Science.gov

Sample records for multi-isotope imaging mass

  1. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry.

    PubMed

    Steinhauser, Matthew L; Lechene, Claude P

    2013-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans.

  2. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry

    PubMed Central

    Steinhauser, Matthew L.; Lechene, Claude P.

    2014-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans. PMID:23660233

  3. Multi-Isotope Secondary Ion Mass Spectrometry Combining Heavy Water 2H with 15N Labeling As Complementary Tracers for Metabolic Heterogeneity at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.

    2014-12-01

    Metabolic rates of microbial communities constitute a key physiological parameter for understanding the in situ growth constraints for life in any environment. Isotope labeling techniques provide a powerful approach for measuring such biological activity, due to the use of isotopically enriched substrate tracers whose incorporation into biological materials can be detected with high sensitivity by isotope-ratio mass spectrometry. Nano-meter scale secondary ion mass spectrometry (NanoSIMS) combined with stable isotope labeling provides a unique tool for studying the spatiometabolic activity of microbial populations at the single cell level in order to assess both community structure and population diversity. However, assessing the distribution and range of microbial activity in complex environmental systems with slow-growing organisms, diverse carbon and nitrogen sources, or heterotrophic subpopulations poses a tremendous technical challenge because the introduction of isotopically labeled substrates frequently changes the nutrient availability and can inflate or bias measures of activity. Here, we present the use of hydrogen isotope labeling with deuterated water as an important new addition to the isotopic toolkit and apply it for the determination of single cell microbial activities by NanoSIMS imaging. This tool provides a labeling technique that minimally alters any aquatic chemical environment, can be administered with strong labels even in minimal addition (natural background is very low), is an equally universal substrate for all forms of life even in complex, carbon and nitrogen saturated systems, and can be combined with other isotopic tracers. The combination of heavy water labeling with the most commonly used NanoSIMS tracer, 15N, is technically challenging but opens up a powerful new set of multi-tracer experiments for the study of microbial activity in complex communities. We present the first truly simultaneous single cell triple isotope system

  4. Digital Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bamberger, Casimir; Renz, Uwe; Bamberger, Andreas

    2011-06-01

    Methods to visualize the two-dimensional (2D) distribution of molecules by mass spectrometric imaging evolve rapidly and yield novel applications in biology, medicine, and material surface sciences. Most mass spectrometric imagers acquire high mass resolution spectra spot-by-spot and thereby scan the object's surface. Thus, imaging is slow and image reconstruction remains cumbersome. Here we describe an imaging mass spectrometer that exploits the true imaging capabilities by ion optical means for the time of flight mass separation. The mass spectrometer is equipped with the ASIC Timepix chip as an array detector to acquire the position, mass, and intensity of ions that are imaged by matrix-assisted laser desorption/ionization (MALDI) directly from the target sample onto the detector. This imaging mass spectrometer has a spatial resolving power at the specimen of (84 ± 35) μm with a mass resolution of 45 and locates atoms or organic compounds on a surface area up to ~2 cm2. Extended laser spots of ~5 mm2 on structured specimens allows parallel imaging of selected masses. The digital imaging mass spectrometer proves high hit-multiplicity, straightforward image reconstruction, and potential for high-speed readout at 4 kHz or more. This device demonstrates a simple way of true image acquisition like a digital photographic camera. The technology may enable a fast analysis of biomolecular samples in near future.

  5. Imaging of uncommon retroperitoneal masses.

    PubMed

    Rajiah, Prabhakar; Sinha, Rakesh; Cuevas, Carlos; Dubinsky, Theodore J; Bush, William H; Kolokythas, Orpheus

    2011-01-01

    Retroperitoneal masses not arising from major solid organs are uncommon. Although there is no simple method of classifying retroperitoneal masses, a reasonable approach is to consider the masses as predominantly solid or cystic and to subdivide these into neoplastic and nonneoplastic masses. Because the treatment options vary, it is useful to be able to differentiate these masses by using imaging criteria. Although the differential diagnosis of retroperitoneal masses can be narrowed down to a certain extent on the basis of imaging characteristics, patterns of involvement, and demographics, there is still a considerable overlap of imaging findings for these masses, and histologic examination is often required for definitive diagnosis. Computed tomography (CT) and magnetic resonance (MR) imaging play an important role in characterization and in the assessment of the extent of the disease and involvement of adjacent and distant structures. Familiarity with the CT and MR imaging features of various retroperitoneal masses will facilitate accurate diagnosis and staging for aggressive lesions.

  6. FY09 PROGRESS: MULTI-ISOTOPE PROCESS (MIP) MONITOR

    SciTech Connect

    Schwantes, Jon M.; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard; Laspe, Amy R.; Ward, Rebecca M.

    2009-10-18

    Model and experimental estimates of the Multi-Isotope Process Monitor performance for determining burnup after dissolution and acid concentration during solvent extraction steps during reprocessing of spent nuclear fuel are presented.

  7. The Solar Mass Ejection Imager

    NASA Technical Reports Server (NTRS)

    Jackson, B. V.; Buffington, A.; Hick, P. L.; Kahler, S. W.; Altrock, R. C.; Gold, R. E.; Webb, D. F.

    1995-01-01

    We are designing a Solar Mass Ejection Imager (SMEI) capable of observing the Thomson-scattered signal from transient density features in the heliosphere from a spacecraft situated near AU. The imager is designed to trace these features, which include coronal mass ejections. corotating structures and shock waves, to elongations greater than 90 deg from the Sun. The instrument may be regarded as a progeny of the heliospheric imaging capability shown possible by the zodiacal-light photometers of the HELIOS spacecraft. The instrument we are designing would make more effective use of in-situ solar wind data from spacecraft in the vicinity of the imager by extending these observations to the surrounding environment. The observations from the instrument should allow deconvolution of these structures from the perspective views obtained as they pass the spacecraft. An imager at Earth could allow up to three days warning of the arrival of a mass ejection from the Sun .

  8. Imaging mass spectrometry in microbiology

    PubMed Central

    Watrous, Jeramie D.; Dorrestein, Pieter C.

    2013-01-01

    Mass spectrometry tools which allow for the 2-D visualization of the distribution of trace metals, metabolites, surface lipids, peptides and proteins directly from biological samples without the need for chemical tagging or antibodies are becoming increasingly useful for microbiology applications. These tools, comprised of different imaging mass spectrometry techniques, are ushering in an exciting new era of discovery by allowing for the generation of chemical hypotheses based on of the spatial mapping of atoms and molecules that can correlate to or transcend observed phenotypes. In this review, we explore the wide range of imaging mass spectrometry techniques available to microbiologists and describe their unique applications to microbiology with respect to the types of microbiology samples to be investigated. PMID:21822293

  9. Imaging Mass Spectrometry in Neuroscience

    PubMed Central

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  10. Imaging mass spectrometer with mass tags

    DOEpatents

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  11. Imaging mass spectrometer with mass tags

    DOEpatents

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  12. Mass Spectrometry Imaging Quick View

    SciTech Connect

    2013-01-24

    MSI QuickView is a software designed to provide a graphical user interface (GUI) for greatly speeding up experimental feedback (visualization and analysis) of mass spectrometry imaging (MSI or IMS) data during data acquisition. Often different software loads the entire data set, i.e., all lines of data into computer memory (RAM). This causes out of memory errors for larger datasets. We solved this in MSI QuickView by reading in the data one line at a time. Only the required information (e.g. the final pixel values for that line of heat map) is maintained in RAM. Interim analysis options include the mean intensity vs. m/z spectrum, intensity vs. time spectrums for up to 6 different m/z values or ranges chosen by the user and heat maps for each line. This assists in validating the usefulness of the particular experiment after scanning the first few lines. In addition, the tool facilitates further processing and analysis of the massive datasets. The user can manually pick different m/z values, time ranges, scroll through the spectra for any line in the data without having to load it in manually, save multiple images, change aspect ratios for the heat maps, and process the heat maps in multiple ways including overlaying images at different m/z values, displaying up to 9 different heat maps, alignment of scans along each line etc. There is no manipulation of the data required by the user to visualize the data.

  13. Mass Spectrometry Imaging Quick View

    2013-01-24

    MSI QuickView is a software designed to provide a graphical user interface (GUI) for greatly speeding up experimental feedback (visualization and analysis) of mass spectrometry imaging (MSI or IMS) data during data acquisition. Often different software loads the entire data set, i.e., all lines of data into computer memory (RAM). This causes out of memory errors for larger datasets. We solved this in MSI QuickView by reading in the data one line at a time.more » Only the required information (e.g. the final pixel values for that line of heat map) is maintained in RAM. Interim analysis options include the mean intensity vs. m/z spectrum, intensity vs. time spectrums for up to 6 different m/z values or ranges chosen by the user and heat maps for each line. This assists in validating the usefulness of the particular experiment after scanning the first few lines. In addition, the tool facilitates further processing and analysis of the massive datasets. The user can manually pick different m/z values, time ranges, scroll through the spectra for any line in the data without having to load it in manually, save multiple images, change aspect ratios for the heat maps, and process the heat maps in multiple ways including overlaying images at different m/z values, displaying up to 9 different heat maps, alignment of scans along each line etc. There is no manipulation of the data required by the user to visualize the data.« less

  14. Absorption mode FTICR mass spectrometry imaging.

    PubMed

    Smith, Donald F; Kilgour, David P A; Konijnenburg, Marco; O'Connor, Peter B; Heeren, Ron M A

    2013-12-01

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here, we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image, and then, these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode "Datacubes" for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  15. Mass spectrometry imaging for biomedical applications

    PubMed Central

    Liu, Jiangjiang; Ouyang, Zheng

    2013-01-01

    The development of mass spectrometry imaging technologies is of significant current research interest. Mass spectrometry potentially is capable of providing highly specific information about the distribution of chemical compounds on tissues at highly sensitive levels. The required in-situ analysis for the tissue imaging forced MS analysis being performed off the traditional conditions optimized in pharmaceutical applications with intense sample preparation. This critical review seeks to present an overview of the current status of the MS imaging with different sampling ionization methods and to discuss the 3D imaging and quantitative imaging capabilities needed to be further developed, the importance of the multi-modal imaging, and a balance between the pursuit of the high imaging resolution and the practical application of MS imaging in biomedicine. PMID:23539099

  16. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry

    PubMed Central

    Lechene, Claude; Hillion, Francois; McMahon, Greg; Benson, Douglas; Kleinfeld, Alan M; Kampf, J Patrick; Distel, Daniel; Luyten, Yvette; Bonventre, Joseph; Hentschel, Dirk; Park, Kwon Moo; Ito, Susumu; Schwartz, Martin; Benichou, Gilles; Slodzian, Georges

    2006-01-01

    Background Secondary-ion mass spectrometry (SIMS) is an important tool for investigating isotopic composition in the chemical and materials sciences, but its use in biology has been limited by technical considerations. Multi-isotope imaging mass spectrometry (MIMS), which combines a new generation of SIMS instrument with sophisticated ion optics, labeling with stable isotopes, and quantitative image-analysis software, was developed to study biological materials. Results The new instrument allows the production of mass images of high lateral resolution (down to 33 nm), as well as the counting or imaging of several isotopes simultaneously. As MIMS can distinguish between ions of very similar mass, such as 12C15N- and 13C14N-, it enables the precise and reproducible measurement of isotope ratios, and thus of the levels of enrichment in specific isotopic labels, within volumes of less than a cubic micrometer. The sensitivity of MIMS is at least 1,000 times that of 14C autoradiography. The depth resolution can be smaller than 1 nm because only a few atomic layers are needed to create an atomic mass image. We illustrate the use of MIMS to image unlabeled mammalian cultured cells and tissue sections; to analyze fatty-acid transport in adipocyte lipid droplets using 13C-oleic acid; to examine nitrogen fixation in bacteria using 15N gaseous nitrogen; to measure levels of protein renewal in the cochlea and in post-ischemic kidney cells using 15N-leucine; to study DNA and RNA co-distribution and uridine incorporation in the nucleolus using 15N-uridine and 81Br of bromodeoxyuridine or 14C-thymidine; to reveal domains in cultured endothelial cells using the native isotopes 12C, 16O, 14N and 31P; and to track a few 15N-labeled donor spleen cells in the lymph nodes of the host mouse. Conclusion MIMS makes it possible for the first time to both image and quantify molecules labeled with stable or radioactive isotopes within subcellular compartments. PMID:17010211

  17. Experimental Validation of the Multi-Isotope Process Monitor Concept

    SciTech Connect

    Orton, Christopher R.; Schwantes, Jon M.; Fraga, Carlos G.; Douglas, Matthew; Christensen, Richard

    2010-05-13

    Researchers from Pacific Northwest National Laboratory, in conjunction with personnel from The Ohio State University, are working to develop a system for monitoring spent nuclear fuel reprocessing facilities on-line, non-destructively, and in near-real-time. This method, known as the Multi-Isotope Process (MIP) Monitor, is based upon the measurement of distribution patterns of a suite of indicator (radioactive) isotopes present within particular process streams. Distribution patterns, monitored on-line by gamma spectrometry, are then compared in near-real-time to patterns representing "normal" process conditions using multivariate pattern recognition software. By targeting gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, high-resolution gamma detectors that may be easily deployed throughout the facility. In addition, utilization of a suite of radio-elements, including ones with multiple oxidation states, increases the likelihood that attempts to divert material via process manipulation would be detected. Proof-of-principle modeling exercises simulating changes in acid strength have been completed and the results are promising. Laboratory validation is currently under way and significant results are available. The latest experimental results, along with an overview of the method will be presented.

  18. Atmospheric pressure femtosecond laser imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  19. Emerging technologies in mass spectrometry imaging.

    PubMed

    Jungmann, Julia H; Heeren, Ron M A

    2012-08-30

    Mass spectrometry imaging (MSI) as an analytical tool for bio-molecular and bio-medical research targets accurate compound localization and identification. In terms of dedicated instrumentation, this translates into the demand for more detail in the image dimension (spatial resolution) and in the spectral dimension (mass resolution and accuracy), preferably combined in one instrument. At the same time, large area biological tissue samples require fast acquisition schemes, instrument automation and a robust data infrastructure. This review discusses the analytical capabilities of an "ideal" MSI instrument for bio-molecular and bio-medical molecular imaging. The analytical attributes of such an ideal system are contrasted with technological and methodological challenges in MSI. In particular, innovative instrumentation for high spatial resolution imaging in combination with high sample throughput is discussed. Detector technology that targets various shortcomings of conventional imaging detector systems is highlighted. The benefits of accurate mass analysis, high mass resolving power, additional separation strategies and multimodal three-dimensional data reconstruction algorithms are discussed to provide the reader with an insight in the current technological advances and the potential of MSI for bio-medical research. PMID:22469858

  20. A mass spectrometry primer for mass spectrometry imaging

    PubMed Central

    Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols. PMID:20680583

  1. [Imaging Mass Spectrometry in Histopathologic Analysis].

    PubMed

    Yamazaki, Fumiyoshi; Seto, Mitsutoshi

    2015-04-01

    Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development. PMID:26536781

  2. Compressed sensing in imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bartels, Andreas; Dülk, Patrick; Trede, Dennis; Alexandrov, Theodore; Maaß, Peter

    2013-12-01

    Imaging mass spectrometry (IMS) is a technique of analytical chemistry for spatially resolved, label-free and multipurpose analysis of biological samples that is able to detect the spatial distribution of hundreds of molecules in one experiment. The hyperspectral IMS data is typically generated by a mass spectrometer analyzing the surface of the sample. In this paper, we propose a compressed sensing approach to IMS which potentially allows for faster data acquisition by collecting only a part of the pixels in the hyperspectral image and reconstructing the full image from this data. We present an integrative approach to perform both peak-picking spectra and denoising m/z-images simultaneously, whereas the state of the art data analysis methods solve these problems separately. We provide a proof of the robustness of the recovery of both the spectra and individual channels of the hyperspectral image and propose an algorithm to solve our optimization problem which is based on proximal mappings. The paper concludes with the numerical reconstruction results for an IMS dataset of a rat brain coronal section.

  3. Mass spectrometry imaging: applications to food science.

    PubMed

    Taira, Shu; Uematsu, Kohei; Kaneko, Daisaku; Katano, Hajime

    2014-01-01

    Two-dimensional mass spectrometry (MS) analysis of biological samples by means of what is called MS imaging (MSI) is now being used to analyze analyte distribution because it facilitates determination of the existence (what is it?) and localization (where is it?) of biomolecules. Reconstruction of mass image by target signal is given after two-dimensional MS measurements on a sample section. From only one section, we can understand the existence and localization of many molecules without the need of an antibody or fluorescent reagent. In this review, we introduce the analysis of localization of functional constituents and nutrients in herbal medicine products via MSI. The ginsenosides were mainly distributed in the periderm and the tip region of the root of Panax ginseng. The capsaicin was found to be more dominantly localized in the placenta than the pericarp and seed in Capsicum fruits. We expect MSI will be a useful technique for optical quality assurance.

  4. Translating metabolic exchange with imaging mass spectrometry

    PubMed Central

    Yang, Yu-Liang; Xu, Yuquan; Straight, Paul; Dorrestein, Pieter C.

    2009-01-01

    Metabolic exchange between an organism and the environment, including interactions with neighboring organisms, is important for processes of organismal development. Here we develop and use thin-layer agar natural product MALDI-TOF imaging mass spectrometry of intact bacterial colonies grown on top of the MALDI target plate to study an interaction between two species of bacteria and provide direct evidence that a Bacillus subtilis silences the defensive arsenal of Streptomyces coelicolor. PMID:19915536

  5. Cu-Zn-Pb multi isotopic characterization of a small watershed (Loire river basin, France)

    NASA Astrophysics Data System (ADS)

    Desaulty, A. M.; Millot, R.; Perret, S.; Bourrain, X.

    2015-12-01

    Combating metal pollution in surface water is a major environmental, public health and economic issue. Knowledge of the behavior of metals, such as copper (Cu), zinc (Zn) and lead (Pb) in sediments and dissolved load, is a key factor to improve the management of rivers. Recent advances in mass spectrometry related to the development of MC-ICPMS allow to analyze the isotopic composition of these elements, and previous studies show the effectiveness of isotopic analyses to determine the anthropogenic sources of pollution in environment. The goal of this study is to use the Cu-Zn-Pb multi-isotopic signature to track the pollutions in surface water, and to understand the complex processes causing the metals mobilization and transport in environment. More particularly we investigate the mechanisms of distribution between the dissolved load and particulate load, known to play an important role in the transport of metals through river systems. As case study, we chose a small watershed, poorly urbanized in the Loire river basin. Its spring is in a pristine area, while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. First a sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Then to simulate a lot of potential natural and anthropogenic modifications of environmental conditions, we made sequential extraction protocol using various reagents on the sediments. Isotopic analyzes were performed also on the various extracting solutions. Isotopic ratios were measured using a Neptune MC-ICPMS at the BRGM, after a protocol of purification for Zn and Cu. The results showed that, these isotopic systematics reveal important informations about the mechanists of mobilization and transport of metals through river systems. However experiments performed under laboratory conditions will be necessary

  6. Mass Spectrometry Imaging under Ambient Conditions

    PubMed Central

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  7. Visualizing nanoparticle dissolution by imaging mass spectrometry.

    PubMed

    Szakal, Christopher; Ugelow, Melissa S; Gorham, Justin M; Konicek, Andrew R; Holbrook, R David

    2014-04-01

    We demonstrate the ability to visualize nanoparticle dissolution while simultaneously providing chemical signatures that differentiate between citrate-capped silver nanoparticles (AgNPs), AgNPs forced into dissolution via exposure to UV radiation, silver nitrate (AgNO3), and AgNO3/citrate deposited from aqueous solutions and suspensions. We utilize recently developed inkjet printing (IJP) protocols to deposit the different solutions/suspensions as NP aggregates and soluble species, which separate onto surfaces in situ, and collect mass spectral imaging data via time-of-flight secondary ion mass spectrometry (TOF-SIMS). Resulting 2D Ag(+) chemical images provide the ability to distinguish between the different Ag-containing starting materials and, when coupled with mass spectral peak ratios, provide information-rich data sets for quick and reproducible visualization of NP-based aqueous constituents. When compared to other measurements aimed at studying NP dissolution, the IJP-TOF-SIMS approach offers valuable information that can potentially help in understanding the complex equilibria in NP-containing solutions and suspensions, including NP dissolution kinetics and extent of overall dissolution. PMID:24611464

  8. Solar Mass Ejection Imager (SMEI) space experiment

    NASA Astrophysics Data System (ADS)

    Radick, Richard R.

    2001-12-01

    The Solar Mass Ejection Imager (SMEI) is a proof-of-concept space experiment designed to observe solar coronal mass ejections (CMEs) and forecast their arrival at Earth. SMEI will image CMEs by sensing sunlight scattered from the free electrons in these ejecta (i.e., Thomson scattering). SMEI will be launched by a Titan II rocket into a circular, 830-km, sun-synchronous orbit in mid-2002 as part of the Space Test Program's CORIOLIS mission. SMEI will image nearly the entire sky once per spacecraft orbit over a mission lifetime of three years. Successful operation of SMEI will represent a major step in improving space weather forecasts by providing one- to three-day predictions of geomagnetic storms at the Earth. The SMEI experiment is being designed and constructed by a team of scientists and engineers from the Air Force Research Laboratory, the University of Birmingham (UB) in the United Kingdom, the University of California at San Diego (UCSD), and Boston University. The Air Force, NASA, and UB are providing financial support.

  9. Improving secondary ion mass spectrometry image quality with image fusion.

    PubMed

    Tarolli, Jay G; Jackson, Lauren M; Winograd, Nicholas

    2014-12-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure.

  10. Improving secondary ion mass spectrometry image quality with image fusion.

    PubMed

    Tarolli, Jay G; Jackson, Lauren M; Winograd, Nicholas

    2014-12-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure. PMID:24912432

  11. MASS SPECTROMETRY IMAGING FOR DRUGS AND METABOLITES

    PubMed Central

    Greer, Tyler; Sturm, Robert; Li, Lingjun

    2011-01-01

    Mass spectrometric imaging (MSI) is a powerful analytical technique that provides two- and three-dimensional spatial maps of multiple compounds in a single experiment. This technique has been routinely applied to protein, peptide, and lipid molecules with much less research reporting small molecule distributions, especially pharmaceutical drugs. This review’s main focus is to provide readers with an up-to-date description of the substrates and compounds that have been analyzed for drug and metabolite composition using MSI technology. Additionally, ionization techniques, sample preparation, and instrumentation developments are discussed. PMID:21515430

  12. imzML: Imaging Mass Spectrometry Markup Language: A common data format for mass spectrometry imaging.

    PubMed

    Römpp, Andreas; Schramm, Thorsten; Hester, Alfons; Klinkert, Ivo; Both, Jean-Pierre; Heeren, Ron M A; Stöckli, Markus; Spengler, Bernhard

    2011-01-01

    Imaging mass spectrometry is the method of scanning a sample of interest and generating an "image" of the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra which are usually acquired with identical settings. Existing data formats are not sufficient to describe an MS imaging experiment completely. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software.For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample details) are stored in an XML file which is based on the standard data format mzML developed by HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary) are connected by offset values in the XML file and are unambiguously linked by a universally unique identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file allows flexible handling of large datasets.Several imaging MS software tools already support imzML. This allows choosing from a (growing) number of processing tools. One is no longer limited to proprietary software, but is able to use the processing software which is best suited for a specific question or application. On the other hand, measurements from different instruments can be compared within one software application using identical settings for data processing. All necessary information for evaluating and implementing imzML can be found at http://www.imzML.org . PMID:21063949

  13. Status of the Solar Mass Ejection Imager

    NASA Astrophysics Data System (ADS)

    Johnston, J. C.; Radick, R. R.; Webb, D. F.

    2001-05-01

    The Solar Mass Ejection Imager (SMEI) is a proof-of-concept experiment designed to detect and track coronal mass ejections (CMEs) as they propagate from the Sun through interplanetary space to the Earth and beyond. SMEI will Image CMEs by sensing sunlight scattered from the free electrons in these structures (Thomson scattering). SMEI will be launched by a Titan II rocket into a circular, sun-synchronous (830 km) orbit in 2002 as part of the Space Test Program's CORIOLIS mission. SMEI will image the entire sky once per spacecraft orbit over a mission lifetime of three years. The major subsystems of SMEI are three electronic camera assemblies and a data-handling unit. Each camera consists of a baffle, a radiator, a bright object sensor, an electronics box, and a strongbox containing a shutter, optics and a CCD. Each camera images a 3x60 degree field. Together, they view a 180-degree slice of sky, and sweep over the entire sky once per orbit. SMEI's basic data product will be a 100-minute cadence of all-sky maps of heliospheric brightness, with stars removed, having an angular resolution of about one degree and a photometric precision of about 0.1%. Successful operation of SMEI will represent a major step in improving space weather forecasts. When combined with in-situ solar wind measurements from upstream monitors such as WIND and ACE, SMEI will provide one- to three-day predictions of impending geomagnetic storms at the Earth. SMEI will complement missions such as SoHO, GOES SXI, Solar-B, and STEREO by providing data relating solar drivers to terrestrial effects. Other benefits of SMEI will include observations of variable stars, extra-Solar planetary transits, novae and supernovae, comets and asteroids. The SMEI experiment is being designed and constructed by a team of scientists and engineers from the Air Force Research Laboratory, the University of Birmingham (UB) in the United Kingdom, the University of California at San Diego (UCSD), and Boston University. The

  14. Pb-Zn-Cd-Hg multi isotopic characterization of the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Widory, D.; Innocent, C.; Guerrot, C.; Bourrain, X.; Johnson, T. M.

    2012-12-01

    metal pollutants. The main objective of this study is to characterize the sources and the behavior of these heavy metals in the aquatic environment, and their spatial distribution using a multi-isotope approach. Each of these isotope systematics on their own reveals important information about their geogenic or anthropogenic origin but, considered together, provide a more integrated understanding of the budgets of these pollutants within the Loire River Basin.

  15. Imaging thermal plasma mass and velocity analyzer

    NASA Astrophysics Data System (ADS)

    Yau, Andrew W.; Howarth, Andrew

    2016-07-01

    We present the design and principle of operation of the imaging ion mass and velocity analyzer on the Enhanced Polar Outflow Probe (e-POP), which measures low-energy (1-90 eV/e) ion mass composition (1-40 AMU/e) and velocity distributions using a hemispherical electrostatic analyzer (HEA), a time-of-flight (TOF) gate, and a pair of toroidal electrostatic deflectors (TED). The HEA and TOF gate measure the energy-per-charge and azimuth of each detected ion and the ion transit time inside the analyzer, respectively, providing the 2-D velocity distribution of each major ionospheric ion species and resolving the minor ion species under favorable conditions. The TED are in front of the TOF gate and optionally sample ions at different elevation angles up to ±60°, for measurement of 3-D velocity distribution. We present examples of observation data to illustrate the measurement capability of the analyzer, and show the occurrence of enhanced densities of heavy "minor" O++, N+, and molecular ions and intermittent, high-velocity (a few km/s) upward and downward flowing H+ ions in localized regions of the quiet time topside high-latitude ionosphere.

  16. 3D Imaging by Mass Spectrometry: A New Frontier

    PubMed Central

    Seeley, Erin H.; Caprioli, Richard M.

    2012-01-01

    Summary Imaging mass spectrometry can generate three-dimensional volumes showing molecular distributions in an entire organ or animal through registration and stacking of serial tissue sections. Here we review the current state of 3D imaging mass spectrometry as well as provide insights and perspectives on the process of generating 3D mass spectral data along with a discussion of the process necessary to generate a 3D image volume. PMID:22276611

  17. Imaging and differential diagnosis of suprarenal masses in the fetus.

    PubMed

    Maki, Erik; Oh, Karen; Rogers, Sarah; Sohaey, Roya

    2014-05-01

    Prenatal sonography and magnetic resonance imaging of suprarenal fetal masses is presented, along with clinical information and follow-up. Imaging pearls and differential considerations for each diagnosis will be discussed. Fetal suprarenal mass diagnoses include neuroblastoma, extralobar pulmonary sequestration, congenital adrenal hyperplasia, partial multicystic dysplastic kidney, renal duplication, urinoma, gastric duplication cyst, and splenic cyst. Recognizing the range of malignant and benign suprarenal fetal masses that can present on prenatal imaging can help guide patient counseling and management.

  18. Preparation of a multi-isotope plutonium AMS standard and preliminary results of a first inter-lab comparison

    NASA Astrophysics Data System (ADS)

    Dittmann, B.-A.; Dunai, T. J.; Dewald, A.; Heinze, S.; Feuerstein, C.; Strub, E.; Fifield, L. K.; Froehlich, M. B.; Tims, S. G.; Wallner, A.; Christl, M.

    2015-10-01

    The motivation of this work is to establish a new multi-isotope plutonium standard for isotopic ratio measurements with accelerator mass spectrometry (AMS), since stocks of existing solutions are declining. To this end, certified reference materials (CRMs) of each of the individual isotopes 239Pu, 240Pu, 242Pu and 244Pu were obtained from JRC IRMM (Joint Research Center Institute for Reference Materials and Measurements). These certified reference materials (IRMM-081a, IRMM-083, IRMM-043 and IRMM-042a) were diluted with nitric acid and mixed to obtain a stock standard solution with an isotopic ratio of approximately 1.0:1.0:1.0:0.1 (239Pu:240Pu:242Pu:244Pu). From this stock solution, samples were prepared for measurement of the plutonium isotopic composition by AMS. These samples have been measured in a round-robin exercise between the AMS facilities at CologneAMS, at the ANU Canberra and ETH Zurich to verify the isotopic ratio and to demonstrate the reproducibility of the measurements. The results show good agreement both between the different AMS measurements and with the gravimetrically determined nominal ratios.

  19. Absorption Mode FT-ICR Mass Spectrometry Imaging

    SciTech Connect

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco; O'Connor, Peter B.; Heeren, Ronald M.

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  20. Mass Spectrometry Imaging: facts and perspectives from a non-mass spectrometrist point of view.

    PubMed

    Cameron, L C

    2012-08-01

    Mass Spectrometry Imaging (MSI, also called Imaging Mass Spectrometry) can be used to map molecules according to their chemical abundance and spatial distribution. This technique is not widely used in mass spectrometry circles and is barely known by other scientists. In this review, a brief overview of the mass spectrometer hardware used in MSI and some of the possible applications of this powerful technique are discussed. I intend to call attention to MSI uses from cell biology to histopathology for biological scientists who have little background in mass spectrometry. MSI facts and perspectives are presented from a non-mass spectrometrist point of view. PMID:22713555

  1. Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams

    PubMed Central

    DeBord, John Daniel; Smith, Donald F.; Anderton, Christopher R.; Heeren, Ron M. A.; Paša-Tolić, Ljiljana; Gomer, Richard H.; Fernandez-Lima, Francisco A.

    2014-01-01

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification. PMID:24911189

  2. Secondary ion mass spectrometry imaging of Dictyostelium discoideum aggregation streams.

    PubMed

    DeBord, John Daniel; Smith, Donald F; Anderton, Christopher R; Heeren, Ron M A; Paša-Tolić, Ljiljana; Gomer, Richard H; Fernandez-Lima, Francisco A

    2014-01-01

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.

  3. Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams

    SciTech Connect

    Debord, J. Daniel; Smith, Donald F.; Anderton, Christopher R.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana; Gomer, Richard H.; Fernandez-Lima, Francisco A.

    2014-06-09

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.

