approximation is more efficient within certain aperture limits and preserves at the same time a high image accuracy. The preserved image quality is also observed in a direct comparison after applying both approximations for simulating common-offset sections on noisy pre-stack data.
Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera
NASA Astrophysics Data System (ADS)
Trichopoulos, Georgios C.; Sertel, Kubilay
2015-07-01
We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.
Hypersonic and Supersonic Flow Roadmaps Using Bibliometrics and Database Tomography.
ERIC Educational Resources Information Center
Kostoff, R. N.; Eberhart, Henry J.; Toothman, Darrell Ray
1999-01-01
Database Tomography (DT) is a textual database-analysis system consisting of algorithms for extracting multiword phrase frequencies and proximities from a large textual database, to augment interpretative capabilities of the expert human analyst. Describes use of the DT process, supplemented by literature bibliometric analyses, to derive technical…
Freire-Maia, B; Machado, V deC; Valerio, C S; Custódio, A L N; Manzi, F R; Junqueira, J L C
2017-03-01
The aim of this study was to compare the accuracy of linear measurements of the distance between the mandibular cortical bone and the mandibular canal using 64-detector multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT). It was sought to evaluate the reliability of these examinations in detecting the mandibular canal for use in bilateral sagittal split osteotomy (BSSO) planning. Eight dry human mandibles were studied. Three sites, corresponding to the lingula, the angle, and the body of the mandible, were selected. After the CT scans had been obtained, the mandibles were sectioned and the bone segments measured to obtain the actual measurements. On analysis, no statistically significant difference was found between the measurements obtained through MSCT and CBCT, or when comparing the measurements from these scans with the actual measurements. It is concluded that the images obtained by CT scan, both 64-detector multi-slice and cone beam, can be used to obtain accurate linear measurements to locate the mandibular canal for preoperative planning of BSSO. The ability to correctly locate the mandibular canal during BSSO will reduce the occurrence of neurosensory disturbances in the postoperative period. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen
2017-08-30
This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.
NASA Astrophysics Data System (ADS)
Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen
2017-08-01
This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.
Improved multi-beam laser interference lithography system by vibration analysis model
NASA Astrophysics Data System (ADS)
Lin, Te Hsun; Yang, Yin-Kuang; Mai, Hsuan-Ying; Fu, Chien-Chung
2017-03-01
This paper has developed the multi-beam laser interference lithography (LIL) system for nano/micro pattern sapphire substrate process (PSS/NPSS). However, the multi-beam LIL system is very sensitive to the light source and the vibration. When there is a vibration source in the exposure environment, the standing wave distribution on the substrate will be affected by the vibration and move in a certain angle. As a result, Moiré fringe defects occur on the exposure result. In order to eliminate the effect of the vibration, we use the software ANSYS to analyze the resonant frequencies of our multi-beam LIL system. Therefore, we need to design new multi-beam LIL system to raise the value of resonant frequencies. The new design of the multi-beam LIL system has higher resonant frequencies and successfully eliminates the bending and rotating effect of the resonant frequencies. As a result, the new multi-beam LIL system can fabricate large area and defects free period structures.
The elimination of zero-order diffraction of 10.6 μm infrared digital holography
NASA Astrophysics Data System (ADS)
Liu, Ning; Yang, Chao
2017-05-01
A new method of eliminating the zero-order diffraction in infrared digital holography has been raised in this paper. Usually in the reconstruction of digital holography, the spatial frequency of the infrared thermal imager, such as microbolometer, cannot be compared to the common visible CCD or CMOS devices. The infrared imager suffers the problems of large pixel size and low spatial resolution, which cause the zero-order diffraction a severe influence of the reconstruction process of digital holograms. The zero-order diffraction has very large energy and occupies the central region in the spectrum domain. In this paper, we design a new filtering strategy to overcome this problem. This filtering strategy contains two kinds of filtering process which are the Gaussian low-frequency filter and the high-pass phase averaging filter. With the correct set of the calculating parameters, these filtering strategies can work effectively on the holograms and fully eliminate the zero-order diffraction, as well as the two crossover bars shown in the spectrum domain. Detailed explanation and discussion about the new method have been proposed in this paper, and the experiment results are also demonstrated to prove the performance of this method.
Laboratory tools and e-learning elements in training of acousto-optics
NASA Astrophysics Data System (ADS)
Barócsi, Attila; Lenk, Sándor; Ujhelyi, Ferenc; Majoros, Tamás.; Maák, Paál.
2015-10-01
Due to the acousto-optic (AO) effect, the refractive index of an optical interaction medium is perturbed by an acoustic wave induced in the medium that builds up a phase grating that will diffract the incident light beam if the condition of constructive interference is satisfied. All parameters, such as magnitude, period or phase of the grating can be controlled that allows the construction of useful devices (modulators, switches, one or multi-dimensional deflectors, spectrum analyzers, tunable filters, frequency shifters, etc.) The research and training of acousto-optics have a long-term tradition at our department. In this presentation, we introduce the related laboratory exercises fitted into an e-learning frame. The BSc level exercise utilizes a laser source and an AO cell to demonstrate the effect and principal AO functions explaining signal processing terms such as amplitude or frequency modulation, modulation depth and Fourier transformation ending up in building a free space sound transmitting and demodulation system. The setup for MSc level utilizes an AO filter with mono- and polychromatic light sources to learn about spectral analysis and synthesis. Smart phones can be used to generate signal inputs or outputs for both setups as well as to help students' preparation and reporting.
Harbin Institute of Technology collaborative base project at APS of Argonne
NASA Astrophysics Data System (ADS)
Liu, H.; Liu, L. L.
2013-05-01
In this paper, the progress of Harbin Institute of Technology (HIT) collaborative base project, which was launched at Argonne National Laboratory in 2010, will be presented. The staff and students from HIT involved in advanced technological developments, which included tomography, high energy PDF, diffraction and scattering, and inelastic scattering techniques in APS to study structures changes of minerals and materials under high pressure conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tourret, D.; Mertens, J. C. E.; Lieberman, E.
We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure,more » supported by quantitative simulations of microstructure formation and its mechanical behavior.« less
Tourret, D.; Mertens, J. C. E.; Lieberman, E.; ...
2017-09-13
We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure,more » supported by quantitative simulations of microstructure formation and its mechanical behavior.« less
NASA Astrophysics Data System (ADS)
Tourret, D.; Mertens, J. C. E.; Lieberman, E.; Imhoff, S. D.; Gibbs, J. W.; Henderson, K.; Fezzaa, K.; Deriy, A. L.; Sun, T.; Lebensohn, R. A.; Patterson, B. M.; Clarke, A. J.
2017-11-01
We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure, supported by quantitative simulations of microstructure formation and its mechanical behavior.
