Pižem, Jože; Velikonja, Mojca; Matjašič, Alenka; Jerše, Maja; Glavač, Damjan
2015-04-01
Six cases of gynecomastia with pseudoangiomatous stromal hyperplasia (PASH) and multinucleated stromal giant cells (MSGC) associated with neurofibromatosis type 1 (NF1) have been reported, and finding MSGC within PASH in gynecomastia has been suggested as being a characteristic of NF1. The frequency of PASH with MSGC in gynecomastia and its specificity for NF1 have not, however, been systematically studied. A total of 337 gynecomastia specimens from 215 patients, aged from 8 to 78 years (median, 22 years) were reevaluated for the presence of PASH with MSGC. Breast tissue samples of 25 patients were analyzed for the presence of an NF1 gene mutation using next generation sequencing. Rare MSGC, usually in the background of PASH, were noted at least unilaterally in 27 (13 %) patients; and prominent MSGC, always in the background of PASH, were noted in 8 (4 %) patients. The NF1 gene was mutated in only 1 (an 8-year-old boy with known NF1 and prominent MSGC) of the 25 tested patients, including 6 patients with prominent MSGC and 19 patients with rare MSGC. MSGC, usually in the background of PASH, are not characteristic of NF1.
NASA Technical Reports Server (NTRS)
Fonte, P.; Peskov, V.; Ramsey, B. D.
1998-01-01
We have studied the rate and gain limits of diamond-coated Microstrip Gas Counters (MSGC's) and Micro-Gap Counters (MGC's) when combined with various preamplification structures: Gas Electron Multiplier (GEM), Parallel-Plate Avalanche Chamber (PPAC) or a MICROMEGAS-type structure. Measurements were done both with X rays and alpha particles with various detector geometries and in different gas mixtures at pressures from 0.05 to 10 atm. The results obtained varied significantly with detector design, gas mixture and pressure, but some general features can be identified. We found that in all cases, bare MSGC'S, MGC'S, PPAC's and MICROMEGAS, the maximum achievable gain drops with rate. The addition of preamplification structures significantly increases the gain of MSGC's and MGC'S, but this gain is still rate dependent. There would seem to be a general rate-dependent effect governing the usable gain of all these detectors. We speculate on possible mechanisms for this effect, and identify a safe, spark-free, operation zone for each system (detector + preamplification structure) in the rate-gain coordinate plane.
Recent Results on Microstrip Gas Chambers at Purdue
NASA Astrophysics Data System (ADS)
Menon, Naresh; Shipsey, Ian
1997-04-01
The performance of Micrstrip Gas Chambers fabricated on polymide, with a segmented backplane providing two-dimensional position information, will be presented. MSGC Research at Purdue
Djawe, Kpandja; Daly, Kieran R.; Walzer, Peter D.
2013-01-01
Background Humoral immune responses in human immunodeficiency virus (HIV)-infected and uninfected children with Pneumocystis pneumonia (PcP) are poorly understood. Methods Consecutive children hospitalized with acute pneumonia, tachypnea, and hypoxia in South Africa were investigated for PcP, which was diagnosed by real-time polymerase chain reaction on lower respiratory tract specimens. Serum antibody responses to recombinant fragments of the carboxyl terminus of Pneumocystis jirovecii major surface glycoprotein (MsgC) were analyzed. Results 149 children were enrolled of whom 96 (64%) were HIV-infected. PcP occurred in 69 (72%) of HIV-infected and 14 (26%) of HIV-uninfected children. HIV-infected children with PcP had significantly decreased IgG antibodies to MsgC compared to HIV-infected patients without PcP, but had similar IgM antibodies. In contrast, HIV-uninfected children with PcP showed no change in IgG antibodies to MsgC, but had significantly increased IgM antibodies compared to HIV-uninfected children without PCP. Age was an independent predictor of high IgG antibodies, whereas PcP was a predictor of low IgG antibodies and high IgM antibodies. IgG and IgM antibody levels to the most closely related MsgC fragments were predictors of survival from PcP. Conclusions Young HIV-infected children with PcP have significantly impaired humoral immune responses to MsgC, whereas HIV-uninfected children with PcP can develop active humoral immune responses. The children also exhibit a complex relationship between specific host factors and antibody levels to MsgC fragments that may be related to survival from PcP. PMID:24386119
Djawe, Kpandja; Daly, Kieran R; Levin, Linda; Zar, Heather J; Walzer, Peter D
2013-01-01
Humoral immune responses in human immunodeficiency virus (HIV)-infected and uninfected children with Pneumocystis pneumonia (PcP) are poorly understood. Consecutive children hospitalized with acute pneumonia, tachypnea, and hypoxia in South Africa were investigated for PcP, which was diagnosed by real-time polymerase chain reaction on lower respiratory tract specimens. Serum antibody responses to recombinant fragments of the carboxyl terminus of Pneumocystis jirovecii major surface glycoprotein (MsgC) were analyzed. 149 children were enrolled of whom 96 (64%) were HIV-infected. PcP occurred in 69 (72%) of HIV-infected and 14 (26%) of HIV-uninfected children. HIV-infected children with PcP had significantly decreased IgG antibodies to MsgC compared to HIV-infected patients without PcP, but had similar IgM antibodies. In contrast, HIV-uninfected children with PcP showed no change in IgG antibodies to MsgC, but had significantly increased IgM antibodies compared to HIV-uninfected children without PCP. Age was an independent predictor of high IgG antibodies, whereas PcP was a predictor of low IgG antibodies and high IgM antibodies. IgG and IgM antibody levels to the most closely related MsgC fragments were predictors of survival from PcP. Young HIV-infected children with PcP have significantly impaired humoral immune responses to MsgC, whereas HIV-uninfected children with PcP can develop active humoral immune responses. The children also exhibit a complex relationship between specific host factors and antibody levels to MsgC fragments that may be related to survival from PcP.
Blount, Robert J.; Djawe, Kpandja; Daly, Kieran R.; Jarlsberg, Leah G.; Fong, Serena; Balmes, John; Miller, Robert F.; Walzer, Peter D.; Huang, Laurence
2013-01-01
Background Ambient air pollution (AAP) may be associated with increased risk for Pneumocystis pneumonia (PCP). The mechanisms underlying this association remain uncertain. Objectives To determine if real-life exposures to AAP are associated with suppressed IgM antibody responses to P. jirovecii in HIV-infected (HIV+) patients with active PCP, and to determine if AAP, mediated by suppressed serologic responses to Pneumocystis, is associated with adverse clinical outcomes. Methods We conducted a prospective cohort study in HIV+ patients residing in San Francisco and admitted to San Francisco General Hospital with microscopically confirmed PCP. Our AAP predictors were ambient air concentrations of particulate matter of < 10 µm in diameter (PM10) and < 2.5 µm in diameter (PM2.5), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2) measured immediately prior to hospital admission and 2 weeks prior to admission. Our primary outcomes were the IgM serologic responses to four recombinant P. jirovecii major surface glycoprotein (Msg) constructs: MsgC1, MsgC3, MsgC8, and MsgC9. Results Elevated PM10 and NO2 exposures immediately prior to and two weeks prior to hospital admission were associated with decreased IgM antibody responses to P. jirovecii Msg. For exposures immediately prior to admission, every 10 µg/m3 increase in PM10 was associated with a 25 to 35% decrease in IgM responses to Msg (statistically significant for all the Msg constructs), and every 10 ppb increase in NO2 was associated with a 19-45% decrease in IgM responses to Msg (statistically significant for MsgC8 and MsgC9). Similar findings were seen with exposures two weeks prior to admission, but for fewer of the Msg constructs. Conclusions Real life exposures to PM10 and NO2 were associated with suppressed IgM responses to P. jirovecii Msg in HIV+ patients admitted with PCP, suggesting a mechanism of immunotoxicity by which AAP increases host susceptibility to pulmonary infection. PMID:24236202
Blount, Robert J; Djawe, Kpandja; Daly, Kieran R; Jarlsberg, Leah G; Fong, Serena; Balmes, John; Miller, Robert F; Walzer, Peter D; Huang, Laurence
2013-01-01
Ambient air pollution (AAP) may be associated with increased risk for Pneumocystis pneumonia (PCP). The mechanisms underlying this association remain uncertain. To determine if real-life exposures to AAP are associated with suppressed IgM antibody responses to P. jirovecii in HIV-infected (HIV+) patients with active PCP, and to determine if AAP, mediated by suppressed serologic responses to Pneumocystis, is associated with adverse clinical outcomes. We conducted a prospective cohort study in HIV+ patients residing in San Francisco and admitted to San Francisco General Hospital with microscopically confirmed PCP. Our AAP predictors were ambient air concentrations of particulate matter of < 10 µm in diameter (PM10) and < 2.5 µm in diameter (PM2.5), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2) measured immediately prior to hospital admission and 2 weeks prior to admission. Our primary outcomes were the IgM serologic responses to four recombinant P. jirovecii major surface glycoprotein (Msg) constructs: MsgC1, MsgC3, MsgC8, and MsgC9. Elevated PM10 and NO2 exposures immediately prior to and two weeks prior to hospital admission were associated with decreased IgM antibody responses to P. jirovecii Msg. For exposures immediately prior to admission, every 10 µg/m(3) increase in PM10 was associated with a 25 to 35% decrease in IgM responses to Msg (statistically significant for all the Msg constructs), and every 10 ppb increase in NO2 was associated with a 19-45% decrease in IgM responses to Msg (statistically significant for MsgC8 and MsgC9). Similar findings were seen with exposures two weeks prior to admission, but for fewer of the Msg constructs. Real life exposures to PM10 and NO2 were associated with suppressed IgM responses to P. jirovecii Msg in HIV+ patients admitted with PCP, suggesting a mechanism of immunotoxicity by which AAP increases host susceptibility to pulmonary infection.
Healthcare Worker Occupation and Immune Response to Pneumocystis jirovecii
Daly, Kieran R.; Jarlsberg, Leah G.; Koch, Judy V.; Swartzman, Alexandra; Roth, Brenna M.; Walzer, Peter D.; Huang, Laurence
2009-01-01
The reservoir and mode of transmission of Pneumocystis jirovecii remain uncertain. We conducted a cross-sectional study of 126 San Francisco General Hospital staff in clinical (n = 103) and nonclinical (n = 23) occupations to assess whether occupational exposure was associated with immune responses to P. jirovecii. We examined antibody levels by ELISA for 3 overlapping fragments that span the P. jirovecii major surface glycoprotein (Msg): MsgA, MsgB, and MsgC1. Clinical occupation participants had higher geometric mean antibody levels to MsgC1 than did nonclinical occupation participants (21.1 vs. 8.2, p = 0.004); clinical occupation was an independent predictor of higher MsgC1 antibody levels (parameter estimate = 0.89, 95% confidence interval 0.29–1.48, p = 0.003). In contrast, occupation was not significantly associated with antibody responses to either MsgA or MsgB. Healthcare workers may have occupational exposure to P. jirovecii. Humans may be a reservoir for P. jirovecii and may transmit it from person to person. PMID:19861050
NASA Astrophysics Data System (ADS)
Tao, Ye; Ding, Wentao; Wang, Zhongqiang; Xu, Haiyang; Zhao, Xiaoning; Li, Xuhong; Liu, Weizhen; Ma, Jiangang; Liu, Yichun
2018-05-01
In this work, we demonstrated an effective method to improve the switching reliability of HfOx based RRAM device by inserting mountain-like surface-graphited carbon (MSGC) layer. The MSGC layer was fabricated through thermal annealing of amorphous carbon (a-C) film with high sp2 proportion (49.7%) under 500 °C on Pt substrate, whose characteristics were validated by XPS and Raman spectrums. The local electric-field (LEF) was enhanced around the nanoscale tips of MSGC layer due to large surface curvature, which leads to simplified CFs and localization of resistive switching region. It takes responsibility to the reduction of high/low resistance states (HRS/LRS) fluctuation from 173.8%/64.9% to 23.6%/6.5%, respectively. In addition, the resulting RRAM devices exhibited fast switching speed (<65 ns), good retention (>104 s at 85 °C) and low cycling degradation. This method could be promising to develop reliable and repeatable high-performance RRAM for practical applications.
Advanced Grid Simulator for Multi-Megawatt Power Converter Testing and Certification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw; Gevorgian, Vahan; Wallen, Robb
2017-02-16
Grid integration testing of inverter-coupled renewable energy technologies is an essential step in the qualification of renewable energy and energy storage systems to ensure the stability of the power system. New types of devices must be thoroughly tested and validated for compliance with relevant grid codes and interconnection requirements. For this purpose, highly specialized custom-made testing equipment is needed to emulate various types of realistic grid conditions that are required by certification bodies or for research purposes. For testing multi-megawatt converters, a high power grid simulator capable of creating controlled grid conditions and meeting both power quality and dynamic characteristicsmore » is needed. This paper describes the new grid simulator concept based on ABB's medium voltage ACS6000 drive technology that utilizes advanced modulation and control techniques to create an unique testing platform for various multi-megawatt power converter systems. Its performance is demonstrated utilizing the test results obtained during commissioning activities at the National Renewable Energy Laboratory in Colorado, USA.« less
Sawabe, Michi; Ito, Hidemi; Takahara, Taishi; Oze, Isao; Kawakita, Daisuke; Yatabe, Yasushi; Hasegawa, Yasuhisa; Murakami, Shingo; Matsuo, Keitaro
2018-01-01
Major salivary gland cancers (M-SGCs) are rare, and have distinct heterogeneous histopathological subtypes. To the authors' knowledge, no consistent evidence of an association between cigarette smoking and the risk of M-SGCs has appeared to date. Furthermore, evidence of potential heterogeneity in the impact of smoking on histopathological subtypes is scarce, despite the fact that the histopathological subtypes of M-SGC exhibit different genetic features. The authors conducted a case-control study to investigate the association between smoking and M-SGC by histopathological subtype. Cases were 81 patients with M-SGCs and the controls were 810 age-matched and sex-matched first-visit outpatients without cancer treated at Aichi Cancer Center Hospital from 1988 to 2005. Odds ratios (OR) and 95% confidence intervals (95% CI) were assessed by conditional logistic regression analysis with adjustment for potential confounders. Smoking was found to be associated with a significantly increased risk of M-SGC overall, with an OR of 3.45 (95% CI, 1.58-7.51; P =.001) for heavy smokers compared with never-smokers. A significant dose-response relationship was observed (P for trend, .001). When stratified by histological subtype, no obvious impact of smoking was observed among patients with mucoepidermoid carcinoma (MEC). In contrast, smoking demonstrated a significantly increased risk of M-SGCs other than MEC, with an OR of 5.15 (95% CI, 2.06-12.87; P<.001) for heavy smokers compared with never-smokers. The authors observed possible heterogeneity with regard to the impact of smoking on risk between MEC and M-SGCs other than MEC (P for heterogeneity, .052). The results of the current study demonstrate a significant positive association between cigarette smoking and the risk of M-SGC overall. However, the impact of smoking appeared to be limited to M-SGCs other than MEC. Cancer 2018;124:118-24. © 2017 American Cancer Society. © 2017 American Cancer Society.
NASA Technical Reports Server (NTRS)
Engwirda, Darren
2017-01-01
An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered VoronoiDelaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.
NASA Astrophysics Data System (ADS)
Engwirda, Darren
2017-06-01
An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi-Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.
A multigrid method for steady Euler equations on unstructured adaptive grids
NASA Technical Reports Server (NTRS)
Riemslagh, Kris; Dick, Erik
1993-01-01
A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.
Blount, Robert J; Daly, Kieran R; Fong, Serena; Chang, Emily; Grieco, Katherine; Greene, Meredith; Stone, Stephen; Balmes, John; Miller, Robert F; Walzer, Peter D; Huang, Laurence
2017-01-01
Humoral immunity plays an important role against Pneumocystis jirovecii infection, yet clinical and environmental factors that impact bronchoalveolar antibody responses to P. jirovecii remain uncertain. From October 2008-December 2011 we enrolled consecutive HIV-infected adults admitted to San Francisco General Hospital (SFGH) who underwent bronchoscopy for suspected Pneumocystis pneumonia (PCP). We used local air quality monitoring data to assign ozone, nitrogen dioxide, and fine particulate matter exposures within 14 days prior to hospital admission. We quantified serum and bronchoalveolar lavage fluid (BALF) antibody responses to P. jirovecii major surface glycoprotein (Msg) recombinant constructs using ELISA. We then fit linear regression models to determine whether PCP and ambient air pollutants were associated with bronchoalveolar antibody responses to Msg. Of 81 HIV-infected patients enrolled, 47 (58%) were diagnosed with current PCP and 9 (11%) had a prior history of PCP. The median CD4+ count was 51 cells/μl (IQR 15-129) and 44% were current smokers. Serum antibody responses to Msg were statistically significantly predictive of BALF antibody responses, with the exception of IgG responses to MsgC8 and MsgC9. Prior PCP was associated with increased BALF IgA responses to Msg and current PCP was associated with decreased IgA responses. For instance, among patients without current PCP, those with prior PCP had a median 73.2 U (IQR 19.2-169) IgA response to MsgC1 compared to a 5.00 U (3.52-12.6) response among those without prior PCP. Additionally, current PCP predicted a 22.5 U (95%CI -39.2, -5.82) lower IgA response to MsgC1. Ambient ozone within the two weeks prior to hospital admission was associated with decreased BALF IgA responses to Msg while nitrogen dioxide was associated with increased IgA responses. PCP and ambient air pollutants were associated with BALF IgA responses to P. jirovecii in HIV-infected patients evaluated for suspected PCP.
Daly, Kieran R.; Fong, Serena; Chang, Emily; Grieco, Katherine; Greene, Meredith; Stone, Stephen; Balmes, John; Miller, Robert F.; Walzer, Peter D.; Huang, Laurence
2017-01-01
Background Humoral immunity plays an important role against Pneumocystis jirovecii infection, yet clinical and environmental factors that impact bronchoalveolar antibody responses to P. jirovecii remain uncertain. Methods From October 2008—December 2011 we enrolled consecutive HIV-infected adults admitted to San Francisco General Hospital (SFGH) who underwent bronchoscopy for suspected Pneumocystis pneumonia (PCP). We used local air quality monitoring data to assign ozone, nitrogen dioxide, and fine particulate matter exposures within 14 days prior to hospital admission. We quantified serum and bronchoalveolar lavage fluid (BALF) antibody responses to P. jirovecii major surface glycoprotein (Msg) recombinant constructs using ELISA. We then fit linear regression models to determine whether PCP and ambient air pollutants were associated with bronchoalveolar antibody responses to Msg. Results Of 81 HIV-infected patients enrolled, 47 (58%) were diagnosed with current PCP and 9 (11%) had a prior history of PCP. The median CD4+ count was 51 cells/μl (IQR 15–129) and 44% were current smokers. Serum antibody responses to Msg were statistically significantly predictive of BALF antibody responses, with the exception of IgG responses to MsgC8 and MsgC9. Prior PCP was associated with increased BALF IgA responses to Msg and current PCP was associated with decreased IgA responses. For instance, among patients without current PCP, those with prior PCP had a median 73.2 U (IQR 19.2–169) IgA response to MsgC1 compared to a 5.00 U (3.52–12.6) response among those without prior PCP. Additionally, current PCP predicted a 22.5 U (95%CI -39.2, -5.82) lower IgA response to MsgC1. Ambient ozone within the two weeks prior to hospital admission was associated with decreased BALF IgA responses to Msg while nitrogen dioxide was associated with increased IgA responses. Conclusions PCP and ambient air pollutants were associated with BALF IgA responses to P. jirovecii in HIV-infected patients evaluated for suspected PCP. PMID:28692651
Enzyme-Linked Immunosorbent Assay and Serologic Responses to Pneumocystis jiroveci
Koch, Judy; Levin, Linda; Walzer, Peter D.
2004-01-01
Seroepidemiologic studies of Pneumocystis pneumonia (PCP) in humans have been limited by inadequate reagents. We have developed an enzyme-linked immunosorbent assay (ELISA) using three overlapping recombinant fragments of the human Pneumocystis major surface glycoprotein (MsgA, MsgB, and MsgC) for analysis of antibody responses in HIV-positive patients and healthy blood donors. HIV-positive patients had significantly higher antibody levels to all Msg fragments. Furthermore, HIV-positive patients who experienced a previous episode of PCP (PCP-positive) had higher level of antibodies to MsgC than patients who never had PCP. A significant association was found between ELISA antibody level and reactivity by Western blot in HIV-positive patients, especially those who were PCP-positive. Thus, this ELISA will be useful in studying serum antibody responses to Pneumocystis in different human populations. PMID:15200818
Development of a 150 000 channel MSGC tracking system for the experiment HERA-B
NASA Astrophysics Data System (ADS)
Zeuner, T.
1997-02-01
The universities of Heidelberg, Siegen and Zürich are preparing the inner tracker of the HERA-B experiment at DESY designed to measure CP violation in B meson decays. The system consists of 200 MSGC chambers of sizes up to 30 × 30 cm 2 with a total of 150 000 electronic channels. Rates up to 10 4 s -1 mm -2 have to be handled. The gold electrodes (300 μm pitch) are produced by a lift-off process on an alkali-free glass (300 μm thick). The glass is CVD coated with amorphous carbon with a surface resistivity of 10 14ω/□. It provides the required lifetime of 5 years with an integrated charge of 30 mC per cm of the anode length. Gains > 5000 are obtained. The efficiency is greater than 99% with negligible noise rate. Measures to avoid deterioration of the anodes by discharges caused by heavy ionizing particles are discussed. The MSGC detectors are connected to hybrid electronics via Kapton foils. A special bonding machine has been built which allows the adjustment by a video system and the chariots moved by micrometer screws and contains electronically steered glue dispenser and pressure pistons. Members of the collaboration are: T. Beckmann, C. Bresch, H.-B. Dreis, F. Eisele, S. Feuerstack, S. Hausmann, A. Hölscher, T. Hott, A. Lange, A. Maag, V. Myalitsin, P. Robmann, B. Schmidt, S. Schmidt, S. Steiner, U. Straumann, P. Truöl, S. Visbeck, A.-H. Walenta, T. Walter, U. Werthenbach, G. Zech and T. Zeuner.
A Systematic Multi-Time Scale Solution for Regional Power Grid Operation
NASA Astrophysics Data System (ADS)
Zhu, W. J.; Liu, Z. G.; Cheng, T.; Hu, B. Q.; Liu, X. Z.; Zhou, Y. F.
2017-10-01
Many aspects need to be taken into consideration in a regional grid while making schedule plans. In this paper, a systematic multi-time scale solution for regional power grid operation considering large scale renewable energy integration and Ultra High Voltage (UHV) power transmission is proposed. In the time scale aspect, we discuss the problem from month, week, day-ahead, within-day to day-behind, and the system also contains multiple generator types including thermal units, hydro-plants, wind turbines and pumped storage stations. The 9 subsystems of the scheduling system are described, and their functions and relationships are elaborated. The proposed system has been constructed in a provincial power grid in Central China, and the operation results further verified the effectiveness of the system.
The multiscale classification system and grid encoding mode of ecological land in China
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Aixia; Lin, Yifan
2017-10-01
Ecological land provides goods and services that have direct or indirect benefic to eco-environment and human welfare. In recent years, researches on ecological land have become important in the field of land changes and ecosystem management. In the study, a multi-scale classification scheme of ecological land was developed for land management based on combination of the land-use classification and the ecological function zoning in China, including eco-zone, eco-region, eco-district, land ecosystem, and ecological land-use type. The geographical spatial unit leads toward greater homogeneity from macro to micro scale. The term "ecological land-use type" is the smallest one, being important to maintain the key ecological processes in land ecosystem. Ecological land-use type was categorized into main-functional and multi-functional ecological land-use type according to its ecological function attributes and production function attributes. Main-functional type was defined as one kind of land-use type mainly providing ecological goods and function attributes, such as river, lake, swampland, shoaly land, glacier and snow, while multi-functional type not only providing ecological goods and function attributes but also productive goods and function attributes, such as arable land, forestry land, and grassland. Furthermore, a six-level grid encoding mode was proposed for modern management of ecological land and data update under cadastral encoding. The six-level irregular grid encoding from macro to micro scale included eco-zone, eco-region, eco-district, cadastral area, land ecosystem, land ownership type, ecological land-use type, and parcel. Besides, the methodologies on ecosystem management were discussed for integrated management of natural resources in China.
Application of multi-grid methods for solving the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1989-01-01
The application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems is discussed. The methods consist of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line-, or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to that of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.
Application of multi-grid methods for solving the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1989-01-01
This paper presents the application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems. The methods consists of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line- or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to those of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.
Modeling and Grid Generation of Iced Airfoils
NASA Technical Reports Server (NTRS)
Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.
2007-01-01
SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.
Multi-off-grid methods in multi-step integration of ordinary differential equations
NASA Technical Reports Server (NTRS)
Beaudet, P. R.
1974-01-01
Description of methods of solving first- and second-order systems of differential equations in which all derivatives are evaluated at off-grid locations in order to circumvent the Dahlquist stability limitation on the order of on-grid methods. The proposed multi-off-grid methods require off-grid state predictors for the evaluation of the n derivatives at each step. Progressing forward in time, the off-grid states are predicted using a linear combination of back on-grid state values and off-grid derivative evaluations. A comparison is made between the proposed multi-off-grid methods and the corresponding Adams and Cowell on-grid integration techniques in integrating systems of ordinary differential equations, showing a significant reduction in the error at larger step sizes in the case of the multi-off-grid integrator.
Generation Algorithm of Discrete Line in Multi-Dimensional Grids
NASA Astrophysics Data System (ADS)
Du, L.; Ben, J.; Li, Y.; Wang, R.
2017-09-01
Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.
Modular Multi-Sensor Display System Design Study. Volume 2. Detail Design and Application Analysis
1974-08-01
control grid . 2. Horizontal AFC/Deflection Module - Generates horizontal sweep signals from input syncs to provide 525 to 1023 line television raster...separation, and gener- ate composite blanking for the CRT control grid . Signal Number of Lines Signal Type Characteristics Input Interface Composite...SEPERATOR DC RESTORA- TION l_i BLANKING VERT DRIVE ■♦ Bl" CRT " CATHODE * _fc> BRIGHTNESS ^ (FRONT PANEL) .CRT GRID ■♦• COMP SYNC Figure
Schwarz-Christoffel Conformal Mapping based Grid Generation for Global Oceanic Circulation Models
NASA Astrophysics Data System (ADS)
Xu, Shiming
2015-04-01
We propose new grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithm are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the conventional grid design problem of pole relocation, it also addresses more advanced issues of computational efficiency and the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily 10 utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling when complex land-ocean distribution is present.
Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Zhang, Jian; Gan, Yang
2018-04-01
The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.
Model of interaction in Smart Grid on the basis of multi-agent system
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-11-01
This paper presents model of interaction in Smart Grid on the basis of multi-agent system. The use of travelling waves in the multi-agent system describes the behavior of the Smart Grid from the local point, which is being the complement of the conventional approach. The simulation results show that the absorption of the wave in the distributed multi-agent systems is effectively simulated the interaction in Smart Grid.
Determining and representing width of soil boundaries using electrical conductivity and MultiGrid
NASA Astrophysics Data System (ADS)
Greve, Mogens Humlekrog; Greve, Mette Balslev
2004-07-01
In classical soil mapping, map unit boundaries are considered crisp even though all experienced survey personnel are aware of the fact, that soil boundaries really are transition zones of varying width. However, classification of transition zone width on site is difficult in a practical survey. The objective of this study is to present a method for determining soil boundary width and a way of representing continuous soil boundaries in GIS. A survey was performed using the non-contact conductivity meter EM38 from Geonics Inc., which measures the bulk Soil Electromagnetic Conductivity (SEC). The EM38 provides an opportunity to classify the width of transition zones in an unbiased manner. By calculating the spatial rate of change in the interpolated EM38 map across the crisp map unit delineations from a classical soil mapping, a measure of transition zone width can be extracted. The map unit delineations are represented as transition zones in a GIS through a concept of multiple grid layers, a MultiGrid. Each layer corresponds to a soil type and the values in a layer represent the percentage of that soil type in each cell. As a test, the subsoil texture was mapped at the Vindum field in Denmark using both the classical mapping method with crisp representation of the boundaries and the new map with MultiGrid and continuous boundaries. These maps were then compared to an independent reference map of subsoil texture. The improvement of the prediction of subsoil texture, using continuous boundaries instead of crisp, was in the case of the Vindum field, 15%.
On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models
NASA Astrophysics Data System (ADS)
Xu, S.; Wang, B.; Liu, J.
2015-02-01
In this article we propose two conformal mapping based grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithms are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the basic grid design problem of pole relocation, these new algorithms also address more advanced issues such as smoothed scaling factor, or the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling where complex land-ocean distribution is present.
Brief analysis of Jiangsu grid security and stability based on multi-infeed DC index in power system
NASA Astrophysics Data System (ADS)
Zhang, Wenjia; Wang, Quanquan; Ge, Yi; Huang, Junhui; Chen, Zhengfang
2018-02-01
The impact of Multi-infeed HVDC has gradually increased to security and stability operating in Jiangsu power grid. In this paper, an appraisal method of Multi-infeed HVDC power grid security and stability is raised with Multi-Infeed Effective Short Circuit Ratio, Multi-Infeed Interaction Factor and Commutation Failure Immunity Index. These indices are adopted in security and stability simulating calculation of Jiangsu Multi-infeed HVDC system. The simulation results indicate that Jiangsu power grid is operating with a strong DC system. It has high level of power grid security and stability, and meet the safety running requirements. Jinpin-Suzhou DC system is located in the receiving end with huge capacity, which is easily leading to commutation failure of the transmission line. In order to resolve this problem, dynamic reactive power compensation can be applied in power grid near Jinpin-Suzhou DC system. Simulation result shows this method is feasible to commutation failure.
An interactive multi-block grid generation system
NASA Technical Reports Server (NTRS)
Kao, T. J.; Su, T. Y.; Appleby, Ruth
1992-01-01
A grid generation procedure combining interactive and batch grid generation programs was put together to generate multi-block grids for complex aircraft configurations. The interactive section provides the tools for 3D geometry manipulation, surface grid extraction, boundary domain construction for 3D volume grid generation, and block-block relationships and boundary conditions for flow solvers. The procedure improves the flexibility and quality of grid generation to meet the design/analysis requirements.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris
2005-01-01
FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.
An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Lessard, Victor R.
1990-01-01
The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.
Using sputter coated glass to stabilize microstrip gas chambers
Gong, Wen G.
1997-01-01
By sputter coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics, thin-film Pestov glass), microstrip gas chambers (MSGC) of high gain stability, low leakage current, and a high rate capability can be fabricated. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material.
NASA Astrophysics Data System (ADS)
Mohd Sakri, F.; Mat Ali, M. S.; Sheikh Salim, S. A. Z.
2016-10-01
The study of physic fluid for a liquid draining inside a tank is easily accessible using numerical simulation. However, numerical simulation is expensive when the liquid draining involves the multi-phase problem. Since an accurate numerical simulation can be obtained if a proper method for error estimation is accomplished, this paper provides systematic assessment of error estimation due to grid convergence error using OpenFOAM. OpenFOAM is an open source CFD-toolbox and it is well-known among the researchers and institutions because of its free applications and ready to use. In this study, three types of grid resolution are used: coarse, medium and fine grids. Grid Convergence Index (GCI) is applied to estimate the error due to the grid sensitivity. A monotonic convergence condition is obtained in this study that shows the grid convergence error has been progressively reduced. The fine grid has the GCI value below 1%. The extrapolated value from Richardson Extrapolation is in the range of the GCI obtained.
A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
White, J. A.; Morrison, J. H.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
NASA Astrophysics Data System (ADS)
Sotoodeh, Pedram
This dissertation presents the design of a novel multi-level inverter with FACTS capability for small to mid-size (10-20kW) permanent-magnet wind installations using modular multi-level converter (MMC) topology. The aim of the work is to design a new type of inverter with D-STATCOM option to provide utilities with more control on active and reactive power transfer of distribution lines. The inverter is placed between the renewable energy source, specifically a wind turbine, and the distribution grid in order to fix the power factor of the grid at a target value, regardless of wind speed, by regulating active and reactive power required by the grid. The inverter is capable of controlling active and reactive power by controlling the phase angle and modulation index, respectively. The unique contribution of the proposed work is to combine the two concepts of inverter and D-STATCOM using a novel voltage source converter (VSC) multi-level topology in a single unit without additional cost. Simulations of the proposed inverter, with 5 and 11 levels, have been conducted in MATLAB/Simulink for two systems including 20 kW/kVAR and 250 W/VAR. To validate the simulation results, a scaled version (250 kW/kVAR) of the proposed inverter with 5 and 11 levels has been built and tested in the laboratory. Experimental results show that the reduced-scale 5- and 11-level inverter is able to fix PF of the grid as well as being compatible with IEEE standards. Furthermore, total cost of the prototype models, which is one of the major objectives of this research, is comparable with market prices.
Advances in Chimera Grid Tools for Multi-Body Dynamics Simulations and Script Creation
NASA Technical Reports Server (NTRS)
Chan, William M.
2004-01-01
This viewgraph presentation contains information about (1) Framework for multi-body dynamics - Geometry Manipulation Protocol (GMP), (2) Simulation procedure using Chimera Grid Tools (CGT) and OVERFLOW-2 (3) Further recent developments in Chimera Grid Tools OVERGRID, Grid modules, Script library and (4) Future work.
Mixing in 3D Sparse Multi-Scale Grid Generated Turbulence
NASA Astrophysics Data System (ADS)
Usama, Syed; Kopec, Jacek; Tellez, Jackson; Kwiatkowski, Kamil; Redondo, Jose; Malik, Nadeem
2017-04-01
Flat 2D fractal grids are known to alter turbulence characteristics downstream of the grid as compared to the regular grids with the same blockage ratio and the same mass inflow rates [1]. This has excited interest in the turbulence community for possible exploitation for enhanced mixing and related applications. Recently, a new 3D multi-scale grid design has been proposed [2] such that each generation of length scale of turbulence grid elements is held in its own frame, the overall effect is a 3D co-planar arrangement of grid elements. This produces a 'sparse' grid system whereby each generation of grid elements produces a turbulent wake pattern that interacts with the other wake patterns downstream. A critical motivation here is that the effective blockage ratio in the 3D Sparse Grid Turbulence (3DSGT) design is significantly lower than in the flat 2D counterpart - typically the blockage ratio could be reduced from say 20% in 2D down to 4% in the 3DSGT. If this idea can be realized in practice, it could potentially greatly enhance the efficiency of turbulent mixing and transfer processes clearly having many possible applications. Work has begun on the 3DSGT experimentally using Surface Flow Image Velocimetry (SFIV) [3] at the European facility in the Max Planck Institute for Dynamics and Self-Organization located in Gottingen, Germany and also at the Technical University of Catalonia (UPC) in Spain, and numerically using Direct Numerical Simulation (DNS) at King Fahd University of Petroleum & Minerals (KFUPM) in Saudi Arabia and in University of Warsaw in Poland. DNS is the most useful method to compare the experimental results with, and we are studying different types of codes such as Imcompact3d, and OpenFoam. Many variables will eventually be investigated for optimal mixing conditions. For example, the number of scale generations, the spacing between frames, the size ratio of grid elements, inflow conditions, etc. We will report upon the first set of findings from the 3DSGT by the time of the conference. {Acknowledgements}: This work has been supported partly by the EuHIT grant, 'Turbulence Generated by Sparse 3D Multi-Scale Grid (M3SG)', 2017. {References} [1] S. Laizet, J. C. Vassilicos. DNS of Fractal-Generated Turbulence. Flow Turbulence Combust 87:673705, (2011). [2] N. A. Malik. Sparse 3D Multi-Scale Grid Turbulence Generator. USPTO Application no. 14/710,531, Patent Pending, (2015). [3] J. Tellez, M. Gomez, B. Russo, J.M. Redondo. Surface Flow Image Velocimetry (SFIV) for hydraulics applications. 18th Int. Symposium on the Application of Laser Imaging Techniques in Fluid Mechanics, Lisbon, Portugal (2016).
Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 764
2006-04-01
Attainable accuracy of depth (z) ± 0.3 meter Detection performance for ferrous and nonferrous metals : will detect ammunition components 20-mm...ASSOCIATES, INC. 6832 OLD DOMINION DRIVE MCLEAN, VA 22101 TECHNOLOGY TYPE/PLATFORM: MULTI CHANNEL DETECTOR SYSTEM (AMOS)/TOWED PREPARED BY: U.S...Multi Channel Detector System (AMOS)/Towed, MEC 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT Unclassified b. ABSTRACT
NASA Astrophysics Data System (ADS)
Li, Tie; He, Xiaoyang; Tang, Junci; Zeng, Hui; Zhou, Chunying; Zhang, Nan; Liu, Hui; Lu, Zhuoxin; Kong, Xiangrui; Yan, Zheng
2018-02-01
Forasmuch as the distinguishment of islanding is easy to be interfered by grid disturbance, island detection device may make misjudgment thus causing the consequence of photovoltaic out of service. The detection device must provide with the ability to differ islanding from grid disturbance. In this paper, the concept of deep learning is introduced into classification of islanding and grid disturbance for the first time. A novel deep learning framework is proposed to detect and classify islanding or grid disturbance. The framework is a hybrid of wavelet transformation, multi-resolution singular spectrum entropy, and deep learning architecture. As a signal processing method after wavelet transformation, multi-resolution singular spectrum entropy combines multi-resolution analysis and spectrum analysis with entropy as output, from which we can extract the intrinsic different features between islanding and grid disturbance. With the features extracted, deep learning is utilized to classify islanding and grid disturbance. Simulation results indicate that the method can achieve its goal while being highly accurate, so the photovoltaic system mistakenly withdrawing from power grids can be avoided.
A multi-resolution approach to electromagnetic modeling.
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu
2018-04-01
We present a multi-resolution approach for three-dimensional magnetotelluric forward modeling. Our approach is motivated by the fact that fine grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography, and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. This is especially true for forward modeling required in regularized inversion, where conductivity variations at depth are generally very smooth. With a conventional structured finite-difference grid the fine discretization required to adequately represent rapid variations near the surface are continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modeling is especially important for solving regularized inversion problems. We implement a multi-resolution finite-difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of sub-grids, with each sub-grid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modeling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modeling operators on interfaces between adjacent sub-grids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models show that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.
Summary of the Fourth AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.;
2010-01-01
Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.
Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations
NASA Technical Reports Server (NTRS)
Moon, Young J.; Liou, Meng-Sing
1989-01-01
Conservative algorithms for boundary interfaces of overlaid grids are presented. The basic method is zeroth order, and is extended to a higher order method using interpolation and subcell decomposition. The present method, strictly based on a conservative constraint, is tested with overlaid grids for various applications of unsteady and steady supersonic inviscid flows with strong shock waves. The algorithm is also applied to a multi-level grid adaptation in which the next level finer grid is overlaid on the coarse base grid with an arbitrary orientation.
NASA Astrophysics Data System (ADS)
Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk
2014-05-01
In order to confirm the possibility of field application of a different type collimator with a multileaf collimator (MLC), we constructed a grid-type multi-layer pixel collimator (GTPC) by using a Monte Carlo n-particle simulation (MCNPX). In this research, a number of factors related to the performance of the GPTC were evaluated using simulated output data of a basic MLC model. A layer was comprised of a 1024-pixel collimator (5.0 × 5.0 mm2) which could operate individually as a grid-type collimator (32 × 32). A 30-layer collimator was constructed for a specific portal form to pass radiation through the opening and closing of each pixel cover. The radiation attenuation level and the leakage were compared between the GTPC modality simulation and MLC modeling (tungsten, 17.50 g/cm3, 5.0 × 70.0 × 160.0 mm3) currently used for a radiation field. Comparisons of the portal imaging, the lateral dose profile from a virtual water phantom, the dependence of the performance on the increase in the number of layers, the radiation intensity modulation verification, and the geometric error between the GTPC and the MLC were done using the MCNPX simulation data. From the simulation data, the intensity modulation of the GTPC showed a faster response than the MLC's (29.6%). In addition, the agreement between the doses that should be delivered to the target region was measured as 97.0%, and the GTPC system had an error below 0.01%, which is identical to that of MLC. A Monte Carlo simulation of the GTPC could be useful for verification of application possibilities. Because the line artifact is caused by the grid frame and the folded cover, a lineal dose transfer type is chosen for the operation of this system. However, the result of GTPC's performance showed that the methods of effective intensity modulation and the specific geometric beam shaping differed with the MLC modality.
NASA Astrophysics Data System (ADS)
Nussbaumer, Raphaël; Gloaguen, Erwan; Mariéthoz, Grégoire; Holliger, Klaus
2016-04-01
Bayesian sequential simulation (BSS) is a powerful geostatistical technique, which notably has shown significant potential for the assimilation of datasets that are diverse with regard to the spatial resolution and their relationship. However, these types of applications of BSS require a large number of realizations to adequately explore the solution space and to assess the corresponding uncertainties. Moreover, such simulations generally need to be performed on very fine grids in order to adequately exploit the technique's potential for characterizing heterogeneous environments. Correspondingly, the computational cost of BSS algorithms in their classical form is very high, which so far has limited an effective application of this method to large models and/or vast datasets. In this context, it is also important to note that the inherent assumption regarding the independence of the considered datasets is generally regarded as being too strong in the context of sequential simulation. To alleviate these problems, we have revisited the classical implementation of BSS and incorporated two key features to increase the computational efficiency. The first feature is a combined quadrant spiral - superblock search, which targets run-time savings on large grids and adds flexibility with regard to the selection of neighboring points using equal directional sampling and treating hard data and previously simulated points separately. The second feature is a constant path of simulation, which enhances the efficiency for multiple realizations. We have also modified the aggregation operator to be more flexible with regard to the assumption of independence of the considered datasets. This is achieved through log-linear pooling, which essentially allows for attributing weights to the various data components. Finally, a multi-grid simulating path was created to enforce large-scale variance and to allow for adapting parameters, such as, for example, the log-linear weights or the type of simulation path at various scales. The newly implemented search method for kriging reduces the computational cost from an exponential dependence with regard to the grid size in the original algorithm to a linear relationship, as each neighboring search becomes independent from the grid size. For the considered examples, our results show a sevenfold reduction in run time for each additional realization when a constant simulation path is used. The traditional criticism that constant path techniques introduce a bias to the simulations was explored and our findings do indeed reveal a minor reduction in the diversity of the simulations. This bias can, however, be largely eliminated by changing the path type at different scales through the use of the multi-grid approach. Finally, we show that adapting the aggregation weight at each scale considered in our multi-grid approach allows for reproducing both the variogram and histogram, and the spatial trend of the underlying data.
A grid generation system for multi-disciplinary design optimization
NASA Technical Reports Server (NTRS)
Jones, William T.; Samareh-Abolhassani, Jamshid
1995-01-01
A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.
NASA Astrophysics Data System (ADS)
Qiu, J. P.; Niu, D. X.
Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.
Luce, J.S.; Martin, J.A.
1960-02-23
Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.
Algorithms for parallel flow solvers on message passing architectures
NASA Technical Reports Server (NTRS)
Vanderwijngaart, Rob F.
1995-01-01
The purpose of this project has been to identify and test suitable technologies for implementation of fluid flow solvers -- possibly coupled with structures and heat equation solvers -- on MIMD parallel computers. In the course of this investigation much attention has been paid to efficient domain decomposition strategies for ADI-type algorithms. Multi-partitioning derives its efficiency from the assignment of several blocks of grid points to each processor in the parallel computer. A coarse-grain parallelism is obtained, and a near-perfect load balance results. In uni-partitioning every processor receives responsibility for exactly one block of grid points instead of several. This necessitates fine-grain pipelined program execution in order to obtain a reasonable load balance. Although fine-grain parallelism is less desirable on many systems, especially high-latency networks of workstations, uni-partition methods are still in wide use in production codes for flow problems. Consequently, it remains important to achieve good efficiency with this technique that has essentially been superseded by multi-partitioning for parallel ADI-type algorithms. Another reason for the concentration on improving the performance of pipeline methods is their applicability in other types of flow solver kernels with stronger implied data dependence. Analytical expressions can be derived for the size of the dynamic load imbalance incurred in traditional pipelines. From these it can be determined what is the optimal first-processor retardation that leads to the shortest total completion time for the pipeline process. Theoretical predictions of pipeline performance with and without optimization match experimental observations on the iPSC/860 very well. Analysis of pipeline performance also highlights the effect of uncareful grid partitioning in flow solvers that employ pipeline algorithms. If grid blocks at boundaries are not at least as large in the wall-normal direction as those immediately adjacent to them, then the first processor in the pipeline will receive a computational load that is less than that of subsequent processors, magnifying the pipeline slowdown effect. Extra compensation is needed for grid boundary effects, even if all grid blocks are equally sized.
FANS-3D Users Guide (ESTEP Project ER 201031)
2016-08-01
governing laminar and turbulent flows in body-fitted curvilinear grids. The code employs multi-block overset ( chimera ) grids, including fully matched...governing incompressible flow in body-fitted grids. The code allows for multi-block overset ( chimera ) grids, which can be fully matched, arbitrarily...interested reader may consult the Chimera Overset Structured Mesh-Interpolation Code (COSMIC) Users’ Manual (Chen, 2009). The input file used for
A multi-resolution approach to electromagnetic modelling
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu
2018-07-01
We present a multi-resolution approach for 3-D magnetotelluric forward modelling. Our approach is motivated by the fact that fine-grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. With a conventional structured finite difference grid, the fine discretization required to adequately represent rapid variations near the surface is continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modelling is especially important for solving regularized inversion problems. We implement a multi-resolution finite difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of subgrids, with each subgrid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modelling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modelling operators on interfaces between adjacent subgrids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models shows that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.
CFD Methods and Tools for Multi-Element Airfoil Analysis
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; George, Michael W. (Technical Monitor)
1995-01-01
This lecture will discuss the computational tools currently available for high-lift multi-element airfoil analysis. It will present an overview of a number of different numerical approaches, their current capabilities, short-comings, and computational costs. The lecture will be limited to viscous methods, including inviscid/boundary layer coupling methods, and incompressible and compressible Reynolds-averaged Navier-Stokes methods. Both structured and unstructured grid generation approaches will be presented. Two different structured grid procedures are outlined, one which uses multi-block patched grids, the other uses overset chimera grids. Turbulence and transition modeling will be discussed.
Methods for prismatic/tetrahedral grid generation and adaptation
NASA Technical Reports Server (NTRS)
Kallinderis, Y.
1995-01-01
The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.
A Review of Distributed Control Techniques for Power Quality Improvement in Micro-grids
NASA Astrophysics Data System (ADS)
Zeeshan, Hafiz Muhammad Ali; Nisar, Fatima; Hassan, Ahmad
2017-05-01
Micro-grid is typically visualized as a small scale local power supply network dependent on distributed energy resources (DERs) that can operate simultaneously with grid as well as in standalone manner. The distributed generator of a micro-grid system is usually a converter-inverter type topology acting as a non-linear load, and injecting harmonics into the distribution feeder. Hence, the negative effects on power quality by the usage of distributed generation sources and components are clearly witnessed. In this paper, a review of distributed control approaches for power quality improvement is presented which encompasses harmonic compensation, loss mitigation and optimum power sharing in multi-source-load distributed power network. The decentralized subsystems for harmonic compensation and active-reactive power sharing accuracy have been analysed in detail. Results have been validated to be consistent with IEEE standards.
Geometry modeling and multi-block grid generation for turbomachinery configurations
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1992-01-01
An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation.
Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues
NASA Astrophysics Data System (ADS)
Chakravarthy, Srinivas R.; Rumyantsev, Alexander
2018-03-01
Cloud computing is continuing to prove its flexibility and versatility in helping industries and businesses as well as academia as a way of providing needed computing capacity. As an important alternative to cloud computing, desktop grids allow to utilize the idle computer resources of an enterprise/community by means of distributed computing system, providing a more secure and controllable environment with lower operational expenses. Further, both cloud computing and desktop grids are meant to optimize limited resources and at the same time to decrease the expected latency for users. The crucial parameter for optimization both in cloud computing and in desktop grids is the level of redundancy (replication) for service requests/workunits. In this paper we study the optimal replication policies by considering three variations of Fork-Join systems in the context of a multi-server queueing system with a versatile point process for the arrivals. For services we consider phase type distributions as well as shifted exponential and Weibull. We use both analytical and simulation approach in our analysis and report some interesting qualitative results.
Yan, Zheping; Wang, Lu; Wang, Tongda; Yang, Zewen; Chen, Tao; Xu, Jian
2018-03-30
To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs) in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS) in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL) acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF) is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.
Yan, Zheping; Wang, Lu; Wang, Tongda; Yang, Zewen; Chen, Tao; Xu, Jian
2018-01-01
To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs) in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS) in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL) acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF) is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region. PMID:29601537
Implementation of a Multi-Robot Coverage Algorithm on a Two-Dimensional, Grid-Based Environment
2017-06-01
two planar laser range finders with a 180-degree field of view , color camera, vision beacons, and wireless communicator. In their system, the robots...Master’s thesis 4. TITLE AND SUBTITLE IMPLEMENTATION OF A MULTI -ROBOT COVERAGE ALGORITHM ON A TWO -DIMENSIONAL, GRID-BASED ENVIRONMENT 5. FUNDING NUMBERS...path planning coverage algorithm for a multi -robot system in a two -dimensional, grid-based environment. We assess the applicability of a topology
SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils
NASA Technical Reports Server (NTRS)
Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.
2008-01-01
The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.
NASA Technical Reports Server (NTRS)
Chan, William M.
1992-01-01
The following papers are presented: (1) numerical methods for the simulation of complex multi-body flows with applications for the Integrated Space Shuttle vehicle; (2) a generalized scheme for 3-D hyperbolic grid generation; (3) collar grids for intersecting geometric components within the Chimera overlapped grid scheme; and (4) application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows.
NASA Astrophysics Data System (ADS)
Avara, Mark J.; Noble, Scott; Shiokawa, Hotaka; Cheng, Roseanne; Campanelli, Manuela; Krolik, Julian H.
2017-08-01
A multi-patch approach to numerical simulations of black hole accretion flows allows one to robustly match numerical grid shape and equations solved to the natural structure of the physical system. For instance, a cartesian gridded patch can be used to cover coordinate singularities on a spherical-polar grid, increasing computational efficiency and better capturing the physical system through natural symmetries. We will present early tests, initial applications, and first results from the new MHD implementation of the PATCHWORK framework.
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Delaney, Robert A.; Bettner, James L.
1990-01-01
The time-dependent three-dimensional Euler equations of gas dynamics were solved numerically to study the steady compressible transonic flow about ducted propfan propulsion systems. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. An implicit residual smoothing operator was used to aid convergence. Two calculation grids were employed in this study. The first grid utilized an H-type mesh network with a branch cut opening to represent the axisymmetric cowl. The second grid utilized a multiple-block mesh system with a C-type grid about the cowl. The individual blocks were numerically coupled in the Euler solver. Grid systems were generated by a combined algebraic/elliptic algortihm developed specifically for ducted propfans. Numerical calculations were initially performed for unducted propfans to verify the accuracy of the three-dimensional Euler formulation. The Euler analyses were then applied for the calculation of ducted propfan flows, and predicted results were compared with experimental data for two cases. The three-dimensional Euler analyses displayed exceptional accuracy, although certain parameters were observed to be very sensitive to geometric deflections. Both solution schemes were found to be very robust and demonstrated nearly equal efficiency and accuracy, although it was observed that the multi-block C-grid formulation provided somewhat better resolution of the cowl leading edge region.
Novel Intersection Type Recognition for Autonomous Vehicles Using a Multi-Layer Laser Scanner.
An, Jhonghyun; Choi, Baehoon; Sim, Kwee-Bo; Kim, Euntai
2016-07-20
There are several types of intersections such as merge-roads, diverge-roads, plus-shape intersections and two types of T-shape junctions in urban roads. When an autonomous vehicle encounters new intersections, it is crucial to recognize the types of intersections for safe navigation. In this paper, a novel intersection type recognition method is proposed for an autonomous vehicle using a multi-layer laser scanner. The proposed method consists of two steps: (1) static local coordinate occupancy grid map (SLOGM) building and (2) intersection classification. In the first step, the SLOGM is built relative to the local coordinate using the dynamic binary Bayes filter. In the second step, the SLOGM is used as an attribute for the classification. The proposed method is applied to a real-world environment and its validity is demonstrated through experimentation.