  4. Imaging of presacral masses--a multidisciplinary approach.

    PubMed

    Patel, Nishant; Maturen, Katherine E; Kaza, Ravi K; Gandikota, Girish; Al-Hawary, Mahmoud M; Wasnik, Ashish P

    2016-01-01

    Our objective is to describe an approach for retrorectal/presacral mass evaluation on imaging with attention to imaging features, allowing for refinement of the differential diagnosis of these masses. Elaborate on clinically relevant features that may affect biopsy or surgical approach, of which the radiologist should be aware. A review of current literature regarding the diagnosis and treatment of retrorectal/presacral masses was performed with attention to specific findings, which may lend refinement to the differential diagnosis of these masses. Cases were obtained by searching through a radiology database at a single institution after Institutional Review Board approval. Recent advances in imaging and treatment methods have led to the increased role of radiology in both imaging and tissue diagnosis of retrorectal masses. Surgical philosophies surrounding the treatment of these masses have not significantly changed in recent years, but there are a few key factors of which the radiologist must be aware. The radiologist can offer refinement of the differential diagnosis of retrorectal masses and can elaborate on salient findings which could alter the need for neoadjuvant chemoradiation therapy, pre-surgical tissue diagnosis and surgical approach. This article presents an imaging approach to retrorectal/presacral masses with emphasis on findings which can dictate the ultimate need for neoadjuvant therapy and pre-surgical tissue diagnosis and alter the preferred surgical approach. This article consolidates key findings, so radiologists can become more clinically relevant in the evaluation of these masses. PMID:26828969

  5. Advances in imaging secondary ion mass spectrometry for biological samples

    SciTech Connect

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.

  6. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGESBeta

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  7. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    SciTech Connect

    Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

    2013-07-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (m/Δm50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/Δm50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

  8. Mass Preserving Registration for Heart MR Images

    PubMed Central

    Zhu, Lei; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm. PMID:16685954

  9. Mass preserving registration for heart MR images.

    PubMed

    Zhu, Lei; Haker, Steven; Tannenbaum, Allen

    2005-01-01

    This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm. PMID:16685954

  10. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    PubMed Central

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  11. An image morphing technique based on optimal mass preserving mapping.

    PubMed

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2007-06-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  12. Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology

    PubMed Central

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience. PMID:23966069

  13. Imaging mass spectrometry with nuclear microprobes for biological applications

    NASA Astrophysics Data System (ADS)

    Nakata, Y.; Yamada, H.; Honda, Y.; Ninomiya, S.; Seki, T.; Aoki, T.; Matsuo, J.

    2009-06-01

    A mass spectrometric technique using nuclear microprobes is presented in this paper for biological applications. In recent years, imaging mass spectrometry has become an increasingly important technique for visualizing the spatial distribution of molecular species in biological tissues and cells. However, due to low yields of large molecular ions, the conventional secondary ion mass spectrometry (SIMS), that uses keV primary ion beams, is typically applied for imaging of either elements or low mass compounds. In this study, we performed imaging mass spectrometry using MeV ion beams collimated to about 10 μm, and successfully obtained molecular ion images from plant and animal cell sections. The molecular ion imaging of the pollen section showed high intensities of PO3- ions in the pollen cytoplasm, compared to the pollen wall, and indicated the heterogeneous distribution in the cytoplasm. The 3T3-L1 cell image revealed the high intensity of PO3- ions, in particular from the cell nucleus. The result showed that not only the individual cell, but also the cell nucleus could be identified with the present imaging technique.

  14. Imaging Teachers: In Fact and in the Mass Media.

    ERIC Educational Resources Information Center

    Reyes, Xae Alicia; Rios, Diana I.

    2003-01-01

    The impact of mass media on public images of teachers and students is considered in a dialogue between two educational and mass media researchers. Stereotypes in films, such as teacher-savior and student-failure, and abundant reports about Latino dropout rates and low academic achievement impact teachers and the public, who accept negative images…

  15. A Multi-isotope Tracer Approach Linking Land Use With Carbon and Nitrogen Cycling in the San Joaquin River System

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Kendall, C.; Silva, S. R.; Dahlgren, R. A.; Stringfellow, W. T.

    2008-12-01

    The San Joaquin River (SJR) is a large hypereutrophic river located in the Central Valley, California, a major agricultural region. Nutrient subsidies, algae, and other organic material from the San Joaquin River contribute to periods of low dissolved oxygen in the Stockton Deep Water Ship Channel, inhibiting salmon migration. We used a multi-isotope approach to link nitrate and particulate organic matter (POM) to different sources and related land uses. The isotope data was also used to better understand the physical and biological processes controlling the distribution of nitrate and POM throughout the river system. Samples collected from the mainstem SJR and tributaries twice-monthly to monthly between March 2005 and December 2007 were analyzed for nitrate, POM, and water isotopes. There are many land uses surrounding the SJR and its tributaries, including multiple types of agriculture, dairies, wetlands, and urban areas. Samples from SJR tributaries containing both major and minor contributions of wetland discharge generally had distinct nitrate and POM isotope signatures compared to other tributaries. Unique nitrate and POM isotope signatures associated with wetland discharges may reflect anaerobic biological processes occurring in flooded soils. For the mainstem SJR, we applied an isotope mass balance approach using nitrate and water isotopes to calculate the expected downstream isotope values based upon measured inputs from known water sources such as drains and tributaries. Differences between the calculated downstream isotope values and the measured values indicate locations and time periods when either biological processes such as algal uptake, or physical process such as the input of unidentified water sources, significantly altered the isotope signatures of water, POM, or nitrate within the SJR. This research will provide a better understanding of how different land uses affect the delivery of carbon and nitrogen to the SJR, and will provide a better

  16. Method for detecting a mass density image of an object

    DOEpatents

    Wernick, Miles N.; Yang, Yongyi

    2008-12-23

    A method for detecting a mass density image of an object. An x-ray beam is transmitted through the object and a transmitted beam is emitted from the object. The transmitted beam is directed at an angle of incidence upon a crystal analyzer. A diffracted beam is emitted from the crystal analyzer onto a detector and digitized. A first image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a first angular position. A second image of the object is detected from the diffracted beam emitted from the crystal analyzer when positioned at a second angular position. A refraction image is obtained and a regularized mathematical inversion algorithm is applied to the refraction image to obtain a mass density image.

  17. Determination of left ventricular mass through SPECT imaging

    NASA Astrophysics Data System (ADS)

    Zárate-Morales, A.; Rodríguez-Villafuerte, M.; Martínez-Rodríguez, F.; Arévila-Ceballos, N.

    1998-08-01

    An edge detection algorithm has been applied to estimate left ventricular (LV) mass from single photon emission computed tomography (SPECT) thallium-201 images. The algorithm was validated using SPECT images of a phantom. The algorithm was applied to 20 patient studies from the Hospital de Cardiologia, Centro Médico Nacional Siglo XXI. Left ventricular masses derived from the stress and redistribution studies were highly correlated (r=0.96). The average LV masses obtained were 162±37 g and 169±34 g in the redistribution and stress studies, respectively.

  18. Direct Protocol for Ambient Mass Spectrometry Imaging on Agar Culture.

    PubMed

    Angolini, Célio Fernando F; Vendramini, Pedro Henrique; Araújo, Francisca D S; Araújo, Welington L; Augusti, Rodinei; Eberlin, Marcos N; de Oliveira, Luciana Gonzaga

    2015-07-01

    Herein we describe a new protocol that allows direct mass spectrometry imaging (IMS) of agar cultures. A simple sample dehydration leads to a thin solid agar, which enables the direct use of spray-based ambient mass spectrometry techniques. To demonstrate its applicability, metal scavengers siderophores were imaged directly from agar culture of S. wadayamensis, and well resolved and intense images were obtained using both desorption electrospray ionization (DESI) and easy ambient sonic-spray ionization (EASI) with well-defined selective spatial distributions for the free and the metal-bound molecules, providing clues for their roles in cellular metabolism.

  19. Mass spectrometry imaging and profiling of single cells

    PubMed Central

    Lanni, Eric J.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2012-01-01

    Mass spectrometry imaging and profiling of individual cells and subcellular structures provide unique analytical capabilities for biological and biomedical research, including determination of the biochemical heterogeneity of cellular populations and intracellular localization of pharmaceuticals. Two mass spectrometry technologies—secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption ionization mass spectrometry (MALDI MS)—are most often used in micro-bioanalytical investigations. Recent advances in ion probe technologies have increased the dynamic range and sensitivity of analyte detection by SIMS, allowing two- and three-dimensional localization of analytes in a variety of cells. SIMS operating in the mass spectrometry imaging (MSI) mode can routinely reach spatial resolutions at the submicron level; therefore, it is frequently used in studies of the chemical composition of subcellular structures. MALDI MS offers a large mass range and high sensitivity of analyte detection. It has been successfully applied in a variety of single-cell and organelle profiling studies. Innovative instrumentation such as scanning microprobe MALDI and mass microscope spectrometers enable new subcellular MSI measurements. Other approaches for MS-based chemical imaging and profiling include those based on near-field laser ablation and inductively-coupled plasma MS analysis, which offer complementary capabilities for subcellular chemical imaging and profiling. PMID:22498881

  20. Silver Coating for High-Mass-Accuracy Imaging Mass Spectrometry of Fingerprints on Nanostructured Silicon.

    PubMed

    Guinan, Taryn M; Gustafsson, Ove J R; McPhee, Gordon; Kobus, Hilton; Voelcker, Nicolas H

    2015-11-17

    Nanostructure imaging mass spectrometry (NIMS) using porous silicon (pSi) is a key technique for molecular imaging of exogenous and endogenous low molecular weight compounds from fingerprints. However, high-mass-accuracy NIMS can be difficult to achieve as time-of-flight (ToF) mass analyzers, which dominate the field, cannot sufficiently compensate for shifts in measured m/z values. Here, we show internal recalibration using a thin layer of silver (Ag) sputter-coated onto functionalized pSi substrates. NIMS peaks for several previously reported fingerprint components were selected and mass accuracy was compared to theoretical values. Mass accuracy was improved by more than an order of magnitude in several cases. This straightforward method should form part of the standard guidelines for NIMS studies for spatial characterization of small molecules.

  1. Advanced Mass Calibration and Visualization for FT-ICR Mass Spectrometry Imaging

    SciTech Connect

    Smith, Donald F.; Kharchenko, Andriy; Konijnenburg, Marco; Klinkert, Ivo; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

    2012-11-01

    Mass spectrometry imaging by Fourier transform ion cyclotron resonance (FT-ICR) yields hundreds of unique peaks, many of which cannot be resolved by lower performance mass spectrometers. The high mass accuracy and high mass resolving power allow confident identification of small molecules and lipids directly from biological tissue sections. Here, calibration strategies for FT-ICR MS imaging were investigated. Sub-parts-per-million mass accuracy is demonstrated over an entire tissue section. Ion abundance fluctuations are corrected by addition of total and relative ion abundances for a root-mean-square error of 0.158 ppm on 16,764 peaks. A new approach for visualization of FT-ICR MS imaging data at high resolution is presented. The "Mosaic Datacube" provides a flexible means to visualize the entire mass range at a mass spectral bin width of 0.001 Da. The high resolution Mosaic Datacube resolves spectral features not visible at lower bin widths, while retaining the high mass accuracy from the calibration methods discussed.

  2. Tissue MALDI Mass Spectrometry Imaging (MALDI MSI) of Peptides.

    PubMed

    Beine, Birte; Diehl, Hanna C; Meyer, Helmut E; Henkel, Corinna

    2016-01-01

    Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a technique to visualize molecular features of tissues based on mass detection. This chapter focuses on MALDI MSI of peptides and provides detailed operational instructions for sample preparation of cryoconserved and formalin-fixed paraffin-embedded (FFPE) tissue. Besides sample preparation we provide protocols for the MALDI measurement, tissue staining, and data analysis. On-tissue digestion and matrix application are described for two different commercially available and commonly used spraying devices: the SunCollect (SunChrom) and the ImagePrep (Bruker Daltonik GmbH).

  3. Atomic Force Microscope Controlled Topographical Imaging and Proximal Probe Thermal Desorption/Ionization Mass Spectrometry Imaging

    SciTech Connect

    Ovchinnikova, Olga S; Kjoller, Kevin; Hurst, Gregory {Greg} B; Pelletier, Dale A; Van Berkel, Gary J

    2014-01-01

    This paper reports on the development of a hybrid atmospheric pressure atomic force microscopy/mass spectrometry imaging system utilizing nano-thermal analysis probes for thermal desorption surface sampling with subsequent atmospheric pressure chemical ionization and mass analysis. The basic instrumental setup and the general operation of the system were discussed and optimized performance metrics were presented. The ability to correlate topographic images of a surface with atomic force microscopy and a mass spectral chemical image of the same surface, utilizing the same probe without moving the sample from the system, was demonstrated. Co-registered mass spectral chemical images and atomic force microscopy topographical images were obtained from inked patterns on paper as well as from a living bacterial colony on an agar gel. Spatial resolution of the topography images based on pixel size (0.2 m x 0.8 m) was better than the resolution of the mass spectral images (2.5 m x 2.0 m), which were limited by current mass spectral data acquisition rate and system detection levels.

  4. Interlabial masses in little girls: review and imaging recommendations

    SciTech Connect

    Nussbaum, A.R.; Lebowitz, R.L.

    1983-07-01

    When an interlabial mass is seen on physical examination in a little girl, there is often confusion about its etiology, its implications, and what should be done next. Five common interlabial masses, which superficially are strikingly similar, include a prolapsed ectopic ureterocele, a prolapsed urethra, a paraurethral cyst, hydro(metro)colpos, and rhabdomyosarcoma of the vagina (botryoid sarcoma). A prolapsed ectopic ureterocele occurs in white girls as a smooth mass which protrudes from the urethral meatus so that urine exits circumferentially. A prolapsed urethra occurs in black girls and resembles a donut with the urethral meatus in the center. A paraurethral cyst is smaller and displaces the meatus, so that the urinary stream is eccentric. Hydro(metro)colpos from hymenal imperforation presents as a smooth mass that fills the vaginal introitus, as opposed to the introital grapelike cluster of masses of botryoid sarcoma. Recommendations for efficient imaging are presented.

  5. Contemporary use of imaging modalities in neck mass evaluation.

    PubMed

    St J Blythe, John N; Pearce, Oliver J; Tilley, Elizabeth A; Brennan, Peter A

    2015-03-01

    The effective and efficient management of a patient with a neck mass in a 1-stop clinic requires a collaborative and harmonious partnership among surgeon, radiologist, and pathologist. In this article, theoretic and practical issues are addressed to optimize patient care when prescribing, planning, performing, and interpreting imaging for neck disease.

  6. Coming to a hospital near you: mass spectrometry imaging

    SciTech Connect

    Bowen, Ben

    2013-10-31

    Berkeley Lab's Ben Bowen discusses "Coming to a hospital near you: mass spectrometry imaging" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers.

  7. Preparation of single cells for imaging mass spectrometry.

    PubMed

    Berman, Elena S F; Fortson, Susan L; Kulp, Kristen S

    2010-01-01

    Characterizing the molecular contents of individual cells is critical for understanding fundamental mechanisms of biological processes. Imaging mass spectrometry (IMS) of biological systems has been steadily gaining popularity for its ability to create precise chemical images of biological samples, thereby revealing new biological insights and improving understanding of disease. In order to acquire mass spectral images from single cells that contain relevant molecular information, samples must be prepared such that cell-culture components, especially salts, are eliminated from the cell surface and that the cell contents are accessible to the mass spectrometer. We have demonstrated a cellular preparation technique for IMS that preserves the basic morphology of cultured cells, allows mass spectrometric chemical profiling of cytosol, and removes the majority of the interfering species derived from the cellular growth medium. Using this protocol, we achieve high-quality, reproducible IMS images from three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation method allows rapid and routine IMS analysis of cultured cells, making possible a wide variety of experiments to further scientific understanding of molecular processes within individual cells. PMID:20680596

  8. Mass spectrometry imaging of fingerprint sweat on nanostructured silicon.

    PubMed

    Guinan, T; Della Vedova, C; Kobus, H; Voelcker, N H

    2015-04-11

    Desorption ionisation on porous silicon mass spectrometry imaging (DIOS-MSI) was used on fingerprints to map the distribution of exogenous and endogenous molecules present in sweat. Our attention was focused on the proof-of-principle to detect illicit drugs and their metabolites to exemplify the technique's potential in the area of forensic and workplace testing.

  9. Coming to a hospital near you: mass spectrometry imaging

    ScienceCinema

    Bowen, Ben

    2016-07-12

    Berkeley Lab's Ben Bowen discusses "Coming to a hospital near you: mass spectrometry imaging" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers.

  10. Current Status and Future Perspectives of Mass Spectrometry Imaging

    PubMed Central

    Nimesh, Surendra; Mohottalage, Susantha; Vincent, Renaud; Kumarathasan, Prem

    2013-01-01

    Mass spectrometry imaging is employed for mapping proteins, lipids and metabolites in biological tissues in a morphological context. Although initially developed as a tool for biomarker discovery by imaging the distribution of protein/peptide in tissue sections, the high sensitivity and molecular specificity of this technique have enabled its application to biomolecules, other than proteins, even in cells, latent finger prints and whole organisms. Relatively simple, with no requirement for labelling, homogenization, extraction or reconstitution, the technique has found a variety of applications in molecular biology, pathology, pharmacology and toxicology. By discriminating the spatial distribution of biomolecules in serial sections of tissues, biomarkers of lesions and the biological responses to stressors or diseases can be better understood in the context of structure and function. In this review, we have discussed the advances in the different aspects of mass spectrometry imaging processes, application towards different disciplines and relevance to the field of toxicology. PMID:23759983

  11. Identification of the geographical place of origin of an unidentified individual by multi-isotope analysis.

    PubMed

    Font, Laura; van der Peijl, Gerard; van Leuwen, Carina; van Wetten, Isis; Davies, Gareth R

    2015-01-01

    A multi-isotope investigation (Sr and Pb isotopes and δ18O, δ13C and δ15N) was applied to bone and teeth from an unidentified male found drowned in the"IJ" Ruyterkade in Amsterdam, The Netherlands in March of 1999. The individual remained unidentified until mid 2013, after the isotope study was completed. Coupled δ13C and δ15N values in bone collagen recovered from rib and femur are consistent with an omnivore living in a region where C3-type diet dominates (i.e. Europe). Integrated Sr and Pb isotopes and δ18O values in canine and third molar teeth and femur and rib bone data exclude extended residence in north-west Europe and particularly The Netherlands. Characteristic Pb isotope ratios coupled with inferred δ18O values of drinking water argue for a most probable place of origin for the unidentified individual in west and south Poland, south-east Slovakia and the region of Ukraine-Romania-Bulgaria, specifically the region associated with the Carpathian Mountains. Independent of the isotope study, the Cold Case Team made a positive identification with an individual from south-west Poland, validating the results of the multiple-isotopic approach.

  12. Multi-Isotope Process (MIP) Monitor: A Near-Real-Time Monitor For Reprocessing Facilities

    SciTech Connect

    Schwantes, Jon M.; Douglas, Matthew; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard

    2008-06-01

    INTRODUCTION The threat of protracted diversion of Pu from commercial reprocessing operations is perhaps the greatest concern to national and international agencies tasked with safeguarding these facilities. While it is generally understood that a method for direct monitoring of process on-line and in near-real time (NRT) would be the best defense against protracted diversion scenarios, an effective method with these qualities has yet to be developed. Here, we attempt to bridge this gap by proposing an on-line NRT process monitoring method that should be sensitive to minor alterations in process conditions and compatible with small, easily deployable, detection systems. This Approach is known as the Multi-Isotope Process (MIP) Monitor and involves the determination and recognition of the contaminant pattern within a process stream for a suite of indicator (radioactive) elements present in the spent fuel as a function of process variables. Utilization of a suite of radio-elements, including ones with multiple oxidation states, decreases the likelihood that attempts to divert Pu by altering the ReDox environment within the process would go undetected. In addition, by identifying gamma-emitting indicator isotopes, this Approach might eliminate the need for bulky neutron detection systems, relying instead on small, portable, high-resolution gamma detectors easily deployable throughout the facility.

  13. The Multi-Isotope Process Monitor: Multivariate Analysis of Gamma Spectra

    SciTech Connect

    Orton, Christopher R.; Rutherford, Crystal E.; Fraga, Carlos G.; Schwantes, Jon M.

    2011-10-30

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of nuclear material are not diverted from these facilities. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). The time delay between sampling and subsequent DA provides a potential opportunity to divert the material out of the appropriate chemical stream. Leveraging new on-line nondestructive assay (NDA) techniques in conjunction with the traditional and highly precise DA methods may provide a more timely, cost-effective and resource efficient means for MC&A verification at such facilities. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including the Multi-Isotope Process (MIP) Monitor. The MIP Monitor uses gamma spectroscopy and pattern recognition software to identify off-normal conditions in process streams. Recent efforts have been made to explore the basic limits of using multivariate analysis techniques on gamma-ray spectra. This paper will provide an overview of the methods and report our on-going efforts to develop and demonstrate the technology.

  14. The Multi-Isotope Process Monitor Project: FY11 Progress and Accomplishments

    SciTech Connect

    Orton, Christopher R.; Fraga, Carlos G.; Hayes, John W.; Schwantes, Jon M.; Bender, Sarah E.; Unlu, Kenan; Dayman, Kenneth J.; Schreiber, S. S.; Landsberger, Sheldon

    2012-08-01

    Summary The Multi-Isotope Process (MIP) Monitor represents a potentially new and efficient approach to monitoring process conditions in reprocessing facilities with the high-level goal of aiding in the “...(minimization of) the risks of nuclear proliferation and terrorism” (Office of Technology Assessment 1995). This approach relies on multivariate analysis and gamma spectroscopy of spent fuel product and waste streams to automatically and simultaneously monitor a variety of process conditions (e.g., acid concentrations, burnup, cooling time, etc.) in near real-time (NRT). While the conceptual basis for the MIP Monitor has been shown to be effective in an aqueous reprocessing system, the fundamental approach should also be viable in a pyro-processing recycle system. The MIP Monitor may be calibrated to provide online quantitative information about process variables for process control or domestic safeguards applications; or it can simply monitor, with a built-in information barrier, for off-normal conditions in process streams, making the approach well-suited for applications were it is necessary to respect proprietary information or for international safeguards applications. Proof-of-concept simulations and experiments were performed in previous years demonstrating the validity of this tool in a laboratory setting. This report details follow-on research and development efforts sponsored by the U.S. Department of Energy Fuel Cycle Research and Development (FCR&D) related to the MIP Monitor for fiscal year 2011 (FY11).

  15. The Multi-Isotope Process (MIP) Monitor Project: FY13 Final Report

    SciTech Connect

    Meier, David E.; Coble, Jamie B.; Jordan, David V.; Mcdonald, Luther W.; Forrester, Joel B.; Schwantes, Jon M.; Unlu, Kenan; Landsberger, Sheldon; Bender, Sarah; Dayman, Kenneth J.; Reilly, Dallas D.

    2013-09-01

    The Multi-Isotope Process (MIP) Monitor provides an efficient approach to monitoring the process conditions in reprocessing facilities in support of the goal of “… (minimization of) the risks of nuclear proliferation and terrorism.” The MIP Monitor measures the distribution of the radioactive isotopes in product and waste streams of a nuclear reprocessing facility. These isotopes are monitored online by gamma spectrometry and compared, in near-real-time, to spectral patterns representing “normal” process conditions using multivariate analysis and pattern recognition algorithms. The combination of multivariate analysis and gamma spectroscopy allows us to detect small changes in the gamma spectrum, which may indicate changes in process conditions. By targeting multiple gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, relatively high-resolution gamma detectors that may be easily deployed throughout an existing facility. The automated multivariate analysis can provide a level of data obscurity, giving a built-in information barrier to protect sensitive or proprietary operational data. Proof-of-concept simulations and experiments have been performed in previous years to demonstrate the validity of this tool in a laboratory setting for systems representing aqueous reprocessing facilities. However, pyroprocessing is emerging as an alternative to aqueous reprocessing techniques.

  16. Use of Mass spectrometry for imaging metabolites in plants

    SciTech Connect

    Lee, Young Jin; Perdian, David C.; Song, Zhihong; Yeung, Edward S.; Nikolau, Basil

    2012-03-27

    We discuss and illustrate recent advances that have been made to image the distribution of metabolites among cells and tissues of plants using different mass spectrometry technologies. These technologies include matrix-assisted laser desorption ionization, desorption electrospray ionization, and secondary ion mass spectrometry. These are relatively new technological applications of mass spectrometry and they are providing highly spatially resolved data concerning the cellular distribution of metabolites. We discuss the advantages and limitations of each of these mass spectrometric methods, and provide a description of the technical barriers that are currently limiting the technology to the level of single-cell resolution. However, we anticipate that advances in the next few years will increase the resolving power of the technology to provide unprecedented data on the distribution of metabolites at the subcellular level, which will increase our ability to decipher new knowledge concerning the spatial organization of metabolic processes in plants.

  17. Use of mass spectrometry for imaging metabolites in plants

    SciTech Connect

    Lee, Young-Jin; Perdian, David; Song, Zhihong; Yeung, Edward; Nikolau, Basil

    2012-03-27

    We discuss and illustrate recent advances that have been made to image the distribution of metabolites among cells and tissues of plants using different mass spectrometry technologies. These technologies include matrix-assisted laser desorption ionization, desorption electrospray ionization, and secondary ion mass spectrometry. These are relatively new technological applications of mass spectrometry and they are providing highly spatially resolved data concerning the cellular distribution of metabolites. We discuss the advantages and limitations of each of these mass spectrometric methods, and provide a description of the technical barriers that are currently limiting the technology to the level of single-cell resolution. However, we anticipate that advances in the next few years will increase the resolving power of the technology to provide unprecedented data on the distribution of metabolites at the subcellular level, which will increase our ability to decipher new knowledge concerning the spatial organization of metabolic processes in plants.

  18. Mass spectrometry imaging for visualizing organic analytes in food.

    PubMed

    Handberg, Eric; Chingin, Konstantin; Wang, Nannan; Dai, Ximo; Chen, Huanwen

    2015-01-01

    The demand for rapid chemical imaging of food products steadily increases. Mass spectrometry (MS) is featured by excellent molecular specificity of analysis and is, therefore, a very attractive method for chemical profiling. MS for food imaging has increased significantly over the past decade, aided by the emergence of various ambient ionization techniques that allow direct and rapid analysis in ambient environment. In this article, the current status of food imaging with MSI is reviewed. The described approaches include matrix-assisted laser desorption/ionization (MALDI), but emphasize desorption atmospheric pressure photoionization (DAPPI), electrospray-assisted laser desorption/ionization (ELDI), probe electrospray ionization (PESI), surface desorption atmospheric pressure chemical ionization (SDAPCI), and laser ablation flowing atmospheric pressure afterglow (LA-FAPA). The methods are compared with regard to spatial resolution; analysis speed and time; limit of detection; and technical aspects. The performance of each method is illustrated with the description of a related application. Specific requirements in food imaging are discussed.

  19. High-Speed Tandem Mass Spectrometric in Situ Imaging by Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew; Short, Joshua TL; Carson, James P.; Cha, Jeeyeon; Dey, Sudhansu K.; Yang, Pengxiang; Prieto Conaway, Maria C.; Laskin, Julia

    2013-10-15

    Nanospray desorption electrospray ionization (nano-DESI) combined with tandem mass spectrometry (MS/MS), high-resolution mass analysis (m/m=17,500 at m/z 200), and rapid spectral acquisition enabled simultaneous imaging and identification of more than 300 molecules from 92 selected m/z windows (± 1 Da) with a spatial resolution of better than 150 um. Uterine sections of implantation sites on day 6 of pregnancy were analyzed in the ambient environment without any sample pre-treatment. MS/MS imaging was performed by scanning the sample under the nano-DESI probe at 10 um/s while acquiring higher-energy collision-induced dissociation (HCD) spectra for a targeted inclusion list of 92 m/z values at a rate of ~6.3 spectra/s. Molecular ions and their corresponding fragments, separated using high-resolution mass analysis, were assigned based on accurate mass measurement. Using this approach, we were able to identify and image both abundant and low-abundance isobaric species within each m/z window. MS/MS analysis enabled efficient separation and identification of isobaric sodium and potassium adducts of phospholipids. Furthermore, we identified several metabolites associated with early pregnancy and obtained the first 2D images of these molecules.

  20. Preparation of Single Cells for Imaging Mass Spectrometry

    SciTech Connect

    Berman, E S; Fortson, S L; Kulp, K S; Checchi, K D; Wu, L; Felton, J S; Wu, K J

    2007-10-24

    Characterizing chemical changes within single cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Imaging biological systems with mass spectrometry (MS) has gained popularity in recent years as a method for creating precise chemical maps of biological samples. In order to obtain high-quality mass spectral images that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell-culture components are removed from the cell surface and the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging MS that preserves the cellular contents for investigation and removes the majority of the interfering species from the extracellular matrix. Using this method, we obtain excellent imaging results and reproducibility in three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique allows routine imaging MS analysis of cultured cells, allowing for any number of experiments aimed at furthering scientific understanding of molecular processes within individual cells.

  1. Ionization sources and mass analyzers in MS imaging.

    PubMed

    Tsai, Yu-Hsuan; Menger, Robert F; Drexler, Dieter M; Yost, Richard A; Garrett, Timothy J

    2015-01-01

    Drug absorption, distribution, metabolism, excretion and toxicology study is one important step in drug discovery and development. MS imaging has become one of the popular methods in this field. Here, selected ionization methods such as matrix-assisted laser desorption/ionization, secondary ion MS and desorption electrospray ionization have been briefly discussed. To differentiate drug and drug metabolites from endogenous compounds present in the biological system, exact mass and/or tandem MS is necessary. As a result, mass analyzers such as time-of-flight, Fourier transform ion cyclotron resonance or Orbitrap are often the method of choice and are briefly introduced. PMID:26511148

  2. Challenges and recent advances in mass spectrometric imaging of neurotransmitters

    PubMed Central

    Gemperline, Erin; Chen, Bingming; Li, Lingjun

    2014-01-01

    Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. neurotransmitters, focusing specifically on the challenges and recent Herein, we advances of MSI of neurotransmitters. PMID:24568355

  3. Computation of Mass Density Images from X-ray Refraction-Angle Images

    SciTech Connect

    Wernick,M.; Yang, Y.; Mondal, I.; Chapman, D.; Hasnah, M.; Parham, C.; Pisano, E.; Zhong, Z.

    2006-01-01

    In this paper, we investigate the possibility of computing quantitatively accurate images of mass density variations in soft tissue. This is a challenging task, because density variations in soft tissue, such as the breast, can be very subtle. Beginning from an image of refraction angle created by either diffraction-enhanced imaging (DEI) or multiple-image radiography (MIR), we estimate the mass-density image using a constrained least squares (CLS) method. The CLS algorithm yields accurate density estimates while effectively suppressing noise. Our method improves on an analytical method proposed by Hasnah et al (2005 Med. Phys. 32 549-52), which can produce significant artifacts when even a modest level of noise is present. We present a quantitative evaluation study to determine the accuracy with which mass density can be determined in the presence of noise. Based on computer simulations, we find that the mass-density estimation error can be as low as a few per cent for typical density variations found in the breast. Example images computed from less-noisy real data are also shown to illustrate the feasibility of the technique. We anticipate that density imaging may have application in assessment of water content of cartilage resulting from osteoarthritis, in evaluation of bone density, and in mammographic interpretation.

  4. The Multi-Isotope Process (MIP) Monitor Project: FY12 Progress and Accomplishments

    SciTech Connect

    Coble, Jamie B.; Orton, Christopher R.; Jordan, David V.; Schwantes, Jon M.; Bender, Sarah; Dayman, Kenneth J.; Unlu, Kenan; Landsberger, Sheldon

    2012-09-27

    The Multi-Isotope Process (MIP) Monitor, being developed at Pacific Northwest National Laboratory (PNNL), provides an efficient approach to monitoring the process conditions in reprocessing facilities in support of the goal of "...(minimization of) the risks of nuclear proliferation and terrorism." The MIP Monitor measures distributions of a suite of indicator (radioactive) isotopes present within product and waste streams of a nuclear reprocessing facility. These indicator isotopes are monitored on-line by gamma spectrometry and compared, in near-real-time, to spectral patterns representing "normal" process conditions using multivariate pattern recognition software. The monitor utilizes this multivariate analysis and gamma spectroscopy of reprocessing streams to detect small changes in the gamma spectrum, which may indicate changes in process conditions. Multivariate analysis methods common in chemometrics, such as principal component analysis (PCA) and partial least squares regression (PLS), act as pattern recognition techniques, which can detect small deviations from the expected, nominal condition. By targeting multiple gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, relatively high-resolution gamma detectors that may be easily deployed throughout an existing facility. The automated multivariate analysis can provide a level of data obscurity, giving a built-in information barrier to protect sensitive or proprietary operational data. Proof-of-concept simulations and experiments have been performed in previous years to demonstrate the validity of this tool in a laboratory setting. Development of the MIP Monitor approach continues to evaluate the efficacy of the monitor for automated, real-time or near-real-time application. This report details follow-on research and development efforts sponsored by the U.S. Department of Energy Fuel Cycle Research and Development related to the MIP Monitor for fiscal year

  5. Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Laskin, Julia; Heath, Brandi S.; Roach, Patrick J.; Cazares, Lisa H.; Semmes, O. John

    2012-01-03

    We present the first results showing the ambient imaging of biological samples in their native environment using nanospray desorption ionization (nanoDESI) mass spectrometry. NanoDESI is an ambient pressure ionization technique that enables precise control of ionization of molecules from substrates. We demonstrate highly sensitive and robust analysis of tissue samples with high spatial resolution (<12 {mu}m) without sample preparation, which will be essential for applications in clinical diagnostics, drug discovery, molecular biology, and biochemistry.