Frangioni, John V.; De Grand, Alec M.
2007-10-30
The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.
Ali, Jason M.; Tasker, Angela; Peryt, Adam; Aresu, Giuseppe; Coonar, Aman S.
2018-01-01
Lung cancer is a common disease and the leading cause of cancer-related mortality, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Following diagnosis of lung cancer, accurate staging is essential to guide clinical management and inform prognosis. Positron emission tomography (PET) in conjunction with computed tomography (CT)—as PET-CT has developed as an important tool in the multi-disciplinary management of lung cancer. This article will review the current evidence for the role of 18F-fluorodeoxyglucose (FDG) PET-CT in NSCLC diagnosis, staging, response assessment and follow up. PMID:29666818
Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium
Zhu, Sheng-Fa; Lu, Lei; Cai, Zhen-Bing
2017-01-01
The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip. PMID:28384200
Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium.
Wu, Yan-Ping; Li, Zheng-Yang; Zhu, Sheng-Fa; Lu, Lei; Cai, Zhen-Bing
2017-01-01
The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip.
Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.
2016-01-01
We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters. PMID:27491952
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
NASA Astrophysics Data System (ADS)
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
Integrated telemedicine applications and services for oncological positron emission tomography.
Kontaxakis, George; Visvikis, Dimitris; Ohl, Roland; Sachpazidis, Ilias; Suarez, Juan Pablo; Selby, Peter; Cheze-Le Rest, Catherine; Santos, Andres; Ortega, Fernando; Diaz, Javier; Pan, Leyun; Strauss, Ludwig; Dimitrakopoulou-Strauss, Antonia; Sakas, Georgios; Pozo, Miguel Angel
2006-01-01
TENPET (Trans European Network for Positron Emission Tomography) aims to evaluate the provision of integrated teleconsultation and intelligent computer supported cooperative work services for clinical positron emission tomography (PET) in Europe at its current stage, as it is a multi-centre project financially supported by the European Commission (Information Society, eTEN Program). It addresses technological challenges by linking PET centres and developing supporting services that permit remote consultation between professionals in the field. The technological platform (CE-marked) runs on Win2000/NT/XP systems and incorporates advanced techniques for image visualization, analysis and fusion, as well as for interactive communication and message handling for off-line communications. Four PET Centres from Spain, France and Germany participate to the pilot system trials. The performance evaluation of the system is carried out via log files and user-filled questionnaires on the frequency of the teleconsultations, their duration and efficacy, quality of the images received, user satisfaction, as well as on privacy, ethical and security issues. TENPET promotes the co-operation and improved communication between PET practitioners that are miles away from their peers or on mobile units, offering options for second opinion and training and permitting physicians to remotely consult patient data if they are away from their centre. It is expected that TENPET will have a significant impact in the development of new skills by PET professionals and will support the establishment of peripheral PET units. To our knowledge, TENPET is the first telemedicine service specifically designed for oncological PET. This report presents the technical innovations incorporated in the TENPET platform and the initial pilot studies at real and diverse clinical environments in the field of oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang
2016-01-15
To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less
Measuring stress variation with depth using Barkhausen signals
NASA Astrophysics Data System (ADS)
Kypris, O.; Nlebedim, I. C.; Jiles, D. C.
2016-06-01
Magnetic Barkhausen noise analysis (BNA) is an established technique for the characterization of stress in ferromagnetic materials. An important application is the evaluation of residual stress in aerospace components, where shot-peening is used to strengthen the part by inducing compressive residual stresses on its surface. However, the evaluation of the resulting stress-depth gradients cannot be achieved by conventional BNA methods, where signals are interpreted in the time domain. The immediate alternative of using x-ray diffraction stress analysis is less than ideal, as the use of electropolishing to remove surface layers renders the part useless after inspection. Thus, a need for advancing the current BNA techniques prevails. In this work, it is shown how a parametric model for the frequency spectrum of Barkhausen emissions can be used to detect variations of stress along depth in ferromagnetic materials. Proof of concept is demonstrated by inducing linear stress-depth gradients using four-point bending, and fitting the model to the frequency spectra of measured Barkhausen signals, using a simulated annealing algorithm to extract the model parameters. Validation of our model suggests that in bulk samples the Barkhausen frequency spectrum can be expressed by a multi-exponential function with a dependence on stress and depth. One practical application of this spectroscopy method is the non-destructive evaluation of residual stress-depth profiles in aerospace components, thus helping to prevent catastrophic failures.
NASA Astrophysics Data System (ADS)
König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.
2010-02-01
For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.
Inverse transport calculations in optical imaging with subspace optimization algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Tian, E-mail: tding@math.utexas.edu; Ren, Kui, E-mail: ren@math.utexas.edu
2014-09-15
Inverse boundary value problems for the radiative transport equation play an important role in optics-based medical imaging techniques such as diffuse optical tomography (DOT) and fluorescence optical tomography (FOT). Despite the rapid progress in the mathematical theory and numerical computation of these inverse problems in recent years, developing robust and efficient reconstruction algorithms remains a challenging task and an active research topic. We propose here a robust reconstruction method that is based on subspace minimization techniques. The method splits the unknown transport solution (or a functional of it) into low-frequency and high-frequency components, and uses singular value decomposition to analyticallymore » recover part of low-frequency information. Minimization is then applied to recover part of the high-frequency components of the unknowns. We present some numerical simulations with synthetic data to demonstrate the performance of the proposed algorithm.« less
Low-frequency noise effect on terahertz tomography using thermal detectors.
Guillet, J P; Recur, B; Balacey, H; Bou Sleiman, J; Darracq, F; Lewis, D; Mounaix, P
2015-08-01
In this paper, the impact of low-frequency noise on terahertz-computed tomography (THz-CT) is analyzed for several measurement configurations and pyroelectric detectors. We acquire real noise data from a continuous millimeter-wave tomographic scanner in order to figure out its impact on reconstructed images. Second, noise characteristics are quantified according to two distinct acquisition methods by (i) extrapolating from experimental acquisitions a sinogram for different noise backgrounds and (ii) reconstructing the corresponding spatial distributions in a slice using a CT reconstruction algorithm. Then we describe the low-frequency noise fingerprint and its influence on reconstructed images. Thanks to the observations, we demonstrate that some experimental choices can dramatically affect the 3D rendering of reconstructions. Thus, we propose some experimental methodologies optimizing the resulting quality and accuracy of the 3D reconstructions, with respect to the low-frequency noise characteristics observed during acquisitions.
Frequency analysis for modulation-enhanced powder diffraction.