Novel Intersection Type Recognition for Autonomous Vehicles Using a Multi-Layer Laser Scanner
An, Jhonghyun; Choi, Baehoon; Sim, Kwee-Bo; Kim, Euntai
2016-01-01
There are several types of intersections such as merge-roads, diverge-roads, plus-shape intersections and two types of T-shape junctions in urban roads. When an autonomous vehicle encounters new intersections, it is crucial to recognize the types of intersections for safe navigation. In this paper, a novel intersection type recognition method is proposed for an autonomous vehicle using a multi-layer laser scanner. The proposed method consists of two steps: (1) static local coordinate occupancy grid map (SLOGM) building and (2) intersection classification. In the first step, the SLOGM is built relative to the local coordinate using the dynamic binary Bayes filter. In the second step, the SLOGM is used as an attribute for the classification. The proposed method is applied to a real-world environment and its validity is demonstrated through experimentation. PMID:27447640
NASA Astrophysics Data System (ADS)
Guo, Hongbo; He, Xiaowei; Liu, Muhan; Zhang, Zeyu; Hu, Zhenhua; Tian, Jie
2017-03-01
Cerenkov luminescence tomography (CLT), as a promising optical molecular imaging modality, can be applied to cancer diagnostic and therapeutic. Most researches about CLT reconstruction are based on the finite element method (FEM) framework. However, the quality of FEM mesh grid is still a vital factor to restrict the accuracy of the CLT reconstruction result. In this paper, we proposed a multi-grid finite element method framework, which was able to improve the accuracy of reconstruction. Meanwhile, the multilevel scheme adaptive algebraic reconstruction technique (MLS-AART) based on a modified iterative algorithm was applied to improve the reconstruction accuracy. In numerical simulation experiments, the feasibility of our proposed method were evaluated. Results showed that the multi-grid strategy could obtain 3D spatial information of Cerenkov source more accurately compared with the traditional single-grid FEM.
NASA Astrophysics Data System (ADS)
Bosman, Peter A. N.; Alderliesten, Tanja
2016-03-01
We recently demonstrated the strong potential of using dual-dynamic transformation models when tackling deformable image registration problems involving large anatomical differences. Dual-dynamic transformation models employ two moving grids instead of the common single moving grid for the target image (and single fixed grid for the source image). We previously employed powerful optimization algorithms to make use of the additional flexibility offered by a dual-dynamic transformation model with good results, directly obtaining insight into the trade-off between important registration objectives as a result of taking a multi-objective approach to optimization. However, optimization has so far been initialized using two regular grids, which still leaves a great potential of dual-dynamic transformation models untapped: a-priori grid alignment with image structures/areas that are expected to deform more. This allows (far) less grid points to be used, compared to using a sufficiently refined regular grid, leading to (far) more efficient optimization, or, equivalently, more accurate results using the same number of grid points. We study the implications of exploiting this potential by experimenting with two new smart grid initialization procedures: one manual expert-based and one automated image-feature-based. We consider a CT test case with large differences in bladder volume with and without a multi-resolution scheme and find a substantial benefit of using smart grid initialization.
Grid Transmission Expansion Planning Model Based on Grid Vulnerability
NASA Astrophysics Data System (ADS)
Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang
2018-03-01
Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.
NASA Astrophysics Data System (ADS)
Ceran, Bartosz
2017-11-01
The paper presents the results of the use of multi-criteria analysis to compare hybrid power generation system collaboration scenarios (HSW) consisting of wind turbines, solar panels and energy storage electrolyzer - PEM type fuel cell with electricity system. The following scenarios were examined: the base S-I-hybrid system powers the off-grid mode receiver, S-II, S-III, S-IV scenarios-electricity system covers 25%, 50%, 75% of energy demand by the recipient. The effect of weights of the above-mentioned criteria on the final result of the multi-criteria analysis was examined.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... Ocean, 2.5 to 3.0 nautical miles west of Manila on Samoa Peninsula of Humboldt Bay, near Eureka... Conversion devises (WEC), including multi-point catenary moorings and anchors; (2) marker buoys, navigation... interconnection to the electrical grid; and (6) appurtenant facilities. WEC types that may be installed may...
Application of a multi-level grid method to transonic flow calculations
NASA Technical Reports Server (NTRS)
South, J. C., Jr.; Brandt, A.
1976-01-01
A multi-level grid method was studied as a possible means of accelerating convergence in relaxation calculations for transonic flows. The method employs a hierarchy of grids, ranging from very coarse to fine. The coarser grids are used to diminish the magnitude of the smooth part of the residuals. The method was applied to the solution of the transonic small disturbance equation for the velocity potential in conservation form. Nonlifting transonic flow past a parabolic arc airfoil is studied with meshes of both constant and variable step size.
Load Balancing Strategies for Multi-Block Overset Grid Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak; Lopez-Benitez, Noe; Biegel, Bryan (Technical Monitor)
2002-01-01
The multi-block overset grid method is a powerful technique for high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process uses a grid system that discretizes the problem domain by using separately generated but overlapping structured grids that periodically update and exchange boundary information through interpolation. For efficient high performance computations of large-scale realistic applications using this methodology, the individual grids must be properly partitioned among the parallel processors. Overall performance, therefore, largely depends on the quality of load balancing. In this paper, we present three different load balancing strategies far overset grids and analyze their effects on the parallel efficiency of a Navier-Stokes CFD application running on an SGI Origin2000 machine.
A Structured Grid Based Solution-Adaptive Technique for Complex Separated Flows
NASA Technical Reports Server (NTRS)
Thornburg, Hugh; Soni, Bharat K.; Kishore, Boyalakuntla; Yu, Robert
1996-01-01
The objective of this work was to enhance the predictive capability of widely used computational fluid dynamic (CFD) codes through the use of solution adaptive gridding. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. In order to study the accuracy and efficiency improvements due to the grid adaptation, it is necessary to quantify grid size and distribution requirements as well as computational times of non-adapted solutions. Flow fields about launch vehicles of practical interest often involve supersonic freestream conditions at angle of attack exhibiting large scale separate vortical flow, vortex-vortex and vortex-surface interactions, separated shear layers and multiple shocks of different intensity. In this work, a weight function and an associated mesh redistribution procedure is presented which detects and resolves these features without user intervention. Particular emphasis has been placed upon accurate resolution of expansion regions and boundary layers. Flow past a wedge at Mach=2.0 is used to illustrate the enhanced detection capabilities of this newly developed weight function.
[Research on tumor information grid framework].
Zhang, Haowei; Qin, Zhu; Liu, Ying; Tan, Jianghao; Cao, Haitao; Chen, Youping; Zhang, Ke; Ding, Yuqing
2013-10-01
In order to realize tumor disease information sharing and unified management, we utilized grid technology to make the data and software resources which distributed in various medical institutions for effective integration so that we could make the heterogeneous resources consistent and interoperable in both semantics and syntax aspects. This article describes the tumor grid framework, the type of the service being packaged in Web Service Description Language (WSDL) and extensible markup language schemas definition (XSD), the client use the serialized document to operate the distributed resources. The service objects could be built by Unified Modeling Language (UML) as middle ware to create application programming interface. All of the grid resources are registered in the index and released in the form of Web Services based on Web Services Resource Framework (WSRF). Using the system we can build a multi-center, large sample and networking tumor disease resource sharing framework to improve the level of development in medical scientific research institutions and the patient's quality of life.
The three-dimensional Multi-Block Advanced Grid Generation System (3DMAGGS)
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Weilmuenster, Kenneth J.
1993-01-01
As the size and complexity of three dimensional volume grids increases, there is a growing need for fast and efficient 3D volumetric elliptic grid solvers. Present day solvers are limited by computational speed and do not have all the capabilities such as interior volume grid clustering control, viscous grid clustering at the wall of a configuration, truncation error limiters, and convergence optimization residing in one code. A new volume grid generator, 3DMAGGS (Three-Dimensional Multi-Block Advanced Grid Generation System), which is based on the 3DGRAPE code, has evolved to meet these needs. This is a manual for the usage of 3DMAGGS and contains five sections, including the motivations and usage, a GRIDGEN interface, a grid quality analysis tool, a sample case for verifying correct operation of the code, and a comparison to both 3DGRAPE and GRIDGEN3D. Since it was derived from 3DGRAPE, this technical memorandum should be used in conjunction with the 3DGRAPE manual (NASA TM-102224).
Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R
2016-02-01
Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Tobari, H.
Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltagemore » holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.« less
Inverter Anti-Islanding with Advanced Grid Support in Single- and Multi-Inverter Islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoke, Andy
As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1. In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2. The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly ormore » indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness.« less
Modeling pedestrian evacuation with guiders based on a multi-grid model
NASA Astrophysics Data System (ADS)
Cao, Shuchao; Song, Weiguo; Lv, Wei
2016-02-01
Pedestrian evacuation with guidance is investigated by a multi-grid model in this paper. The effects of guider type, guider number, guider distribution and guidance strategy on evacuation are discussed. From the analysis of simulation results, it is found that the identified guiders are more beneficial to evacuation because they can be distinguished easily by pedestrians during evacuation; The optimal guider number exists in view of the human cost and can be obtained in our model; The uniform distribution of guiders covers more area in the room and makes evacuation efficient; Evacuation guidance is more effective when the speed of guider is about 75% of herding pedestrian's speed in our simulation scenario; The performance of evacuation guidance strategy considering both distance and occupant number is the best when compared to other strategies; The coordination and cooperation between guiders are very important and necessary to facilitate the evacuation. The study may be useful for understanding the importance of guidance in evacuation and developing efficient evacuation strategy for management under emergency.
Multi-agent grid system Agent-GRID with dynamic load balancing of cluster nodes
NASA Astrophysics Data System (ADS)
Satymbekov, M. N.; Pak, I. T.; Naizabayeva, L.; Nurzhanov, Ch. A.
2017-12-01
In this study the work presents the system designed for automated load balancing of the contributor by analysing the load of compute nodes and the subsequent migration of virtual machines from loaded nodes to less loaded ones. This system increases the performance of cluster nodes and helps in the timely processing of data. A grid system balances the work of cluster nodes the relevance of the system is the award of multi-agent balancing for the solution of such problems.
Grid-wide neuroimaging data federation in the context of the NeuroLOG project
Michel, Franck; Gaignard, Alban; Ahmad, Farooq; Barillot, Christian; Batrancourt, Bénédicte; Dojat, Michel; Gibaud, Bernard; Girard, Pascal; Godard, David; Kassel, Gilles; Lingrand, Diane; Malandain, Grégoire; Montagnat, Johan; Pélégrini-Issac, Mélanie; Pennec, Xavier; Rojas Balderrama, Javier; Wali, Bacem
2010-01-01
Grid technologies are appealing to deal with the challenges raised by computational neurosciences and support multi-centric brain studies. However, core grids middleware hardly cope with the complex neuroimaging data representation and multi-layer data federation needs. Moreover, legacy neuroscience environments need to be preserved and cannot be simply superseded by grid services. This paper describes the NeuroLOG platform design and implementation, shedding light on its Data Management Layer. It addresses the integration of brain image files, associated relational metadata and neuroscience semantic data in a heterogeneous distributed environment, integrating legacy data managers through a mediation layer. PMID:20543431
A procedure for automating CFD simulations of an inlet-bleed problem
NASA Technical Reports Server (NTRS)
Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.
1995-01-01
A procedure was developed to improve the turn-around time for computational fluid dynamics (CFD) simulations of an inlet-bleed problem involving oblique shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through one or more circular holes. This procedure is embodied in a preprocessor called AUTOMAT. With AUTOMAT, once data for the geometry and flow conditions have been specified (either interactively or via a namelist), it will automatically generate all input files needed to perform a three-dimensional Navier-Stokes simulation of the prescribed inlet-bleed problem by using the PEGASUS and OVERFLOW codes. The input files automatically generated by AUTOMAT include those for the grid system and those for the initial and boundary conditions. The grid systems automatically generated by AUTOMAT are multi-block structured grids of the overlapping type. Results obtained by using AUTOMAT are presented to illustrate its capability.
NASA Astrophysics Data System (ADS)
Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.
2016-08-01
Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.
NASA Astrophysics Data System (ADS)
Xu, Z.; Guan, K.; Peng, B.; Casler, N. P.; Wang, S. W.
2017-12-01
Landscape has complex three-dimensional features. These 3D features are difficult to extract using conventional methods. Small-footprint LiDAR provides an ideal way for capturing these features. Existing approaches, however, have been relegated to raster or metric-based (two-dimensional) feature extraction from the upper or bottom layer, and thus are not suitable for resolving morphological and intensity features that could be important to fine-scale land cover mapping. Therefore, this research combines airborne LiDAR and multi-temporal Landsat imagery to classify land cover types of Williamson County, Illinois that has diverse and mixed landscape features. Specifically, we applied a 3D convolutional neural network (CNN) method to extract features from LiDAR point clouds by (1) creating occupancy grid, intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into a 3D CNN feature extractor for many epochs of learning. The learned features (e.g., morphological features, intensity features, etc) were combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. We used photo interpretation for training and testing data generation. The classification results show that our approach outperforms traditional methods using LiDAR derived feature maps, and promises to serve as an effective methodology for creating high-quality land cover maps through fusion of complementary types of remote sensing data.
Numerical simulation of rough-surface aerodynamics
NASA Astrophysics Data System (ADS)
Chi, Xingkai
Computational fluid dynamics (CFD) simulations of flow over surfaces with roughness in which the details of the surface geometry must be resolved pose major challenges. The objective of this study is to address these challenges through two important engineering problems, where roughness play a critical role---flow over airfoils with accrued ice and flow and heat transfer over turbine blade surfaces roughened by erosion and/or deposition. CFD simulations of iced airfoils face two major challenges. The first is how to generate high-quality single- and multi-block structured grids for highly convoluted convex and concave surface geometries with multiple scales. In this study, two methods were developed for the generation of high-quality grids for such geometries. The method developed for single-block grids involves generating a grid about the clean airfoil, carving out a portion of that grid about the airfoil, replacing that portion with a grid that accounts for the accrued ice geometry, and performing elliptic smoothing. The method developed for multi-block grids involves a transition-layer grid to ensure jaggedness in the ice geometry does not propagate into the domain. It also involves a "thick" wrap-around grid about the ice to ensure grid lines clustered next to solid surfaces do not propagate as streaks of tightly packed grid lines into the domain along block boundaries. For multi-block grids, this study also developed blocking topologies that ensure solutions to multi-block grids converge to steady state as quickly as single-block grids. The second major challenge in CFD simulations of iced airfoils is not knowing when it will predict reliably because of uncertainties in the turbulence modeling. In this study, the effects of turbulence models in predicting lift, drag, and moment coefficients were examined for airfoils with rime ice (i.e., ice with jaggedness only) and with glaze ice (i.e., ice with multiple protruding horns and surface jaggedness) as a function of angle of attack. In this examination, three different CFD codes---WIND, FLUENT, and PowerFLOW were used to examine a variety of turbulence models, including Spalart-Allmaras, RNG k-epsilon, shear-stress transport, v2-f, and differential Reynolds stress with and without non-equilibrium wall functions. The accuracy of the CFD predictions was evaluated by comparing grid-independent solutions with measured experimental data. Results obtained show CFD with WIND and FLUENT to predict the aerodynamics of airfoils with rime ice reliably up to near stall for all turbulence models investigated. (Abstract shortened by UMI.)
Time-marching multi-grid seismic tomography
NASA Astrophysics Data System (ADS)
Tong, P.; Yang, D.; Liu, Q.
2016-12-01
From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Boerstoel, J. W.; Vitagliano, P. L.; Kuyvenhoven, J. L.
1992-01-01
About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation.
A Comprehensive Study of Gridding Methods for GPS Horizontal Velocity Fields
NASA Astrophysics Data System (ADS)
Wu, Yanqiang; Jiang, Zaisen; Liu, Xiaoxia; Wei, Wenxin; Zhu, Shuang; Zhang, Long; Zou, Zhenyu; Xiong, Xiaohui; Wang, Qixin; Du, Jiliang
2017-03-01
Four gridding methods for GPS velocities are compared in terms of their precision, applicability and robustness by analyzing simulated data with uncertainties from 0.0 to ±3.0 mm/a. When the input data are 1° × 1° grid sampled and the uncertainty of the additional error is greater than ±1.0 mm/a, the gridding results show that the least-squares collocation method is highly robust while the robustness of the Kriging method is low. In contrast, the spherical harmonics and the multi-surface function are moderately robust, and the regional singular values for the multi-surface function method and the edge effects for the spherical harmonics method become more significant with increasing uncertainty of the input data. When the input data (with additional errors of ±2.0 mm/a) are decimated by 50% from the 1° × 1° grid data and then erased in three 6° × 12° regions, the gridding results in these three regions indicate that the least-squares collocation and the spherical harmonics methods have good performances, while the multi-surface function and the Kriging methods may lead to singular values. The gridding techniques are also applied to GPS horizontal velocities with an average error of ±0.8 mm/a over the Chinese mainland and the surrounding areas, and the results show that the least-squares collocation method has the best performance, followed by the Kriging and multi-surface function methods. Furthermore, the edge effects of the spherical harmonics method are significantly affected by the sparseness and geometric distribution of the input data. In general, the least-squares collocation method is superior in terms of its robustness, edge effect, error distribution and stability, while the other methods have several positive features.
Multi-agent coordination algorithms for control of distributed energy resources in smart grids
NASA Astrophysics Data System (ADS)
Cortes, Andres
Sustainable energy is a top-priority for researchers these days, since electricity and transportation are pillars of modern society. Integration of clean energy technologies such as wind, solar, and plug-in electric vehicles (PEVs), is a major engineering challenge in operation and management of power systems. This is due to the uncertain nature of renewable energy technologies and the large amount of extra load that PEVs would add to the power grid. Given the networked structure of a power system, multi-agent control and optimization strategies are natural approaches to address the various problems of interest for the safe and reliable operation of the power grid. The distributed computation in multi-agent algorithms addresses three problems at the same time: i) it allows for the handling of problems with millions of variables that a single processor cannot compute, ii) it allows certain independence and privacy to electricity customers by not requiring any usage information, and iii) it is robust to localized failures in the communication network, being able to solve problems by simply neglecting the failing section of the system. We propose various algorithms to coordinate storage, generation, and demand resources in a power grid using multi-agent computation and decentralized decision making. First, we introduce a hierarchical vehicle-one-grid (V1G) algorithm for coordination of PEVs under usage constraints, where energy only flows from the grid in to the batteries of PEVs. We then present a hierarchical vehicle-to-grid (V2G) algorithm for PEV coordination that takes into consideration line capacity constraints in the distribution grid, and where energy flows both ways, from the grid in to the batteries, and from the batteries to the grid. Next, we develop a greedy-like hierarchical algorithm for management of demand response events with on/off loads. Finally, we introduce distributed algorithms for the optimal control of distributed energy resources, i.e., generation and storage in a microgrid. The algorithms we present are provably correct and tested in simulation. Each algorithm is assumed to work on a particular network topology, and simulation studies are carried out in order to demonstrate their convergence properties to a desired solution.
Nonlinear Conservation Laws and Finite Volume Methods
NASA Astrophysics Data System (ADS)
Leveque, Randall J.
Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References
Summary of the Third AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Laflin, Kelly R.; Mavriplis, DImitri J.
2007-01-01
The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration.
NASA Astrophysics Data System (ADS)
Guo, Tongqing; Chen, Hao; Lu, Zhiliang
2018-05-01
Aiming at extremely large deformation, a novel predictor-corrector-based dynamic mesh method for multi-block structured grid is proposed. In this work, the dynamic mesh generation is completed in three steps. At first, some typical dynamic positions are selected and high-quality multi-block grids with the same topology are generated at those positions. Then, Lagrange interpolation method is adopted to predict the dynamic mesh at any dynamic position. Finally, a rapid elastic deforming technique is used to correct the small deviation between the interpolated geometric configuration and the actual instantaneous one. Compared with the traditional methods, the results demonstrate that the present method shows stronger deformation ability and higher dynamic mesh quality.
Competitive energy consumption under transmission constraints in a multi-supplier power grid system
NASA Astrophysics Data System (ADS)
Popov, Ivan; Krylatov, Alexander; Zakharov, Victor; Ivanov, Dmitry
2017-04-01
Power grid architectures need to be revised in order to manage the increasing number of producers and, more generally, the decentralisation of energy production and distribution. In this work, we describe a multi-supplier multi-consumer congestion model of a power grid, where the costs of consumers depend on the congestion in nodes and arcs of the power supply network. The consumer goal is both to meet their energy demand and to minimise the costs. We show that the methods of non-atomic routing can be applied in this model in order to describe current distribution in the network. We formulate a consumer cost minimisation game for this setting, and discuss the challenges arising in equilibrium search for this game.
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Ash, Robert L.
1992-01-01
A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, upwind numerical techniques, multigrid acceleration, and multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available: van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multi-grid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with multiple topologies. The results shown in this dissertation were chosen to validate the computer code and display its geometric flexibility, which is provided by the multi-block structure.
Semantic and syntactic interoperability in online processing of big Earth observation data.
Sudmanns, Martin; Tiede, Dirk; Lang, Stefan; Baraldi, Andrea
2018-01-01
The challenge of enabling syntactic and semantic interoperability for comprehensive and reproducible online processing of big Earth observation (EO) data is still unsolved. Supporting both types of interoperability is one of the requirements to efficiently extract valuable information from the large amount of available multi-temporal gridded data sets. The proposed system wraps world models, (semantic interoperability) into OGC Web Processing Services (syntactic interoperability) for semantic online analyses. World models describe spatio-temporal entities and their relationships in a formal way. The proposed system serves as enabler for (1) technical interoperability using a standardised interface to be used by all types of clients and (2) allowing experts from different domains to develop complex analyses together as collaborative effort. Users are connecting the world models online to the data, which are maintained in a centralised storage as 3D spatio-temporal data cubes. It allows also non-experts to extract valuable information from EO data because data management, low-level interactions or specific software issues can be ignored. We discuss the concept of the proposed system, provide a technical implementation example and describe three use cases for extracting changes from EO images and demonstrate the usability also for non-EO, gridded, multi-temporal data sets (CORINE land cover).
Semantic and syntactic interoperability in online processing of big Earth observation data
Sudmanns, Martin; Tiede, Dirk; Lang, Stefan; Baraldi, Andrea
2018-01-01
ABSTRACT The challenge of enabling syntactic and semantic interoperability for comprehensive and reproducible online processing of big Earth observation (EO) data is still unsolved. Supporting both types of interoperability is one of the requirements to efficiently extract valuable information from the large amount of available multi-temporal gridded data sets. The proposed system wraps world models, (semantic interoperability) into OGC Web Processing Services (syntactic interoperability) for semantic online analyses. World models describe spatio-temporal entities and their relationships in a formal way. The proposed system serves as enabler for (1) technical interoperability using a standardised interface to be used by all types of clients and (2) allowing experts from different domains to develop complex analyses together as collaborative effort. Users are connecting the world models online to the data, which are maintained in a centralised storage as 3D spatio-temporal data cubes. It allows also non-experts to extract valuable information from EO data because data management, low-level interactions or specific software issues can be ignored. We discuss the concept of the proposed system, provide a technical implementation example and describe three use cases for extracting changes from EO images and demonstrate the usability also for non-EO, gridded, multi-temporal data sets (CORINE land cover). PMID:29387171
TRIAD: The Translational Research Informatics and Data Management Grid
Payne, P.; Ervin, D.; Dhaval, R.; Borlawsky, T.; Lai, A.
2011-01-01
Objective Multi-disciplinary and multi-site biomedical research programs frequently require infrastructures capable of enabling the collection, management, analysis, and dissemination of heterogeneous, multi-dimensional, and distributed data and knowledge collections spanning organizational boundaries. We report on the design and initial deployment of an extensible biomedical informatics platform that is intended to address such requirements. Methods A common approach to distributed data, information, and knowledge management needs in the healthcare and life science settings is the deployment and use of a service-oriented architecture (SOA). Such SOA technologies provide for strongly-typed, semantically annotated, and stateful data and analytical services that can be combined into data and knowledge integration and analysis “pipelines.” Using this overall design pattern, we have implemented and evaluated an extensible SOA platform for clinical and translational science applications known as the Translational Research Informatics and Data-management grid (TRIAD). TRIAD is a derivative and extension of the caGrid middleware and has an emphasis on supporting agile “working interoperability” between data, information, and knowledge resources. Results Based upon initial verification and validation studies conducted in the context of a collection of driving clinical and translational research problems, we have been able to demonstrate that TRIAD achieves agile “working interoperability” between distributed data and knowledge sources. Conclusion Informed by our initial verification and validation studies, we believe TRIAD provides an example instance of a lightweight and readily adoptable approach to the use of SOA technologies in the clinical and translational research setting. Furthermore, our initial use cases illustrate the importance and efficacy of enabling “working interoperability” in heterogeneous biomedical environments. PMID:23616879
TRIAD: The Translational Research Informatics and Data Management Grid.
Payne, P; Ervin, D; Dhaval, R; Borlawsky, T; Lai, A
2011-01-01
Multi-disciplinary and multi-site biomedical research programs frequently require infrastructures capable of enabling the collection, management, analysis, and dissemination of heterogeneous, multi-dimensional, and distributed data and knowledge collections spanning organizational boundaries. We report on the design and initial deployment of an extensible biomedical informatics platform that is intended to address such requirements. A common approach to distributed data, information, and knowledge management needs in the healthcare and life science settings is the deployment and use of a service-oriented architecture (SOA). Such SOA technologies provide for strongly-typed, semantically annotated, and stateful data and analytical services that can be combined into data and knowledge integration and analysis "pipelines." Using this overall design pattern, we have implemented and evaluated an extensible SOA platform for clinical and translational science applications known as the Translational Research Informatics and Data-management grid (TRIAD). TRIAD is a derivative and extension of the caGrid middleware and has an emphasis on supporting agile "working interoperability" between data, information, and knowledge resources. Based upon initial verification and validation studies conducted in the context of a collection of driving clinical and translational research problems, we have been able to demonstrate that TRIAD achieves agile "working interoperability" between distributed data and knowledge sources. Informed by our initial verification and validation studies, we believe TRIAD provides an example instance of a lightweight and readily adoptable approach to the use of SOA technologies in the clinical and translational research setting. Furthermore, our initial use cases illustrate the importance and efficacy of enabling "working interoperability" in heterogeneous biomedical environments.
Description of the F-16XL Geometry and Computational Grids Used in CAWAPI
NASA Technical Reports Server (NTRS)
Boelens, O. J.; Badcock, K. J.; Gortz, S.; Morton, S.; Fritz, W.; Karman, S. L., Jr.; Michal, T.; Lamar, J. E.
2009-01-01
The objective of the Cranked-Arrow Wing Aerodynamics Project International (CAWAPI) was to allow a comprehensive validation of Computational Fluid Dynamics methods against the CAWAP flight database. A major part of this work involved the generation of high-quality computational grids. Prior to the grid generation an IGES file containing the air-tight geometry of the F-16XL aircraft was generated by a cooperation of the CAWAPI partners. Based on this geometry description both structured and unstructured grids have been generated. The baseline structured (multi-block) grid (and a family of derived grids) has been generated by the National Aerospace Laboratory NLR. Although the algorithms used by NLR had become available just before CAWAPI and thus only a limited experience with their application to such a complex configuration had been gained, a grid of good quality was generated well within four weeks. This time compared favourably with that required to produce the unstructured grids in CAWAPI. The baseline all-tetrahedral and hybrid unstructured grids has been generated at NASA Langley Research Center and the USAFA, respectively. To provide more geometrical resolution, trimmed unstructured grids have been generated at EADS-MAS, the UTSimCenter, Boeing Phantom Works and KTH/FOI. All grids generated within the framework of CAWAPI will be discussed in the article. Both results obtained on the structured grids and the unstructured grids showed a significant improvement in agreement with flight test data in comparison with those obtained on the structured multi-block grid used during CAWAP.
NASA Astrophysics Data System (ADS)
Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.
2015-12-01
Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).
Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS
NASA Astrophysics Data System (ADS)
Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.-C.; Clergeau, J.-F.; Deen, P. P.; Ehlers, G.; van Esch, P.; Everett, S. M.; Guerard, B.; Hall-Wilton, R.; Herwig, K.; Hultman, L.; Höglund, C.; Iruretagoiena, I.; Issa, F.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Lopez Higuera, I.; Piscitelli, F.; Robinson, L.; Schmidt, S.; Stefanescu, I.
2017-04-01
The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.
Mediated definite delegation - Certified Grid jobs in ALICE and beyond
NASA Astrophysics Data System (ADS)
Schreiner, Steffen; Grigoras, Costin; Litmaath, Maarten; Betev, Latchezar; Buchmann, Johannes
2012-12-01
Grid computing infrastructures need to provide traceability and accounting of their users’ activity and protection against misuse and privilege escalation, where the delegation of privileges in the course of a job submission is a key concern. This work describes an improved handling of Multi-user Grid Jobs in the ALICE Grid Services. A security analysis of the ALICE Grid job model is presented with derived security objectives, followed by a discussion of existing approaches of unrestricted delegation based on X.509 proxy certificates and the Grid middleware gLExec. Unrestricted delegation has severe security consequences and limitations, most importantly allowing for identity theft and forgery of jobs and data. These limitations are discussed and formulated, both in general and with respect to an adoption in line with Multi-user Grid Jobs. A new general model of mediated definite delegation is developed, allowing a broker to dynamically process and assign Grid jobs to agents while providing strong accountability and long-term traceability. A prototype implementation allowing for fully certified Grid jobs is presented as well as a potential interaction with gLExec. The achieved improvements regarding system security, malicious job exploitation, identity protection, and accountability are emphasized, including a discussion of non-repudiation in the face of malicious Grid jobs.
Smart Grid as Multi-layer Interacting System for Complex Decision Makings
NASA Astrophysics Data System (ADS)
Bompard, Ettore; Han, Bei; Masera, Marcelo; Pons, Enrico
This chapter presents an approach to the analysis of Smart Grids based on a multi-layer representation of their technical, cyber, social and decision-making aspects, as well as the related environmental constraints. In the Smart Grid paradigm, self-interested active customers (prosumers), system operators and market players interact among themselves making use of an extensive cyber infrastructure. In addition, policy decision makers define regulations, incentives and constraints to drive the behavior of the competing operators and prosumers, with the objective of ensuring the global desired performance (e.g. system stability, fair prices). For these reasons, the policy decision making is more complicated than in traditional power systems, and needs proper modeling and simulation tools for assessing "in vitro" and ex-ante the possible impacts of the decisions assumed. In this chapter, we consider the smart grids as multi-layered interacting complex systems. The intricacy of the framework, characterized by several interacting layers, cannot be captured by closed-form mathematical models. Therefore, a new approach using Multi Agent Simulation is described. With case studies we provide some indications about how to develop agent-based simulation tools presenting some preliminary examples.
TIGGERC: Turbomachinery Interactive Grid Generator for 2-D Grid Applications and Users Guide
NASA Technical Reports Server (NTRS)
Miller, David P.
1994-01-01
A two-dimensional multi-block grid generator has been developed for a new design and analysis system for studying multiple blade-row turbomachinery problems. TIGGERC is a mouse driven, interactive grid generation program which can be used to modify boundary coordinates and grid packing and generates surface grids using a hyperbolic tangent or algebraic distribution of grid points on the block boundaries. The interior points of each block grid are distributed using a transfinite interpolation approach. TIGGERC can generate a blocked axisymmetric H-grid, C-grid, I-grid or O-grid for studying turbomachinery flow problems. TIGGERC was developed for operation on Silicon Graphics workstations. Detailed discussion of the grid generation methodology, menu options, operational features and sample grid geometries are presented.
Algorithms for the automatic generation of 2-D structured multi-block grids
NASA Technical Reports Server (NTRS)
Schoenfeld, Thilo; Weinerfelt, Per; Jenssen, Carl B.
1995-01-01
Two different approaches to the fully automatic generation of structured multi-block grids in two dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of a multiple block grid topology. The first approach is based on an advancing front method commonly used for the generation of unstructured grids. The original algorithm has been modified toward the generation of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to practical problems is demonstrated for typical geometries of fluid dynamics.
Vector-based navigation using grid-like representations in artificial agents.
Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan
2018-05-01
Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go 1,2 . Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning 3-5 failing to rival the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the entorhinal cortex 6 . Grid cells are thought to provide a multi-scale periodic representation that functions as a metric for coding space 7,8 and is critical for integrating self-motion (path integration) 6,7,9 and planning direct trajectories to goals (vector-based navigation) 7,10,11 . Here we set out to leverage the computational functions of grid cells to develop a deep reinforcement learning agent with mammal-like navigational abilities. We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types 12 . We then showed that this representation provided an effective basis for an agent to locate goals in challenging, unfamiliar, and changeable environments-optimizing the primary objective of navigation through deep reinforcement learning. The performance of agents endowed with grid-like representations surpassed that of an expert human and comparison agents, with the metric quantities necessary for vector-based navigation derived from grid-like units within the network. Furthermore, grid-like representations enabled agents to conduct shortcut behaviours reminiscent of those performed by mammals. Our findings show that emergent grid-like representations furnish agents with a Euclidean spatial metric and associated vector operations, providing a foundation for proficient navigation. As such, our results support neuroscientific theories that see grid cells as critical for vector-based navigation 7,10,11 , demonstrating that the latter can be combined with path-based strategies to support navigation in challenging environments.
Stability assessment of a multi-port power electronic interface for hybrid micro-grid applications
NASA Astrophysics Data System (ADS)
Shamsi, Pourya
Migration to an industrial society increases the demand for electrical energy. Meanwhile, social causes for preserving the environment and reducing pollutions seek cleaner forms of energy sources. Therefore, there has been a growth in distributed generation from renewable sources in the past decade. Existing regulations and power system coordination does not allow for massive integration of distributed generation throughout the grid. Moreover, the current infrastructures are not designed for interfacing distributed and deregulated generation. In order to remedy this problem, a hybrid micro-grid based on nano-grids is introduced. This system consists of a reliable micro-grid structure that provides a smooth transition from the current distribution networks to smart micro-grid systems. Multi-port power electronic interfaces are introduced to manage the local generation, storage, and consumption. Afterwards, a model for this micro-grid is derived. Using this model, the stability of the system under a variety of source and load induced disturbances is studied. Moreover, pole-zero study of the micro-grid is performed under various loading conditions. An experimental setup of this micro-grid is developed, and the validity of the model in emulating the dynamic behavior of the system is verified. This study provides a theory for a novel hybrid micro-grid as well as models for stability assessment of the proposed micro-grid.
A Control of a Mono and Multi Scale Measurement of a Grid
NASA Astrophysics Data System (ADS)
Elloumi, Imene; Ravelomanana, Sahobimaholy; Jelliti, Manel; Sibilla, Michelle; Desprats, Thierry
The capacity to ensure the seamless mobility with the end-to-end Quality of Service (QoS) represents a vital criterion of success in the grid use. In this paper we hence posit a method of monitoring interconnection network of the grid (cluster, local grid and aggregate grids) in order to control its QoS. Such monitoring can guarantee a persistent control of the system state of health, a diagnostic and an optimization pertinent enough for better real time exploitation. A better exploitation is synonymous with identifying networking problems that affect the application domain. This can be carried out by control measurements as well as mono and multi scale for such metrics as: the bandwidth, CPU speed and load. The solution proposed, which is a management generic solution independently from the technologies, aims to automate human expertise and thereby more autonomy.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1990-01-01
The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.
Fourth International Workshop on Grid Simulator Testing of Wind Turbine
, United Kingdom Smart Reconfiguration and Protection in Advanced Electric Distribution Grids - Mayank Capabilities in Kinectrics - Nicolas Wrathall, Kinectrics, Canada Discussion Day 2: April 26, 2017 Advanced Grid Emulation Methods Advanced PHIL Interface for Multi-MW Scale Inverter Testing - Przemyslaw
Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations
NASA Technical Reports Server (NTRS)
Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.
2015-01-01
Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.
Large-eddy simulation of wind turbine wake interactions on locally refined Cartesian grids
NASA Astrophysics Data System (ADS)
Angelidis, Dionysios; Sotiropoulos, Fotis
2014-11-01
Performing high-fidelity numerical simulations of turbulent flow in wind farms remains a challenging issue mainly because of the large computational resources required to accurately simulate the turbine wakes and turbine/turbine interactions. The discretization of the governing equations on structured grids for mesoscale calculations may not be the most efficient approach for resolving the large disparity of spatial scales. A 3D Cartesian grid refinement method enabling the efficient coupling of the Actuator Line Model (ALM) with locally refined unstructured Cartesian grids adapted to accurately resolve tip vortices and multi-turbine interactions, is presented. Second order schemes are employed for the discretization of the incompressible Navier-Stokes equations in a hybrid staggered/non-staggered formulation coupled with a fractional step method that ensures the satisfaction of local mass conservation to machine zero. The current approach enables multi-resolution LES of turbulent flow in multi-turbine wind farms. The numerical simulations are in good agreement with experimental measurements and are able to resolve the rich dynamics of turbine wakes on grids containing only a small fraction of the grid nodes that would be required in simulations without local mesh refinement. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the National Science Foundation under Award number NSF PFI:BIC 1318201.
NASA Technical Reports Server (NTRS)
Chan, William M.
1993-01-01
An enhanced grid system for the Space Shuttle Orbiter was built by integrating CAD definitions from several sources and then generating the surface and volume grids. The new grid system contains geometric components not modeled previously plus significant enhancements on geometry that has been modeled in the old grid system. The new orbiter grids were then integrated with new grids for the rest of the launch vehicle. Enhancements were made to the hyperbolic grid generator HYPGEN and new tools for grid projection, manipulation, and modification, Cartesian box grid and far field grid generation and post-processing of flow solver data were developed.
Application of multi-grid method on the simulation of incremental forging processes
NASA Astrophysics Data System (ADS)
Ramadan, Mohamad; Khaled, Mahmoud; Fourment, Lionel
2016-10-01
Numerical simulation becomes essential in manufacturing large part by incremental forging processes. It is a splendid tool allowing to show physical phenomena however behind the scenes, an expensive bill should be paid, that is the computational time. That is why many techniques are developed to decrease the computational time of numerical simulation. Multi-Grid method is a numerical procedure that permits to reduce computational time of numerical calculation by performing the resolution of the system of equations on several mesh of decreasing size which allows to smooth faster the low frequency of the solution as well as its high frequency. In this paper a Multi-Grid method is applied to cogging process in the software Forge 3. The study is carried out using increasing number of degrees of freedom. The results shows that calculation time is divide by two for a mesh of 39,000 nodes. The method is promising especially if coupled with Multi-Mesh method.
The goal of achieving verisimilitude of air quality simulations to observations is problematic. Chemical transport models such as the Community Multi-Scale Air Quality (CMAQ) modeling system produce volume averages of pollutant concentration fields. When grid sizes are such tha...
Generation of multi annual land use and crop rotation data for regional agro-ecosystem modeling
NASA Astrophysics Data System (ADS)
Waldhoff, G.; Lussem, U.; Sulis, M.; Bareth, G.
2017-12-01
For agro-ecosystem modeling on a regional scale with systems like the Community Land Model (CLM), detailed crop type and crop rotation information on the parcel-level is of key importance. Only with this, accurate assessments of the fluxes associated with the succession of crops and their management are possible. However, sophisticated agro-ecosystem modeling for large regions is only feasible at grid resolutions, which are much coarser than the spatial resolution of modern land use maps (usually ca. 30 m). As a result, much of the original information content of the maps has to be dismissed during resampling. Here we present our mapping approach for the Rur catchment (located in the west of Germany), which was developed to address these demands and issues. We integrated remote sensing and geographic information system (GIS) methods to classify multi temporal images of (e.g.) Landsat, RapidEye and Sentinel-2 to generate annual crop maps for the years 2008-2017 at 15 m spatial resolution (accuracy always ca. 90 %). A key aspect of our method is the consideration of crop phenology for the data selection and the analysis. In a GIS, the annul crop maps were integrated to a crop sequence dataset from which the major crop rotations were derived (based on the 10-years). To retain the multi annual crop succession and crop area information at coarser grid resolutions, cell-based land use fractions, including other land use classes were calculated for each year and for various target cell sizes (1-32 arc seconds). The resulting datasets contain the contribution (in percent) of every land use class to each cell. Our results show that parcels with the major crop types can be differentiated with a high accuracy and on an annual basis. The analysis of the crop sequence data revealed a very large number of different crop rotations, but only relatively few crop rotations cover larger areas. This strong diversity emphasizes the importance of information on crop rotations to reduce uncertainties in agro-ecosystem modeling. Through the combination of the multi annual land use fractions, the resulting datasets additionally inform about land use changes and trends within the coarser grid cells. We see this as a major advantage, because we are able to maintain much more precise land use information when a coarser cell size is used.
A Framework for Testing Automated Detection, Diagnosis, and Remediation Systems on the Smart Grid
NASA Technical Reports Server (NTRS)
Lau, Shing-hon
2011-01-01
America's electrical grid is currently undergoing a multi-billion dollar modernization effort aimed at producing a highly reliable critical national infrastructure for power - a Smart Grid. While the goals for the Smart Grid include upgrades to accommodate large quantities of clean, but transient, renewable energy and upgrades to provide customers with real-time pricing information, perhaps the most important objective is to create an electrical grid with a greatly increased robustness.
Micro-Slit Collimators for X-Ray/Gamma-Ray Imaging
NASA Technical Reports Server (NTRS)
Appleby, Michael; Fraser, Iain; Klinger, Jill
2011-01-01
A hybrid photochemical-machining process is coupled with precision stack lamination to allow for the fabrication of multiple ultra-high-resolution grids on a single array substrate. In addition, special fixturing and etching techniques have been developed that allow higher-resolution multi-grid collimators to be fabricated. Building on past work of developing a manufacturing technique for fabricating multi-grid, high-resolution coating modulation collimators for arcsecond and subarcsecond x-ray and gamma-ray imaging, the current work reduces the grid pitch by almost a factor of two, down to 22 microns. Additionally, a process was developed for reducing thin, high-Z (tungsten or molybdenum) from the thinnest commercially available foil (25 microns thick) down to approximately equal to 10 microns thick using precisely controlled chemical etching
FNCS: A Framework for Power System and Communication Networks Co-Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciraci, Selim; Daily, Jeffrey A.; Fuller, Jason C.
2014-04-13
This paper describes the Fenix framework that uses a federated approach for integrating power grid and communication network simulators. Compared existing approaches, Fenix al- lows co-simulation of both transmission and distribution level power grid simulators with the communication network sim- ulator. To reduce the performance overhead of time synchro- nization, Fenix utilizes optimistic synchronization strategies that make speculative decisions about when the simulators are going to exchange messages. GridLAB-D (a distribution simulator), PowerFlow (a transmission simulator), and ns-3 (a telecommunication simulator) are integrated with the frame- work and are used to illustrate the enhanced performance pro- vided by speculative multi-threadingmore » on a smart grid applica- tion. Our speculative multi-threading approach achieved on average 20% improvement over the existing synchronization methods« less
Design and implementation of grid multi-scroll fractional-order chaotic attractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Liping, E-mail: lip-chenhut@126.com; Pan, Wei; Wu, Ranchao
2016-08-15
This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most.more » Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.« less
NASA Technical Reports Server (NTRS)
Cheng, Zheming; Eiseman, Peter R.
1995-01-01
With examples, we illustrate how implicitly specified surfaces can be used for grid generation with GridPro/az3000. The particular examples address two questions: (1) How do you model intersecting tubes with fillets? and (2) How do you generate grids inside the intersected tubes? The implication is much more general. With the results in a forthcoming paper which develops an easy-to-follow procedure for implicit surface modeling, we provide a powerful means for rapid prototyping in grid generation.
Introducing MCgrid 2.0: Projecting cross section calculations on grids
NASA Astrophysics Data System (ADS)
Bothmann, Enrico; Hartland, Nathan; Schumann, Steffen
2015-11-01
MCgrid is a software package that provides access to interpolation tools for Monte Carlo event generator codes, allowing for the fast and flexible variation of scales, coupling parameters and PDFs in cutting edge leading- and next-to-leading-order QCD calculations. We present the upgrade to version 2.0 which has a broader scope of interfaced interpolation tools, now providing access to fastNLO, and features an approximated treatment for the projection of MC@NLO-type calculations onto interpolation grids. MCgrid 2.0 also now supports the extended information provided through the HepMC event record used in the recent SHERPA version 2.2.0. The additional information provided therein allows for the support of multi-jet merged QCD calculations in a future update of MCgrid.
NASA National Combustion Code Simulations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony; Davoudzadeh, Farhad
2001-01-01
A systematic effort is in progress to further validate the National Combustion Code (NCC) that has been developed at NASA Glenn Research Center (GRC) for comprehensive modeling and simulation of aerospace combustion systems. The validation efforts include numerical simulation of the gas-phase combustor experiments conducted at the Center for Turbulence Research (CTR), Stanford University, followed by comparison and evaluation of the computed results with the experimental data. Presently, at GRC, a numerical model of the experimental gaseous combustor is built to simulate the experimental model. The constructed numerical geometry includes the flow development sections for air annulus and fuel pipe, 24 channel air and fuel swirlers, hub, combustor, and tail pipe. Furthermore, a three-dimensional multi-block, multi-grid grid (1.6 million grid points, 3-levels of multi-grid) is generated. Computational simulation of the gaseous combustor flow field operating on methane fuel has started. The computational domain includes the whole flow regime starting from the fuel pipe and the air annulus, through the 12 air and 12 fuel channels, in the combustion region and through the tail pipe.
High performance computing (HPC) requirements for the new generation variable grid resolution (VGR) global climate models differ from that of traditional global models. A VGR global model with 15 km grids over the CONUS stretching to 60 km grids elsewhere will have about ~2.5 tim...
Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion
NASA Astrophysics Data System (ADS)
Hesser, T.; Farthing, M. W.; Brodie, K.
2016-02-01
The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.
NASA Technical Reports Server (NTRS)
Wang, Gang
2003-01-01
A multi grid solution procedure for the numerical simulation of turbulent flows in complex geometries has been developed. A Full Multigrid-Full Approximation Scheme (FMG-FAS) is incorporated into the continuity and momentum equations, while the scalars are decoupled from the multi grid V-cycle. A standard kappa-Epsilon turbulence model with wall functions has been used to close the governing equations. The numerical solution is accomplished by solving for the Cartesian velocity components either with a traditional grid staggering arrangement or with a multiple velocity grid staggering arrangement. The two solution methodologies are evaluated for relative computational efficiency. The solution procedure with traditional staggering arrangement is subsequently applied to calculate the flow and temperature fields around a model Short Take-off and Vertical Landing (STOVL) aircraft hovering in ground proximity.
Can rodents conceive hyperbolic spaces?
Urdapilleta, Eugenio; Troiani, Francesca; Stella, Federico; Treves, Alessandro
2015-01-01
The grid cells discovered in the rodent medial entorhinal cortex have been proposed to provide a metric for Euclidean space, possibly even hardwired in the embryo. Yet, one class of models describing the formation of grid unit selectivity is entirely based on developmental self-organization, and as such it predicts that the metric it expresses should reflect the environment to which the animal has adapted. We show that, according to self-organizing models, if raised in a non-Euclidean hyperbolic cage rats should be able to form hyperbolic grids. For a given range of grid spacing relative to the radius of negative curvature of the hyperbolic surface, such grids are predicted to appear as multi-peaked firing maps, in which each peak has seven neighbours instead of the Euclidean six, a prediction that can be tested in experiments. We thus demonstrate that a useful universal neuronal metric, in the sense of a multi-scale ruler and compass that remain unaltered when changing environments, can be extended to other than the standard Euclidean plane. PMID:25948611
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... Grid Data Privacy AGENCY: Office of Electricity Delivery and Energy Reliability, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: The U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability (DOE OE) will convene the first meeting of the smart grid data privacy...
Preparing CAM-SE for Multi-Tracer Applications: CAM-SE-Cslam
NASA Astrophysics Data System (ADS)
Lauritzen, P. H.; Taylor, M.; Goldhaber, S.
2014-12-01
The NCAR-DOE spectral element (SE) dynamical core comes from the HOMME (High-Order Modeling Environment; Dennis et al., 2012) and it is available in CAM. The CAM-SE dynamical core is designed with intrinsic mimetic properties guaranteeing total energy conservation (to time-truncation errors) and mass-conservation, and has demonstrated excellent scalability on massively parallel compute platforms (Taylor, 2011). For applications involving many tracers such as chemistry and biochemistry modeling, CAM-SE has been found to be significantly more computationally costly than the current "workhorse" model CAM-FV (Finite-Volume; Lin 2004). Hence a multi-tracer efficient scheme, called the CSLAM (Conservative Semi-Lagrangian Multi-tracer; Lauritzen et al., 2011) scheme, has been implemented in the HOMME (Erath et al., 2012). The CSLAM scheme has recently been cast in flux-form in HOMME so that it can be coupled to the SE dynamical core through conventional flux-coupling methods where the SE dynamical core provides background air mass fluxes to CSLAM. Since the CSLAM scheme makes use of a finite-volume gnomonic cubed-sphere grid and hence does not operate on the SE quadrature grid, the capability of running tracer advection, the physical parameterization suite and dynamics on separate grids has been implemented in CAM-SE. The default CAM-SE-CSLAM setup is to run physics on the quasi-equal area CSLAM grid. The capability of running physics on a different grid than the SE dynamical core may provide a more consistent coupling since the physics grid option operates with quasi-equal-area cell average values rather than non-equi-distant grid-point (SE quadrature point) values. Preliminary results on the performance of CAM-SE-CSLAM will be presented.
NASA Astrophysics Data System (ADS)
Jia, Heping; Jin, Wende; Ding, Yi; Song, Yonghua; Yu, Dezhao
2017-01-01
With the expanding proportion of renewable energy generation and development of smart grid technologies, flexible demand resources (FDRs) have been utilized as an approach to accommodating renewable energies. However, multiple uncertainties of FDRs may influence reliable and secure operation of smart grid. Multi-state reliability models for a single FDR and aggregating FDRs have been proposed in this paper with regard to responsive abilities for FDRs and random failures for both FDR devices and information system. The proposed reliability evaluation technique is based on Lz transform method which can formulate time-varying reliability indices. A modified IEEE-RTS has been utilized as an illustration of the proposed technique.
Surface Modeling and Grid Generation of Orbital Sciences X34 Vehicle. Phase 1
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
The surface modeling and grid generation requirements, motivations, and methods used to develop Computational Fluid Dynamic volume grids for the X34-Phase 1 are presented. The requirements set forth by the Aerothermodynamics Branch at the NASA Langley Research Center serve as the basis for the final techniques used in the construction of all volume grids, including grids for parametric studies of the X34. The Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics (ICEM/CFD), the Grid Generation code (GRIDGEN), the Three-Dimensional Multi-block Advanced Grid Generation System (3DMAGGS) code, and Volume Grid Manipulator (VGM) code are used to enable the necessary surface modeling, surface grid generation, volume grid generation, and grid alterations, respectively. All volume grids generated for the X34, as outlined in this paper, were used for CFD simulations within the Aerothermodynamics Branch.
Distributed Wavelet Transform for Irregular Sensor Network Grids
2005-01-01
implement it in a multi-hop, wireless sensor network ; and illustrate with several simulations. The new transform performs on par with conventional wavelet methods in a head-to-head comparison on a regular grid of sensor nodes.
Study on the characteristics of multi-infeed HVDC
NASA Astrophysics Data System (ADS)
Li, Ming; Song, Xinli; Liu, Wenzhuo; Xiang, Yinxing; Zhao, Shutao; Su, Zhida; Meng, Hang
2017-09-01
China has built more than ten HVDC transmission projects in recent years [1]. Now, east China has formed a multi-HVDC feed pattern grid. It is imminent to study the interaction of the multi-HVDC and the characteristics of it. In this paper, an electromechanical-electromagnetic hybrid model is built with electromechanical data of a certain power network. We use electromagnetic models to simulate the HVDC section and electromechanical models simulate the AC power network [2]. In order to study the characteristics of the grid, this paper adds some faults to the line and analysed the fault characteristics. At last give analysis of the fault characteristics.