  6. Current cardiac imaging techniques for detection of left ventricular mass

    PubMed Central

    2010-01-01

    Estimation of left ventricular (LV) mass has both prognostic and therapeutic value independent of traditional risk factors. Unfortunately, LV mass evaluation has been underestimated in clinical practice. Assessment of LV mass can be performed by a number of imaging modalities. Despite inherent limitations, conventional echocardiography has fundamentally been established as most widely used diagnostic tool. 3-dimensional echocardiography (3DE) is now feasible, fast and accurate for LV mass evaluation. 3DE is also superior to conventional echocardiography in terms of LV mass assessment, especially in patients with abnormal LV geometry. Cardiovascular magnetic resonance (CMR) and cardiovascular computed tomography (CCT) are currently performed for LV mass assessment and also do not depend on cardiac geometry and display 3-dimensional data, as well. Therefore, CMR is being increasingly employed and is at the present standard of reference in the clinical setting. Although each method demonstrates advantages over another, there are also disadvantages to receive attention. Diagnostic accuracy of methods will also be increased with the introduction of more advanced systems. It is also likely that in the coming years new and more accurate diagnostic tests will become available. In particular, CMR and CCT have been intersecting hot topic between cardiology and radiology clinics. Thus, good communication and collaboration between two specialties is required for selection of an appropriate test. PMID:20515461

  7. Multiplex Mass Spectrometric Imaging with Polarity Switching for Concurrent Acquisition of Positive and Negative Ion Images

    NASA Astrophysics Data System (ADS)

    Korte, Andrew R.; Lee, Young Jin

    2013-06-01

    We have recently developed a multiplex mass spectrometry imaging (MSI) method which incorporates high mass resolution imaging and MS/MS and MS3 imaging of several compounds in a single data acquisition utilizing a hybrid linear ion trap-Orbitrap mass spectrometer (Perdian and Lee, Anal. Chem. 82, 9393-9400, 2010). Here we extend this capability to obtain positive and negative ion MS and MS/MS spectra in a single MS imaging experiment through polarity switching within spiral steps of each raster step. This methodology was demonstrated for the analysis of various lipid class compounds in a section of mouse brain. This allows for simultaneous imaging of compounds that are readily ionized in positive mode (e.g., phosphatidylcholines and sphingomyelins) and those that are readily ionized in negative mode (e.g., sulfatides, phosphatidylinositols and phosphatidylserines). MS/MS imaging was also performed for a few compounds in both positive and negative ion mode within the same experimental set-up. Insufficient stabilization time for the Orbitrap high voltage leads to slight deviations in observed masses, but these deviations are systematic and were easily corrected with a two-point calibration to background ions.

  8. Multigrid optimal mass transport for image registration and morphing

    NASA Astrophysics Data System (ADS)

    Rehman, Tauseef ur; Tannenbaum, Allen

    2007-02-01

    In this paper we present a computationally efficient Optimal Mass Transport algorithm. This method is based on the Monge-Kantorovich theory and is used for computing elastic registration and warping maps in image registration and morphing applications. This is a parameter free method which utilizes all of the grayscale data in an image pair in a symmetric fashion. No landmarks need to be specified for correspondence. In our work, we demonstrate significant improvement in computation time when our algorithm is applied as compared to the originally proposed method by Haker et al [1]. The original algorithm was based on a gradient descent method for removing the curl from an initial mass preserving map regarded as 2D vector field. This involves inverting the Laplacian in each iteration which is now computed using full multigrid technique resulting in an improvement in computational time by a factor of two. Greater improvement is achieved by decimating the curl in a multi-resolutional framework. The algorithm was applied to 2D short axis cardiac MRI images and brain MRI images for testing and comparison.

  9. Imaging of Biological Tissues by Desorption Electrospray Ionization Mass Spectrometry

    PubMed Central

    Fernández, Facundo M.

    2013-01-01

    Mass spectrometry imaging (MSI) provides untargeted molecular information with the highest specificity and spatial resolution for investigating biological tissues at the hundreds to tens of microns scale. When performed under ambient conditions, sample pre-treatment becomes unnecessary, thus simplifying the protocol while maintaining the high quality of information obtained. Desorption electrospray ionization (DESI) is a spray-based ambient MSI technique that allows for the direct sampling of surfaces in the open air, even in vivo. When used with a software-controlled sample stage, the sample is rastered underneath the DESI ionization probe, and through the time domain, m/z information is correlated with the chemical species' spatial distribution. The fidelity of the DESI-MSI output depends on the source orientation and positioning with respect to the sample surface and mass spectrometer inlet. Herein, we review how to prepare tissue sections for DESI imaging and additional experimental conditions that directly affect image quality. Specifically, we describe the protocol for the imaging of rat brain tissue sections by DESI-MSI. PMID:23892773

  10. Mass spectrometry imaging with laser-induced postionization.

    PubMed

    Soltwisch, Jens; Kettling, Hans; Vens-Cappell, Simeon; Wiegelmann, Marcel; Müthing, Johannes; Dreisewerd, Klaus

    2015-04-10

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can simultaneously record the lateral distribution of numerous biomolecules in tissue slices, but its sensitivity is restricted by limited ionization. We used a wavelength-tunable postionization laser to initiate secondary MALDI-like ionization processes in the gas phase. In this way, we could increase the ion yields for numerous lipid classes, liposoluble vitamins, and saccharides, imaged in animal and plant tissue with a 5-micrometer-wide laser spot, by up to two orders of magnitude. Critical parameters for initiation of the secondary ionization processes are pressure of the cooling gas in the ion source, laser wavelength, pulse energy, and delay between the two laser pulses. The technology could enable sensitive MALDI-MS imaging with a lateral resolution in the low micrometer range.

  11. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites

    PubMed Central

    Lietz, Christopher B.; Gemperline, Erin; Li, Lingjun

    2013-01-01

    Mass spectrometric imaging (MSI) has rapidly increased its presence in the pharmaceutical sciences. While quantitative whole-body autoradiography and microautoradiography are the traditional techniques for molecular imaging of drug delivery and metabolism, MSI provides advantageous specificity that can distinguish the parent drug from metabolites and modified endogenous molecules. This review begins with the fundamentals of MSI sample preparation/ionization, and then moves on to both qualitative and quantitative applications with special emphasis on drug discovery and delivery. Cutting-edge investigations on sub-cellular imaging and endogenous signaling peptides are also highlighted, followed by perspectives on emerging technology and the path for MSI to become a routine analysis technique. PMID:23603211

  12. Computer-Aided Diagnostic System For Mass Survey Chest Images

    NASA Astrophysics Data System (ADS)

    Yasuda, Yoshizumi; Kinoshita, Yasuhiro; Emori, Yasufumi; Yoshimura, Hitoshi

    1988-06-01

    In order to support screening of chest radiographs on mass survey, a computer-aided diagnostic system that automatically detects abnormality of candidate images using a digital image analysis technique has been developed. Extracting boundary lines of lung fields and examining their shapes allowed various kind of abnormalities to be detected. Correction and expansion were facilitated by describing the system control, image analysis control and judgement of abnormality in the rule type programing language. In the experiments using typical samples of student's radiograms, good results were obtained for the detection of abnormal shape of lung field, cardiac hypertrophy and scoliosis. As for the detection of diaphragmatic abnormality, relatively good results were obtained but further improvements will be necessary.

  13. Determining the mass of Didymos' secondary by visual imaging

    NASA Astrophysics Data System (ADS)

    Grieger, Björn; Küppers, Michael

    2016-04-01

    A critical requirement for the Asteroid Impact Mission (AIM) is the ability to determine the mass of Didymos' secondary with an accuracy of about 10 %. On one hand, this is necessary in order to plan the delivery of the lander MASCOT-2 with sufficient precision, on the other hand, it is needed to estimate the momentum transfer by the impact of the DART spacecraft and hence to verify the concept of asteroid deflection. The conventional approach to estimate the mass of a solar system body through its gravitational effect by tracking the spacecraft trajectory is not viable for Didymos' secondary. With a diameter of only 163 m, its mass is too small to yield a significant impact on the spacecraft trajectory at reasonable fly-by distances. Instead, the idea to determine the mass of the secondary by measuring the "wobble" of the primary around the common centre of gravity has been put forward. The mass of the primary is about 100 times the mass of the secondary, thus the expected wobble radius is about one percent of the distance of 1180 m between the two, that is about 10 m. Such a wobble may be possible to measure either by means of using the optical communication device OPTEL-D as an altimeter or by direct observation with the visual imaging system VIS. Here, we investigate the latter approach. The idea is to identify landmarks in VIS images and to simultaneously solve for the positions of the landmarks and the spacecraft in the body fixed frame of the primary. The temporary evolution of the spacecraft position comprises three components: the drift of the spacecraft due to gravitational disturbance and solar radiation pressure (and errors in the knowledge of the initial state), the apparent motion of the spacecraft around the primary (in the body fixed frame) due to its rotation, an apparent oscillation of the spacecraft position due to the wobble of the primary with a known period. While the wobble component is quite small (about 10ṁ), its period is known and it is

  14. Optimization of Whole-Body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging methods and protocols have become widely adapted to a variety of tissues and species. However, the mass spectrometry imaging literature contains minimal information on whole-body cryosection preparation for the zebrafish (Danio rerio), a model organism ...

  15. Multigrid MALDI mass spectrometry imaging (mMALDI MSI).

    PubMed

    Urbanek, Annett; Hölzer, Stefan; Knop, Katrin; Schubert, Ulrich S; von Eggeling, Ferdinand

    2016-05-01

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is an important technique for the spatially resolved molecular analysis of tissue sections. The selection of matrices influences the resulting mass spectra to a high degree. For extensive and simultaneous analysis, the application of different matrices to one tissue sample is desirable. To date, only a single matrix could be applied to a tissue section per experiment. However, repetitive removal of the matrix makes this approach time-consuming and damaging to tissue samples. To overcome these drawbacks, we developed a multigrid MALDI MSI technique (mMALDI MSI) that relies on automated inkjet printing to place differing matrices onto predefined dot grids. We used a cooled printhead to prevent cavitation of low viscosity solvents in the printhead nozzle. Improved spatial resolution of the dot grids was achieved by using a triple-pulse procedure that reduced droplet volume. The matrices can either be applied directly to the thaw-mounted tissue sample or by precoating the slide followed by mounting of the tissue sample. During the MALDI imaging process, we were able to precisely target different matrix point grids with the laser to simultaneously produce distinct mass spectra. Unlike the standard method, the prespotting approach optimizes the spectra quality, avoids analyte delocalization, and enables subsequent hematoxylin and eosin (H&E) staining. Graphical Abstract Scheme of the pre-spotted multigrid MALDI MSI workflow. PMID:27039200

  16. Nuclear magnetic resonance imaging of the kidney: renal masses

    SciTech Connect

    Hricak, H.; Williams, R.D.; Moon, K.L. Jr.; Moss, A.A.; Alpers, C.; Crooks, L.E.; Kaufman, L.

    1983-06-01

    Fifteen patients with a variety of renal masses were examined by nuclear magnetic resonance (NMR), computed tomography, ultrasound, and intravenous urography. NMR clearly differentiated between simple renal cysts and other renal masses. On spin echo images, the simple renal cyst appeared as a round or slightly oval, homogeneous low-intensity mass with characteristically long T1 and T2 values. The thickness of the cyst wall was not measurable. The cyst had a smooth outer margin and a distict, sharp interface with normal parenchyma. Hemorrhagic cysts were seen as high-intensity lesions. Renal cell carcinomas displayed a wide range of intensity. The T1 and T2 values of the tumors were always different from those of the surrounding renal parenchyma. Tumor pseudocapsule was identified in four of five patients examined. All carcinomas were accurately staged by NMR and extension of the tumor thrombus into the inferior vena cava was demonstrated. The authors predict that if these preliminary results are confirmed by data from a larger number of patients, NMR will play a significant role in renal imaging.

  17. Methane Imaging Search for Planetary Mass Objects in Rho Ophiuchi

    NASA Astrophysics Data System (ADS)

    Higley, Sherene J.; Haisch, K. E., Jr.; Barsony, M.; Tinney, C.

    2010-01-01

    Outside our solar system, T dwarfs have the coldest photospheres that are currently accessible to direct observation. With masses inferred to lie between 10 and 60 times that of Jupiter, these objects represent a class of object linking the properties of observable low mass stars and brown dwarfs with those of unobservable extrasolar planets. Because of their low photospheric temperatures, an understanding of the atmospheres of T dwarfs is likely to yield important clues about the nature of giant planetary atmospheres. The cool atmospheres of T dwarfs are rich in molecular gases, especially methane (CH4). In fact, strong, broad CH4 absorption lines at near-infrared wavelengths represent the distinguishing feature of T dwarfs from hotter objects. Most T dwarfs have been discovered in large area sky surveys, however recently astronomers have begun searching for T dwarfs in young star clusters. Surveying young clusters has several advantages. First, low mass objects are more luminous at this stage of their evolution than those in the field. In addition, objects in clusters have well known ages, as opposed to field objects for which the ages are extremely difficult to determine. Finally, as T dwarfs are 2-5 orders of magnitude brighter when young, it allows them to be detected at greater distance. For these reasons, we have recently conducted a CH4 imaging survey of the Rho Ophiuchi cluster for T dwarfs using the IRIS2 imager on the Anglo Australian Telescope. The Rho Ophiuchi cloud is the closest (d 120 parsecs) star-forming region to Earth that has a compact core harboring several hundred young ( 1 Myr) stellar objects. In this poster, we present the results of our imaging survey.

  18. New image of psychiatry, mass media impact and public relations.

    PubMed

    Jakovljević, Miro; Tomić, Zoran; Maslov, Boris; Skoko, Iko

    2010-06-01

    The mass media has a powerful impact on public attitudes about mental health and psychiatry. The question of identity of psychiatry as a medical profession as well as of the future of psychiatry has been the subject of much controversial discussion. Psychiatry today has the historical opportunity to shape the future of mental health care, medicine and society. It has gained in scientific and professional status by the tremendous increase of knowledge and treatment skills. Psychiatry should build up new transdisciplinary and integrative image of a specialized profession, promote it and make it public. Good public relations are very important for the future of psychiatry.

  19. New image of psychiatry, mass media impact and public relations.

    PubMed

    Jakovljević, Miro; Tomić, Zoran; Maslov, Boris; Skoko, Iko

    2010-06-01

    The mass media has a powerful impact on public attitudes about mental health and psychiatry. The question of identity of psychiatry as a medical profession as well as of the future of psychiatry has been the subject of much controversial discussion. Psychiatry today has the historical opportunity to shape the future of mental health care, medicine and society. It has gained in scientific and professional status by the tremendous increase of knowledge and treatment skills. Psychiatry should build up new transdisciplinary and integrative image of a specialized profession, promote it and make it public. Good public relations are very important for the future of psychiatry. PMID:20562738

  20. Toward Digital Staining using Imaging Mass Spectrometry and Random Forests

    PubMed Central

    Hanselmann, Michael; Köthe, Ullrich; Kirchner, Marc; Renard, Bernhard Y.; Amstalden, Erika R.; Glunde, Kristine; Heeren, Ron M. A.; Hamprecht, Fred A.

    2009-01-01

    We show on Imaging Mass Spectrometry (IMS) data that the Random Forest classifier can be used for automated tissue classification and that it results in predictions with high sensitivities and positive predictive values, even when inter-sample variability is present in the data. We further demonstrate how Markov Random Fields and vector-valued median filtering can be applied to reduce noise effects to further improve the classification results in a post-hoc smoothing step. Our study gives clear evidence that digital staining by means of IMS constitutes a promising complement to chemical staining techniques. PMID:19469555

  1. MALDI imaging mass spectrometry and analysis of endogenous peptides.

    PubMed

    Chatterji, Bijon; Pich, Andreas

    2013-08-01

    In recent years, MALDI imaging mass spectrometry (MALDI-IMS) has developed as a promising tool to investigate the spatial distribution of biomolecules in intact tissue specimens. Ion densities of various molecules can be displayed as heat maps while preserving anatomical structures. In this short review, an overview of different biomolecules that can be analyzed by MALDI-IMS is given. Many reviews have covered imaging of lipids, small metabolites, whole proteins and enzymatically digested proteins in the past. However, little is known about imaging of endogenous peptides, for example, in the rat brain, and this will therefore be highlighted in this review. Furthermore, sample preparation of frozen or formalin-fixed, paraffin-embedded (FFPE) tissue is crucial for imaging experiments. Therefore, some aspects of sample preparation will be addressed, including washing and desalting, the choice of MALDI matrix and its deposition. Apart from mapping endogenous peptides, their reliable identification in situ still remains challenging and will be discussed as well. PMID:23992420

  2. Image slicer manufacturing: from space application to mass production

    NASA Astrophysics Data System (ADS)

    Bonneville, Christophe; Cagnat, Jean-François; Laurent, Florence; Prieto, Eric; Ancourt, Gérard

    2004-09-01

    This presentation aims to show technical and industrial inputs to be taking into account for Image Slicer systems design and development for different types of projects from space application to mass production for multi-IFU instruments. Cybernétix has a strong experience of precision optics assembled thanks to molecular adhesion and have already manufactured 6 prototypes of image slicer subsystem (prototypes of NIRSPEC-IFU, IFS for JWST, MUSE ...) in collaboration with the Laboratoire d"Astrophysique de Marseille (LAM) and the Centre de Recherche Astronomique de Lyon (CRAL). After a brief presentation of the principle of manufacturing and assembly, we will focus on the different performances achieved in our prototypes of slicer mirrors, pupil and slit mirrors lines: an accuracy on centre of curvature position better than 15 arsec has been obtained for a stack of 30 slices. The contribution of the slice stacking to this error is lower than 4 arcsec. In spite of very thin surfaces (~ 0.9 x 40 mm for instance), a special process allows to guarantee a surface roughness about 5 nm and very few digs on the slice borders. The WFE of the mini-mirror can also be measured at a stage of the manufacturing. Different environmental tests have shown the withstanding of these assemblies to cryogenic temperature (30 K). Then, we will describe the different solutions (spherical, flat, cylindrical surfaces) and characteristics of an image slicer that can influence difficulties of manufacturing and metrology, cost, schedule and risks with regard to fabrication. Finally, the study of a mass production plan for MUSE (CRAL) composed of 24 Image Slicers of 38 slices, that"s to say 912 slices, will be exposed as an example of what can be do for multi-module instruments.

  3. A similarity study between the query mass and retrieved masses using decision tree content-based image retrieval (DTCBIR) CADx system for characterization of ultrasound breast mass images

    NASA Astrophysics Data System (ADS)

    Cho, Hyun-Chong; Hadjiiski, Lubomir; Chan, Heang-Ping; Sahiner, Berkman; Helvie, Mark; Paramagul, Chintana; Nees, Alexis V.

    2012-03-01

    We are developing a Decision Tree Content-Based Image Retrieval (DTCBIR) CADx scheme to assist radiologists in characterization of breast masses on ultrasound (US) images. Three DTCBIR configurations, including decision tree with boosting (DTb), decision tree with full leaf features (DTL), and decision tree with selected leaf features (DTLs) were compared. For DTb, the features of a query mass were combined first into a merged feature score and then masses with similar scores were retrieved. For DTL and DTLs, similar masses were retrieved based on the Euclidean distance between the feature vector of the query and those of the selected references. For each DTCBIR configuration, we investigated the use of the full feature set and the subset of features selected by the stepwise linear discriminant analysis (LDA) and simplex optimization method, resulting in six retrieval methods. Among the six methods, we selected five, DTb-lda, DTL-lda, DTb-full, DTL-full and DTLs-full, for the observer study. For a query mass, three most similar masses were retrieved with each method and were presented to the radiologists in random order. Three MQSA radiologists rated the similarity between the query mass and the computer-retrieved masses using a ninepoint similarity scale (1=very dissimilar, 9=very similar). For DTb-lda, DTL-lda, DTb-full, DTL-full and DTLs-full, the average Az values were 0.90+/-0.03, 0.85+/-0.04, 0.87+/-0.04, 0.79+/-0.05 and 0.71+/-0.06, respectively, and the average similarity ratings were 5.00, 5.41, 4.96, 5.33 and 5.13, respectively. Although the DTb measures had the best classification performance among the DTCBIRs studied, and DTLs had the worst performance, DTLs-full obtained higher similarity ratings than the DTb measures.

  4. Mass Spectrometry Imaging for Dissecting Steroid Intracrinology within Target Tissues

    PubMed Central

    Cobice, Diego F.; Mackay, C. Logan; Goodwin, Richard J. A.; McBride, Andrew; Langridge-Smith, Patrick R.; Webster, Scott P.; Walker, Brian R.; Andrew, Ruth

    2015-01-01

    Steroid concentrations within tissues are modulated by intracellular enzymes. Such ‘steroid intracrinology’ influences hormone-dependent cancers and obesity, and provides targets for pharmacological inhibition. However, no high resolution methods exist to quantify steroids within target tissues. We developed mass spectrometry imaging (MSI), combining matrix assisted laser desorption ionization with on-tissue derivatization with Girard T and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, to quantify substrate and product (11-dehydrocorticosterone and corticosterone) of the glucocorticoid-amplifying enzyme 11β-HSD1. Regional steroid distribution was imaged at 150-200μm resolution in rat adrenal gland and mouse brain sections, and confirmed with collision induced dissociation/liquid extraction surface analysis. In brains of mice with 11β-HSD1 deficiency or inhibition, MSI quantified changes in sub-regional corticosterone/11-dehydrocorticosterone ratio, distribution of inhibitor, and accumulation of the alternative 11β-HSD1 substrate, 7-ketocholesterol. MSI data correlated well with LC-MS/MS in whole brain homogenates. MSI with derivatization is a powerful new tool to investigate steroid biology within tissues. PMID:24134553

  5. Determining the mass of Didymos' secondary by visual imaging

    NASA Astrophysics Data System (ADS)

    Grieger, Bjoern; Kueppers, Michael

    2016-10-01

    A critical requirement for the Asteroid Impact Mission (AIM) is the ability to determine the mass of Didymos' secondary with an accuracy of about 10 %. The conventional approach to estimate the mass of a solar system body through its gravitational effect by tracking the spacecraft trajectory is only marginally viable for Didymos' secondary. Instead, the idea to measure the "wobble" of the primary around the common centre of gravity has been put forward. This wobble with an expected radius of about 10 m can possible be measured either by means of optical or radar ranging devices or by direct observation with the Visual Imaging System (VIS). Here, we investigate the latter approach.We approach the problem of estimating the wobble in two steps: In the first step, the spacecraft trajectory relative to the primary asteroid is reconstructed from the locations of landmarks in images. This relative trajectory comprises the wobble. In the second step, the magnitude of the wobble is extracted from the reconstructed trajectory.In this preliminary investigation, we do not deal with the problem of landmark identification and determination of their location in images. We just randomly generate landmark positions in the body fixed frame employing a shape model based on radar observations and simulate observations as inertial viewing directions from the spacecraft (with some error). Then we solve simultaneously for the landmark positions in the body fixed frame, the orientation of the asteroid at each image acquisition time, and the spacecraft trajectory relative to the asteroid. This reconstruction is done without any a priori knowledge or modelling of spacecraft trajectory or asteroid rotation. In order to extract the wobble from the reconstructed trajectory in the second step, we only assume that we know the period and the direction of the wobble from the orbit of the secondary.We conduct Monte Carlo simulations for various scenarios and assess the accuracy of the determination

  6. Significant advancement of mass spectrometry imaging for food chemistry.

    PubMed

    Yoshimura, Yukihiro; Goto-Inoue, Naoko; Moriyama, Tatsuya; Zaima, Nobuhiro

    2016-11-01

    Food contains various compounds that have an impact on our daily lives. Many technologies have been established to analyze these molecules of interest in foods. However, the analysis of the spatial distribution of these compounds in foods using conventional technology, such as high-performance liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry is difficult. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is considered an ideal complementary approach. MALDI-MSI is a two-dimensional MALDI-MS technology that can detect compounds in a tissue section without extraction, purification, separation, or labeling. MALDI-MSI can be used to visualize the spatial distribution of chemical compounds or biomolecules in foods. Although the methodology of MALDI-MSI in food science is not yet fully established, the versatility of MALDI-MSI is expected to open a new frontier in food science. Herein, we describe the principles and applications of MALDI-MSI in food science and related fields.

  7. Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques

    SciTech Connect

    Laskin, Julia; Lanekoff, Ingela

    2015-11-13

    Mass spectrometry imaging (MSI) is a powerful analytical technique that enables label-free spatial localization and identification of molecules in complex samples.1-4 MSI applications range from forensics5 to clinical research6 and from understanding microbial communication7-8 to imaging biomolecules in tissues.1, 9-10 Recently, MSI protocols have been reviewed.11 Ambient ionization techniques enable direct analysis of complex samples under atmospheric pressure without special sample pretreatment.3, 12-16 In fact, in ambient ionization mass spectrometry, sample processing (e.g., extraction, dilution, preconcentration, or desorption) occurs during the analysis.17 This substantially speeds up analysis and eliminates any possible effects of sample preparation on the localization of molecules in the sample.3, 8, 12-14, 18-20 Venter and co-workers have classified ambient ionization techniques into three major categories based on the sample processing steps involved: 1) liquid extraction techniques, in which analyte molecules are removed from the sample and extracted into a solvent prior to ionization; 2) desorption techniques capable of generating free ions directly from substrates; and 3) desorption techniques that produce larger particles subsequently captured by an electrospray plume and ionized.17 This review focuses on localized analysis and ambient imaging of complex samples using a subset of ambient ionization methods broadly defined as “liquid extraction techniques” based on the classification introduced by Venter and co-workers.17 Specifically, we include techniques where analyte molecules are desorbed from solid or liquid samples using charged droplet bombardment, liquid extraction, physisorption, chemisorption, mechanical force, laser ablation, or laser capture microdissection. Analyte extraction is followed by soft ionization that generates ions corresponding to intact species. Some of the key advantages of liquid extraction techniques include the ease

  8. MALDI Mass Spectrometry Imaging of Neuronal Cell Cultures

    NASA Astrophysics Data System (ADS)

    Zimmerman, Tyler A.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-05-01

    Mass spectrometry imaging (MSI) provides the ability to detect and identify a broad range of analytes and their spatial distributions from a variety of sample types, including tissue sections. Here we describe an approach for probing neuropeptides from sparse cell cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MSI—at single cell spatial resolution—in both MS and tandem MS modes. Cultures of Aplysia californica neurons are grown on an array of glass beads embedded in a stretchable layer of Parafilm M. As the membrane is stretched, the beads/neurons are separated physically and the separated beads/neurons analyzed via MALDI TOF MS. Compared with direct MS imaging of samples, the stretching procedure enhances analyte extraction and incorporation into the MALDI matrix, with negligible analyte spread between separated beads. MALDI tandem MSI using the stretched imaging approach yields localization maps of both parent and fragment ions from Aplysia pedal peptide, thereby confirming peptide identification. This methodology represents a flexible platform for MSI investigation of a variety of cell cultures, including functioning neuronal networks.

  9. Imaging Mass Spectrometric Analysis of Neurotransmitters: A Review

    PubMed Central

    Romero-Perez, Gustavo A.; Takei, Shiro; Yao, Ikuko

    2014-01-01

    Imaging mass spectrometry (IMS) is a toolbox of versatile techniques that enable us to investigate analytes in samples at molecular level. In recent years, IMS, and especially matrix-assisted laser desorption/ionisation (MALDI), has been used to visualise a wide range of metabolites in biological samples. Simultaneous visualisation of the spatial distribution of metabolites in a single sample with little tissue disruption can be considered as one important advantage of MALDI over other techniques. However, several technical hurdles including low concentrations and rapid degradation rates of small molecule metabolites, matrix interference of signals and poor ionisation, need to be addressed before MALDI can be considered as a reliable tool for the analysis of metabolites such as neurotransmitters in brain tissues from different sources including humans. In the present review we will briefly describe current MALDI IMS techniques used to study neurotransmitters and discuss their current status, challenges, as well as future prospects. PMID:26819893

  10. Research and design of high speed mass image storage system

    NASA Astrophysics Data System (ADS)

    Li, Yu-feng; Xue, Rong-kun; Liang, Fei

    2009-07-01

    The design of the high mass image storage system is introduced using DSP, FPGA and Flash structure. Texas Instruments Corporation DSP chip (TMS320VC5509APEG) is used as the main controller, Samsung's Flash chips (K9F2G08U0M) used as the main storage medium, and the Xilinx Corporation FPGA chip (XCV600E) used as logic control modules. In this system, Storage module consists of 32 Flash memory chips, which are divided into 8 groups that correspond to 8-level pipeline. The 4-Flash memory chip forms a basic 32-bit memory module. The entire system storage space is 64 G bit. Through simulation and verification, the storage speed is up to 352Mbps and readout speed is up to 290Mbps, it can meet the demand to the high-speed access, and which has strong environmental adaptability.

  11. High Resolution MALDI Imaging Mass Spectrometry of Retinal Tissue Lipids

    NASA Astrophysics Data System (ADS)

    Anderson, David M. G.; Ablonczy, Zsolt; Koutalos, Yiannis; Spraggins, Jeffrey; Crouch, Rosalie K.; Caprioli, Richard M.; Schey, Kevin L.

    2014-08-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism's surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4 -/- knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers.

  12. High Resolution MALDI Imaging Mass Spectrometry of Retinal Tissue Lipids

    PubMed Central

    Anderson, David M. G.; Ablonczy, Zsolt; Koutalos, Yiannis; Spraggins, Jeffrey; Crouch, Rosalie K.; Caprioli, Richard M.; Schey, Kevin L.

    2014-01-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism’s surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina including age related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4−/− knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers. PMID:24819461

  13. High resolution MALDI imaging mass spectrometry of retinal tissue lipids.

    PubMed

    Anderson, David M G; Ablonczy, Zsolt; Koutalos, Yiannis; Spraggins, Jeffrey; Crouch, Rosalie K; Caprioli, Richard M; Schey, Kevin L

    2014-08-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism's surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4(-/-) knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers.

  14. Is it really organic?--multi-isotopic analysis as a tool to discriminate between organic and conventional plants.

    PubMed

    Laursen, K H; Mihailova, A; Kelly, S D; Epov, V N; Bérail, S; Schjoerring, J K; Donard, O F X; Larsen, E H; Pedentchouk, N; Marca-Bell, A D; Halekoh, U; Olesen, J E; Husted, S

    2013-12-01

    Novel procedures for analytical authentication of organic plant products are urgently needed. Here we present the first study encompassing stable isotopes of hydrogen, carbon, nitrogen, oxygen, magnesium and sulphur as well as compound-specific nitrogen and oxygen isotope analysis of nitrate for discrimination of organically and conventionally grown plants. The study was based on wheat, barley, faba bean and potato produced in rigorously controlled long-term field trials comprising 144 experimental plots. Nitrogen isotope analysis revealed the use of animal manure, but was unable to discriminate between plants that were fertilised with synthetic nitrogen fertilisers or green manures from atmospheric nitrogen fixing legumes. This limitation was bypassed using oxygen isotope analysis of nitrate in potato tubers, while hydrogen isotope analysis allowed complete discrimination of organic and conventional wheat and barley grains. It is concluded, that multi-isotopic analysis has the potential to disclose fraudulent substitutions of organic with conventionally cultivated plants.