Chernyshov, Dmitry; Dyadkin, Vadim; van Beek, Wouter; Urakawa, Atsushi
2016-07-01
Periodic modulation of external conditions on a crystalline sample with a consequent analysis of periodic diffraction response has been recently proposed as a tool to enhance experimental sensitivity for minor structural changes. Here the intensity distributions for both a linear and nonlinear structural response induced by a symmetric and periodic stimulus are analysed. The analysis is further extended for powder diffraction when an external perturbation changes not only the intensity of Bragg lines but also their positions. The derived results should serve as a basis for a quantitative modelling of modulation-enhanced diffraction data measured in real conditions.
NASA Astrophysics Data System (ADS)
Cochran, Jeffrey M.; Busch, David R.; Ban, Han Y.; Kavuri, Venkaiah C.; Schweiger, Martin J.; Arridge, Simon R.; Yodh, Arjun G.
2017-02-01
We present high spatial density, multi-modal, parallel-plate Diffuse Optical Tomography (DOT) imaging systems for the purpose of breast tumor detection. One hybrid instrument provides time domain (TD) and continuous wave (CW) DOT at 64 source fiber positions. The TD diffuse optical spectroscopy with PMT- detection produces low-resolution images of absolute tissue scattering and absorption while the spatially dense array of CCD-coupled detector fibers (108 detectors) provides higher-resolution CW images of relative tissue optical properties. Reconstruction of the tissue optical properties, along with total hemoglobin concentration and tissue oxygen saturation, is performed using the TOAST software suite. Comparison of the spatially-dense DOT images and MR images allows for a robust validation of DOT against an accepted clinical modality. Additionally, the structural information from co-registered MR images is used as a spatial prior to improve the quality of the functional optical images and provide more accurate quantification of the optical and hemodynamic properties of tumors. We also present an optical-only imaging system that provides frequency domain (FD) DOT at 209 source positions with full CCD detection and incorporates optical fringe projection profilometry to determine the breast boundary. This profilometry serves as a spatial constraint, improving the quality of the DOT reconstructions while retaining the benefits of an optical-only device. We present initial images from both human subjects and phantoms to display the utility of high spatial density data and multi-modal information in DOT reconstruction with the two systems.
NASA Technical Reports Server (NTRS)
Justak, John
2010-01-01
An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.
Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba
NASA Astrophysics Data System (ADS)
Charrière, Florian; Pavillon, Nicolas; Colomb, Tristan; Depeursinge, Christian; Heger, Thierry J.; Mitchell, Edward A. D.; Marquet, Pierre; Rappaz, Benjamin
2006-08-01
This paper presents an optical diffraction tomography technique based on digital holographic microscopy. Quantitative 2-dimensional phase images are acquired for regularly-spaced angular positions of the specimen covering a total angle of π, allowing to built 3-dimensional quantitative refractive index distributions by an inverse Radon transform. A 20x magnification allows a resolution better than 3 μm in all three dimensions, with accuracy better than 0.01 for the refractive index measurements. This technique is for the first time to our knowledge applied to living specimen (testate amoeba, Protista). Morphometric measurements are extracted from the tomographic reconstructions, showing that the commonly used method for testate amoeba biovolume evaluation leads to systematic under evaluations by about 50%.
High-resolution frequency-domain second-harmonic optical coherence tomography
NASA Astrophysics Data System (ADS)
Su, Jianping; Tomov, Ivan V.; Jiang, Yi; Chen, Zhongping
2007-04-01
We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain second-harmonic optical coherence tomography (SH-OCT) to 12 μm. The acquisition time was shortened by more than 2 orders of magnitude compared to the time-domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon, and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on the SH has been used to obtain polarization resolved images.
Electromagnetic induction imaging with a radio-frequency atomic magnetometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deans, Cameron; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk; Hussain, Sarah
2016-03-07
We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.
Time-domain Brillouin scattering assisted by diffraction gratings
NASA Astrophysics Data System (ADS)
Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi
2018-02-01
Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.
Application of Patterson-function direct methods to materials characterization.
Rius, Jordi
2014-09-01
The aim of this article is a general description of the so-called Patterson-function direct methods (PFDM), from their origin to their present state. It covers a 20-year period of methodological contributions to crystal structure solution, most of them published in Acta Crystallographica Section A. The common feature of these variants of direct methods is the introduction of the experimental intensities in the form of the Fourier coefficients of origin-free Patterson-type functions, which allows the active use of both strong and weak reflections. The different optimization algorithms are discussed and their performances compared. This review focuses not only on those PFDM applications related to powder diffraction data but also on some recent results obtained with electron diffraction tomography data.
Advances in combined endoscopic fluorescence confocal microscopy and optical coherence tomography
NASA Astrophysics Data System (ADS)
Risi, Matthew D.
Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure. Results from an ongoing clinical study to detect ovarian cancer with a novel confocal fluorescent microendoscope are presented. As an imaging modality, confocal fluorescence microendoscopy typically requires exogenous fluorophores, has a relatively limited penetration depth (100 μm), and often employs specialized aperture configurations to achieve real-time imaging in vivo. Two primary research directions designed to overcome these limitations and improve diagnostic capability are presented. Ideal confocal imaging performance is obtained with a scanning point illumination and confocal aperture, but this approach is often unsuitable for real-time, in vivo biomedical imaging. By scanning a slit aperture in one direction, image acquisition speeds are greatly increased, but at the cost of a reduction in image quality. The design, implementation, and experimental verification of a custom multi-point-scanning modification to a slit-scanning multi-spectral confocal microendoscope is presented. This new design improves the axial resolution while maintaining real-time imaging rates. In addition, the multi-point aperture geometry greatly reduces the effects of tissue scatter on imaging performance. Optical coherence tomography (OCT) has seen wide acceptance and FDA approval as a technique for ophthalmic retinal imaging, and has been adapted for endoscopic use. As a minimally invasive imaging technique, it provides morphological characteristics of tissues at a cellular level without requiring the use of exogenous fluorophores. OCT is capable of imaging deeper into biological tissue (˜1-2 mm) than confocal fluorescence microscopy. A theoretical analysis of the use of a fiber-bundle in spectral-domain OCT systems is presented. The fiber-bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the optical coherence tomography data. However, the multi-mode characteristic of the fibers in the fiber-bundle affects the depth sensitivity of the imaging system. A description of light interference in a multi-mode fiber is presented along with numerical simulations and experimental studies to illustrate the theoretical analysis.
Dark-field transmission electron microscopy and the Debye-Waller factor of graphene
Hubbard, William A.; White, E. R.; Dawson, Ben; Lodge, M. S.; Ishigami, Masa; Regan, B. C.
2014-01-01
Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary. PMID:25242882
Dark-field transmission electron microscopy and the Debye-Waller factor of graphene.