Computation of Flow Over a Drag Prediction Workshop Wing/Body Transport Configuration Using CFL3D
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Biedron, Robert T.
2001-01-01
A Drag Prediction Workshop was held in conjunction with the 19th AIAA Applied Aerodynamics Conference in June 2001. The purpose of the workshop was to assess the prediction of drag by computational methods for a wing/body configuration (DLR-F4) representative of subsonic transport aircraft. This report details computed results submitted to this workshop using the Reynolds-averaged Navier-Stokes code CFL3D. Two supplied grids were used: a point-matched 1-to-1 multi-block grid, and an overset multi-block grid. The 1-to-1 grid, generally of much poorer quality and with less streamwise resolution than the overset grid, is found to be too coarse to adequately resolve the surface pressures. However, the global forces and moments are nonetheless similar to those computed using the overset grid. The effect of three different turbulence models is assessed using the 1-to-1 grid. Surface pressures are very similar overall, and the drag variation due to turbulence model is 18 drag counts. Most of this drag variation is in the friction component, and is attributed in part to insufficient grid resolution of the 1-to-1 grid. The misnomer of 'fully turbulent' computations is discussed; comparisons are made using different transition locations and their effects on the global forces and moments are quantified. Finally, the effect of two different versions of a widely used one-equation turbulence model is explored.
Experience with 3-D composite grids
NASA Technical Reports Server (NTRS)
Benek, J. A.; Donegan, T. L.; Suhs, N. E.
1987-01-01
Experience with the three-dimensional (3-D), chimera grid embedding scheme is described. Applications of the inviscid version to a multiple-body configuration, a wind/body/tail configuration, and an estimate of wind tunnel wall interference are described. Applications to viscous flows include a 3-D cavity and another multi-body configuration. A variety of grid generators is used, and several embedding strategies are described.
Enabling campus grids with open science grid technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitzel, Derek; Bockelman, Brian; Swanson, David
2011-01-01
The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condormore » clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.« less
The research on multi-projection correction based on color coding grid array
NASA Astrophysics Data System (ADS)
Yang, Fan; Han, Cheng; Bai, Baoxing; Zhang, Chao; Zhao, Yunxiu
2017-10-01
There are many disadvantages such as lower timeliness, greater manual intervention in multi-channel projection system, in order to solve the above problems, this paper proposes a multi-projector correction technology based on color coding grid array. Firstly, a color structured light stripe is generated by using the De Bruijn sequences, then meshing the feature information of the color structured light stripe image. We put the meshing colored grid intersection as the center of the circle, and build a white solid circle as the feature sample set of projected images. It makes the constructed feature sample set not only has the perceptual localization, but also has good noise immunity. Secondly, we establish the subpixel geometric mapping relationship between the projection screen and the individual projectors by using the structure of light encoding and decoding based on the color array, and the geometrical mapping relation is used to solve the homography matrix of each projector. Lastly the brightness inconsistency of the multi-channel projection overlap area is seriously interfered, it leads to the corrected image doesn't fit well with the observer's visual needs, and we obtain the projection display image of visual consistency by using the luminance fusion correction algorithm. The experimental results show that this method not only effectively solved the problem of distortion of multi-projection screen and the issue of luminance interference in overlapping region, but also improved the calibration efficient of multi-channel projective system and reduced the maintenance cost of intelligent multi-projection system.
NASA Astrophysics Data System (ADS)
Olivares, M. A.; Gonzalez Cabrera, J. M., Sr.; Moreno, R.
2016-12-01
Operation of hydropower reservoirs in Chile is prescribed by an Independent Power System Operator. This study proposes a methodology that integrates power grid operations planning with basin-scale multi-use reservoir operations planning. The aim is to efficiently manage a multi-purpose reservoir, in which hydroelectric generation is competing with other water uses, most notably irrigation. Hydropower and irrigation are competing water uses due to a seasonality mismatch. Currently, the operation of multi-purpose reservoirs with substantial power capacity is prescribed as the result of a grid-wide cost-minimization model which takes irrigation requirements as constraints. We propose advancing in the economic co-optimization of reservoir water use for irrigation and hydropower at the basin level, by explicitly introducing the economic value of water for irrigation represented by a demand function for irrigation water. The proposed methodology uses the solution of a long-term grid-wide operations planning model, a stochastic dual dynamic program (SDDP), to obtain the marginal benefit function for water use in hydropower. This marginal benefit corresponds to the energy price in the power grid as a function of the water availability in the reservoir and the hydrologic scenarios. This function allows capture technical and economic aspects to the operation of hydropower reservoir in the power grid and is generated with the dual variable of the power-balance constraint, the optimal reservoir operation and the hydrologic scenarios used in SDDP. The economic value of water for irrigation and hydropower are then integrated into a basin scale stochastic dynamic program, from which stored water value functions are derived. These value functions are then used to re-optimize reservoir operations under several inflow scenarios.
Integrated geometry and grid generation system for complex configurations
NASA Technical Reports Server (NTRS)
Akdag, Vedat; Wulf, Armin
1992-01-01
A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.
SAGE - MULTIDIMENSIONAL SELF-ADAPTIVE GRID CODE
NASA Technical Reports Server (NTRS)
Davies, C. B.
1994-01-01
SAGE, Self Adaptive Grid codE, is a flexible tool for adapting and restructuring both 2D and 3D grids. Solution-adaptive grid methods are useful tools for efficient and accurate flow predictions. In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, shear layers, etc., require careful distribution of grid points to minimize grid error and produce accurate flow-field predictions. SAGE helps the user obtain more accurate solutions by intelligently redistributing (i.e. adapting) the original grid points based on an initial or interim flow-field solution. The user then computes a new solution using the adapted grid as input to the flow solver. The adaptive-grid methodology poses the problem in an algebraic, unidirectional manner for multi-dimensional adaptations. The procedure is analogous to applying tension and torsion spring forces proportional to the local flow gradient at every grid point and finding the equilibrium position of the resulting system of grid points. The multi-dimensional problem of grid adaption is split into a series of one-dimensional problems along the computational coordinate lines. The reduced one dimensional problem then requires a tridiagonal solver to find the location of grid points along a coordinate line. Multi-directional adaption is achieved by the sequential application of the method in each coordinate direction. The tension forces direct the redistribution of points to the strong gradient region. To maintain smoothness and a measure of orthogonality of grid lines, torsional forces are introduced that relate information between the family of lines adjacent to one another. The smoothness and orthogonality constraints are direction-dependent, since they relate only the coordinate lines that are being adapted to the neighboring lines that have already been adapted. Therefore the solutions are non-unique and depend on the order and direction of adaption. Non-uniqueness of the adapted grid is acceptable since it makes possible an overall and local error reduction through grid redistribution. SAGE includes the ability to modify the adaption techniques in boundary regions, which substantially improves the flexibility of the adaptive scheme. The vectorial approach used in the analysis also provides flexibility. The user has complete choice of adaption direction and order of sequential adaptions without concern for the computational data structure. Multiple passes are available with no restraint on stepping directions; for each adaptive pass the user can choose a completely new set of adaptive parameters. This facility, combined with the capability of edge boundary control, enables the code to individually adapt multi-dimensional multiple grids. Zonal grids can be adapted while maintaining continuity along the common boundaries. For patched grids, the multiple-pass capability enables complete adaption. SAGE is written in FORTRAN 77 and is intended to be machine independent; however, it requires a FORTRAN compiler which supports NAMELIST input. It has been successfully implemented on Sun series computers, SGI IRIS's, DEC MicroVAX computers, HP series computers, the Cray YMP, and IBM PC compatibles. Source code is provided, but no sample input and output files are provided. The code reads three datafiles: one that contains the initial grid coordinates (x,y,z), one that contains corresponding flow-field variables, and one that contains the user control parameters. It is assumed that the first two datasets are formatted as defined in the plotting software package PLOT3D. Several machine versions of PLOT3D are available from COSMIC. The amount of main memory is dependent on the size of the matrix. The standard distribution medium for SAGE is a 5.25 inch 360K MS-DOS format diskette. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format or on a 9-track 1600 BPI ASCII CARD IMAGE format magnetic tape. SAGE was developed in 1989, first released as a 2D version in 1991 and updated to 3D in 1993.
Grid-Enabled Quantitative Analysis of Breast Cancer
2010-10-01
large-scale, multi-modality computerized image analysis . The central hypothesis of this research is that large-scale image analysis for breast cancer...research, we designed a pilot study utilizing large scale parallel Grid computing harnessing nationwide infrastructure for medical image analysis . Also
Panday, Sorab; Langevin, Christian D.; Niswonger, Richard G.; Ibaraki, Motomu; Hughes, Joseph D.
2013-01-01
A new version of MODFLOW, called MODFLOW–USG (for UnStructured Grid), was developed to support a wide variety of structured and unstructured grid types, including nested grids and grids based on prismatic triangles, rectangles, hexagons, and other cell shapes. Flexibility in grid design can be used to focus resolution along rivers and around wells, for example, or to subdiscretize individual layers to better represent hydrostratigraphic units. MODFLOW–USG is based on an underlying control volume finite difference (CVFD) formulation in which a cell can be connected to an arbitrary number of adjacent cells. To improve accuracy of the CVFD formulation for irregular grid-cell geometries or nested grids, a generalized Ghost Node Correction (GNC) Package was developed, which uses interpolated heads in the flow calculation between adjacent connected cells. MODFLOW–USG includes a Groundwater Flow (GWF) Process, based on the GWF Process in MODFLOW–2005, as well as a new Connected Linear Network (CLN) Process to simulate the effects of multi-node wells, karst conduits, and tile drains, for example. The CLN Process is tightly coupled with the GWF Process in that the equations from both processes are formulated into one matrix equation and solved simultaneously. This robustness results from using an unstructured grid with unstructured matrix storage and solution schemes. MODFLOW–USG also contains an optional Newton-Raphson formulation, based on the formulation in MODFLOW–NWT, for improving solution convergence and avoiding problems with the drying and rewetting of cells. Because the existing MODFLOW solvers were developed for structured and symmetric matrices, they were replaced with a new Sparse Matrix Solver (SMS) Package developed specifically for MODFLOW–USG. The SMS Package provides several methods for resolving nonlinearities and multiple symmetric and asymmetric linear solution schemes to solve the matrix arising from the flow equations and the Newton-Raphson formulation, respectively.
Smart Grid Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Craig; Carroll, Paul; Bell, Abigail
The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives,more » to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and posted for universal access at www.nreca.coop/smartgrid. This research is available for widespread distribution to both cooperative members and non-members. These reports are listed in Table 1.2. Interoperability: The deliverable in this area was the advancement of the MultiSpeak™ interoperability standard from version 4.0 to version 5.0, and improvement in the MultiSpeak™ documentation to include more than 100 use cases. This deliverable substantially expanded the scope and usability of MultiSpeak, ™ the most widely deployed utility interoperability standard, now in use by more than 900 utilities. MultiSpeak™ documentation can be accessed only at www.multispeak.org. Cyber Security: NRECA’s starting point was to develop cyber security tools that incorporated succinct guidance on best practices. The deliverables were: cyber security extensions to MultiSpeak,™ which allow more security message exchanges; a Guide to Developing a Cyber Security and Risk Mitigation Plan; a Cyber Security Risk Mitigation Checklist; a Cyber Security Plan Template that co-ops can use to create their own cyber security plans; and Security Questions for Smart Grid Vendors.« less
NASA Astrophysics Data System (ADS)
Gautham, S.; Sindu, B. S.; Sasmal, Saptarshi
2017-10-01
Properties and distribution of the products formed during the hydration of cementitious composite at the microlevel are investigated using a nanoindentation technique. First, numerical nanoindentation using nonlinear contact mechanics is carried out on three different phase compositions of cement paste, viz. mono-phase Tri-calcium Silicate (C3S), Di-calcium Silicate (C2S) and Calcium-Silicate-Hydrate (CSH) individually), bi-phase (C3S-CSH, C2S-CSH) and multi-phase (more than 10 individual phases including water pores). To reflect the multi-phase characteristics of hydrating cement composite, a discretized multi-phase microstructural model of cement composite during the progression of hydration is developed. Further, a grid indentation technique for simulated nanoindentation is established, and employed to evaluate the mechanical characteristics of the hydrated multi-phase cement paste. The properties obtained from the numerical studies are compared with those obtained from experimental grid nanoindentation. The influence of composition and distribution of individual phase properties on the properties obtained from indentation are closely investigated. The study paves the way to establishing the procedure for simulated grid nanoindentation to evaluate the mechanical properties of heterogeneous composites, and facilitates the design of experimental nanoindentation.
Bae, Jun Woo; Kim, Hee Reyoung
2018-01-01
Anti-scattering grid has been used to improve the image quality. However, applying a commonly used linear or parallel grid would cause image distortion, and focusing grid also requires a precise fabrication technology, which is expensive. To investigate and analyze whether using CO2 laser micromachining-based PMMA anti-scattering grid can improve the performance of the grid at a lower cost. Thus, improvement of grid performance would result in improvement of image quality. The cross-sectional shape of CO2 laser machined PMMA is similar to alphabet 'V'. The performance was characterized by contrast improvement factor (CIF) and Bucky. Four types of grid were tested, which include thin parallel, thick parallel, 'V'-type and 'inverse V'-type of grid. For a Bucky factor of 2.1, the CIF of the grid with both the "V" and inverse "V" had a value of 1.53, while the thick and thick parallel types had values of 1.43 and 1.65, respectively. The 'V' shape grid manufacture by CO2 laser micromachining showed higher CIF than parallel one, which had same shielding material channel width. It was thought that the 'V' shape grid would be replacement to the conventional parallel grid if it is hard to fabricate the high-aspect-ratio grid.
Hybrid Grid Techniques for Propulsion Applications
NASA Technical Reports Server (NTRS)
Koomullil, Roy P.; Soni, Bharat K.; Thornburg, Hugh J.
1996-01-01
During the past decade, computational simulation of fluid flow for propulsion activities has progressed significantly, and many notable successes have been reported in the literature. However, the generation of a high quality mesh for such problems has often been reported as a pacing item. Hence, much effort has been expended to speed this portion of the simulation process. Several approaches have evolved for grid generation. Two of the most common are structured multi-block, and unstructured based procedures. Structured grids tend to be computationally efficient, and have high aspect ratio cells necessary for efficently resolving viscous layers. Structured multi-block grids may or may not exhibit grid line continuity across the block interface. This relaxation of the continuity constraint at the interface is intended to ease the grid generation process, which is still time consuming. Flow solvers supporting non-contiguous interfaces require specialized interpolation procedures which may not ensure conservation at the interface. Unstructured or generalized indexing data structures offer greater flexibility, but require explicit connectivity information and are not easy to generate for three dimensional configurations. In addition, unstructured mesh based schemes tend to be less efficient and it is difficult to resolve viscous layers. Recently hybrid or generalized element solution and grid generation techniques have been developed with the objective of combining the attractive features of both structured and unstructured techniques. In the present work, recently developed procedures for hybrid grid generation and flow simulation are critically evaluated, and compared to existing structured and unstructured procedures in terms of accuracy and computational requirements.
A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.
Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J
2009-11-28
In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.
The GEON Integrated Data Viewer (IDV) for Exploration of Geoscience Data With Visualizations
NASA Astrophysics Data System (ADS)
Wier, S.; Meertens, C.
2008-12-01
The GEON Integrated Data Viewer (GEON IDV) is a fully interactive, research-level, true 3D and 4D (latitude, longitude, depth or altitude, and time) tool to display and explore almost any data located on the Earth, inside the Earth, or above the Earth's surface. Although the GEON IDV makes impressive 3D displays, it is primarily designed for data exploration and analysis. The GEON IDV is designed to meet the challenge of investigating complex, multi-variate, time-varying, three- dimensional geoscience questions anywhere on earth. The GEON IDV supports simultaneous displays of data sets of differing sources and data type or character, with complete control over map projection and area, time animation, vertical scale, and color schemes. The GEON IDV displays gridded and point data, images, GIS shape files, and other types of data, from files, HTTP servers, OPeNDAP catalogs, RSS feeds, and web map servers. GEON IDV displays include images and geology maps on 3D topographic relief surfaces, vertical geologic cross sections in their correct depth extent, tectonic plate boundaries and plate motion vectors including time animation, GPS velocity vectors and error ellipses, GPS time series at a station, earthquake locations in depth optionally colored and sized by magnitude, earthquake focal mechanisms 'beachballs,' 2D grids of gravity or magnetic anomalies, 2D grids of crustal strain imagery, seismic raypaths, seismic tomography model 3D grids as vertical and horizontal cross sections and isosurfaces, 3D grids of crust and mantle structure for any property, and time animation of 3D grids of mantle convection models as cross sections and isosurfaces. The IDV can also show tracks of aircraft, ships, drifting buoys and marine animals, colored observed values, borehole soundings, and vertical probes of 3D grids. The GEON IDV can drive a GeoWall or other 3D stereo system. IDV output files include imagery, movies, and KML files for Google Earth. The IDV has built in analysis capabilities with user-created Python language routines, and with automatic conversion of data sources with differing units and grid structures. The IDV can be scripted to create display images on user request or automatically on data arrival, offering the use of the IDV as a back end to support image generation in a data portal. Examples of GEON IDV use in seismology, geodesy, geodynamics and other fields will be shown.
Multi-port power router and its impact on resilient power grid systems
NASA Astrophysics Data System (ADS)
Kado, Yuichi; Iwatsuki, Katsumi; Wada, Keiji
2016-02-01
We propose a Y-configuration power router as a unit cell to easily construct a power delivery system that can meet many types of user requirements. The Y-configuration power router controls the direction and magnitude of power flow among three ports regardless of DC and AC. We constructed a prototype three-way isolated DC/DC converter that is the core unit of the Y-configuration power router and tested the power flow control operation. Experimental results revealed that our methodology based on the governing equation was appropriate for the power flow control of the three-way DC/DC converter. In addition, the hexagonal distribution network composed of the power routers has the ability to easily interchange electric power between autonomous microgrid cells. We also explored the requirements for communication between energy routers to achieve dynamic adjustments of energy flow in a coordinated manner and its impact on resilient power grid systems.
Big Geo Data Services: From More Bytes to More Barrels
NASA Astrophysics Data System (ADS)
Misev, Dimitar; Baumann, Peter
2016-04-01
The data deluge is affecting the oil and gas industry just as much as many other industries. However, aside from the sheer volume there is the challenge of data variety, such as regular and irregular grids, multi-dimensional space/time grids, point clouds, and TINs and other meshes. A uniform conceptualization for modelling and serving them could save substantial effort, such as the proverbial "department of reformatting". The notion of a coverage actually can accomplish this. Its abstract model in ISO 19123 together with the concrete, interoperable OGC Coverage Implementation Schema (CIS), which is currently under adoption as ISO 19123-2, provieds a common platform for representing any n-D grid type, point clouds, and general meshes. This is paired by the OGC Web Coverage Service (WCS) together with its datacube analytics language, the OGC Web Coverage Processing Service (WCPS). The OGC WCS Core Reference Implementation, rasdaman, relies on Array Database technology, i.e. a NewSQL/NoSQL approach. It supports the grid part of coverages, with installations of 100+ TB known and single queries parallelized across 1,000+ cloud nodes. Recent research attempts to address the point cloud and mesh part through a unified query model. The Holy Grail envisioned is that these approaches can be merged into a single service interface at some time. We present both grid amd point cloud / mesh approaches and discuss status, implementation, standardization, and research perspectives, including a live demo.
A derived heuristics based multi-objective optimization procedure for micro-grid scheduling
NASA Astrophysics Data System (ADS)
Li, Xin; Deb, Kalyanmoy; Fang, Yanjun
2017-06-01
With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.
Widely tunable semiconductor lasers with three interferometric arms.
Su, Guan-Lin; Wu, Ming C
2017-09-04
We present a comprehensive study for a new three-branch widely tunable semiconductor laser based on a self-imaging, lossless multi-mode interference (MMI) coupler. We have developed a general theoretical framework that is applicable to all types of interferometric lasers. Our analysis showed that the three-branch laser offers high side-mode suppression ratios (SMSRs) while maintaining a wide tuning range and a low threshold modal gain of the lasing mode. We also present the design rules for tuning over the dense-wavelength division multiplexing grid over the C-band.
Kolmogorov, A; Atoian, G; Davydenko, V; Ivanov, A; Ritter, J; Stupishin, N; Zelenski, A
2014-02-01
The RHIC polarized H(-) ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.
Analysis of a High-Lift Multi-Element Airfoil using a Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Whitlock, Mark E.
1995-01-01
A thin-layer Navier-Stokes code, CFL3D, was utilized to compute the flow over a high-lift multi-element airfoil. This study was conducted to improve the prediction of high-lift flowfields using various turbulence models and improved glidding techniques. An overset Chimera grid system is used to model the three element airfoil geometry. The effects of wind tunnel wall modeling, changes to the grid density and distribution, and embedded grids are discussed. Computed pressure and lift coefficients using Spalart-Allmaras, Baldwin-Barth, and Menter's kappa-omega - Shear Stress Transport (SST) turbulence models are compared with experimental data. The ability of CFL3D to predict the effects on lift coefficient due to changes in Reynolds number changes is also discussed.
NASA Astrophysics Data System (ADS)
Lim, Jaechang; Choi, Sunghwan; Kim, Jaewook; Kim, Woo Youn
2016-12-01
To assess the performance of multi-configuration methods using exact exchange Kohn-Sham (KS) orbitals, we implemented configuration interaction singles and doubles (CISD) in a real-space numerical grid code. We obtained KS orbitals with the exchange-only optimized effective potential under the Krieger-Li-Iafrate (KLI) approximation. Thanks to the distinctive features of KLI orbitals against Hartree-Fock (HF), such as bound virtual orbitals with compact shapes and orbital energy gaps similar to excitation energies; KLI-CISD for small molecules shows much faster convergence as a function of simulation box size and active space (i.e., the number of virtual orbitals) than HF-CISD. The former also gives more accurate excitation energies with a few dominant configurations than the latter, even with many more configurations. The systematic control of basis set errors is straightforward in grid bases. Therefore, grid-based multi-configuration methods using exact exchange KS orbitals provide a promising new way to make accurate electronic structure calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hathaway, M.D.; Wood, J.R.
1997-10-01
CFD codes capable of utilizing multi-block grids provide the capability to analyze the complete geometry of centrifugal compressors. Attendant with this increased capability is potentially increased grid setup time and more computational overhead with the resultant increase in wall clock time to obtain a solution. If the increase in difficulty of obtaining a solution significantly improves the solution from that obtained by modeling the features of the tip clearance flow or the typical bluntness of a centrifugal compressor`s trailing edge, then the additional burden is worthwhile. However, if the additional information obtained is of marginal use, then modeling of certainmore » features of the geometry may provide reasonable solutions for designers to make comparative choices when pursuing a new design. In this spirit a sequence of grids were generated to study the relative importance of modeling versus detailed gridding of the tip gap and blunt trailing edge regions of the NASA large low-speed centrifugal compressor for which there is considerable detailed internal laser anemometry data available for comparison. The results indicate: (1) There is no significant difference in predicted tip clearance mass flow rate whether the tip gap is gridded or modeled. (2) Gridding rather than modeling the trailing edge results in better predictions of some flow details downstream of the impeller, but otherwise appears to offer no great benefits. (3) The pitchwise variation of absolute flow angle decreases rapidly up to 8% impeller radius ratio and much more slowly thereafter. Although some improvements in prediction of flow field details are realized as a result of analyzing the actual geometry there is no clear consensus that any of the grids investigated produced superior results in every case when compared to the measurements. However, if a multi-block code is available, it should be used, as it has the propensity for enabling better predictions than a single block code.« less
NASA Technical Reports Server (NTRS)
Sorenson, R. L.; Steger, J. L.
1980-01-01
A method for generating boundary-fitted, curvilinear, two dimensional grids by the use of the Poisson equations is presented. Grids of C-type and O-type were made about airfoils and other shapes, with circular, rectangular, cascade-type, and other outer boundary shapes. Both viscous and inviscid spacings were used. In all cases, two important types of grid control can be exercised at both inner and outer boundaries. First is arbitrary control of the distances between the boundaries and the adjacent lines of the same coordinate family, i.e., stand-off distances. Second is arbitrary control of the angles with which lines of the opposite coordinate family intersect the boundaries. Thus, both grid cell size (or aspect ratio) and grid cell skewness are controlled at boundaries. Reasonable cell size and shape are ensured even in cases wherein extreme boundary shapes would tend to cause skewness or poorly controlled grid spacing. An inherent feature of the Poisson equations is that lines in the interior of the grid smoothly connect the boundary points (the grid mapping functions are second order differentiable).
Adaptive grid methods for RLV environment assessment and nozzle analysis
NASA Technical Reports Server (NTRS)
Thornburg, Hugh J.
1996-01-01
Rapid access to highly accurate data about complex configurations is needed for multi-disciplinary optimization and design. In order to efficiently meet these requirements a closer coupling between the analysis algorithms and the discretization process is needed. In some cases, such as free surface, temporally varying geometries, and fluid structure interaction, the need is unavoidable. In other cases the need is to rapidly generate and modify high quality grids. Techniques such as unstructured and/or solution-adaptive methods can be used to speed the grid generation process and to automatically cluster mesh points in regions of interest. Global features of the flow can be significantly affected by isolated regions of inadequately resolved flow. These regions may not exhibit high gradients and can be difficult to detect. Thus excessive resolution in certain regions does not necessarily increase the accuracy of the overall solution. Several approaches have been employed for both structured and unstructured grid adaption. The most widely used involve grid point redistribution, local grid point enrichment/derefinement or local modification of the actual flow solver. However, the success of any one of these methods ultimately depends on the feature detection algorithm used to determine solution domain regions which require a fine mesh for their accurate representation. Typically, weight functions are constructed to mimic the local truncation error and may require substantial user input. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. These weight functions can then be used to construct blending functions for algebraic redistribution, interpolation functions for unstructured grid generation, forcing functions to attract/repel points in an elliptic system, or to trigger local refinement, based upon application of an equidistribution principle. The popularity of solution-adaptive techniques is growing in tandem with unstructured methods. The difficultly of precisely controlling mesh densities and orientations with current unstructured grid generation systems has driven the use of solution-adaptive meshing. Use of derivatives of density or pressure are widely used for construction of such weight functions, and have been proven very successful for inviscid flows with shocks. However, less success has been realized for flowfields with viscous layers, vortices or shocks of disparate strength. It is difficult to maintain the appropriate mesh point spacing in the various regions which require a fine spacing for adequate resolution. Mesh points often migrate from important regions due to refinement of dominant features. An example of this is the well know tendency of adaptive methods to increase the resolution of shocks in the flowfield around airfoils, but in the incorrect location due to inadequate resolution of the stagnation region. This problem has been the motivation for this research.
NASA Astrophysics Data System (ADS)
Peng, Ao-Ping; Li, Zhi-Hui; Wu, Jun-Lin; Jiang, Xin-Yu
2016-12-01
Based on the previous researches of the Gas-Kinetic Unified Algorithm (GKUA) for flows from highly rarefied free-molecule transition to continuum, a new implicit scheme of cell-centered finite volume method is presented for directly solving the unified Boltzmann model equation covering various flow regimes. In view of the difficulty in generating the single-block grid system with high quality for complex irregular bodies, a multi-block docking grid generation method is designed on the basis of data transmission between blocks, and the data structure is constructed for processing arbitrary connection relations between blocks with high efficiency and reliability. As a result, the gas-kinetic unified algorithm with the implicit scheme and multi-block docking grid has been firstly established and used to solve the reentry flow problems around the multi-bodies covering all flow regimes with the whole range of Knudsen numbers from 10 to 3.7E-6. The implicit and explicit schemes are applied to computing and analyzing the supersonic flows in near-continuum and continuum regimes around a circular cylinder with careful comparison each other. It is shown that the present algorithm and modelling possess much higher computational efficiency and faster converging properties. The flow problems including two and three side-by-side cylinders are simulated from highly rarefied to near-continuum flow regimes, and the present computed results are found in good agreement with the related DSMC simulation and theoretical analysis solutions, which verify the good accuracy and reliability of the present method. It is observed that the spacing of the multi-body is smaller, the cylindrical throat obstruction is greater with the flow field of single-body asymmetrical more obviously and the normal force coefficient bigger. While in the near-continuum transitional flow regime of near-space flying surroundings, the spacing of the multi-body increases to six times of the diameter of the single-body, the interference effects of the multi-bodies tend to be negligible. The computing practice has confirmed that it is feasible for the present method to compute the aerodynamics and reveal flow mechanism around complex multi-body vehicles covering all flow regimes from the gas-kinetic point of view of solving the unified Boltzmann model velocity distribution function equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Ma, Po-Lun; Xiao, Heng
2013-08-29
The ability to use multi-resolution dynamical cores for weather and climate modeling is pushing the atmospheric community towards developing scale aware or, more specifically, resolution aware parameterizations that will function properly across a range of grid spacings. Determining the resolution dependence of specific model parameterizations is difficult due to strong resolution dependencies in many pieces of the model. This study presents the Separate Physics and Dynamics Experiment (SPADE) framework that can be used to isolate the resolution dependent behavior of specific parameterizations without conflating resolution dependencies from other portions of the model. To demonstrate the SPADE framework, the resolution dependencemore » of the Morrison microphysics from the Weather Research and Forecasting model and the Morrison-Gettelman microphysics from the Community Atmosphere Model are compared for grid spacings spanning the cloud modeling gray zone. It is shown that the Morrison scheme has stronger resolution dependence than Morrison-Gettelman, and that the ability of Morrison-Gettelman to use partial cloud fractions is not the primary reason for this difference. This study also discusses how to frame the issue of resolution dependence, the meaning of which has often been assumed, but not clearly expressed in the atmospheric modeling community. It is proposed that parameterization resolution dependence can be expressed in terms of "resolution dependence of the first type," RA1, which implies that the parameterization behavior converges towards observations with increasing resolution, or as "resolution dependence of the second type," RA2, which requires that the parameterization reproduces the same behavior across a range of grid spacings when compared at a given coarser resolution. RA2 behavior is considered the ideal, but brings with it serious implications due to limitations of parameterizations to accurately estimate reality with coarse grid spacing. The type of resolution awareness developers should target in their development depends upon the particular modeler’s application.« less
Deterministic Walks with Choice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.
2014-01-10
This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.
NASA Astrophysics Data System (ADS)
Ferrini, V. L.; Morton, J. J.; Carbotte, S. M.
2016-02-01
The Marine Geoscience Data System (MGDS: www.marine-geo.org) provides a suite of tools and services for free public access to data acquired throughout the global oceans including maps, grids, near-bottom photos, and geologic interpretations that are essential for habitat characterization and marine spatial planning. Users can explore, discover, and download data through a combination of APIs and front-end interfaces that include dynamic service-driven maps, a geospatially enabled search engine, and an easy to navigate user interface for browsing and discovering related data. MGDS offers domain-specific data curation with a team of scientists and data specialists who utilize a suite of back-end tools for introspection of data files and metadata assembly to verify data quality and ensure that data are well-documented for long-term preservation and re-use. Funded by the NSF as part of the multi-disciplinary IEDA Data Facility, MGDS also offers Data DOI registration and links between data and scientific publications. MGDS produces and curates the Global Multi-Resolution Topography Synthesis (GMRT: gmrt.marine-geo.org), a continuously updated Digital Elevation Model that seamlessly integrates multi-resolutional elevation data from a variety of sources including the GEBCO 2014 ( 1 km resolution) and International Bathymetric Chart of the Southern Ocean ( 500 m) compilations. A significant component of GMRT includes ship-based multibeam sonar data, publicly available through NOAA's National Centers for Environmental Information, that are cleaned and quality controlled by the MGDS Team and gridded at their full spatial resolution (typically 100 m resolution in the deep sea). Additional components include gridded bathymetry products contributed by individual scientists (up to meter scale resolution in places), publicly accessible regional bathymetry, and high-resolution terrestrial elevation data. New data are added to GMRT on an ongoing basis, with two scheduled releases per year. GMRT is available as both gridded data and images that can be viewed and downloaded directly through the Java application GeoMapApp (www.geomapapp.org) and the web-based GMRT MapTool. In addition, the GMRT GridServer API provides programmatic access to grids, imagery, profiles, and single point elevation values.
Automatic digital surface model (DSM) generation from aerial imagery data
NASA Astrophysics Data System (ADS)
Zhou, Nan; Cao, Shixiang; He, Hongyan; Xing, Kun; Yue, Chunyu
2018-04-01
Aerial sensors are widely used to acquire imagery for photogrammetric and remote sensing application. In general, the images have large overlapped region, which provide a lot of redundant geometry and radiation information for matching. This paper presents a POS supported dense matching procedure for automatic DSM generation from aerial imagery data. The method uses a coarse-to-fine hierarchical strategy with an effective combination of several image matching algorithms: image radiation pre-processing, image pyramid generation, feature point extraction and grid point generation, multi-image geometrically constraint cross-correlation (MIG3C), global relaxation optimization, multi-image geometrically constrained least squares matching (MIGCLSM), TIN generation and point cloud filtering. The image radiation pre-processing is used in order to reduce the effects of the inherent radiometric problems and optimize the images. The presented approach essentially consists of 3 components: feature point extraction and matching procedure, grid point matching procedure and relational matching procedure. The MIGCLSM method is used to achieve potentially sub-pixel accuracy matches and identify some inaccurate and possibly false matches. The feasibility of the method has been tested on different aerial scale images with different landcover types. The accuracy evaluation is based on the comparison between the automatic extracted DSMs derived from the precise exterior orientation parameters (EOPs) and the POS.
Development of an Automatic Grid Generator for Multi-Element High-Lift Wings
NASA Technical Reports Server (NTRS)
Eberhardt, Scott; Wibowo, Pratomo; Tu, Eugene
1996-01-01
The procedure to generate the grid around a complex wing configuration is presented in this report. The automatic grid generation utilizes the Modified Advancing Front Method as a predictor and an elliptic scheme as a corrector. The scheme will advance the surface grid one cell outward and the newly obtained grid is corrected using the Laplace equation. The predictor-corrector step ensures that the grid produced will be smooth for every configuration. The predictor-corrector scheme is extended for a complex wing configuration. A new technique is developed to deal with the grid generation in the wing-gaps and on the flaps. It will create the grids that fill the gap on the wing surface and the gap created by the flaps. The scheme recognizes these configurations automatically so that minimal user input is required. By utilizing an appropriate sequence in advancing the grid points on a wing surface, the automatic grid generation for complex wing configurations is achieved.
NASA Astrophysics Data System (ADS)
Rizqy Averous, Nurhan; Berthold, Anica; Schneider, Alexander; Schwimmbeck, Franz; Monti, Antonello; De Doncker, Rik W.
2016-09-01
A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids.
Woven-grid sealed quasi-bipolar lead-acid battery construction and fabricating method
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor)
1989-01-01
A quasi-bipolar lead-acid battery construction includes a plurality of bipolar cells disposed in side-by-side relation to form a stack, and a pair of monoplanar plates at opposite ends of the stack, the cell stack and monopolar plates being contained within a housing of the battery. Each bipolar cell is loaded with an electrolyte and composed of a bipolar electrode plate and a pair of separator plates disposed on opposite sides of the electrode plate and peripherally sealed thereto. Each bipolar electrode plate is composed of a partition sheet and two bipolar electrode elements folded into a hairpin configuration and applied over opposite edges of the partition sheet so as to cover the opposite surfaces of the opposite halves thereof. Each bipolar electrode element is comprised of a woven grid with a hot-melt strip applied to a central longitudinal region of the grid along which the grid is folded into the hairpin configuration, and layers of negative and positive active material pastes applied to opposite halves of the grid on opposite sides of the central hot-melt strip. The grid is made up of strands of conductive and non-conductive yarns composing the respective transverse and longitudinal weaves of the grid. The conductive yarn has a multi-stranded glass core surrounded and covered by a lead sheath, whereas the non-conductive yarn has a multi-stranded glass core surrounded and covered by a thermally activated sizing.
Recent development of the Multi-Grid detector for large area neutron scattering instruments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerard, Bruno
2015-07-01
Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, {sup 3}He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using {sup 3}He PSDs mounted side by side to cover tens of m{sup 2}. As a result of the so-called '{sup 3}He shortage crisis{sup ,} the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternativemore » techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B{sub 4}C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard equipment. Prototypes of different configurations and sizes have been developed and tested. A demonstrator, with a sensitive area of 0.8 m x 3 m, has been studied during the CRISP European project; it contains 1024 grids, and a surface of isotopically enriched B{sub 4}C film close to 80 m{sup 2}. Its size represented a challenge in terms of fabrication and mounting of the detection elements. Another challenge was to make the gas chamber mechanically compatible with operation in a vacuum TOF chamber. Optimal working condition of this detector was achieved by flushing Ar-CO{sub 2} at a pressure of 50 mbar, and by applying 400 Volts on the anodes. This unusual gas pressure allows to greatly simplifying the mechanics of the gas vessel in vacuum. The detection efficiency has been measured with high precision for different film thicknesses. 52% has been measured at 2.5 Angstrom, in good agreement with the MC simulation. A high position resolution has been achieved by centre of gravity measurement of the TOT (Time-Over-Threshold) signals between neighbouring grids. These results, as well as other detection parameters, including gamma sensitivity and spatial uniformity, will be presented. (author)« less
Advanced Power Electronics and Smart Inverters | Grid Modernization | NREL
provide grid services such as voltage and frequency regulation, ride-through, dynamic current injection impacts of smart inverters on distribution systems. These activities are focused on enabling high combines high-voltage silicon carbide with revolutionary concepts such as additive manufacturing and multi
Navier-Stokes simulation of rotor-body flowfield in hover using overset grids
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.; Ahmad, J. U.
1993-01-01
A free-wake Navier-Stokes numerical scheme and multiple Chimera overset grids have been utilized for calculating the quasi-steady hovering flowfield of a Boeing-360 rotor mounted on an axisymmetric whirl-tower. The entire geometry of this rotor-body configuration is gridded-up with eleven different overset grids. The composite grid has 1.3 million grid points for the entire flow domain. The numerical results, obtained using coarse grids and a rigid rotor assumption, show a thrust value that is within 5% of the experimental value at a flow condition of M(sub tip) = 0.63, Theta(sub c) = 8 deg, and Re = 2.5 x 10(exp 6). The numerical method thus demonstrates the feasibility of using a multi-block scheme for calculating the flowfields of complex configurations consisting of rotating and non-rotating components.
QX MAN: Q and X file manipulation
NASA Technical Reports Server (NTRS)
Krein, Mark A.
1992-01-01
QX MAN is a grid and solution file manipulation program written primarily for the PARC code and the GRIDGEN family of grid generation codes. QX MAN combines many of the features frequently encountered in grid generation, grid refinement, the setting-up of initial conditions, and post processing. QX MAN allows the user to manipulate single block and multi-block grids (and their accompanying solution files) by splitting, concatenating, rotating, translating, re-scaling, and stripping or adding points. In addition, QX MAN can be used to generate an initial solution file for the PARC code. The code was written to provide several formats for input and output in order for it to be useful in a broad spectrum of applications.
On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models
NASA Astrophysics Data System (ADS)
Xu, S.; Wang, B.; Liu, J.
2015-10-01
In this article we propose two grid generation methods for global ocean general circulation models. Contrary to conventional dipolar or tripolar grids, the proposed methods are based on Schwarz-Christoffel conformal mappings that map areas with user-prescribed, irregular boundaries to those with regular boundaries (i.e., disks, slits, etc.). The first method aims at improving existing dipolar grids. Compared with existing grids, the sample grid achieves a better trade-off between the enlargement of the latitudinal-longitudinal portion and the overall smooth grid cell size transition. The second method addresses more modern and advanced grid design requirements arising from high-resolution and multi-scale ocean modeling. The generated grids could potentially achieve the alignment of grid lines to the large-scale coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the grids are orthogonal curvilinear, they can be easily utilized by the majority of ocean general circulation models that are based on finite difference and require grid orthogonality. The proposed grid generation algorithms can also be applied to the grid generation for regional ocean modeling where complex land-sea distribution is present.
Optimal domain decomposition strategies
NASA Technical Reports Server (NTRS)
Yoon, Yonghyun; Soni, Bharat K.
1995-01-01
The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.
Damage mapping in structural health monitoring using a multi-grid architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, V. John
2015-03-31
This paper presents a multi-grid architecture for tomography-based damage mapping of composite aerospace structures. The system employs an array of piezo-electric transducers bonded on the structure. Each transducer may be used as an actuator as well as a sensor. The structure is excited sequentially using the actuators and the guided waves arriving at the sensors in response to the excitations are recorded for further analysis. The sensor signals are compared to their baseline counterparts and a damage index is computed for each actuator-sensor pair. These damage indices are then used as inputs to the tomographic reconstruction system. Preliminary damage mapsmore » are reconstructed on multiple coordinate grids defined on the structure. These grids are shifted versions of each other where the shift is a fraction of the spatial sampling interval associated with each grid. These preliminary damage maps are then combined to provide a reconstruction that is more robust to measurement noise in the sensor signals and the ill-conditioned problem formulation for single-grid algorithms. Experimental results on a composite structure with complexity that is representative of aerospace structures included in the paper demonstrate that for sufficiently high sensor densities, the algorithm of this paper is capable of providing damage detection and characterization with accuracy comparable to traditional C-scan and A-scan-based ultrasound non-destructive inspection systems quickly and without human supervision.« less
The any particle molecular orbital grid-based Hartree-Fock (APMO-GBHF) approach
NASA Astrophysics Data System (ADS)
Posada, Edwin; Moncada, Félix; Reyes, Andrés
2018-02-01
The any particle molecular orbital grid-based Hartree-Fock approach (APMO-GBHF) is proposed as an initial step to perform multi-component post-Hartree-Fock, explicitly correlated, and density functional theory methods without basis set errors. The method has been applied to a number of electronic and multi-species molecular systems. Results of these calculations show that the APMO-GBHF total energies are comparable with those obtained at the APMO-HF complete basis set limit. In addition, results reveal a considerable improvement in the description of the nuclear cusps of electronic and non-electronic densities.
NASA Astrophysics Data System (ADS)
Al-Taie, A.; Graber, L.; Pamidi, S. V.
2017-12-01
Opportunities for applications of high temperature superconducting (HTS) DC power cables for long distance power transmission in increasing the reliability of the electric power grid and to enable easier integration of distributed renewable sources into the grid are discussed. The gaps in the technology developments both in the superconducting cable designs and cryogenic systems as well as power electronic devices are identified. Various technology components in multi-terminal high voltage DC power transmission networks and the available options are discussed. The potential of ongoing efforts in the development of superconducting DC transmission systems is discussed.
Reynolds-averaged Navier-Stokes based ice accretion for aircraft wings
NASA Astrophysics Data System (ADS)
Lashkajani, Kazem Hasanzadeh
This thesis addresses one of the current issues in flight safety towards increasing icing simulation capabilities for prediction of complex 2D and 3D glaze ice shapes over aircraft surfaces. During the 1980's and 1990's, the field of aero-icing was established to support design and certification of aircraft flying in icing conditions. The multidisciplinary technologies used in such codes were: aerodynamics (panel method), droplet trajectory calculations (Lagrangian framework), thermodynamic module (Messinger model) and geometry module (ice accretion). These are embedded in a quasi-steady module to simulate the time-dependent ice accretion process (multi-step procedure). The objectives of the present research are to upgrade the aerodynamic module from Laplace to Reynolds-Average Navier-Stokes equations solver. The advantages are many. First, the physical model allows accounting for viscous effects in the aerodynamic module. Second, the solution of the aero-icing module directly provides the means for characterizing the aerodynamic effects of icing, such as loss of lift and increased drag. Third, the use of a finite volume approach to solving the Partial Differential Equations allows rigorous mesh and time convergence analysis. Finally, the approaches developed in 2D can be easily transposed to 3D problems. The research was performed in three major steps, each providing insights into the overall numerical approaches. The most important realization comes from the need to develop specific mesh generation algorithms to ensure feasible solutions in very complex multi-step aero-icing calculations. The contributions are presented in chronological order of their realization. First, a new framework for RANS based two-dimensional ice accretion code, CANICE2D-NS, is developed. A multi-block RANS code from U. of Liverpool (named PMB) is providing the aerodynamic field using the Spalart-Allmaras turbulence model. The ICEM-CFD commercial tool is used for the iced airfoil remeshing and field smoothing. The new coupling is fully automated and capable of multi-step ice accretion simulations via a quasi-steady approach. In addition, the framework allows for flow analysis and aerodynamic performance prediction of the iced airfoils. The convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multi-time steps in icing simulations to achieve solver independent solutions. Second, a Multi-Block Navier-Stokes code, NSMB, is coupled with the CANICE2D icing framework. Attention is paid to the roughness implementation of the ONERA roughness model within the Spalart-Allmaras turbulence model, and to the convergence of the steady and quasi-steady iterative procedure. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results of CANICE2D-NS show good agreement with experimental data both in terms of predicted ice shapes as well as aerodynamic analysis of predicted and experimental ice shapes. Third, an efficient single-block structured Navier-Stokes CFD code, NSCODE, is coupled with the CANICE2D-NS icing framework. Attention is paid to the roughness implementation of the Boeing model within the Spalart-Allmaras turbulence model, and to acceleration of the convergence of the steady and quasi-steady iterative procedures. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases, including code to code comparisons with the same framework coupled with the NSMB Navier-Stokes solver. The efficiency of the J-multigrid approach to solve the flow equations on complex iced geometries is demonstrated. Since it was noted in all these calculations that the ICEM-CFD grid generation package produced a number of issues such as inefficient mesh quality and smoothing deficiencies (notably grid shocks), a fourth study proposes a new mesh generation algorithm. A PDE based multi-block structured grid generation code, NSGRID, is developed for this purpose. The study includes the developments of novel mesh generation algorithms over complex glaze ice shapes containing multi-curvature ice accretion geometries, such as single/double ice horns. The twofold approaches tackle surface geometry discretization as well as field mesh generation. An adaptive curvilinear curvature control algorithm is constructed solving a 1D elliptic PDE equation with periodic source terms. This method controls the arclength grid spacing so that high convex and concave curvature regions around ice horns are appropriately captured and is shown to effectively treat the grid shock problem. Then, a novel blended method is developed by defining combinations of source terms with 2D elliptic equations. The source terms include two common control functions, Sorenson and Spekreijse, and an additional third source term to improve orthogonality. This blended method is shown to be very effective for improving grid quality metrics for complex glaze ice meshes with RANS resolution. The performance in terms of residual reduction per non-linear iteration of several solution algorithms (Point-Jacobi, Gauss-Seidel, ADI, Point and Line SOR) are discussed within the context of a full Multi-grid operator. Details are given on the various formulations used in the linearization process. It is shown that the performance of the solution algorithm depends on the type of control function used. Finally, the algorithms are validated on standard complex experimental ice shapes, demonstrating the applicability of the methods. Finally, the automated framework of RANS based two-dimensional multi-step ice accretion, CANICE2D-NS is developed, coupled with a Multi-Block Navier-Stokes CFD code, NSCODE2D, a Multi-Block elliptic grid generation code, NSGRID2D, and a Multi-Block Eulerian droplet solver, NSDROP2D (developed at Polytechnique Montreal). The framework allows Lagrangian and Eulerian droplet computations within a chimera approach treating multi-elements geometries. The code was tested on public and confidential validation test cases including standard NATO cases. In addition, up to 10 times speedup is observed in the mesh generation procedure by using the implicit line SOR and ADI smoothers within a multigrid procedure. The results demonstrate the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters.
Olama, Mohammed M.; Ma, Xiao; Killough, Stephen M.; ...
2015-03-12
In recent years, there has been great interest in using hybrid spread-spectrum (HSS) techniques for commercial applications, particularly in the Smart Grid, in addition to their inherent uses in military communications. This is because HSS can accommodate high data rates with high link integrity, even in the presence of significant multipath effects and interfering signals. A highly useful form of this transmission technique for many types of command, control, and sensing applications is the specific code-related combination of standard direct sequence modulation with fast frequency hopping, denoted hybrid DS/FFH, wherein multiple frequency hops occur within a single data-bit time. Inmore » this paper, error-probability analyses are performed for a hybrid DS/FFH system over standard Gaussian and fading-type channels, progressively including the effects from wide- and partial-band jamming, multi-user interference, and varying degrees of Rayleigh and Rician fading. In addition, an optimization approach is formulated that minimizes the bit-error performance of a hybrid DS/FFH communication system and solves for the resulting system design parameters. The optimization objective function is non-convex and can be solved by applying the Karush-Kuhn-Tucker conditions. We also present our efforts toward exploring the design, implementation, and evaluation of a hybrid DS/FFH radio transceiver using a single FPGA. Numerical and experimental results are presented under widely varying design parameters to demonstrate the adaptability of the waveform for varied harsh smart grid RF signal environments.« less
Multi-time Scale Joint Scheduling Method Considering the Grid of Renewable Energy
NASA Astrophysics Data System (ADS)
Zhijun, E.; Wang, Weichen; Cao, Jin; Wang, Xin; Kong, Xiangyu; Quan, Shuping
2018-01-01
Renewable new energy power generation prediction error like wind and light, brings difficulties to dispatch the power system. In this paper, a multi-time scale robust scheduling method is set to solve this problem. It reduces the impact of clean energy prediction bias to the power grid by using multi-time scale (day-ahead, intraday, real time) and coordinating the dispatching power output of various power supplies such as hydropower, thermal power, wind power, gas power and. The method adopts the robust scheduling method to ensure the robustness of the scheduling scheme. By calculating the cost of the abandon wind and the load, it transforms the robustness into the risk cost and optimizes the optimal uncertainty set for the smallest integrative costs. The validity of the method is verified by simulation.
Stable multi-domain spectral penalty methods for fractional partial differential equations
NASA Astrophysics Data System (ADS)
Xu, Qinwu; Hesthaven, Jan S.
2014-01-01
We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.
A cross-domain communication resource scheduling method for grid-enabled communication networks
NASA Astrophysics Data System (ADS)
Zheng, Xiangquan; Wen, Xiang; Zhang, Yongding
2011-10-01
To support a wide range of different grid applications in environments where various heterogeneous communication networks coexist, it is important to enable advanced capabilities in on-demand and dynamical integration and efficient co-share with cross-domain heterogeneous communication resource, thus providing communication services which are impossible for single communication resource to afford. Based on plug-and-play co-share and soft integration with communication resource, Grid-enabled communication network is flexibly built up to provide on-demand communication services for gird applications with various requirements on quality of service. Based on the analysis of joint job and communication resource scheduling in grid-enabled communication networks (GECN), this paper presents a cross multi-domain communication resource cooperatively scheduling method and describes the main processes such as traffic requirement resolution for communication services, cross multi-domain negotiation on communication resource, on-demand communication resource scheduling, and so on. The presented method is to afford communication service capability to cross-domain traffic delivery in GECNs. Further research work towards validation and implement of the presented method is pointed out at last.
NASA Technical Reports Server (NTRS)
Lessard, Wendy B.
1999-01-01
The objective of this study is to calibrate a Navier-Stokes code for the TCA (30/10) baseline configuration (partial span leading edge flaps were deflected at 30 degs. and all the trailing edge flaps were deflected at 10 degs). The computational results for several angles of attack are compared with experimental force, moments, and surface pressures. The code used in this study is CFL3D; mesh sequencing and multi-grid were used to full advantage to accelerate convergence. A multi-grid approach was used similar to that used for the Reference H configuration allowing point-to-point matching across all the trailingedge block interfaces. From past experiences with the Reference H (ie, good force, moment, and pressure comparisons were obtained), it was assumed that the mounting system would produce small effects; hence, it was not initially modeled. However, comparisons of lower surface pressures indicated the post mount significantly influenced the lower surface pressures, so the post geometry was inserted into the existing grid using Chimera (overset grids).