  15. Using Multi-Isotopic Analysis To Track The Origin Of NO3 In Groundwater And To Trace Natural Attenuation Processes

    NASA Astrophysics Data System (ADS)

    Otero, N.; Soler, A.

    2008-12-01

    Nitrate pollution has become a major threat to groundwater quality as the maximum nitrate concentration allowed by the European Directive 98/83/CE in waters for human consumption, 50 mg/L, is reached in most of the regional aquifers in Europe. In Catalonia, according to the nitrate directive, nine areas have been declared as vulnerable to nitrate pollution from agricultural sources. Five of these areas have been studied coupling hydro chemical data with a multi-isotopic approach, in an ongoing research project looking for an integrated application of classical hydrochemistry data, with a comprehensive isotopic characterisation (δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δ D and δ18O of water) in order to assess groundwater management in this area. The nitrogen isotopes have allowed to determine the origin of nitrate pollution for the different areas: fertilisers in the Maresme area, animal manure in the Osona and Empordà areas, and a mixed origin in Selva and Garrotxa areas. The coupled use of δ15N and δ18O permitted to determine the existence of denitrification processes (natural attenuation of pollution), and showed that this process is effective in the Osona, Selva and the Empordà areas, but not significant in the Maresme and Garrotxa areas. The multi-isotopic approach, coupling δ15N and δ18O of nitrate, with the isotopic composition of the ions involved in denitrification reactions (δ34S, δ18O, and δ13C ), showed the relationship between sulphide oxidation and nitrate attenuation in the Osona area. In the Empordà and Selva areas, the denitrification is not linked to sulphide oxidation, and organic matter must be the electron donor for denitrification, though further research is needed to confirm the role of organic matter. The observed denitrification processes reveal optional strategies for nitrogen attenuation.

  16. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    PubMed

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-09

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.

  17. Single hair cocaine consumption monitoring by mass spectrometric imaging.

    PubMed

    Porta, Tiffany; Grivet, Chantal; Kraemer, Thomas; Varesio, Emmanuel; Hopfgartner, Gérard

    2011-06-01

    Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was used to image the distribution of cocaine and its metabolites in intact single hair samples from chronic users down to a concentration of 5 ng/mg. Acquisitions were performed in rastering mode, at a speed of 1 mm/s and in the selected reaction monitoring (SRM) mode on a MALDI triple quadrupole linear ion trap fitted with a high repetition rate laser (1 kHz). Compared to traditional methods based on LC-MS/MS or GC-MS(/MS) which require to segment the hair to obtain spatial resolution, MALDI-MSI, with a straightforward sample preparation beforehand, allowed obtaining a spatial resolution of 1 mm and thus the chronological information about cocaine consumption contained in a single intact hair over several months could be monitored. The analysis time of an intact single hair sample of 6 cm is approximately of 6 min. Cocaine and its metabolites benzoylecgonine, ethylcocaine, and norcocaine were investigated in nine sets of hair samples for forensic purposes. The analyses were accomplished by spraying α-cyano-4-hydroxycinnamic acid (CHCA), 4-chloro-α-cyano-cinnamic acid (Cl-CCA), or (E)-2-cyano-3-(naphthalen-2-yl)acrylic acid (NpCCA) as MALDI matrices. We also propose a rapid strategy for sensitive confirmatory analyses with both MS/MS and MS(3) experiments performed directly on intact hair samples. Since only part of the hair strand is analyzed, additional analyses are possible at any time on the remaining hair from the strand.

  18. Single hair cocaine consumption monitoring by mass spectrometric imaging.

    PubMed

    Porta, Tiffany; Grivet, Chantal; Kraemer, Thomas; Varesio, Emmanuel; Hopfgartner, Gérard

    2011-06-01

    Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was used to image the distribution of cocaine and its metabolites in intact single hair samples from chronic users down to a concentration of 5 ng/mg. Acquisitions were performed in rastering mode, at a speed of 1 mm/s and in the selected reaction monitoring (SRM) mode on a MALDI triple quadrupole linear ion trap fitted with a high repetition rate laser (1 kHz). Compared to traditional methods based on LC-MS/MS or GC-MS(/MS) which require to segment the hair to obtain spatial resolution, MALDI-MSI, with a straightforward sample preparation beforehand, allowed obtaining a spatial resolution of 1 mm and thus the chronological information about cocaine consumption contained in a single intact hair over several months could be monitored. The analysis time of an intact single hair sample of 6 cm is approximately of 6 min. Cocaine and its metabolites benzoylecgonine, ethylcocaine, and norcocaine were investigated in nine sets of hair samples for forensic purposes. The analyses were accomplished by spraying α-cyano-4-hydroxycinnamic acid (CHCA), 4-chloro-α-cyano-cinnamic acid (Cl-CCA), or (E)-2-cyano-3-(naphthalen-2-yl)acrylic acid (NpCCA) as MALDI matrices. We also propose a rapid strategy for sensitive confirmatory analyses with both MS/MS and MS(3) experiments performed directly on intact hair samples. Since only part of the hair strand is analyzed, additional analyses are possible at any time on the remaining hair from the strand. PMID:21510611

  19. Quantitative imaging mass spectrometry of renal sulfatides: validation by classical mass spectrometric methods1[S

    PubMed Central

    Marsching, Christian; Jennemann, Richard; Heilig, Raphael; Gröne, Hermann-Josef; Hopf, Carsten; Sandhoff, Roger

    2014-01-01

    Owing to its capability of discriminating subtle mass-altering structural differences such as double bonds or elongated acyl chains, MALDI-based imaging MS (IMS) has emerged as a powerful technique for analysis of lipid distribution in tissue at moderate spatial resolution of about 50 μm. However, it is still unknown if MS1-signals and ion intensity images correlate with the corresponding apparent lipid concentrations. Analyzing renal sulfated glycosphingolipids, sulfatides, we validate for the first time IMS-signal identities using corresponding sulfatide-deficient kidneys. To evaluate the extent of signal quenching effects interfering with lipid quantification, we surgically dissected the three major renal regions (papillae, medulla, and cortex) and systematically compared MALDI IMS of renal sulfatides with quantitative analyses of corresponding lipid extracts by on-target MALDI TOF-MS and by ultra-performance LC-ESI-(triple-quadrupole)tandem MS. Our results demonstrate a generally strong correlation (R2 > 0.9) between the local relative sulfatide signal intensity in MALDI IMS and absolute sulfatide quantities determined by the other two methods. However, high concentrations of sulfatides in the papillae and medulla result in an up to 4-fold signal suppression. In conclusion, our study suggests that MALDI IMS is useful for semi-quantitative dissection of relative local changes of sulfatides and possibly other lipids in tissue. PMID:25274613

  20. Matrix Effects in Biological Mass Spectrometry Imaging: Identification and Compensation

    SciTech Connect

    Lanekoff, Ingela T.; Stevens, Susan; Stenzel-Poore, Mary; Laskin, Julia

    2014-07-21

    Matrix effects in mass spectrometry imaging (MSI) may affect the observed molecular distribution in chemical and biological systems. In this study, we introduce an experimental approach that efficiently compensates for matrix effects in nanospray desorption electrospray ionization (nano-DESI) MSI without introducing any complexity into the experimental protocol. We demonstrate compensation for matrix effects in nano-DESI MSI of phosphatidylcholine (PC) in normal and ischemic mouse brain tissue by doping the nano-DESI solvent with PC standards. Specifically, we use mouse brain tissue of a middle cerebral artery occlusion (MCAO) stroke model with an ischemic region localized to one hemisphere of the brain. Due to similar suppression in ionization of endogenous PC molecules extracted from the tissue and PC standards added to the solvent, matrix effects are eliminated by normalizing the intensity of the sodium and potassium adducts of endogenous PC to the intensity of the corresponding adduct of the PC standard. This approach efficiently compensates for signal variations resulting from differences in the local concentrations of sodium and potassium in tissue sections and from the complexity of the extracted analyte mixture derived from local variations in molecular composition.

  1. Optimal Imaging Modalities for the Diagnosis and Staging of Periampullary Masses.

    PubMed

    Al-Hawary, Mahmoud M; Kaza, Ravi K; Francis, Isaac R

    2016-04-01

    Imaging plays a central role in the management of patients with suspected or known periampullary masses, including the initial diagnosis, staging, and follow-up to assess treatment response or recurrence. Use of appropriate imaging tools, application of optimal imaging protocols, and knowledge about imaging findings are essential for the diagnosis and accurate staging of these masses. Structured reporting of the imaging studies offers several advantages over freestyle dictations ensuring completeness of the relevant imaging findings, which would in turn help in deciding the best individual treatment strategy for each patient. PMID:27013362

  2. Automatic generic registration of mass spectrometry imaging data to histology using nonlinear stochastic embedding.

    PubMed

    Abdelmoula, Walid M; Škrášková, Karolina; Balluff, Benjamin; Carreira, Ricardo J; Tolner, Else A; Lelieveldt, Boudewijn P F; van der Maaten, Laurens; Morreau, Hans; van den Maagdenberg, Arn M J M; Heeren, Ron M A; McDonnell, Liam A; Dijkstra, Jouke

    2014-09-16

    The combination of mass spectrometry imaging and histology has proven a powerful approach for obtaining molecular signatures from specific cells/tissues of interest, whether to identify biomolecular changes associated with specific histopathological entities or to determine the amount of a drug in specific organs/compartments. Currently there is no software that is able to explicitly register mass spectrometry imaging data spanning different ionization techniques or mass analyzers. Accordingly, the full capabilities of mass spectrometry imaging are at present underexploited. Here we present a fully automated generic approach for registering mass spectrometry imaging data to histology and demonstrate its capabilities for multiple mass analyzers, multiple ionization sources, and multiple tissue types. PMID:25133861

  3. Multi-isotope approach: a tool to better constrain both sources and processes affecting NO3 pollution in watersheds

    NASA Astrophysics Data System (ADS)

    Widory, D.

    2006-12-01

    Nitrate is one of the major pollutants of drinking water resources worldwide. Recent European directives reduced inputs from intensive agriculture, but in most places NO3 levels are approaching the potable limit of 50 mg.l-1 in groundwater. Determining the source(s) of contamination in groundwater is an important first step for improving its quality by emission control. It is with this aim that we review here the benefit of using a multi- isotope approach (d15N, d180, d11B and 87Sr/86Sr), in addition to conventional hydrogeological analysis, to both constrain the watersheds hydrology and trace the origin of their NO3 pollution. Watersheds presented here include both fractured bedrock and alluvial (subsurface and deep) hydrogeological contexts. The strontium budget in watersheds is mainly controlled by the water-rock interactions (human inputs usually represents negligible fluxes). With the example of the Allier river (Central France), we show that, even on a very small watershed, the main water flows can usually be determined by the use of the 87Sr/86Sr ratios, thus helping understanding the hydrology controlling pollution processes. The characterisation of the different usual nitrate sources of pollution in groundwater (mineral fertilisers, wastewater and animals manure) shows that they can clearly be discriminated using isotopes. The isotopic composition of the dissolved nitrogen species has been used extensively to better constrain the sources and fate of nitrate in groundwater. The possibility of quantifying both origin and secondary processes affecting N concentrations by means of a single tracer appears more limited however. Nitrogen cannot be considered conservative because it is biologically modified through nitrification and denitrification reactions, both during infiltration of the water and in the groundwater body, causing isotopic fractionation that modifies the d15N-n signatures of the dissolved N species. Discriminating multiple NO3 sources by their N

  4. Multi-isotope labelling (13C, 18O, 2H) for studying organic matter cycling within plant-soil systems

    NASA Astrophysics Data System (ADS)

    Studer, M. S.; Abiven, S.; Schmidt, M. W. I.; Siegwolf, R. T. W.

    2012-04-01

    Carbon cycling has become of major interest for the understanding and mitigation of global climatic change. Terrestrial ecosystems have a large carbon sequestration potential, but many processes and fluxes of organic matter (OM) cycling within the plant-soil system are not yet well understood [1]. The dynamics of OM cycling within the plant soil-system are determined by environmental parameters, as well as chemical quality of OM input. A well-known technique to study OM dynamics is to label OM inputs with stable isotopes (e.g 13C). Changes in OM quality in the plant and in the soil can be assessed by compound specific isotopic analysis [2]. These techniques give a precise insight of the OM composition, but are laborious and expensive. Here we suggest a new multi-isotope labelling technique using stable 13C in combination with stable 18O and 2H isotopes, which provides information on OM quality by simple bulk material analysis. The method is based on the creation of an isotopic van Krevelen diagram, which is used to describe different compound groups by plotting the atomic ratios of O/C vs. H/C [3]. We could show that new assimilates can be labelled with 13C, 18O and 2H by adding the stable isotopes (continuously) in the gaseous phase (CO2 and water vapour) to the plants atmosphere. The label has been traced within the bulk material of different compartments of the plant-soil system (e.g. leaves, stems, roots, bulk soil). Our first results showed that after 2, 8 and 14 days of labelling the 18O/13C(new) ratio was notably different in leaf, stem and root tissue (0.0024, 0.0011 and 0.0007, respectively), suggesting a change in OM quality towards more C-rich compounds. d2H analysis will follow and an isotopic van Krevelen diagram will be produced (18O/13C(new) vs. 2H/13C(new)) to describe the changes in OM quality. The new multi-isotope labelling approach represent a powerful tool to address open questions in plant and soil research such as the allocation of organic

  5. The Relationships among Body Image, Body Mass Index, Exercise, and Sexual Functioning in Heterosexual Women

    ERIC Educational Resources Information Center

    Weaver, Angela D.; Byers, E. Sandra

    2006-01-01

    Problems related to negative body image are very common among young women. In this study, we examined the relationship between women's body image and their sexual functioning over and above the effects of physical exercise and body mass index (BMI) in a sample of 214 university women. Low situational body image dysphoria and low body…

  6. Molecular imaging of drug transit through the blood-brain barrier with MALDI mass spectrometry imaging.

    PubMed

    Liu, Xiaohui; Ide, Jennifer L; Norton, Isaiah; Marchionni, Mark A; Ebling, Maritza C; Wang, Lan Y; Davis, Erin; Sauvageot, Claire M; Kesari, Santosh; Kellersberger, Katherine A; Easterling, Michael L; Santagata, Sandro; Stuart, Darrin D; Alberta, John; Agar, Jeffrey N; Stiles, Charles D; Agar, Nathalie Y R

    2013-10-04

    Drug transit through the blood-brain barrier (BBB) is essential for therapeutic responses in malignant glioma. Conventional methods for assessment of BBB penetrance require synthesis of isotopically labeled drug derivatives. Here, we report a new methodology using matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) to visualize drug penetration in brain tissue without molecular labeling. In studies summarized here, we first validate heme as a simple and robust MALDI MSI marker for the lumen of blood vessels in the brain. We go on to provide three examples of how MALDI MSI can provide chemical and biological insights into BBB penetrance and metabolism of small molecule signal transduction inhibitors in the brain - insights that would be difficult or impossible to extract by use of radiolabeled compounds.

  7. Lung mass, right upper lung - chest x-ray (image)

    MedlinePlus

    This picture is a chest x-ray of a person with a lung mass. This is a front view, where the lungs are the two dark areas and ... visible in the middle of the chest. The x-ray shows a mass in the right upper lung, ...

  8. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance

    PubMed Central

    Wang, Shaopeng; Shan, Xiaonan; Patel, Urmez; Huang, Xinping; Lu, Jin; Li, Jinghong; Tao, Nongjian

    2010-01-01

    We report on label-free imaging, detection, and mass/size measurement of single viral particles in solution by high-resolution surface plasmon resonance microscopy. Diffraction of propagating plasmon waves along a metal surface by the viral particles creates images of the individual particles, which allow us to detect the binding of the viral particles to surfaces functionalized with and without antibodies. We show that the intensity of the particle image is related to the mass of the particle, from which we determine the mass and mass distribution of influenza viral particles with a mass detection limit of approximately 1 ag (or 0.2 fg/mm2). This work demonstrates a multiplexed method to measure the masses of individual viral particles and to study the binding activity of the viral particles. PMID:20798340

  9. Foodomics imaging by mass spectrometry and magnetic resonance.

    PubMed

    Canela, Núria; Rodríguez, Miguel Ángel; Baiges, Isabel; Nadal, Pedro; Arola, Lluís

    2016-07-01

    This work explores the use of advanced imaging MS (IMS) and magnetic resonance imaging (MRI) techniques in food science and nutrition to evaluate food sensory characteristics, nutritional value and health benefits. Determining the chemical content and applying imaging tools to food metabolomics offer detailed information about food quality, safety, processing, storage and authenticity assessment. IMS and MRI are powerful analytical systems with an excellent capability for mapping the distribution of many molecules, and recent advances in these platforms are reviewed and discussed, showing the great potential of these techniques for small molecule-based food metabolomics research. PMID:26799681

  10. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight (CXIDB ID 16)

    DOE Data Explorer

    Loh, N. Duane

    2012-06-20

    This deposition includes the aerosol diffraction images used for phasing, fractal morphology, and time-of-flight mass spectrometry. Files in this deposition are ordered in subdirectories that reflect the specifics.

  11. Determination of geographic provenance of cotton fibres using multi-isotope profiles and multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Daeid, N. Nic; Meier-Augenstein, W.; Kemp, H. F.

    2012-04-01

    The analysis of cotton fibres can be particularly challenging within a forensic science context where discrimination of one fibre from another is of importance. Normally cotton fibre analysis examines the morphological structure of the recovered material and compares this with that of a known fibre from a particular source of interest. However, the conventional microscopic and chemical analysis of fibres and any associated dyes is generally unsuccessful because of the similar morphology of the fibres. Analysis of the dyes which may have been applied to the cotton fibre can also be undertaken though this can be difficult and unproductive in terms of discriminating one fibre from another. In the study presented here we have explored the potential for Isotope Ratio Mass Spectrometry (IRMS) to be utilised as an additional tool for cotton fibre analysis in an attempt to reveal further discriminatory information. This work has concentrated on un-dyed cotton fibres of known origin in order to expose the potential of the analytical technique. We report the results of a pilot study aimed at testing the hypothesis that multi-element stable isotope analysis of cotton fibres in conjunction with multivariate statistical analysis of the resulting isotopic abundance data using well established chemometric techniques permits sample provenancing based on the determination of where the cotton was grown and as such will facilitate sample discrimination. To date there is no recorded literature of this type of application of IRMS to cotton samples, which may be of forensic science relevance.

  12. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach.

    PubMed

    Cary, Lise; Petelet-Giraud, Emmanuelle; Bertrand, Guillaume; Kloppmann, Wolfram; Aquilina, Luc; Martins, Veridiana; Hirata, Ricardo; Montenegro, Suzana; Pauwels, Hélène; Chatton, Eliot; Franzen, Melissa; Aurouet, Axel

    2015-10-15

    In the coastal multilayer aquifer system of a highly urbanized southern city (Recife, Brazil), where groundwaters are affected by salinization, a multi-isotope approach (Sr, B, O, H) was used to investigate the sources and processes of salinization. The high diversity of the geological bodies, built since the Atlantic opening during the Cretaceous, highly constrains the heterogeneity of the groundwater chemistry, e.g. Sr isotope ratios, and needs to be integrated to explain the salinization processes and groundwater pathways. A paleoseawater intrusion, most probably the 120 kyB.P. Pleistocene marine transgression, and cationic exchange are clearly evidenced in the most salinized parts of the Cabo and Beberibe aquifers. All (87)Sr/(86)Sr values are above the past and present-day seawater signatures, meaning that the Sr isotopic signature is altered due to additional Sr inputs from dilution with different freshwaters, and water-rock interactions. Only the Cabo aquifer presents a well-delimitated area of Na-HCO3 water typical of a freshening process. The two deep aquifers also display a broad range of B concentrations and B isotope ratios with values among the highest known to date (63-68.5‰). This suggests multiple sources and processes affecting B behavior, among which mixing with saline water, B sorption on clays and mixing with wastewater. The highly fractionated B isotopic values were explained by infiltration of relatively salty water with B interacting with clays, pointing out the major role played by (palaeo)-channels for the deep Beberibe aquifer recharge. Based on an increase of salinity at the end of the dry season, a present-day seawater intrusion is identified in the surficial Boa Viagem aquifer. Our conceptual model presents a comprehensive understanding of the major groundwater salinization pathways and processes, and should be of benefit for other southern Atlantic coastal aquifers to better address groundwater management issues.

  13. The Image of Public Relations in Mass Comm Texts.

    ERIC Educational Resources Information Center

    Cline, Carolyn

    1982-01-01

    Compared public relations sections in 12 introductory mass communication texts and found a confusion about the relationship of advertising and public relations, a lack of historical background, and an antipublic relations stance. Journal available from Communication Research Associates, 7100 Baltimore Blvd., Suite 500, College Park, MD 20740; sc…

  14. In situ metabolomic mass spectrometry imaging: recent advances and difficulties.

    PubMed

    Miura, Daisuke; Fujimura, Yoshinori; Wariishi, Hiroyuki

    2012-08-30

    MS imaging (MSI) is a remarkable new technology that enables us to determine the distribution of biological molecules present in tissue sections by direct ionization and detection. This technique is now widely used for in situ imaging of endogenous or exogenous molecules such as proteins, lipids, drugs and their metabolites, and it is a potential tool for pathological analysis and the investigation of disease mechanisms. MSI is also thought to be a technique that could be used for biomarker discovery with spatial information. The application of MSI to the study of endogenous metabolites has received considerable attention because metabolites are the result of the interactions of a system's genome with its environment and a total set of these metabolites more closely represents the phenotype of an organism under a given set of conditions. Recent studies have suggested the importance of in situ metabolite imaging in biological discovery and biomedical applications, but several issues regarding the technical application limits of MSI still remained to be resolved. In this review, we describe the capabilities of the latest MSI techniques for the imaging of endogenous metabolites in biological samples, and also discuss the technical problems and new challenges that need to be addressed for effective and widespread application of MSI in both preclinical and clinical settings.

  15. Mass spectrometry imaging for the proteomic study of clinical tissue.

    PubMed

    Cole, Laura M; Clench, Malcolm R

    2015-04-01

    Over the last decade, MALDI-MS imaging has been used by researchers to explore areas of proteomics, lipidomics and metabolomics in samples of clinical origin for both targeted and global biomarker analysis. Numerous technological advancements in MS and clinical tissue MS imaging have been accomplished; hence, in this article we aim to critically discuss whether MS imaging has now in fact become a true champion of the 'Omics Era'. In order to assess the potential for it to be routinely used in the clinical setting, it is pertinent to discuss some of its limitations, and to examine how these have been addressed by researchers. The key limitations of the technique we will discuss in this viewpoint article are as follows: sample throughput; relevance to patients, the availability of validated/standardised techniques; and integration with conventional pathology and other medical imaging techniques. Good progress has been made over the last 5 years in overcoming these limitations that had previously restricted the use of this technology in the clinical setting. PMID:25620724

  16. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging

    PubMed Central

    Ferguson, R. Matthew; Minard, Kevin R.; Khandhar, Amit P.; Krishnan, Kannan M.

    2011-01-01

    Purpose: Magnetic particle imaging (MPI), using magnetite nanoparticles (MNPs) as tracer material, shows great promise as a platform for fast tomographic imaging. To date, the magnetic properties of MNPs used in imaging have not been optimized. As nanoparticle magnetism shows strong size dependence, the authors explore how varying MNP size impacts imaging performance in order to determine optimal MNP characteristics for MPI at any driving field frequency f0. Methods: Monodisperse MNPs of varying size were synthesized and their magnetic properties characterized. Their MPI response was measured experimentally using a custom-built MPI transceiver designed to detect the third harmonic of MNP magnetization. The driving field amplitude H0=6 mT μ0−1 and frequency f0=250 kHz were chosen to be suitable for imaging small animals. Experimental results were interpreted using a model of dynamic MNP magnetization that is based on the Langevin theory of superparamagnetism and accounts for sample size distribution and size-dependent magnetic relaxation. Results: The experimental results show a clear variation in the MPI signal intensity as a function of MNP diameter that is in agreement with simulated results. A maximum in the plot of MPI signal vs MNP size indicates there is a particular size that is optimal for the chosen f0. Conclusions: The authors observed that MNPs 15 nm in diameter generate maximum signal amplitude in MPI experiments at 250 kHz. The authors expect the physical basis for this result, the change in magnetic relaxation with MNP size, will impact MPI under other experimental conditions. PMID:21520874

  17. How to Determine the Centre of Mass of Bodies from Image Modelling

    ERIC Educational Resources Information Center

    Dias, Marco Adriano; Carvalho, Paulo Simeão; Rodrigues, Marcelo

    2016-01-01

    Image modelling is a recent technique in physics education that includes digital tools for image treatment and analysis, such as digital stroboscopic photography (DSP) and video analysis software. It is commonly used to analyse the motion of objects. In this work we show how to determine the position of the centre of mass (CM) of objects with…

  18. Local binary pattern texture-based classification of solid masses in ultrasound breast images

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica M. S.; Sehgal, Chandra M.; Udupa, Jayaram K.

    2012-03-01

    Breast cancer is one of the leading causes of cancer mortality among women. Ultrasound examination can be used to assess breast masses, complementarily to mammography. Ultrasound images reveal tissue information in its echoic patterns. Therefore, pattern recognition techniques can facilitate classification of lesions and thereby reduce the number of unnecessary biopsies. Our hypothesis was that image texture features on the boundary of a lesion and its vicinity can be used to classify masses. We have used intensity-independent and rotation-invariant texture features, known as Local Binary Patterns (LBP). The classifier selected was K-nearest neighbors. Our breast ultrasound image database consisted of 100 patient images (50 benign and 50 malignant cases). The determination of whether the mass was benign or malignant was done through biopsy and pathology assessment. The training set consisted of sixty images, randomly chosen from the database of 100 patients. The testing set consisted of forty images to be classified. The results with a multi-fold cross validation of 100 iterations produced a robust evaluation. The highest performance was observed for feature LBP with 24 symmetrically distributed neighbors over a circle of radius 3 (LBP24,3) with an accuracy rate of 81.0%. We also investigated an approach with a score of malignancy assigned to the images in the test set. This approach provided an ROC curve with Az of 0.803. The analysis of texture features over the boundary of solid masses showed promise for malignancy classification in ultrasound breast images.

  19. Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform

    SciTech Connect

    Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera; Okatan, Mahmut Baris; Belianinov, Alex; Kertesz, Vilmos; Jesse, Stephen; Van Berkel, Gary J.

    2015-03-18

    The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showed that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.

  20. Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform

    DOE PAGESBeta

    Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera; Okatan, Mahmut Baris; Belianinov, Alex; Kertesz, Vilmos; Jesse, Stephen; Van Berkel, Gary J.

    2015-03-18

    The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less

  1. Diagnostic Accuracy of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Characterizing Lung Masses

    PubMed Central

    Inan, Nagihan; Arslan, Arzu; Donmez, Muhammed; Sarisoy, Hasan Tahsin

    2016-01-01

    Background Imaging plays a critical role not only in the detection, but also in the characterization of lung masses as benign or malignant. Objectives To determine the diagnostic accuracy of dynamic magnetic resonance imaging (MRI) in the differential diagnosis of benign and malignant lung masses. Patients and Methods Ninety-four masses were included in this prospective study. Five dynamic series of T1-weighted spoiled gradient echo (FFE) images were obtained, followed by a T1-weighted FFE sequence in the late phase (5th minutes). Contrast enhancement patterns in the early (25th second) and late (5th minute) phase images were evaluated. For the quantitative evaluation, signal intensity (SI)-time curves were obtained and the maximum relative enhancement, wash-in rate, and time-to-peak enhancement of masses in both groups were calculated. Results The early phase contrast enhancement patterns were homogeneous in 78.2% of the benign masses, while heterogeneous in 74.4% of the malignant tumors. On the late phase images, 70.8% of the benign masses showed homogeneous enhancement, while most of the malignant masses showed heterogeneous enhancement (82.4%). During the first pass, the maximum relative enhancement and wash-in rate values of malignant masses were significantly higher than those of the benign masses (P = 0.03 and 0.04, respectively). The cutoff value at 15% yielded a sensitivity of 85.4%, specificity of 61.2%, and positive predictive value of 68.7% for the maximum relative enhancement. Conclusion Contrast enhancement patterns and SI-time curve analysis of MRI are helpful in the differential diagnosis of benign and malignant lung masses. PMID:27703654

  2. New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry.

    PubMed

    Chaurand, Pierre; Norris, Jeremy L; Cornett, D Shannon; Mobley, James A; Caprioli, Richard M

    2006-11-01

    Molecular imaging of tissue by MALDI mass spectrometry is a powerful tool for visualizing the spatial distribution of constituent analytes with high molecular specificity. Although the technique is relatively young, it has already contributed to the understanding of many diverse areas of human health. In recent years, a great many advances in the practice of imaging mass spectrometry have taken place, making the technique more sensitive, robust, and ultimately useful. The purpose of this review is to highlight some of the more recent technological advances that have improved the efficiency of imaging mass spectrometry for clinical applications. Advances in the way MALDI mass spectrometry is integrated with histology, improved methods for automation, and better tools for data analysis are outlined in this review. Refined top-down strategies for the identification and validation of candidate biomarkers found in tissue sections are discussed. A clinical example highlighting the application of these methods to a cohort of clinical samples is described.

  3. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Ilya; Filevich, Jorge; Dong, Feng; Woolston, Mark; Chao, Weilun; Anderson, Erik H.; Bernstein, Elliot R.; Crick, Dean C.; Rocca, Jorge J.; Menoni, Carmen S.

    2015-04-01

    Analytical probes capable of mapping molecular composition at the nanoscale are of critical importance to materials research, biology and medicine. Mass spectral imaging makes it possible to visualize the spatial organization of multiple molecular components at a sample's surface. However, it is challenging for mass spectral imaging to map molecular composition in three dimensions (3D) with submicron resolution. Here we describe a mass spectral imaging method that exploits the high 3D localization of absorbed extreme ultraviolet laser light and its fundamentally distinct interaction with matter to determine molecular composition from a volume as small as 50 zl in a single laser shot. Molecular imaging with a lateral resolution of 75 nm and a depth resolution of 20 nm is demonstrated. These results open opportunities to visualize chemical composition and chemical changes in 3D at the nanoscale.

  4. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry

    PubMed Central

    Kuznetsov, Ilya; Filevich, Jorge; Dong, Feng; Woolston, Mark; Chao, Weilun; Anderson, Erik H.; Bernstein, Elliot R.; Crick, Dean C.; Rocca, Jorge J.; Menoni, Carmen S.

    2015-01-01

    Analytical probes capable of mapping molecular composition at the nanoscale are of critical importance to materials research, biology and medicine. Mass spectral imaging makes it possible to visualize the spatial organization of multiple molecular components at a sample's surface. However, it is challenging for mass spectral imaging to map molecular composition in three dimensions (3D) with submicron resolution. Here we describe a mass spectral imaging method that exploits the high 3D localization of absorbed extreme ultraviolet laser light and its fundamentally distinct interaction with matter to determine molecular composition from a volume as small as 50 zl in a single laser shot. Molecular imaging with a lateral resolution of 75 nm and a depth resolution of 20 nm is demonstrated. These results open opportunities to visualize chemical composition and chemical changes in 3D at the nanoscale. PMID:25903827

  5. Imaging of Lipids and Metabolites Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Lanekoff, Ingela; Laskin, Julia

    2015-01-17

    In recent years, mass spectroscopy imaging (MSI) has emerged as a foundational technique in metabolomics and drug screening providing deeper understanding of complex mechanistic pathways within biochemical systems and biological organisms. We have been invited to contribute a chapter to a new Springer series volume, entitled “Mass Spectrometry Imaging of Small Molecules”. The volume is planned for the highly successful lab protocol series Methods in Molecular Biology, published by Humana Press, USA. The volume is aimed to equip readers with step-by-step mass spectrometric imaging protocols and bring rapidly maturing methods of MS imaging to life science researchers. The chapter will provide a detailed protocol of ambient MSI by use of nanospray desorption electrospray ionization.