Shevitski, Brian; Mecklenburg, Matthew; Hubbard, William A; White, E R; Dawson, Ben; Lodge, M S; Ishigami, Masa; Regan, B C
2013-01-15
Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary.
Tosaka, Masahiko; Nagaki, Tomohito; Honda, Fumiaki; Takahashi, Katsumasa; Yoshimoto, Yuhei
2015-11-01
Intraoperative computed tomography (iCT) is a reliable method for the detection of residual tumour, but previous single-slice low-resolution computed tomography (CT) without coronal or sagittal reconstructions was not of adequate quality for clinical use. The present study evaluated the results of multi-slice iCT-assisted endoscopic transsphenoidal surgery for pituitary macroadenoma. This retrospective study included 30 consecutive patients with newly diagnosed or recurrent pituitary macroadenoma with supradiaphragmatic extension who underwent endoscopic transsphenoidal surgery using iCT (eTSS+iCT group), and control 30 consecutive patients who underwent conventional endoscope-assisted transsphenoidal surgery (cTSS group). The tumour volume was calculated by multiplying the tumour area by the slice thickness. Visual acuity and visual field were estimated by the visual impairment score (VIS). The resection extent, (preoperative tumour volume - postoperative residual tumour volume)/preoperative tumour volume, was 98.9% (median) in the eTSS+iCT group and 91.7% in the cTSS group, and had significant difference between the groups (P = 0.04). Greater than 95 and >90% removal rates were significantly higher in the eTSS+iCT group than in the cTSS group (P = 0.02 and P = 0.001, respectively). However, improvement in VIS showed no significant difference between the groups. The rate of complications also showed no significant difference. Multi-slice iCT-assisted endoscopic transsphenoidal surgery may improve the resection extent of pituitary macroadenoma. Multi-slice iCT may have advantages over intraoperative magnetic resonance imaging in less expensive, short acquisition time, and that special protection against magnetic fields is not needed.
Diffraction analysis of sidelobe characteristics of optical elements with ripple error
NASA Astrophysics Data System (ADS)
Zhao, Lei; Luo, Yupeng; Bai, Jian; Zhou, Xiangdong; Du, Juan; Liu, Qun; Luo, Yujie
2018-03-01
The ripple errors of the lens lead to optical damage in high energy laser system. The analysis of sidelobe on the focal plane, caused by ripple error, provides a reference to evaluate the error and the imaging quality. In this paper, we analyze the diffraction characteristics of sidelobe of optical elements with ripple errors. First, we analyze the characteristics of ripple error and build relationship between ripple error and sidelobe. The sidelobe results from the diffraction of ripple errors. The ripple error tends to be periodic due to fabrication method on the optical surface. The simulated experiments are carried out based on angular spectrum method by characterizing ripple error as rotationally symmetric periodic structures. The influence of two major parameter of ripple including spatial frequency and peak-to-valley value to sidelobe is discussed. The results indicate that spatial frequency and peak-to-valley value both impact sidelobe at the image plane. The peak-tovalley value is the major factor to affect the energy proportion of the sidelobe. The spatial frequency is the major factor to affect the distribution of the sidelobe at the image plane.
Nanometer scale composition study of MBE grown BGaN performed by atom probe tomography
NASA Astrophysics Data System (ADS)
Bonef, Bastien; Cramer, Richard; Speck, James S.
2017-06-01
Laser assisted atom probe tomography is used to characterize the alloy distribution in BGaN. The effect of the evaporation conditions applied on the atom probe specimens on the mass spectrum and the quantification of the III site atoms is first evaluated. The evolution of the Ga++/Ga+ charge state ratio is used to monitor the strength of the applied field. Experiments revealed that applying high electric fields on the specimen results in the loss of gallium atoms, leading to the over-estimation of boron concentration. Moreover, spatial analysis of the surface field revealed a significant loss of atoms at the center of the specimen where high fields are applied. A good agreement between X-ray diffraction and atom probe tomography concentration measurements is obtained when low fields are applied on the tip. A random distribution of boron in the BGaN layer grown by molecular beam epitaxy is obtained by performing accurate and site specific statistical distribution analysis.
50 Mb/s, 220-mW Laser-Array Transmitter
NASA Technical Reports Server (NTRS)
Cornwell, Donald M., Jr.
1992-01-01
Laser transmitter based on injection locking produces single-wavelength, diffraction-limited, single-lobe beam. Output stage is array of laser diodes producing non-diffraction-limited, multi-mode beam in absence of injection locking. Suitable for both free-space and optical-fiber communication systems. Because beam from transmitter focused to spot as small as 5 micrometers, devices usable for reading and writing optical disks at increased information densities. Application also in remote sensing and ranging.
Tomography of the upper mantle beneath the African/Iberian collision zone
NASA Astrophysics Data System (ADS)
Bonnin, Mickael; Nolet, Guust; Thomas, Christine; Villaseñor, Antonio; Gallart, Josep; Levander, Alan
2013-04-01
In this study we take advantage of the dense broadband-station networks available in western Mediterranean region (IberArray, PICASSO and MOROCCO-MUENSTER networks) to develop a high-resolution 3D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone. This model is based on teleseismic arrival times recorded between 2008 and 2012 for which cross-correlation delays are measured with a new technique in different frequency bands centered between 0.03 and 1.0 Hz, and interpreted using multiple frequency tomography. Such a tomography is required to scrutinize the nature and extent of the thermal anomalies inferred beneath Northern Africa, especially in the Atlas ranges region and associated to sparse volcanic activities. Tomography is notably needed to help in determining the hypothetical connection between those hot anomalies and the Canary Island hotspot as proposed by geochemistry studies. It also provides new insights on the geometry of the subducting slab previously inferred from tomography, GPS measurements or shear-wave splitting patterns beneath the Alboran Sea and the Betic ranges and is indispensable for deciphering the complex geodynamic history of the Western Mediterranean region. We shall present the overall statistics of the delays, their geographical distribution, as well as the first inversion results.
A Comparison of Ultrasound Tomography Methods in Circular Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leach, R R; Azevedo, S G; Berryman, J G
2002-01-24
Extremely high quality data was acquired using an experimental ultrasound scanner developed at Lawrence Livermore National Laboratory using a 2D ring geometry with up to 720 transmitter/receiver transducer positions. This unique geometry allows reflection and transmission modes and transmission imaging and quantification of a 3D volume using 2D slice data. Standard image reconstruction methods were applied to the data including straight-ray filtered back projection, reflection tomography, and diffraction tomography. Newer approaches were also tested such as full wave, full wave adjoint method, bent-ray filtered back projection, and full-aperture tomography. A variety of data sets were collected including a formalin-fixed humanmore » breast tissue sample, a commercial ultrasound complex breast phantom, and cylindrical objects with and without inclusions. The resulting reconstruction quality of the images ranges from poor to excellent. The method and results of this study are described including like-data reconstructions produced by different algorithms with side-by-side image comparisons. Comparisons to medical B-scan and x-ray CT scan images are also shown. Reconstruction methods with respect to image quality using resolution, noise, and quantitative accuracy, and computational efficiency metrics will also be discussed.« less
Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging
Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf
2013-01-01
The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required. PMID:23793151
Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging.