Performance Enhancement Strategies for Multi-Block Overset Grid CFD Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
The overset grid methodology has significantly reduced time-to-solution of highfidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement strategies on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machinc. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Details of a sophisticated graph partitioning technique for grid grouping are also provided. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Emma M.; Hendrix, Val; Chertkov, Michael
This white paper introduces the application of advanced data analytics to the modernized grid. In particular, we consider the field of machine learning and where it is both useful, and not useful, for the particular field of the distribution grid and buildings interface. While analytics, in general, is a growing field of interest, and often seen as the golden goose in the burgeoning distribution grid industry, its application is often limited by communications infrastructure, or lack of a focused technical application. Overall, the linkage of analytics to purposeful application in the grid space has been limited. In this paper wemore » consider the field of machine learning as a subset of analytical techniques, and discuss its ability and limitations to enable the future distribution grid and the building-to-grid interface. To that end, we also consider the potential for mixing distributed and centralized analytics and the pros and cons of these approaches. Machine learning is a subfield of computer science that studies and constructs algorithms that can learn from data and make predictions and improve forecasts. Incorporation of machine learning in grid monitoring and analysis tools may have the potential to solve data and operational challenges that result from increasing penetration of distributed and behind-the-meter energy resources. There is an exponentially expanding volume of measured data being generated on the distribution grid, which, with appropriate application of analytics, may be transformed into intelligible, actionable information that can be provided to the right actors – such as grid and building operators, at the appropriate time to enhance grid or building resilience, efficiency, and operations against various metrics or goals – such as total carbon reduction or other economic benefit to customers. While some basic analysis into these data streams can provide a wealth of information, computational and human boundaries on performing the analysis are becoming significant, with more data and multi-objective concerns. Efficient applications of analysis and the machine learning field are being considered in the loop.« less
Optimal allocation of industrial PV-storage micro-grid considering important load
NASA Astrophysics Data System (ADS)
He, Shaohua; Ju, Rong; Yang, Yang; Xu, Shuai; Liang, Lei
2018-03-01
At present, the industrial PV-storage micro-grid has been widely used. This paper presents an optimal allocation model of PV-storage micro-grid capacity considering the important load of industrial users. A multi-objective optimization model is established to promote the local extinction of PV power generation and the maximum investment income of the enterprise as the objective function. Particle swarm optimization (PSO) is used to solve the case of a city in Jiangsu Province, the results are analyzed economically.
Netzel, Pawel
2017-01-01
The United States is increasingly becoming a multi-racial society. To understand multiple consequences of this overall trend to our neighborhoods we need a methodology capable of spatio-temporal analysis of racial diversity at the local level but also across the entire U.S. Furthermore, such methodology should be accessible to stakeholders ranging from analysts to decision makers. In this paper we present a comprehensive framework for visualizing and analyzing diversity data that fulfills such requirements. The first component of our framework is a U.S.-wide, multi-year database of race sub-population grids which is freely available for download. These 30 m resolution grids have being developed using dasymetric modeling and are available for 1990-2000-2010. We summarize numerous advantages of gridded population data over commonly used Census tract-aggregated data. Using these grids frees analysts from constructing their own and allows them to focus on diversity analysis. The second component of our framework is a set of U.S.-wide, multi-year diversity maps at 30 m resolution. A diversity map is our product that classifies the gridded population into 39 communities based on their degrees of diversity, dominant race, and population density. It provides spatial information on diversity in a single, easy-to-understand map that can be utilized by analysts and end users alike. Maps based on subsequent Censuses provide information about spatio-temporal dynamics of diversity. Diversity maps are accessible through the GeoWeb application SocScape (http://sil.uc.edu/webapps/socscape_usa/) for an immediate online exploration. The third component of our framework is a proposal to quantitatively analyze diversity maps using a set of landscape metrics. Because of its form, a grid-based diversity map could be thought of as a diversity “landscape” and analyzed quantitatively using landscape metrics. We give a brief summary of most pertinent metrics and demonstrate how they can be applied to diversity maps. PMID:28358862
On dealing with multiple correlation peaks in PIV
NASA Astrophysics Data System (ADS)
Masullo, A.; Theunissen, R.
2018-05-01
A novel algorithm to analyse PIV images in the presence of strong in-plane displacement gradients and reduce sub-grid filtering is proposed in this paper. Interrogation windows subjected to strong in-plane displacement gradients often produce correlation maps presenting multiple peaks. Standard multi-grid procedures discard such ambiguous correlation windows using a signal to noise (SNR) filter. The proposed algorithm improves the standard multi-grid algorithm allowing the detection of splintered peaks in a correlation map through an automatic threshold, producing multiple displacement vectors for each correlation area. Vector locations are chosen by translating images according to the peak displacements and by selecting the areas with the strongest match. The method is assessed on synthetic images of a boundary layer of varying intensity and a sinusoidal displacement field of changing wavelength. An experimental case of a flow exhibiting strong velocity gradients is also provided to show the improvements brought by this technique.
An insurance perspective on U.S. electric grid disruption costs
Mills, Evan; Jones, Richard B.
2016-10-12
Large yet infrequent disruptions of electrical power can impact tens of millions of people in a single event, triggering significant economic damages, portions of which are insured. Small and frequent events are also significant in the aggregate. This article explores the role that insurance claims data can play in better defining the broader economic impacts of grid disruptions in the U.S. context. We developed four case studies, using previously unpublished data for specific actual grid disruptions. The cases include the 1977 New York City blackout, the 2003 Northeast blackout, multi-year national annual lightning-related electrical damage and multi-year national line-disturbance events.more » Insured losses represent between 3 and 64 per cent of total loss costs across the case studies. Here, the household sector emerges as a larger locus of costs than indicated in previous studies, and short-lived events emerge as important sources of loss costs.« less
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil
2010-01-01
Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver - flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.
SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows
NASA Astrophysics Data System (ADS)
Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu
2017-12-01
A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.
A Roadmap for caGrid, an Enterprise Grid Architecture for Biomedical Research
Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Hong, Neil Chue
2012-01-01
caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG™) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123
A roadmap for caGrid, an enterprise Grid architecture for biomedical research.
Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil
2008-01-01
caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.
SPAGETTA, a Gridded Weather Generator: Calibration, Validation and its Use for Future Climate
NASA Astrophysics Data System (ADS)
Dubrovsky, Martin; Rotach, Mathias W.; Huth, Radan
2017-04-01
Spagetta is a new (started in 2016) stochastic multi-site multi-variate weather generator (WG). It can produce realistic synthetic daily (or monthly, or annual) weather series representing both present and future climate conditions at multiple sites (grids or stations irregularly distributed in space). The generator, whose model is based on the Wilks' (1999) multi-site extension of the parametric (Richardson's type) single site M&Rfi generator, may be run in two modes: In the first mode, it is run as a classical generator, which is calibrated in the first step using weather data from multiple sites, and only then it may produce arbitrarily long synthetic time series mimicking the spatial and temporal structure of the calibration weather data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. In the second mode, the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the surface weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying autoregressive model, which produces the multi-site weather series. In the latter mode of operation, the user is allowed to prescribe the spatially varying trend, which is superimposed to the values produced by the generator; this feature has been implemented for use in developing the methodology for assessing significance of trends in multi-site weather series (for more details see another EGU-2017 contribution: Huth and Dubrovsky, 2017, Evaluating collective significance of climatic trends: A comparison of methods on synthetic data; EGU2017-4993). This contribution will focus on the first (classical) mode. The poster will present (a) model of the generator, (b) results of the validation tests made in terms of the spatial hot/cold/dry/wet spells, and (c) results of the pilot climate change impact experiment, in which (i) the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and then (ii) the effect on the above spatial validation indices derived from the synthetic series produced by the modified WG is analysed. In this experiment, the generator is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulation (taken from the CORDEX database).
Topography Modeling in Atmospheric Flows Using the Immersed Boundary Method
NASA Technical Reports Server (NTRS)
Ackerman, A. S.; Senocak, I.; Mansour, N. N.; Stevens, D. E.
2004-01-01
Numerical simulation of flow over complex geometry needs accurate and efficient computational methods. Different techniques are available to handle complex geometry. The unstructured grid and multi-block body-fitted grid techniques have been widely adopted for complex geometry in engineering applications. In atmospheric applications, terrain fitted single grid techniques have found common use. Although these are very effective techniques, their implementation, coupling with the flow algorithm, and efficient parallelization of the complete method are more involved than a Cartesian grid method. The grid generation can be tedious and one needs to pay special attention in numerics to handle skewed cells for conservation purposes. Researchers have long sought for alternative methods to ease the effort involved in simulating flow over complex geometry.
Player Types, Play Styles, and Play Complexity: Updating the Entertainment Grid
ERIC Educational Resources Information Center
Rademacher Mena, Ricardo Javier
2012-01-01
In a previous work the author created the Education and Entertainment Grid by combining various taxonomies from the fields of play and learning. In this paper, a section of this grid known as the Entertainment Grid will be extended by including previously unused elements of Richard Bartle's online player types and Robert Caillois' play complexity.…
Sparse grid techniques for particle-in-cell schemes
NASA Astrophysics Data System (ADS)
Ricketson, L. F.; Cerfon, A. J.
2017-02-01
We propose the use of sparse grids to accelerate particle-in-cell (PIC) schemes. By using the so-called ‘combination technique’ from the sparse grids literature, we are able to dramatically increase the size of the spatial cells in multi-dimensional PIC schemes while paying only a slight penalty in grid-based error. The resulting increase in cell size allows us to reduce the statistical noise in the simulation without increasing total particle number. We present initial proof-of-principle results from test cases in two and three dimensions that demonstrate the new scheme’s efficiency, both in terms of computation time and memory usage.
Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean
NASA Astrophysics Data System (ADS)
Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin; Cho, Nayeong; Tan, Jackson
2018-03-01
The co-variability of cloud and precipitation in the extended tropics (35° N-35° S) is investigated using contemporaneous data sets for a 13-year period. The goal is to quantify potential relationships between cloud type fractions and precipitation events of particular strength. Particular attention is paid to whether the relationships exhibit different characteristics over tropical land and ocean. A primary analysis metric is the correlation coefficient between fractions of individual cloud types and frequencies within precipitation histogram bins that have been matched in time and space. The cloud type fractions are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) joint histograms of cloud top pressure and cloud optical thickness in 1° grid cells, and the precipitation frequencies come from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) data set aggregated to the same grid.
It is found that the strongest coupling (positive correlation) between clouds and precipitation occurs over ocean for cumulonimbus clouds and the heaviest rainfall. While the same cloud type and rainfall bin are also best correlated over land compared to other combinations, the correlation magnitude is weaker than over ocean. The difference is attributed to the greater size of convective systems over ocean. It is also found that both over ocean and land the anti-correlation of strong precipitation with weak
(i.e., thin and/or low) cloud types is of greater absolute strength than positive correlations between weak cloud types and weak precipitation. Cloud type co-occurrence relationships explain some of the cloud-precipitation anti-correlations. Weak correlations between weaker rainfall and clouds indicate poor predictability for precipitation when cloud types are known, and this is even more true over land than over ocean.
Elastic all-optical multi-hop interconnection in data centers with adaptive spectrum allocation
NASA Astrophysics Data System (ADS)
Hong, Yuanyuan; Hong, Xuezhi; Chen, Jiajia; He, Sailing
2017-01-01
In this paper, a novel flex-grid all-optical interconnect scheme that supports transparent multi-hop connections in data centers is proposed. An inter-rack all-optical multi-hop connection is realized with an optical loop employed at flex-grid wavelength selective switches (WSSs) in an intermediate rack rather than by relaying through optical-electric-optical (O-E-O) conversions. Compared with the conventional O-E-O based approach, the proposed all-optical scheme is able to off-load the traffic at intermediate racks, leading to a reduction of the power consumption and cost. The transmission performance of the proposed flex-grid multi-hop all-optical interconnect scheme with various modulation formats, including both coherently detected and directly detected approaches, are investigated by Monte-Carlo simulations. To enhance the spectrum efficiency (SE), number-of-hop adaptive bandwidth allocation is introduced. Numerical results show that the SE can be improved by up to 33.3% at 40 Gbps, and by up to 25% at 100 Gbps. The impact of parameters, such as targeted bit error rate (BER) level and insertion loss of components, on the transmission performance of the proposed approach are also explored. The results show that the maximum SE improvement of the adaptive approach over the non-adaptive one is enhanced with the decrease of the targeted BER levels and the component insertion loss.
A multi-block adaptive solving technique based on lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao
2018-05-01
In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.
Efficient simulation of incompressible viscous flow over multi-element airfoils
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Wiltberger, N. Lyn; Kwak, Dochan
1992-01-01
The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The computer code uses the method of pseudo-compressibility with an upwind-differencing scheme for the convective fluxes and an implicit line-relaxation solution algorithm. The motivation for this work includes interest in studying the high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack, up to stall, is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared: a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time (on a CRAY YMP) per element in the airfoil configuration.
Efficient simulation of incompressible viscous flow over multi-element airfoils
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Wiltberger, N. Lyn; Kwak, Dochan
1993-01-01
The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The solution algorithm employs the method of pseudo compressibility and utilizes an upwind differencing scheme for the convective fluxes, and an implicit line-relaxation scheme. The motivation for this work includes interest in studying high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack up to stall is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared; a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time on a CRAY YMP per element in the airfoil configuration.
ERIC Educational Resources Information Center
Chaudhry, Hina
2013-01-01
This study is a part of the smart grid initiative providing electric vehicle charging infrastructure. It is a refueling structure, an energy generating photovoltaic system and charge point electric vehicle charging station. The system will utilize advanced design and technology allowing electricity to flow from the site's normal electric service…
Outlook for grid service technologies within the @neurIST eHealth environment.
Arbona, A; Benkner, S; Fingberg, J; Frangi, A F; Hofmann, M; Hose, D R; Lonsdale, G; Ruefenacht, D; Viceconti, M
2006-01-01
The aim of the @neurIST project is to create an IT infrastructure for the management of all processes linked to research, diagnosis and treatment development for complex and multi-factorial diseases. The IT infrastructure will be developed for one such disease, cerebral aneurysm and subarachnoid haemorrhage, but its core technologies will be transferable to meet the needs of other medical areas. Since the IT infrastructure for @neurIST will need to encompass data repositories, computational analysis services and information systems handling multi-scale, multi-modal information at distributed sites, the natural basis for the IT infrastructure is a Grid Service middleware. The project will adopt a service-oriented architecture because it aims to provide a system addressing the needs of medical researchers, clinicians and health care specialists (and their IT providers/systems) and medical supplier/consulting industries.
JTS and its Application in Environmental Protection Applications
NASA Astrophysics Data System (ADS)
Atanassov, Emanouil; Gurov, Todor; Slavov, Dimitar; Ivanovska, Sofiya; Karaivanova, Aneta
2010-05-01
The environmental protection was identified as a domain of high interest for South East Europe, addressing practical problems related to security and quality of life. The gridification of the Bulgarian applications MCSAES (Monte Carlo Sensitivity Analysis for Environmental Studies) which aims to develop an efficient Grid implementation of a sensitivity analysis of the Danish Eulerian Model), MSACM (Multi-Scale Atmospheric Composition Modeling) which aims to produce an integrated, multi-scale Balkan region oriented modelling system, able to interface the scales of the problem from emissions on the urban scale to their transport and transformation on the local and regional scales), MSERRHSA (Modeling System for Emergency Response to the Release of Harmful Substances in the Atmosphere) which aims to develop and deploy a modeling system for emergency response to the release of harmful substances in the atmosphere, targeted at the SEE and more specifically Balkan region) faces several challenges: These applications are resource intensive, in terms of both CPU utilization and data transfers and storage. The use of applications for operational purposes poses requirements for availability of resources, which are difficult to be met on a dynamically changing Grid environment. The validation of applications is resource intensive and time consuming. The successful resolution of these problems requires collaborative work and support from part of the infrastructure operators. However, the infrastructure operators are interested to avoid underutilization of resources. That is why we developed the Job Track Service and tested it during the development of the grid implementations of MCSAES, MSACM and MSERRHSA. The Job Track Service (JTS) is a grid middleware component which facilitates the provision of Quality of Service in grid infrastructures using gLite middleware like EGEE and SEEGRID. The service is based on messaging middleware and uses standart protocols like AMQP (Advanced Message Queuing Protocol) and XMPP (eXtensible Messaging and Presence Protocol) for real-time communication, while its security model is based on GSI authentication. It enables resource owners to provide the most popular types of QoS of execution to some of their users, using a standardized model. The first version of the service offered services to individual users. In this work we describe a new version of the Job Track service offering application specific functionality, geared towards the specific needs of the Environmental Modelling and Protection applications and oriented towards collaborative usage by groups and subgroups of users. We used the modular design of the JTS in order to implement plugins enabling smoother interaction of the users with the Grid environment. Our experience shows improved response times and decreased failure rate from the executions of the application. In this work we present such observations from the use of the South East European Grid infrastructure.
The Design of Distributed Micro Grid Energy Storage System
NASA Astrophysics Data System (ADS)
Liang, Ya-feng; Wang, Yan-ping
2018-03-01
Distributed micro-grid runs in island mode, the energy storage system is the core to maintain the micro-grid stable operation. For the problems that it is poor to adjust at work and easy to cause the volatility of micro-grid caused by the existing energy storage structure of fixed connection. In this paper, an array type energy storage structure is proposed, and the array type energy storage system structure and working principle are analyzed. Finally, the array type energy storage structure model is established based on MATLAB, the simulation results show that the array type energy storage system has great flexibility, which can maximize the utilization of energy storage system, guarantee the reliable operation of distributed micro-grid and achieve the function of peak clipping and valley filling.
Transonic cascade flow calculations using non-periodic C-type grids
NASA Technical Reports Server (NTRS)
Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.
1991-01-01
A new kind of C-type grid is proposed for turbomachinery flow calculations. This grid is nonperiodic on the wake and results in minimum skewness for cascades with high turning and large camber. Euler and Reynolds averaged Navier-Stokes equations are discretized on this type of grid using a finite volume approach. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. Jameson's explicit Runge-Kutta scheme is adopted for the integration in time, and computational efficiency is achieved through accelerating strategies such as multigriding and residual smoothing. A detailed numerical study was performed for a turbine rotor and for a vane. A grid dependence analysis is presented and the effect of artificial dissipation is also investigated. Comparison of calculations with experiments clearly demonstrates the advantage of the proposed grid.
Grid orthogonality effects on predicted turbine midspan heat transfer and performance
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Ameri, A. A.
1995-01-01
The effect of five different C type grid geometries on the predicted heat transfer and aerodynamic performance of a turbine stator is examined. Predictions were obtained using two flow analysis codes. One was a finite difference analysis, and the other was a finite volume analysis. Differences among the grids in terms of heat transfer and overall performance were small. The most significant difference among the five grids occurred in the prediction of pitchwise variation in total pressure. There was consistency between results obtained with each of the flow analysis codes when the same grid was used. A grid generating procedure in which the viscous grid is embedded within an inviscid type grid resulted in the best overall performance.
High order solution of Poisson problems with piecewise constant coefficients and interface jumps
NASA Astrophysics Data System (ADS)
Marques, Alexandre Noll; Nave, Jean-Christophe; Rosales, Rodolfo Ruben
2017-04-01
We present a fast and accurate algorithm to solve Poisson problems in complex geometries, using regular Cartesian grids. We consider a variety of configurations, including Poisson problems with interfaces across which the solution is discontinuous (of the type arising in multi-fluid flows). The algorithm is based on a combination of the Correction Function Method (CFM) and Boundary Integral Methods (BIM). Interface and boundary conditions can be treated in a fast and accurate manner using boundary integral equations, and the associated BIM. Unfortunately, BIM can be costly when the solution is needed everywhere in a grid, e.g. fluid flow problems. We use the CFM to circumvent this issue. The solution from the BIM is used to rewrite the problem as a series of Poisson problems in rectangular domains-which requires the BIM solution at interfaces/boundaries only. These Poisson problems involve discontinuities at interfaces, of the type that the CFM can handle. Hence we use the CFM to solve them (to high order of accuracy) with finite differences and a Fast Fourier Transform based fast Poisson solver. We present 2-D examples of the algorithm applied to Poisson problems involving complex geometries, including cases in which the solution is discontinuous. We show that the algorithm produces solutions that converge with either 3rd or 4th order of accuracy, depending on the type of boundary condition and solution discontinuity.
NASA Astrophysics Data System (ADS)
Feng, Wenqiang; Guo, Zhenlin; Lowengrub, John S.; Wise, Steven M.
2018-01-01
We present a mass-conservative full approximation storage (FAS) multigrid solver for cell-centered finite difference methods on block-structured, locally cartesian grids. The algorithm is essentially a standard adaptive FAS (AFAS) scheme, but with a simple modification that comes in the form of a mass-conservative correction to the coarse-level force. This correction is facilitated by the creation of a zombie variable, analogous to a ghost variable, but defined on the coarse grid and lying under the fine grid refinement patch. We show that a number of different types of fine-level ghost cell interpolation strategies could be used in our framework, including low-order linear interpolation. In our approach, the smoother, prolongation, and restriction operations need never be aware of the mass conservation conditions at the coarse-fine interface. To maintain global mass conservation, we need only modify the usual FAS algorithm by correcting the coarse-level force function at points adjacent to the coarse-fine interface. We demonstrate through simulations that the solver converges geometrically, at a rate that is h-independent, and we show the generality of the solver, applying it to several nonlinear, time-dependent, and multi-dimensional problems. In several tests, we show that second-order asymptotic (h → 0) convergence is observed for the discretizations, provided that (1) at least linear interpolation of the ghost variables is employed, and (2) the mass conservation corrections are applied to the coarse-level force term.
A robust and contact resolving Riemann solver on unstructured mesh, Part I, Euler method
NASA Astrophysics Data System (ADS)
Shen, Zhijun; Yan, Wei; Yuan, Guangwei
2014-07-01
This article presents a new cell-centered numerical method for compressible flows on arbitrary unstructured meshes. A multi-dimensional Riemann solver based on the HLLC method (denoted by HLLC-2D solver) is established. The work is an extension from the cell-centered Lagrangian scheme of Maire et al. [27] to the Eulerian framework. Similarly to the work in [27], a two-dimensional contact velocity defined on a grid node is introduced, and the motivation is to keep an edge flux consistency with the node velocity connected to the edge intrinsically. The main new feature of the algorithm is to relax the condition that the contact pressures must be same in the traditional HLLC solver. The discontinuous fluxes are constructed across each wave sampling direction rather than only along the contact wave direction. The two-dimensional contact velocity of the grid node is determined via enforcing conservation of mass, momentum and total energy, and thus the new method satisfies these conservation properties at nodes rather than on grid edges. Other good properties of the HLLC-2d solver, such as the positivity and the contact preserving, are described, and the two-dimensional high-order extension is constructed employing MUSCL type reconstruction procedure. Numerical results based on both quadrilateral and triangular grids are presented to demonstrate the robustness and the accuracy of this new solver, which shows it has better performance than the existing HLLC method.
NASA Astrophysics Data System (ADS)
Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur
2017-11-01
Two novel control-volume methods are presented for flow in fractured media, and involve coupling the control-volume distributed multi-point flux approximation (CVD-MPFA) constructed with full pressure support (FPS), to two types of discrete fracture-matrix approximation for simulation on unstructured grids; (i) involving hybrid grids and (ii) a lower dimensional fracture model. Flow is governed by Darcy's law together with mass conservation both in the matrix and the fractures, where large discontinuities in permeability tensors can occur. Finite-volume FPS schemes are more robust than the earlier CVD-MPFA triangular pressure support (TPS) schemes for problems involving highly anisotropic homogeneous and heterogeneous full-tensor permeability fields. We use a cell-centred hybrid-grid method, where fractures are modelled by lower-dimensional interfaces between matrix cells in the physical mesh but expanded to equi-dimensional cells in the computational domain. We present a simple procedure to form a consistent hybrid-grid locally for a dual-cell. We also propose a novel hybrid-grid for intersecting fractures, for the FPS method, which reduces the condition number of the global linear system and leads to larger time steps for tracer transport. The transport equation for tracer flow is coupled with the pressure equation and provides flow parameter assessment of the fracture models. Transport results obtained via TPS and FPS hybrid-grid formulations are compared with the corresponding results of fine-scale explicit equi-dimensional formulations. The results show that the hybrid-grid FPS method applies to general full-tensor fields and provides improved robust approximations compared to the hybrid-grid TPS method for fractured domains, for both weakly anisotropic permeability fields and very strong anisotropic full-tensor permeability fields where the TPS scheme exhibits spurious oscillations. The hybrid-grid FPS formulation is extended to compressible flow and the results demonstrate the method is also robust for transient flow. Furthermore, we present FPS coupled with a lower-dimensional fracture model, where fractures are strictly lower-dimensional in the physical mesh as well as in the computational domain. We present a comparison of the hybrid-grid FPS method and the lower-dimensional fracture model for several cases of isotropic and anisotropic fractured media which illustrate the benefits of the respective methods.
NASA Astrophysics Data System (ADS)
Lin, Shian-Jiann; Harris, Lucas; Chen, Jan-Huey; Zhao, Ming
2014-05-01
A multi-scale High-Resolution Atmosphere Model (HiRAM) is being developed at NOAA/Geophysical Fluid Dynamics Laboratory. The model's dynamical framework is the non-hydrostatic extension of the vertically Lagrangian finite-volume dynamical core (Lin 2004, Monthly Wea. Rev.) constructed on a stretchable (via Schmidt transformation) cubed-sphere grid. Physical parametrizations originally designed for IPCC-type climate predictions are in the process of being modified and made more "scale-aware", in an effort to make the model suitable for multi-scale weather-climate applications, with horizontal resolution ranging from 1 km (near the target high-resolution region) to as low as 400 km (near the antipodal point). One of the main goals of this development is to enable simulation of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously thought impossible. We will present preliminary results, covering a very wide spectrum of temporal-spatial scales, ranging from simulation of tornado genesis (hours), Madden-Julian Oscillations (intra-seasonal), topical cyclones (seasonal), to Quasi Biennial Oscillations (intra-decadal), using the same global multi-scale modeling system.
FermiGrid - experience and future plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chadwick, K.; Berman, E.; Canal, P.
2007-09-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and themore » Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.« less
SAGE: The Self-Adaptive Grid Code. 3
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1999-01-01
The multi-dimensional self-adaptive grid code, SAGE, is an important tool in the field of computational fluid dynamics (CFD). It provides an efficient method to improve the accuracy of flow solutions while simultaneously reducing computer processing time. Briefly, SAGE enhances an initial computational grid by redistributing the mesh points into more appropriate locations. The movement of these points is driven by an equal-error-distribution algorithm that utilizes the relationship between high flow gradients and excessive solution errors. The method also provides a balance between clustering points in the high gradient regions and maintaining the smoothness and continuity of the adapted grid, The latest version, Version 3, includes the ability to change the boundaries of a given grid to more efficiently enclose flow structures and provides alternative redistribution algorithms.
Task Assignment Heuristics for Parallel and Distributed CFD Applications
NASA Technical Reports Server (NTRS)
Lopez-Benitez, Noe; Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
This paper proposes a task graph (TG) model to represent a single discrete step of multi-block overset grid computational fluid dynamics (CFD) applications. The TG model is then used to not only balance the computational workload across the overset grids but also to reduce inter-grid communication costs. We have developed a set of task assignment heuristics based on the constraints inherent in this class of CFD problems. Two basic assignments, the smallest task first (STF) and the largest task first (LTF), are first presented. They are then systematically costs. To predict the performance of the proposed task assignment heuristics, extensive performance evaluations are conducted on a synthetic TG with tasks defined in terms of the number of grid points in predetermined overlapping grids. A TG derived from a realistic problem with eight million grid points is also used as a test case.
Multi-Resolution Unstructured Grid-Generation for Geophysical Applications on the Sphere
NASA Technical Reports Server (NTRS)
Engwirda, Darren
2015-01-01
An algorithm for the generation of non-uniform unstructured grids on ellipsoidal geometries is described. This technique is designed to generate high quality triangular and polygonal meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric and ocean simulation, and numerical weather predication. Using a recently developed Frontal-Delaunay-refinement technique, a method for the construction of high-quality unstructured ellipsoidal Delaunay triangulations is introduced. A dual polygonal grid, derived from the associated Voronoi diagram, is also optionally generated as a by-product. Compared to existing techniques, it is shown that the Frontal-Delaunay approach typically produces grids with near-optimal element quality and smooth grading characteristics, while imposing relatively low computational expense. Initial results are presented for a selection of uniform and non-uniform ellipsoidal grids appropriate for large-scale geophysical applications. The use of user-defined mesh-sizing functions to generate smoothly graded, non-uniform grids is discussed.
Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design
NASA Technical Reports Server (NTRS)
Davis, Roger L.; Dannenhoffer, John F., III; Clark, John P.
2010-01-01
New ideas are forthcoming to break existing bottlenecks in using CFD during design. CAD-based automated grid generation. Multi-disciplinary use of embedded, overset grids to eliminate complex gridding problems. Use of time-averaged detached-eddy simulations as norm instead of "steady" RANS to include effects of self-excited unsteadiness. Combined GPU/Core parallel computing to provide over an order of magnitude increase in performance/price ratio. Gas-turbine applications are shown here but these ideas can be used for other Air Force, Navy, and NASA applications.
Navier-Stokes solution of transonic cascade flows using nonperiodic C-type grids
NASA Technical Reports Server (NTRS)
Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.
1992-01-01
A new kind of C-type grid is proposed, this grid is non-periodic on the wake and allows minimum skewness for cascades with high turning and large camber. Reynolds-averaged Navier-Stokes equations are solved on this type of grid using a finite volume discretization and a full multigrid method which uses Runge-Kutta stepping as the driving scheme. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A detailed numerical study is proposed for a highly loaded transonic blade. A grid independence analysis is presented in terms of pressure distribution, exit flow angles, and loss coefficient. Comparison with experiments clearly demonstrates the capability of the proposed procedure.
NASA Astrophysics Data System (ADS)
Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.
2011-12-01
The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) has been applied to model the spatial distribution of nitrogen deposition and air concentration over the UK at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.
NASA Astrophysics Data System (ADS)
Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.
2012-05-01
The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) was applied to model the spatial distribution of reactive nitrogen deposition and air concentration over the United Kingdom at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of reactive nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.
Grid-Enabled Quantitative Analysis of Breast Cancer
2009-10-01
large-scale, multi-modality computerized image analysis . The central hypothesis of this research is that large-scale image analysis for breast cancer...pilot study to utilize large scale parallel Grid computing to harness the nationwide cluster infrastructure for optimization of medical image ... analysis parameters. Additionally, we investigated the use of cutting edge dataanalysis/ mining techniques as applied to Ultrasound, FFDM, and DCE-MRI Breast
Enabling Efficient Intelligence Analysis in Degraded Environments
2013-06-01
Magnets Grid widget for multidimensional information exploration ; and a record browser of Visual Summary Cards widget for fast visual identification of...evolution analysis; a Magnets Grid widget for multi- dimensional information exploration ; and a record browser of Visual Summary Cards widget for fast...attention and inattentional blindness. It also explores and develops various techniques to represent information in a salient way and provide efficient
TopMaker: A Technique for Automatic Multi-Block Topology Generation Using the Medial Axis
NASA Technical Reports Server (NTRS)
Heidmann, James D. (Technical Monitor); Rigby, David L.
2004-01-01
A two-dimensional multi-block topology generation technique has been developed. Very general configurations are addressable by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, the multiblock topology is generated with no user intervention required. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in the area of computational fluid dynamics where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid generation process.
Experience with Multi-Tier Grid MySQL Database Service Resiliency at BNL
NASA Astrophysics Data System (ADS)
Wlodek, Tomasz; Ernst, Michael; Hover, John; Katramatos, Dimitrios; Packard, Jay; Smirnov, Yuri; Yu, Dantong
2011-12-01
We describe the use of F5's BIG-IP smart switch technology (3600 Series and Local Traffic Manager v9.0) to provide load balancing and automatic fail-over to multiple Grid services (GUMS, VOMS) and their associated back-end MySQL databases. This resiliency is introduced in front of the external application servers and also for the back-end database systems, which is what makes it "multi-tier". The combination of solutions chosen to ensure high availability of the services, in particular the database replication and fail-over mechanism, are discussed in detail. The paper explains the design and configuration of the overall system, including virtual servers, machine pools, and health monitors (which govern routing), as well as the master-slave database scheme and fail-over policies and procedures. Pre-deployment planning and stress testing will be outlined. Integration of the systems with our Nagios-based facility monitoring and alerting is also described. And application characteristics of GUMS and VOMS which enable effective clustering will be explained. We then summarize our practical experiences and real-world scenarios resulting from operating a major US Grid center, and assess the applicability of our approach to other Grid services in the future.
A VO-Driven Astronomical Data Grid in China
NASA Astrophysics Data System (ADS)
Cui, C.; He, B.; Yang, Y.; Zhao, Y.
2010-12-01
With the implementation of many ambitious observation projects, including LAMOST, FAST, and Antarctic observatory at Doom A, observational astronomy in China is stepping into a brand new era with emerging data avalanche. In the era of e-Science, both these cutting-edge projects and traditional astronomy research need much more powerful data management, sharing and interoperability. Based on data-grid concept, taking advantages of the IVOA interoperability technologies, China-VO is developing a VO-driven astronomical data grid environment to enable multi-wavelength science and large database science. In the paper, latest progress and data flow of the LAMOST, architecture of the data grid, and its supports to the VO are discussed.
Internal Passage Heat Transfer Prediction Using Multiblock Grids and a Kappa-Omega Turbulence Model
NASA Technical Reports Server (NTRS)
Rigby, David L.; Ameri, Ali A.; Steinthorsson, Erlendur
1996-01-01
Numerical simulations of the three-dimensional flow and heat transfer in a rectangular duct with a 180 C bend were performed. Results are presented for Reynolds numbers of 17,000 and 37,000 and for aspect ratios of 0.5 and I.O. A kappa-omega turbulence model with no reference to distance to a wall is used. Direct comparison between single block and multiblock grid calculations are made. Heat transfer and velocity distributions are compared to available literature with good agreement. The multi-block grid system is seen to produce more accurate results compared to a single-block grid with the same number of cells.
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob; Yan, Jerry C. (Technical Monitor)
2000-01-01
The creation of parameter study suites has recently become a more challenging problem as the parameter studies have now become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are now seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers great resource opportunity but at the expense of great difficulty of use. We present an approach to this problem which stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.
Calcium-based multi-element chemistry for grid-scale electrochemical energy storage
NASA Astrophysics Data System (ADS)
Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.
2016-03-01
Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance.
Calcium-based multi-element chemistry for grid-scale electrochemical energy storage
Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.
2016-01-01
Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance. PMID:27001915
Calcium-based multi-element chemistry for grid-scale electrochemical energy storage.
Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L; Sadoway, Donald R
2016-03-22
Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance.
FermiGrid—experience and future plans
NASA Astrophysics Data System (ADS)
Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; Yocum, D. R.
2008-07-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems.
GENIE(++): A Multi-Block Structured Grid System
NASA Technical Reports Server (NTRS)
Williams, Tonya; Nadenthiran, Naren; Thornburg, Hugh; Soni, Bharat K.
1996-01-01
The computer code GENIE++ is a continuously evolving grid system containing a multitude of proven geometry/grid techniques. The generation process in GENIE++ is based on an earlier version. The process uses several techniques either separately or in combination to quickly and economically generate sculptured geometry descriptions and grids for arbitrary geometries. The computational mesh is formed by using an appropriate algebraic method. Grid clustering is accomplished with either exponential or hyperbolic tangent routines which allow the user to specify a desired point distribution. Grid smoothing can be accomplished by using an elliptic solver with proper forcing functions. B-spline and Non-Uniform Rational B-splines (NURBS) algorithms are used for surface definition and redistribution. The built in sculptured geometry definition with desired distribution of points, automatic Bezier curve/surface generation for interior boundaries/surfaces, and surface redistribution is based on NURBS. Weighted Lagrance/Hermite transfinite interpolation methods, interactive geometry/grid manipulation modules, and on-line graphical visualization of the generation process are salient features of this system which result in a significant time savings for a given geometry/grid application.
7 CFR 1710.102 - Borrower eligibility for different types of loans.
Code of Federal Regulations, 2014 CFR
2014-01-01
... implementation of demand side management, energy conservation programs, and on grid and off grid renewable energy... management, energy conservation programs, and on grid and off grid renewable energy systems. (c) One hundred..., energy conservation programs, and on grid and off grid renewable energy systems. (See 7 CFR part 1712...
Generating grids directly on CAD database surfaces using a parametric evaluator approach
NASA Technical Reports Server (NTRS)
Gatzhe, Timothy D.; Melson, Thomas G.
1995-01-01
A very important, but often overlooked step in grid generation is acquiring a suitable geometry definition of the vehicle to be analyzed. In the past, geometry was usually obtained by generating a number of cross-sections of each component. A number of recent efforts have focussed on non-uniform rational B-spline surfaces (NURBS) to provide as single type of analytic surface to deal with inside the grid generator. This approach has required the development of tools to read other types of surfaces and convert them, either exactly or by approximation, into a NURBS surface. This paper describes a more generic parametric evaluator approach, which does not rely on a particular surface type internal to the grid generation system and is less restrictive in the number of surface types that can be represented exactly. This approach has been implemented in the McDonnell Douglas grid generation system, MACGS, and offers direct access to all types of surfaces from a Unigraphics part file.
Grist : grid-based data mining for astronomy
NASA Technical Reports Server (NTRS)
Jacob, Joseph C.; Katz, Daniel S.; Miller, Craig D.; Walia, Harshpreet; Williams, Roy; Djorgovski, S. George; Graham, Matthew J.; Mahabal, Ashish; Babu, Jogesh; Berk, Daniel E. Vanden;
2004-01-01
The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the 'hyperatlas' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.
Grist: Grid-based Data Mining for Astronomy
NASA Astrophysics Data System (ADS)
Jacob, J. C.; Katz, D. S.; Miller, C. D.; Walia, H.; Williams, R. D.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A. A.; Babu, G. J.; vanden Berk, D. E.; Nichol, R.
2005-12-01
The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the ``hyperatlas'' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.
Galaxy Evolution Across The Redshift Desert
NASA Astrophysics Data System (ADS)
Kotulla, Ralf
2010-01-01
GALEV evolutionary synthesis models are an ideal tool to study the formation and evolution of galaxies. I present a large model grid that contains undisturbed E and Sa-Sd type galaxies as well as a wide range of models undergoing starbursts of various strengths and at different times and also includes the subsequent post-starburst phases for these galaxies. This model grid not only allows to describe and refine currently used color selection criteria for Lyman Break Galaxies, BzK galaxies, Extremely Red Objects (ERO) and both Distant and Luminous Red Galaxies (DRG, LRG). It also gives accurate stellar masses, gas fractions, star formation rates, metallicities and burst strengths for an unprecedentedly large sample of galaxies with multi-band photometry. We find, amongst other things, that LBGs are most likely progenitors of local early type spiral galaxies and low-mass ellipticals. We are for the first time able to reproduce E+A features in EROs by post-starbursts as an alternative to dusty starforming galaxies and predict how to discriminate between these scenarios. Our results from photometric analyses perfectly agree with all available spectroscopic information and open up a much wider perspective, including the bulk of the less luminous and more typical galaxy population, in the redshift desert and beyond. All model data are available online at http://www.galev.org.
Multiscale deformation behavior for multilayered steel by in-situ FE-SEM
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Kishimoto, S.; Yin, F.; Kobayashi, M.; Tomimatsu, T.; Kagawa, K.
2010-03-01
The multi-scale deformation behavior of multi-layered steel during tensile loading was investigated by in-situ FE-SEM observation coupled with multi-scale pattern. The material used was multi-layered steel sheet consisting of martensitic and austenitic stainless steel layers. Prior to in-situ tensile testing, the multi-scale pattern combined with a grid and random dots were fabricated by electron beam lithography on the polished surface in the area of 1 mm2 to facilitate direct observation of multi-scale deformation. Both of the grids with pitches of 10 μm and a random speckle pattern ranging from 200 nm to a few μm sizes were drawn onto the specimen surface at same location. The electron moiré method was applied to measure the strain distribution in the deformed specimens at a millimeter scale and digital images correlation method was applied to measure the in-plane deformation and strain distribution at a micron meter scale acquired before and after at various increments of straining. The results showed that the plastic deformation in the austenitic stainless steel layer was larger than the martensitic steel layer at millimeter scale. However, heterogeneous intrinsic grain-scale plastic deformation was clearly observed and it increased with increasing the plastic deformation.
Capturing remote mixing due to internal tides using multi-scale modeling tool: SOMAR-LES
NASA Astrophysics Data System (ADS)
Santilli, Edward; Chalamalla, Vamsi; Scotti, Alberto; Sarkar, Sutanu
2016-11-01
Internal tides that are generated during the interaction of an oscillating barotropic tide with the bottom bathymetry dissipate only a fraction of their energy near the generation region. The rest is radiated away in the form of low- high-mode internal tides. These internal tides dissipate energy at remote locations when they interact with the upper ocean pycnocline, continental slope, and large scale eddies. Capturing the wide range of length and time scales involved during the life-cycle of internal tides is computationally very expensive. A recently developed multi-scale modeling tool called SOMAR-LES combines the adaptive grid refinement features of SOMAR with the turbulence modeling features of a Large Eddy Simulation (LES) to capture multi-scale processes at a reduced computational cost. Numerical simulations of internal tide generation at idealized bottom bathymetries are performed to demonstrate this multi-scale modeling technique. Although each of the remote mixing phenomena have been considered independently in previous studies, this work aims to capture remote mixing processes during the life cycle of an internal tide in more realistic settings, by allowing multi-level (coarse and fine) grids to co-exist and exchange information during the time stepping process.
Global Multi-Resolution Topography (GMRT) Synthesis - Recent Updates and Developments
NASA Astrophysics Data System (ADS)
Ferrini, V. L.; Morton, J. J.; Celnick, M.; McLain, K.; Nitsche, F. O.; Carbotte, S. M.; O'hara, S. H.
2017-12-01
The Global Multi-Resolution Topography (GMRT, http://gmrt.marine-geo.org) synthesis is a multi-resolution compilation of elevation data that is maintained in Mercator, South Polar, and North Polar Projections. GMRT consists of four independently curated elevation components: (1) quality controlled multibeam data ( 100m res.), (2) contributed high-resolution gridded bathymetric data (0.5-200 m res.), (3) ocean basemap data ( 500 m res.), and (4) variable resolution land elevation data (to 10-30 m res. in places). Each component is managed and updated as new content becomes available, with two scheduled releases each year. The ocean basemap content for GMRT includes the International Bathymetric Chart of the Arctic Ocean (IBCAO), the International Bathymetric Chart of the Southern Ocean (IBCSO), and the GEBCO 2014. Most curatorial effort for GMRT is focused on the swath bathymetry component, with an emphasis on data from the US Academic Research Fleet. As of July 2017, GMRT includes data processed and curated by the GMRT Team from 974 research cruises, covering over 29 million square kilometers ( 8%) of the seafloor at 100m resolution. The curated swath bathymetry data from GMRT is routinely contributed to international data synthesis efforts including GEBCO and IBCSO. Additional curatorial effort is associated with gridded data contributions from the international community and ensures that these data are well blended in the synthesis. Significant new additions to the gridded data component this year include the recently released data from the search for MH370 (Geoscience Australia) as well as a large high-resolution grid from the Gulf of Mexico derived from 3D seismic data (US Bureau of Ocean Energy Management). Recent developments in functionality include the deployment of a new Polar GMRT MapTool which enables users to export custom grids and map images in polar projection for their selected area of interest at the resolution of their choosing. Available for both the south and north polar regions, grids can be exported from GMRT in a variety of formats including ASCII, GeoTIFF and NetCDF to support use in common mapping software applications such as ArcGIS, GMT, Matlab, and Python. New web services have also been developed to enable programmatic access to grids and images in north and south polar projections.
A gating grid driver for time projection chambers
NASA Astrophysics Data System (ADS)
Tangwancharoen, S.; Lynch, W. G.; Barney, J.; Estee, J.; Shane, R.; Tsang, M. B.; Zhang, Y.; Isobe, T.; Kurata-Nishimura, M.; Murakami, T.; Xiao, Z. G.; Zhang, Y. F.; SπRIT Collaboration
2017-05-01
A simple but novel driver system has been developed to operate the wire gating grid of a Time Projection Chamber (TPC). This system connects the wires of the gating grid to its driver via low impedance transmission lines. When the gating grid is open, all wires have the same voltage allowing drift electrons, produced by the ionization of the detector gas molecules, to pass through to the anode wires. When the grid is closed, the wires have alternating higher and lower voltages causing the drift electrons to terminate at the more positive wires. Rapid opening of the gating grid with low pickup noise is achieved by quickly shorting the positive and negative wires to attain the average bias potential with N-type and P-type MOSFET switches. The circuit analysis and simulation software SPICE shows that the driver restores the gating grid voltage to 90% of the opening voltage in less than 0.20 μs, for small values of the termination resistors. When tested in the experimental environment of a time projection chamber larger termination resistors were chosen so that the driver opens the gating grid in 0.35 μs. In each case, opening time is basically characterized by the RC constant given by the resistance of the switches and terminating resistors and the capacitance of the gating grid and its transmission line. By adding a second pair of N-type and P-type MOSFET switches, the gating grid is closed by restoring 99% of the original charges to the wires within 3 μs.
Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning
2016-03-01
Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
A high-resolution Godunov method for compressible multi-material flow on overlapping grids
NASA Astrophysics Data System (ADS)
Banks, J. W.; Schwendeman, D. W.; Kapila, A. K.; Henshaw, W. D.
2007-04-01
A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on a uniform-pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on the Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of a planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.
A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken
This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology,more » comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)« less
Simulating multi-scale oceanic processes around Taiwan on unstructured grids
NASA Astrophysics Data System (ADS)
Yu, Hao-Cheng; Zhang, Yinglong J.; Yu, Jason C. S.; Terng, C.; Sun, Weiling; Ye, Fei; Wang, Harry V.; Wang, Zhengui; Huang, Hai
2017-11-01
We validate a 3D unstructured-grid (UG) model for simulating multi-scale processes as occurred in Northwestern Pacific around Taiwan using recently developed new techniques (Zhang et al., Ocean Modeling, 102, 64-81, 2016) that require no bathymetry smoothing even for this region with prevalent steep bottom slopes and many islands. The focus is on short-term forecast for several months instead of long-term variability. Compared with satellite products, the errors for the simulated Sea-surface Height (SSH) and Sea-surface Temperature (SST) are similar to a reference data-assimilated global model. In the nearshore region, comparison with 34 tide gauges located around Taiwan indicates an average RMSE of 13 cm for the tidal elevation. The average RMSE for SST at 6 coastal buoys is 1.2 °C. The mean transport and eddy kinetic energy compare reasonably with previously published values and the reference model used to provide boundary and initial conditions. The model suggests ∼2-day interruption of Kuroshio east of Taiwan during a typhoon period. The effect of tidal mixing is shown to be significant nearshore. The multi-scale model is easily extendable to target regions of interest due to its UG framework and a flexible vertical gridding system, which is shown to be superior to terrain-following coordinates.
Transect versus grid trapping arrangements for sampling small-mammal communities
Dean E. Pearson; Leonard F. Ruggiero
2003-01-01
We compared transect and grid trapping arrangements for assessing small-mammal community composition and relative abundance for 2 years in 2 forest cover types in west-central Montana, USA. Transect arrangements yielded more total captures, more individual captures, and more species than grid arrangements in both cover types in both years. Differences between...
Carpet: Adaptive Mesh Refinement for the Cactus Framework
NASA Astrophysics Data System (ADS)
Schnetter, Erik; Hawley, Scott; Hawke, Ian
2016-11-01
Carpet is an adaptive mesh refinement and multi-patch driver for the Cactus Framework (ascl:1102.013). Cactus is a software framework for solving time-dependent partial differential equations on block-structured grids, and Carpet acts as driver layer providing adaptive mesh refinement, multi-patch capability, as well as parallelization and efficient I/O.
A grid-embedding transonic flow analysis computer program for wing/nacelle configurations
NASA Technical Reports Server (NTRS)
Atta, E. H.; Vadyak, J.
1983-01-01
An efficient grid-interfacing zonal algorithm was developed for computing the three-dimensional transonic flow field about wing/nacelle configurations. the algorithm uses the full-potential formulation and the AF2 approximate factorization scheme. The flow field solution is computed using a component-adaptive grid approach in which separate grids are employed for the individual components in the multi-component configuration, where each component grid is optimized for a particular geometry such as the wing or nacelle. The wing and nacelle component grids are allowed to overlap, and flow field information is transmitted from one grid to another through the overlap region using trivariate interpolation. This report represents a discussion of the computational methods used to generate both the wing and nacelle component grids, the technique used to interface the component grids, and the method used to obtain the inviscid flow solution. Computed results and correlations with experiment are presented. also presented are discussions on the organization of the wing grid generation (GRGEN3) and nacelle grid generation (NGRIDA) computer programs, the grid interface (LK) computer program, and the wing/nacelle flow solution (TWN) computer program. Descriptions of the respective subroutines, definitions of the required input parameters, a discussion on interpretation of the output, and the sample cases illustrating application of the analysis are provided for each of the four computer programs.
Optimal configuration of power grid sources based on optimal particle swarm algorithm
NASA Astrophysics Data System (ADS)
Wen, Yuanhua
2018-04-01
In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.
Modular Spectral Inference Framework Applied to Young Stars and Brown Dwarfs
NASA Technical Reports Server (NTRS)
Gully-Santiago, Michael A.; Marley, Mark S.
2017-01-01
In practice, synthetic spectral models are imperfect, causing inaccurate estimates of stellar parameters. Using forward modeling and statistical inference, we derive accurate stellar parameters for a given observed spectrum by emulating a grid of precomputed spectra to track uncertainties. Spectral inference as applied to brown dwarfs re: Synthetic spectral models (Marley et al 1996 and 2014) via the newest grid spans a massive multi-dimensional grid applied to IGRINS spectra, improving atmospheric models for JWST. When applied to young stars(10Myr) with large starpots, they can be measured spectroscopically, especially in the near-IR with IGRINS.
Topology and grid adaption for high-speed flow computations
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid S.; Tiwari, Surendra N.
1989-01-01
This study investigates the effects of grid topology and grid adaptation on numerical solutions of the Navier-Stokes equations. In the first part of this study, a general procedure is presented for computation of high-speed flow over complex three-dimensional configurations. The flow field is simulated on the surface of a Butler wing in a uniform stream. Results are presented for Mach number 3.5 and a Reynolds number of 2,000,000. The O-type and H-type grids have been used for this study, and the results are compared together and with other theoretical and experimental results. The results demonstrate that while the H-type grid is suitable for the leading and trailing edges, a more accurate solution can be obtained for the middle part of the wing with an O-type grid. In the second part of this study, methods of grid adaption are reviewed and a method is developed with the capability of adapting to several variables. This method is based on a variational approach and is an algebraic method. Also, the method has been formulated in such a way that there is no need for any matrix inversion. This method is used in conjunction with the calculation of hypersonic flow over a blunt-nose body. A movie has been produced which shows simultaneously the transient behavior of the solution and the grid adaption.
Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P
2013-03-11
Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.
Business Pattern of Distributed Energy in Electric Power System Reformation
NASA Astrophysics Data System (ADS)
Liang, YUE; Zhuochu, LIU; Jun, LI; Siwei, LI
2017-05-01
Under the trend of the electric power system revolution, the operation mode of micro power grid that including distributed power will be more diversified. User’s demand response and different strategies on electricity all have great influence on the operation of distributed power grid. This paper will not only research sensitive factors of micro power grid operation, but also analyze and calculate the cost and benefit of micro power grid operation upon different types. Then it will build a tech-economic calculation model, which applies to different types of micro power grid under the reformation of electric power system.
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1994-01-01
A fast algorithm has been developed for accurately generating boundary-conforming, three-dimensional consecutively refined computational grids applicable to arbitrary wing-body and axial turbomachinery geometries. This algorithm has been incorporated into the GRID3O computer program. The method employed in GRID3O is based on using an analytic function to generate two-dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These grids are of the O-type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flow field. Because the built-in nonorthogonal coordinate stretching and shearing cause the grid lines leaving the blade or wing trailing-edge to end at downstream infinity, use of the generated grid simplifies the numerical treatment of three-dimensional trailing vortex sheets. The GRID3O program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 450K of 8 bit bytes. The GRID3O program was developed in 1981.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, M. F.; Ershadi, A.; Jimenez, C.
Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, fourmore » commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m –2; 0.65), followed closely by GLEAM (0.68; 64 W m –2; 0.62), with values in parentheses representing the R 2, RMSD and Nash–Sutcliffe efficiency (NSE), respectively. PM-Mu (0.51; 78 W m –2; 0.45) tended to underestimate fluxes, while SEBS (0.72; 101 W m –2; 0.24) overestimated values relative to observations. A focused analysis across specific biome types and climate zones showed considerable variability in the performance of all models, with no single model consistently able to outperform any other. Results also indicated that the global gridded data tended to reduce the performance for all of the studied models when compared to the tower data, likely a response to scale mismatch and issues related to forcing quality. Rather than relying on any single model simulation, the spatial and temporal variability at both the tower- and grid-scale highlighted the potential benefits of developing an ensemble or blended evaporation product for global-scale LandFlux applications. Hence, challenges related to the robust assessment of the LandFlux product are also discussed.« less
McCabe, M. F.; Ershadi, A.; Jimenez, C.; ...
2016-01-26
Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, fourmore » commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m –2; 0.65), followed closely by GLEAM (0.68; 64 W m –2; 0.62), with values in parentheses representing the R 2, RMSD and Nash–Sutcliffe efficiency (NSE), respectively. PM-Mu (0.51; 78 W m –2; 0.45) tended to underestimate fluxes, while SEBS (0.72; 101 W m –2; 0.24) overestimated values relative to observations. A focused analysis across specific biome types and climate zones showed considerable variability in the performance of all models, with no single model consistently able to outperform any other. Results also indicated that the global gridded data tended to reduce the performance for all of the studied models when compared to the tower data, likely a response to scale mismatch and issues related to forcing quality. Rather than relying on any single model simulation, the spatial and temporal variability at both the tower- and grid-scale highlighted the potential benefits of developing an ensemble or blended evaporation product for global-scale LandFlux applications. Hence, challenges related to the robust assessment of the LandFlux product are also discussed.« less
Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system
NASA Astrophysics Data System (ADS)
Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian
2017-08-01
The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.
Lead-acid batteries in solar photovoltaic power systems for marine aids to navigation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trenchard, S.E.
1981-10-01
Since 1974, the U.S. Coast Guard has been testing lead-acid batteries in solar photovoltaic-powered systems for aids to navigation. Three types of lead-acid batteries, distinguished by the composition of their grid material, have been tested: lead-antimony grid, lead-calcium grid, and pure-lead grid. This report contains a comparison of the charging characteristics and the charge-discharge cycling behavior of each grid type. All types were remarkably similar qualitatively in their daily as well as annual cycling behavior but the significance of the quantitative differences offer distinctive tradeoffs. This report presents models for water usage, depth-of-discharge, and post-cycle capacity for various levels ofmore » voltage regulation. Based on the post-cycle capacity tests, the effect of grid strength, grid thickness, and operating conditions on life expectancy are presented. A final discussion presents the results of a field deployment of solar photovoltaic-powered aids to navigation in the Miami, Florida area. Potential solutions to the battery terminal corrosion and bird guano problems observed are discussed.« less
Deployment of 802.15.4 Sensor Networks for C4ISR Operations
2006-06-01
43 Figure 20.MSP410CA Dense Grid Monitoring (Crossbow User’s Manual, 2005). ....................................44 Figure 21.(a)MICA2 without...Deployment of Sensor Grid (COASTS OPORD, 2006). ...56 Figure 27.Topology View of Two Nodes and Base Station .......57 Figure 28.Nodes Employing Multi...Random Access Memory TCP/IP Transmission Control Protocol/Internet Protocol TinyOS Tiny Micro Threading Operating System UARTs Universal
LLMapReduce: Multi-Level Map-Reduce for High Performance Data Analysis
2016-05-23
LLMapReduce works with several schedulers such as SLURM, Grid Engine and LSF. Keywords—LLMapReduce; map-reduce; performance; scheduler; Grid Engine ...SLURM; LSF I. INTRODUCTION Large scale computing is currently dominated by four ecosystems: supercomputing, database, enterprise , and big data [1...interconnects [6]), High performance math libraries (e.g., BLAS [7, 8], LAPACK [9], ScaLAPACK [10]) designed to exploit special processing hardware, High
A variable resolution right TIN approach for gridded oceanographic data
NASA Astrophysics Data System (ADS)
Marks, David; Elmore, Paul; Blain, Cheryl Ann; Bourgeois, Brian; Petry, Frederick; Ferrini, Vicki
2017-12-01
Many oceanographic applications require multi resolution representation of gridded data such as for bathymetric data. Although triangular irregular networks (TINs) allow for variable resolution, they do not provide a gridded structure. Right TINs (RTINs) are compatible with a gridded structure. We explored the use of two approaches for RTINs termed top-down and bottom-up implementations. We illustrate why the latter is most appropriate for gridded data and describe for this technique how the data can be thinned. While both the top-down and bottom-up approaches accurately preserve the surface morphology of any given region, the top-down method of vertex placement can fail to match the actual vertex locations of the underlying grid in many instances, resulting in obscured topology/bathymetry. Finally we describe the use of the bottom-up approach and data thinning in two applications. The first is to provide thinned, variable resolution bathymetry data for tests of storm surge and inundation modeling, in particular hurricane Katrina. Secondly we consider the use of the approach for an application to an oceanographic data grid of 3-D ocean temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markel, T.; Meintz, A.; Hardy, K.
2015-05-28
The report begins with a discussion of the current state of the energy and transportation systems, followed by a summary of some VGI scenarios and opportunities. The current efforts to create foundational interface standards are detailed, and the requirements for enabling PEVs as a grid resource are presented. Existing technology demonstrations that include vehicle to grid functions are summarized. The report also includes a data-based discussion on the magnitude and variability of PEVs as a grid resource, followed by an overview of existing simulation tools that vi This report is available at no cost from the National Renewable Energy Laboratorymore » (NREL) at www.nrel.gov/publications. can be used to explore the expansion of VGI to larger grid functions that might offer system and customer value. The document concludes with a summary of the requirements and potential action items that would support greater adoption of VGI.« less
ALLTEM UXO detection and discrimination
Asch, T.H.; Wright, D.L.; Moulton, C.W.; Irons, T.P.; Nabighian, M.N.
2008-01-01
ALLTEM is a multi-axis electromagnetic induction system designed for unexploded ordnance (UXO) applications. It uses a continuous triangle-wave excitation and provides good late-time signal-to-noise ratio (SNR) especially for ferrous targets. Multi-axis transmitter (Tx) and receiver (Rx) systems such as ALLTEM provide a richer data set from which to invert for the target parameters required to distinguish between clutter and UXO. Inversions of field data over the Army's UXO Calibration Grid and Blind Test Grid at the Yuma Proving Ground (YPG), Arizona in 2006 produced polarizability moment values for many buried UXO items that were reasonable and generally repeatable for targets of the same type buried at different orientations and depths. In 2007 a test stand was constructed that allows for collection of data with varying spatial data density and accurate automated position control. The behavior of inverted ALLTEM test stand data as a function of spatial data density, sensor SNR, and position error has been investigated. The results indicate that the ALLTEM inversion algorithm is more tolerant of sensor noise and position error than has been reported for single-axis systems. A high confidence level in inversion-derived target parameters is required when a target is declared to be harmless scrap metal that may safely be left in the ground. Unless high confidence can be demonstrated, state regulators will likely require that targets be dug regardless of any "no-dig" classifications produced from inversions, in which case remediation costs would not be decreased.
Functional group placement in protein binding sites: a comparison of GRID and MCSS
NASA Astrophysics Data System (ADS)
Bitetti-Putzer, Ryan; Joseph-McCarthy, Diane; Hogle, James M.; Karplus, Martin
2001-10-01
One approach to combinatorial ligand design begins by determining optimal locations (i.e., local potential energy minima) for functional groups in the binding site of a target macromolecule. MCSS and GRID are two methods, based on significantly different algorithms, which are used for this purpose. A comparison of the two methods for the same functional groups is reported. Calculations were performed for nonpolar and polar functional groups in the internal hydrophobic pocket of the poliovirus capsid protein, and on the binding surface of the src SH3 domain. The two approaches are shown to agree qualitatively; i.e., the global characteristics of the functional group maps generated by MCSS and GRID are similar. However, there are significant differences in the relative interaction energies of the two sets of minima, a consequence of the different functional form used to evaluate polar interactions (electrostatics and hydrogen bonding) in the two methods. The single sphere representation used by GRID affords only positional information, supplemented by the identification of hydrogen bonding interactions. By contrast, the multi-atom representation of most MCSS groups yields in both positional and orientational information. The two methods are most similar for small functional groups, while for larger functional groups MCSS yields results consistent with GRID but superior in detail. These results are in accord with the somewhat different purposes for which the two methods were developed. GRID has been used mainly to introduce functionalities at specific positions in lead compounds, in which case the orientation is predetermined by the structure of the latter. The orientational information provided by MCSS is important for its use in the de novo design of large, multi-functional ligands, as well as for improving lead compounds.
NASA Astrophysics Data System (ADS)
Sun, K.; Zhu, L.; Gonzalez Abad, G.; Nowlan, C. R.; Miller, C. E.; Huang, G.; Liu, X.; Chance, K.; Yang, K.
2017-12-01
It has been well demonstrated that regridding Level 2 products (satellite observations from individual footprints, or pixels) from multiple sensors/species onto regular spatial and temporal grids makes the data more accessible for scientific studies and can even lead to additional discoveries. However, synergizing multiple species retrieved from multiple satellite sensors faces many challenges, including differences in spatial coverage, viewing geometry, and data filtering criteria. These differences will lead to errors and biases if not treated carefully. Operational gridded products are often at 0.25°×0.25° resolution with a global scale, which is too coarse for local heterogeneous emission sources (e.g., urban areas), and at fixed temporal intervals (e.g., daily or monthly). We propose a consistent framework to fully use and properly weight the information of all possible individual satellite observations. A key aspect of this work is an accurate knowledge of the spatial response function (SRF) of the satellite Level 2 pixels. We found that the conventional overlap-area-weighting method (tessellation) is accurate only when the SRF is homogeneous within the parameterized pixel boundary and zero outside the boundary. There will be a tessellation error if the SRF is a smooth distribution, and if this distribution is not properly considered. On the other hand, discretizing the SRF at the destination grid will also induce errors. By balancing these error sources, we found that the SRF should be used in gridding OMI data to 0.2° for fine resolutions. Case studies by merging multiple species and wind data into 0.01° grid will be shown in the presentation.
Grid-size dependence of Cauchy boundary conditions used to simulate stream-aquifer interactions
Mehl, S.; Hill, M.C.
2010-01-01
This work examines the simulation of stream–aquifer interactions as grids are refined vertically and horizontally and suggests that traditional methods for calculating conductance can produce inappropriate values when the grid size is changed. Instead, different grid resolutions require different estimated values. Grid refinement strategies considered include global refinement of the entire model and local refinement of part of the stream. Three methods of calculating the conductance of the Cauchy boundary conditions are investigated. Single- and multi-layer models with narrow and wide streams produced stream leakages that differ by as much as 122% as the grid is refined. Similar results occur for globally and locally refined grids, but the latter required as little as one-quarter the computer execution time and memory and thus are useful for addressing some scale issues of stream–aquifer interactions. Results suggest that existing grid-size criteria for simulating stream–aquifer interactions are useful for one-layer models, but inadequate for three-dimensional models. The grid dependence of the conductance terms suggests that values for refined models using, for example, finite difference or finite-element methods, cannot be determined from previous coarse-grid models or field measurements. Our examples demonstrate the need for a method of obtaining conductances that can be translated to different grid resolutions and provide definitive test cases for investigating alternative conductance formulations.
NASA Astrophysics Data System (ADS)
Piasecki, M.; Ji, P.
2014-12-01
Geoscience data comes in many flavors that are determined by type of data such as continous on a grid or mesh or discrete colelcted at point either as one time samples or a stream of data coming of sensors, but coudl also encompass digital files of any time type such text files, WORD or EXCEL documents, or audio and video files. We present a storage facility that is comprsed of 6 nodes each of speciaized to host a certain data type: grid based data (netCDF on a THREDDS server), GIS data (shapefiles using GeoServer), point time series data (CUAHSI ODM), sample data (EDBS), and any digital data (RAMADAA) plus a server fro Remote sensing data and its products. While there is overlap in data type storage capabilities (rasters can go into several of these nodes) we prefer to use dedicated storage facilities that are a) freeware, and b) have a good degree of maturity, and c) have shown their utility for stroing a cetain type. In addition it allows to place these commonly used software stacks and storage solutiosn side-by-side to develop interoprability strategies. We have used a DRUPAL based system to handle user regoistration and authentication, and also use the system for data submission and data search. In support for tis system we developed an extensive controlled vocabulary system that is an amalgamation of various CVs used in the geosciecne community in order to achieve as high a degree of recognition, such the CF conventions, CUAHSI Cvs, , NASA (GCMD), EPA and USGS taxonomies, GEMET, in addition to ontological representations such as SWEET.
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
NASA Astrophysics Data System (ADS)
Herrington, A. R.; Lauritzen, P. H.; Reed, K. A.
2017-12-01
The spectral element dynamical core of the Community Atmosphere Model (CAM) has recently been coupled to an approximately isotropic, finite-volume grid per implementation of the conservative semi-Lagrangian multi-tracer transport scheme (CAM-SE-CSLAM; Lauritzen et al. 2017). In this framework, the semi-Lagrangian transport of tracers are computed on the finite-volume grid, while the adiabatic dynamics are solved using the spectral element grid. The physical parameterizations are evaluated on the finite-volume grid, as opposed to the unevenly spaced Gauss-Lobatto-Legendre nodes of the spectral element grid. Computing the physics on the finite-volume grid reduces numerical artifacts such as grid imprinting, possibly because the forcing terms are no longer computed at element boundaries where the resolved dynamics are least smooth. The separation of the physics grid and the dynamics grid allows for a unique opportunity to understand the resolution sensitivity in CAM-SE-CSLAM. The observed large sensitivity of CAM to horizontal resolution is a poorly understood impediment to improved simulations of regional climate using global, variable resolution grids. Here, a series of idealized moist simulations are presented in which the finite-volume grid resolution is varied relative to the spectral element grid resolution in CAM-SE-CSLAM. The simulations are carried out at multiple spectral element grid resolutions, in part to provide a companion set of simulations, in which the spectral element grid resolution is varied relative to the finite-volume grid resolution, but more generally to understand if the sensitivity to the finite-volume grid resolution is consistent across a wider spectrum of resolved scales. Results are interpreted in the context of prior ideas regarding resolution sensitivity of global atmospheric models.
Assessment of Preconditioner for a USM3D Hierarchical Adaptive Nonlinear Method (HANIM) (Invited)
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2016-01-01
Enhancements to the previously reported mixed-element USM3D Hierarchical Adaptive Nonlinear Iteration Method (HANIM) framework have been made to further improve robustness, efficiency, and accuracy of computational fluid dynamic simulations. The key enhancements include a multi-color line-implicit preconditioner, a discretely consistent symmetry boundary condition, and a line-mapping method for the turbulence source term discretization. The USM3D iterative convergence for the turbulent flows is assessed on four configurations. The configurations include a two-dimensional (2D) bump-in-channel, the 2D NACA 0012 airfoil, a three-dimensional (3D) bump-in-channel, and a 3D hemisphere cylinder. The Reynolds Averaged Navier Stokes (RANS) solutions have been obtained using a Spalart-Allmaras turbulence model and families of uniformly refined nested grids. Two types of HANIM solutions using line- and point-implicit preconditioners have been computed. Additional solutions using the point-implicit preconditioner alone (PA) method that broadly represents the baseline solver technology have also been computed. The line-implicit HANIM shows superior iterative convergence in most cases with progressively increasing benefits on finer grids.
LSPRAY-IV: A Lagrangian Spray Module
NASA Technical Reports Server (NTRS)
Raju, M. S.
2012-01-01
LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.
New ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul
2012-02-01
The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedstrom, Gerald; Beck, Bret; Mattoon, Caleb
2016-10-01
Merced performs a multi-dimensional integral tl generate so-called 'transfer matrices' for use in deterministic radiation transport applications. It produces transfer matrices on the user-defind energy grid. The angular dependence of outgoing products is captured in a Legendre expansion, up to a user-specified maximun Legendre order. Merced calculations can use multi-threading for enhanced performance on a single compute node.
A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids
Boschitsch, Alexander H.; Fenley, Marcia O.
2011-01-01
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent – analytical solutions are available for this case, thus allowing rigorous assessment of the solution accuracy; (ii) a pair of low dielectric charged spheres embedded in a ionic solvent to compute electrostatic interaction free energies as a function of the distance between sphere centers; (iii) surface potentials of proteins, nucleic acids and their larger-scale assemblies such as ribosomes; and (iv) electrostatic solvation free energies and their salt sensitivities – obtained with both linear and nonlinear Poisson-Boltzmann equation – for a large set of proteins. These latter results along with timings can serve as benchmarks for comparing the performance of different PBE solvers. PMID:21984876
Accessing eSDO Solar Image Processing and Visualization through AstroGrid
NASA Astrophysics Data System (ADS)
Auden, E.; Dalla, S.
2008-08-01
The eSDO project is funded by the UK's Science and Technology Facilities Council (STFC) to integrate Solar Dynamics Observatory (SDO) data, algorithms, and visualization tools with the UK's Virtual Observatory project, AstroGrid. In preparation for the SDO launch in January 2009, the eSDO team has developed nine algorithms covering coronal behaviour, feature recognition, and global / local helioseismology. Each of these algorithms has been deployed as an AstroGrid Common Execution Architecture (CEA) application so that they can be included in complex VO workflows. In addition, the PLASTIC-enabled eSDO "Streaming Tool" online movie application allows users to search multi-instrument solar archives through AstroGrid web services and visualise the image data through galleries, an interactive movie viewing applet, and QuickTime movies generated on-the-fly.
NASA Astrophysics Data System (ADS)
Richings, Gareth W.; Habershon, Scott
2018-04-01
We present significant algorithmic improvements to a recently proposed direct quantum dynamics method, based upon combining well established grid-based quantum dynamics approaches and expansions of the potential energy operator in terms of a weighted sum of Gaussian functions. Specifically, using a sum of low-dimensional Gaussian functions to represent the potential energy surface (PES), combined with a secondary fitting of the PES using singular value decomposition, we show how standard grid-based quantum dynamics methods can be dramatically accelerated without loss of accuracy. This is demonstrated by on-the-fly simulations (using both standard grid-based methods and multi-configuration time-dependent Hartree) of both proton transfer on the electronic ground state of salicylaldimine and the non-adiabatic dynamics of pyrazine.
NASA Astrophysics Data System (ADS)
Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.
2013-03-01
An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.
The Parallel System for Integrating Impact Models and Sectors (pSIMS)
NASA Technical Reports Server (NTRS)
Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian
2014-01-01
We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.
Multi-time scale control of demand flexibility in smart distribution networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte
This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less
Multi-time scale control of demand flexibility in smart distribution networks
Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte; ...
2017-01-01
This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less
Connection technology of HPTO type WECs and DC nano grid in island
NASA Astrophysics Data System (ADS)
Wang, Kun-lin; Tian, Lian-fang; You, Ya-ge; Wang, Xiao-hong; Sheng, Song-wei; Zhang, Ya-qun; Ye, Yin
2016-07-01
Wave energy fluctuating a great deal endangers the security of power grid especially micro grid in island. A DC nano grid supported by batteries is proposed to smooth the output power of wave energy converters (WECs). Thus, renewable energy converters connected to DC grid is a new subject. The characteristics of WECs are very important to the connection technology of HPTO type WECs and DC nano grid. Hydraulic power take-off system (HPTO) is the core unit of the largest category of WECs, with the functions of supplying suitable damping for a WEC to absorb wave energy, and converting captured wave energy to electricity. The HPTO is divided into a hydraulic energy storage system (HESS) and a hydraulic power generation system (HPGS). A primary numerical model for the HPGS is established in this paper. Three important basic characteristics of the HPGS are deduced, which reveal how the generator load determines the HPGS rotation rate. Therefore, the connector of HPTO type WEC and DC nano grid would be an uncontrollable rectifier with high reliability, also would be a controllable power converter with high efficiency, such as interleaved boost converter-IBC. The research shows that it is very flexible to connect to DC nano grid for WECs, but bypass resistance loads are indispensable for the security of WECs.
3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.
2012-12-01
In this work we investigate the geoelectrical structure of the cratonic margin of Fennoscandian Shield by means of magnetotelluric (MT) measurements carried out in Northern Norway and Sweden during summer 2011-2012. The project Magnetotellurics in the Scandes (MaSca) focuses on the investigation of the crust, upper mantle and lithospheric structure in a transition zone from a stable Precambrian cratonic interior to a passive continental margin beneath the Caledonian Orogen and the Scandes Mountains in western Fennoscandia. Recent MT profiles in the central and southern Scandes indicated a large contrast in resistivity between Caledonides and Precambrian basement. The alum shales as a highly conductive layers between the resistive Precambrian basement and the overlying Caledonian nappes are revealed from this profiles. Additional measurements in the Northern Scandes were required. All together data from 60 synchronous long period (LMT) and about 200 broad band (BMT) sites were acquired. The array stretches from Lofoten and Bodo (Norway) in the west to Kiruna and Skeleftea (Sweden) in the east covering an area of 500x500 square kilometers. LMT sites were occupied for about two months, while most of the BMT sites were measured during one day. We have used new multi-grid approach for 3D electromagnetic (EM) inversion and modelling. Our approach is based on the OcTree discretization where the spatial domain is represented by rectangular cells, each of which might be subdivided (recursively) into eight sub-cells. In this simplified implementation the grid is refined only in the horizontal direction, uniformly in each vertical layer. Using multi-grid we manage to have a high grid resolution near the surface (for instance, to tackle with galvanic distortions) and lower resolution at greater depth as the EM fields decay in the Earth according to the diffusion equation. We also have a benefit in computational costs as number of unknowns decrease. The multi-grid forward solver is implemented within the framework of the modular system for EM inversion (ModEM by G. Egbert, A. Kelbert, N. Meqbel), using the ModEM 3D finite difference staggered grid forward solver (second order PDE in the electric field, with divergence correction) as a starting point for our development. The first 3D inversion model for the crust and upper mantle shows the highly conducting bodies in the crust which can be interpreted as alum shales. The eastern and central parts are presented by resistive Precambrian rocks of the Svecofennian and Archaean domains. The upper mantle is resistive and relates to the Baltica basement. We also compare 3D inversion model with the results of 2D inversion along several profiles. We are able to explain some of the features in the data (out of quadrant phase) with 3D model, thus providing more reliable results compared to routine 2D approach.
Improvement of voltage holding and high current beam acceleration by MeV accelerator for ITER NB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, M.; Kashiwagi, M.; Inoue, T.
Voltage holding of -1 MV is an essential issue in development of a multi-aperture multi-grid (MAMuG) negative ion accelerator, of which target is to accelerate 200 A/m{sup 2} H{sup -} ion beam up to the energy of 1 MeV for several tens seconds. Review of voltage holding results ever obtained with various geometries of the accelerators showed that the voltage holding capability was about a half of designed value based on the experiment obtained from ideal small electrode. This is considered due to local electric field concentration in the accelerators, such as edge and steps between multi-aperture grids and itsmore » support structures. Based on the detailed investigation with electric field analysis, accelerator was modified to reduce the electric field concentration by reshaping the support structures and expanding the gap length between the grid supports. After the modifications, the accelerator succeeded in sustaining -1 MV for more than one hour in vacuum. Improvement of the voltage holding characteristics progressed the energy and current accelerated by the MeV accelerator. Up to 2010, beam parameters achieved by the MAMuG accelerator were increased to 879 keV, 0.36 A (157 A/m{sup 2}) at perveance matched condition and 937 keV, 0.33 A (144 A/m{sup 2}) slightly under perveance.« less
A High-Resolution Godunov Method for Compressible Multi-Material Flow on Overlapping Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J W; Schwendeman, D W; Kapila, A K
2006-02-13
A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on amore » uniform pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of an planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.« less
Code IN Exhibits - Supercomputing 2000
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob F.; Kwak, Dochan (Technical Monitor)
2000-01-01
The creation of parameter study suites has recently become a more challenging problem as the parameter studies have become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers immense resource opportunities but at the expense of great difficulty of use. We present ILab, an advanced graphical user interface approach to this problem. Our novel strategy stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1996-01-01
The purpose of this paper is to discuss the use of Computer-Aided Design (CAD) geometry in a Multi-Disciplinary Design Optimization (MDO) environment. Two techniques are presented to facilitate the use of CAD geometry by different disciplines, such as Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM). One method is to transfer the load from a CFD grid to a CSM grid. The second method is to update the CAD geometry for CSM deflection.
Fault tolerance in computational grids: perspectives, challenges, and issues.
Haider, Sajjad; Nazir, Babar
2016-01-01
Computational grids are established with the intention of providing shared access to hardware and software based resources with special reference to increased computational capabilities. Fault tolerance is one of the most important issues faced by the computational grids. The main contribution of this survey is the creation of an extended classification of problems that incur in the computational grid environments. The proposed classification will help researchers, developers, and maintainers of grids to understand the types of issues to be anticipated. Moreover, different types of problems, such as omission, interaction, and timing related have been identified that need to be handled on various layers of the computational grid. In this survey, an analysis and examination is also performed pertaining to the fault tolerance and fault detection mechanisms. Our conclusion is that a dependable and reliable grid can only be established when more emphasis is on fault identification. Moreover, our survey reveals that adaptive and intelligent fault identification, and tolerance techniques can improve the dependability of grid working environments.
Enhancing synchronization stability in a multi-area power grid
Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki
2016-01-01
Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ning; Du, Pengwei; Greitzer, Frank L.
2012-12-31
This paper presents the multi-layer, data-driven advanced reasoning tool (M-DART), a proof-of-principle decision support tool for improved power system operation. M-DART will cross-correlate and examine different data sources to assess anomalies, infer root causes, and anneal data into actionable information. By performing higher-level reasoning “triage” of diverse data sources, M-DART focuses on early detection of emerging power system events and identifies highest priority actions for the human decision maker. M-DART represents a significant advancement over today’s grid monitoring technologies that apply offline analyses to derive model-based guidelines for online real-time operations and use isolated data processing mechanisms focusing on individualmore » data domains. The development of the M-DART will bridge these gaps by reasoning about results obtained from multiple data sources that are enabled by the smart grid infrastructure. This hybrid approach integrates a knowledge base that is trained offline but tuned online to capture model-based relationships while revealing complex causal relationships among data from different domains.« less
Enhanced Product Generation at NASA Data Centers Through Grid Technology
NASA Technical Reports Server (NTRS)
Barkstrom, Bruce R.; Hinke, Thomas H.; Gavali, Shradha; Seufzer, William J.
2003-01-01
This paper describes how grid technology can support the ability of NASA data centers to provide customized data products. A combination of grid technology and commodity processors are proposed to provide the bandwidth necessary to perform customized processing of data, with customized data subsetting providing the initial example. This customized subsetting engine can be used to support a new type of subsetting, called phenomena-based subsetting, where data is subsetted based on its association with some phenomena, such as mesoscale convective systems or hurricanes. This concept is expanded to allow the phenomena to be detected in one type of data, with the subsetting requirements transmitted to the subsetting engine to subset a different type of data. The subsetting requirements are generated by a data mining system and transmitted to the subsetter in the form of an XML feature index that describes the spatial and temporal extent of the phenomena. For this work, a grid-based mining system called the Grid Miner is used to identify the phenomena and generate the feature index. This paper discusses the value of grid technology in facilitating the development of a high performance customized product processing and the coupling of a grid mining system to support phenomena-based subsetting.
High Frequency Plasma Generators for Ion Thrusters
NASA Technical Reports Server (NTRS)
Divergilio, W. F.; Goede, H.; Fosnight, V. V.
1981-01-01
The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.
Toward “optimal” integration of terrestrial biosphere models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwalm, Christopher R.; Huntingzger, Deborah; Fisher, Joshua B.
2015-06-10
Multi-model ensembles (MME) are commonplace in Earth system modeling. Here we perform MME integration using a 10-member ensemble of terrestrial biosphere models (TBMs) from the Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP). We contrast optimal (skill-based for present-day carbon cycling) versus naïve (“one model – one vote”) integration. MsTMIP optimal and naïve mean land sink strength estimates (–1.16 vs. –1.15 Pg C per annum respectively) are statistically indistinguishable. This holds also for grid cell values and extends to gross uptake, biomass, and net ecosystem productivity. TBM skill is similarly indistinguishable. The added complexity of skill-based integration does not materiallymore » change MME values. This suggests that carbon metabolism has predictability limits and/or that all models and references are misspecified. Resolving this issue requires addressing specific uncertainty types (initial conditions, structure, references) and a change in model development paradigms currently dominant in the TBM community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udhay Ravishankar; Milos manic
2013-08-01
This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSimmore » micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.« less
A multi-agent approach to intelligent monitoring in smart grids
NASA Astrophysics Data System (ADS)
Vallejo, D.; Albusac, J.; Glez-Morcillo, C.; Castro-Schez, J. J.; Jiménez, L.
2014-04-01
In this paper, we propose a scalable multi-agent architecture to give support to smart grids, paying special attention to the intelligent monitoring of distribution substations. The data gathered by multiple sensors are used by software agents that are responsible for monitoring different aspects or events of interest, such as normal voltage values or unbalanced intensity values that can end up blowing fuses and decreasing the quality of service of end consumers. The knowledge bases of these agents have been built by means of a formal model for normality analysis that has been successfully used in other surveillance domains. The architecture facilitates the integration of new agents and can be easily configured and deployed to monitor different environments. The experiments have been conducted over a power distribution network.
Multiple perspective vulnerability analysis of the power network
NASA Astrophysics Data System (ADS)
Wang, Shuliang; Zhang, Jianhua; Duan, Na
2018-02-01
To understand the vulnerability of the power network from multiple perspectives, multi-angle and multi-dimensional vulnerability analysis as well as community based vulnerability analysis are proposed in this paper. Taking into account of central China power grid as an example, correlation analysis of different vulnerability models is discussed. Then, vulnerabilities produced by different vulnerability metrics under the given vulnerability models and failure scenarios are analyzed. At last, applying the community detecting approach, critical areas of central China power grid are identified, Vulnerable and robust communities on both topological and functional perspective are acquired and analyzed. The approach introduced in this paper can be used to help decision makers develop optimal protection strategies. It will be also useful to give a multiple vulnerability analysis of the other infrastructure systems.
A Fast Full Tensor Gravity computation algorithm for High Resolution 3D Geologic Interpretations
NASA Astrophysics Data System (ADS)
Jayaram, V.; Crain, K.; Keller, G. R.
2011-12-01
We present an algorithm to rapidly calculate the vertical gravity and full tensor gravity (FTG) values due to a 3-D geologic model. This algorithm can be implemented on single, multi-core CPU and graphical processing units (GPU) architectures. Our technique is based on the line element approximation with a constant density within each grid cell. This type of parameterization is well suited for high-resolution elevation datasets with grid size typically in the range of 1m to 30m. The large high-resolution data grids in our studies employ a pre-filtered mipmap pyramid type representation for the grid data known as the Geometry clipmap. The clipmap was first introduced by Microsoft Research in 2004 to do fly-through terrain visualization. This method caches nested rectangular extents of down-sampled data layers in the pyramid to create view-dependent calculation scheme. Together with the simple grid structure, this allows the gravity to be computed conveniently on-the-fly, or stored in a highly compressed format. Neither of these capabilities has previously been available. Our approach can perform rapid calculations on large topographies including crustal-scale models derived from complex geologic interpretations. For example, we used a 1KM Sphere model consisting of 105000 cells at 10m resolution with 100000 gravity stations. The line element approach took less than 90 seconds to compute the FTG and vertical gravity on an Intel Core i7 CPU at 3.07 GHz utilizing just its single core. Also, unlike traditional gravity computational algorithms, the line-element approach can calculate gravity effects at locations interior or exterior to the model. The only condition that must be met is the observation point cannot be located directly above the line element. Therefore, we perform a location test and then apply appropriate formulation to those data points. We will present and compare the computational performance of the traditional prism method versus the line element approach on different CPU-GPU system configurations. The algorithm calculates the expected gravity at station locations where the observed gravity and FTG data were acquired. This algorithm can be used for all fast forward model calculations of 3D geologic interpretations for data from airborne, space and submarine gravity, and FTG instrumentation.
Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments.
Cao, Xiang; Zhu, Daqi; Yang, Simon X
2016-11-01
Target search in 3-D underwater environments is a challenge in multiple autonomous underwater vehicles (multi-AUVs) exploration. This paper focuses on an effective strategy for multi-AUV target search in the 3-D underwater environments with obstacles. First, the Dempster-Shafer theory of evidence is applied to extract information of environment from the sonar data to build a grid map of the underwater environments. Second, a topologically organized bioinspired neurodynamics model based on the grid map is constructed to represent the dynamic environment. The target globally attracts the AUVs through the dynamic neural activity landscape of the model, while the obstacles locally push the AUVs away to avoid collision. Finally, the AUVs plan their search path to the targets autonomously by a steepest gradient descent rule. The proposed algorithm deals with various situations, such as static targets search, dynamic targets search, and one or several AUVs break down in the 3-D underwater environments with obstacles. The simulation results show that the proposed algorithm is capable of guiding multi-AUV to achieve search task of multiple targets with higher efficiency and adaptability compared with other algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoke, Anderson; Nelson, Austin; Miller, Brian
As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1.) In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2.) The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly ormore » indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness. Crucially, the multi-inverter anti-islanding tests described in this report examine scenarios with multiple inverters connected to multiple different points on the grid. While this so-called 'solar subdivision' scenario has been examined to some extent through simulation, this is the first known work to test it using hardware inverters. This was accomplished through the use of power hardware-in-the-loop (PHIL) simulation, which allows the hardware inverters to be connected to a real-time transient simulation of an electric power system that can be easily reconfigured to test various distribution circuit scenarios. The anti-islanding test design was a modified version of the unintentional islanding test in IEEE Standard 1547.1, which creates a balanced, resonant island with the intent of creating a highly challenging condition for island detection. Three common, commercially available single-phase PV inverters from three different manufacturers were tested. The first part of this work examined each inverter individually using a series of pure hardware resistive-inductive-capacitive (RLC) resonant load based anti-islanding tests to determine the worst-case configuration of grid support functions for each inverter. A grid support function is a function an inverter performs to help stabilize the grid or drive the grid back towards its nominal operating point. The four grid support functions examined here were voltage ride-through, frequency ride-through, Volt-VAr control, and frequency-Watt control. The worst-case grid support configuration was defined as the configuration that led to the maximum island duration (or run-on time, ROT) out of 50 tests of each inverter. For each of the three inverters, it was observed that maximum ROT increased when voltage and frequency ride-through were activated. No conclusive evidence was found that Volt-VAr control or frequency-Watt control increased maximum ROT. Over all single-inverter test cases, the maximum ROT was 711 ms, well below the two-second limit currently imposed by IEEE Standard 1547-2003. A subsequent series of 244 experiments tested all three inverters simultaneously in the same island. These tests again used a procedure based on the IEEE 1547.1 unintentional islanding test to create a difficult-to-detect island condition. For these tests, which used the two worst-case grid support function configurations from the single-inverter tests, the inverters were connected to a variety of island circuit topologies designed to represent the variety of multiple-inverter islands that may occur on real distribution circuits. The interconnecting circuits and the resonant island load itself were represented in the real-time PHIL model. PHIL techniques similar to those employed here have been previously used and validated for anti-islanding tests, and the PHIL resonant load model used in this test was successfully validated by comparing single-inverter PHIL tests to conventional tests using an RLC load bank.« less
Carbon-Based Ion Optics Development at NASA GRC
NASA Technical Reports Server (NTRS)
Haag, Thomas; Patterson, Michael; Rawlin, Vince; Soulas, George
2002-01-01
With recent success of the NSTAR ion thruster on Deep Space 1, there is continued interest in long term, high propellant throughput thrusters to perform energetic missions. This requires flight qualified thrusters that can operate for long periods at high beam density, without degradation in performance resulting from sputter induced grid erosion. Carbon-based materials have shown nearly an order of magnitude improvement in sputter erosion resistance over molybdenum. NASA Glenn Research Center (GRC) has been active over the past several years pursuing carbon-based grid development. In 1995, NASA GRC sponsored work performed by the Jet Propulsion Laboratory to fabricate carbon/carbon composite grids using a machined panel approach. In 1999, a contract was initiated with a commercial vendor to produce carbon/carbon composite grids using a chemical vapor infiltration process. In 2001, NASA GRC purchased pyrolytic carbon grids from a commercial vendor. More recently, a multi-year contract was initiated with North Carolina A&T to develop carbon/carbon composite grids using a resin injection process. The following paper gives a brief overview of these four programs.
The Effects of Dissipation and Coarse Grid Resolution for Multigrid in Flow Problems
NASA Technical Reports Server (NTRS)
Eliasson, Peter; Engquist, Bjoern
1996-01-01
The objective of this paper is to investigate the effects of the numerical dissipation and the resolution of the solution on coarser grids for multigrid with the Euler equation approximations. The convergence is accomplished by multi-stage explicit time-stepping to steady state accelerated by FAS multigrid. A theoretical investigation is carried out for linear hyperbolic equations in one and two dimensions. The spectra reveals that for stability and hence robustness of spatial discretizations with a small amount of numerical dissipation the grid transfer operators have to be accurate enough and the smoother of low temporal accuracy. Numerical results give grid independent convergence in one dimension. For two-dimensional problems with a small amount of numerical dissipation, however, only a few grid levels contribute to an increased speed of convergence. This is explained by the small numerical dissipation leading to dispersion. Increasing the mesh density and hence making the problem over resolved increases the number of mesh levels contributing to an increased speed of convergence. If the steady state equations are elliptic, all grid levels contribute to the convergence regardless of the mesh density.
NASA Technical Reports Server (NTRS)
Sjogreen, Bjoern; Yee, H. C.
2007-01-01
Flows containing steady or nearly steady strong shocks in parts of the flow field, and unsteady turbulence with shocklets on other parts of the flow field are difficult to capture accurately and efficiently employing the same numerical scheme even under the multiblock grid or adaptive grid refinement framework. On one hand, sixth-order or higher shock-capturing methods are appropriate for unsteady turbulence with shocklets. On the other hand, lower order shock-capturing methods are more effective for strong steady shocks in terms of convergence. In order to minimize the shortcomings of low order and high order shock-capturing schemes for the subject flows,a multi- block overlapping grid with different orders of accuracy on different blocks is proposed. Test cases to illustrate the performance of the new solver are included.
Foundations for Protecting Renewable-Rich Distribution Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, Abraham; Brahma, Sukumar; Ranade, Satish
High proliferation of Inverter Interfaced Distributed Energy Resources (IIDERs) into the electric distribution grid introduces new challenges to protection of such systems. This is because the existing protection systems are designed with two assumptions: 1) system is single-sourced, resulting in unidirectional fault current, and (2) fault currents are easily detectable due to much higher magnitudes compared to load currents. Due to the fact that most renewables interface with the grid though inverters, and inverters restrict their current output to levels close to the full load currents, both these assumptions are no longer valid - the system becomes multi-sourced, and overcurrent-basedmore » protection does not work. The primary scope of this study is to analyze the response of a grid-tied inverter to different faults in the grid, leading to new guidelines on protecting renewable-rich distribution systems.« less
NASA Astrophysics Data System (ADS)
Peace, Andrew J.; May, Nicholas E.; Pocock, Mark F.; Shaw, Jonathon A.
1994-04-01
This paper is concerned with the flow modelling capabilities of an advanced CFD simulation system known by the acronym SAUNA. This system is aimed primarily at complex aircraft configurations and possesses a unique grid generation strategy in its use of block-structured, unstructured or hybrid grids, depending on the geometric complexity of the addressed configuration. The main focus of the paper is in demonstrating the recently developed multi-grid, block-structured grid, viscous flow capability of SAUNA, through its evaluation on a number of configurations. Inviscid predictions are also presented, both as a means of interpreting the viscous results and with a view to showing more completely the capabilities of SAUNA. It is shown that accuracy and flexibility are combined in an efficient manner, thus demonstrating the value of SAUNA in aerodynamic design.
Unstructured Cartesian/prismatic grid generation for complex geometries
NASA Technical Reports Server (NTRS)
Karman, Steve L., Jr.
1995-01-01
The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.
A Preliminary Study of Building a Transmission Overlay for Regional US Power Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Yin; Li, Yalong; Liu, Yilu
2015-01-01
Many European countries have taken steps toward a Supergrid in order to transmit large amount of intermittent and remote renewable energy over long distance to load centers. In the US, as the expected increase in renewable generation and electricity demand, similar problem arises. A potential solution is to upgrade the transmission system at a higher voltage by constructing a new overlay grid. This paper will first address basic requirements for such an overlay grid. Potential transmission technologies will also be discussed. A multi-terminal VSC HVDC model is developed in DSATools to implement the overlay grid and a test case onmore » a regional NPCC system will be simulated. Another test system of entire US power grid, with three different interconnections tied together using back-to-back HVDC, is also introduced in this paper. Building an overlay system on top of this test case is ongoing, and will be discussed in future work.« less
Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; ...
2016-02-25
This article discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric gridmore » cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.« less
NASA Astrophysics Data System (ADS)
Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Seo, D. J.; Kim, B.
2014-12-01
The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over Continental United States (CONUS) is nearly completed for the period covering from 2000 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network - Daily (GHCN-D) are used to adjust for those biases and to merge with the radar only product to provide a multi-sensor estimate. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. After assessing the bias and applying reduction or elimination techniques, we are investigating the kriging method and its variants such as simple kriging (SK), ordinary kriging (OK), and conditional bias-penalized Kriging (CBPK) among others. In addition we hope to generate estimates of uncertainty for the gridded estimate. In this work the methodology is presented as well as a comparison between the radar-only product and the final multi-sensor QPE product. The comparison is performed at various time scales from the sub-hourly, to annual. In addition, comparisons over the same period with a suite of lower resolution QPEs derived from ground based radar measurements (Stage IV) and satellite products (TMPA, CMORPH, PERSIANN) are provided in order to give a detailed picture of the improvements and remaining challenges.
Aerosol-cloud interactions in a multi-scale modeling framework
NASA Astrophysics Data System (ADS)
Lin, G.; Ghan, S. J.
2017-12-01
Atmospheric aerosols play an important role in changing the Earth's climate through scattering/absorbing solar and terrestrial radiation and interacting with clouds. However, quantification of the aerosol effects remains one of the most uncertain aspects of current and future climate projection. Much of the uncertainty results from the multi-scale nature of aerosol-cloud interactions, which is very challenging to represent in traditional global climate models (GCMs). In contrast, the multi-scale modeling framework (MMF) provides a viable solution, which explicitly resolves the cloud/precipitation in the cloud resolved model (CRM) embedded in the GCM grid column. In the MMF version of community atmospheric model version 5 (CAM5), aerosol processes are treated with a parameterization, called the Explicit Clouds Parameterized Pollutants (ECPP). It uses the cloud/precipitation statistics derived from the CRM to treat the cloud processing of aerosols on the GCM grid. However, this treatment treats clouds on the CRM grid but aerosols on the GCM grid, which is inconsistent with the reality that cloud-aerosol interactions occur on the cloud scale. To overcome the limitation, here, we propose a new aerosol treatment in the MMF: Explicit Clouds Explicit Aerosols (ECEP), in which we resolve both clouds and aerosols explicitly on the CRM grid. We first applied the MMF with ECPP to the Accelerated Climate Modeling for Energy (ACME) model to have an MMF version of ACME. Further, we also developed an alternative version of ACME-MMF with ECEP. Based on these two models, we have conducted two simulations: one with the ECPP and the other with ECEP. Preliminary results showed that the ECEP simulations tend to predict higher aerosol concentrations than ECPP simulations, because of the more efficient vertical transport from the surface to the higher atmosphere but the less efficient wet removal. We also found that the cloud droplet number concentrations are also different between the two simulations due to the difference in the cloud droplet lifetime. Next, we will explore how the ECEP treatment affects the anthropogenic aerosol forcing, particularly the aerosol indirect forcing, by comparing present-day and pre-industrial simulations.
Numerical grid generation in computational field simulations. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, B.K.; Thompson, J.F.; Haeuser, J.
1996-12-31
To enhance the CFS technology to its next level of applicability (i.e., to create acceptance of CFS in an integrated product and process development involving multidisciplinary optimization) the basic requirements are: rapid turn-around time, reliable and accurate simulation, affordability and appropriate linkage to other engineering disciplines. In response to this demand, there has been a considerable growth in the grid generation related research activities involving automization, parallel processing, linkage with the CAD-CAM systems, CFS with dynamic motion and moving boundaries, strategies and algorithms associated with multi-block structured, unstructured, hybrid, hexahedral, and Cartesian grids, along with its applicability to various disciplinesmore » including biomedical, semiconductor, geophysical, ocean modeling, and multidisciplinary optimization.« less
Diehl, Geoffrey W.; Hon, Olivia J.; Leutgeb, Stefan; Leutgeb, Jill K.
2017-01-01
Summary The medial entorhinal cortex (mEC) has been identified as a hub for spatial information processing by the discovery of grid, border, and head-direction cells. Here we find that in addition to these well characterized classes, nearly all of the remaining two thirds of mEC cells can be categorized as spatially selective. We refer to these cells as non-grid spatial cells and confirmed that their spatial firing patterns were unrelated to running speed and highly reproducible within the same environment. However, in response to manipulations of environmental features, such as box shape or box color, non-grid spatial cells completely reorganized their spatial firing patterns. At the same time, grid cells retained their spatial alignment and predominantly responded with redistributed firing rates across their grid fields. Thus, mEC contains a joint representation of both spatial and environmental feature content, with specialized cell types showing different types of integrated coding of multimodal information. PMID:28343867
Current Grid operation and future role of the Grid
NASA Astrophysics Data System (ADS)
Smirnova, O.
2012-12-01
Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place, Grid will become limited to HEP; if however the current multitude of Grid-like systems will converge to a generic, modular and extensible solution, Grid will become true to its name.
SymPix: A Spherical Grid for Efficient Sampling of Rotationally Invariant Operators
NASA Astrophysics Data System (ADS)
Seljebotn, D. S.; Eriksen, H. K.
2016-02-01
We present SymPix, a special-purpose spherical grid optimized for efficiently sampling rotationally invariant linear operators. This grid is conceptually similar to the Gauss-Legendre (GL) grid, aligning sample points with iso-latitude rings located on Legendre polynomial zeros. Unlike the GL grid, however, the number of grid points per ring varies as a function of latitude, avoiding expensive oversampling near the poles and ensuring nearly equal sky area per grid point. The ratio between the number of grid points in two neighboring rings is required to be a low-order rational number (3, 2, 1, 4/3, 5/4, or 6/5) to maintain a high degree of symmetries. Our main motivation for this grid is to solve linear systems using multi-grid methods, and to construct efficient preconditioners through pixel-space sampling of the linear operator in question. As a benchmark and representative example, we compute a preconditioner for a linear system that involves the operator \\widehat{{\\boldsymbol{D}}}+{\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}}, where \\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}} may be described as both local and rotationally invariant operators, and {\\boldsymbol{N}} is diagonal in the pixel domain. For a bandwidth limit of {{\\ell }}{max} = 3000, we find that our new SymPix implementation yields average speed-ups of 360 and 23 for {\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}}, respectively, compared with the previous state-of-the-art implementation.
McDonald, Richard; Nelson, Jonathan; Kinzel, Paul; Conaway, Jeffrey S.
2006-01-01
The Multi-Dimensional Surface-Water Modeling System (MD_SWMS) is a Graphical User Interface for surface-water flow and sediment-transport models. The capabilities of MD_SWMS for developing models include: importing raw topography and other ancillary data; building the numerical grid and defining initial and boundary conditions; running simulations; visualizing results; and comparing results with measured data.
The impact of air pollution on premature mortality in Europe and the United States (U.S.) for the year 2010 is modelled by a multi-model ensemble of regional models in the framework of the AQMEII3 project. The gridded surface concentrations of O3, CO, SO2 and PM2.5 from each mode...
Well-posed and stable transmission problems
NASA Astrophysics Data System (ADS)
Nordström, Jan; Linders, Viktor
2018-07-01
We introduce the notion of a transmission problem to describe a general class of problems where different dynamics are coupled in time. Well-posedness and stability are analysed for continuous and discrete problems using both strong and weak formulations, and a general transmission condition is obtained. The theory is applied to the coupling of fluid-acoustic models, multi-grid implementations, adaptive mesh refinements, multi-block formulations and numerical filtering.
Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture
NASA Astrophysics Data System (ADS)
Hassan, Ezeldin A.
Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.
NASA Astrophysics Data System (ADS)
Kumar, Dheeraj; Gautam, Amar Kant; Palmate, Santosh S.; Pandey, Ashish; Suryavanshi, Shakti; Rathore, Neha; Sharma, Nayan
2017-08-01
To support the GPM mission which is homologous to its predecessor, the Tropical Rainfall Measuring Mission (TRMM), this study has been undertaken to evaluate the accuracy of Tropical Rainfall Measuring Mission multi-satellite precipitation analysis (TMPA) daily-accumulated precipitation products for 5 years (2008-2012) using the statistical methods and contingency table method. The analysis was performed on daily, monthly, seasonal and yearly basis. The TMPA precipitation estimates were also evaluated for each grid point i.e. 0.25° × 0.25° and for 18 rain gauge stations of the Betwa River basin, India. Results indicated that TMPA precipitation overestimates the daily and monthly precipitation in general, particularly for the middle sub-basin in the non-monsoon season. Furthermore, precision of TMPA precipitation estimates declines with the decrease of altitude at both grid and sub-basin scale. The study also revealed that TMPA precipitation estimates provide better accuracy in the upstream of the basin compared to downstream basin. Nevertheless, the detection capability of daily TMPA precipitation improves with increase in altitude for drizzle rain events. However, the detection capability decreases during non-monsoon and monsoon seasons when capturing moderate and heavy rain events, respectively. The veracity of TMPA precipitation estimates was improved during the rainy season than during the dry season at all scenarios investigated. The analyses suggest that there is a need for better precipitation estimation algorithm and extensive accuracy verification against terrestrial precipitation measurement to capture the different types of rain events more reliably over the sub-humid tropical regions of India.
NASA Astrophysics Data System (ADS)
Kacem, S.; Eichwald, O.; Ducasse, O.; Renon, N.; Yousfi, M.; Charrada, K.
2012-01-01
Streamers dynamics are characterized by the fast propagation of ionized shock waves at the nanosecond scale under very sharp space charge variations. The streamer dynamics modelling needs the solution of charged particle transport equations coupled to the elliptic Poisson's equation. The latter has to be solved at each time step of the streamers evolution in order to follow the propagation of the resulting space charge electric field. In the present paper, a full multi grid (FMG) and a multi grid (MG) methods have been adapted to solve Poisson's equation for streamer discharge simulations between asymmetric electrodes. The validity of the FMG method for the computation of the potential field is first shown by performing direct comparisons with analytic solution of the Laplacian potential in the case of a point-to-plane geometry. The efficiency of the method is also compared with the classical successive over relaxation method (SOR) and MUltifrontal massively parallel solver (MUMPS). MG method is then applied in the case of the simulation of positive streamer propagation and its efficiency is evaluated from comparisons to SOR and MUMPS methods in the chosen point-to-plane configuration. Very good agreements are obtained between the three methods for all electro-hydrodynamics characteristics of the streamer during its propagation in the inter-electrode gap. However in the case of MG method, the computational time to solve the Poisson's equation is at least 2 times faster in our simulation conditions.
Integrated multidisciplinary CAD/CAE environment for micro-electro-mechanical systems (MEMS)
NASA Astrophysics Data System (ADS)
Przekwas, Andrzej J.