  6. Image guided versus palpation guided core needle biopsy of palpable breast masses: a prospective study

    PubMed Central

    Hari, Smriti; Kumari, Swati; Srivastava, Anurag; Thulkar, Sanjay; Mathur, Sandeep; Veedu, Prasad Thotton

    2016-01-01

    Background & objectives: Biopsy of palpable breast masses can be performed manually by palpation guidance or under imaging guidance. Based on retrospective studies, image guided biopsy is considered more accurate than palpation guided breast biopsy; however, these techniques have not been compared prospectively. We conducted this prospective study to verify the superiority and determine the size of beneficial effect of image guided biopsy over palpation guided biopsy. Methods: Over a period of 18 months, 36 patients each with palpable breast masses were randomized into palpation guided and image guided breast biopsy arms. Ultrasound was used for image guidance in 33 patients and mammographic (stereotactic) guidance in three patients. All biopsies were performed using 14 gauge automated core biopsy needles. Inconclusive, suspicious or imaging-histologic discordant biopsies were repeated. Results: Malignancy was found in 30 of 36 women in palpation guided biopsy arm and 27 of 36 women in image guided biopsy arm. Palpation guided biopsy had sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 46.7, 100, 100, 27.3 per cent, respectively, for diagnosing breast cancer. Nineteen of 36 women (52.8%) required repeat biopsy because of inadequate samples (7 of 19), suspicious findings (2 of 19) or imaging-histologic discordance (10 of 19). On repeat biopsy, malignancy was found in all cases of imaging-histologic discordance. Image guided biopsy had 96.3 per cent sensitivity and 100 per cent specificity. There was no case of inadequate sample or imaging-histologic discordance with image guided biopsy. Interpretation & conclusions: Our results showed that in palpable breast masses, image guided biopsy was superior to palpation guided biopsy in terms of sensitivity, false negative rate and repeat biopsy rates. PMID:27488003

  7. [The capacities of ultrasound study and magnetic resonance imaging of small pelvic masses after hysterectomy].

    PubMed

    Boldyreva, O G; Briukhanov, A V

    2012-01-01

    The purpose of the study was to develop the ultrasound study (USS) and magnetic resonance imaging (MRI) semiotics of small pelvic masses after hysterectomy, to comprehensively use USS and MRI for the diagnosis of these masses, and to define indications for MRI. One hundred and seventy-five female patients with small pelvic masses after hysterectomy were examined. For the specification of the pattern of small pelvic masses and their differential diagnosis, USS and MRI were carried out in 175 and 72 patients, respectively. Four groups of the masses were identified; of them there were tumor-like masses of the uterine appendages in 67 (38.2%) patients, ovarian tumors in 31 (17.7%), other additional masses of the small pelvis in 27 (15.4%), and a mixed variant of its masses in 50 (28.5%). The findings suggest that it is reasonable to concurrently use USS and MRI in the diagnosis of small pelvic masses following hysterectomy for the specification of their pattern and their differential diagnosis. The benefit of MRI is that information images of the basic structures of the small pelvis can be obtained in patients with a marked commissural process after hysterectomy in the absence of limitations in large mass sizes. Practical guidelines were proposed to comprehensively use USS and MRI for the diagnosis of small pelvic pathology.

  8. Tools and procedures for quantitative microbeam isotope ratio imaging by secondary ion mass spectrometry.

    PubMed

    Gillen, Greg; Bright, David

    2003-01-01

    In this work we demonstrate the use of secondary ion mass spectrometry (SIMS) combined with the Lispix image processing program (Bright 1995) to generate quantitative isotope ratio images from a test sample of a calcium-aluminum rich inclusion from the Allende meteorite that is known to contain discrete mineral grains with perturbed Mg isotopic ratios. Using 19.5 keV impact O- primary ion bombardment and detection of positive secondary ions, microbeam imaging SIMS has allowed us to identify, from the isotope ratio images, enrichments in the 26Mg/24Mg isotope ratio of approximately 5-15% in selected mineral grains. Using custom image processing software, each isotopic ratio image is corrected on an individual pixel basis for a number of factors including detector dead-time, mass bias effects, and isobaric interferences. We have developed procedures for correlating the isotopic images with polarized optical microscopy so that targeted mineral grains could be identified for further SIMS analysis. Finally, additional image processing tools have been developed to allow for pixel-by-pixel evaluation of the influence of detector dead-time and count rate errors on the isotopic ratio images and for correlation of the isotopic images with elemental distribution maps.

  9. Evaluation of risks of groundwater quality alteration in Recife urban area (Pernambuco, Brazil) using a multi-isotopic approach.

    NASA Astrophysics Data System (ADS)

    Bertrand, Guillaume; Hirata, Ricardo; Martins, Veridiana; Batista, Jonathan; Bertolo, Reginaldo; Santos, Jeane-Glaucia; Montenegro, Suzanna; Cary, Lise; Petelet-Giraud, Emmanuelle; Pauwels, Hélène; Picot, Géraldine; Braibant, Gilles; Chatton, Eliot; Aquilina, Luc; Labasque, Thierry; Hochreutener, Rebecca; Aurouet, Axel; Franzen, Melissa

    2015-04-01

    The Recife Metropolitan Region (RMR) is a heavily urbanized area located in a estuary zone and over a multi-layered sedimentary system on the Brazilian Atlantic coast. In a context of increasing land use pressures, involving aquifer overexploitation and surface water contamination, and repeated droughts, the identification of groundwater quality risks in RMR is a necessary management requirement. In this perspective, this work focused on the two shallow aquifer systems, named Boa Viagem and Barreiras aquifers, located at the interface between the city (the consumers) and the deeper semi-confined Cretaceous Cabo and Beberibe aquifers. The Holocenic Boa Viagem and Tertiary Barreiras formations conform unconfined sedimentary aquifers, with no more than 80 m of thickness. Cabo is the most important groundwater body for Recife private complementary water supply and it has experienced an intense exploitation in the last three decades. In contrast, Boa Viagem and Barreiras aquifers are more restrictively used, but it is important to understand their water quality degradation,because of hydraulic connections with deeper aquifers, mainly in the littoral part of Recife, where hydraulic potentiometric head of the Cabo aquifer is 60 m below sea water level in some places, with conditions for recharge from shallower aquifers. Through a multi-isotopic characterization (87Sr/86Sr, δ11B, δ18O-SO4, δ34S-SO4) of sampling of 19 wells and 3 surface waters, carried out during two field campaigns with additional geochemical parameters (major ions, noble and major gases, CFC' s and SF6), the spatio-temporal variability of groundwater quality was investigated. The detection of CFC' s, implying a modern recharge component, highlighted the vulnerability of Boa Viagem and Barreiras to surface contaminations. The increasing mineralization and decreasing 87Sr/86Sr from the inland sector wells to the wells located close to the coast or estuary, with higher well and population densities, were

  10. Origin and evolution of groundwater collected by a desalination plant (Tordera, Spain): A multi-isotopic approach

    NASA Astrophysics Data System (ADS)

    Otero, N.; Soler, A.; Corp, R. M.; Mas-Pla, J.; Garcia-Solsona, E.; Masqué, P.

    2011-01-01

    SummaryThe Tordera Desalination Plant located in Blanes (NE Spain) has seawater intake through 10 beach wells located a few meters inland on the shoreline at the Tordera River Delta. Between October 2002 and October 2003, the extracted groundwater showed a decrease in conductivity, especially in the wells located in the northern area, prompting the present study. A multi-isotopic approach (δD, δ 18OO, 3H, δ 34S, 87Sr/ 86Sr and 228Ra/ 226Ra) coupled with chemical data was applied in order to assess the origin of the water collected for the desalination plant and to quantify the extent of freshwater collection from the Tordera aquifer, when applicable. Three multi-piezometers located in the Tordera aquifer were also sampled in order to characterize the freshwater end-member. A seasonal survey was performed in order to assess the evolution of mixed freshwater-seawater intake. Tritium isotopes showed values ranging from 0.6 to 2.5 TU indicating recent origin of the collected waters. This was further confirmed using radium isotopes ( 226Ra and 228Ra), as the 228Ra/ 226Ra activity ratio (AR) indicated a continuous input of seawater on a yearly time scale. The water extracted from the beach wells was at least 95% seawater, except for wells 8-10. The latter two were extracting up to 15% of freshwater from the Tordera aquifer system. From a methodological point of view, while δ 34S of dissolved sulphate and the ratio 87Sr/ 86Sr are good tracers of seawater mixing with freshwaters, the isotopic composition of water (δD and δ 18OO) and the Cl -/Br - ratio are conservative tracers that allow for quantifying the contribution of freshwater to the extracted water. Although slight variations linked to seasonality were observed in all wells during the 3-year study period (November 2003 to December 2006), wells 1 and 7 showed an increase in freshwater contribution from 4% to 11% and well 10 a decrease from 15% to 10% over this period.

  11. A spatially explicit multi-isotope approach to map influence regions of plant-plant interactions after exotic plant invasion

    NASA Astrophysics Data System (ADS)

    Hellmann, Christine; Oldeland, Jens; Werner, Christiane

    2015-04-01

    Exotic plant invasions impose profound alterations to native ecosystems, including changes of water, carbon and nutrient cycles. However, explicitly quantifying these impacts remains a challenge. Stable isotopes, by providing natural tracers of biogeochemical processes, can help to identify and measure such alterations in space and time. Recently, δ15N isoscapes, i.e. spatially continuous representations of isotopic values, derived from native plant foliage, enabled to accurately trace nitrogen introduced by the N2-fixing invasive Acacia longifolia into a native Portuguese dune system. It could be shown that the area of the system which was altered by the invasive species exceeded the area which was covered by the invader by far. But still, definition of clear regions of influence is to some extent ambiguous. Here, we present an approach using multiple isoscapes derived from measured foliar δ13C and δ15N values of a native, non-fixing species, Corema album. By clustering isotopic information, we obtained an objective classification of the study area. Properties and spatial position of clusters could be interpreted to distinguish areas that were or were not influenced by A. longifolia. Spatial clusters at locations where A. longifolia was present had δ15N values that were enriched, i.e. close to the atmospheric signal of 0 o compared to the depleted values of the uninvaded system (ca. -11 o). Furthermore, C. album individuals in these clusters were characterized by higher foliar N content and enriched δ13C. These results indicate that the N2-fixing A. longifolia added nitrogen to the system which originated from the atmosphere and was used by the native C. album, inducing functional changes, i.e. an increase in WUE. Additionally, clusters were identified that were presumably determined by inherent properties of the native system. Thus, combining isotope ecology with geostatistical methods is a promising approach for mapping regions of influence in multi-isotope

  12. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    SciTech Connect

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ronald M.; Laprevote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F.

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  13. Mass spectrometry imaging of biological tissue: an approach for multicenter studies.

    PubMed

    Römpp, Andreas; Both, Jean-Pierre; Brunelle, Alain; Heeren, Ron M A; Laprévote, Olivier; Prideaux, Brendan; Seyer, Alexandre; Spengler, Bernhard; Stoeckli, Markus; Smith, Donald F

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDI-Fourier transform ion cyclotron resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a common

  14. An Automated Platform for High-Resolution Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Lanekoff, Ingela T.; Heath, Brandi S.; Liyu, Andrey V.; Thomas, Mathew; Carson, James P.; Laskin, Julia

    2012-10-02

    An automated platform has been developed for acquisition and visualization of mass spectrometry imaging (MSI) data using nanospray desorption electrospray ionization (nano-DESI). The new system enables robust operation of the nano-DESI imaging source over many hours. This is achieved by controlling the distance between the sample and the probe by mounting the sample holder onto an automated XYZ stage and defining the tilt of the sample plane. This approach is useful for imaging of relatively flat samples such as thin tissue sections. Custom software called MSI QuickView was developed for visualization of large data sets generated in imaging experiments. MSI QuickView enables fast visualization of the imaging data during data acquisition and detailed processing after the entire image is acquired. The performance of the system is demonstrated by imaging rat brain tissue sections. High resolution mass analysis combined with MS/MS experiments enabled identification of lipids and metabolites in the tissue section. In addition, high dynamic range and sensitivity of the technique allowed us to generate ion images of low-abundance isobaric lipids. High-spatial resolution image acquired over a small region of the tissue section revealed the spatial distribution of an abundant brain metabolite, creatine, in the white and gray matter that is consistent with the literature data obtained using magnetic resonance spectroscopy.

  15. Direct imaging of elemental distributions in tissue sections by laser ablation mass spectrometry.

    PubMed

    Shariatgorji, Mohammadreza; Nilsson, Anna; Bonta, Maximilian; Gan, Jinrui; Marklund, Niklas; Clausen, Fredrik; Källback, Patrik; Loden, Henrik; Limbeck, Andreas; Andrén, Per E

    2016-07-15

    We present a strategy for imaging of elements in biological tissues using laser ablation (LA) mass spectrometry (MS), which was compared to laser ablation inductively coupled plasma (LA-ICP) MS. Both methods were adopted for quantitative imaging of elements in mouse kidney, as well as traumatic brain injury model tissue sections. MS imaging (MSI) employing LA provides quantitative data by comparing signal abundances of sodium from tissues to those obtained by imaging quantitation calibration standards of the target element applied to adjacent control tissue sections. LA-ICP MSI provided quantitative data for several essential elements in both brain and kidney tissue sections using a dried-droplet approach. Both methods were used to image a rat model of traumatic brain injury, revealing accumulations of sodium and calcium in the impact area and its peripheral regions. LA MSI is shown to be a viable option for quantitative imaging of specific elements in biological tissue sections.

  16. Direct Plant Tissue Analysis and Imprint Imaging by Desorption Electrospray Ionization Mass Spectrometry

    PubMed Central

    2011-01-01

    The ambient mass spectrometry technique, desorption electrospray ionization mass spectrometry (DESI-MS), is applied for the rapid identification and spatially resolved relative quantification of chlorophyll degradation products in complex senescent plant tissue matrixes. Polyfunctionalized nonfluorescent chlorophyll catabolites (NCCs), the “final” products of the chlorophyll degradation pathway, are detected directly from leaf tissues within seconds and structurally characterized by tandem mass spectrometry (MS/MS) and reactive-DESI experiments performed in situ. The sensitivity of DESI-MS analysis of these compounds from degreening leaves is enhanced by the introduction of an imprinting technique. Porous polytetrafluoroethylene (PTFE) is used as a substrate for imprinting the leaves, resulting in increased signal intensities compared with those obtained from direct leaf tissue analysis. This imprinting technique is used further to perform two-dimensional (2D) imaging mass spectrometry by DESI, producing well-resolved images of the spatial distribution of NCCs in senescent leaf tissues. PMID:21675752

  17. The Use of Random Projections for the Analysis of Mass Spectrometry Imaging Data

    NASA Astrophysics Data System (ADS)

    Palmer, Andrew D.; Bunch, Josephine; Styles, Iain B.

    2015-02-01

    The `curse of dimensionality' imposes fundamental limits on the analysis of the large, information rich datasets that are produced by mass spectrometry imaging. Additionally, such datasets are often too large to be analyzed as a whole and so dimensionality reduction is required before further analysis can be performed. We investigate the use of simple random projections for the dimensionality reduction of mass spectrometry imaging data and examine how they enable efficient and fast segmentation using k-means clustering. The method is computationally efficient and can be implemented such that only one spectrum is needed in memory at any time. We use this technique to reveal histologically significant regions within MALDI images of diseased human liver. Segmentation results achieved following a reduction in the dimensionality of the data by more than 99% (without peak picking) showed that histologic changes due to disease can be automatically visualized from molecular images.

  18. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review.

    PubMed

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042

  19. Sample Preparation for Mass Spectrometry Imaging of Plant Tissues: A Review

    PubMed Central

    Dong, Yonghui; Li, Bin; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph; Kaftan, Filip; Svatoš, Aleš; Franceschi, Pietro

    2016-01-01

    Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites. PMID:26904042

  20. MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice.

    PubMed

    Aichler, Michaela; Walch, Axel

    2015-04-01

    MALDI Imaging mass spectrometry has entered the field of tissue-based research by providing unique advantages for analyzing tissue specimen in an unprecedented detail. A broad spectrum of analytes ranging from proteins, peptides, protein modification over small molecules, drugs and their metabolites as well as pharmaceutical components, endogenous cell metabolites, lipids, and other analytes are made accessible by this in situ technique in tissue. Some of them were even not accessible in tissues within the histological context before. Thereby, the great advantage of MALDI Imaging is the correlation of molecular information with traditional histology by keeping the spatial localization information of the analytes after mass spectrometric measurement. This method is label-free and allows multiplex analysis of hundreds to thousands of molecules in the very same tissue section simultaneously. Imaging mass spectrometry brings a new quality of molecular data and links the expert discipline of pathology and deep molecular mass spectrometric analysis to tissue-based research. This review will focus on state-of-the-art of MALDI Imaging mass spectrometry, its recent applications by analyzing tissue specimen and the contributions in understanding the biology of disease as well as its perspectives for pathology research and practice.

  1. MALDI-TOF and MALDI-FTICR imaging mass spectrometry of methamphetamine incorporated into hair.

    PubMed

    Miki, Akihiro; Katagi, Munehiro; Kamata, Tooru; Zaitsu, Kei; Tatsuno, Michiaki; Nakanishi, Toyofumi; Tsuchihashi, Hitoshi; Takubo, Takayuki; Suzuki, Koichi

    2011-04-01

    A new approach is described for imaging mass spectrometry (IMS) of methamphetamine (MA) incorporated into human hair using matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF) and MALDI-Fourier transform ion cyclotron resonance (FTICR). A longitudinal section of a lengthwise manually-cut single human hair shaft from a chronic MA user was directly analyzed by MALDI-TOF-IMS after deposited with α-Cyano-4-hydroxycinnamic acid matrix. A barcode-like image, which was most probably generated with repeated intakes of MA, was for the first time obtained by monitoring MA-specific product ion in the selected reaction monitoring mode. Laser beam scan lengthwise-cut hair shafts gave only poor mass spectra of MA, probably due to the loss of MA and/or the thermal denaturation of hair. The identity of MA detected in hair was further confirmed by MALDI-FTICR mass spectrometry. A combination with ultra-high resolution mass spectrometry by FTICR provided indisputable identification of MA. The MALDI-FTICR-IMS of another hair shaft from the same MA user also provided a barcode-like image by monitoring the protonated molecule of MA with ultra-high resolution. The two barcode-like images exhibited a close resemblance. Thus, MALDI-IMS can offer a new perspective: 'imaging hair analyses for drugs'.

  2. Detection of masses in mammogram images using CNN, geostatistic functions and SVM.

    PubMed

    Sampaio, Wener Borges; Diniz, Edgar Moraes; Silva, Aristófanes Corrêa; de Paiva, Anselmo Cardoso; Gattass, Marcelo

    2011-08-01

    Breast cancer occurs with high frequency among the world's population and its effects impact the patients' perception of their own sexuality and their very personal image. This work presents a computational methodology that helps specialists detect breast masses in mammogram images. The first stage of the methodology aims to improve the mammogram image. This stage consists in removing objects outside the breast, reducing noise and highlighting the internal structures of the breast. Next, cellular neural networks are used to segment the regions that might contain masses. These regions have their shapes analyzed through shape descriptors (eccentricity, circularity, density, circular disproportion and circular density) and their textures analyzed through geostatistic functions (Ripley's K function and Moran's and Geary's indexes). Support vector machines are used to classify the candidate regions as masses or non-masses, with sensitivity of 80%, rates of 0.84 false positives per image and 0.2 false negatives per image, and an area under the ROC curve of 0.87. PMID:21703605

  3. High-Speed MALDI-TOF Imaging Mass Spectrometry: Rapid Ion Image Acquisition and Considerations for Next Generation Instrumentation

    PubMed Central

    Spraggins, Jeffrey M.; Caprioli, Richard M.

    2012-01-01

    A prototype matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometer has been used for high-speed ion image acquisition. The instrument incorporates a Nd:YLF solid state laser capable of pulse repetition rates up to 5 kHz and continuous laser raster sampling for high-throughput data collection. Lipid ion images of a sagittal rat brain tissue section were collected in 10 min with an effective acquisition rate of roughly 30 pixels/s. These results represent more than a 10-fold increase in throughput compared with current commercially available instrumentation. Experiments aimed at improving conditions for continuous laser raster sampling for imaging are reported, highlighting proper laser repetition rates and stage velocities to avoid signal degradation from significant oversampling. As new high spatial resolution and large sample area applications present themselves, the development of high-speed microprobe MALDI imaging mass spectrometry is essential to meet the needs of those seeking new technologies for rapid molecular imaging. PMID:21953043

  4. Controlled-Resonant Surface Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2014-01-01

    This paper reports on the advancement of a controlled-resonance surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed and optimized performance metrics were presented. The ability to spot sample, lane scan and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 m based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.

  5. Testing the Performances of Different Image Representations for Mass Classification in Digital Mammograms

    NASA Astrophysics Data System (ADS)

    Angelini, E.; Campanini, R.; Iampieri, E.; Lanconelli, N.; Masotti, M.; Roffilli, M.

    The classification of tumoral masses and normal breast tissue is targeted. A mass detection algorithm which does not refer explicitly to shape, border, size, contrast or texture of mammographic suspicious regions is evaluated. In the present approach, classification features are embodied by the image representation used to encode suspicious regions. Classification is performed by means of a support vector machine (SVM) classifier. To investigate whether improvements can be achieved with respect to a previously proposed overcomplete wavelet image representation, a pixel and a discrete wavelet image representations are developed and tested. Evaluation is performed by extracting 6000 suspicious regions from the digital database for screening mammography (DDSM) collected by the University of South Florida (USF). More specifically, 1000 regions representing biopsy-proven tumoral masses (either benign or malignant) and 5000 regions representing normal breast tissue are extracted. Results demonstrate very high performance levels. The area Az under the receiver operating characteristic (ROC) curve reaches values of 0.973 ± 0.002, 0.948 ± 0.004 and 0.956 ± 0.003 for the pixel, discrete wavelet and overcomplete wavelet image representations, respectively. In particular, the improvement in the Az value with the pixel image representation is statistically significant compared to that obtained with the discrete wavelet and overcomplete wavelet image representations (two-tailed p-value < 0.0001). Additionally, 90% true positive fraction (TPF) values are achieved with false positive fraction (FPF) values of 6%, 11% and 7%, respectively.

  6. MISSING LENSED IMAGES AND THE GALAXY DISK MASS IN CXOCY J220132.8-320144

    SciTech Connect

    Chen, Jacqueline; Lee, Samuel K.; Schechter, Paul L.; Castander, Francisco-Javier; Maza, Jose

    2013-05-20

    The CXOCY J220132.8-320144 system consists of an edge-on spiral galaxy lensing a background quasar into two bright images. Previous efforts to constrain the mass distribution in the galaxy have suggested that at least one additional image must be present. These extra images may be hidden behind the disk which features a prominent dust lane. We present and analyze Hubble Space Telescope observations of the system. We do not detect any extra images, but the observations further narrow the observable parameters of the lens system. We explore a range of models to describe the mass distribution in the system and find that a variety of acceptable model fits exist. All plausible models require 2 mag of dust extinction in order to obscure extra images from detection, and some models may require an offset between the center of the galaxy and the center of the dark matter halo of 1 kpc. Currently unobserved images will be detectable by future James Webb Space Telescope observations and will provide strict constraints on the fraction of mass in the disk.

  7. Note: A novel dual-channel time-of-flight mass spectrometer for photoelectron imaging spectroscopy

    SciTech Connect

    Qin Zhengbo; Wu Xia; Tang Zichao

    2013-06-15

    A novel dual-channel time-of-flight mass spectrometer (D-TOFMS) has been designed to select anions in the photoelectron imaging measurements. In this instrument, the radiation laser can be triggered precisely to overlap with the selected ion cloud at the first-order space focusing plane. Compared with that of the conventional single channel TOFMS, the in situ mass selection performance of D-TOFMS is significantly improved. Preliminary experiment results are presented for the mass-selected photodetachment spectrum of F{sup -} to demonstrate the capability of the instrument.

  8. Characterisation of a micro-plasma for ambient mass spectrometry imaging.

    PubMed

    Bowfield, Andrew; Bunch, Josephine; Salter, Tara L; Steven, Rory T; Gilmore, Ian S; Barrett, Dave A; Alexander, Morgan R; McKay, Kirsty; Bradley, James W

    2014-11-01

    Results are presented on the characterisation and optimisation of a non-thermal atmospheric pressure micro-plasma ion source used for ambient mass spectrometry imaging. The geometry of the experiment is optimised to produce the most intense and stable ion signals. Signal stabilities (relative standard deviation) of 2.3-6.5% are achieved for total ion current measurements from chromatograms. Parameters are utilised to achieve MS imaging by raster scanning of PTFE/glass samples with a spatial resolution of 147 ± 31 μm. A systematic study of resolution as a function of acquisition parameters was also undertaken to underpin future technique development. Mass spectra are obtained from PTFE/glass sample edges in negative ion mode and used to construct images to calculate the spatial resolution. Images are constructed using the intensity variation of the dominant ion observed in the PTFE spectrum. Mass spectra originating from the polymer are dominated by three series of ions in a m/z spectral window from 200-500 Da. These ions are each separated by 50 Da and have the chemical formula [C2F + [CF2]n](-), [CF + [CF2]n + O](-) and [CF + [CF2]n + O3](-). The mechanism for the generation of these ions appears to be a polymer chain scission followed by ionisation by atmospheric ion adduction. Positive and negative ion mode mass spectra of personal care products, amino acids and pharmaceuticals, dominated by the proton abstracted/protonated molecular ion, highlight the potential areas of application for such a device. Further to this end a mass spectral image of cardamom seeds, constructed using the variation in intensity of possible fragments of the 1,8-cineole molecule, is included to reveal the potential application to the imaging of foods and other biological materials. PMID:25142127

  9. Combined X-ray CT and mass spectrometry for biomedical imaging applications

    NASA Astrophysics Data System (ADS)

    Schioppa, E., Jr.; Ellis, S.; Bruinen, A. L.; Visser, J.; Heeren, R. M. A.; Uher, J.; Koffeman, E.

    2014-04-01

    Imaging technologies play a key role in many branches of science, especially in biology and medicine. They provide an invaluable insight into both internal structure and processes within a broad range of samples. There are many techniques that allow one to obtain images of an object. Different techniques are based on the analysis of a particular sample property by means of a dedicated imaging system, and as such, each imaging modality provides the researcher with different information. The use of multimodal imaging (imaging with several different techniques) can provide additional and complementary information that is not possible when employing a single imaging technique alone. In this study, we present for the first time a multi-modal imaging technique where X-ray computerized tomography (CT) is combined with mass spectrometry imaging (MSI). While X-ray CT provides 3-dimensional information regarding the internal structure of the sample based on X-ray absorption coefficients, MSI of thin sections acquired from the same sample allows the spatial distribution of many elements/molecules, each distinguished by its unique mass-to-charge ratio (m/z), to be determined within a single measurement and with a spatial resolution as low as 1 μm or even less. The aim of the work is to demonstrate how molecular information from MSI can be spatially correlated with 3D structural information acquired from X-ray CT. In these experiments, frozen samples are imaged in an X-ray CT setup using Medipix based detectors equipped with a CO2 cooled sample holder. Single projections are pre-processed before tomographic reconstruction using a signal-to-thickness calibration. In the second step, the object is sliced into thin sections (circa 20 μm) that are then imaged using both matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and secondary ion (SIMS) mass spectrometry, where the spatial distribution of specific molecules within the sample is determined. The

  10. Benign metastasizing pleomorphic adenoma presenting as a solitary kidney mass: imaging features.

    PubMed

    Vivian, Mark A; Sahni, V Anik; Lowe, Alarice C; Silverman, Stuart G

    2012-08-01

    Benign metastasizing pleomorphic adenoma is a rare condition that occurs in patients with a prior history of pleomorphic adenoma of the salivary glands. Metastases to the kidney are extremely rare, and, to the best of our knowledge, their imaging appearance on multiple cross-sectional imaging modalities has not been described. We present a solitary metastasis to the kidney in a 40-year-old woman. Computed tomography and magnetic resonance imaging demonstrated a 2.4 cm, well-marginated, enhancing mass that protruded into the renal sinus fat. Findings were indistinguishable from a primary renal malignancy. Prior history is crucial in suggesting the correct diagnosis.

  11. IMAGE-PLANE ANALYSIS OF n-POINT-MASS LENS CRITICAL CURVES AND CAUSTICS

    SciTech Connect

    Danek, Kamil; Heyrovský, David E-mail: heyrovsky@utf.mff.cuni.cz

    2015-06-10

    The interpretation of gravitational microlensing events caused by planetary systems or multiple stars is based on the n-point-mass lens model. The first planets detected by microlensing were well described by the two-point-mass model of a star with one planet. By the end of 2014, four events involving three-point-mass lenses had been announced. Two of the lenses were stars with two planetary companions each; two were binary stars with a planet orbiting one component. While the two-point-mass model is well understood, the same cannot be said for lenses with three or more components. Even the range of possible critical-curve topologies and caustic geometries of the three-point-mass lens remains unknown. In this paper we provide new tools for mapping the critical-curve topology and caustic cusp number in the parameter space of n-point-mass lenses. We perform our analysis in the image plane of the lens. We show that all contours of the Jacobian are critical curves of re-scaled versions of the lens configuration. Utilizing this property further, we introduce the cusp curve to identify cusp-image positions on all contours simultaneously. In order to track cusp-number changes in caustic metamorphoses, we define the morph curve, which pinpoints the positions of metamorphosis-point images along the cusp curve. We demonstrate the usage of both curves on simple two- and three-point-mass lens examples. For the three simplest caustic metamorphoses we illustrate the local structure of the image and source planes.

  12. Quantitative Mass Density Image Reconstructed from the Complex X-Ray Refractive Index

    PubMed Central

    Mukaide, Taihei; Iida, Atsuo; Watanabe, Masatoshi; Takada, Kazuhiro; Noma, Takashi

    2015-01-01

    We demonstrate a new analytical X-ray computed tomography technique for visualizing and quantifying the mass density of materials comprised of low atomic number elements with unknown atomic ratios. The mass density was obtained from the experimentally observed ratio of the imaginary and real parts of the complex X-ray refractive index. An empirical linear relationship between the X-ray mass attenuation coefficient of the materials and X-ray energy was found for X-ray energies between 8 keV and 30 keV. The mass density image of two polymer fibers was quantified using the proposed technique using a scanning-type X-ray microbeam computed tomography system equipped with a wedge absorber. The reconstructed mass density agrees well with the calculated one. PMID:26114770

  13. Constraints of costal aquifer functioning in a deeply antropized area through a multi-isotope fingerprinting (Recife, Brazil)

    NASA Astrophysics Data System (ADS)

    Petelet-Giraud, Emmanuelle; Cary, Lise; Bertrand, Guillaume; Hirata, Ricardo; Martins, Veridiana; Montenegro, Suzana; Pauwels, Hélène; Kloppmann, Wolfram; Aquilina, Luc

    2014-05-01

    The Metropolitan Region of Recife (RMR) went through large changes of water and land uses over the last decades due to an increasing demographic pressure (1.5 M of inhabitants). These evolutions gave rise to numerous environmental consequences, such as a dramatic decline of the water levels, groundwater salinization and contamination. This degradation of natural resources is linked to the increase of water demand that is also punctually amplified by drought periods, inducing the construction of thousands of private wells. Recife city was built on an estuarine area, at the geological limits of the two sedimentary basins of Pernambuco (north of the city) and Paraíba (south of the city) separated by a famous shear zone (the Pernambuco lineament). Tectonic and sedimentary events involved in the genesis and evolution of these basins were mainly controlled by the opening of the Atlantic Ocean leading to the deposition of cretaceous sediments which now constitute the two main exploited aquifers, the Beberibe and Cabo aquifers. These two deep aquiferous formations are topped by the unconfined Boa Viagem aquifer of quaternary sediments. It is the most directly exposed to contamination, since it is connected to mangroves, rivers, estuaries and highly urbanized areas. Both the Beberibe and Cabo aquifers contain large clay levels and are separated by a rather continuous clayed formation which seems to play a consistent role of screen and to interfere in the hydraulic connections between the three aquifers. Previous isotopic studies have shown that recharge processes are similar in the aquifers, suggesting that exchanges may occur and may be modified or amplified by overexploitation. This very complex aquifer system is studied through more than 60 water samples, including some surface water samples from the main rivers. A methodology based on multi-isotopes fingerprinting is applied, including stable isotopes of the water molecule, strontium isotopes, boron isotopes, sulfur

  14. Anatomical Distribution of Lipids in Human Brain Cortex by Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Veloso, Antonio; Astigarraga, Egoitz; Barreda-Gómez, Gabriel; Manuel, Iván; Ferrer, Isidro; Teresa Giralt, María; Ochoa, Begoña; Fresnedo, Olatz; Rodríguez-Puertas, Rafael; Fernández, José A.