Warren, Anna J; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R; Horrell, Sam; McAuley, Katherine E; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf
2013-07-01
The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.
Micro- and nano-imaging at the diamond beamline I13L-imaging and coherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, C., E-mail: Christoph.rau@diamond.ac.uk; University of Manchester, School of Materials Grosvenor St., Manchester, M1 7HS; Northwestern University School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611-3008
2016-07-27
The Diamond Beamline I13L is dedicated to imaging on the micron- and nano-lengthscale, operating in the energy range between 6 and 30 keV. For this purpose two independent stations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometer resolution. Currently a full-field microscope providing 50nm spatial resolution over a field of view of 100 µm is being tested. On the coherence branch, coherent diffraction imaging techniques such as ptychography and coherent X-ray Bragg diffraction are currently developed. The beamline contains a number of unique features. The machine layout has been modifiedmore » to the so-called mini-beta scheme, providing significantly increased flux from the two canted undulators. New instrumental designs such as a robot arm for the detector in diffraction experiments have been employed. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline.« less
Quantum Tomography via Compressed Sensing: Error Bounds, Sample Complexity and Efficient Estimators
2012-09-27
particular, we require no entangling gates or ancillary systems for the procedure. In contrast with [19], our method is not restricted to processes that are...of states, such as those recently developed for use with permutation-invariant states [60], matrix product states [61] or multi-scale entangled states...process tomography: first prepare the Jamiołkowski state ρE (by adjoining an ancilla, preparing the maximally entangled state |ψ0, and applying E); then
Multi-scale Functional and Molecular Photoacoustic Tomography
Yao, Junjie; Xia, Jun; Wang, Lihong V.
2015-01-01
Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT. PMID:25933617
Time-Resolved and Spectroscopic Three-Dimensional Optical Breast Tomography
2009-03-01
polarization sensitive imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON R. R...project; • Development of a near-infrared center of intensity time gated imaging approach; and • Polarization sensitive imaging. We provide an...spectroscopic imaging arrangement, and a multi-source illumination and multi- detector signal acquisition arrangement. 5 5.1.1. Time-resolved transillumination
Sherlin, Leslie; Congedo, Marco
2005-10-21
Electroencephalographic mapping techniques have been used to show differences between normal subjects and those diagnosed with various mental disorders. To date, there is no other research using the techniques of low-resolution brain electromagnetic tomography (LORETA) with the obsessive-compulsive disorder (OCD) population. The current investigation compares current source density measures of persons with OCD symptoms to an age-matched control group. The main finding is excess current source density in the Beta frequencies in the cingulate gyrus. This Beta activity is primarily located in the middle cingulate gyrus as well as adjacent frontal parieto-occipital regions. Lower frequency Beta is prominent more anteriorly in the cingulate gyrus whereas higher frequency Beta is seen more posteriorly. These preliminary findings indicate the utility of LORETA as a clinical and diagnostic tool.
Frequency of Root Canal Isthmi in Human Permanent Teeth Determined by Cone-beam Computed Tomography.
Estrela, Carlos; Rabelo, Luiz Eduardo G; de Souza, João Batista; Alencar, Ana Helena G; Estrela, Cyntia R A; Sousa Neto, Manoel Damião; Pécora, Jesus Djalma
2015-09-01
This study evaluated the frequency of root canal isthmi (RCIs) in human permanent teeth by using cone-beam computed tomography. A sample of 1400 teeth of 618 patients (394 women; mean age, 43.4 years) was selected. RCIs were detected longitudinally on 0.1-mm/0.1-mm axial slices of cone-beam computed tomography images of roots scanned from the pulp orifice to the apex, and findings were classified into 7 categories according to RCIs beginning and end: (1) both in the cervical third, (2) begin in the cervical third and end in the middle third, (3) begin in the cervical third and end in the apical third, (4) both in the middle third, (5) begin in the middle third and end in the apical third, (6) both in the apical third, or (7) no isthmus. A χ(2) test with Yates correction or the Fisher exact test was used to analyze categorical variables, described as frequencies (%). The Student t test was used to compare quantitative variables. RCI is a common anatomic structure in human permanent teeth, except in maxillary anterior teeth. The higher frequencies of RCIs (87.9%) were found in mandibular first molars. The frequencies of RCIs according to mean age and tooth group were not significantly different (P > .05), except in mandibular central incisors. RCIs were less frequent among older patients. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
A novel analysis method for near infrared spectroscopy based on Hilbert-Huang transform
NASA Astrophysics Data System (ADS)
Zhou, Zhenyu; Yang, Hongyu; Liu, Yun; Ruan, Zongcai; Luo, Qingming; Gong, Hui; Lu, Zuhong
2007-05-01
Near Infrared Imager (NIRI) has been widely used to access the brain functional activity non-invasively. We use a portable, multi-channel and continuous-wave NIR topography instrument to measure the concentration changes of each hemoglobin species and map cerebral cortex functional activation. By extracting some essential features from the BOLD signals, optical tomography is able to be a new way of neuropsychological studies. Fourier spectral analysis provides a common framework for examining the distribution of global energy in the frequency domain. However, this method assumes that the signal should be stationary, which limits its application in non-stationary system. The hemoglobin species concentration changes are of such kind. In this work we develop a new signal processing method using Hilbert-Huang transform to perform spectral analysis of the functional NIRI signals. Compared with wavelet based multi-resolution analysis (MRA), we demonstrated the extraction of task related signal for observation of activation in the prefrontal cortex (PFC) in vision stimulation experiment. This method provides a new analysis tool for functional NIRI signals. Our experimental results show that the proposed approach provides the unique method for reconstructing target signal without losing original information and enables us to understand the episode of functional NIRI more precisely.
Frequency domain fluorescent diffuse tomography of small animals with DsRed2-expressed tumors
NASA Astrophysics Data System (ADS)
Turchin, Ilya V.; Savitsky, Alexander P.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Orlova, Anna G.; Sergeeva, Ekaterina A.; Kleshnin, Mikhail S.; Shirmanova, Marina V.