1999-03-01
Computational design of MEMS involves several strongly coupled physical disciplines, including fluid mechanics, heat transfer, stress/deformation dynamics, electronics, electro/magneto statics, calorics, biochemistry and others. CFDRC is developing a new generation multi-disciplinary CAD systems for MEMS using high-fidelity field solvers on unstructured, solution-adaptive grids for a full range of disciplines. The software system, ACE + MEMS, includes all essential CAD tools; geometry/grid generation for multi- discipline, multi-equation solvers, GUI, tightly coupled configurable 3D field solvers for FVM, FEM and BEM and a 3D visualization/animation tool. The flow/heat transfer/calorics/chemistry equations are solved with unstructured adaptive FVM solver, stress/deformation are computed with a FEM STRESS solver and a FAST BEM solver is used to solve linear heat transfer, electro/magnetostatics and elastostatics equations on adaptive polygonal surface grids. Tight multidisciplinary coupling and automatic interoperability between the tools was achieved by designing a comprehensive database structure and APIs for complete model definition. The virtual model definition is implemented in data transfer facility, a publicly available tool described in this paper. The paper presents overall description of the software architecture and MEMS design flow in ACE + MEMS. It describes current status, ongoing effort and future plans for the software. The paper also discusses new concepts of mixed-level and mixed- dimensionality capability in which 1D microfluidic networks are simulated concurrently with 3D high-fidelity models of discrete components.
Parallel Unsteady Overset Mesh Methodology for a Multi-Solver Paradigm with Adaptive Cartesian Grids
2008-08-21
Engineer, U.S. Army Research Laboratory ., Matthew.W.Floros@nasa.gov, AIAA Member ‡Senior Research Scientist, Scaled Numerical Physics LLC., awissink...IV.E and IV.D). Good linear scalability was observed for all three cases up to 12 processors. Beyond that the scalability drops off depending on grid...Research Laboratory for the usage of SUGGAR module and Yikloon Lee at NAVAIR for the usage of the NAVAIR-IHC code. 13 of 22 American Institute of
Arc-Length Continuation and Multi-Grid Techniques for Nonlinear Elliptic Eigenvalue Problems,
1981-03-19
size of the finest grid. We use the (AM) adaptive version of the Cycle C algorithm , unless otherwise stated. The first modified algorithm is the...by computing the derivative, uk, at a known solution and use it to get a better initial guess for the next value of X in a predictor - corrector fashion...factorization of the Jacobian Gu computed already in the Newton step. Using such a predictor - corrector method will often allow us to take a much bigger step
SciFlo: Semantically-Enabled Grid Workflow for Collaborative Science
NASA Astrophysics Data System (ADS)
Yunck, T.; Wilson, B. D.; Raskin, R.; Manipon, G.
2005-12-01
SciFlo is a system for Scientific Knowledge Creation on the Grid using a Semantically-Enabled Dataflow Execution Environment. SciFlo leverages Simple Object Access Protocol (SOAP) Web Services and the Grid Computing standards (WS-* standards and the Globus Alliance toolkits), and enables scientists to do multi-instrument Earth Science by assembling reusable SOAP Services, native executables, local command-line scripts, and python codes into a distributed computing flow (a graph of operators). SciFlo's XML dataflow documents can be a mixture of concrete operators (fully bound operations) and abstract template operators (late binding via semantic lookup). All data objects and operators can be both simply typed (simple and complex types in XML schema) and semantically typed using controlled vocabularies (linked to OWL ontologies such as SWEET). By exploiting ontology-enhanced search and inference, one can discover (and automatically invoke) Web Services and operators that have been semantically labeled as performing the desired transformation, and adapt a particular invocation to the proper interface (number, types, and meaning of inputs and outputs). The SciFlo client & server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. The scientist injects a distributed computation into the Grid by simply filling out an HTML form or directly authoring the underlying XML dataflow document, and results are returned directly to the scientist's desktop. A Visual Programming tool is also being developed, but it is not required. Once an analysis has been specified for a granule or day of data, it can be easily repeated with different control parameters and over months or years of data. SciFlo uses and preserves semantics, and also generates and infers new semantic annotations. Specifically, the SciFlo engine uses semantic metadata to understand (infer) what it is doing and potentially improve the data flow; preserves semantics by saving links to the semantics of (metadata describing) the input datasets, related datasets, and the data transformations (algorithms) used to generate downstream products; generates new metadata by allowing the user to add semantic annotations to the generated data products (or simply accept automatically generated provenance annotations); and infers new semantic metadata by understanding and applying logic to the semantics of the data and the transformations performed. Much ontology development still needs to be done but, nevertheless, SciFlo documents provide a substrate for using and preserving more semantics as ontologies develop. We will give a live demonstration of the growing SciFlo network using an example dataflow in which atmospheric temperature and water vapor profiles from three Earth Observing System (EOS) instruments are retrieved using SOAP (geo-location query & data access) services, co-registered, and visually & statistically compared on demand (see http://sciflo.jpl.nasa.gov for more information).
Representing Simple Geometry Types in NetCDF-CF
NASA Astrophysics Data System (ADS)
Blodgett, D. L.; Koziol, B. W.; Whiteaker, T. L.; Simons, R.
2016-12-01
The Climate and Forecast (CF) metadata convention is well-suited for representing gridded and point-based observational datasets. However, CF currently has no accepted mechanism for representing simple geometry types such as lines and polygons. Lack of support for simple geometries within CF has unintentionally excluded a broad set of geoscientific data types from NetCDF-CF data encodings. For example, hydrologic datasets often contain polygon watershed catchments and polyline stream reaches in addition to point sampling stations and water management infrastructure. The latter has an associated CF specification. In the interest of supporting all simple geometry types within CF, a working group was formed following an EarthCube workshop on Advancing NetCDF-CF [1] to draft a CF specification for simple geometries: points, lines, polygons, and their associated multi-geometry representations [2]. The draft also includes parametric geometry types such as circles and ellipses. This presentation will provide an overview of the scope and content of the proposed specification focusing on mechanisms for representing coordinate arrays using variable length or continuous ragged arrays, capturing multi-geometries, and accounting for type-specific geometry artifacts such as polygon holes/interiors, node ordering, etc. The concepts contained in the specification proposal will be described with a use case representing streamflow in rivers and evapotranspiration from HUC12 watersheds. We will also introduce Python and R reference implementations developed alongside the technical specification. These in-development, open source Python and R libraries convert between commonly used GIS software objects (i.e. GEOS-based primitives) and their associated simple geometry CF representation. [1] http://www.unidata.ucar.edu/events/2016CFWorkshop/[2] https://github.com/bekozi/netCDF-CF-simple-geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael J. Bockelie
2002-01-04
This DOE SBIR Phase II final report summarizes research that has been performed to develop a parallel adaptive tool for modeling steady, two phase turbulent reacting flow. The target applications for the new tool are full scale, fossil-fuel fired boilers and furnaces such as those used in the electric utility industry, chemical process industry and mineral/metal process industry. The type of analyses to be performed on these systems are engineering calculations to evaluate the impact on overall furnace performance due to operational, process or equipment changes. To develop a Computational Fluid Dynamics (CFD) model of an industrial scale furnace requiresmore » a carefully designed grid that will capture all of the large and small scale features of the flowfield. Industrial systems are quite large, usually measured in tens of feet, but contain numerous burners, air injection ports, flames and localized behavior with dimensions that are measured in inches or fractions of inches. To create an accurate computational model of such systems requires capturing length scales within the flow field that span several orders of magnitude. In addition, to create an industrially useful model, the grid can not contain too many grid points - the model must be able to execute on an inexpensive desktop PC in a matter of days. An adaptive mesh provides a convenient means to create a grid that can capture both fine flow field detail within a very large domain with a ''reasonable'' number of grid points. However, the use of an adaptive mesh requires the development of a new flow solver. To create the new simulation tool, we have combined existing reacting CFD modeling software with new software based on emerging block structured Adaptive Mesh Refinement (AMR) technologies developed at Lawrence Berkeley National Laboratory (LBNL). Specifically, we combined: -physical models, modeling expertise, and software from existing combustion simulation codes used by Reaction Engineering International; -mesh adaption, data management, and parallelization software and technology being developed by users of the BoxLib library at LBNL; and -solution methods for problems formulated on block structured grids that were being developed in collaboration with technical staff members at the University of Utah Center for High Performance Computing (CHPC) and at LBNL. The combustion modeling software used by Reaction Engineering International represents an investment of over fifty man-years of development, conducted over a period of twenty years. Thus, it was impractical to achieve our objective by starting from scratch. The research program resulted in an adaptive grid, reacting CFD flow solver that can be used only on limited problems. In current form the code is appropriate for use on academic problems with simplified geometries. The new solver is not sufficiently robust or sufficiently general to be used in a ''production mode'' for industrial applications. The principle difficulty lies with the multi-level solver technology. The use of multi-level solvers on adaptive grids with embedded boundaries is not yet a mature field and there are many issues that remain to be resolved. From the lessons learned in this SBIR program, we have started work on a new flow solver with an AMR capability. The new code is based on a conventional cell-by-cell mesh refinement strategy used in unstructured grid solvers that employ hexahedral cells. The new solver employs several of the concepts and solution strategies developed within this research program. The formulation of the composite grid problem for the new solver has been designed to avoid the embedded boundary complications encountered in this SBIR project. This follow-on effort will result in a reacting flow CFD solver with localized mesh capability that can be used to perform engineering calculations on industrial problems in a production mode.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... report entitled, ``Communications Requirements of Smart Grid Technologies.'' In this report, DOE sets... DOE in understanding current and future communications needs of the Smart Grid and how they may be met... technologies required to realize the many potential benefits of the Smart Grid, as well as the types of...
GridTool: A surface modeling and grid generation tool
NASA Technical Reports Server (NTRS)
Samareh-Abolhassani, Jamshid
1995-01-01
GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.
Gridded National Inventory of U.S. Methane Emissions
NASA Technical Reports Server (NTRS)
Maasakkers, Joannes D.; Jacob, Daniel J.; Sulprizio, Melissa P.; Turner, Alexander J.; Weitz, Melissa; Wirth, Tom; Hight, Cate; DeFigueiredo, Mark; Desai, Mausami; Schmeltz, Rachel;
2016-01-01
We present a gridded inventory of US anthropogenic methane emissions with 0.1 deg x 0.1 deg spatial resolution, monthly temporal resolution, and detailed scale dependent error characterization. The inventory is designed to be onsistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissionsand Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a widerange of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show large differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.
Gridded national inventory of U.S. methane emissions
Maasakkers, Joannes D.; Jacob, Daniel J.; Sulprizio, Melissa P.; ...
2016-11-16
Here we present a gridded inventory of US anthropogenic methane emissions with 0.1° × 0.1° spatial resolution, monthly temporal resolution, and detailed scaledependent error characterization. The inventory is designed to be consistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a wide range of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show largemore » differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Finally, our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.« less
Gridded National Inventory of U.S. Methane Emissions.
Maasakkers, Joannes D; Jacob, Daniel J; Sulprizio, Melissa P; Turner, Alexander J; Weitz, Melissa; Wirth, Tom; Hight, Cate; DeFigueiredo, Mark; Desai, Mausami; Schmeltz, Rachel; Hockstad, Leif; Bloom, Anthony A; Bowman, Kevin W; Jeong, Seongeun; Fischer, Marc L
2016-12-06
We present a gridded inventory of US anthropogenic methane emissions with 0.1° × 0.1° spatial resolution, monthly temporal resolution, and detailed scale-dependent error characterization. The inventory is designed to be consistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a wide range of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show large differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.
Performance Analysis of a Hybrid Overset Multi-Block Application on Multiple Architectures
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
This paper presents a detailed performance analysis of a multi-block overset grid compu- tational fluid dynamics app!ication on multiple state-of-the-art computer architectures. The application is implemented using a hybrid MPI+OpenMP programming paradigm that exploits both coarse and fine-grain parallelism; the former via MPI message passing and the latter via OpenMP directives. The hybrid model also extends the applicability of multi-block programs to large clusters of SNIP nodes by overcoming the restriction that the number of processors be less than the number of grid blocks. A key kernel of the application, namely the LU-SGS linear solver, had to be modified to enhance the performance of the hybrid approach on the target machines. Investigations were conducted on cacheless Cray SX6 vector processors, cache-based IBM Power3 and Power4 architectures, and single system image SGI Origin3000 platforms. Overall results for complex vortex dynamics simulations demonstrate that the SX6 achieves the highest performance and outperforms the RISC-based architectures; however, the best scaling performance was achieved on the Power3.
Fellin, Francesco; Righetto, Roberto; Fava, Giovanni; Trevisan, Diego; Amelio, Dante; Farace, Paolo
2017-03-01
To investigate the range errors made in treatment planning due to the presence of the immobilization devices along the proton beam path. The measured water equivalent thickness (WET) of selected devices was measured by a high-energy spot and a multi-layer ionization chamber and compared with that predicted by treatment planning system (TPS). Two treatment couches, two thermoplastic masks (both un-stretched and stretched) and one headrest were selected. At TPS, every immobilization device was modelled as being part of the patient. The following parameters were assessed: CT acquisition protocol, dose-calculation grid-sizes (1.5 and 3.0mm) and beam-entrance with respect to the devices (coplanar and non-coplanar). Finally, the potential errors produced by a wrong manual separation between treatment couch and the CT table (not present during treatment) were investigated. In the thermoplastic mask, there was a clear effect due to beam entrance, a moderate effect due to the CT protocols and almost no effect due to TPS grid-size, with 1mm errors observed only when thick un-stretched portions were crossed by non-coplanar beams. In the treatment couches the WET errors were negligible (<0.3mm) regardless of the grid-size and CT protocol. The potential range errors produced in the manual separation between treatment couch and CT table were small with 1.5mm grid-size, but could be >0.5mm with a 3.0mm grid-size. In the headrest, WET errors were negligible (0.2mm). With only one exception (un-stretched mask, non-coplanar beams), the WET of all the immobilization devices was properly modelled by the TPS. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Navier-Stokes calculations on multi-element airfoils using a chimera-based solver
NASA Technical Reports Server (NTRS)
Jasper, Donald W.; Agrawal, Shreekant; Robinson, Brian A.
1993-01-01
A study of Navier-Stokes calculations of flows about multielement airfoils using a chimera grid approach is presented. The chimera approach utilizes structured, overlapped grids which allow great flexibility of grid arrangement and simplifies grid generation. Calculations are made for two-, three-, and four-element airfoils, and modeling of the effect of gap distance between elements is demonstrated for a two element case. Solutions are obtained using the thin-layer form of the Reynolds averaged Navier-Stokes equations with turbulence closure provided by the Baldwin-Lomax algebraic model or the Baldwin-Barth one equation model. The Baldwin-Barth turbulence model is shown to provide better agreement with experimental data and to dramatically improve convergence rates for some cases. Recently developed, improved farfield boundary conditions are incorporated into the solver for greater efficiency. Computed results show good comparison with experimental data which include aerodynamic forces, surface pressures, and boundary layer velocity profiles.
A Grid of NLTE Line-blanketed Model Atmospheres of Early B-Type Stars
NASA Astrophysics Data System (ADS)
Lanz, Thierry; Hubeny, Ivan
2007-03-01
We have constructed a comprehensive grid of 1540 metal line-blanketed, NLTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to early B-type stars. The BSTAR2006 grid considers 16 values of effective temperatures, 15,000 K<=Teff<=30,000 K with 1000 K steps, 13 surface gravities, 1.75<=logg<=4.75 with 0.25 dex steps, six chemical compositions, and a microturbulent velocity of 2 km s-1. The lower limit of logg for a given effective temperature is set by an approximate location of the Eddington limit. The selected chemical compositions range from twice to one-tenth of the solar metallicity and metal-free. Additional model atmospheres for B supergiants (logg<=3.0) have been calculated with a higher microturbulent velocity (10 km s-1) and a surface composition that is enriched in helium and nitrogen and depleted in carbon. This new grid complements our earlier OSTAR2002 grid of O-type stars (our Paper I). The paper contains a description of the BSTAR2006 grid and some illustrative examples and comparisons. NLTE ionization fractions, bolometric corrections, radiative accelerations, and effective gravities are obtained over the parameter range covered by the grid. By extrapolating radiative accelerations, we have determined an improved estimate of the Eddington limit in absence of rotation between 55,000 and 15,000 K. The complete BSTAR2006 grid is available at the TLUSTY Web site.
Analysis of the Harrier forebody/inlet design using computational techniques
NASA Technical Reports Server (NTRS)
Chow, Chuen-Yen
1993-01-01
Under the support of this Cooperative Agreement, computations of transonic flow past the complex forebody/inlet configuration of the AV-8B Harrier II have been performed. The actual aircraft configuration was measured and its surface and surrounding domain were defined using computational structured grids. The thin-layer Navier-Stokes equations were used to model the flow along with the Chimera embedded multi-grid technique. A fully conservative, alternating direction implicit (ADI), approximately-factored, partially flux-split algorithm was employed to perform the computation. An existing code was altered to conform with the needs of the study, and some special engine face boundary conditions were developed. The algorithm incorporated the Chimera technique and an algebraic turbulence model in order to deal with the embedded multi-grids and viscous governing equations. Comparison with experimental data has yielded good agreement for the simplifications incorporated into the analysis. The aim of the present research was to provide a methodology for the numerical solution of complex, combined external/internal flows. This is the first time-dependent Navier-Stokes solution for a geometry in which the fuselage and inlet share a wall. The results indicate the methodology used here is a viable tool for transonic aircraft modeling.
Numerical investigation of multi-element airfoils
NASA Technical Reports Server (NTRS)
Cummings, Russell M.
1993-01-01
The flow over multi-element airfoils with flat-plate lift-enhancing tabs was numerically investigated. Tabs ranging in height from 0.25 percent to 1.25 percent of the reference airfoil chord were studied near the trailing edge of the main-element. This two-dimensional numerical simulation employed an incompressible Navier-Stokes solver on a structured, embedded grid topology. New grid refinements were used to improve the accuracy of the solution near the overlapping grid boundaries. The effects of various tabs were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Both computed and measured results indicated that a tab in the main-element cove improved the maximum lift and lift-to-drag ratio relative to the baseline airfoil without a tab. Computed streamlines revealed that the additional turning caused by the tab may reduce the amount of separated flow on the flap. A three-element airfoil was also studied over a range of Reynolds numbers. For the optimized flap rigging, the computed and measured Reynolds number effects were similar. When the flap was moved from the optimum position, numerical results indicated that a tab may help to reoptimize the airfoil to within 1 percent of the optimum flap case.
NASA Astrophysics Data System (ADS)
Pathiraja, S. D.; van Leeuwen, P. J.
2017-12-01
Model Uncertainty Quantification remains one of the central challenges of effective Data Assimilation (DA) in complex partially observed non-linear systems. Stochastic parameterization methods have been proposed in recent years as a means of capturing the uncertainty associated with unresolved sub-grid scale processes. Such approaches generally require some knowledge of the true sub-grid scale process or rely on full observations of the larger scale resolved process. We present a methodology for estimating the statistics of sub-grid scale processes using only partial observations of the resolved process. It finds model error realisations over a training period by minimizing their conditional variance, constrained by available observations. Special is that these realisations are binned conditioned on the previous model state during the minimization process, allowing for the recovery of complex error structures. The efficacy of the approach is demonstrated through numerical experiments on the multi-scale Lorenz 96' model. We consider different parameterizations of the model with both small and large time scale separations between slow and fast variables. Results are compared to two existing methods for accounting for model uncertainty in DA and shown to provide improved analyses and forecasts.
Models and methods for assessing the value of HVDC and MVDC technologies in modern power grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Elizondo, Marcelo A.; O'Brien, James G.
This report reflects the results of U.S. Department of Energy’s (DOE) Grid Modernization project 0074 “Models and methods for assessing the value of HVDC [high-voltage direct current] and MTDC [multi-terminal direct current] technologies in modern power grids.” The work was done by the Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL) in cooperation with Mid-Continent Independent System Operator (MISO) and Siemens. The main motivation of this study was to show the benefit of using direct current (DC) systems larger than those in existence today as they overlap with the alternating current (AC) systems. Proper use of theirmore » flexibility in terms of active/reactive power control and fast response can provide much-needed services to the grid at the same time as moving large blocks of energy to take advantage of cost diversity. Ultimately, the project’s success will enable decision-makers and investors to make well-informed decisions regarding this use of DC systems. This project showed the technical feasibility of HVDC macrogrid for frequency control and congestion relief in addition to bulk power transfers. Industry-established models for commonly used technologies were employed, along with high-fidelity models for recently developed HVDC converter technologies; like the modular multilevel converters (MMCs), a voltage source converters (VSC). Models for General Electric Positive Sequence Load Flow (GE PSLF) and Siemens Power System Simulator (PSS/E), widely used analysis programs, were for the first time adapted to include at the same time both Western Electricity Coordinating Council (WECC) and Eastern Interconnection (EI), the two largest North American interconnections. The high-fidelity models and their control were developed in detail for MMC system and extended to HVDC systems in point-to-point and in three-node multi-terminal configurations. Using a continental-level mixed AC-DC grid model, and using a HVDC macrogrid power flow and transient stability model, the results showed that the HVDC macrogrid relieved congestion and mitigated loop flows in AC networks, and provided up to 24% improvement in frequency responses. These are realistic studies, based on the 2025 heavy summer and EI multi-regional modeling working group (MMWG) 2026 summer peak cases. This work developed high-fidelity models and simulation algorithms to understand the dynamics of MMC. The developed models and simulation algorithms are up to 25 times faster than the existing algorithms. Models and control algorithms for high-fidelity models were designed and tested for point-to-point and multi-terminal configurations. The multi-terminal configuration was tested connecting simplified models of EI, WI, and Electric Reliability Council of Texas (ERCOT). The developed models showed up to 45% improvement in frequency response with the connection of all the three asynchronous interconnections in the United States using fast and advanced DC technologies like the multi-terminal MMC-DC system. Future work will look into developing high-fidelity models of other advanced DC technologies, combining high-fidelity models with the continental-level model, incorporating additional services. More scenarios involving large-scale HVDC and MTDC will be evaluated.« less
A framework for WRF to WRF-IBM grid nesting to enable multiscale simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersema, David John; Lundquist, Katherine A.; Chow, Fotini Katapodes
With advances in computational power, mesoscale models, such as the Weather Research and Forecasting (WRF) model, are often pushed to higher resolutions. As the model’s horizontal resolution is refined, the maximum resolved terrain slope will increase. Because WRF uses a terrain-following coordinate, this increase in resolved terrain slopes introduces additional grid skewness. At high resolutions and over complex terrain, this grid skewness can introduce large numerical errors that require methods, such as the immersed boundary method, to keep the model accurate and stable. Our implementation of the immersed boundary method in the WRF model, WRF-IBM, has proven effective at microscalemore » simulations over complex terrain. WRF-IBM uses a non-conforming grid that extends beneath the model’s terrain. Boundary conditions at the immersed boundary, the terrain, are enforced by introducing a body force term to the governing equations at points directly beneath the immersed boundary. Nesting between a WRF parent grid and a WRF-IBM child grid requires a new framework for initialization and forcing of the child WRF-IBM grid. This framework will enable concurrent multi-scale simulations within the WRF model, improving the accuracy of high-resolution simulations and enabling simulations across a wide range of scales.« less
Failure probability analysis of optical grid
NASA Astrophysics Data System (ADS)
Zhong, Yaoquan; Guo, Wei; Sun, Weiqiang; Jin, Yaohui; Hu, Weisheng
2008-11-01
Optical grid, the integrated computing environment based on optical network, is expected to be an efficient infrastructure to support advanced data-intensive grid applications. In optical grid, the faults of both computational and network resources are inevitable due to the large scale and high complexity of the system. With the optical network based distributed computing systems extensive applied in the processing of data, the requirement of the application failure probability have been an important indicator of the quality of application and an important aspect the operators consider. This paper will present a task-based analysis method of the application failure probability in optical grid. Then the failure probability of the entire application can be quantified, and the performance of reducing application failure probability in different backup strategies can be compared, so that the different requirements of different clients can be satisfied according to the application failure probability respectively. In optical grid, when the application based DAG (directed acyclic graph) is executed in different backup strategies, the application failure probability and the application complete time is different. This paper will propose new multi-objective differentiated services algorithm (MDSA). New application scheduling algorithm can guarantee the requirement of the failure probability and improve the network resource utilization, realize a compromise between the network operator and the application submission. Then differentiated services can be achieved in optical grid.
Validation of Land-Surface Mosaic Heterogeneity in the GEOS DAS
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Molod, Andrea; Houser, Paul R.; Schubert, Siegfried
1999-01-01
The Mosaic Land-surface Model (LSM) has been included into the current GEOS Data Assimilation System (DAS). The LSM uses a more advanced representation of physical processes than previous versions of the GEOS DAS, including the representation of sub-grid heterogeneity of the land-surface through the Mosaic approach. As a first approximation, Mosaic assumes that all similar surface types within a grid-cell can be lumped together as a single'tile'. Within one GCM grid-cell, there might be 1 - 5 different tiles or surface types. All tiles are subjected to the grid-scale forcing (radiation, air temperature and specific humidity, and precipitation), and the sub-grid variability is a function of the tile characteristics. In this paper, we validate the LSM sub-grid scale variability (tiles) using a variety of surface observing stations from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. One of the primary goals of SGP ARM is to study the variability of atmospheric radiation within a G,CM grid-cell. Enough surface data has been collected by ARM to extend this goal to sub-grid variability of the land-surface energy and water budgets. The time period of this study is the Summer of 1998 (June I - September 1). The ARM site data consists of surface meteorology, energy flux (eddy correlation and bowen ratio), soil water observations spread over an area similar to the size of a G-CM grid-cell. Various ARM stations are described as wheat and alfalfa crops, pasture and range land. The LSM tiles considered at the grid-space (2 x 2.5) nearest the ARM site include, grassland, deciduous forests, bare soil and dwarf trees. Surface energy and water balances for each tile type are compared with observations. Furthermore, we will discuss the land-surface sub-grid variability of both the ARM observations and the DAS.
CFD research and systems in Kawasaki Heavy Industries and its future prospects
NASA Astrophysics Data System (ADS)
Hiraoka, Koichi
1990-09-01
KHI Computational Fluid Dynamics (CFD) system is composed of VP100 computer and 2-D and 3-D Euler and/or Navier-Stokes (NS) analysis softwares. For KHI, this system has become a very powerful aerodynamic tool together with the Kawasaki 1 m Transonic Wind Tunnel. The 2-D Euler/NS software, developed in-house, is fully automated, requires no special skill, and was successfully applied to the design of YXX high lift devices and SST supersonic inlet, etc. The 3-D Euler/NS software, developed under joint research with NAL, has an interactively operated Multi-Block type grid generator and can effectively generate grids around complex airplane shapes. Due to the main memory size limitation, 3-D analysis of relatively simple shape, such as SST wing-body, was computed in-house on VP100, otherwise, such as detailed 3-D analyses of ASUKA and HOPE, were computed on NAL VP400, which is 10 times more powerful than VP100, under KHI-NAL joint research. These analysis results have very good correlation with experimental results. However, the present CFD system is less productive than wind tunnel and has applicability limitations.
An improved multi-paths optimization method for video stabilization
NASA Astrophysics Data System (ADS)
Qin, Tao; Zhong, Sheng
2018-03-01
For video stabilization, the difference between original camera motion path and the optimized one is proportional to the cropping ratio and warping ratio. A good optimized path should preserve the moving tendency of the original one meanwhile the cropping ratio and warping ratio of each frame should be kept in a proper range. In this paper we use an improved warping-based motion representation model, and propose a gauss-based multi-paths optimization method to get a smoothing path and obtain a stabilized video. The proposed video stabilization method consists of two parts: camera motion path estimation and path smoothing. We estimate the perspective transform of adjacent frames according to warping-based motion representation model. It works well on some challenging videos where most previous 2D methods or 3D methods fail for lacking of long features trajectories. The multi-paths optimization method can deal well with parallax, as we calculate the space-time correlation of the adjacent grid, and then a kernel of gauss is used to weigh the motion of adjacent grid. Then the multi-paths are smoothed while minimize the crop ratio and the distortion. We test our method on a large variety of consumer videos, which have casual jitter and parallax, and achieve good results.
NASA Astrophysics Data System (ADS)
Liang, Y.; Gallaher, D. W.; Grant, G.; Lv, Q.
2011-12-01
Change over time, is the central driver of climate change detection. The goal is to diagnose the underlying causes, and make projections into the future. In an effort to optimize this process we have developed the Data Rod model, an object-oriented approach that provides the ability to query grid cell changes and their relationships to neighboring grid cells through time. The time series data is organized in time-centric structures called "data rods." A single data rod can be pictured as the multi-spectral data history at one grid cell: a vertical column of data through time. This resolves the long-standing problem of managing time-series data and opens new possibilities for temporal data analysis. This structure enables rapid time- centric analysis at any grid cell across multiple sensors and satellite platforms. Collections of data rods can be spatially and temporally filtered, statistically analyzed, and aggregated for use with pattern matching algorithms. Likewise, individual image pixels can be extracted to generate multi-spectral imagery at any spatial and temporal location. The Data Rods project has created a series of prototype databases to store and analyze massive datasets containing multi-modality remote sensing data. Using object-oriented technology, this method overcomes the operational limitations of traditional relational databases. To demonstrate the speed and efficiency of time-centric analysis using the Data Rods model, we have developed a sea ice detection algorithm. This application determines the concentration of sea ice in a small spatial region across a long temporal window. If performed using traditional analytical techniques, this task would typically require extensive data downloads and spatial filtering. Using Data Rods databases, the exact spatio-temporal data set is immediately available No extraneous data is downloaded, and all selected data querying occurs transparently on the server side. Moreover, fundamental statistical calculations such as running averages are easily implemented against the time-centric columns of data.
Dynamic mesh adaption for triangular and tetrahedral grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1993-01-01
The following topics are discussed: requirements for dynamic mesh adaption; linked-list data structure; edge-based data structure; adaptive-grid data structure; three types of element subdivision; mesh refinement; mesh coarsening; additional constraints for coarsening; anisotropic error indicator for edges; unstructured-grid Euler solver; inviscid 3-D wing; and mesh quality for solution-adaptive grids. The discussion is presented in viewgraph form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livny, Miron; Shank, James; Ernst, Michael
Under this SciDAC-2 grant the project’s goal w a s t o stimulate new discoveries by providing scientists with effective and dependable access to an unprecedented national distributed computational facility: the Open Science Grid (OSG). We proposed to achieve this through the work of the Open Science Grid Consortium: a unique hands-on multi-disciplinary collaboration of scientists, software developers and providers of computing resources. Together the stakeholders in this consortium sustain and use a shared distributed computing environment that transforms simulation and experimental science in the US. The OSG consortium is an open collaboration that actively engages new research communities. Wemore » operate an open facility that brings together a broad spectrum of compute, storage, and networking resources and interfaces to other cyberinfrastructures, including the US XSEDE (previously TeraGrid), the European Grids for ESciencE (EGEE), as well as campus and regional grids. We leverage middleware provided by computer science groups, facility IT support organizations, and computing programs of application communities for the benefit of consortium members and the US national CI.« less
Review of the development of multi-terminal HVDC and DC power grid
NASA Astrophysics Data System (ADS)
Chen, Y. X.
2017-11-01
Traditional power equipment, power-grid structures, and operation technology are becoming increasingly powerless with the large-scale renewable energy access to the grid. Thus, we must adopt new technologies, new equipment, and new grid structure to satisfy future requirements in energy patterns. Accordingly, the multiterminal direct current (MTDC) transmission system is receiving increasing attention. This paper starts with a brief description of current developments in MTDC worldwide. The MTDC project, which has been placed into practical operation, is introduced by the Italian-Corsica-Sardinian three-terminal high-voltage DC (HVDC) project. We then describe the basic characteristics and regulations of multiterminal DC transmission. The current mainstream of several control methods are described. In the third chapter, the key to the development of MTDC system or hardware and software technology that restricts the development of multiterminal DC transmission is discussed. This chapter focuses on the comparison of double-ended HVDC and multiterminal HVDC in most aspects and subsequently elaborates the key and difficult point of MTDC development. Finally, this paper summarizes the prospect of a DC power grid. In a few decades, China can build a strong cross-strait AC-DC hybrid power grid.
Analysis of the beam halo in negative ion sources by using 3D3V PIC code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp; Nishioka, S.; Goto, I.
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with thosemore » for the 2D PIC simulation result.« less
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1982-01-01
A fast computer program, GRID3C, was developed to generate multilevel three dimensional, C type, periodic, boundary conforming grids for the calculation of realistic turbomachinery and propeller flow fields. The technique is based on two analytic functions that conformally map a cascade of semi-infinite slits to a cascade of doubly infinite strips on different Riemann sheets. Up to four consecutively refined three dimensional grids are automatically generated and permanently stored on four different computer tapes. Grid nonorthogonality is introduced by a separate coordinate shearing and stretching performed in each of three coordinate directions. The grids are easily clustered closer to the blade surface, the trailing and leading edges and the hub or shroud regions by changing appropriate input parameters. Hub and duct (or outer free boundary) have different axisymmetric shapes. A vortex sheet of arbitrary thickness emanating smoothly from the blade trailing edge is generated automatically by GRID3C. Blade cross sectional shape, chord length, twist angle, sweep angle, and dihedral angle can vary in an arbitrary smooth fashion in the spanwise direction.
Hahn, C. J. [University of Arizona; Warren, S. G. [University of Washington
2007-01-01
Surface synoptic weather reports from ships and land stations worldwide were processed to produce a global cloud climatology which includes: total cloud cover, the amount and frequency of occurrence of nine cloud types within three levels of the troposphere, the frequency of occurrence of clear sky and of precipitation, the base heights of low clouds, and the non-overlapped amounts of middle and high clouds. Synoptic weather reports are made every three hours; the cloud information in a report is obtained visually by human observers. The reports used here cover the period 1971-96 for land and 1954-2008 for ocean. This digital archive provides multi-year monthly, seasonal, and annual averages in 5x5-degree grid boxes (or 10x10-degree boxes for some quantities over the ocean). Daytime and nighttime averages, as well as the diurnal average (average of day and night), are given. Nighttime averages were computed using only those reports that met an "illuminance criterion" (i.e., made under adequate moonlight or twilight), thus minimizing the "night-detection bias" and making possible the determination of diurnal cycles and nighttime trends for cloud types. The phase and amplitude of the first harmonic of both the diurnal cycle and the annual cycle are given for the various cloud types. Cloud averages for individual years are also given for the ocean for each of 4 seasons, and for each of the 12 months (daytime-only averages for the months). [Individual years for land are not gridded, but are given for individual stations in a companion data set, CDIAC's NDP-026D).] This analysis used 185 million reports from 5388 weather stations on continents and islands, and 50 million reports from ships; these reports passed a series of quality-control checks. This analysis updates (and in most ways supercedes) the previous cloud climatology constructed by the authors in the 1980s. Many of the long-term averages described here are mapped on the University of Washington, Department of Atmospheric Sciences Web site. The Online Cloud Atlas containing NDP-026E data is available via the University of Washington.
Microphysics in the Multi-Scale Modeling Systems with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Evan; Jones, Richard B.
Large yet infrequent disruptions of electrical power can impact tens of millions of people in a single event, triggering significant economic damages, portions of which are insured. Small and frequent events are also significant in the aggregate. This article explores the role that insurance claims data can play in better defining the broader economic impacts of grid disruptions in the U.S. context. We developed four case studies, using previously unpublished data for specific actual grid disruptions. The cases include the 1977 New York City blackout, the 2003 Northeast blackout, multi-year national annual lightning-related electrical damage and multi-year national line-disturbance events.more » Insured losses represent between 3 and 64 per cent of total loss costs across the case studies. Here, the household sector emerges as a larger locus of costs than indicated in previous studies, and short-lived events emerge as important sources of loss costs.« less
NASA Astrophysics Data System (ADS)
Vyskubenko, Oleg; Sugimoto, Daichi; Watanabe, Goro; Tei, Kazuyoku; Nanri, Kenzo; Fujioka, Tomoo
2005-05-01
The present study compares the laser medium properties for subsonic and transonic iodine injection schemes of a multi-kW grid-nozzle supersonic chemical oxygen iodine laser (COIL). Two supersonic nozzles of similar geometry having subsonic or transonic iodine injectors were investigated in the present study. Small signal gain (SSG) and internal cavity temperature (ICT) were experimentally measured as a function of the iodine flow rate and coordinate in the direction of the gas flow. Dissociated fraction of iodine F and the number N of O2(1Δ) molecules consumed for the dissociation of one iodine molecule were estimated by an analytical method, utilizing SSG and ICT as input parameters. Both gain and temperature were measured by diode laser spectroscopy. Pressure broadening of the spectroscopic line of iodine atom was taken into account when calculating the gas temperature in the cavity.
Short-term wind speed prediction based on the wavelet transformation and Adaboost neural network
NASA Astrophysics Data System (ADS)
Hai, Zhou; Xiang, Zhu; Haijian, Shao; Ji, Wu
2018-03-01
The operation of the power grid will be affected inevitably with the increasing scale of wind farm due to the inherent randomness and uncertainty, so the accurate wind speed forecasting is critical for the stability of the grid operation. Typically, the traditional forecasting method does not take into account the frequency characteristics of wind speed, which cannot reflect the nature of the wind speed signal changes result from the low generality ability of the model structure. AdaBoost neural network in combination with the multi-resolution and multi-scale decomposition of wind speed is proposed to design the model structure in order to improve the forecasting accuracy and generality ability. The experimental evaluation using the data from a real wind farm in Jiangsu province is given to demonstrate the proposed strategy can improve the robust and accuracy of the forecasted variable.
NASA Technical Reports Server (NTRS)
Haimes, Robert; Follen, Gregory J.
1998-01-01
CAPRI is a CAD-vendor neutral application programming interface designed for the construction of analysis and design systems. By allowing access to the geometry from within all modules (grid generators, solvers and post-processors) such tasks as meshing on the actual surfaces, node enrichment by solvers and defining which mesh faces are boundaries (for the solver and visualization system) become simpler. The overall reliance on file 'standards' is minimized. This 'Geometry Centric' approach makes multi-physics (multi-disciplinary) analysis codes much easier to build. By using the shared (coupled) surface as the foundation, CAPRI provides a single call to interpolate grid-node based data from the surface discretization in one volume to another. Finally, design systems are possible where the results can be brought back into the CAD system (and therefore manufactured) because all geometry construction and modification are performed using the CAD system's geometry kernel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B
Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B
Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less
Cloud-based image sharing network for collaborative imaging diagnosis and consultation
NASA Astrophysics Data System (ADS)
Yang, Yuanyuan; Gu, Yiping; Wang, Mingqing; Sun, Jianyong; Li, Ming; Zhang, Weiqiang; Zhang, Jianguo
2018-03-01
In this presentation, we presented a new approach to design cloud-based image sharing network for collaborative imaging diagnosis and consultation through Internet, which can enable radiologists, specialists and physicians locating in different sites collaboratively and interactively to do imaging diagnosis or consultation for difficult or emergency cases. The designed network combined a regional RIS, grid-based image distribution management, an integrated video conferencing system and multi-platform interactive image display devices together with secured messaging and data communication. There are three kinds of components in the network: edge server, grid-based imaging documents registry and repository, and multi-platform display devices. This network has been deployed in a public cloud platform of Alibaba through Internet since March 2017 and used for small lung nodule or early staging lung cancer diagnosis services between Radiology departments of Huadong hospital in Shanghai and the First Hospital of Jiaxing in Zhejiang Province.
Marching iterative methods for the parabolized and thin layer Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Israeli, M.
1985-01-01
Downstream marching iterative schemes for the solution of the Parabolized or Thin Layer (PNS or TL) Navier-Stokes equations are described. Modifications of the primitive equation global relaxation sweep procedure result in efficient second-order marching schemes. These schemes take full account of the reduced order of the approximate equations as they behave like the SLOR for a single elliptic equation. The improved smoothing properties permit the introduction of Multi-Grid acceleration. The proposed algorithm is essentially Reynolds number independent and therefore can be applied to the solution of the subsonic Euler equations. The convergence rates are similar to those obtained by the Multi-Grid solution of a single elliptic equation; the storage is also comparable as only the pressure has to be stored on all levels. Extensions to three-dimensional and compressible subsonic flows are discussed. Numerical results are presented.
Wind-Friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Mingjian; Zhang, Jie; Wu, Hongyu
With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less
Autonomous Energy Grids: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin D; Dall-Anese, Emiliano; Bernstein, Andrey
With much higher levels of distributed energy resources - variable generation, energy storage, and controllable loads just to mention a few - being deployed into power systems, the data deluge from pervasive metering of energy grids, and the shaping of multi-level ancillary-service markets, current frameworks to monitoring, controlling, and optimizing large-scale energy systems are becoming increasingly inadequate. This position paper outlines the concept of 'Autonomous Energy Grids' (AEGs) - systems that are supported by a scalable, reconfigurable, and self-organizing information and control infrastructure, can be extremely secure and resilient (self-healing), and self-optimize themselves in real-time for economic and reliable performancemore » while systematically integrating energy in all forms. AEGs rely on scalable, self-configuring cellular building blocks that ensure that each 'cell' can self-optimize when isolated from a larger grid as well as partaking in the optimal operation of a larger grid when interconnected. To realize this vision, this paper describes the concepts and key research directions in the broad domains of optimization theory, control theory, big-data analytics, and complex system modeling that will be necessary to realize the AEG vision.« less
A Detailed Examination of the GPM Core Satellite Gridded Text Product
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz; Kelley, Owen A.; Kummerow, C.; Huffman, George; Olson, William S.; Kwiatowski, John M.
2015-01-01
The Global Precipitation Measurement (GPM) mission quarter-degree gridded-text product has a similar file format and a similar purpose as the Tropical Rainfall Measuring Mission (TRMM) 3G68 quarter-degree product. The GPM text-grid format is an hourly summary of surface precipitation retrievals from various GPM instruments and combinations of GPM instruments. The GMI Goddard Profiling (GPROF) retrieval provides the widest swath (800 km) and does the retrieval using the GPM Microwave Imager (GMI). The Ku radar provides the widest radar swath (250 km swath) and also provides continuity with the TRMM Ku Precipitation Radar. GPM's Ku+Ka band matched swath (125 km swath) provides a dual-frequency precipitation retrieval. The "combined" retrieval (125 km swath) provides a multi-instrument precipitation retrieval based on the GMI, the DPR Ku radar, and the DPR Ka radar. While the data are reported in hourly grids, all hours for a day are packaged into a single text file that is g-zipped to reduce file size and to speed up downloading. The data are reported on a 0.25deg x 0.25 deg grid.
Grid-cell representations in mental simulation
Bellmund, Jacob LS; Deuker, Lorena; Navarro Schröder, Tobias; Doeller, Christian F
2016-01-01
Anticipating the future is a key motif of the brain, possibly supported by mental simulation of upcoming events. Rodent single-cell recordings suggest the ability of spatially tuned cells to represent subsequent locations. Grid-like representations have been observed in the human entorhinal cortex during virtual and imagined navigation. However, hitherto it remains unknown if grid-like representations contribute to mental simulation in the absence of imagined movement. Participants imagined directions between building locations in a large-scale virtual-reality city while undergoing fMRI without re-exposure to the environment. Using multi-voxel pattern analysis, we provide evidence for representations of absolute imagined direction at a resolution of 30° in the parahippocampal gyrus, consistent with the head-direction system. Furthermore, we capitalize on the six-fold rotational symmetry of grid-cell firing to demonstrate a 60° periodic pattern-similarity structure in the entorhinal cortex. Our findings imply a role of the entorhinal grid-system in mental simulation and future thinking beyond spatial navigation. DOI: http://dx.doi.org/10.7554/eLife.17089.001 PMID:27572056
Microwave Frequency Polarizers
NASA Technical Reports Server (NTRS)
Ha, Vien The; Mirel, Paul; Kogut, Alan J.
2013-01-01
This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.
Rios, Anthony; Kavuluru, Ramakanth
2017-11-01
The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing (NLP) provided a set of 1000 neuropsychiatric notes to participants as part of a competition to predict psychiatric symptom severity scores. This paper summarizes our methods, results, and experiences based on our participation in the second track of the shared task. Classical methods of text classification usually fall into one of three problem types: binary, multi-class, and multi-label classification. In this effort, we study ordinal regression problems with text data where misclassifications are penalized differently based on how far apart the ground truth and model predictions are on the ordinal scale. Specifically, we present our entries (methods and results) in the N-GRID shared task in predicting research domain criteria (RDoC) positive valence ordinal symptom severity scores (absent, mild, moderate, and severe) from psychiatric notes. We propose a novel convolutional neural network (CNN) model designed to handle ordinal regression tasks on psychiatric notes. Broadly speaking, our model combines an ordinal loss function, a CNN, and conventional feature engineering (wide features) into a single model which is learned end-to-end. Given interpretability is an important concern with nonlinear models, we apply a recent approach called locally interpretable model-agnostic explanation (LIME) to identify important words that lead to instance specific predictions. Our best model entered into the shared task placed third among 24 teams and scored a macro mean absolute error (MMAE) based normalized score (100·(1-MMAE)) of 83.86. Since the competition, we improved our score (using basic ensembling) to 85.55, comparable with the winning shared task entry. Applying LIME to model predictions, we demonstrate the feasibility of instance specific prediction interpretation by identifying words that led to a particular decision. In this paper, we present a method that successfully uses wide features and an ordinal loss function applied to convolutional neural networks for ordinal text classification specifically in predicting psychiatric symptom severity scores. Our approach leads to excellent performance on the N-GRID shared task and is also amenable to interpretability using existing model-agnostic approaches. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, Joyce; Miller, John; O'Shaughnessy, Eric
With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for fourmore » charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.« less
Triple-material stress-strain resistivity gage
Stout, R.B.
1988-05-17
A triple material piezoresistive gage provides multi-component elastic stress measurements is disclosed. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements. 4 figs.
Triple-material stress-strain resistivity gage
Stout, Ray B.
1988-01-01
A triple material piezoresistive gage provides multi-component elastic stress or measurements. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements.
MESH2D Grid generator design and use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G. P.
Mesh2d is a Fortran90 program originally designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). x-coordinates depending only on index i implies strictly vertical x-grid lines, whereas the y-grid lines can undulate. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. Since the original development effort, Mesh2d has been extended to more general two-dimensional structured grids of the form [x(i,j),(i,j)].
NASA Astrophysics Data System (ADS)
Holgado, G.; Simón-Díaz, S.; Barbá, R. H.; Puls, J.; Herrero, A.; Castro, N.; Garcia, M.; Maíz Apellániz, J.; Negueruela, I.; Sabín-Sanjulián, C.
2018-06-01
Context. The IACOB and OWN surveys are two ambitious, complementary observational projects which have made available a large multi-epoch spectroscopic database of optical high resolution spectra of Galactic massive O-type stars. Aims: Our aim is to study the full sample of (more than 350) O stars surveyed by the IACOB and OWN projects. As a first step towards this aim, we have performed the quantitative spectroscopic analysis of a subsample of 128 stars included in the modern grid of O-type standards for spectral classification. The sample comprises stars with spectral types in the range O3-O9.7 and covers all luminosity classes. Methods: We used the semi-automatized IACOB-BROAD and IACOB-GBAT/FASTWIND tools to determine the complete set of spectroscopic parameters that can be obtained from the optical spectrum of O-type stars. A quality flag was assigned to the outcome of the IACOB-GBAT/FASTWIND analysis for each star, based on a visual evaluation of how the synthetic spectrum of the best fitting FASTWIND model reproduces the observed spectrum. We also benefitted from the multi-epoch character of the IACOB and OWN surveys to perform a spectroscopic variability study of the complete sample, providing two different flags for each star accounting for spectroscopic binarity as well as variability of the main wind diagnostic lines. Results: We obtain - for the first time in a homogeneous and complete manner - the full set of spectroscopic parameters of the "anchors" of the spectral classification system in the O star domain. We provide a general overview of the stellar and wind parameters of this reference sample, as well as updated recipes for the SpT-Teff and SpT-log g calibrations for Galactic O-type stars. We also propose a distance-independent test for the wind-momentum luminosity relationship. We evaluate the reliability of our semi-automatized analysis strategy using a subsample of 40 stars extensively studied in the literature, and find a fairly good agreement between our derived effective temperatures and gravities and those obtained by means of more traditional "by-eye" techniques and different stellar atmosphere codes. The overall agreement between the synthetic spectra associated with the IACOB-GBAT/FASTWIND best fitting models and the observed spectra is good for most of the analyzed targets, but 46 stars out of the 128 present a particular behavior of the wind diagnostic lines that cannot be reproduced by our grid of spherically symmetric unclumped models. These are potential targets of interest for more detailed investigations of clumpy winds and/or the existence of additional circumstellar emitting components contaminating the wind diagnostic lines (e.g., disks, magnetospheres). Last, our spectroscopic variability study has led to the detection of clear or likely signatures of spectroscopic binarity in 27% of the stars and small amplitude radial velocity variations in the photospheric lines of another 30%. Additionally, 31% of the investigated stars show variability in the wind diagnostic lines. Tables D.1 and D.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A65
Getman, Dan
2013-09-30
To help guide its future data collection efforts, The DOE GTO funded a data gap analysis in FY2012 to identify high potential hydrothermal areas where critical data are needed. This analysis was updated in FY2013 and the resulting datasets are represented by this metadata. The original process was published in FY 2012 and is available here: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2013/Esposito.pdf Though there are many types of data that can be used for hydrothermal exploration, five types of exploration data were targeted for this analysis. These data types were selected for their regional reconnaissance potential, and include many of the primary exploration techniques currently used by the geothermal industry. The data types include: 1. well data 2. geologic maps 3. fault maps 4. geochemistry data 5. geophysical data To determine data coverage, metadata for exploration data (including data type, data status, and coverage information) were collected and catalogued from nodes on the National Geothermal Data System (NGDS). It is the intention of this analysis that the data be updated from this source in a semi-automated fashion as new datasets are added to the NGDS nodes. In addition to this upload, an online tool was developed to allow all geothermal data providers to access this assessment and to directly add metadata themselves and view the results of the analysis via maps of data coverage in Geothermal Prospector (http://maps.nrel.gov/gt_prospector). A grid of the contiguous U.S. was created with 88,000 10-km by 10-km grid cells, and each cell was populated with the status of data availability corresponding to the five data types. Using these five data coverage maps and the USGS Resource Potential Map, sites were identified for future data collection efforts. These sites signify both that the USGS has indicated high favorability of occurrence of geothermal resources and that data gaps exist. The uploaded data are contained in two data files for each data category. The first file contains the grid and is in the SHP file format (shape file.) Each populated grid cell represents a 10k area within which data is known to exist. The second file is a CSV (comma separated value) file that contains all of the individual layers that intersected with the grid. This CSV can be joined with the map to retrieve a list of datasets that are available at any given site. The attributes in the CSV include: 1. grid_id : The id of the grid cell that the data intersects with 2. title: This represents the name of the WFS service that intersected with this grid cell 3. abstract: This represents the description of the WFS service that intersected with this grid cell 4. gap_type: This represents the category of data availability that these data fall within. As the current processing is pulling data from NGDS, this category universally represents data that are available in the NGDS and are ready for acquisition for analytic purposes. 5. proprietary_type: Whether the data are considered proprietary 6. service_type: The type of service 7. base_url: The service URL
NASA Astrophysics Data System (ADS)
Murray, Ian B.; Densmore, Victor; Bora, Vaibhav; Pieratt, Matthew W.; Hibbard, Douglas L.; Milster, Tom D.
2011-06-01
Coatings of various metalized patterns are used for heating and electromagnetic interference (EMI) shielding applications. Previous work has focused on macro differences between different types of grids, and has shown good correlation between measurements and analyses of grid diffraction. To advance this work, we have utilized the University of Arizona's OptiScan software, which has been optimized for this application by using the Babinet Principle. When operating on an appropriate computer system, this algorithm produces results hundreds of times faster than standard Fourier-based methods, and allows realistic cases to be modeled for the first time. By using previously published derivations by Exotic Electro-Optics, we compare diffraction performance of repeating and randomized grid patterns with equivalent sheet resistance using numerical performance metrics. Grid patterns of each type are printed on optical substrates and measured energy is compared against modeled energy.
The LSST Data Mining Research Agenda
NASA Astrophysics Data System (ADS)
Borne, K.; Becla, J.; Davidson, I.; Szalay, A.; Tyson, J. A.
2008-12-01
We describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night) multi-resolution methods for exploration of petascale databases; indexing of multi-attribute multi-dimensional astronomical databases (beyond spatial indexing) for rapid querying of petabyte databases; and more.