    2011-02-01

    Molecular mass images of tissues will be biased if differences in the physicochemical properties of the microenvironment affect the intensity of the spectra. To address this issue, we have performed—by means of MALDI-TOF mass spectrometry—imaging on slices and lipidomic analysis in extracts of frontal cortex, both from the same postmortem tissue samples of human brain. An external calibration was used to achieve a mass accuracy of 10 ppm (1 σ) in the spectra of the extracts, although the final assignment was based on a comparison with previously reported species. The spectra recorded directly from tissue slices (imaging) show excellent s/n ratios, almost comparable to those obtained from the extracts. In addition, they retain the information about the anatomical distribution of the molecular species present in autopsied frozen tissue. Further comparison between the spectra from lipid extracts devoid of proteins and those recorded directly from the tissue unambiguously show that the differences in lipid composition between gray and white matter observed in the mass images are not an artifact due to microenvironmental influences of each anatomical area on the signal intensity, but real variations in the lipid composition.

  15. Optimization of Whole-body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging (MSI) methods and protocols have become widely adapted to a variety of tissues and species. However, the MSI literature lacks information on whole-body cryosection preparation for the zebrafish (ZF; Danio rerio), a model organism routinely used in devel...

  16. Relationship between Body Image and Body Mass Index in College Men

    ERIC Educational Resources Information Center

    Watkins, Julia A.; Christie, Catherine; Chally, Pamela

    2008-01-01

    Objective and Participants: The authors examined cognitive and affective dimensions of body image of a randomized sample of 188 college men on the basis of body mass index (BMI). Methods: They conducted chi-square tests and ANOVAs to determine differences between 4 BMI groups (underweight, normal weight, overweight, and obese) on demographics and…

  17. Spatial correlation of confocal Raman scattering and secondary ion mass spectrometric molecular images of lignocellulosic materials.

    PubMed

    Li, Zhen; Chu, Li-Qiang; Sweedler, Jonathan V; Bohn, Paul W

    2010-04-01

    A detailed chemical and structural understanding of pre-enzymatic processing of lignocellulosic materials (LCMs) is a key objective in the development of renewable energy. Efficient rendering of biomass components into fermentable substrates for conversion into biofuel feedstocks would benefit greatly from the development of new technologies to provide high-quality, spatially resolved chemical information about LCMs during the various processing states. In an effort to realize this important goal, spatially correlated confocal Raman and mass spectrometric images allow the extraction of three-dimensional information from the perennial grass, Miscanthus x giganteus. An optical microscopy-based landmark registry scheme was developed that allows samples to be transferred between laboratories at different institutions, while retaining the capability to access the same physical regions of the samples. Subsequent to higher resolution imaging via confocal Raman microscopy and secondary ion mass spectrometry (SIMS), laser desorption-ionization mass spectrometry was used to place these regions within the overall sample architecture. Excellent sample registry was evident in the highly correlated Raman and SIMS images. In addition, the correlation of vibrational Raman scattering with mass spectra from specific spatial locations allowed confirmation of the assignment of intracellular globular structures to hemicellulose-rich lignin complexes, an assignment which could only be made tentatively from either image alone. PMID:20205411

  18. Matrix-assisted laser desorption/ionisation mass spectrometry imaging and its development for plant protein imaging

    PubMed Central

    2011-01-01

    Matrix-Assisted Laser Desorption/Ionisation (MALDI) mass spectrometry imaging (MSI) uses the power of high mass resolution time of flight (ToF) mass spectrometry coupled to the raster of lasers shots across the cut surface of tissues to provide new insights into the spatial distribution of biomolecules within biological tissues. The history of this technique in animals and plants is considered and the potential for analysis of proteins by this technique in plants is discussed. Protein biomarker identification from MALDI-MSI is a challenge and a number of different approaches to address this bottleneck are discussed. The technical considerations needed for MALDI-MSI are reviewed and these are presented alongside examples from our own work and a protocol for MALDI-MSI of proteins in plant samples. PMID:21726462

  19. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    PubMed

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-01

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  20. Benign and Suspicious Ovarian Masses-MR Imaging Criteria for Characterization: Pictorial Review.

    PubMed

    Valentini, A L; Gui, B; Miccò, M; Mingote, M C; De Gaetano, A M; Ninivaggi, V; Bonomo, L

    2012-01-01

    Ovarian masses present a special diagnostic challenge when imaging findings cannot be categorized into benign or malignant pathology. Ultrasonography (US), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI) are currently used to evaluate ovarian tumors. US is the first-line imaging investigation for suspected adnexal masses. Color Doppler US helps the diagnosis identifying vascularized components within the mass. CT is commonly performed in preoperative evaluation of a suspected ovarian malignancy, but it exposes patients to radiation. When US findings are nondiagnostic or equivocal, MRI can be a valuable problem solving tool, useful to give also surgical planning information. MRI is well known to provide accurate information about hemorrhage, fat, and collagen. It is able to identify different types of tissue contained in pelvic masses, distinguishing benign from malignant ovarian tumors. The knowledge of clinical syndromes and MRI features of these conditions is crucial in establishing an accurate diagnosis and determining appropriate treatment. The purpose of this paper is to illustrate MRI findings in neoplastic and non-neoplastic ovarian masses, which were assessed into three groups: cystic, solid, and solid/cystic lesions. MRI criteria for the correct diagnosis and characteristics for differentiating benign from malignant conditions are shown in this paper.

  1. On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry.

    PubMed

    Stauber, Jonathan; MacAleese, Luke; Franck, Julien; Claude, Emmanuelle; Snel, Marten; Kaletas, Basak Kükrer; Wiel, Ingrid M V D; Wisztorski, Maxence; Fournier, Isabelle; Heeren, Ron M A

    2010-03-01

    MALDI imaging mass spectrometry (MALDI-IMS) has become a powerful tool for the detection and localization of drugs, proteins, and lipids on-tissue. Nevertheless, this approach can only perform identification of low mass molecules as lipids, pharmaceuticals, and peptides. In this article, a combination of approaches for the detection and imaging of proteins and their identification directly on-tissue is described after tryptic digestion. Enzymatic digestion protocols for different kinds of tissues--formalin fixed paraffin embedded (FFPE) and frozen tissues--are combined with MALDI-ion mobility mass spectrometry (IM-MS). This combination enables localization and identification of proteins via their related digested peptides. In a number of cases, ion mobility separates isobaric ions that cannot be identified by conventional MALDI time-of-flight (TOF) mass spectrometry. The amount of detected peaks per measurement increases (versus conventional MALDI-TOF), which enables mass and time selected ion images and the identification of separated ions. These experiments demonstrate the feasibility of direct proteins identification by ion-mobility-TOF IMS from tissue. The tissue digestion combined with MALDI-IM-TOF-IMS approach allows a proteomics "bottom-up" strategy with different kinds of tissue samples, especially FFPE tissues conserved for a long time in hospital sample banks. The combination of IM with IMS marks the development of IMS approaches as real proteomic tools, which brings new perspectives to biological studies.

  2. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry.

    PubMed

    Spur, Eva-Margarete; Decelle, Emily A; Cheng, Leo L

    2013-07-01

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases.

  3. Metabolomic Imaging of Prostate Cancer with Magnetic Resonance Spectroscopy and Mass Spectrometry

    PubMed Central

    Spur, Eva-Margarete; Decelle, Emily A.; Cheng, Leo L.

    2013-01-01

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized non-invasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth for newly biopsy-diagnosed, asymptomatic PCa patients. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, the study of PCa metabolomics is mainly accomplished utilizing magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness non-invasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be possible not only with PCa, but applied to different tissues and organs to evaluate other human malignancies or metabolic diseases. PMID:23549758

  4. High resolution mass spectrometry imaging of plant tissues: towards a plant metabolite atlas.

    PubMed

    Bhandari, Dhaka Ram; Wang, Qing; Friedt, Wolfgang; Spengler, Bernhard; Gottwald, Sven; Römpp, Andreas

    2015-11-21

    Mass spectrometry (MS) imaging provides spatial and molecular information for a wide range of compounds. This tool can be used to investigate metabolic changes in plant physiology and environmental interactions. A major challenge in our study was to prepare tissue sections that were compatible with high spatial resolution analysis and therefore dedicated sample preparation protocols were established and optimized for the physicochemical properties of all major plant organs. We combined high spatial resolution (5 μm), in order to detect cellular features, and high mass accuracy (<2 ppm root mean square error), for molecular specificity. Mass spectrometry imaging experiments were performed in positive and negative ion mode. Changes in metabolite patterns during plant development were investigated for germination of oilseed rape. The detailed localization of more than 90 compounds allowed assignment to metabolic processes and indicated possible functions in plant tissues. The 'untargeted' nature of MS imaging allows the detection of marker compounds for the physiological status, as demonstrated for plant-pathogen interactions. Our images show excellent correlation with optical/histological examination. In contrast to previous MS imaging studies of plants, we present a complete workflow that covers multiple species, such as oilseed rape, wheat seed and rice. In addition, different major plant organs and a wide variety of compound classes were analyzed. Thus, our method could be used to develop a plant metabolite atlas as a reference to investigate systemic and local effects of pathogen infection or environmental stress.

  5. Bilateral ectopic cervical thymus presenting as a neck mass: Ultrasound and magnetic resonance imaging.

    PubMed

    Tanrivermis Sayit, Asli; Elmali, Muzaffer; Hashimov, Jalal; Ceyhan Bilgici, Meltem; Dağdemir, Ayhan

    2016-09-01

    Ectopic cervical thymus (ECT) is a rare cause of neck mass in the pediatric age group. It is extremely uncommon in infants. Overall more than 100 cases have been reported in the literature, though fewer than 10% involved infants. Furthermore, ECT is usually unilateral and more frequently seen in men than in women. Ultrasound (US) is the preferred initial imaging modality, especially in pediatric neck masses given its wide availability, low cost and lack of radiation exposure. US can show the location, extension, and echotexture of the ECT. Magnetic resonance imaging (MRI) can be performed to verify the diagnosis and confirm communication between the ECT and the mediastinal thymus. Diffusion restriction can aid diagnosis when seen in a neck mass similar to that in the mediastinal thymus. Herein is described a case of bilateral ECT in a 2-month-old boy with associated US and MRI findings. PMID:27463062

  6. The evolving field of imaging mass spectrometry and its impact on future biological research

    PubMed Central

    Watrous, Jeramie D.; Alexandrov, Theodore; Dorrestein, Pieter C.

    2012-01-01

    Within the past decade, imaging mass spectrometry has been increasingly recognized as an indispensable technique for studying biological systems. Its rapid evolution has resulted in an impressive array of instrument variations and sample applications, yet the tools and data are largely confined to specialists. It is therefore important that at this junction the IMS community begin to establish IMS as a permanent fixture in life sciences research thereby making the technology and/or the data approachable by non-mass spectrometrists, leading to further integration into biological and clinical research. In this perspective article, we provide insight into the evolution and current state of imaging mass spectrometry and propose some of the directions that IMS could develop in order to stay on course to become one of the most promising new tools in life science research. PMID:21322093

  7. Homogeneous Matrix Deposition on Dried Agar for MALDI Imaging Mass Spectrometry of Microbial Cultures

    NASA Astrophysics Data System (ADS)

    Hoffmann, Thomas; Dorrestein, Pieter C.

    2015-11-01

    Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique.

  8. Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies

    NASA Astrophysics Data System (ADS)

    Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.

    2012-10-01

    Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.

  9. Polychromatic sparse image reconstruction and mass attenuation spectrum estimation via B-spline basis function expansion

    NASA Astrophysics Data System (ADS)

    Gu, Renliang; Dogandžić, Aleksandar

    2015-03-01

    We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of the density map image in the wavelet domain. This algorithm alternates between a Nesterov's proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.

  10. Ultrasound Image Discrimination between Benign and Malignant Adnexal Masses Based on a Neural Network Approach.

    PubMed

    Aramendía-Vidaurreta, Verónica; Cabeza, Rafael; Villanueva, Arantxa; Navallas, Javier; Alcázar, Juan Luis

    2016-03-01

    The discrimination between benign and malignant adnexal masses in ultrasound images represents one of the most challenging problems in gynecologic practice. In the study described here, a new method for automatic discrimination of adnexal masses based on a neural networks approach was tested. The proposed method first calculates seven different types of characteristics (local binary pattern, fractal dimension, entropy, invariant moments, gray level co-occurrence matrix, law texture energy and Gabor wavelet) from ultrasound images of the ovary, from which several features are extracted and collected together with the clinical patient age. The proposed technique was validated using 106 benign and 39 malignant images obtained from 145 patients, corresponding to its probability of appearance in general population. On evaluation of the classifier, an accuracy of 98.78%, sensitivity of 98.50%, specificity of 98.90% and area under the curve of 0.997 were calculated.

  11. Polychromatic sparse image reconstruction and mass attenuation spectrum estimation via B-spline basis function expansion

    SciTech Connect

    Gu, Renliang E-mail: ald@iastate.edu; Dogandžić, Aleksandar E-mail: ald@iastate.edu

    2015-03-31

    We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of the density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.

  12. How to determine the centre of mass of bodies from image modelling

    NASA Astrophysics Data System (ADS)

    Adriano Dias, Marco; Simeão Carvalho, Paulo; Rodrigues, Marcelo

    2016-03-01

    Image modelling is a recent technique in physics education that includes digital tools for image treatment and analysis, such as digital stroboscopic photography (DSP) and video analysis software. It is commonly used to analyse the motion of objects. In this work we show how to determine the position of the centre of mass (CM) of objects with either isotropic or anisotropic mass density, by video analyses as a video based experimental activity (VBEA). Strobe imaging is also presented in an educational view, helping students to visualize the complex motion of a rigid body with heterogeneous structure. As an example, we present a hammer tossed with translation and rotation. The technique shown here is valid for almost any kind of objects and it is very useful to work with the concept of CM.

  13. Development of an Organic Lateral Resolution Test Device for Imaging Mass Spectrometry

    PubMed Central

    2015-01-01

    An organic lateral resolution test device has been developed to measure the performance of imaging mass spectrometry (IMS) systems. The device contains periodic gratings of polyethylene glycol (PEG) and lipid bars covering a wide range of spatial frequencies. Microfabrication technologies were employed to produce well-defined chemical interfaces, which allow lateral resolution to be assessed using the edge-spread function (ESF). In addition, the design of the device allows for the direct measurement of the modulation transfer function (MTF) to assess image quality. Scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were used to characterize the device. TOF-SIMS imaging was used to measure the chemical displacement of biomolecules in matrix-assisted laser desorption/ionization (MALDI) matrix crystals. In a proof-of-concept experiment, the platform was also used to evaluate MALDI matrix application methods, specifically aerosol spray and sublimation methods. PMID:25137365

  14. MALDI mass spectrometry imaging: A cutting-edge tool for fundamental and clinical histopathology.

    PubMed

    Longuespée, Rémi; Casadonte, Rita; Kriegsmann, Mark; Pottier, Charles; Picard de Muller, Gaël; Delvenne, Philippe; Kriegsmann, Jörg; De Pauw, Edwin

    2016-07-01

    Histopathological diagnoses have been done in the last century based on hematoxylin and eosin staining. These methods were complemented by histochemistry, electron microscopy, immunohistochemistry (IHC), and molecular techniques. Mass spectrometry (MS) methods allow the thorough examination of various biocompounds in extracts and tissue sections. Today, mass spectrometry imaging (MSI), and especially matrix-assisted laser desorption ionization (MALDI) imaging links classical histology and molecular analyses. Direct mapping is a major advantage of the combination of molecular profiling and imaging. MSI can be considered as a cutting edge approach for molecular detection of proteins, peptides, carbohydrates, lipids, and small molecules in tissues. This review covers the detection of various biomolecules in histopathological sections by MSI. Proteomic methods will be introduced into clinical histopathology within the next few years.

  15. Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry: In Situ Molecular Mapping

    PubMed Central

    Angel, Peggi M.; Caprioli, Richard M.

    2013-01-01

    Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples. PMID:23259809

  16. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue.

    PubMed

    Ly, Alice; Buck, Achim; Balluff, Benjamin; Sun, Na; Gorzolka, Karin; Feuchtinger, Annette; Janssen, Klaus-Peter; Kuppen, Peter J K; van de Velde, Cornelis J H; Weirich, Gregor; Erlmeier, Franziska; Langer, Rupert; Aubele, Michaela; Zitzelsberger, Horst; McDonnell, Liam; Aichler, Michaela; Walch, Axel

    2016-08-01

    Formalin-fixed and paraffin-embedded (FFPE) tissue specimens are the gold standard for histological examination, and they provide valuable molecular information in tissue-based research. Metabolite assessment from archived tissue samples has not been extensively conducted because of a lack of appropriate protocols and concerns about changes in metabolite content or chemical state due to tissue processing. We present a protocol for the in situ analysis of metabolite content from FFPE samples using a high-mass-resolution matrix-assisted laser desorption/ionization fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR-MSI) platform. The method involves FFPE tissue sections that undergo deparaffinization and matrix coating by 9-aminoacridine before MALDI-MSI. Using this platform, we previously detected ∼1,500 m/z species in the mass range m/z 50-1,000 in FFPE samples; the overlap compared with fresh frozen samples is 72% of m/z species, indicating that metabolites are largely conserved in FFPE tissue samples. This protocol can be reproducibly performed on FFPE tissues, including small samples such as tissue microarrays and biopsies. The procedure can be completed in a day, depending on the size of the sample measured and raster size used. Advantages of this approach include easy sample handling, reproducibility, high throughput and the ability to demonstrate molecular spatial distributions in situ. The data acquired with this protocol can be used in research and clinical practice.

  17. Direct Exoplanet Imaging with JWST NIRCam: Low-Mass Stars, Low-Mass Planets, and Critical Constraints on Planet Formation

    NASA Astrophysics Data System (ADS)

    Schlieder, Joshua E.; Meyer, Michael; Reggiani, Maddalena; Quanz, Sascha; Beichman, Charles A.; Greene, Thomas P.; Burrows, Adam Seth

    2016-01-01

    As next generation exoplanet imagers are making their first discoveries, the largest population of stars in the Galaxy, the M dwarfs, are largely unaccounted for in their surveys. However, RV trends and micro lensing have revealed that M dwarfs host a substantial population of Neptune to Jupiter mass planets between ~1-10 AU. The unprecedented sensitivity of NIRCam on the JWST provides direct access to this population of gas-giants. A NIRCam 3 - 5 μm survey for such planets will place critical constraints on planet formation by: 1) measuring the luminosities of young, sub-Jupiter mass planets, 2) providing constraints on the peak in the companion surface density vs. separation distribution, and 3) measuring the frequency of ≤Jupiter mass giants in the outskirts of these systems (>10 AU). We have carefully constructed a sample of nearby, young, late-type stars, performed NIRCam survey simulations, and will report on the expected yield and advantages of JWST compared to current ground based capabilities.

  18. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue.

    PubMed

    Ly, Alice; Buck, Achim; Balluff, Benjamin; Sun, Na; Gorzolka, Karin; Feuchtinger, Annette; Janssen, Klaus-Peter; Kuppen, Peter J K; van de Velde, Cornelis J H; Weirich, Gregor; Erlmeier, Franziska; Langer, Rupert; Aubele, Michaela; Zitzelsberger, Horst; McDonnell, Liam; Aichler, Michaela; Walch, Axel

    2016-08-01

    Formalin-fixed and paraffin-embedded (FFPE) tissue specimens are the gold standard for histological examination, and they provide valuable molecular information in tissue-based research. Metabolite assessment from archived tissue samples has not been extensively conducted because of a lack of appropriate protocols and concerns about changes in metabolite content or chemical state due to tissue processing. We present a protocol for the in situ analysis of metabolite content from FFPE samples using a high-mass-resolution matrix-assisted laser desorption/ionization fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR-MSI) platform. The method involves FFPE tissue sections that undergo deparaffinization and matrix coating by 9-aminoacridine before MALDI-MSI. Using this platform, we previously detected ∼1,500 m/z species in the mass range m/z 50-1,000 in FFPE samples; the overlap compared with fresh frozen samples is 72% of m/z species, indicating that metabolites are largely conserved in FFPE tissue samples. This protocol can be reproducibly performed on FFPE tissues, including small samples such as tissue microarrays and biopsies. The procedure can be completed in a day, depending on the size of the sample measured and raster size used. Advantages of this approach include easy sample handling, reproducibility, high throughput and the ability to demonstrate molecular spatial distributions in situ. The data acquired with this protocol can be used in research and clinical practice. PMID:27414759

  19. Software tools of the Computis European project to process mass spectrometry images.

    PubMed

    Robbe, Marie-France; Both, Jean-Pierre; Prideaux, Brendan; Klinkert, Ivo; Picaud, Vincent; Schramm, Thorsten; Hester, Atfons; Guevara, Victor; Stoeckli, Markus; Roempp, Andreas; Heeren, Ron M A; Spengler, Bernhard; Gala, Olivier; Haan, Serge

    2014-01-01

    Among the needs usually expressed by teams using mass spectrometry imaging, one that often arises is that for user-friendly software able to manage huge data volumes quickly and to provide efficient assistance for the interpretation of data. To answer this need, the Computis European project developed several complementary software tools to process mass spectrometry imaging data. Data Cube Explorer provides a simple spatial and spectral exploration for matrix-assisted laser desorption/ionisation-time of flight (MALDI-ToF) and time of flight-secondary-ion mass spectrometry (ToF-SIMS) data. SpectViewer offers visualisation functions, assistance to the interpretation of data, classification functionalities, peak list extraction to interrogate biological database and image overlay, and it can process data issued from MALDI-ToF, ToF-SIMS and desorption electrospray ionisation (DESI) equipment. EasyReg2D is able to register two images, in American Standard Code for Information Interchange (ASCII) format, issued from different technologies. The collaboration between the teams was hampered by the multiplicity of equipment and data formats, so the project also developed a common data format (imzML) to facilitate the exchange of experimental data and their interpretation by the different software tools. The BioMap platform for visualisation and exploration of MALDI-ToF and DESI images was adapted to parse imzML files, enabling its access to all project partners and, more globally, to a larger community of users. Considering the huge advantages brought by the imzML standard format, a specific editor (vBrowser) for imzML files and converters from proprietary formats to imzML were developed to enable the use of the imzML format by a broad scientific community. This initiative paves the way toward the development of a large panel of software tools able to process mass spectrometry imaging datasets in the future.

  20. Uncertainties and biases of source masses derived from fits of integrated fluxes or image intensities

    NASA Astrophysics Data System (ADS)

    Men'shchikov, A.

    2016-09-01

    Fitting spectral distributions of total fluxes or image intensities are two standard methods for estimating the masses of starless cores and protostellar envelopes. These mass estimates, which are the main source and basis of our knowledge of the origin and evolution of self-gravitating cores and protostars, are uncertain. It is important to clearly understand sources of statistical and systematic errors stemming from the methods and minimize the errors. In this model-based study, a grid of radiative transfer models of starless cores and protostellar envelopes was computed and their total fluxes and image intensities were fitted to derive the model masses. To investigate intrinsic effects related to the physical objects, all observational complications were explicitly ignored. Known true values of the numerical models allow assessment of the qualities of the methods and fitting models, as well as the effects of nonuniform temperatures, far-infrared opacity slope, selected subsets of wavelengths, background subtraction, and angular resolutions. The method of fitting intensities gives more accurate masses for more resolved objects than the method of fitting fluxes. With the latter, a fitting model that assumes optically thin emission gives much better results than the one allowing substantial optical depths. Temperature excesses within the objects above the mass-averaged values skew their spectral shapes towards shorter wavelengths, leading to masses underestimated typically by factors 2-5. With a fixed opacity slope deviating from the true value by a factor of 1.2, masses are inaccurate within a factor of 2. The most accurate masses are estimated by fitting just two or three of the longest wavelength measurements. Conventional algorithm of background subtraction is a likely source of large systematic errors. The absolute values of masses of the unresolved or poorly resolved objects in star-forming regions are uncertain to within at least a factor of 2-3.

  1. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Thiery-Lavenant, Gwendoline; Zavalin, Andre I.; Caprioli, Richard M.

    2013-04-01

    Targeted multiplex imaging mass spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This article describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet.

  2. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    PubMed Central

    Lavenant, Gwendoline Thiery; Zavalin, Andrey I.; Caprioli, Richard M.

    2013-01-01

    Targeted multiplex Imaging Mass Spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This manuscript describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet. PMID:23397138

  3. Automatic registration of imaging mass spectrometry data to the Allen Brain Atlas transcriptome

    NASA Astrophysics Data System (ADS)

    Abdelmoula, Walid M.; Carreira, Ricardo J.; Shyti, Reinald; Balluff, Benjamin; Tolner, Else; van den Maagdenberg, Arn M. J. M.; Lelieveldt, B. P. F.; McDonnell, Liam; Dijkstra, Jouke

    2014-03-01

    Imaging Mass Spectrometry (IMS) is an emerging molecular imaging technology that provides spatially resolved information on biomolecular structures; each image pixel effectively represents a molecular mass spectrum. By combining the histological images and IMS-images, neuroanatomical structures can be distinguished based on their biomolecular features as opposed to morphological features. The combination of IMS data with spatially resolved gene expression maps of the mouse brain, as provided by the Allen Mouse Brain atlas, would enable comparative studies of spatial metabolic and gene expression patterns in life-sciences research and biomarker discovery. As such, it would be highly desirable to spatially register IMS slices to the Allen Brain Atlas (ABA). In this paper, we propose a multi-step automatic registration pipeline to register ABA histology to IMS- images. Key novelty of the method is the selection of the best reference section from the ABA, based on pre-processed histology sections. First, we extracted a hippocampus-specific geometrical feature from the given experimental histological section to initially localize it among the ABA sections. Then, feature-based linear registration is applied to the initially localized section and its two neighbors in the ABA to select the most similar reference section. A non-rigid registration yields a one-to-one mapping of the experimental IMS slice to the ABA. The pipeline was applied on 6 coronal sections from two mouse brains, showing high anatomical correspondence, demonstrating the feasibility of complementing biomolecule distributions from individual mice with the genome-wide ABA transcriptome.

  4. Laser Desorption Ionization Mass Spectrometry Imaging of Drosophila Brain Using Matrix Sublimation versus Modification with Nanoparticles.

    PubMed

    Phan, Nhu T N; Mohammadi, Amir Saeid; Dowlatshahi Pour, Masoumeh; Ewing, Andrew G

    2016-02-01

    Laser desorption ionization mass spectrometry (LDI-MS) is used to image brain lipids in the fruit fly, Drosophila, a common invertebrate model organism in biological and neurological studies. Three different sample preparation methods, including sublimation with two common organic matrixes for matrix-assisted laser desorption ionization (MALDI) and surface-assisted laser desorption ionization (SALDI) using gold nanoparticles, are examined for sample profiling and imaging the fly brain. Recrystallization with trifluoroacetic acid following matrix deposition in MALDI is shown to increase the incorporation of biomolecules with one matrix, resulting in more efficient ionization, but not for the other matrix. The key finding here is that the mass fragments observed for the fly brain slices with different surface modifications are significantly different. Thus, these approaches can be combined to provide complementary analysis of chemical composition, particularly for the small metabolites, diacylglycerides, phosphatidylcholines, and triacylglycerides, in the fly brain. Furthermore, imaging appears to be beneficial using modification with gold nanoparticles in place of matrix in this application showing its potential for cellular and subcellular imaging. The imaging protocol developed here with both MALDI and SALDI provides the best and most diverse lipid chemical images of the fly brain to date with LDI. PMID:26705612

  5. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  6. Mass spectrometry-based metabolomics, analysis of metabolite-protein interactions, and imaging.

    PubMed

    Lee, Do Yup; Bowen, Benjamin P; Northen, Trent R

    2010-08-01

    Our understanding of biology has been greatly improved through recent developments in mass spectrometry, which is providing detailed information on protein and metabolite composition as well as protein-metabolite interactions. The high sensitivity and resolution of mass spectrometry achieved with liquid or gas chromatography allows for detection and quantification of hundreds to thousands of molecules in a single measurement. Where homogenization-based sample preparation and extraction methods result in a loss of spatial information, mass spectrometry imaging technologies provide the in situ distribution profiles of metabolites and proteins within tissues. Mass spectrometry-based analysis of metabolite abundance, protein-metabolite interactions, and spatial distribution of compounds facilitates the high-throughput screening of biochemical reactions, the reconstruction of metabolic networks, biomarker discovery, determination of tissue compositions, and functional annotation of both proteins and metabolites.

  7. Mass spectrometry–based metabolomics, analysis of metabolite-protein interactions, and imaging

    PubMed Central

    Lee, Do Yup; Bowen, Benjamin P.; Northen, Trent R.

    2010-01-01

    Our understanding of biology has been greatly improved through recent developments in mass spectrometry, which is providing detailed information on protein and metabolite composition as well as protein-metabolite interactions. The high sensitivity and resolution of mass spectrometry achieved with liquid or gas chromatography allows for detection and quantification of hundreds to thousands of molecules in a single measurement. Where homogenization-based sample preparation and extraction methods result in a loss of spatial information, mass spectrometry imaging technologies provide the in situ distribution profiles of metabolites and proteins within tissues. Mass spectrometry–based analysis of metabolite abundance, protein-metabolite interactions, and spatial distribution of compounds facilitates the high-throughput screening of biochemical reactions, the reconstruction of metabolic networks, biomarker discovery, determination of tissue compositions, and functional annotation of both proteins and metabolites. PMID:20701590

  8. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  9. CT and MR imaging of the buccal space and buccal space masses.

    PubMed

    Tart, R P; Kotzur, I M; Mancuso, A A; Glantz, M S; Mukherji, S K

    1995-05-01

    The authors describe the normal variations in the buccal space and present the range of buccal space pathologic conditions seen on computed tomographic (CT) and magnetic resonance (MR) images. In a series of 50 patients studied with CT and 30 with MR imaging, the visualization and measurement of the normal facial expression and buccinator muscles, parotidomasseteric fascia, parotid duct, accessory parotid tissue, and facial neurovascular bundle were statistically equivalent. The size of the buccal fat pad was statistically the same from side to side within a given patient. Normal lymph nodes were rarely discernible from the facial neurovascular bundles. In a series of 26 patients with unsuspected buccal space masses, salivary gland tumors were the most common masses. Less frequently, benign lesions (eg, hemangioma and dilated parotid ducts) and soft-tissue malignancies (eg, sarcoma) manifested as buccal space masses. Occasionally, a cheek mass of uncertain cause proved to be lymphadenopathy; however, adenopathy is more commonly associated with clinically evident, deeply infiltrating facial neoplasms. Knowledge of the anatomic variations and expected abnormalities of the buccal space is useful for the radiologist interpreting facial CT or MR images.