2006-02-01
The main applications of fluorescent proteins (FPs) are monitoring tumor growth, angiogenesis, metastases formation and effects of new classes of drugs. Different types of tomography allow fluorescence imaging of tumors located deep in human or animal tissue. These techniques were used for investigation of the distribution of near-infrared fluorescent probes, but only a few works are devoted to fluorescence tomography in visible light. In this work, preliminary results of the frequency domain fluorescent diffuse tomography (FD FDT) method in application to DsRed2 protein as a fluorescent agent are presented. For the first step of our experiments we utilized second harmonic generation of Nd:YAG laser (532 nm) modulated by low frequency (1 kHz) in the experimental setup. The transilluminative planar configuration was used in the setup. A series of model experiments has been conducted and show good agreement between theoretical and experimental fluorescence intensity. Post mortem experiments with capsules containing DsRed2 and scattering solution introduced into esophagus of rats to simulate tumor formation have been conducted. The results of these experiments show that sensitivity of the setup is sufficient to detect DsRed2 in concentrations similar to those in FP-expressed tumor, but the contrast is not enough high to separate fluorescence of DsRed2 and surrounding tissues. The setup can be significantly improved by utilizing high-frequency modulation (110 MHz using acousto-optical modulator) of the excitation light and precise phase measurements due to difference in fluorescence life-time of FPs and surrounding tissues. An algorithm of processing a fluorescent image based on calculating zero of maximum curvature was employed for detection of fluorescent inclusions boundaries in the image.
Mytko, Christine
2018-05-18
A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mytko, Christine
2014-03-31
A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong,Z.; Bennett, D.; Chapman, D.
We explored diffraction enhanced imaging (DEI) in both planar and computed tomography (CT) modes for early detection of beta amyloid deposition, a hallmark feature in Alzheimer's disease (AD). Since amyloid plaques precede clinical symptoms by years, their early detection is of great interest. These findings were correlated with results from synchrotron infrared microspectroscopic imaging and X-ray fluorescence microscopy, to determine the secondary structure of the amyloid beta protein and metal concentration in the amyloid plaques, respectively.
NASA Astrophysics Data System (ADS)
Wang, Jia; Guo, Zhenyan; Song, Yang; Han, Jun
2018-01-01
To realize volume moiré tomography (VMT) for the real three-dimensional (3D) diagnosis of combustion fields, according to 3D filtered back projection (FBP) reconstruction algorithm, the radial derivatives of the projected phase should be measured firstly. In this paper, a simple spatial phase-shifting moiré deflectometry with double cross gratings is presented to measure the radial first-order derivative of the projected phase. Based on scalar diffraction theory, the explicit analytical intensity distributions of moiré patterns on different diffracted orders are derived, and the spatial shifting characteristics are analyzed. The results indicate that the first-order derivatives of the projected phase in two mutually perpendicular directions are involved in moiré patterns, which can be combined to compute the radial first-order derivative. And multiple spatial phase-shifted moiré patterns can be simultaneously obtained; the phase-shifted values are determined by the parameters of the system. A four-step phase-shifting algorithm is proposed for phase extraction, and its accuracy is proved by numerical simulations. Finally, the moiré deflectometry is used to measure the radial first-order derivative of projected phase of a propane flame with plane incident wave, and the 3D temperature distribution is reconstructed.
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy
McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.
2015-01-01
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy
NASA Astrophysics Data System (ADS)
McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.
2015-10-01
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy.
McDonald, S A; Reischig, P; Holzner, C; Lauridsen, E M; Withers, P J; Merkle, A P; Feser, M
2015-10-23
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through '4D' in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.
Towards Dynamic Contrast Specific Ultrasound Tomography
NASA Astrophysics Data System (ADS)
Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo
2016-10-01
We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.
In vivo functional photoacoustic tomography of traumatic brain injury in rats
NASA Astrophysics Data System (ADS)
Oh, Jung-Taek; Song, Kwang-Hyung; Li, Meng-Lin; Stoica, George; Wang, Lihong V.
2006-02-01
In this study, we demonstrate the potential of photoacoustic tomography for the study of traumatic brain injury (TBI) in rats in vivo. Based on spectroscopic photoacoustic tomography that can detect the absorption rates of oxy- and deoxy-hemoglobins, the blood oxygen saturation and total blood volume in TBI rat brains were visualized. Reproducible cerebral trauma was induced using a fluid percussion TBI device. The time courses of the hemodynamic response following the trauma initiation were imaged with multi-wavelength photoacoustic tomography with bandwidth-limited spatial resolution through the intact skin and skull. In the pilot set of experiments, trauma induced hematomas and blood oxygen saturation level changes were detected, a finding consistent with the known physiological responses to TBI. This new imaging method will be useful for future studies on TBI-related metabolic activities and the effects of therapeutic agents.
Towards Dynamic Contrast Specific Ultrasound Tomography.
Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo
2016-10-05
We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.
Towards Dynamic Contrast Specific Ultrasound Tomography
Demi, Libertario; Van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo
2016-01-01
We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast. PMID:27703251
Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2016-01-01
This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.
Evaluation of prosthetic valve thrombosis by 64-row multi-detector computed tomography. .
Tarzia, Vincenzo; Bortolussi, Giacomo; Rubino, Maurizio; Gallo, Michele; Bottio, Tomaso; Gerosa, Gino
2015-03-01
Multi-detector computed tomography (MDCT), combined with retrospective electrocardiographic gating, permits cardiac imaging with high accuracy. Recent advances in MDCT have seemed to respond adequately to the need for a non-invasive and reliable assessment of the coronary artery lumen. Two patients with prosthetic aortic valves (one bioprosthetic, one mechanical) presented at the authors' institution with dyspnea and syncopal episodes. MDCT was performed to evaluate thrombus characteristics and exclude coronary artery disease (CAD). Based on the MDCT coronary artery assessment, neither patient underwent preoperative invasive coronary angiography, abolishing the risk of any iatrogenic thrombus fragmentation and subsequent embolization. One patient underwent surgical treatment without complications, while medical therapy was successful in the other case. MDCT can be used for the accurate imaging of thrombi on prosthetic aortic valves, and to correctly assess possible CAD.