On the benefit of high resolution and low aberrations for in-die mask registration metrology
NASA Astrophysics Data System (ADS)
Beyer, Dirk; Seidel, Dirk; Heisig, Sven; Steinert, Steffen; Töpfer, Susanne; Scherübl, Thomas; Hetzler, Jochen
2014-10-01
With the introduction of complex lithography schemes like double and multi - patterning and new design principles like gridded designs with cut masks the requirements for mask to mask overlay have increased dramatically. Still, there are some good news too for the mask industry since more mask are needed and qualified. Although always confronted with throughput demands, latest writing tool developments are able to keep pace with ever increasing pattern placement specs not only for global signatures but for in-die features within the active area. Placement specs less than 3nm (max. 3 Sigma) are expected and needed in all cases in order to keep the mask contribution to the overall overlay budget at an accepted level. The qualification of these masks relies on high precision metrology tools which have to fulfill stringent metrology as well as resolution constrains at the same time. Furthermore, multi-patterning and gridded designs with pinhole type cut masks are drivers for a paradigm shift in registration metrology from classical registration crosses to in-die registration metrology on production features. These requirements result in several challenges for registration metrology tools. The resolution of the system must be sufficiently high to resolve small production features. At the same time tighter repeatability is required. Furthermore, tool induced shift (TIS) limit the accuracy of in-die measurements. This paper discusses and demonstrates the importance of low illumination wavelength together with low aberrations for best contrast imaging for in-die registration metrology. Typical effects like tool induced shift are analyzed and evaluated using the ZEISS PROVE® registration metrology tool. Additionally, we will address performance gains when going to higher resolution. The direct impact on repeatability for small features by registration measurements will be discussed as well.
Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; ...
2015-01-20
Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less
NASA Astrophysics Data System (ADS)
Pradhan, Aniruddhe; Akhavan, Rayhaneh
2017-11-01
Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ <= 4 in the near-wall region, which is comparable to Δ+ <= 2 required in DNS. At larger grid resolutions SRT becomes unstable, while MRT remains stable but gives unacceptably large errors. LES with no model gave errors comparable to the Dynamic Smagorinsky Model (DSM) and the Wall Adapting Local Eddy-viscosity (WALE) model. The resulting errors in the prediction of the friction coefficient in turbulent channel flow at a bulk Reynolds Number of 7860 (Reτ 442) with Δ+ = 4 and no-model, DSM and WALE were 1.7%, 2.6%, 3.1% with SRT, and 8.3% 7.5% 8.7% with MRT, respectively. These results suggest that LES of wall-bounded turbulent flows with LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.
Computing Aerodynamic Performance of a 2D Iced Airfoil: Blocking Topology and Grid Generation
NASA Technical Reports Server (NTRS)
Chi, X.; Zhu, B.; Shih, T. I.-P.; Slater, J. W.; Addy, H. E.; Choo, Yung K.; Lee, Chi-Ming (Technical Monitor)
2002-01-01
The ice accrued on airfoils can have enormously complicated shapes with multiple protruded horns and feathers. In this paper, several blocking topologies are proposed and evaluated on their ability to produce high-quality structured multi-block grid systems. A transition layer grid is introduced to ensure that jaggedness on the ice-surface geometry do not to propagate into the domain. This is important for grid-generation methods based on hyperbolic PDEs (Partial Differential Equations) and algebraic transfinite interpolation. A 'thick' wrap-around grid is introduced to ensure that grid lines clustered next to solid walls do not propagate as streaks of tightly packed grid lines into the interior of the domain along block boundaries. For ice shapes that are not too complicated, a method is presented for generating high-quality single-block grids. To demonstrate the usefulness of the methods developed, grids and CFD solutions were generated for two iced airfoils: the NLF0414 airfoil with and without the 623-ice shape and the B575/767 airfoil with and without the 145m-ice shape. To validate the computations, the computed lift coefficients as a function of angle of attack were compared with available experimental data. The ice shapes and the blocking topologies were prepared by NASA Glenn's SmaggIce software. The grid systems were generated by using a four-boundary method based on Hermite interpolation with controls on clustering, orthogonality next to walls, and C continuity across block boundaries. The flow was modeled by the ensemble-averaged compressible Navier-Stokes equations, closed by the shear-stress transport turbulence model in which the integration is to the wall. All solutions were generated by using the NPARC WIND code.
The Use of Proxy Caches for File Access in a Multi-Tier Grid Environment
NASA Astrophysics Data System (ADS)
Brun, R.; Duellmann, D.; Ganis, G.; Hanushevsky, A.; Janyst, L.; Peters, A. J.; Rademakers, F.; Sindrilaru, E.
2011-12-01
The use of proxy caches has been extensively studied in the HEP environment for efficient access of database data and showed significant performance with only very moderate operational effort at higher grid tiers (T2, T3). In this contribution we propose to apply the same concept to the area of file access and analyse the possible performance gains, operational impact on site services and applicability to different HEP use cases. Base on a proof-of-concept studies with a modified XROOT proxy server we review the cache efficiency and overheads for access patterns of typical ROOT based analysis programs. We conclude with a discussion of the potential role of this new component at the different tiers of a distributed computing grid.
The Use of Proxy Caches for File Access in a Multi-Tier Grid Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brun, R.; Dullmann, D.; Ganis, G.
2012-04-19
The use of proxy caches has been extensively studied in the HEP environment for efficient access of database data and showed significant performance with only very moderate operational effort at higher grid tiers (T2, T3). In this contribution we propose to apply the same concept to the area of file access and analyze the possible performance gains, operational impact on site services and applicability to different HEP use cases. Base on a proof-of-concept studies with a modified XROOT proxy server we review the cache efficiency and overheads for access patterns of typical ROOT based analysis programs. We conclude with amore » discussion of the potential role of this new component at the different tiers of a distributed computing grid.« less
Validation of a Three-Dimensional Ablation and Thermal Response Simulation Code
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Milos, Frank S.; Gokcen, Tahir
2010-01-01
The 3dFIAT code simulates pyrolysis, ablation, and shape change of thermal protection materials and systems in three dimensions. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid system to simulate the shape change due to surface recession. This work is the first part of a code validation study for new capabilities that were added to 3dFIAT. These expanded capabilities include a multi-block moving grid system and an orthotropic thermal conductivity model. This paper focuses on conditions with minimal shape change in which the fluid/solid coupling is not necessary. Two groups of test cases of 3dFIAT analyses of Phenolic Impregnated Carbon Ablator in an arc-jet are presented. In the first group, axisymmetric iso-q shaped models are studied to check the accuracy of three-dimensional multi-block grid system. In the second group, similar models with various through-the-thickness conductivity directions are examined. In this group, the material thermal response is three-dimensional, because of the carbon fiber orientation. Predictions from 3dFIAT are presented and compared with arcjet test data. The 3dFIAT predictions agree very well with thermocouple data for both groups of test cases.
NASA Astrophysics Data System (ADS)
Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey
2018-01-01
Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.
[Tumor Data Interacted System Design Based on Grid Platform].
Liu, Ying; Cao, Jiaji; Zhang, Haowei; Zhang, Ke
2016-06-01
In order to satisfy demands of massive and heterogeneous tumor clinical data processing and the multi-center collaborative diagnosis and treatment for tumor diseases,a Tumor Data Interacted System(TDIS)was established based on grid platform,so that an implementing virtualization platform of tumor diagnosis service was realized,sharing tumor information in real time and carrying on standardized management.The system adopts Globus Toolkit 4.0tools to build the open grid service framework and encapsulats data resources based on Web Services Resource Framework(WSRF).The system uses the middleware technology to provide unified access interface for heterogeneous data interaction,which could optimize interactive process with virtualized service to query and call tumor information resources flexibly.For massive amounts of heterogeneous tumor data,the federated stored and multiple authorized mode is selected as security services mechanism,real-time monitoring and balancing load.The system can cooperatively manage multi-center heterogeneous tumor data to realize the tumor patient data query,sharing and analysis,and compare and match resources in typical clinical database or clinical information database in other service node,thus it can assist doctors in consulting similar case and making up multidisciplinary treatment plan for tumors.Consequently,the system can improve efficiency of diagnosis and treatment for tumor,and promote the development of collaborative tumor diagnosis model.
NASA Astrophysics Data System (ADS)
Silaev, A. A.; Romanov, A. A.; Vvedenskii, N. V.
2018-03-01
In the numerical solution of the time-dependent Schrödinger equation by grid methods, an important problem is the reflection and wrap-around of the wave packets at the grid boundaries. Non-optimal absorption of the wave function leads to possible large artifacts in the results of numerical simulations. We propose a new method for the construction of the complex absorbing potentials for wave suppression at the grid boundaries. The method is based on the use of the multi-hump imaginary potential which contains a sequence of smooth and symmetric humps whose widths and amplitudes are optimized for wave absorption in different spectral intervals. We show that this can ensure a high efficiency of absorption in a wide range of de Broglie wavelengths, which includes wavelengths comparable to the width of the absorbing layer. Therefore, this method can be used for high-precision simulations of various phenomena where strong spreading of the wave function takes place, including the phenomena accompanying the interaction of strong fields with atoms and molecules. The efficiency of the proposed method is demonstrated in the calculation of the spectrum of high-order harmonics generated during the interaction of hydrogen atoms with an intense infrared laser pulse.
NASA Astrophysics Data System (ADS)
Rybakin, B.; Bogatencov, P.; Secrieru, G.; Iliuha, N.
2013-10-01
The paper deals with a parallel algorithm for calculations on multiprocessor computers and GPU accelerators. The calculations of shock waves interaction with low-density bubble results and the problem of the gas flow with the forces of gravity are presented. This algorithm combines a possibility to capture a high resolution of shock waves, the second-order accuracy for TVD schemes, and a possibility to observe a low-level diffusion of the advection scheme. Many complex problems of continuum mechanics are numerically solved on structured or unstructured grids. To improve the accuracy of the calculations is necessary to choose a sufficiently small grid (with a small cell size). This leads to the drawback of a substantial increase of computation time. Therefore, for the calculations of complex problems it is reasonable to use the method of Adaptive Mesh Refinement. That is, the grid refinement is performed only in the areas of interest of the structure, where, e.g., the shock waves are generated, or a complex geometry or other such features exist. Thus, the computing time is greatly reduced. In addition, the execution of the application on the resulting sequence of nested, decreasing nets can be parallelized. Proposed algorithm is based on the AMR method. Utilization of AMR method can significantly improve the resolution of the difference grid in areas of high interest, and from other side to accelerate the processes of the multi-dimensional problems calculating. Parallel algorithms of the analyzed difference models realized for the purpose of calculations on graphic processors using the CUDA technology [1].
CFD Computations for a Generic High-Lift Configuration Using TetrUSS
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Parlette, Edward B.
2011-01-01
Assessment of the accuracy of computational results for a generic high-lift trapezoidal wing with a single slotted flap and slat is presented. The paper is closely aligned with the focus of the 1st AIAA CFD High Lift Prediction Workshop (HiLiftPW-1) which was to assess the accuracy of CFD methods for multi-element high-lift configurations. The unstructured grid Reynolds-Averaged Navier-Stokes solver TetrUSS/USM3D is used for the computational results. USM3D results are obtained assuming fully turbulent flow using the Spalart-Allmaras (SA) and Shear Stress Transport (SST) turbulence models. Computed solutions have been obtained at seven different angles-of-attack ranging from 6 -37 . Three grids providing progressively higher grid resolution are used to quantify the effect of grid resolution on the lift, drag, pitching moment, surface pressure and stall angle. SA results, as compared to SST results, exhibit better agreement with the measured data. However, both turbulence models under-predict upper surface pressures near the wing tip region.
Spatial cell firing during virtual navigation of open arenas by head-restrained mice.
Chen, Guifen; King, John Andrew; Lu, Yi; Cacucci, Francesca; Burgess, Neil
2018-06-18
We present a mouse virtual reality (VR) system which restrains head-movements to horizontal rotations, compatible with multi-photon imaging. This system allows expression of the spatial navigation and neuronal firing patterns characteristic of real open arenas (R). Comparing VR to R: place and grid, but not head-direction, cell firing had broader spatial tuning; place, but not grid, cell firing was more directional; theta frequency increased less with running speed; whereas increases in firing rates with running speed and place and grid cells' theta phase precession were similar. These results suggest that the omni-directional place cell firing in R may require local-cues unavailable in VR, and that the scale of grid and place cell firing patterns, and theta frequency, reflect translational motion inferred from both virtual (visual and proprioceptive) and real (vestibular translation and extra-maze) cues. By contrast, firing rates and theta phase precession appear to reflect visual and proprioceptive cues alone. © 2018, Chen et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, P. J.; Qu, J.; Lu, R.
One significant concern in the operation of light water nuclear reactors is the fretting wear damage to fuel cladding from flow-induced vibrations. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. Furthermore, the multi-stage model accounts for oxide layers and wear rate transitions. Our paper describes themore » basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.« less
Blau, P. J.; Qu, J.; Lu, R.
2016-09-21
One significant concern in the operation of light water nuclear reactors is the fretting wear damage to fuel cladding from flow-induced vibrations. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. Furthermore, the multi-stage model accounts for oxide layers and wear rate transitions. Our paper describes themore » basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.« less
Parallel Cartesian grid refinement for 3D complex flow simulations
NASA Astrophysics Data System (ADS)
Angelidis, Dionysios; Sotiropoulos, Fotis
2013-11-01
A second order accurate method for discretizing the Navier-Stokes equations on 3D unstructured Cartesian grids is presented. Although the grid generator is based on the oct-tree hierarchical method, fully unstructured data-structure is adopted enabling robust calculations for incompressible flows, avoiding both the need of synchronization of the solution between different levels of refinement and usage of prolongation/restriction operators. The current solver implements a hybrid staggered/non-staggered grid layout, employing the implicit fractional step method to satisfy the continuity equation. The pressure-Poisson equation is discretized by using a novel second order fully implicit scheme for unstructured Cartesian grids and solved using an efficient Krylov subspace solver. The momentum equation is also discretized with second order accuracy and the high performance Newton-Krylov method is used for integrating them in time. Neumann and Dirichlet conditions are used to validate the Poisson solver against analytical functions and grid refinement results to a significant reduction of the solution error. The effectiveness of the fractional step method results in the stability of the overall algorithm and enables the performance of accurate multi-resolution real life simulations. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482.
A tesselated probabilistic representation for spatial robot perception and navigation
NASA Technical Reports Server (NTRS)
Elfes, Alberto
1989-01-01
The ability to recover robust spatial descriptions from sensory information and to efficiently utilize these descriptions in appropriate planning and problem-solving activities are crucial requirements for the development of more powerful robotic systems. Traditional approaches to sensor interpretation, with their emphasis on geometric models, are of limited use for autonomous mobile robots operating in and exploring unknown and unstructured environments. Here, researchers present a new approach to robot perception that addresses such scenarios using a probabilistic tesselated representation of spatial information called the Occupancy Grid. The Occupancy Grid is a multi-dimensional random field that maintains stochastic estimates of the occupancy state of each cell in the grid. The cell estimates are obtained by interpreting incoming range readings using probabilistic models that capture the uncertainty in the spatial information provided by the sensor. A Bayesian estimation procedure allows the incremental updating of the map using readings taken from several sensors over multiple points of view. An overview of the Occupancy Grid framework is given, and its application to a number of problems in mobile robot mapping and navigation are illustrated. It is argued that a number of robotic problem-solving activities can be performed directly on the Occupancy Grid representation. Some parallels are drawn between operations on Occupancy Grids and related image processing operations.
NASA Technical Reports Server (NTRS)
Thompson David S.; Soni, Bharat K.
2001-01-01
An integrated geometry/grid/simulation software package, ICEG2D, is being developed to automate computational fluid dynamics (CFD) simulations for single- and multi-element airfoils with ice accretions. The current version, ICEG213 (v2.0), was designed to automatically perform four primary functions: (1) generate a grid-ready surface definition based on the geometrical characteristics of the iced airfoil surface, (2) generate high-quality structured and generalized grids starting from a defined surface definition, (3) generate the input and restart files needed to run the structured grid CFD solver NPARC or the generalized grid CFD solver HYBFL2D, and (4) using the flow solutions, generate solution-adaptive grids. ICEG2D (v2.0) can be operated in either a batch mode using a script file or in an interactive mode by entering directives from a command line within a Unix shell. This report summarizes activities completed in the first two years of a three-year research and development program to address automation issues related to CFD simulations for airfoils with ice accretions. As well as describing the technology employed in the software, this document serves as a users manual providing installation and operating instructions. An evaluation of the software is also presented.
Enhancement of Local Climate Analysis Tool
NASA Astrophysics Data System (ADS)
Horsfall, F. M.; Timofeyeva, M. M.; Dutton, J.
2012-12-01
The National Oceanographic and Atmospheric Administration (NOAA) National Weather Service (NWS) will enhance its Local Climate Analysis Tool (LCAT) to incorporate specific capabilities to meet the needs of various users including energy, health, and other communities. LCAT is an online interactive tool that provides quick and easy access to climate data and allows users to conduct analyses at the local level such as time series analysis, trend analysis, compositing, correlation and regression techniques, with others to be incorporated as needed. LCAT uses principles of Artificial Intelligence in connecting human and computer perceptions on application of data and scientific techniques in multiprocessing simultaneous users' tasks. Future development includes expanding the type of data currently imported by LCAT (historical data at stations and climate divisions) to gridded reanalysis and General Circulation Model (GCM) data, which are available on global grids and thus will allow for climate studies to be conducted at international locations. We will describe ongoing activities to incorporate NOAA Climate Forecast System (CFS) reanalysis data (CFSR), NOAA model output data, including output from the National Multi Model Ensemble Prediction System (NMME) and longer term projection models, and plans to integrate LCAT into the Earth System Grid Federation (ESGF) and its protocols for accessing model output and observational data to ensure there is no redundancy in development of tools that facilitate scientific advancements and use of climate model information in applications. Validation and inter-comparison of forecast models will be included as part of the enhancement to LCAT. To ensure sustained development, we will investigate options for open sourcing LCAT development, in particular, through the University Corporation for Atmospheric Research (UCAR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisaki, M., E-mail: kisaki.masashi@LHD.nifs.ac.jp; Ikeda, K.; Osakabe, M.
To improve the performance of negative-ion based neutral beam injection on the Large Helical Device, the accelerator was modified on the basis of numerical investigations. A field limiting ring was installed on the upper side of a grounded grid (GG) support and a multi-slot GG was adopted instead of a multi-aperture GG. As a result, the voltage holding capability is improved and the heat load on the GG decreases by 40%. In addition, the arc efficiency is improved significantly only by replacing the GG.
Fleming, Austin; Folsom, Charles; Ban, Heng; ...
2015-11-13
Concentrating solar power (CSP) with thermal energy storage has potential to provide grid-scale, on-demand, dispatachable renewable energy. As higher solar receiver output temperatures are necessary for higher thermal cycle efficiency, current CSP research is focused on high outlet temperature and high efficiency receivers. Here, the objective of this study is to provide a simplified model to analyze the thermal efficiency of multi-cavity concentrating solar power receivers.
Multi-Element Unstructured Analyses of Complex Valve Systems
NASA Technical Reports Server (NTRS)
Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy
2004-01-01
The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.
Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Park, Michael A.; Campbell, Richard L.; Elmiligui, Alaa; Cliff, Susan E.; Nayani, Sudheer N.
2014-01-01
Ongoing interest in analysis and design of low sonic boom supersonic transports re- quires accurate and ecient Computational Fluid Dynamics (CFD) tools. Specialized grid generation techniques are employed to predict near- eld acoustic signatures of these con- gurations. A fundamental examination of grid properties is performed including grid alignment with ow characteristics and element type. The issues a ecting the robustness of cylindrical surface extrusion are illustrated. This study will compare three methods in the extrusion family of grid generation methods that produce grids aligned with the freestream Mach angle. These methods are applied to con gurations from the First AIAA Sonic Boom Prediction Workshop.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
... Requirements of Electric Utilities To Inform Federal Smart Grid Policy AGENCY: Department of Energy. ACTION..., but not limited to, the requirements of the Smart Grid (75 FR 26206). DOE also sought to collect... the types of networks and communications services that may be used for grid modernization...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maasakkers, Joannes D.; Jacob, Daniel J.; Sulprizio, Melissa P.
Here we present a gridded inventory of US anthropogenic methane emissions with 0.1° × 0.1° spatial resolution, monthly temporal resolution, and detailed scaledependent error characterization. The inventory is designed to be consistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissions and Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a wide range of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show largemore » differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Finally, our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.« less
A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes
NASA Astrophysics Data System (ADS)
Tao, W. K.
2017-12-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.
Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to use of the multi-satellite simulator tqimproy precipitation processes will be discussed.
Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei--Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2010-01-01
In recent years, exponentially increasing computer power extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 sq km in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale models can be run in grid size similar to cloud resolving models through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model). (2) a regional scale model (a NASA unified weather research and forecast, W8F). (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling systems to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use the multi-satellite simulator to improve precipitation processes will be discussed.
Using Multi-Scale Modeling Systems to Study the Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2010-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.
Advanced Unstructured Grid Generation for Complex Aerodynamic Applications
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2008-01-01
A new approach for distribution of grid points on the surface and in the volume has been developed and implemented in the NASA unstructured grid generation code VGRID. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods.
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-01-01
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
GridLAB-D: An Agent-Based Simulation Framework for Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Fuller, Jason C.; Djilali, Ned
2014-06-23
Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore » design, and integration of wind power in a smart grid.« less
New Global Bathymetry and Topography Model Grids
NASA Astrophysics Data System (ADS)
Smith, W. H.; Sandwell, D. T.; Marks, K. M.
2008-12-01
A new version of the "Smith and Sandwell" global marine topography model is available in two formats. A one-arc-minute Mercator projected grid covering latitudes to +/- 80.738 degrees is available in the "img" file format. Also available is a 30-arc-second version in latitude and longitude coordinates from pole to pole, supplied as tiles covering the same areas as the SRTM30 land topography data set. The new effort follows the Smith and Sandwell recipe, using publicly available and quality controlled single- and multi-beam echo soundings where possible and filling the gaps in the oceans with estimates derived from marine gravity anomalies observed by satellite altimetry. The altimeter data have been reprocessed to reduce the noise level and improve the spatial resolution [see Sandwell and Smith, this meeting]. The echo soundings database has grown enormously with new infusions of data from the U.S. Naval Oceanographic Office (NAVO), the National Geospatial-intelligence Agency (NGA), hydrographic offices around the world volunteering through the International Hydrographic Organization (IHO), and many other agencies and academic sources worldwide. These new data contributions have filled many holes: 50% of ocean grid points are within 8 km of a sounding point, 75% are within 24 km, and 90% are within 57 km. However, in the remote ocean basins some gaps still remain: 5% of the ocean grid points are more than 85 km from the nearest sounding control, and 1% are more than 173 km away. Both versions of the grid include a companion grid of source file numbers, so that control points may be mapped and traced to sources. We have compared the new model to multi-beam data not used in the compilation and find that 50% of differences are less than 25 m, 95% of differences are less than 130 m, but a few large differences remain in areas of poor sounding control and large-amplitude gravity anomalies. Land values in the solution are taken from SRTM30v2, GTOPO30 and ICESAT data. GEBCO has agreed to adopt this model and begin updating it in 2009. Ongoing tasks include building an uncertainty model and including information from the latest IBCAO map of the Arctic Ocean.
NASA Astrophysics Data System (ADS)
Grainger, Brandon Michael
The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is proposed and evaluated as the DC microgrid is disturbed through various mode transitions. Finally, two communication protocols are described for the microgrid---one to minimize communication overhead inside the microgrid and another to provide robust and scalable intra-grid communication. The work presented is supported by Asea Brown Boveri (ABB) Corporate Research Center within the Active Grid Infrastructure program, the Advanced Research Project Agency - Energy (ARPA-E) through the Solar ADEPT program, and Mitsubishi Electric Corporation (MELCO).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe Lederman
This report contains the comprehensive summary of the work performed on the SBIR Phase II project (“Distributed Relevance Ranking in Heterogeneous Document Collections”) at Deep Web Technologies (http://www.deepwebtech.com). We have successfully completed all of the tasks defined in our SBIR Proposal work plan (See Table 1 - Phase II Tasks Status). The project was completed on schedule and we have successfully deployed an initial production release of the software architecture at DOE-OSTI for the Science.gov Alliance's search portal (http://www.science.gov). We have implemented a set of grid services that supports the extraction, filtering, aggregation, and presentation of search results from numerousmore » heterogeneous document collections. Illustration 3 depicts the services required to perform QuickRank™ filtering of content as defined in our architecture documentation. Functionality that has been implemented is indicated by the services highlighted in green. We have successfully tested our implementation in a multi-node grid deployment both within the Deep Web Technologies offices, and in a heterogeneous geographically distributed grid environment. We have performed a series of load tests in which we successfully simulated 100 concurrent users submitting search requests to the system. This testing was performed on deployments of one, two, and three node grids with services distributed in a number of different configurations. The preliminary results from these tests indicate that our architecture will scale well across multi-node grid deployments, but more work will be needed, beyond the scope of this project, to perform testing and experimentation to determine scalability and resiliency requirements. We are pleased to report that a production quality version (1.4) of the science.gov Alliance's search portal based on our grid architecture was released in June of 2006. This demonstration portal is currently available at http://science.gov/search30 . The portal allows the user to select from a number of collections grouped by category and enter a query expression (See Illustration 1 - Science.gov 3.0 Search Page). After the user clicks “search” a results page is displayed that provides a list of results from the selected collections ordered by relevance based on the query expression the user provided. Our grid based solution to deep web search and document ranking has already gained attention within DOE, other Government Agencies and a fortune 50 company. We are committed to the continued development of grid based solutions to large scale data access, filtering, and presentation problems within the domain of Information Retrieval and the more general categories of content management, data mining and data analysis.« less
NASA Astrophysics Data System (ADS)
Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.
2015-02-01
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.
Can fractal objects operate as efficient inline mixers?
NASA Astrophysics Data System (ADS)
Laizet, Sylvain; Vassilicos, John; Turbulence, Mixing; Flow Control Group Team
2011-11-01
Recently, Hurst & Vassilicos, PoF 2007, Seoud & Vassilicos, PoF 2007, Mazellier & Vassilicos, PoF, 2010 used different multiscale grids to generate turbulence in a wind tunnel and have shown that complex multiscale boundary/initial conditions can drastically influence the behaviour of a turbulent flow, but that the detailled specific nature of the multiscale geometry matters too. Multiscale (fractal) objects can be designed to be immersed in any fluid flow where there is a need to control and design the turbulence generated by the object. Different types of multiscale objects can be designed as different types of energy-efficient mixers with varying degrees of high turbulent intensities, small pressure drop and downstream distance from the grid where the turbulence is most vigorous. Here, we present a 3D DNS study of the stirring and mixing of a passive scalar by turbulence generated with either a fractal square grid or a regular grid in the presence of a mean scalar gradient. The results show that: (1) there is a linear increase for the passive scalar variance for both grids, (2) the passive scalar variance is ten times bigger for the fractal grid, (3) the passive scalar flux is constant after the production region for both grids, (4) the passive scalar flux is enhanced by an order of magnitude for the fractal grid. We acknowledge support from EPSRC, UK.
NASA Astrophysics Data System (ADS)
Mende, Denis; Böttger, Diana; Löwer, Lothar; Becker, Holger; Akbulut, Alev; Stock, Sebastian
2018-02-01
The European power grid infrastructure faces various challenges due to the expansion of renewable energy sources (RES). To conduct investigations on interactions between power generation and the power grid, models for the power market as well as for the power grid are necessary. This paper describes the basic functionalities and working principles of both types of models as well as steps to couple power market results and the power grid model. The combination of these models is beneficial in terms of gaining realistic power flow scenarios in the grid model and of being able to pass back results of the power flow and restrictions to the market model. Focus is laid on the power grid model and possible application examples like algorithms in grid analysis, operation and dynamic equipment modelling.
Mukherjee, Sudipto; Rizzo, Robert C.
2014-01-01
Scoring functions are a critically important component of computer-aided screening methods for the identification of lead compounds during early stages of drug discovery. Here, we present a new multi-grid implementation of the footprint similarity (FPS) scoring function that was recently developed in our laboratory which has proven useful for identification of compounds which bind to a protein on a per-residue basis in a way that resembles a known reference. The grid-based FPS method is much faster than its Cartesian-space counterpart which makes it computationally tractable for on-the-fly docking, virtual screening, or de novo design. In this work, we establish that: (i) relatively few grids can be used to accurately approximate Cartesian space footprint similarity, (ii) the method yields improved success over the standard DOCK energy function for pose identification across a large test set of experimental co-crystal structures, for crossdocking, and for database enrichment, and (iii) grid-based FPS scoring can be used to tailor construction of new molecules to have specific properties, as demonstrated in a series of test cases targeting the viral protein HIVgp41. The method will be made available in the program DOCK6. PMID:23436713
Advanced Unstructured Grid Generation for Complex Aerodynamic Applications
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar
2010-01-01
A new approach for distribution of grid points on the surface and in the volume has been developed. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods.
Multiplex Superconducting Transmission Line for green power consolidation on a Smart Grid
NASA Astrophysics Data System (ADS)
McIntyre, P.; Gerity, J.; Kellams, J.; Sattarov, A.
2017-12-01
A multiplex superconducting transmission line (MSTL) is being developed for applications requiring interconnection of multi-MW electric power generation among a number of locations. MSTL consists of a cluster of many 2- or 3-conductor transmission lines within a coaxial cryostat envelope. Each line operates autonomously, so that the interconnection of multiple power loads can be done in a failure-tolerant network. Specifics of the electrical, mechanical, and cryogenic design are presented. The consolidation of transformation and conditioning and the failure-tolerant interconnects have the potential to offer important benefit for the green energy components of a Smart Grid.
Multi-Dimensional Damage Detection
NASA Technical Reports Server (NTRS)
Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Lewis, Mark E. (Inventor); Snyder, Sarah J. (Inventor); Medelius, Pedro J. (Inventor)
2016-01-01
Methods and systems may provide for a structure having a plurality of interconnected panels, wherein each panel has a plurality of detection layers separated from one another by one or more non-detection layers. The plurality of detection layers may form a grid of conductive traces. Additionally, a monitor may be coupled to each grid of conductive traces, wherein the monitor is configured to detect damage to the plurality of interconnected panels in response to an electrical property change with respect to one or more of the conductive traces. In one example, the structure is part of an inflatable space platform such as a spacecraft or habitat.
Efficient Bulk Data Replication for the Earth System Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sim, Alex; Gunter, Dan; Natarajan, Vijaya
2010-03-10
The Earth System Grid (ESG) community faces the difficult challenge of managing the distribution of massive data sets to thousands of scientists around the world. To move data replicas efficiently, the ESG has developed a data transfer management tool called the Bulk Data Mover (BDM). We describe the performance results of the current system and plans towards extending the techniques developed so far for the up- coming project, in which the ESG will employ advanced networks to move multi-TB datasets with the ulti- mate goal of helping researchers understand climate change and its potential impacts on world ecology and society.
MIDG-Emerging grid technologies for multi-site preclinical molecular imaging research communities.
Lee, Jasper; Documet, Jorge; Liu, Brent; Park, Ryan; Tank, Archana; Huang, H K
2011-03-01
Molecular imaging is the visualization and identification of specific molecules in anatomy for insight into metabolic pathways, tissue consistency, and tracing of solute transport mechanisms. This paper presents the Molecular Imaging Data Grid (MIDG) which utilizes emerging grid technologies in preclinical molecular imaging to facilitate data sharing and discovery between preclinical molecular imaging facilities and their collaborating investigator institutions to expedite translational sciences research. Grid-enabled archiving, management, and distribution of animal-model imaging datasets help preclinical investigators to monitor, access and share their imaging data remotely, and promote preclinical imaging facilities to share published imaging datasets as resources for new investigators. The system architecture of the Molecular Imaging Data Grid is described in a four layer diagram. A data model for preclinical molecular imaging datasets is also presented based on imaging modalities currently used in a molecular imaging center. The MIDG system components and connectivity are presented. And finally, the workflow steps for grid-based archiving, management, and retrieval of preclincial molecular imaging data are described. Initial performance tests of the Molecular Imaging Data Grid system have been conducted at the USC IPILab using dedicated VMware servers. System connectivity, evaluated datasets, and preliminary results are presented. The results show the system's feasibility, limitations, direction of future research. Translational and interdisciplinary research in medicine is increasingly interested in cellular and molecular biology activity at the preclinical levels, utilizing molecular imaging methods on animal models. The task of integrated archiving, management, and distribution of these preclinical molecular imaging datasets at preclinical molecular imaging facilities is challenging due to disparate imaging systems and multiple off-site investigators. A Molecular Imaging Data Grid design, implementation, and initial evaluation is presented to demonstrate the secure and novel data grid solution for sharing preclinical molecular imaging data across the wide-area-network (WAN).
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji
2017-01-01
In the multi-dimensional space-time conservation element and solution element16 (CESE) method, triangles and tetrahedral mesh elements turn out to be the most natural building blocks for 2D and 3D spatial grids, respectively. As such, the CESE method is naturally compatible with the simplest 2D and 3D unstructured grids and thus can be easily applied to solve problems with complex geometries. However, because (a) accurate solution of a high-Reynolds number flow field near a solid wall requires that the grid intervals along the direction normal to the wall be much finer than those in a direction parallel to the wall and, as such, the use of grid cells with extremely high aspect ratio (103 to 106) may become mandatory, and (b) unlike quadrilateral hexahedral grids, it is well-known that accuracy of gradient computations involving triangular tetrahedral grids tends to deteriorate rapidly as cell aspect ratio increases. As a result, the use of triangular tetrahedral grid cells near a solid wall has long been deemed impractical by CFD researchers. In view of (a) the critical role played by triangular tetrahedral grids in the CESE development, and (b) the importance of accurate resolution of high-Reynolds number flow field near a solid wall, as will be presented in the main paper, a comprehensive and rigorous mathematical framework that clearly identifies the reasons behind the accuracy deterioration as described above has been developed for the 2D case involving triangular cells. By avoiding the pitfalls identified by the 2D framework, and its 3D extension, it has been shown numerically.
On shifted Jacobi spectral method for high-order multi-point boundary value problems
NASA Astrophysics Data System (ADS)
Doha, E. H.; Bhrawy, A. H.; Hafez, R. M.
2012-10-01
This paper reports a spectral tau method for numerically solving multi-point boundary value problems (BVPs) of linear high-order ordinary differential equations. The construction of the shifted Jacobi tau approximation is based on conventional differentiation. This use of differentiation allows the imposition of the governing equation at the whole set of grid points and the straight forward implementation of multiple boundary conditions. Extension of the tau method for high-order multi-point BVPs with variable coefficients is treated using the shifted Jacobi Gauss-Lobatto quadrature. Shifted Jacobi collocation method is developed for solving nonlinear high-order multi-point BVPs. The performance of the proposed methods is investigated by considering several examples. Accurate results and high convergence rates are achieved.
Vogel, Curtis R; Yang, Qiang
2006-08-21
We present two different implementations of the Fourier domain preconditioned conjugate gradient algorithm (FD-PCG) to efficiently solve the large structured linear systems that arise in optimal volume turbulence estimation, or tomography, for multi-conjugate adaptive optics (MCAO). We describe how to deal with several critical technical issues, including the cone coordinate transformation problem and sensor subaperture grid spacing. We also extend the FD-PCG approach to handle the deformable mirror fitting problem for MCAO.
Competitive-Cooperative Automated Reasoning from Distributed and Multiple Source of Data
NASA Astrophysics Data System (ADS)
Fard, Amin Milani
Knowledge extraction from distributed database systems, have been investigated during past decade in order to analyze billions of information records. In this work a competitive deduction approach in a heterogeneous data grid environment is proposed using classic data mining and statistical methods. By applying a game theory concept in a multi-agent model, we tried to design a policy for hierarchical knowledge discovery and inference fusion. To show the system run, a sample multi-expert system has also been developed.
NASA Capabilities That Could Impact Terrestrial Smart Grids of the Future
NASA Technical Reports Server (NTRS)
Beach, Raymond F.
2015-01-01
Incremental steps to steadily build, test, refine, and qualify capabilities that lead to affordable flight elements and a deep space capability. Potential Deep Space Vehicle Power system characteristics: power 10 kilowatts average; two independent power channels with multi-level cross-strapping; solar array power 24 plus kilowatts; multi-junction arrays; lithium Ion battery storage 200 plus ampere-hours; sized for deep space or low lunar orbit operation; distribution120 volts secondary (SAE AS 5698); 2 kilowatt power transfer between vehicles.
Multi-Dimensional Asymptotically Stable 4th Order Accurate Schemes for the Diffusion Equation
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Ditkowski, Adi
1996-01-01
An algorithm is presented which solves the multi-dimensional diffusion equation on co mplex shapes to 4th-order accuracy and is asymptotically stable in time. This bounded-error result is achieved by constructing, on a rectangular grid, a differentiation matrix whose symmetric part is negative definite. The differentiation matrix accounts for the Dirichlet boundary condition by imposing penalty like terms. Numerical examples in 2-D show that the method is effective even where standard schemes, stable by traditional definitions fail.
NASA Astrophysics Data System (ADS)
Okabe, Ryo; Tanaka, Toshiki; Nishihara, Masato; Kai, Yutaka; Takahara, Tomoo; Chen, Hao; Yan, Weizhen; Tao, Zhenning; Rasmussen, Jens C.
2015-01-01
Discrete multi-tone (DMT) technology is an attractive modulation technique for short reach optical transmission system. One of the main factors that limit system performance is fiber dispersion, which is strongly influenced by the chirp characteristics of transmitters. We investigated the fiber dispersion impairment in a 400GbE (4 × 116.1-Gb/s) DMT system on LAN-WDM grid for reach enhancement up to 40 km through experiments and numerical simulations.
ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Charles R.; Anderson, Andrew T.; Barton, Nathan R.
ALE3D is a multi-physics numerical simulation software tool utilizing arbitrary-Lagrangian- Eulerian (ALE) techniques. The code is written to address both two-dimensional (2D plane and axisymmetric) and three-dimensional (3D) physics and engineering problems using a hybrid finite element and finite volume formulation to model fluid and elastic-plastic response of materials on an unstructured grid. As shown in Figure 1, ALE3D is a single code that integrates many physical phenomena.
Framing the grid: effect of boundaries on grid cells and navigation.
Krupic, Julija; Bauza, Marius; Burton, Stephen; O'Keefe, John
2016-11-15
Cells in the mammalian hippocampal formation subserve neuronal representations of environmental location and support navigation in familiar environments. Grid cells constitute one of the main cell types in the hippocampal formation and are widely believed to represent a universal metric of space independent of external stimuli. Recent evidence showing that grid symmetry is distorted in non-symmetrical environments suggests that a re-examination of this hypothesis is warranted. In this review we will discuss behavioural and physiological evidence for how environmental shape and in particular enclosure boundaries influence grid cell firing properties. We propose that grid cells encode the geometric layout of enclosures. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Grid scale drives the scale and long-term stability of place maps
Mallory, Caitlin S; Hardcastle, Kiah; Bant, Jason S; Giocomo, Lisa M
2018-01-01
Medial entorhinal cortex (MEC) grid cells fire at regular spatial intervals and project to the hippocampus, where place cells are active in spatially restricted locations. One feature of the grid population is the increase in grid spatial scale along the dorsal-ventral MEC axis. However, the difficulty in perturbing grid scale without impacting the properties of other functionally-defined MEC cell types has obscured how grid scale influences hippocampal coding and spatial memory. Here, we use a targeted viral approach to knock out HCN1 channels selectively in MEC, causing grid scale to expand while leaving other MEC spatial and velocity signals intact. Grid scale expansion resulted in place scale expansion in fields located far from environmental boundaries, reduced long-term place field stability and impaired spatial learning. These observations, combined with simulations of a grid-to-place cell model and position decoding of place cells, illuminate how grid scale impacts place coding and spatial memory. PMID:29335607
NASA Astrophysics Data System (ADS)
Witantyo; Setyawan, David
2018-03-01
In a lead acid battery industry, grid casting is a process that has high defect and thickness variation level. DMAIC (Define-Measure-Analyse-Improve-Control) method and its tools will be used to improve the casting process. In the Define stage, it is used project charter and SIPOC (Supplier Input Process Output Customer) method to map the existent problem. In the Measure stage, it is conducted a data retrieval related to the types of defect and the amount of it, also the grid thickness variation that happened. And then the retrieved data is processed and analyzed by using 5 Why’s and FMEA method. In the Analyze stage, it is conducted a grid observation that experience fragile and crack type of defect by using microscope showing the amount of oxide Pb inclusion in the grid. Analysis that is used in grid casting process shows the difference of temperature that is too high between the metal fluid and mold temperature, also the corking process that doesn’t have standard. The Improve stage is conducted a fixing process which generates the reduction of grid variation thickness level and defect/unit level from 9,184% to 0,492%. In Control stage, it is conducted a new working standard determination and already fixed control process.
NASA Technical Reports Server (NTRS)
Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick;
2001-01-01
A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.
Decision making for best cogeneration power integration into a grid
NASA Astrophysics Data System (ADS)
Al Asmar, Joseph; Zakhia, Nadim; Kouta, Raed; Wack, Maxime
2016-07-01
Cogeneration systems are known to be efficient power systems for their ability to reduce pollution. Their integration into a grid requires simultaneous consideration of the economic and environmental challenges. Thus, an optimal cogeneration power are adopted to face such challenges. This work presents a novelty in selectinga suitable solution using heuristic optimization method. Its aim is to optimize the cogeneration capacity to be installed according to the economic and environmental concerns. This novelty is based on the sensitivity and data analysis method, namely, Multiple Linear Regression (MLR). This later establishes a compromise between power, economy, and pollution, which leads to find asuitable cogeneration power, and further, to be integrated into a grid. The data exploited were the results of the Genetic Algorithm (GA) multi-objective optimization. Moreover, the impact of the utility's subsidy on the selected power is shown.
Implicit method for the computation of unsteady flows on unstructured grids
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, D. J.
1995-01-01
An implicit method for the computation of unsteady flows on unstructured grids is presented. Following a finite difference approximation for the time derivative, the resulting nonlinear system of equations is solved at each time step by using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Inviscid and viscous unsteady flows are computed to validate the procedure. The issue of the mass matrix which arises with vertex-centered finite volume schemes is addressed. The present formulation allows the mass matrix to be inverted indirectly. A mesh point movement and reconnection procedure is described that allows the grids to evolve with the motion of bodies. As an example of flow over bodies in relative motion, flow over a multi-element airfoil system undergoing deployment is computed.
MUSIC: MUlti-Scale Initial Conditions
NASA Astrophysics Data System (ADS)
Hahn, Oliver; Abel, Tom
2013-11-01
MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10-4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.
Characterization of a Low-Cost Multi-Parameter Sensor for Resource Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Sengupta, Manajit; Andreas, Afshin M
Low-cost multi-parameter sensing and measurement devices enable cost-effective monitoring of the functional, operational reliability, efficiency, and resiliency of the electrical grid. The National Renewable Research Laboratory (NREL) Solar Radiation Research Laboratory (SRRL), in collaboration with Arable Labs Inc., deployed Arable Lab's Mark multi-parameter sensor system. The unique suite of system sensors measures the down-welling and upwelling shortwave solar resource and longwave radiation, humidity, air temperature, and ground temperature. This study describes the shortwave calibration, characteriza-tion, and validation of measurement accuracy of this instrument by comparison with existing instruments that are part of NREL-SRRL's Baseline Measurement System.
Multi-centric universal pseudonymisation for secondary use of the EHR.
Lo Iacono, Luigi
2007-01-01
This paper discusses the importance of protecting the privacy of patient data kept in an Electronic Health Record (EHR) in the case, where it leaves the control- and protection-sphere of the health care realm for secondary uses such as clinical or epidemiological research projects, health care research, assessment of treatment quality or economic assessments. The paper focuses on multi-centric studies, where various data sources are linked together using Grid technologies. It introduces a pseudonymisation system which enables a multi-centric universal pseudonymisation, meaning that a patient's identity will result in the same pseudonym, regardless of which participating study center the patient data is collected.
SAMI: Sydney-AAO Multi-object Integral field spectrograph pipeline
NASA Astrophysics Data System (ADS)
Allen, J. T.; Green, A. W.; Fogarty, L. M. R.; Sharp, R.; Nielsen, J.; Konstantopoulos, I.; Taylor, E. N.; Scott, N.; Cortese, L.; Richards, S. N.; Croom, S.; Owers, M. S.; Bauer, A. E.; Sweet, S. M.; Bryant, J. J.
2014-07-01
The SAMI (Sydney-AAO Multi-object Integral field spectrograph) pipeline reduces data from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) for the SAMI Galaxy Survey. The python code organizes SAMI data and, along with the AAO 2dfdr package, carries out all steps in the data reduction, from raw data to fully calibrated datacubes. The principal steps are: data management, use of 2dfdr to produce row-stacked spectra, flux calibration, correction for telluric absorption, removal of atmospheric dispersion, alignment of dithered exposures, and drizzling onto a regular output grid. Variance and covariance information is tracked throughout the pipeline. Some quality control routines are also included.
Summarising climate and air quality (ozone) data on self-organising maps: a Sydney case study.
Jiang, Ningbo; Betts, Alan; Riley, Matt
2016-02-01
This paper explores the classification and visualisation utility of the self-organising map (SOM) method in the context of New South Wales (NSW), Australia, using gridded NCEP/NCAR geopotential height reanalysis for east Australia, together with multi-site meteorological and air quality data for Sydney from the NSW Office of Environment and Heritage Air Quality Monitoring Network. A twice-daily synoptic classification has been derived for east Australia for the period of 1958-2012. The classification has not only reproduced the typical synoptic patterns previously identified in the literature but also provided an opportunity to visualise the subtle, non-linear change in the eastward-migrating synoptic systems influencing NSW (including Sydney). The summarisation of long-term, multi-site air quality/meteorological data from the Sydney basin on the SOM plane has identified a set of typical air pollution/meteorological spatial patterns in the region. Importantly, the examination of these patterns in relation to synoptic weather types has provided important visual insights into how local and synoptic meteorological conditions interact with each other and affect the variability of air quality in tandem. The study illustrates that while synoptic circulation types are influential, the within-type variability in mesoscale flows plays a critical role in determining local ozone levels in Sydney. These results indicate that the SOM can be a useful tool for assessing the impact of weather and climatic conditions on air quality in the regional airshed. This study further promotes the use of the SOM method in environmental research.
A single-cell spiking model for the origin of grid-cell patterns
Kempter, Richard
2017-01-01
Spatial cognition in mammals is thought to rely on the activity of grid cells in the entorhinal cortex, yet the fundamental principles underlying the origin of grid-cell firing are still debated. Grid-like patterns could emerge via Hebbian learning and neuronal adaptation, but current computational models remained too abstract to allow direct confrontation with experimental data. Here, we propose a single-cell spiking model that generates grid firing fields via spike-rate adaptation and spike-timing dependent plasticity. Through rigorous mathematical analysis applicable in the linear limit, we quantitatively predict the requirements for grid-pattern formation, and we establish a direct link to classical pattern-forming systems of the Turing type. Our study lays the groundwork for biophysically-realistic models of grid-cell activity. PMID:28968386
Polar2Grid 2.0: Reprojecting Satellite Data Made Easy
NASA Astrophysics Data System (ADS)
Hoese, D.; Strabala, K.
2015-12-01
Polar-orbiting multi-band meteorological sensors such as those on the Suomi National Polar-orbiting Partnership (SNPP) satellite pose substantial challenges for taking imagery the last mile to forecast offices, scientific analysis environments, and the general public. To do this quickly and easily, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin has created an open-source, modular application system, Polar2Grid. This bundled solution automates tools for converting various satellite products like those from VIIRS and MODIS into a variety of output formats, including GeoTIFFs, AWIPS compatible NetCDF files, and NinJo forecasting workstation compatible TIFF images. In addition to traditional visible and infrared imagery, Polar2Grid includes three perceptual enhancements for the VIIRS Day-Night Band (DNB), as well as providing the capability to create sharpened true color, sharpened false color, and user-defined RGB images. Polar2Grid performs conversions and projections in seconds on large swaths of data. Polar2Grid is currently providing VIIRS imagery over the Continental United States, as well as Alaska and Hawaii, from various Direct-Broadcast antennas to operational forecasters at the NOAA National Weather Service (NWS) offices in their AWIPS terminals, within minutes of an overpass of the Suomi NPP satellite. Three years after Polar2Grid development started, the Polar2Grid team is now releasing version 2.0 of the software; supporting more sensors, generating more products, and providing all of its features in an easy to use command line interface.
Physics design of the injector source for ITER neutral beam injector (invited).
Antoni, V; Agostinetti, P; Aprile, D; Cavenago, M; Chitarin, G; Fonnesu, N; Marconato, N; Pilan, N; Sartori, E; Serianni, G; Veltri, P
2014-02-01
Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented.
Atlasmaker: A Grid-based Implementation of the Hyperatlas
NASA Astrophysics Data System (ADS)
Williams, R.; Djorgovski, S. G.; Feldmann, M. T.; Jacob, J.
2004-07-01
The Atlasmaker project is using Grid technology, in combination with NVO interoperability, to create new knowledge resources in astronomy. The product is a multi-faceted, multi-dimensional, scientifically trusted image atlas of the sky, made by federating many different surveys at different wavelengths, times, resolutions, polarizations, etc. The Atlasmaker software does resampling and mosaicking of image collections, and is well-suited to operate with the Hyperatlas standard. Requests can be satisfied via on-demand computations or by accessing a data cache. Computed data is stored in a distributed virtual file system, such as the Storage Resource Broker (SRB). We expect these atlases to be a new and powerful paradigm for knowledge extraction in astronomy, as well as a magnificent way to build educational resources. The system is being incorporated into the data analysis pipeline of the Palomar-Quest synoptic survey, and is being used to generate all-sky atlases from the 2MASS, SDSS, and DPOSS surveys for joint object detection.
Crowley, Rebecca S; Castine, Melissa; Mitchell, Kevin; Chavan, Girish; McSherry, Tara; Feldman, Michael
2010-01-01
The authors report on the development of the Cancer Tissue Information Extraction System (caTIES)--an application that supports collaborative tissue banking and text mining by leveraging existing natural language processing methods and algorithms, grid communication and security frameworks, and query visualization methods. The system fills an important need for text-derived clinical data in translational research such as tissue-banking and clinical trials. The design of caTIES addresses three critical issues for informatics support of translational research: (1) federation of research data sources derived from clinical systems; (2) expressive graphical interfaces for concept-based text mining; and (3) regulatory and security model for supporting multi-center collaborative research. Implementation of the system at several Cancer Centers across the country is creating a potential network of caTIES repositories that could provide millions of de-identified clinical reports to users. The system provides an end-to-end application of medical natural language processing to support multi-institutional translational research programs.
A method of boundary equations for unsteady hyperbolic problems in 3D
NASA Astrophysics Data System (ADS)
Petropavlovsky, S.; Tsynkov, S.; Turkel, E.
2018-07-01
We consider interior and exterior initial boundary value problems for the three-dimensional wave (d'Alembert) equation. First, we reduce a given problem to an equivalent operator equation with respect to unknown sources defined only at the boundary of the original domain. In doing so, the Huygens' principle enables us to obtain the operator equation in a form that involves only finite and non-increasing pre-history of the solution in time. Next, we discretize the resulting boundary equation and solve it efficiently by the method of difference potentials (MDP). The overall numerical algorithm handles boundaries of general shape using regular structured grids with no deterioration of accuracy. For long simulation times it offers sub-linear complexity with respect to the grid dimension, i.e., is asymptotically cheaper than the cost of a typical explicit scheme. In addition, our algorithm allows one to share the computational cost between multiple similar problems. On multi-processor (multi-core) platforms, it benefits from what can be considered an effective parallelization in time.
Fully implicit adaptive mesh refinement solver for 2D MHD
NASA Astrophysics Data System (ADS)
Philip, B.; Chacon, L.; Pernice, M.