  10. The Sheath Transport Observer for the Redistribution of Mass (STORM) Image

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael; Sibeck, David G.; Porter, F. Scott; Carter, J. A.; Cravens, Thomas; Omidi, N.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2008-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversy surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  11. The Sheath Transport Observer for the Redistribution of Mass (STORM) Imager

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Sibeck, David G.; Porter, F. Scott; Burch, J.; Carter, J. A.; Cravens, Thomas; Kuntz, Kip; Omidi, N.; Read, A.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2010-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversies surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  12. Fluorescence Imaging for Visualization of the Ion Cloud in a Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Talbot, Francis O.; Sciuto, Stephen V.; Jockusch, Rebecca A.

    2013-12-01

    Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these "normal" mass spectrometry conditions, the radial ( r) and axial ( z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6 % of r 0 and ~3 % of z 0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a "tickle voltage" is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/ z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/ z (higher q z ) are located in the center of the trapping region, effectively excluding higher m/ z (lower q z ) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution.

  13. Biological tissue imaging with a hybrid cluster SIMS quadrupole time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Carado, A.; Kozole, J.; Passarelli, M.; Winograd, N.; Loboda, A.; Bunch, J.; Wingate, J.; Hankin, J.; Murphy, R.

    2008-12-01

    A 20 keV C 60+ ion source was mounted onto a commercial MALDI/electrospray orthogonal ToF mass spectrometer. Cross-sectional mouse brain and lung slices between 5 and 10 μm prepared by cryostat sectioning were successfully imaged using a DC C 60+ primary ion beam at a spot size of 100 μm. Analysis was performed at room temperature following vacuum drying. An abundance of ions were mapped in all samples, many whose identity can only be found using the MS/MS functionality. We have successfully identified and imaged localizations of diacylglycerol (DAG) ions - 1-palmitoyl-2-oleoyl-glycerol ( m/ z+ 577.5) and 1,2-dioleoyl-glycerol ( m/ z+ 603.5) - in lung tissue. The mouse brain slice revealed strong, distinct localizations of many ions revealing the potential for this technique for biological imaging. Ions throughout the mass range of m/ z+ 50-800 were collected in sufficient quantities to permit unambiguous chemical mapping. Mass resolutions of 12,000 or greater were routinely obtained allowing for more accurate ion mapping than typically seen with ToF-SIMS image analysis.

  14. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging.

    PubMed

    Li, Bin; Bhandari, Dhaka Ram; Janfelt, Christian; Römpp, Andreas; Spengler, Bernhard

    2014-10-01

    The rhizome of Glycyrrhiza glabra (licorice) was analyzed by high-resolution mass spectrometry imaging and tandem mass spectrometry imaging. An atmospheric pressure matrix-assisted laser desorption/ionization imaging ion source was combined with an orbital trapping mass spectrometer in order to obtain high-resolution imaging in mass and space. Sections of the rhizome were imaged with a spatial resolution of 10 μm in the positive ion mode, and a large number of secondary metabolites were localized and identified based on their accurate mass and MS/MS fragmentation patterns. Major tissue-specific metabolites, including free flavonoids, flavonoid glycosides and saponins, were successfully detected and visualized in images, showing their distributions at the cellular level. The analytical power of the technique was tested in the imaging of two isobaric licorice saponins with a mass difference of only 0.02 Da. With a mass resolving power of 140 000 and a bin width of 5 ppm in the image processing, the two compounds were well resolved in full-scan mode, and appeared with different distributions in the tissue sections. The identities of the compounds and their distributions were validated in a subsequent MS/MS imaging experiment, thereby confirming their identities and excluding possible analyte interference. The use of high spatial resolution, high mass resolution and tandem mass spectrometry in imaging experiments provides significant information about the biosynthetic pathway of flavonoids and saponins in legume species, combing the spatially resolved chemical information with morphological details at the microscopic level. Furthermore, the technique offers a scheme capable of high-throughput profiling of metabolites in plant tissues.

  15. Multi-matrix, dual polarity, tandem mass spectrometry imaging strategy applied to a germinated maize seed: toward mass spectrometry imaging of an untargeted metabolome

    DOE PAGESBeta

    Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin

    2015-08-27

    Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows usmore » to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.« less

  16. Multi-matrix, dual polarity, tandem mass spectrometry imaging strategy applied to a germinated maize seed: toward mass spectrometry imaging of an untargeted metabolome

    SciTech Connect

    Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin

    2015-08-27

    Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows us to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.

  17. Skeletal muscle fiber analysis by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometric imaging at high mass and high spatial resolution.

    PubMed

    Tsai, Yu-Hsuan; Bhandari, Dhaka Ram; Garrett, Timothy J; Carter, Christy S; Spengler, Bernhard; Yost, Richard A

    2016-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers with various fiber types. These fibers can be classified into different classes based on their different characteristics. MALDI mass spectrometric imaging (MSI) has been applied to study and visualize different metabolomics profiles of different fiber types. Here, skeletal muscles were analyzed by atmospheric pressure scanning microprobe MALDI-MSI at high spatial and high mass resolution.

  18. Imaging of β-cell mass and insulitis in insulin-dependent (Type 1) diabetes mellitus.

    PubMed

    Di Gialleonardo, Valentina; de Vries, Erik F J; Di Girolamo, Marco; Quintero, Ana M; Dierckx, Rudi A J O; Signore, Alberto

    2012-12-01

    Insulin-dependent (type 1) diabetes mellitus is a metabolic disease with a complex multifactorial etiology and a poorly understood pathogenesis. Genetic and environmental factors cause an autoimmune reaction against pancreatic β-cells, called insulitis, confirmed in pancreatic samples obtained at autopsy. The possibility to noninvasively quantify β-cell mass in vivo would provide important biological insights and facilitate aspects of diagnosis and therapy, including follow-up of islet cell transplantation. Moreover, the availability of a noninvasive tool to quantify the extent and severity of pancreatic insulitis could be useful for understanding the natural history of human insulin-dependent (type 1) diabetes mellitus, to early diagnose children at risk to develop overt diabetes, and to select patients to be treated with immunotherapies aimed at blocking the insulitis and monitoring the efficacy of these therapies. In this review, we outline the imaging techniques currently available for in vivo, noninvasive detection of β-cell mass and insulitis. These imaging techniques include magnetic resonance imaging, ultrasound, computed tomography, bioluminescence and fluorescence imaging, and the nuclear medicine techniques positron emission tomography and single-photon emission computed tomography. Several approaches and radiopharmaceuticals for imaging β-cells and lymphocytic insulitis are reviewed in detail.

  19. The Need for Speed in Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry

    PubMed Central

    Prentice, Boone M.; Caprioli, Richard M.

    2016-01-01

    Imaging mass spectrometry (IMS) has emerged as a powerful analytical tool enabling the direct molecular mapping of many types of tissue. Specifically, matrix-assisted laser desorption/ ionization (MALDI) represents one of the most broadly applicable IMS technologies. In recent years, advances in solid state laser technology, mass spectrometry instrumentation, computer technology, and experimental methodology have produced IMS systems capable of unprecedented data acquisition speeds (>50 pixels/second). In applications of this technology, throughput is an important consideration when designing an IMS experiment. As IMS becomes more widely adopted, continual improvements in experimental setups will be important to address biologically and clinically relevant time scales. PMID:27570788

  20. MALDI Imaging Mass Spectrometry: Spatial Molecular Analysis to Enable a New Age of Discovery

    PubMed Central

    Gessel, Megan M.; Norris, Jeremy L.; Caprioli, Richard M.

    2014-01-01

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) combines the sensitivity and selectivity of mass spectrometry with spatial analysis to provide a new dimension for histological analyses to provide unbiased visualization of the arrangement of biomolecules in tissue. As such, MALDI IMS has the capability to become a powerful new molecular technology for the biological and clinical sciences. In this review, we briefly describe several applications of MALDI IMS covering a range of molecular weights, from drugs to proteins. Current limitations and challenges are discussed along with recent developments to address these issues. PMID:24686089

  1. Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash; Morrison, George H.

    1995-05-01

    The transport of K+, Na+, and Ca2+ were imaged in individual cells with a Cameca IMS-3f ion microscope. Strict cryogenic frozen freeze-dry sample preparations were employed. Ion redistribution artifacts in conventional chemical preparations are discussed. Cryogenically prepared freeze-fractured freeze-dried cultured cells allowed the three-dimensional ion microscopic imaging of elements. As smaller structures in calcium images can be resolved with the 0.5 [mu]m spatial resolution, correlative techniques are needed to confirm their identity. The potentials of reflected light microscopy, scanning electron microscopy and laser scanning confocal microscopy are discussed for microfeature recognition in freeze-fractured freeze-dried cells. The feasibility of using frozen freeze-dried cells for imaging molecular transport at subcellular resolution was tested. Ion microscopy successfully imaged the transport of the isotopically tagged (13C, 15N) amino acid, -arginine. The labeled amino acid was imaged at mass 28 with a Cs+ primary ion beam as the 28(13C15N)- species. After a 4 h exposure of LLC-PK1 kidney cells to 4 mM labeled arginine, the amino acid was localized throughout the cell with a preferential incorporation into the nucleus and nucleolus. An example is also shown of the ion microscopic imaging of sodium borocaptate, an experimental therapeutic drug for brain tumors, in cryogenically prepared frozen freeze-dried Swiss 3T3 cells.

  2. MALDI imaging mass spectrometry: statistical data analysis and current computational challenges

    PubMed Central

    2012-01-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) imaging mass spectrometry, also called MALDI-imaging, is a label-free bioanalytical technique used for spatially-resolved chemical analysis of a sample. Usually, MALDI-imaging is exploited for analysis of a specially prepared tissue section thaw mounted onto glass slide. A tremendous development of the MALDI-imaging technique has been observed during the last decade. Currently, it is one of the most promising innovative measurement techniques in biochemistry and a powerful and versatile tool for spatially-resolved chemical analysis of diverse sample types ranging from biological and plant tissues to bio and polymer thin films. In this paper, we outline computational methods for analyzing MALDI-imaging data with the emphasis on multivariate statistical methods, discuss their pros and cons, and give recommendations on their application. The methods of unsupervised data mining as well as supervised classification methods for biomarker discovery are elucidated. We also present a high-throughput computational pipeline for interpretation of MALDI-imaging data using spatial segmentation. Finally, we discuss current challenges associated with the statistical analysis of MALDI-imaging data. PMID:23176142

  3. SPECT-OPT multimodal imaging enables accurate evaluation of radiotracers for β-cell mass assessments

    PubMed Central

    Eter, Wael A.; Parween, Saba; Joosten, Lieke; Frielink, Cathelijne; Eriksson, Maria; Brom, Maarten; Ahlgren, Ulf; Gotthardt, Martin

    2016-01-01

    Single Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in β-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by stereological analysis of histological pancreatic sections after insulin staining. Typically, stereological methods do not accurately determine the total β-cell volume, which is inconvenient when correlating total pancreatic tracer uptake with BCM. Alternative methods are therefore warranted to cross-validate β-cell imaging using radiotracers. In this study, we introduce multimodal SPECT - optical projection tomography (OPT) imaging as an accurate approach to cross-validate radionuclide-based imaging of β-cells. Uptake of a promising radiotracer for β-cell imaging by SPECT, 111In-exendin-3, was measured by ex vivo-SPECT and cross evaluated by 3D quantitative OPT imaging as well as with histology within healthy and alloxan-treated Brown Norway rat pancreata. SPECT signal was in excellent linear correlation with OPT data as compared to histology. While histological determination of islet spatial distribution was challenging, SPECT and OPT revealed similar distribution patterns of 111In-exendin-3 and insulin positive β-cell volumes between different pancreatic lobes, both visually and quantitatively. We propose ex vivo SPECT-OPT multimodal imaging as a highly accurate strategy for validating the performance of β-cell radiotracers. PMID:27080529

  4. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models.

    PubMed

    Chughtai, Kamila; Jiang, Lu; Greenwood, Tiffany R; Glunde, Kristine; Heeren, Ron M A

    2013-02-01

    The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models. PMID:22930811

  5. Advancements in Imaging Technology for Detection and Diagnosis of Palpable Breast Masses.

    PubMed

    Jaeger, Barbara M; Hong, Andrea S; Letter, Haley; Odell, Matthew C

    2016-06-01

    Breast cancer is the most commonly diagnosed cancer among women worldwide and the most common cause of cancer death in women. The most common presentation of breast cancer is the presence of a palpable mass, whether noted by the patient during breast self-examination or noted during clinical breast examination. There are a variety of imaging modalities now available for the evaluation of a palpable abnormality. A thorough understanding of the indications, risks, and benefits can help the clinician guide the patient through an appropriate, comprehensive imaging work up. PMID:27101239

  6. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes.

    PubMed

    Palau, Jordi; Marchesi, Massimo; Chambon, Julie C C; Aravena, Ramon; Canals, Àngels; Binning, Philip J; Bjerg, Poul L; Otero, Neus; Soler, Albert

    2014-03-15

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ(13)C values from -15.6 to -40.5‰ for TCE and from -18.5 to -32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ(37)Cl values for TCE in the contaminant sources, ranging from +0.53 to +0.66‰. Variations of δ(37)Cl and δ(13)C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies.

  7. Identifying source and formation altitudes of nitrates in drinking water from Réunion Island, France, using a multi-isotopic approach

    NASA Astrophysics Data System (ADS)

    Rogers, Karyne M.; Nicolini, Eric; Gauthier, Virginie

    2012-09-01

    Nitrate concentrations, water isotopes (δ2H and δ18Owater) and associated nitrate isotopes (δ15Nnitrate and δ18Onitrate) from 10 drinking water wells, 5 fresh water springs and the discharge from 3 wastewater treatment stations in Réunion Island, located in the Indian Ocean, were analysed. We used a multi isotopic approach to investigate the extent of nitrate contamination, nitrate formation altitude and source of nitrates in Réunion Island's principal aquifer. Water from these study sites contained between 0.1 and 85.3 mg/L nitrate. δ15Nnitrate values between + 6 and + 14‰ suggested the main sources of contamination were animal and/or human waste, rather than inorganic (synthetic) fertilisers, infiltrating through the subsurface into the saturated zone, due to rainfall leaching of the unsaturated zone at various altitudes of precipitation. Based on δ15Nnitrate values alone, it was not possible to distinguish between animal and human activities responsible for the contamination of each specific catchment. However, using a multi isotope approach (δ18Owater and δ15Nnitrate), it was possible to relate the average altitude of rainfall infiltration (δ18Owater) associated with the nitrate contamination (δ18Onitrate). This relationship between land use, rainfall recharge altitude and isotopic composition (δ15Nnitrate and δ18Owater) discriminated between the influences of human waste at lower (below 600 m elevation) or animal derived contamination (at elevations between 600 and 1300 m). By further comparing the theoretical altitude of nitrate formation calculated by the δ18Onitrate, it was possible to determine that only 5 out of 15 fresh water wells and springs followed the conservative nitrate formation mechanism of 2/3δ18Owater + 1/3δ18Oair, to give nitrate formation altitudes which corresponded to land use activities.

  8. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes.

    PubMed

    Palau, Jordi; Marchesi, Massimo; Chambon, Julie C C; Aravena, Ramon; Canals, Àngels; Binning, Philip J; Bjerg, Poul L; Otero, Neus; Soler, Albert

    2014-03-15

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ(13)C values from -15.6 to -40.5‰ for TCE and from -18.5 to -32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ(37)Cl values for TCE in the contaminant sources, ranging from +0.53 to +0.66‰. Variations of δ(37)Cl and δ(13)C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. PMID:24419287

  9. Mass Spectrometry Imaging and GC-MS Profiling of the Mammalian Peripheral Sensory-Motor Circuit.

    PubMed

    Rubakhin, Stanislav S; Ulanov, Alexander; Sweedler, Jonathan V

    2015-06-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has evolved to become an effective discovery tool in science and clinical diagnostics. Here, chemical imaging approaches are applied to well-defined regions of the mammalian peripheral sensory-motor system, including the dorsal root ganglia (DRG) and adjacent nerves. By combining several MSI approaches, analyte coverage is increased and 195 distinct molecular features are observed. Principal component analysis suggests three chemically different regions within the sensory-motor system, with the DRG and adjacent nerve regions being the most distinct. Investigation of these regions using gas chromatography-mass spectrometry corroborate these findings and reveal important metabolic markers related to the observed differences. The heterogeneity of the structurally, physiologically, and functionally connected regions demonstrates the intricate chemical and spatial regulation of their chemical composition.

  10. MALDI mass spectrometry imaging for the simultaneous location of resveratrol, pterostilbene and viniferins on grapevine leaves.

    PubMed

    Becker, Loïc; Carré, Vincent; Poutaraud, Anne; Merdinoglu, Didier; Chaimbault, Patrick

    2014-01-01

    To investigate the in-situ response to a stress, grapevine leaves have been subjected to mass spectrometry imaging (MSI) experiments. The Matrix Assisted Laser Desorption/Ionisation (MALDI) approach using different matrices has been evaluated. Among all the tested matrices, the 2,5-dihydroxybenzoic acid (DHB) was found to be the most efficient matrix allowing a broader range of detected stilbene phytoalexins. Resveratrol, but also more toxic compounds against fungi such as pterostilbene and viniferins, were identified and mapped. Their spatial distributions on grapevine leaves irradiated by UV show their specific colocation around the veins. Moreover, MALDI MSI reveals that resveratrol (and piceids) and viniferins are not specifically located on the same area when leaves are infected by Plasmopara viticola. Results obtained by MALDI mass spectrometry imaging demonstrate that this technique would be essential to improve the level of knowledge concerning the role of the stilbene phytoalexins involved in a stress event.

  11. Mass Spectrometry Imaging and GC-MS Profiling of the Mammalian Peripheral Sensory-Motor Circuit

    NASA Astrophysics Data System (ADS)

    Rubakhin, Stanislav S.; Ulanov, Alexander; Sweedler, Jonathan V.

    2015-06-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has evolved to become an effective discovery tool in science and clinical diagnostics. Here, chemical imaging approaches are applied to well-defined regions of the mammalian peripheral sensory-motor system, including the dorsal root ganglia (DRG) and adjacent nerves. By combining several MSI approaches, analyte coverage is increased and 195 distinct molecular features are observed. Principal component analysis suggests three chemically different regions within the sensory-motor system, with the DRG and adjacent nerve regions being the most distinct. Investigation of these regions using gas chromatography-mass spectrometry corroborate these findings and reveal important metabolic markers related to the observed differences. The heterogeneity of the structurally, physiologically, and functionally connected regions demonstrates the intricate chemical and spatial regulation of their chemical composition.

  12. Mass Spectrometry Imaging and GC-MS Profiling of the Mammalian Peripheral Sensory-Motor Circuit

    PubMed Central

    Rubakhin, Stanislav S.; Ulanov, Alexander; Sweedler, Jonathan V.

    2015-01-01

    Matrix-assisted laser desorption / ionization-mass spectrometry imaging (MSI) has evolved to become an effective discovery tool in science and clinical diagnostics. Here, chemical imaging approaches are applied to well-defined regions of the mammalian peripheral sensory-motor system, including the dorsal root ganglia (DRG) and adjacent nerves. By combining several MSI approaches, analyte coverage is increased and 195 distinct molecular features are observed. Principal component analysis suggests three chemically different regions within the sensory-motor system, with the DRG and adjacent nerve regions being the most distinct. Investigation of these regions using gas chromatography-mass spectrometry corroborate these findings and reveal important metabolic markers related to the observed differences. The heterogeneity of the structurally, physiologically, and functionally connected regions demonstrates the intricate chemical and spatial regulation of their chemical composition. PMID:25822927

  13. Ambient Mass Spectrometry Imaging with Picosecond Infrared Laser Ablation Electrospray Ionization (PIR-LAESI).

    PubMed

    Zou, Jing; Talbot, Francis; Tata, Alessandra; Ermini, Leonardo; Franjic, Kresimir; Ventura, Manuela; Zheng, Jinzi; Ginsberg, Howard; Post, Martin; Ifa, Demian R; Jaffray, David; Miller, R J Dwayne; Zarrine-Afsar, Arash

    2015-12-15

    A picosecond infrared laser (PIRL) is capable of cutting through biological tissues in the absence of significant thermal damage. As such, PIRL is a standalone surgical scalpel with the added bonus of minimal postoperative scar tissue formation. In this work, a tandem of PIRL ablation with electrospray ionization (PIR-LAESI) mass spectrometry is demonstrated and characterized for tissue molecular imaging, with a limit of detection in the range of 100 nM for reserpine or better than 5 nM for verapamil in aqueous solution. We characterized PIRL crater size using agar films containing Rhodamine. PIR-LAESI offers a 20-30 μm vertical resolution (∼3 μm removal per pulse) and a lateral resolution of ∼100 μm. We were able to detect 25 fmol of Rhodamine in agar ablation experiments. PIR-LAESI was used to map the distribution of endogenous methoxykaempferol glucoronide in zebra plant (Aphelandra squarrosa) leaves producing a localization map that is corroborated by the literature. PIR-LAESI was further used to image the distribution inside mouse kidneys of gadoteridol, an exogenous magnetic resonance contrast agent intravenously injected. Parallel mass spectrometry imaging (MSI) using desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) were performed to corroborate PIR-LAESI images of the exogenous agent. We further show that PIR-LAESI is capable of desorption ionization of proteins as well as phospholipids. This comparative study illustrates that PIR-LAESI is an ion source for ambient mass spectrometry applications. As such, a future PIRL scalpel combined with secondary ionization such as ESI and mass spectrometry has the potential to provide molecular feedback to guide PIRL surgery. PMID:26561279

  14. Imaging mass spectrometry: Molecular microscopy for the new age of biology and medicine.

    PubMed

    Caprioli, Richard M

    2016-06-01

    Imaging mass spectrometry provides a powerful tool for monitoring and discovery of molecular processes in the spatial domain in tissues for research and practical applications in both biology and medicine. This technology directly measures molecular compounds in tissues without the use of target-specific reagents such as antibodies, is applicable to a wide variety of analytes, and can provide spatial resolutions below the single cell level. Importantly, it has paradigm shifting capabilities in clinical applications, especially for anatomic pathology.

  15. Computer-aided diagnosis of peripheral soft tissue masses based on ultrasound imaging.

    PubMed

    Chiou, Hong-Jen; Chen, Chih-Yen; Liu, Tzu-Chiang; Chiou, See-Ying; Wang, Hsin-Kai; Chou, Yi-Hong; Chiang, Huihua Kenny

    2009-07-01

    Medical ultrasound (US) has been widely used for distinguishing benign from malignant peripheral soft tissue tumors. However, diagnosis by US is subjective and depends on the experience of the radiologists. The rarity of peripheral soft tissue tumors can make them easily neglected and this frequently leads to delayed diagnosis, which results in a much higher death rate than with other tumors. In this paper, we developed a computer-aided diagnosis (CAD) system to diagnose peripheral soft tissue masses on US images. We retrospectively evaluated 49 cases of pathologically proven peripheral soft tissue masses (32 benign, 17 malignant). The proposed CAD system includes three main procedures: image pre-processing and region-of-interest (ROI) segmentation, feature extraction and statistics-based discriminant analysis (DA). We developed a depth-normalization factor (DNF) to compensate for the influence of the depth setting on the apparent size of the ROI. After image pre-processing and normalization, five features, namely area (A), boundary transition ratio (T), circularity (C), high intensity spots (H) and uniformity (U), were extracted from the US images. A DA function was then employed to analyze these features. A CAD algorithm was then devised for differentiating benign from malignant masses. The CAD system achieved an accuracy of 87.8%, a sensitivity of 88.2%, a specificity of 87.5%, a positive predictive value (PPV) 78.9% and a negative predictive value (NPV) 93.3%. These results indicate that the CAD system is valuable as a means of providing a second diagnostic opinion when radiologists carry out peripheral soft tissue mass diagnosis.

  16. Ambient Mass Spectrometry Imaging with Picosecond Infrared Laser Ablation Electrospray Ionization (PIR-LAESI).

    PubMed

    Zou, Jing; Talbot, Francis; Tata, Alessandra; Ermini, Leonardo; Franjic, Kresimir; Ventura, Manuela; Zheng, Jinzi; Ginsberg, Howard; Post, Martin; Ifa, Demian R; Jaffray, David; Miller, R J Dwayne; Zarrine-Afsar, Arash

    2015-12-15

    A picosecond infrared laser (PIRL) is capable of cutting through biological tissues in the absence of significant thermal damage. As such, PIRL is a standalone surgical scalpel with the added bonus of minimal postoperative scar tissue formation. In this work, a tandem of PIRL ablation with electrospray ionization (PIR-LAESI) mass spectrometry is demonstrated and characterized for tissue molecular imaging, with a limit of detection in the range of 100 nM for reserpine or better than 5 nM for verapamil in aqueous solution. We characterized PIRL crater size using agar films containing Rhodamine. PIR-LAESI offers a 20-30 μm vertical resolution (∼3 μm removal per pulse) and a lateral resolution of ∼100 μm. We were able to detect 25 fmol of Rhodamine in agar ablation experiments. PIR-LAESI was used to map the distribution of endogenous methoxykaempferol glucoronide in zebra plant (Aphelandra squarrosa) leaves producing a localization map that is corroborated by the literature. PIR-LAESI was further used to image the distribution inside mouse kidneys of gadoteridol, an exogenous magnetic resonance contrast agent intravenously injected. Parallel mass spectrometry imaging (MSI) using desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) were performed to corroborate PIR-LAESI images of the exogenous agent. We further show that PIR-LAESI is capable of desorption ionization of proteins as well as phospholipids. This comparative study illustrates that PIR-LAESI is an ion source for ambient mass spectrometry applications. As such, a future PIRL scalpel combined with secondary ionization such as ESI and mass spectrometry has the potential to provide molecular feedback to guide PIRL surgery.

  17. Imaging of Proteins in Tissue Samples Using Nanospray Desorption Electrospray Ionization Mass Spectrometry.

    PubMed

    Hsu, Cheng-Chih; Chou, Pi-Tai; Zare, Richard N

    2015-11-17

    Chemical maps of tissue samples provide important information on biological processes therein. Recently, advances in tissue imaging have been achieved using ambient ionization techniques, such as desorption electrospray ionization mass spectrometry (DESI-MS), but such techniques have been almost exclusively confined to the mapping of lipids and metabolites. We report here the use of nanospray desorption electrospray ionization (nanoDESI) that allows us to image proteins in tissue samples in a label-free manner at atmospheric pressure with only minimum sample preparation. Multiply charged proteins with masses up to 15 kDa were successfully detected by nanoDESI using an LTQ Orbitrap mass spectrometer. In an adult mice brain section, expression of proteins including ubiquitin, β-thymosin, myelin basic protein, and hemoglobin were spatially mapped and characterized. We also determined the location of methylation on myelin basic protein. This imaging modality was further implemented to MYC-induced lymphomas. We observed an array of truncated proteins in the region where normal thymus cells were infiltrated by tumor cells, in contrast to healthy tissue.

  18. Uncommon primary pelvic retroperitoneal masses in adults: a pattern-based imaging approach.

    PubMed

    Shanbhogue, Alampady K; Fasih, Najla; Macdonald, David B; Sheikh, Adnan M; Menias, Christine O; Prasad, Srinivasa R

    2012-01-01

    There is a broad spectrum of primary pelvic retroperitoneal masses in adults that demonstrate characteristic epidemiologic and histopathologic features and natural histories. These masses may be classified into five distinct subgroups using a pattern-based approach that takes anatomic distribution and certain imaging characteristics into account, allowing greater accuracy in their detection and characterization and helping to optimize patient management. The five groups are cystic (serous and mucinous epithelial neoplasms, pelvic lymphangioma, tailgut cyst, ancient schwannoma), vascular or hypervascular (solitary fibrous tumor, paraganglioma, pelvic arteriovenous malformation, Klippel-Trénaunay-Weber syndrome, extraintestinal GIST [gastrointestinal stromal tumor]), fat-containing (lipoma, liposarcoma, myelolipoma, presacral teratoma), calcified (calcified lymphocele, calcified rejected transplant kidney, rare sarcomas), and myxoid (schwannoma, plexiform neurofibroma, myxoma).Cross-sectional imaging modalities help differentiate the more common gynecologic neoplasms from more unusual masses. In particular, the tissue-specific multiplanar capability of high-resolution magnetic resonance imaging permits better tumor localization and internal characterization, thereby serving as a road map for surgery.

  19. Identification of Biomarkers of Necrosis in Xenografts Using Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fernández, Roberto; Garate, Jone; Lage, Sergio; Terés, Silvia; Higuera, Mónica; Bestard-Escalas, Joan; López, Daniel H.; Guardiola-Serrano, Francisca; Escribá, Pablo V.; Barceló-Coblijn, Gwendolyn; Fernández, José A.

    2016-02-01

    Xenografts are commonly used to test the effect of new drugs on human cancer. However, because of their heterogeneity, analysis of the results is often controversial. Part of the problem originates in the existence of tumor cells at different metabolic stages: from metastatic to necrotic cells, as it happens in real tumors. Imaging mass spectrometry is an excellent solution for the analysis of the results as it yields detailed information not only on the composition of the tissue but also on the distribution of the biomolecules within the tissue. Here, we use imaging mass spectrometry to determine the distribution of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and their plasmanyl- and plasmenylether derivatives (PC-P/O and PE-P/O) in xenografts of five different tumor cell lines: A-549, NCI-H1975, BX-PC3, HT29, and U-87 MG. The results demonstrate that the necrotic areas showed a higher abundance of Na+ adducts and of PC-P/O species, whereas a large abundance of PE-P/O species was found in all the xenografts. Thus, the PC/PC-ether and Na+/K+ ratios may highlight the necrotic areas while an increase on the number of PE-ether species may be pointing to the existence of viable tumor tissues. Furthermore, the existence of important changes in the concentration of Na+ and K+ adducts between different tissues has to be taken into account while interpreting the imaging mass spectrometry results.

  20. Computerized determination scheme for histological classification of breast mass using objective features corresponding to clinicians' subjective impressions on ultrasonographic images.

    PubMed

    Hizukuri, Akiyoshi; Nakayama, Ryohei; Kashikura, Yumi; Takase, Haruhiko; Kawanaka, Hiroharu; Ogawa, Tomoko; Tsuruoka, Shinji

    2013-10-01

    It is often difficult for clinicians to decide correctly on either biopsy or follow-up for breast lesions with masses on ultrasonographic images. The purpose of this study was to develop a computerized determination scheme for histological classification of breast mass by using objective features corresponding to clinicians' subjective impressions for image features on ultrasonographic images. Our database consisted of 363 breast ultrasonographic images obtained from 363 patients. It included 150 malignant (103 invasive and 47 noninvasive carcinomas) and 213 benign masses (87 cysts and 126 fibroadenomas). We divided our database into 65 images (28 malignant and 37 benign masses) for training set and 298 images (122 malignant and 176 benign masses) for test set. An observer study was first conducted to obtain clinicians' subjective impression for nine image features on mass. In the proposed method, location and area of the mass were determined by an experienced clinician. We defined some feature extraction methods for each of nine image features. For each image feature, we selected the feature extraction method with the highest correlation coefficient between the objective features and the average clinicians' subjective impressions. We employed multiple discriminant analysis with the nine objective features for determining histological classification of mass. The classification accuracies of the proposed method were 88.4 % (76/86) for invasive carcinomas, 80.6 % (29/36) for noninvasive carcinomas, 86.0 % (92/107) for fibroadenomas, and 84.1 % (58/69) for cysts, respectively. The proposed method would be useful in the differential diagnosis of breast masses on ultrasonographic images as diagnosis aid.

  1. From pixel to voxel: a deeper view of biological tissue by 3D mass spectral imaging

    PubMed Central

    Ye, Hui; Greer, Tyler; Li, Lingjun

    2011-01-01

    Three dimensional mass spectral imaging (3D MSI) is an exciting field that grants the ability to study a broad mass range of molecular species ranging from small molecules to large proteins by creating lateral and vertical distribution maps of select compounds. Although the general premise behind 3D MSI is simple, factors such as choice of ionization method, sample handling, software considerations and many others must be taken into account for the successful design of a 3D MSI experiment. This review provides a brief overview of ionization methods, sample preparation, software types and technological advancements driving 3D MSI research of a wide range of low- to high-mass analytes. Future perspectives in this field are also provided to conclude that the positive and promises ever-growing applications in the biomedical field with continuous developments of this powerful analytical tool. PMID:21320052

  2. Ion attachment mass spectrometry combined with infrared image furnace for thermal analysis: evolved gas analysis studies.