Montaudon, M; Desbarats, P; Berger, P; de Dietrich, G; Marthan, R; Laurent, F
2007-01-01
A thickened bronchial wall is the morphological substratum of most diseases of the airway. Theoretical and clinical models of bronchial morphometry have so far focused on bronchial lumen diameter, and bronchial length and angles, mainly assessed from bronchial casts. However, these models do not provide information on bronchial wall thickness. This paper reports in vivo values of cross-sectional wall area, lumen area, wall thickness and lumen diameter in ten healthy subjects as assessed by multi-detector computed tomography. A validated dedicated software package was used to measure these morphometric parameters up to the 14th bronchial generation, with respect to Weibel's model of bronchial morphometry, and up to the 12th according to Boyden's classification. Measured lumen diameters and homothety ratios were compared with theoretical values obtained from previously published studies, and no difference was found when considering dichotomic division of the bronchial tree. Mean wall area, lumen area, wall thickness and lumen diameter were then provided according to bronchial generation order, and mean homothety ratios were computed for wall area, lumen area and wall thickness as well as equations giving the mean value of each parameter for a given bronchial generation with respect to its value in generation 0 (trachea). Multi-detector computed tomography measurements of bronchial morphometric parameters may help to improve our knowledge of bronchial anatomy in vivo, our understanding of the pathophysiology of bronchial diseases and the evaluation of pharmacological effects on the bronchial wall. PMID:17919291
Shaped cathodes for the production of ultra-short multi-electron pulses
Petruk, Ariel Alcides; Pichugin, Kostyantyn; Sciaini, Germán
2017-01-01
An electrostatic electron source design capable of producing sub-20 femtoseconds (rms) multi-electron pulses is presented. The photoelectron gun concept builds upon geometrical electric field enhancement at the cathode surface. Particle tracer simulations indicate the generation of extremely short bunches even beyond 40 cm of propagation. Comparisons with compact electron sources commonly used for femtosecond electron diffraction are made. PMID:28191483
Kiel, Douglas P.; Hannan, Marian T.; Barton, Bruce A.; Bouxsein, Mary L.; Lang, Thomas. F.; Brown, Kathleen M.; Shane, Elizabeth; Magaziner, Jay; Zimmerman, Sheryl; Rubin, Clinton T.
2011-01-01
Background Osteoporosis is a common complication of aging. Alternatives to pharmacologic treatment are needed for older adults. Non-pharmacologic treatment with low magnitude, high frequency mechanical stimulation has been shown to prevent bone loss in animal and human studies. Methods The VIBES (Vibration to Improve Bone Density in Elderly Subjects) study is a randomized, double-blind, sham-controlled trial of the efficacy of low magnitude, high frequency mechanical stimulation in 200 men and women aged 60 years and older with bone mineral density T-scores by dual-x-ray absorptiometry between –1 and –2.5 at entry. Participants are healthy, cognitively intact residents of independent living communities in the Boston area who receive free calcium and Vitamin D supplements. They are randomly assigned to active or sham treatment and stand on their assigned platform once daily for 10 minutes. All platforms have adherence data collection software downloadable to a laptop computer. Adverse events are closely monitored. 174 participants were randomized and will be followed for two years. Almost all active subjects have attained one year of follow-up. Bone mineral density is measured by both dual x-ray absorptiometry and quantitative computed tomography at baseline and annually. The main analysis will compare mean changes from baseline in volumetric bone density by quantitative computed tomography in active and sham groups. Adherence and treatment effect magnitude will also be evaluated. Secondary analyses will compare changes in three biochemical markers of bone turnover as well as longitudinal comparisons of muscle and balance endpoints. Results The VIBES trial has completed its first year of data collection and encountered multiple challenges leading to valuable lessons learned about the areas of recruitment from independent living communities, deployment of multi-user mechanical devices using radio frequency identification cards and electronic adherence monitoring, organization of transportation for imaging at a central site, and the expansion of study aims to include additional musculoskeletal outcomes. Conclusions These lessons will guide future investigations in studies of individuals of advanced age. PMID:20571129
Measurement of attenuation coefficients of the fundamental and second harmonic waves in water
NASA Astrophysics Data System (ADS)
Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing
2016-02-01
Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.
Diffraction measurements using the LHC Beam Loss Monitoring System
NASA Astrophysics Data System (ADS)
Kalliokoski, Matti
2017-03-01
The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in diffraction studies are discussed.
Folding and stacking defects of graphene flakes probed by electron nanobeam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persichetti, L.; Fanfoni, M.; Sgarlata, A.
2011-07-25
Combining nanoscale imaging with local electron spectroscopy and diffraction has provided direct information on folding and stacking defects of graphene flakes produced by unrolled multi-walled carbon nanotubes. Structural data obtained by nanoarea electron diffraction complemented with systematic electron energy loss spectroscopy measurements of the surface plasmon losses of single flakes show the presence of flat bilayer regions coexisting with folded areas where the topology of buckled graphene resembles that of warped carbon nanostructures.
Tribocorrosion Failure Mechanism of TiN/SiOx Duplex Coating Deposited on AISI304 Stainless Steel.
Chen, Qiang; Xie, Zhiwen; Chen, Tian; Gong, Feng
2016-11-26
TiN/SiO x duplex coatings were synthesized on AISI304 stainless steel by plasma immersion ion implantation and deposition (PIIID) followed by radio frequency magnetron sputtering (RFMS). The microstructure and tribocorrosion failure behaviors of the duplex coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, reciprocating-sliding tribometer, and electrochemical tests. The as-deposited duplex coating had a two-layered columnar growth structure consisting of face-centered cubic TiN and amorphous SiO x . Sliding tests showed that the TiN interlayer had good adhesion with the substrate, but the SiO x layer suffered from severe delamination failure. Friction force induced a number of micro-cracks in the coating, which provided channels for the diffusion of NaCl solution. The tribocorrosion test showed that the duplex coating exhibited a lower wear-performance in NaCl solution than in ambient atmosphere. Multi-scale chloride ion corrosion occurred simultaneously and substantially degraded the bonding strength of the columnar crystals or neighboring layers. Force-corrosion synergy damage eventually led to multi-degradation failure of the duplex coating. The presented results provide a comprehensive understanding of the tribocorrosion failure mechanism in coatings with duplex architecture.
Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L
2017-01-01
X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.
Optimization Of Shear Modes To Produce Enhanced Bandwidth In Ghz GaP Bragg Cells
NASA Astrophysics Data System (ADS)
Soos, J., I.; Rosemeier, R. G.; Rosenbaum, J.
1988-02-01
Applications of Gallium Phosphide (GaP) acousto-optic devices, at wavelengths from 570nm - 1.06um seem to be ideal for fiber optic modulators, scanners, deflectors, frequency shifters, Q-switches and mode lockers. One of the major applications are for RF spectrometers in early warning radar receivers and auto-correlators. Longitudinal GaP acousto-optic Bragg cells which have respectively operational frequencies in the range of 200 MHz - 3 GHz and diffraction efficiencies in the range of 120%/RF watt to 1%/RF watt have recently been fabricated. Comparatively, shear GaP devices which have operational frequencies in the range of 200 MHz to 2 GHz and diffraction efficiencies from 80%/RF watt to 7%/RF watt have also been constructed.