2008-11-01
Application of implicit adaptive mesh refinement (AMR) to simulate resistive magnetohydrodynamics is described. Solving this challenging multi-scale, multi-physics problem can improve understanding of reconnection in magnetically-confined plasmas. AMR is employed to resolve extremely thin current sheets, essential for an accurate macroscopic description. Implicit time stepping allows us to accurately follow the dynamical time scale of the developing magnetic field, without being restricted by fast Alfven time scales. At each time step, the large-scale system of nonlinear equations is solved by a Jacobian-free Newton-Krylov method together with a physics-based preconditioner. Each block within the preconditioner is solved optimally using the Fast Adaptive Composite grid method, which can be considered as a multiplicative Schwarz method on AMR grids. We will demonstrate the excellent accuracy and efficiency properties of the method with several challenging reduced MHD applications, including tearing, island coalescence, and tilt instabilities. B. Philip, L. Chac'on, M. Pernice, J. Comput. Phys., in press (2008)
NASA Astrophysics Data System (ADS)
Hill, James C.; Liu, Zhenping; Fox, Rodney O.; Passalacqua, Alberto; Olsen, Michael G.
2015-11-01
The multi-inlet vortex reactor (MIVR) has been developed to provide a platform for rapid mixing in the application of flash nanoprecipitation (FNP) for manufacturing functional nanoparticles. Unfortunately, commonly used RANS methods are unable to accurately model this complex swirling flow. Large eddy simulations have also been problematic, as expensive fine grids to accurately model the flow are required. These dilemmas led to the strategy of applying a Delayed Detached Eddy Simulation (DDES) method to the vortex reactor. In the current work, the turbulent swirling flow inside a scaled-up MIVR has been investigated by using a dynamic DDES model. In the DDES model, the eddy viscosity has a form similar to the Smagorinsky sub-grid viscosity in LES and allows the implementation of a dynamic procedure to determine its coefficient. The complex recirculating back flow near the reactor center has been successfully captured by using this dynamic DDES model. Moreover, the simulation results are found to agree with experimental data for mean velocity and Reynolds stresses.
Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid
NASA Astrophysics Data System (ADS)
Yao, Tong
In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, micro synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using Hinfinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transition.
NASA Astrophysics Data System (ADS)
Prat, Olivier; Nelson, Brian; Stevens, Scott; Seo, Dong-Jun; Kim, Beomgeun
2015-04-01
The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is completed for the period covering from 2001 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Several in-situ datasets are available to assess the biases of the radar-only product and to adjust for those biases to provide a multi-sensor QPE. The rain gauge networks that are used such as the Global Historical Climatology Network-Daily (GHCN-D), the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), and the Climate Reference Network (CRN), have different spatial density and temporal resolution. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. The objective of this work is threefold. First, we investigate how the different in-situ networks can impact the precipitation estimates as a function of the spatial density, sensor type, and temporal resolution. Second, we assess conditional and un-conditional biases of the radar-only QPE for various time scales (daily, hourly, 5-min) using in-situ precipitation observations. Finally, after assessing the bias and applying reduction or elimination techniques, we are using a unique in-situ dataset merging the different RG networks (CRN, ASOS, HADS, GHCN-D) to adjust the radar-only QPE product via an Inverse Distance Weighting (IDW) approach. In addition, we also investigate alternate adjustment techniques such as the kriging method and its variants (Simple Kriging: SK; Ordinary Kriging: OK; Conditional Bias-Penalized Kriging: CBPK). From this approach, we also hope to generate estimates of uncertainty for the gridded bias-adjusted QPE. Further comparison with a suite of lower resolution QPEs derived from ground based radar measurements (Stage IV) and satellite products (TMPA, CMORPH, PERSIANN) is also provided in order to give a detailed picture of the improvements and remaining challenges.
An Overview of the National Weather Service National Water Model
NASA Astrophysics Data System (ADS)
Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Feng, X.; Karsten, L. R.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.
2016-12-01
The National Weather Service (NWS) Office of Water Prediction (OWP), in conjunction with the National Center for Atmospheric Research (NCAR) and the NWS National Centers for Environmental Prediction (NCEP) recently implemented version 1.0 of the National Water Model (NWM) into operations. This model is an hourly cycling uncoupled analysis and forecast system that provides streamflow for 2.7 million river reaches and other hydrologic information on 1km and 250m grids. It will provide complementary hydrologic guidance at current NWS river forecast locations and significantly expand guidance coverage and type in underserved locations. The core of this system is the NCAR-supported community Weather Research and Forecasting (WRF)-Hydro hydrologic model. It ingests forcing from a variety of sources including Multi-Sensor Multi-Radar (MRMS) radar-gauge observed precipitation data and High Resolution Rapid Refresh (HRRR), Rapid Refresh (RAP), Global Forecast System (GFS) and Climate Forecast System (CFS) forecast data. WRF-Hydro is configured to use the Noah-Multi Parameterization (Noah-MP) Land Surface Model (LSM) to simulate land surface processes. Separate water routing modules perform diffusive wave surface routing and saturated subsurface flow routing on a 250m grid, and Muskingum-Cunge channel routing down National Hydrogaphy Dataset Plus V2 (NHDPlusV2) stream reaches. River analyses and forecasts are provided across a domain encompassing the Continental United States (CONUS) and hydrologically contributing areas, while land surface output is available on a larger domain that extends beyond the CONUS into Canada and Mexico (roughly from latitude 19N to 58N). The system includes an analysis and assimilation configuration along with three forecast configurations. These include a short-range 15 hour deterministic forecast, a medium-Range 10 day deterministic forecast and a long-range 30 day 16-member ensemble forecast. United Sates Geologic Survey (USGS) streamflow observations are assimilated into the analysis and assimilation configuration, and all four configurations benefit from the inclusion of 1,260 reservoirs. An overview of the National Water Model will be given, along with information on ongoing evaluation activities and plans for future NWM enhancements.
15 MW HArdware-in-the-loop Grid Simulation Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigas, Nikolaos; Fox, John Curtiss; Collins, Randy
2014-10-31
The 15MW Hardware-in-the-loop (HIL) Grid Simulator project was to (1) design, (2) construct and (3) commission a state-of-the-art grid integration testing facility for testing of multi-megawatt devices through a ‘shared facility’ model open to all innovators to promote the rapid introduction of new technology in the energy market to lower the cost of energy delivered. The 15 MW HIL Grid Simulator project now serves as the cornerstone of the Duke Energy Electric Grid Research, Innovation and Development (eGRID) Center. This project leveraged the 24 kV utility interconnection and electrical infrastructure of the US DOE EERE funded WTDTF project at themore » Clemson University Restoration Institute in North Charleston, SC. Additionally, the project has spurred interest from other technology sectors, including large PV inverter and energy storage testing and several leading edge research proposals dealing with smart grid technologies, grid modernization and grid cyber security. The key components of the project are the power amplifier units capable of providing up to 20MW of defined power to the research grid. The project has also developed a one of a kind solution to performing fault ride-through testing by combining a reactive divider network and a large power converter into a hybrid method. This unique hybrid method of performing fault ride-through analysis will allow for the research team at the eGRID Center to investigate the complex differences between the alternative methods of performing fault ride-through evaluations and will ultimately further the science behind this testing. With the final goal of being able to perform HIL experiments and demonstration projects, the eGRID team undertook a significant challenge with respect to developing a control system that is capable of communicating with several different pieces of equipment with different communication protocols in real-time. The eGRID team developed a custom fiber optical network that is based upon FPGA hardware that allows for communication between the key real-time interfaces and reduces the latency between these interfaces to acceptable levels for HIL experiments.« less
Benefits Analysis of Smart Grid Projects. White paper, 2014-2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marnay, Chris; Liu, Liping; Yu, JianCheng
Smart grids are rolling out internationally, with the United States (U.S.) nearing completion of a significant USD4-plus-billion federal program funded under the American Recovery and Reinvestment Act (ARRA-2009). The emergence of smart grids is widespread across developed countries. Multiple approaches to analyzing the benefits of smart grids have emerged. The goals of this white paper are to review these approaches and analyze examples of each to highlight their differences, advantages, and disadvantages. This work was conducted under the auspices of a joint U.S.-China research effort, the Climate Change Working Group (CCWG) Implementation Plan, Smart Grid. We present comparative benefits assessmentsmore » (BAs) of smart grid demonstrations in the U.S. and China along with a BA of a pilot project in Europe. In the U.S., we assess projects at two sites: (1) the University of California, Irvine campus (UCI), which consists of two distinct demonstrations: Southern California Edison’s (SCE) Irvine Smart Grid Demonstration Project (ISGD) and the UCI campus itself; and (2) the Navy Yard (TNY) area in Philadelphia, which has been repurposed as a mixed commercial-industrial, and possibly residential, development. In China, we cover several smart-grid aspects of the Sino-Singapore Tianjin Eco-city (TEC) and the Shenzhen Bay Technology and Ecology City (B-TEC). In Europe, we look at a BA of a pilot smart grid project in the Malagrotta area west of Rome, Italy, contributed by the Joint Research Centre (JRC) of the European Commission. The Irvine sub-project BAs use the U.S. Department of Energy (U.S. DOE) Smart Grid Computational Tool (SGCT), which is built on methods developed by the Electric Power Research Institute (EPRI). The TEC sub-project BAs apply Smart Grid Multi-Criteria Analysis (SG-MCA) developed by the State Grid Corporation of China (SGCC) based on the analytic hierarchy process (AHP) with fuzzy logic. The B-TEC and TNY sub-project BAs are evaluated using new approaches developed by those project teams. JRC has adopted an approach similar to EPRI’s but tailored to the Malagrotta distribution grid.« less
Scientific Visualization and Simulation for Multi-dimensional Marine Environment Data
NASA Astrophysics Data System (ADS)
Su, T.; Liu, H.; Wang, W.; Song, Z.; Jia, Z.
2017-12-01
As higher attention on the ocean and rapid development of marine detection, there are increasingly demands for realistic simulation and interactive visualization of marine environment in real time. Based on advanced technology such as GPU rendering, CUDA parallel computing and rapid grid oriented strategy, a series of efficient and high-quality visualization methods, which can deal with large-scale and multi-dimensional marine data in different environmental circumstances, has been proposed in this paper. Firstly, a high-quality seawater simulation is realized by FFT algorithm, bump mapping and texture animation technology. Secondly, large-scale multi-dimensional marine hydrological environmental data is virtualized by 3d interactive technologies and volume rendering techniques. Thirdly, seabed terrain data is simulated with improved Delaunay algorithm, surface reconstruction algorithm, dynamic LOD algorithm and GPU programming techniques. Fourthly, seamless modelling in real time for both ocean and land based on digital globe is achieved by the WebGL technique to meet the requirement of web-based application. The experiments suggest that these methods can not only have a satisfying marine environment simulation effect, but also meet the rendering requirements of global multi-dimension marine data. Additionally, a simulation system for underwater oil spill is established by OSG 3D-rendering engine. It is integrated with the marine visualization method mentioned above, which shows movement processes, physical parameters, current velocity and direction for different types of deep water oil spill particle (oil spill particles, hydrates particles, gas particles, etc.) dynamically and simultaneously in multi-dimension. With such application, valuable reference and decision-making information can be provided for understanding the progress of oil spill in deep water, which is helpful for ocean disaster forecasting, warning and emergency response.
NASA Astrophysics Data System (ADS)
Wingo, S. M.; Petersen, W. A.; Gatlin, P. N.; Marks, D. A.; Wolff, D. B.; Pabla, C. S.
2017-12-01
The versatile SIMBA (System for Integrating Multi-platform data to Build the Atmospheric column) precipitation data-fusion framework produces an atmospheric column data product with multi-platform observations set into a common 3-D grid, affording an efficient starting point for multi-sensor comparisons and analysis that can be applied to any region. Supported data sources include: ground-based scanning and profiling radars (S-, X-, Ku-, K-, and Ka-band), multiple types of disdrometers and rain gauges, the GPM Core Observatory's Microwave Imager (GMI, 10-183 GHz) and Dual-frequency Precipitation Radar (DPR, Ka/Ku-band), as well as thermodynamic soundings and the Multi-Radar/Multi-Sensor QPE product. SIMBA column data files provide a unique way to evaluate the complete vertical profile of precipitation. Two post-launch (GPM Core in orbit) field campaigns focused on different facets of the GPM mission: the Olympic Mountains Experiment (OLYMPEX) was geared toward winter season (November-February) precipitation in Pacific frontal systems and their transition from the coastal to mountainous terrain of northwest Washington, while the Integrated Precipitation and Hydrology Experiment (IPHEx) sampled warm season (April-June) precipitation and supported hydrologic applications in the southern Appalachians and eastern North Carolina. Both campaigns included multiple orographic precipitation enhancement episodes. SIMBA column products generated for select OLYMPEX and IPHEx events will be used to evaluate spatial variability and vertical profiles of precipitation and drop size distribution parameters derived and/or observed by space- and ground-based sensors. Results will provide a cursory view of how well the space-based measurements represent what is observed from the ground below and an indication to how the terrain in both regions impacts the characteristics of precipitation within the column and reaching the ground.
NASA Astrophysics Data System (ADS)
Wingo, S. M.; Petersen, W. A.; Gatlin, P. N.; Marks, D. A.; Wolff, D. B.; Pabla, C. S.
2016-12-01
The versatile SIMBA (System for Integrating Multi-platform data to Build the Atmospheric column) precipitation data-fusion framework produces an atmospheric column data product with multi-platform observations set into a common 3-D grid, affording an efficient starting point for multi-sensor comparisons and analysis that can be applied to any region. Supported data sources include: ground-based scanning and profiling radars (S-, X-, Ku-, K-, and Ka-band), multiple types of disdrometers and rain gauges, the GPM Core Observatory's Microwave Imager (GMI, 10-183 GHz) and Dual-frequency Precipitation Radar (DPR, Ka/Ku-band), as well as thermodynamic soundings and the Multi-Radar/Multi-Sensor QPE product. SIMBA column data files provide a unique way to evaluate the complete vertical profile of precipitation. Two post-launch (GPM Core in orbit) field campaigns focused on different facets of the GPM mission: the Olympic Mountains Experiment (OLYMPEX) was geared toward winter season (November-February) precipitation in Pacific frontal systems and their transition from the coastal to mountainous terrain of northwest Washington, while the Integrated Precipitation and Hydrology Experiment (IPHEx) sampled warm season (April-June) precipitation and supported hydrologic applications in the southern Appalachians and eastern North Carolina. Both campaigns included multiple orographic precipitation enhancement episodes. SIMBA column products generated for select OLYMPEX and IPHEx events will be used to evaluate spatial variability and vertical profiles of precipitation and drop size distribution parameters derived and/or observed by space- and ground-based sensors. Results will provide a cursory view of how well the space-based measurements represent what is observed from the ground below and an indication to how the terrain in both regions impacts the characteristics of precipitation within the column and reaching the ground.
The agent-based spatial information semantic grid
NASA Astrophysics Data System (ADS)
Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren
2006-10-01
Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.
A Scalable proxy cache for Grid Data Access
NASA Astrophysics Data System (ADS)
Cristian Cirstea, Traian; Just Keijser, Jan; Koeroo, Oscar Arthur; Starink, Ronald; Templon, Jeffrey Alan
2012-12-01
We describe a prototype grid proxy cache system developed at Nikhef, motivated by a desire to construct the first building block of a future https-based Content Delivery Network for grid infrastructures. Two goals drove the project: firstly to provide a “native view” of the grid for desktop-type users, and secondly to improve performance for physics-analysis type use cases, where multiple passes are made over the same set of data (residing on the grid). We further constrained the design by requiring that the system should be made of standard components wherever possible. The prototype that emerged from this exercise is a horizontally-scalable, cooperating system of web server / cache nodes, fronted by a customized webDAV server. The webDAV server is custom only in the sense that it supports http redirects (providing horizontal scaling) and that the authentication module has, as back end, a proxy delegation chain that can be used by the cache nodes to retrieve files from the grid. The prototype was deployed at Nikhef and tested at a scale of several terabytes of data and approximately one hundred fast cores of computing. Both small and large files were tested, in a number of scenarios, and with various numbers of cache nodes, in order to understand the scaling properties of the system. For properly-dimensioned cache-node hardware, the system showed speedup of several integer factors for the analysis-type use cases. These results and others are presented and discussed.
Impacts of P-f & Q-V Droop Control on MicroGrids Transient Stability
NASA Astrophysics Data System (ADS)
Zhao-xia, Xiao; Hong-wei, Fang
Impacts of P-f & Q-V droop control on MicroGrid transient stability was investigated with a wind unit of asynchronous generator in the MicroGrid. The system frequency stability was explored when the motor load starts and its load power changes, and faults of different types and different locations occurs. The simulations were done by PSCAD/EMTDC.
Control and prediction for blackouts caused by frequency collapse in smart grids.
Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S
2016-09-01
The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers, and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids and another one for smart grids. The control strategies show the efficient function of the fast-response energy storage systems in preventing and predicting blackouts in smart grids. This work provides innovative ideas which help us to build up a robuster and more economic smart power system.
Control and prediction for blackouts caused by frequency collapse in smart grids
NASA Astrophysics Data System (ADS)
Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S.
2016-09-01
The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers, and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids and another one for smart grids. The control strategies show the efficient function of the fast-response energy storage systems in preventing and predicting blackouts in smart grids. This work provides innovative ideas which help us to build up a robuster and more economic smart power system.
IEC Thrusters for Space Probe Applications and Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, George H.; Momota, Hiromu; Wu Linchun
Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In thismore » spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a 'plasma analytic probe' for interrogation of the object.« less
3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr; Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr; Leblanc, F.
2016-03-15
We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order tomore » conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.« less
Semi-implicit integration factor methods on sparse grids for high-dimensional systems
NASA Astrophysics Data System (ADS)
Wang, Dongyong; Chen, Weitao; Nie, Qing
2015-07-01
Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.
Visual Analytics for Power Grid Contingency Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Pak C.; Huang, Zhenyu; Chen, Yousu
2014-01-20
Contingency analysis is the process of employing different measures to model scenarios, analyze them, and then derive the best response to remove the threats. This application paper focuses on a class of contingency analysis problems found in the power grid management system. A power grid is a geographically distributed interconnected transmission network that transmits and delivers electricity from generators to end users. The power grid contingency analysis problem is increasingly important because of both the growing size of the underlying raw data that need to be analyzed and the urgency to deliver working solutions in an aggressive timeframe. Failure tomore » do so may bring significant financial, economic, and security impacts to all parties involved and the society at large. The paper presents a scalable visual analytics pipeline that transforms about 100 million contingency scenarios to a manageable size and form for grid operators to examine different scenarios and come up with preventive or mitigation strategies to address the problems in a predictive and timely manner. Great attention is given to the computational scalability, information scalability, visual scalability, and display scalability issues surrounding the data analytics pipeline. Most of the large-scale computation requirements of our work are conducted on a Cray XMT multi-threaded parallel computer. The paper demonstrates a number of examples using western North American power grid models and data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel
Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less
Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel; ...
2017-07-24
Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less
FVCOM one-way and two-way nesting using ESMF: Development and validation
NASA Astrophysics Data System (ADS)
Qi, Jianhua; Chen, Changsheng; Beardsley, Robert C.
2018-04-01
Built on the Earth System Modeling Framework (ESMF), the one-way and two-way nesting methods were implemented into the unstructured-grid Finite-Volume Community Ocean Model (FVCOM). These methods help utilize the unstructured-grid multi-domain nesting of FVCOM with an aim at resolving the multi-scale physical and ecosystem processes. A detail of procedures on implementing FVCOM into ESMF was described. The experiments were made to validate and evaluate the performance of the nested-grid FVCOM system. The first was made for a wave-current interaction case with a two-domain nesting with an emphasis on qualifying a critical need of nesting to resolve a high-resolution feature near the coast and harbor with little loss in computational efficiency. The second was conducted for the pseudo river plume cases to examine the differences in the model-simulated salinity between one-way and two-way nesting approaches and evaluate the performance of mass conservative two-way nesting method. The third was carried out for the river plume case in the realistic geometric domain in Mass Bay, supporting the importance for having the two-way nesting for coastal-estuarine integrated modeling. The nesting method described in this paper has been used in the Northeast Coastal Ocean Forecast System (NECOFS)-a global-regional-coastal nesting FVCOM system that has been placed into the end-to-end forecast and hindcast operations since 2007.
USING CMAQ FOR EXPOSURE MODELING AND CHARACTERIZING THE SUB-GRID VARIABILITY FOR EXPOSURE ESTIMATES
Atmospheric processes and the associated transport and dispersion of atmospheric pollutants are known to be highly variable in time and space. Current air quality models that characterize atmospheric chemistry effects, e.g. the Community Multi-scale Air Quality (CMAQ), provide vo...
NASA Workshop on Computational Structural Mechanics 1987, part 3
NASA Technical Reports Server (NTRS)
Sykes, Nancy P. (Editor)
1989-01-01
Computational Structural Mechanics (CSM) topics are explored. Algorithms and software for nonlinear structural dynamics, concurrent algorithms for transient finite element analysis, computational methods and software systems for dynamics and control of large space structures, and the use of multi-grid for structural analysis are discussed.
Multi-Wind Heat Smart Grid Project. Advancing Energy Solutions in Alaska NREL provides analysis mission to transfer knowledge and innovation to solve the nation's energy challenges. The goal of this transportation energy efficiency and reduce transportation energy costs State Technical Assistance-solar market
Nuclear reactor spacer grid and ductless core component
Christiansen, David W.; Karnesky, Richard A.
1989-01-01
The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.
Grid commerce, market-driven G-negotiation, and Grid resource management.
Sim, Kwang Mong
2006-12-01
Although the management of resources is essential for realizing a computational grid, providing an efficient resource allocation mechanism is a complex undertaking. Since Grid providers and consumers may be independent bodies, negotiation among them is necessary. The contribution of this paper is showing that market-driven agents (MDAs) are appropriate tools for Grid resource negotiation. MDAs are e-negotiation agents designed with the flexibility of: 1) making adjustable amounts of concession taking into account market rivalry, outside options, and time preferences and 2) relaxing bargaining terms in the face of intense pressure. A heterogeneous testbed consisting of several types of e-negotiation agents to simulate a Grid computing environment was developed. It compares the performance of MDAs against other e-negotiation agents (e.g., Kasbah) in a Grid-commerce environment. Empirical results show that MDAs generally achieve: 1) higher budget efficiencies in many market situations than other e-negotiation agents in the testbed and 2) higher success rates in acquiring Grid resources under high Grid loadings.
Implementation of control point form of algebraic grid-generation technique
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Miller, David P.; Reno, Charles J.
1991-01-01
The control point form (CPF) provides explicit control of physical grid shape and grid spacing through the movement of the control points. The control point array, called a control net, is a space grid type arrangement of locations in physical space with an index for each direction. As an algebraic method CPF is efficient and works well with interactive computer graphics. A family of menu-driven, interactive grid-generation computer codes (TURBO) is being developed by using CPF. Key features of TurboI (a TURBO member) are discussed and typical results are presented. TurboI runs on any IRIS 4D series workstation.
Ch Miliaresis, George
2016-06-01
A method is presented for elevation (H) and spatial position (X, Y) decorrelation stretch of annual precipitation summaries on a 1-km grid for SW USA for the period 2003 to 2014. Multiple linear regression analysis of the first and second principal component (PC) quantifies the variance in the multi-temporal precipitation imagery that is explained by X, Y, and elevation (h). The multi-temporal dataset is reconstructed from the PC1 and PC2 residual images and the later PCs by taking into account the variance that is not related to X, Y, and h. Clustering of the reconstructed precipitation dataset allowed the definition of positive (for example, in Sierra Nevada, Salt Lake City) and negative (for example, in San Joaquin Valley, Nevada, Colorado Plateau) precipitation anomalies. The temporal and spatial patterns defined from the spatially standardized multi-temporal precipitation imagery provide a tool of comparison for regions in different geographic environments according to the deviation from the precipitation amount that they are expected to receive as function of X, Y, and h. Such a standardization allows the definition of less or more sensitive to climatic change regions and gives an insight in the spatial impact of atmospheric circulation that causes the annual precipitation.
Multi-objective four-dimensional vehicle motion planning in large dynamic environments.
Wu, Paul P-Y; Campbell, Duncan; Merz, Torsten
2011-06-01
This paper presents Multi-Step A∗ (MSA∗), a search algorithm based on A∗ for multi-objective 4-D vehicle motion planning (three spatial and one time dimensions). The research is principally motivated by the need for offline and online motion planning for autonomous unmanned aerial vehicles (UAVs). For UAVs operating in large dynamic uncertain 4-D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and a grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles, and the rules of the air. It is shown that MSA∗ finds a cost optimal solution using variable length, angle, and velocity trajectory segments. These segments are approximated with a grid-based cell sequence that provides an inherent tolerance to uncertainty. The computational efficiency is achieved by using variable successor operators to create a multiresolution memory-efficient lattice sampling structure. The simulation studies on the UAV flight planning problem show that MSA∗ meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of a vector neighborhood-based A∗.
Regional Drought Monitoring Based on Multi-Sensor Remote Sensing
NASA Astrophysics Data System (ADS)
Rhee, Jinyoung; Im, Jungho; Park, Seonyoung
2014-05-01
Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety of land cover types. Remote sensing data from the Tropical Rainfall Measuring Mission satellite (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) sensors were obtained for the period from 2000 to 2012, and observation data from 99 weather stations, 441 streamflow gauges, as well as the gridded observation data from Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of the Water Resources (APHRODITE) were obtained for validation. The objective blends of multiple indicators helped better assessment of various types of drought, and can be useful for drought early warning system. Since the improved SDCI is based on remotely sensed data, it can be easily applied to regions with limited or no observation data for drought assessment and monitoring.
Considering the spatial-scale factor when modelling sustainable land management.
NASA Astrophysics Data System (ADS)
Bouma, Johan
2015-04-01
Considering the spatial-scale factor when modelling sustainable land management. J.Bouma Em.prof. soil science, Wageningen University, Netherlands. Modelling soil-plant processes is a necessity when exploring future effects of climate change and innovative soil management on agricultural productivity. Soil data are needed to run models and traditional soil maps and the associated databases (based on various soil Taxonomies ), have widely been applied to provide such data obtained at "representative" points in the field. Pedotransferfunctions (PTF)are used to feed simulation models, statistically relating soil survey data ( obtained at a given point in the landscape) to physical parameters for simulation, thus providing a link with soil functionality. Soil science has a basic problem: their object of study is invisible. Only point data are obtained by augering or in pits. Only occasionally roadcuts provide a better view. Extrapolating point to area data is essential for all applications and presents a basic problem for soil science, because mapping units on soil maps, named for a given soil type,may also contain other soil types and quantitative information about the composition of soil map units is usually not available. For detailed work at farm level ( 1:5000-1:10000), an alternative procedure is proposed. Based on a geostatistical analysis, onsite soil observations are made in a grid pattern with spacings based on a geostatistical analysis. Multi-year simulations are made for each point of the functional properties that are relevant for the case being studied, such as the moisture supply capacity, nitrate leaching etc. under standardized boundary conditions to allow comparisons. Functional spatial units are derived next by aggregating functional point data. These units, which have successfully functioned as the basis for precision agriculture, do not necessarily correspond with Taxonomic units but when they do the Taxonomic names should be noted . At lower landscape and watershed scale ( 1:25.000 -1:50000) digital soil mapping can provide soil data for small grids that can be used for modeling, again through pedotransferfunctions. There is a risk, however, that digital mapping results in an isolated series of projects that don't increase the knowledge base on soil functionality, e.g.linking Taxonomic names ( such as soil series) to functionality, allowing predictions of soil behavior at new sites where certain soil series occur. We therefore suggest that aside from collecting 13 soil characteristics for each grid, as occurs in digital soil mapping, also the Taxonomic name of the representative soil in the grid is recorded. At spatial scales of 1:50000 and smaller, use of Taxonomic names becomes ever more attractive because at such small scales relations between soil types and landscape features become more pronounced. But in all cases, selection of procedures should not be science-based but based on the type of questions being asked including their level of generalization. These questions are quite different at the different spatial-scale levels and so should be the procedures.
NASA Astrophysics Data System (ADS)
Carr, Bob; Knowles, John; Warren, Jeremy
2008-10-01
We describe the continuing development of a laser-based, light scattering detector system capable of detecting and analysing liquid-borne nanoparticles. Using a finely focussed and specially configured laser beam to illuminate a suspension of nanoparticles in a small (250ul) sample and videoing the Brownian motion of each and every particle in the detection zone should allow individual but simultaneous detection and measurement of particle size, scattered light intensity, electrophoretic mobility and, where applicable, shape asymmetry. This real-time, multi-parameter analysis capability offers the prospect of reagentlessly differentiating between different particle types within a complex sample of potentially high and variable background. Employing relatively low powered (50-100mW) laser diode modules and low resolution CCD arrays, each component could be run off battery power, allowing distributed/remote or personal deployment. Voltages needed for electrophoresis measurement s would be similarly low (e.g. 20V, low current) and 30second videos (exported at mobile/cell phone download speeds) analysed remotely. The potential of such low-cost technology as a field-deployable grid of remote, battery powered and reagentless, multi-parameter sensors for use as trigger devices is discussed.
Connecting Satellite-Based Precipitation Estimates to Users
NASA Technical Reports Server (NTRS)
Huffman, George J.; Bolvin, David T.; Nelkin, Eric
2018-01-01
Beginning in 1997, the Merged Precipitation Group at NASA Goddard has distributed gridded global precipitation products built by combining satellite and surface gauge data. This started with the Global Precipitation Climatology Project (GPCP), then the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), and recently the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). This 20+-year (and on-going) activity has yielded an important set of insights and lessons learned for making state-of-the-art precipitation data accessible to the diverse communities of users. Merged-data products critically depend on the input sensors and the retrieval algorithms providing accurate, reliable estimates, but it is also important to provide ancillary information that helps users determine suitability for their application. We typically provide fields of estimated random error, and recently reintroduced the quality index concept at user request. Also at user request we have added a (diagnostic) field of estimated precipitation phase. Over time, increasingly more ancillary fields have been introduced for intermediate products that give expert users insight into the detailed performance of the combination algorithm, such as individual merged microwave and microwave-calibrated infrared estimates, the contributing microwave sensor types, and the relative influence of the infrared estimate.
NASA Astrophysics Data System (ADS)
Zapata, M. A. Uh; Van Bang, D. Pham; Nguyen, K. D.
2016-05-01
This paper presents a parallel algorithm for the finite-volume discretisation of the Poisson equation on three-dimensional arbitrary geometries. The proposed method is formulated by using a 2D horizontal block domain decomposition and interprocessor data communication techniques with message passing interface. The horizontal unstructured-grid cells are reordered according to the neighbouring relations and decomposed into blocks using a load-balanced distribution to give all processors an equal amount of elements. In this algorithm, two parallel successive over-relaxation methods are presented: a multi-colour ordering technique for unstructured grids based on distributed memory and a block method using reordering index following similar ideas of the partitioning for structured grids. In all cases, the parallel algorithms are implemented with a combination of an acceleration iterative solver. This solver is based on a parabolic-diffusion equation introduced to obtain faster solutions of the linear systems arising from the discretisation. Numerical results are given to evaluate the performances of the methods showing speedups better than linear.
The GridPP DIRAC project - DIRAC for non-LHC communities
NASA Astrophysics Data System (ADS)
Bauer, D.; Colling, D.; Currie, R.; Fayer, S.; Huffman, A.; Martyniak, J.; Rand, D.; Richards, A.
2015-12-01
The GridPP consortium in the UK is currently testing a multi-VO DIRAC service aimed at non-LHC VOs. These VOs (Virtual Organisations) are typically small and generally do not have a dedicated computing support post. The majority of these represent particle physics experiments (e.g. NA62 and COMET), although the scope of the DIRAC service is not limited to this field. A few VOs have designed bespoke tools around the EMI-WMS & LFC, while others have so far eschewed distributed resources as they perceive the overhead for accessing them to be too high. The aim of the GridPP DIRAC project is to provide an easily adaptable toolkit for such VOs in order to lower the threshold for access to distributed resources such as Grid and cloud computing. As well as hosting a centrally run DIRAC service, we will also publish our changes and additions to the upstream DIRAC codebase under an open-source license. We report on the current status of this project and show increasing adoption of DIRAC within the non-LHC communities.
Boundary condition identification for a grid model by experimental and numerical dynamic analysis
NASA Astrophysics Data System (ADS)
Mao, Qiang; Devitis, John; Mazzotti, Matteo; Bartoli, Ivan; Moon, Franklin; Sjoblom, Kurt; Aktan, Emin
2015-04-01
There is a growing need to characterize unknown foundations and assess substructures in existing bridges. It is becoming an important issue for the serviceability and safety of bridges as well as for the possibility of partial reuse of existing infrastructures. Within this broader contest, this paper investigates the possibility of identifying, locating and quantifying changes of boundary conditions, by leveraging a simply supported grid structure with a composite deck. Multi-reference impact tests are operated for the grid model and modification of one supporting bearing is done by replacing a steel cylindrical roller with a roller of compliant material. Impact based modal analysis provide global modal parameters such as damped natural frequencies, mode shapes and flexibility matrix that are used as indicators of boundary condition changes. An updating process combining a hybrid optimization algorithm and the finite element software suit ABAQUS is presented in this paper. The updated ABAQUS model of the grid that simulates the supporting bearing with springs is used to detect and quantify the change of the boundary conditions.
NASA Astrophysics Data System (ADS)
Guo, Lijuan; Yan, Haijun; Hao, Yongqi; Chen, Yun
2018-01-01
With the power supply level of urban power grid toward high reliability development, it is necessary to adopt appropriate methods for comprehensive evaluation of existing equipment. Considering the wide and multi-dimensional power system data, the method of large data mining is used to explore the potential law and value of power system equipment. Based on the monitoring data of main transformer and the records of defects and faults, this paper integrates the data of power grid equipment environment. Apriori is used as an association identification algorithm to extract the frequent correlation factors of the main transformer, and the potential dependence of the big data is analyzed by the support and confidence. Then, the integrated data is analyzed by PCA, and the integrated quantitative scoring model is constructed. It is proved to be effective by using the test set to validate the evaluation algorithm and scheme. This paper provides a new idea for data fusion of smart grid, and provides a reference for further evaluation of big data of power grid equipment.
Augmenting the access grid using augmented reality
NASA Astrophysics Data System (ADS)
Li, Ying
2012-01-01
The Access Grid (AG) targets an advanced collaboration environment, with which multi-party group of people from remote sites can collaborate over high-performance networks. However, current AG still employs VIC (Video Conferencing Tool) to offer only pure video for remote communication, while most AG users expect to collaboratively refer and manipulate the 3D geometric models of grid services' results in live videos of AG session. Augmented Reality (AR) technique can overcome the deficiencies with its characteristics of combining virtual and real, real-time interaction and 3D registration, so it is necessary for AG to utilize AR to better assist the advanced collaboration environment. This paper introduces an effort to augment the AG by adding support for AR capability, which is encapsulated in the node service infrastructure, named as Augmented Reality Service (ARS). The ARS can merge the 3D geometric models of grid services' results and real video scene of AG into one AR environment, and provide the opportunity for distributed AG users to interactively and collaboratively participate in the AR environment with better experience.
Extending WS-Agreement with Multi-round Negotiation Capability
NASA Astrophysics Data System (ADS)
Rumpl, Angela; Wäldrich, Oliver; Ziegler, Wolfgang
The WS-Agreement specification of the Open Grid Forum defines a language and a protocol for advertising the capabilities of service providers and creating agreements based on templates, and for monitoring agreement compliance at runtime. While the specification, which currently is in the process of transition from a proposed recommendation of the Open Grid Forum to a full recommendation, has been widely used after the initial publication in May 2007, it became obvious that the missing possibility to negotiate an agreement rather than just accepting an offer is limiting or inhibiting the use of WS-Agreement for a number of use-cases. Therefore, the Grid Resource Allocation Agreement Working Group of the Open Grid Forum started in 2008 to prepare an extension of WS-Agreement that adds negotiation capabilities without changing the current specification in a way, which leads to an incompatible new version of WS-Agreement. In this paper we present the results of this process with an updated version of the specification in mind and the first implementation in the European project SmartLM.
Grid cells on steeply sloping terrain: evidence for planar rather than volumetric encoding
Hayman, Robin M. A.; Casali, Giulio; Wilson, Jonathan J.; Jeffery, Kate J.
2015-01-01
Neural encoding of navigable space involves a network of structures centered on the hippocampus, whose neurons –place cells – encode current location. Input to the place cells includes afferents from the entorhinal cortex, which contains grid cells. These are neurons expressing spatially localized activity patches, or firing fields, that are evenly spaced across the floor in a hexagonal close-packed array called a grid. It is thought that grids function to enable the calculation of distances. The question arises as to whether this odometry process operates in three dimensions, and so we queried whether grids permeate three-dimensional (3D) space – that is, form a lattice – or whether they simply follow the environment surface. If grids form a 3D lattice then this lattice would ordinarily be aligned horizontally (to explain the usual hexagonal pattern observed). A tilted floor would transect several layers of this putative lattice, resulting in interruption of the hexagonal pattern. We model this prediction with simulated grid lattices, and show that the firing of a grid cell on a 40°-tilted surface should cover proportionally less of the surface, with smaller field size, fewer fields, and reduced hexagonal symmetry. However, recording of real grid cells as animals foraged on a 40°-tilted surface found that firing of grid cells was almost indistinguishable, in pattern or rate, from that on the horizontal surface, with if anything increased coverage and field number, and preserved field size. It thus appears unlikely that the sloping surface transected a lattice. However, grid cells on the slope displayed slightly degraded firing patterns, with reduced coherence and slightly reduced symmetry. These findings collectively suggest that the grid cell component of the metric representation of space is not fixed in absolute 3D space but is influenced both by the surface the animal is on and by the relationship of this surface to the horizontal, supporting the hypothesis that the neural map of space is “multi-planar” rather than fully volumetric. PMID:26236245
A solution-adaptive hybrid-grid method for the unsteady analysis of turbomachinery
NASA Technical Reports Server (NTRS)
Mathur, Sanjay R.; Madavan, Nateri K.; Rajagopalan, R. G.
1993-01-01
A solution-adaptive method for the time-accurate analysis of two-dimensional flows in turbomachinery is described. The method employs a hybrid structured-unstructured zonal grid topology in conjunction with appropriate modeling equations and solution techniques in each zone. The viscous flow region in the immediate vicinity of the airfoils is resolved on structured O-type grids while the rest of the domain is discretized using an unstructured mesh of triangular cells. Implicit, third-order accurate, upwind solutions of the Navier-Stokes equations are obtained in the inner regions. In the outer regions, the Euler equations are solved using an explicit upwind scheme that incorporates a second-order reconstruction procedure. An efficient and robust grid adaptation strategy, including both grid refinement and coarsening capabilities, is developed for the unstructured grid regions. Grid adaptation is also employed to facilitate information transfer at the interfaces between unstructured grids in relative motion. Results for grid adaptation to various features pertinent to turbomachinery flows are presented. Good comparisons between the present results and experimental measurements and earlier structured-grid results are obtained.
Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter
2016-09-01
ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER...explored. The primary goal is to understand the effects each modulation strategy has on the conducted electromagnetic interference (EMI) and then
Lankila, Tiina; Näyhä, Simo; Rautio, Arja; Koiranen, Markku; Rusanen, Jarmo; Taanila, Anja
2013-01-01
We examined the association of health and well-being with moving using a detailed geographical scale. 7845 men and women born in northern Finland in 1966 were surveyed by postal questionnaire in 1997 and linked to 1 km(2) geographical grids based on each subject's home address in 1997-2000. Population density was used to classify each grid as rural (1-100 inhabitants/km²) or urban (>100 inhabitants/km²) type. Moving was treated as a three-class response variate (not moved; moved to different type of grid; moved to similar type of grid). Moving was regressed on five explanatory factors (life satisfaction, self-reported health, lifetime morbidity, activity-limiting illness and use of health services), adjusting for factors potentially associated with health and moving (gender, marital status, having children, housing tenure, education, employment status and previous move). The results were expressed as odds ratios (OR) and their 95% confidence intervals (CI). Moves from rural to urban grids were associated with dissatisfaction with current life (adjusted OR 2.01; 95% CI 1.26-3.22) and having somatic (OR 1.66; 1.07-2.59) or psychiatric (OR 2.37; 1.21-4.63) morbidities, the corresponding ORs for moves from rural to other rural grids being 1.71 (0.98-2.98), 1.63 (0.95-2.78) and 2.09 (0.93-4.70), respectively. Among urban dwellers, only the frequent use of health services (≥ 21 times/year) was associated with moving, the adjusted ORs being 1.65 (1.05-2.57) for moves from urban to rural grids and 1.30 (1.03-1.64) for urban to other urban grids. We conclude that dissatisfaction with life and history of diseases and injuries, especially psychiatric morbidity, may increase the propensity to move from rural to urbanised environments, while availability of health services may contribute to moves within urban areas and also to moves from urban areas to the countryside, where high-level health services enable a good quality of life for those attracted by the pastoral environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Aerodynamics of Engine-Airframe Interaction
NASA Technical Reports Server (NTRS)
Caughey, D. A.
1986-01-01
The report describes progress in research directed towards the efficient solution of the inviscid Euler and Reynolds-averaged Navier-Stokes equations for transonic flows through engine inlets, and past complete aircraft configurations, with emphasis on the flowfields in the vicinity of engine inlets. The research focusses upon the development of solution-adaptive grid procedures for these problems, and the development of multi-grid algorithms in conjunction with both, implicit and explicit time-stepping schemes for the solution of three-dimensional problems. The work includes further development of mesh systems suitable for inlet and wing-fuselage-inlet geometries using a variational approach. Work during this reporting period concentrated upon two-dimensional problems, and has been in two general areas: (1) the development of solution-adaptive procedures to cluster the grid cells in regions of high (truncation) error;and (2) the development of a multigrid scheme for solution of the two-dimensional Euler equations using a diagonalized alternating direction implicit (ADI) smoothing algorithm.
Progress in high-lift aerodynamic calculations
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.
1993-01-01
The current work presents progress in the effort to numerically simulate the flow over high-lift aerodynamic components, namely, multi-element airfoils and wings in either a take-off or a landing configuration. The computational approach utilizes an incompressible flow solver and an overlaid chimera grid approach. A detailed grid resolution study is presented for flow over a three-element airfoil. Two turbulence models, a one-equation Baldwin-Barth model and a two equation k-omega model are compared. Excellent agreement with experiment is obtained for the lift coefficient at all angles of attack, including the prediction of maximum lift when using the two-equation model. Results for two other flap riggings are shown. Three-dimensional results are presented for a wing with a square wing-tip as a validation case. Grid generation and topology is discussed for computing the flow over a T-39 Sabreliner wing with flap deployed and the initial calculations for this geometry are presented.
GRAMS: A Grid of RSG and AGB Models
NASA Astrophysics Data System (ADS)
Srinivasan, S.; Sargent, B. A.; Meixner, M.
2011-09-01
We present a grid of oxygen- and carbon-rich circumstellar dust radiative transfer models for asymptotic giant branch (AGB) and red supergiant (RSG) stars. The grid samples a large region of the relevant parameter space, and it allows for a quick calculation of bolometric fluxes and dust mass-loss rates from multi-wavelength photometry. This method of fitting observed spectral energy distributions (SEDs) is preferred over detailed radiative transfer calculations, especially for large data sets such as the SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Magellanic Clouds. The mass-loss rates calculated for SAGE data will allow us to quantify the dust returned to the interstellar medium (ISM) by the entire AGB population. The total injection rate provides an important constraint for models of galactic chemical evolution. Here, we discuss our carbon star models and compare the results to SAGE observations in the Large Magellanic Cloud (LMC).
Efficient relaxed-Jacobi smoothers for multigrid on parallel computers
NASA Astrophysics Data System (ADS)
Yang, Xiang; Mittal, Rajat
2017-03-01
In this Technical Note, we present a family of Jacobi-based multigrid smoothers suitable for the solution of discretized elliptic equations. These smoothers are based on the idea of scheduled-relaxation Jacobi proposed recently by Yang & Mittal (2014) [18] and employ two or three successive relaxed Jacobi iterations with relaxation factors derived so as to maximize the smoothing property of these iterations. The performance of these new smoothers measured in terms of convergence acceleration and computational workload, is assessed for multi-domain implementations typical of parallelized solvers, and compared to the lexicographic point Gauss-Seidel smoother. The tests include the geometric multigrid method on structured grids as well as the algebraic grid method on unstructured grids. The tests demonstrate that unlike Gauss-Seidel, the convergence of these Jacobi-based smoothers is unaffected by domain decomposition, and furthermore, they outperform the lexicographic Gauss-Seidel by factors that increase with domain partition count.
Performance Evaluation of a SLA Negotiation Control Protocol for Grid Networks
NASA Astrophysics Data System (ADS)
Cergol, Igor; Mirchandani, Vinod; Verchere, Dominique
A framework for an autonomous negotiation control protocol for service delivery is crucial to enable the support of heterogeneous service level agreements (SLAs) that will exist in distributed environments. We have first given a gist of our augmented service negotiation protocol to support distinct service elements. The augmentations also encompass related composition of the services and negotiation with several service providers simultaneously. All the incorporated augmentations will enable to consolidate the service negotiation operations for telecom networks, which are evolving towards Grid networks. Furthermore, our autonomous negotiation protocol is based on a distributed multi-agent framework to create an open market for Grid services. Second, we have concisely presented key simulation results of our work in progress. The results exhibit the usefulness of our negotiation protocol for realistic scenarios that involves different background traffic loading, message sizes and traffic flow asymmetry between background and negotiation traffics.
Gai, Jiading; Obeid, Nady; Holtrop, Joseph L.; Wu, Xiao-Long; Lam, Fan; Fu, Maojing; Haldar, Justin P.; Hwu, Wen-mei W.; Liang, Zhi-Pei; Sutton, Bradley P.
2013-01-01
Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate the computation of various data structures needed by the previous routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU implementation compared to the previous accelerated GPU code. PMID:23682203
Stackable differential mobility analyzer for aerosol measurement
Cheng, Meng-Dawn [Oak Ridge, TN; Chen, Da-Ren [Creve Coeur, MO
2007-05-08
A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.
Lattice Boltzmann Equation On a 2D Rectangular Grid
NASA Technical Reports Server (NTRS)
Bouzidi, MHamed; DHumieres, Dominique; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We construct a multi-relaxation lattice Boltzmann model on a two-dimensional rectangular grid. The model is partly inspired by a previous work of Koelman to construct a lattice BGK model on a two-dimensional rectangular grid. The linearized dispersion equation is analyzed to obtain the constraints on the isotropy of the transport coefficients and Galilean invariance for various wave propagations in the model. The linear stability of the model is also studied. The model is numerically tested for three cases: (a) a vortex moving with a constant velocity on a mesh periodic boundary conditions; (b) Poiseuille flow with an arbitrasy inclined angle with respect to the lattice orientation: and (c) a cylinder &symmetrically placed in a channel. The numerical results of these tests are compared with either analytic solutions or the results obtained by other methods. Satisfactory results are obtained for the numerical simulations.
Assembling Large, Multi-Sensor Climate Datasets Using the SciFlo Grid Workflow System
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Xing, Z.; Fetzer, E.
2008-12-01
NASA's Earth Observing System (EOS) is the world's most ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the A-Train platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the cloud scenes from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time matchups between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, and assemble merged datasets for further scientific and statistical analysis. To meet these large-scale challenges, we are utilizing a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data query, access, subsetting, co-registration, mining, fusion, and advanced statistical analysis. SciFlo is a semantically-enabled ("smart") Grid Workflow system that ties together a peer-to-peer network of computers into an efficient engine for distributed computation. The SciFlo workflow engine enables scientists to do multi-instrument Earth Science by assembling remotely-invokable Web Services (SOAP or http GET URLs), native executables, command-line scripts, and Python codes into a distributed computing flow. A scientist visually authors the graph of operation in the VizFlow GUI, or uses a text editor to modify the simple XML workflow documents. The SciFlo client & server engines optimize the execution of such distributed workflows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. The engine transparently moves data to the operators, and moves operators to the data (on the dozen trusted SciFlo nodes). SciFlo also deploys a variety of Data Grid services to: query datasets in space and time, locate & retrieve on-line data granules, provide on-the-fly variable and spatial subsetting, and perform pairwise instrument matchups for A-Train datasets. These services are combined into efficient workflows to assemble the desired large-scale, merged climate datasets. SciFlo is currently being applied in several large climate studies: comparisons of aerosol optical depth between MODIS, MISR, AERONET ground network, and U. Michigan's IMPACT aerosol transport model; characterization of long-term biases in microwave and infrared instruments (AIRS, MLS) by comparisons to GPS temperature retrievals accurate to 0.1 degrees Kelvin; and construction of a decade-long, multi-sensor water vapor climatology stratified by classified cloud scene by bringing together datasets from AIRS/AMSU, AMSR-E, MLS, MODIS, and CloudSat (NASA MEASUREs grant, Fetzer PI). The presentation will discuss the SciFlo technologies, their application in these distributed workflows, and the many challenges encountered in assembling and analyzing these massive datasets.
Assembling Large, Multi-Sensor Climate Datasets Using the SciFlo Grid Workflow System
NASA Astrophysics Data System (ADS)
Wilson, B.; Manipon, G.; Xing, Z.; Fetzer, E.
2009-04-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To meet these large-scale challenges, we are utilizing a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data query, access, subsetting, co-registration, mining, fusion, and advanced statistical analysis. SciFlo is a semantically-enabled ("smart") Grid Workflow system that ties together a peer-to-peer network of computers into an efficient engine for distributed computation. The SciFlo workflow engine enables scientists to do multi-instrument Earth Science by assembling remotely-invokable Web Services (SOAP or http GET URLs), native executables, command-line scripts, and Python codes into a distributed computing flow. A scientist visually authors the graph of operation in the VizFlow GUI, or uses a text editor to modify the simple XML workflow documents. The SciFlo client & server engines optimize the execution of such distributed workflows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. The engine transparently moves data to the operators, and moves operators to the data (on the dozen trusted SciFlo nodes). SciFlo also deploys a variety of Data Grid services to: query datasets in space and time, locate & retrieve on-line data granules, provide on-the-fly variable and spatial subsetting, perform pairwise instrument matchups for A-Train datasets, and compute fused products. These services are combined into efficient workflows to assemble the desired large-scale, merged climate datasets. SciFlo is currently being applied in several large climate studies: comparisons of aerosol optical depth between MODIS, MISR, AERONET ground network, and U. Michigan's IMPACT aerosol transport model; characterization of long-term biases in microwave and infrared instruments (AIRS, MLS) by comparisons to GPS temperature retrievals accurate to 0.1 degrees Kelvin; and construction of a decade-long, multi-sensor water vapor climatology stratified by classified cloud scene by bringing together datasets from AIRS/AMSU, AMSR-E, MLS, MODIS, and CloudSat (NASA MEASUREs grant, Fetzer PI). The presentation will discuss the SciFlo technologies, their application in these distributed workflows, and the many challenges encountered in assembling and analyzing these massive datasets.
NASA Astrophysics Data System (ADS)
Gabderakhmanova, T. S.; Kiseleva, S. V.; Frid, S. E.; Tarasenko, A. B.
2016-11-01
This paper is devoted to calculation of yearly energy production, demanded area and capital costs for first Russian 5 MW grid-tie photovoltaic (PV) plant in Altay Republic that is named Kosh-Agach. Simple linear calculation model, involving average solar radiation and temperature data, grid-tie inverter power-efficiency dependence and PV modules parameters is proposed. Monthly and yearly energy production, equipment costs and demanded area for PV plant are estimated for mono-, polycrystalline and amorphous modules. Calculation includes three types of initial radiation and temperature data—average day for every month from NASA SSE, average radiation and temperature for each day of the year from NASA POWER and typical meteorology year generated from average data for every month. The peculiarities for each type of initial data and their influence on results are discussed.
On automating domain connectivity for overset grids
NASA Technical Reports Server (NTRS)
Chiu, Ing-Tsau
1994-01-01
An alternative method for domain connectivity among systems of overset grids is presented. Reference uniform Cartesian systems of points are used to achieve highly efficient domain connectivity, and form the basis for a future fully automated system. The Cartesian systems are used to approximated body surfaces and to map the computational space of component grids. By exploiting the characteristics of Cartesian Systems, Chimera type hole-cutting and identification of donor elements for intergrid boundary points can be carried out very efficiently. The method is tested for a range of geometrically complex multiple-body overset grid systems.
Numerical simulation of a hovering rotor using embedded grids
NASA Technical Reports Server (NTRS)
Duque, Earl-Peter N.; Srinivasan, Ganapathi R.
1992-01-01
The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.