Analysis of electrical tomography sensitive field based on multi-terminal network and electric field
NASA Astrophysics Data System (ADS)
He, Yongbo; Su, Xingguo; Xu, Meng; Wang, Huaxiang
2010-08-01
Electrical tomography (ET) aims at the study of the conductivity/permittivity distribution of the interested field non-intrusively via the boundary voltage/current. The sensor is usually regarded as an electric field, and finite element method (FEM) is commonly used to calculate the sensitivity matrix and to optimize the sensor architecture. However, only the lumped circuit parameters can be measured by the data acquisition electronics, it's very meaningful to treat the sensor as a multi terminal network. Two types of multi terminal network with common node and common loop topologies are introduced. Getting more independent measurements and making more uniform current distribution are the two main ways to minimize the inherent ill-posed effect. By exploring the relationships of network matrixes, a general formula is proposed for the first time to calculate the number of the independent measurements. Additionally, the sensitivity distribution is analyzed with FEM. As a result, quasi opposite mode, an optimal single source excitation mode, that has the advantages of more uniform sensitivity distribution and more independent measurements, is proposed.
3D Diffraction Microscope Provides a First Deep View
NASA Astrophysics Data System (ADS)
Miao, Jianwei
2005-03-01
When a coherent diffraction pattern is sampled at a spacing sufficiently finer than the Bragg peak frequency (i.e. the inverse of the sample size), the phase information is in principle encoded inside the diffraction pattern, and can be directly retrieved by using an iterative process. In combination of this oversampling phasing method with either coherent X-rays or electrons, a novel form of diffraction microscopy has recently been developed to image nanoscale materials and biological structures. In this talk, I will present the principle of the oversampling method, discuss the first experimental demonstration of this microscope, and illustrate some applications in nanoscience and biology.
Using sparse regularization for multi-resolution tomography of the ionosphere
NASA Astrophysics Data System (ADS)
Panicciari, T.; Smith, N. D.; Mitchell, C. N.; Da Dalt, F.; Spencer, P. S. J.
2015-10-01
Computerized ionospheric tomography (CIT) is a technique that allows reconstructing the state of the ionosphere in terms of electron content from a set of slant total electron content (STEC) measurements. It is usually denoted as an inverse problem. In this experiment, the measurements are considered coming from the phase of the GPS signal and, therefore, affected by bias. For this reason the STEC cannot be considered in absolute terms but rather in relative terms. Measurements are collected from receivers not evenly distributed in space and together with limitations such as angle and density of the observations, they are the cause of instability in the operation of inversion. Furthermore, the ionosphere is a dynamic medium whose processes are continuously changing in time and space. This can affect CIT by limiting the accuracy in resolving structures and the processes that describe the ionosphere. Some inversion techniques are based on ℓ2 minimization algorithms (i.e. Tikhonov regularization) and a standard approach is implemented here using spherical harmonics as a reference to compare the new method. A new approach is proposed for CIT that aims to permit sparsity in the reconstruction coefficients by using wavelet basis functions. It is based on the ℓ1 minimization technique and wavelet basis functions due to their properties of compact representation. The ℓ1 minimization is selected because it can optimize the result with an uneven distribution of observations by exploiting the localization property of wavelets. Also illustrated is how the inter-frequency biases on the STEC are calibrated within the operation of inversion, and this is used as a way for evaluating the accuracy of the method. The technique is demonstrated using a simulation, showing the advantage of ℓ1 minimization to estimate the coefficients over the ℓ2 minimization. This is in particular true for an uneven observation geometry and especially for multi-resolution CIT.
Tri-band optical coherence tomography for lipid and vessel spectroscopic imaging
NASA Astrophysics Data System (ADS)
Yu, Luoqin; Kang, Jiqiang; Wang, Xie; Wei, Xiaoming; Chan, Kin-Tak; Lee, Nikki P.; Wong, Kenneth K. Y.
2016-03-01
Optical coherence tomography (OCT) has been utilized for various functional imaging applications. One of its highlights comes from spectroscopic imaging, which can simultaneously obtain both morphologic and spectroscopic information. Assisting diagnosis and therapeutic intervention of coronary artery disease is one of the major directions in spectroscopic OCT applications. Previously Tanaka et al. have developed a spectral domain OCT (SDOCT) to image lipid distribution within blood vessel [1]. In the meantime, Fleming et al. have demonstrated optical frequency domain imaging (OFDI) by a 1.3-μm swept source and quadratic discriminant analysis model [2]. However, these systems suffered from burdensome computation as the optical properties' variation was calculated from a single-band illumination that provided limited contrast. On the other hand, multi-band OCT facilitates contrast enhancement with separated wavelength bands, which further offers an easier way to distinguish different materials. Federici and Dubois [3] and Tsai and Chan [4] have demonstrated tri-band OCT systems to further enhance the image contrast. However, these previous work provided under-explored functional properties. Our group has reported a dual-band OCT system based on parametrically amplified Fourier domain mode-locked (FDML) laser with time multiplexing scheme [5] and a dual-band FDML laser OCT system with wavelength-division multiplexing [6]. Fiber optical parametric amplifier (OPA) can be ideally incorporated in multi-band spectroscopic OCT system as it has a broad amplification window and offers an additional output range at idler band, which is phase matched with the signal band. The sweeping ranges can thus overcome traditional wavelength bands that are limited by intra-cavity amplifiers in FDML lasers. Here, we combines the dual-band FDML laser together with fiber OPA, which consequently renders a simultaneous tri-band output at 1.3, 1.5, and 1.6 μm, for intravascular applications. Lipid and blood vessel distribution can be subsequently visualized with the tri-band OCT system by ex vivo experiments using porcine artery model with artificial lipid plaques.
Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization
NASA Astrophysics Data System (ADS)
Tanaka, Ken; Tomeba, Hiromichi; Adachi, Fumiyuki
Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.
2012-09-27
we require no entangling gates or ancillary systems for the procedure. In contrast with [19], our method is not restricted to processes that are...states, such as those recently developed for use with permutation-invariant states [60], matrix product states [61] or multi-scale entangled states [62...by adjoining an ancilla, preparing the maximally entangled state |ψ0〉, and applying E); then do compressed quantum state tomography on ρE ; see
NASA Astrophysics Data System (ADS)
Nagano, Yuta; Kohno, Hideo
2017-11-01
Multiwalled carbon nanotubes with tetragonal cross section frequently form junctions with flattened multi-walled carbon nanotubes, a kind of carbon nanoribbon. The three-dimensional structure of the junctions is revealed by transmission-electron-microscopy-based tomography. Two types of junction, parallel and diagonal, are found. The formation mechanism of these two types of junction is discussed in terms of the origami mechanism that was previously proposed to explain the formation of carbon nanoribbons and nanotetrahedra.