    PubMed

    Kitahara, Yuki; Takahashi, Seiji; Kuramoto, Noriyuki; Sala, Martin; Tsugoshi, Takahisa; Sablier, Michel; Fujii, Toshihiro

    2009-04-15

    A well-established ion attachment mass spectrometer (IAMS) is combined with an in-house single-atom infrared image furnace (IIF) specifically for thermal analysis studies. Besides the detection of many chemical species at atmospheric pressure, including free radical intermediates, the ion attachment mass spectrometer can also be used for the analysis of products emanating from temperature-programmed pyrolysis. The performance and applicability of the IIF-IAMS is illustrated with poly(tetrafluoroethylene) (PTFE) samples. The potential of the system for the analysis of oxidative pyrolysis is also considered. Temperature-programmed decomposition of PTFE gave constant slopes of the plots of temperature versus signal intensity in a defined region and provided an apparent activation energy of 28.8 kcal/mol for the PTFE decomposition product (CF(2))(3). A brief comparison with a conventional pyrolysis gas chromatography/mass spectrometry system is also given.

  3. Imaging Discovery of a Low-Mass Companion Around HR 3549

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, Karl; Mawet, Dimitri; David, Trevor; Bottom, Michael; Hinkley, Sasha; Padgett, Deborah; Mennesson, Bertrand; Serabyn, Eugene; Morales, Farisa Y.; Kuhn, Jonas

    2015-12-01

    We report the discovery of a low-mass companion to HR 3549 , an A0V star surrounded by a debris disk with a warm excess detected by WISE. We imaged the companion at the Very Large Telescope with NAOS-CONICA in the L-band in January 2013 and January 2015. The companion is at a projected separation of 80 AU and position angle of 157° . Our age estimate for this object corresponds to a mass in the range 15-80 M J , spanning the brown dwarf regime, and so HR 3549 b is another recent addition to the growing list of brown dwarf desert objects with extreme mass ratios.

  4. Probing neuropeptide signaling at the organ and cellular domains via imaging mass spectrometry.

    PubMed

    Ye, Hui; Greer, Tyler; Li, Lingjun

    2012-08-30

    Imaging mass spectrometry (IMS) has evolved to be a promising technology due to its ability to detect a broad mass range of molecular species and create density maps for selected compounds. It is currently one of the most useful techniques to determine the spatial distribution of neuropeptides in cells and tissues. Although IMS is conceptually simple, sample preparation steps, mass analyzers, and software suites are just a few of the factors that contribute to the successful design of a neuropeptide IMS experiment. This review provides a brief overview of IMS sampling protocols, instrumentation, data analysis tools, technological advancements and applications to neuropeptide localization in neurons and endocrine tissues. Future perspectives in this field are also provided, concluding that neuropeptide IMS would greatly facilitate studies of neuronal network and biomarker discovery.

  5. Improved MALDI-TOF Imaging Yields Increased Protein Signals at High Molecular Mass *

    PubMed Central

    Leinweber, Barbara D.; Tsaprailis, George; Monks, Terrence J.; Lau, Serrine S.

    2009-01-01

    Matrix assisted laser desorption ionization (MALDI) mass spectrum images are created from an array of mass spectra collected over a tissue surface. We have increased the mass range of proteins that can be detected in tissue sections from kidneys of different rodent species, by a modification of the sandwich technique which involves co-crystallizing matrix with analyte. A tissue section is placed upon a drop of sinapinic acid matrix dissolved in 90% ethanol and 0.5% Triton X-100. Once the matrix has dried, a seed layer of sinapinic crystals is added as a dispersion in xylene. Additional layers of sinapinic acid are added as solutions in 90% ethanol followed by 50% acetonitrile. Numerous peaks with signal to noise ratio of four or greater are observed between 25 kDa to 50 kDa. This represents approximately 10 times as many peaks as are detected using traditional matrix spotting and spraying. PMID:18926723

  6. Relationship between perceived body image and recorded body mass index among Kuwaiti female university students.

    PubMed

    Kabir, Yearul; Zafar, Tasleem A; Waslien, Carol

    2013-01-01

    The associations between body image and attitudes toward obesity and thinness and their associations with measured body mass index (BMI) among female students of Kuwait University (n = 137) was examined in 2008. The body image perceptions were assessed using nine female silhouettes figures. The difference between current perceived body image (PBI) and ideal body image (IBI) was used as a measure of body image dissatisfaction (BID). Students tended to have a bigger PBI and smaller IBI than would be expected from their BMI category, leading to high levels of BID in each BMI category. PBI, IBI, BID, RBI were highly correlated with each other, and BMI was significantly correlated with each of them. The coefficients of these associations were not significantly altered in multiple regression analysis by the addition of potential confounding variables, such as age, marital status, physical activity, dieting behavior, parental education, and family size. These results suggest that PBI and a desire to be thinner were strongly related to BID and that thinness is becoming more desired in Kuwaiti society than the plump body image of the past.

  7. MR imaging of benign soft-tissue masses of the foot and ankle.

    PubMed

    Llauger, J; Palmer, J; Monill, J M; Franquet, T; Bagué, S; Rosón, N

    1998-01-01

    Approximately 75% of all biopsy-proved soft-tissue masses of the foot and ankle are benign tumors or nontumoral lesions representing a variety of histologic types. In some cases, it may be difficult if not impossible to identify the lesion; however, careful analysis of the magnetic resonance (MR) imaging findings and correlation of these findings with the patient's clinical history can usually suggest a more specific diagnosis, particularly in the most common benign tumors of the foot (e.g., fibromatosis, cavernous hemangioma) and in nonneoplastic soft-tissue lesions such as Morton neuroma, ganglion cyst, and plantar fasciitis. In addition, a specific diagnosis can almost always be made in patients with pigmented villonodular synovitis (PVNS) or giant cell tumor (GCT) of the tendon sheath. The MR imaging appearance of PVNS consists of multiple synovial lesions with low or intermediate signal intensity on T1-weighted images and low signal intensity on T2-weighted and gradient-echo images. GCTs of the tendon sheath usually have areas of low signal intensity on both T1- and T2-weighted images due to the paramagnetic effect of hemosiderin. Awareness and understanding of the underlying pathologic findings in lesions of the foot and ankle aid in MR imaging interpretation.

  8. Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping.

    PubMed

    Van de Plas, Raf; Yang, Junhai; Spraggins, Jeffrey; Caprioli, Richard M

    2015-04-01

    We describe a predictive imaging modality created by 'fusing' two distinct technologies: imaging mass spectrometry (IMS) and microscopy. IMS-generated molecular maps, rich in chemical information but having coarse spatial resolution, are combined with optical microscopy maps, which have relatively low chemical specificity but high spatial information. The resulting images combine the advantages of both technologies, enabling prediction of a molecular distribution both at high spatial resolution and with high chemical specificity. Multivariate regression is used to model variables in one technology, using variables from the other technology. We demonstrate the potential of image fusion through several applications: (i) 'sharpening' of IMS images, which uses microscopy measurements to predict ion distributions at a spatial resolution that exceeds that of measured ion images by ten times or more; (ii) prediction of ion distributions in tissue areas that were not measured by IMS; and (iii) enrichment of biological signals and attenuation of instrumental artifacts, revealing insights not easily extracted from either microscopy or IMS individually.

  9. DENSITY DIAGNOSTICS OF CORONAL MASS EJECTION CORES WITH THE SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Landi, E.; Miralles, M. P.

    2014-01-01

    In this Letter, we investigate the application of the intensity ratio from pairs of narrow-band images from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, the Extreme Ultraviolet (EUV) Imager (EUVI) on board the Sun Earth Connection Coronal and Heliospheric Investigation, and the EUV Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory, to density diagnostics of optically thin plasmas. By inspecting the filtered spectra allowed by each instrument's effective area, we find that ratios between AIA images in the 171 Å and 193 Å channels can be used to determine the plasma electron density at transition region temperatures. This diagnostic potential is due to a pair of O V transitions which dominate the effective spectra of these two channels at temperatures around ≈2.5-3.0 × 10{sup 5} K. The temperature and electron density ranges where the 171/193 ratio is density sensitive are relevant for the cores of accelerating coronal mass ejections (CMEs) in the inner solar corona. We discuss how AIA series of images can be used for simultaneous temperature and density diagnostics of CME cores.

  10. Mass-Spectrometry Based Oxidative Lipidomics and Lipid Imaging: Applications in Traumatic Brain Injury

    PubMed Central

    Sparvero, LJ; Amoscato, AA; Kochanek, PM; Pitt, BR; Kagan, VE; Bayır, H

    2012-01-01

    Lipids, particularly phospholipids, are fundamental to central nervous system (CNS) tissue architecture and function. Endogenous polyunsaturated fatty acid chains of phospholipids possess cis-double bonds each separated by one methylene group. These phospholipids are very susceptible to free-radical attack and oxidative modifications. A combination of analytical methods including different versions of chromatography and mass spectrometry allows obtaining detailed information on the content and distribution of lipids and their oxidation products thus constituting the newly emerging field of oxidative lipidomics. It is becoming evident that specific oxidative modifications of lipids are critical to a number of cellular functions, disease states and responses to oxidative stresses. Oxidative lipidomics is beginning to provide new mechanistic insights into traumatic brain injury (TBI) which may have significant translational potential for development of therapies in acute CNS insults. In particular, selective oxidation of a mitochondria-specific phospholipid, cardiolipin, has been associated with the initiation and progression of apoptosis in injured neurons thus indicating new drug discovery targets. Further, imaging mass-spectrometry represents an exciting new opportunity for correlating maps of lipid profiles and their oxidation products with structure and neuropathology. This review is focused on these most recent advancements in the field of lipidomics and oxidative lipidomics based on the applications of mass-spectrometry and imaging mass-spectrometry as they relate to studies of phospholipids in TBI. PMID:20950335

  11. Surface-transfer mass spectrometry imaging on a monoisotopic silver nanoparticle enhanced target.

    PubMed

    Nizioł, Joanna; Ruman, Tomasz

    2013-12-17

    A new method for both high-resolution laser desorption/ionization mass spectrometry and mass spectrometry imaging is described. The method could be considered as matrix-less because no additional matrix is needed for MS measurements and also because of surface-assisted laser desorption/ionization due to the nanoparticle-rich surface. The standard matrix-assisted laser desorption/ionization target containing unique monoisotopic cationic (109)Ag nanoparticles ((109)AgNPs) was used for high-resolution mass spectrometry imaging of fingermarks and also plant flower and plant stem cross sections with high mass accuracy. The methodology presented in this work allowed visualization of two drugs--anti-inflammatory ibuprofen and anticancer 5-fluorouracil--along with many other compounds found on the finger. Moreover, visualization of herbicide localization inside of the plant stem is also shown. The simple inorganic ions ionized by silver nanoparticles were also found and may be used for their localization in biological material. In addition, the methodology presented here does not require freezing of species or slice-making equipment. PMID:24251730

  12. Chemometric analysis of MALDI mass spectrometric images of three-dimensional cell culture systems

    PubMed Central

    Weaver, Eric M.; Hummon, Amanda B.; Keithley, Richard B.

    2015-01-01

    As imaging mass spectrometry (IMS) has grown in popularity in recent years, the applications of this technique have become increasingly diverse. Currently there is a need for sophisticated data processing strategies that maximize the information gained from large IMS data sets. Traditional two-dimensional heat maps of single ions generated in IMS experiments lack analytical detail, yet manual analysis of multiple peaks across hundreds of pixels within an entire image is time-consuming, tedious and subjective. Here, various chemometric methods were used to analyze data sets obtained by matrix-assisted laser desorption/ionization (MALDI) IMS of multicellular spheroids. HT-29 colon carcinoma multicellular spheroids are an excellent in vitro model system that mimic the three dimensional morphology of tumors in vivo. These data are especially challenging to process because, while different microenvironments exist, the cells are clonal which can result in strong similarities in the mass spectral profiles within the image. In this proof-of-concept study, a combination of principal component analysis (PCA), clustering methods, and linear discriminant analysis was used to identify unique spectral features present in spatially heterogeneous locations within the image. Overall, the application of these exploratory data analysis tools allowed for the isolation and detection of proteomic changes within IMS data sets in an easy, rapid, and unsupervised manner. Furthermore, a simplified, non-mathematical theoretical introduction to the techniques is provided in addition to full command routines within the MATLAB programming environment, allowing others to easily utilize and adapt this approach. PMID:26604989

  13. Mass Spectrometry Imaging and Identification of Peptides Associated with Cephalic Ganglia Regeneration in Schmidtea mediterranea.

    PubMed

    Ong, Ta-Hsuan; Romanova, Elena V; Roberts-Galbraith, Rachel H; Yang, Ning; Zimmerman, Tyler A; Collins, James J; Lee, Ji Eun; Kelleher, Neil L; Newmark, Phillip A; Sweedler, Jonathan V

    2016-04-01

    Tissue regeneration is a complex process that involves a mosaic of molecules that vary spatially and temporally. Insights into the chemical signaling underlying this process can be achieved with a multiplex and untargeted chemical imaging method such as mass spectrometry imaging (MSI), which can enablede novostudies of nervous system regeneration. A combination of MSI and multivariate statistics was used to differentiate peptide dynamics in the freshwater planarian flatwormSchmidtea mediterraneaat different time points during cephalic ganglia regeneration. A protocol was developed to makeS. mediterraneatissues amenable for MSI. MS ion images of planarian tissue sections allow changes in peptides and unknown compounds to be followed as a function of cephalic ganglia regeneration. In conjunction with fluorescence imaging, our results suggest that even though the cephalic ganglia structure is visible after 6 days of regeneration, the original chemical composition of these regenerated structures is regained only after 12 days. Differences were observed in many peptides, such as those derived from secreted peptide 4 and EYE53-1. Peptidomic analysis further identified multiple peptides from various known prohormones, histone proteins, and DNA- and RNA-binding proteins as being associated with the regeneration process. Mass spectrometry data also facilitated the identification of a new prohormone, which we have named secreted peptide prohormone 20 (SPP-20), and is up-regulated during regeneration in planarians.

  14. Interpolation of longitudinal shape and image data via optimal mass transport

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhu, Liang-Jia; Bouix, Sylvain; Tannenbaum, Allen

    2014-03-01

    Longitudinal analysis of medical imaging data has become central to the study of many disorders. Unfortunately, various constraints (study design, patient availability, technological limitations) restrict the acquisition of data to only a few time points, limiting the study of continuous disease/treatment progression. Having the ability to produce a sensible time interpolation of the data can lead to improved analysis, such as intuitive visualizations of anatomical changes, or the creation of more samples to improve statistical analysis. In this work, we model interpolation of medical image data, in particular shape data, using the theory of optimal mass transport (OMT), which can construct a continuous transition from two time points while preserving "mass" (e.g., image intensity, shape volume) during the transition. The theory even allows a short extrapolation in time and may help predict short-term treatment impact or disease progression on anatomical structure. We apply the proposed method to the hippocampus-amygdala complex in schizophrenia, the heart in atrial fibrillation, and full head MR images in traumatic brain injury.

  15. On the autonomous detection of coronal mass ejections in heliospheric imager data

    NASA Astrophysics Data System (ADS)

    Tappin, S. J.; Howard, T. A.; Hampson, M. M.; Thompson, R. N.; Burns, C. E.

    2012-05-01

    We report on the development of an Automatic Coronal Mass Ejection (CME) Detection tool (AICMED) for the Solar Mass Ejection Imager (SMEI). CMEs observed with heliospheric imagers are much more difficult to detect than those observed by coronagraphs as they have a lower contrast compared with the background light, have a larger range of intensity variation and are easily confused with other transient activity. CMEs appear in SMEI images as very faint often-fragmented arcs amongst a much brighter and often variable background. AICMED operates along the same lines as Computer Aided CME Tracking (CACTus), using the Hough Transform on elongation-time J-maps to extract straight lines from the data set. We compare AICMED results with manually measured CMEs on almost three years of data from early in SMEI operations. AICMED identified 83 verifiable events. Of these 46 could be matched with manually identified events, the majority of the non-detections can be explained. The remaining 37 AICMED events were newly discovered CMEs. The proportion of false identification was high, at 71% of the autonomously detected events. We find that AICMED is very effective as a region of interest highlighter, and is a promising first step in autonomous heliospheric imager CME detection, but the SMEI data are too noisy for the tool to be completely automated.

  16. Mass Spectrometry Imaging and Identification of Peptides Associated with Cephalic Ganglia Regeneration in Schmidtea mediterranea*

    PubMed Central

    Ong, Ta-Hsuan; Romanova, Elena V.; Roberts-Galbraith, Rachel H.; Yang, Ning; Zimmerman, Tyler A.; Collins, James J.; Lee, Ji Eun; Kelleher, Neil L.; Newmark, Phillip A.; Sweedler, Jonathan V.

    2016-01-01

    Tissue regeneration is a complex process that involves a mosaic of molecules that vary spatially and temporally. Insights into the chemical signaling underlying this process can be achieved with a multiplex and untargeted chemical imaging method such as mass spectrometry imaging (MSI), which can enable de novo studies of nervous system regeneration. A combination of MSI and multivariate statistics was used to differentiate peptide dynamics in the freshwater planarian flatworm Schmidtea mediterranea at different time points during cephalic ganglia regeneration. A protocol was developed to make S. mediterranea tissues amenable for MSI. MS ion images of planarian tissue sections allow changes in peptides and unknown compounds to be followed as a function of cephalic ganglia regeneration. In conjunction with fluorescence imaging, our results suggest that even though the cephalic ganglia structure is visible after 6 days of regeneration, the original chemical composition of these regenerated structures is regained only after 12 days. Differences were observed in many peptides, such as those derived from secreted peptide 4 and EYE53-1. Peptidomic analysis further identified multiple peptides from various known prohormones, histone proteins, and DNA- and RNA-binding proteins as being associated with the regeneration process. Mass spectrometry data also facilitated the identification of a new prohormone, which we have named secreted peptide prohormone 20 (SPP-20), and is up-regulated during regeneration in planarians. PMID:26884331

  17. Imaging in Rare and Atypical Sinonasal Masses: An Interesting Case Series

    PubMed Central

    Prasad, Akhila; Baruah, Deb Kumar; Garga, Umesh Chandra

    2015-01-01

    Sinonasal tumours present a myriad of radiographic findings. While many of these tumours have been well described with regard to their typical sites of origin, age group and radiological appearance we have come across lesions in our daily practice which are exceedingly rare with regard to site of origin in sinonasal cavity. The radiological appearances of 4 such rare and unusual tumours arising in sinonasal region evaluated by cross sectional imaging (CT/MRI) have been illustrated in this article with a purpose to review the radio-pathological correlation of these tumours and to explain the utility of cross-sectional imaging CT and MRI in exploring diagnostic clues. Morphological features and radiological patterns of each tumour have been graded into mild, moderate and severe based on the extent of tumoural involvement. This review is intended to acquaint radiologists with the appearance of atypical sinonasal masses and their radiological appearance on cross sectional imaging to make an early diagnosis. PMID:26816972

  18. MALDI mass spectrometry imaging of formalin-fixed paraffin-embedded tissues in clinical research.

    PubMed

    Gorzolka, Karin; Walch, Axel

    2014-11-01

    The molecular investigation of archived formalin-fixed, paraffin-embedded (FFPE) tissue samples provides the chance to obtain molecular patterns as indicatives for treatment and clinical end points. MALDI mass spectrometry imaging is capable of localizing molecules like proteins and peptides in tissue sections and became a favorite platform for the targeted and non-targeted approaches, especially in clinical investigations for biomarker research. In FFPE tissues the recovery of proteomic information is constrained by fixation-induced cross-links of proteins. The promising new insights obtained from FFPE in combination with the comprehensive patients' data caused much progress in the optimization of MS imaging protocols to investigate FFPE samples. This review presents the past and current research in MALDI MS imaging of FFPE tissues, demonstrating the improvement of analyses, their actual limitations, but also the promising future perspectives for histopathological and tissue-based research.

  19. Modeling of errors in Nakagami imaging: illustration on breast mass characterization.

    PubMed

    Larrue, Aymeric; Noble, J Alison

    2014-05-01

    Nakagami imaging is an attractive tissue characterization method, as the parameter estimated at each location is related to properties of the tissues. The application to clinical ultrasound images is problematic, as the estimation of the parameters is disturbed by the presence of complex structures. We propose to consider separately the different aspects potentially affecting the value of the Nakagami parameters and quantify their effects on the estimation. This framework is applied to the classification of breast masses. Quantitative parameters are computed on two groups of ultrasound images of benign and malignant tumors. A statistical analysis of the result indicated that the previously observed difference between average values of the Nakagami parameters is explained mostly by estimation errors. In the future, new methods for reliable computation of Nakagami parameters need to be developed, and factors of error should be considered in studies using Nakagami parameters.

  20. Development and Application of a High-Resolution Imaging Mass Spectrometer for the Study of Plant Tissues.

    PubMed

    Takahashi, Katsutoshi; Kozuka, Toshiaki; Anegawa, Aya; Nagatani, Akira; Mimura, Tetsuro

    2015-07-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) or imaging mass spectrometry (imaging MS) has been a powerful tool to map the spatial distribution of molecules on the surface of biological materials. This technique has frequently been applied to animal tissue slices for the purpose of mapping proteins, peptides, lipids, sugars or small metabolites to find disease-specific biomarkers or to study drug metabolism. Recently, it has also been applied to intact plant tissues or thin slices thereof using commercial mass spectrometers. The present work is concerned with the refinement of MALDI/laser desorption/ionization (LDI)-Fourier transform ion cyclotron resonance (FTICR)-MS incorporating certain specific features namely, ultra-high mass resolution (>100,000), ultra-high molecular mass accuracy (<1 p.p.m.) and high spatial resolution (<10 µm) for imaging MS of plant tissues. Employing an in-house built mass spectrometer, the imaging MS analysis of intact Arabidopsis thaliana tissues, namely etiolated seedlings and roots of seedlings, glued to a small transparent ITO (indium tin oxide)-coated conductive glass was performed. A matrix substance was applied to the vacuum-dried intact tissues by sublimation prior to the imaging MS analysis. The images of various small metabolites representing their two-dimensional distribution on the dried intact tissues were obtained with or without different matrix substances. The effects of MALDI matrices on the ionization of small metabolites during imaging MS acquisition are discussed.

  1. High-Spatial and High-Mass Resolution Imaging of Surface Metabolites of Arabidopsis thaliana by Laser Desorption-Ionization Mass Spectrometry Using Colloidal Silver

    SciTech Connect

    Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu; Nikolau, Basil J.; Yeung, Edward S.; and Lee, Young Jin

    2010-03-17

    High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. The LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.

  2. A new and fast image feature selection method for developing an optimal mammographic mass detection scheme

    PubMed Central

    Tan, Maxine; Pu, Jiantao; Zheng, Bin

    2014-01-01

    Purpose: Selecting optimal features from a large image feature pool remains a major challenge in developing computer-aided detection (CAD) schemes of medical images. The objective of this study is to investigate a new approach to significantly improve efficacy of image feature selection and classifier optimization in developing a CAD scheme of mammographic masses. Methods: An image dataset including 1600 regions of interest (ROIs) in which 800 are positive (depicting malignant masses) and 800 are negative (depicting CAD-generated false positive regions) was used in this study. After segmentation of each suspicious lesion by a multilayer topographic region growth algorithm, 271 features were computed in different feature categories including shape, texture, contrast, isodensity, spiculation, local topological features, as well as the features related to the presence and location of fat and calcifications. Besides computing features from the original images, the authors also computed new texture features from the dilated lesion segments. In order to select optimal features from this initial feature pool and build a highly performing classifier, the authors examined and compared four feature selection methods to optimize an artificial neural network (ANN) based classifier, namely: (1) Phased Searching with NEAT in a Time-Scaled Framework, (2) A sequential floating forward selection (SFFS) method, (3) A genetic algorithm (GA), and (4) A sequential forward selection (SFS) method. Performances of the four approaches were assessed using a tenfold cross validation method. Results: Among these four methods, SFFS has highest efficacy, which takes 3%–5% of computational time as compared to GA approach, and yields the highest performance level with the area under a receiver operating characteristic curve (AUC) = 0.864 ± 0.034. The results also demonstrated that except using GA, including the new texture features computed from the dilated mass segments improved the AUC

  3. Mapping of Neuropeptides in the Crustacean Stomatogastric Nervous System by Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Hui, Limei; Kellersberger, Katherine; Li, Lingjun

    2013-01-01

    Considerable effort has been devoted to characterizing the crustacean stomatogastric nervous system (STNS) with great emphasis on comprehensive analysis and mapping distribution of its diverse neuropeptide complement. Previously, immunohistochemistry (IHC) has been applied to this endeavor, yet with identification accuracy and throughput compromised. Therefore, molecular imaging methods are pursued to unequivocally determine the identity and location of the neuropeptides at a high spatial resolution. In this work, we developed a novel, multi-faceted mass spectrometric strategy combining profiling and imaging techniques to characterize and map neuropeptides from the blue crab Callinectes sapidus STNS at the network level. In total, 55 neuropeptides from 10 families were identified from the major ganglia in the C. sapidus STNS for the first time, including the stomatogastric ganglion (STG), the paired commissural ganglia (CoG), the esophageal ganglion (OG), and the connecting nerve stomatogastric nerve ( stn) using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) and the MS/MS capability of this technique. In addition, the locations of multiple neuropeptides were documented at a spatial resolution of 25 μm in the STG and upstream nerve using MALDI-TOF/TOF and high-mass-resolution and high-mass-accuracy MALDI-Fourier transform ion cyclotron resonance (FT-ICR) instrument. Furthermore, distributions of neuropeptides in the whole C. sapidus STNS were examined by imaging mass spectrometry (IMS). Different isoforms from the same family were simultaneously and unambiguously mapped, facilitating the functional exploration of neuropeptides present in the crustacean STNS and exemplifying the revolutionary role of this novel platform in neuronal network studies.

  4. Mapping of neuropeptides in the crustacean stomatogastric nervous system by imaging mass spectrometry.

    PubMed

    Ye, Hui; Hui, Limei; Kellersberger, Katherine; Li, Lingjun

    2013-01-01

    Considerable effort has been devoted to characterizing the crustacean stomatogastric nervous system (STNS) with great emphasis on comprehensive analysis and mapping distribution of its diverse neuropeptide complement. Previously, immunohistochemistry (IHC) has been applied to this endeavor, yet with identification accuracy and throughput compromised. Therefore, molecular imaging methods are pursued to unequivocally determine the identity and location of the neuropeptides at a high spatial resolution. In this work, we developed a novel, multi-faceted mass spectrometric strategy combining profiling and imaging techniques to characterize and map neuropeptides from the blue crab Callinectes sapidus STNS at the network level. In total, 55 neuropeptides from 10 families were identified from the major ganglia in the C. sapidus STNS for the first time, including the stomatogastric ganglion (STG), the paired commissural ganglia (CoG), the esophageal ganglion (OG), and the connecting nerve stomatogastric nerve (stn) using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) and the MS/MS capability of this technique. In addition, the locations of multiple neuropeptides were documented at a spatial resolution of 25 μm in the STG and upstream nerve using MALDI-TOF/TOF and high-mass-resolution and high-mass-accuracy MALDI-Fourier transform ion cyclotron resonance (FT-ICR) instrument. Furthermore, distributions of neuropeptides in the whole C. sapidus STNS were examined by imaging mass spectrometry (IMS). Different isoforms from the same family were simultaneously and unambiguously mapped, facilitating the functional exploration of neuropeptides present in the crustacean STNS and exemplifying the revolutionary role of this novel platform in neuronal network studies.

  5. MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data

    NASA Astrophysics Data System (ADS)

    Spraggins, Jeffrey M.; Rizzo, David G.; Moore, Jessica L.; Rose, Kristie L.; Hammer, Neal D.; Skaar, Eric P.; Caprioli, Richard M.

    2015-06-01

    MALDI imaging mass spectrometry is a highly sensitive and selective tool used to visualize biomolecules in tissue. However, identification of detected proteins remains a difficult task. Indirect identification strategies have been limited by insufficient mass accuracy to confidently link ion images to proteomics data. Here, we demonstrate the capabilities of MALDI FTICR MS for imaging intact proteins. MALDI FTICR IMS provides an unprecedented combination of mass resolving power (~75,000 at m/z 5000) and accuracy (<5ppm) for proteins up to ~12kDa, enabling identification based on correlation with LC-MS/MS proteomics data. Analysis of rat brain tissue was performed as a proof-of-concept highlighting the capabilities of this approach by imaging and identifying a number of proteins including N-terminally acetylated thymosin β4 ( m/z 4,963.502, 0.6ppm) and ATP synthase subunit ɛ ( m/z 5,636.074, -2.3ppm). MALDI FTICR IMS was also used to differentiate a series of oxidation products of S100A8 ( m/z 10,164.03, -2.1ppm), a subunit of the heterodimer calprotectin, in kidney tissue from mice infected with Staphylococcus aureus. S100A8 - M37O/C42O3 ( m/z 10228.00, -2.6ppm) was found to co-localize with bacterial microcolonies at the center of infectious foci. The ability of MALDI FTICR IMS to distinguish S100A8 modifications is critical to understanding calprotectin's roll in nutritional immunity.

  6. Validation of Fuzzy Logic Method for Automated Mass Spectral Classification for Mineral Imaging

    SciTech Connect

    B. Yan; B. Yan; T. R. McJunkiin; D. L. Stoner

    2006-12-01

    Imaging mass spectrometry requires the acquisition and interpretation of hundreds to thousands of individual spectra in order to map the mineral phases within heterogeneous geomatrices. A fuzzy logic inference engine (FLIE) was developed to automate data interpretation. To evaluate the strengths and limitations of FLIE, the chemical images obtained using FLIE were compared with those developed using two chemometric methods: principle component analysis (PCA) and cluster analysis (K-Means). Two heterogeneous geomatrices, a low-grade chalcopyrite ore and basalt, were imaged using a laser-desorption Fourier transform mass spectrometer. Similar mineral distribution patterns in the chalcopyrite ore sample were obtained by the three data analysis methods with most of the differences occurring at the interfaces between mineral phases. PCA missed one minor mineral phase in the chalcopyrite ore sample and did not clearly differentiate among the mineral classes of the basalt. K-Means cluster analysis differentiated among the various mineral phases in both samples, but improperly grouped some spectra in the chalcopyrite sample that only contained unanticipated high mass peaks. Unlike the chemometric methods, FLIE was able to classify spectra as unknowns for those spectra that fell below the confidence level threshold. A nearest neighbor approach, included in FLIE, was used to classify the unknowns to form a visually complete image; however, the unknowns identified by FLIE can be informative because they highlight potential problems or overlooked results. In conclusion, this study validated the fuzzy logic-based approach used in our laboratory and reveald some limitations in the three techniques that were evaluated.

  7. Validation of fuzzy logic method for automated mass spectral classification for mineral imaging

    NASA Astrophysics Data System (ADS)

    Yan, B.; McJunkin, T. R.; Stoner, D. L.; Scott, J. R.

    2006-12-01

    Imaging mass spectrometry requires the acquisition and interpretation of hundreds to thousands of individual spectra in order to map the mineral phases within heterogeneous geomatrices. A fuzzy logic inference engine (FLIE) was developed to automate data interpretation. To evaluate the strengths and limitations of FLIE, the chemical images obtained using FLIE were compared with those developed using two chemometric methods: principle component analysis (PCA) and cluster analysis (K-Means). Two heterogeneous geomatrices, a low-grade chalcopyrite ore and basalt, were imaged using a laser-desorption Fourier transform mass spectrometer. Similar mineral distribution patterns in the chalcopyrite ore sample were obtained by the three data analysis methods with most of the differences occurring at the interfaces between mineral phases. PCA missed one minor mineral phase in the chalcopyrite ore sample and did not clearly differentiate among the mineral classes of the basalt. K-Means cluster analysis differentiated among the various mineral phases in both samples, but improperly grouped some spectra in the chalcopyrite sample that only contained unanticipated high mass peaks. Unlike the chemometric methods, FLIE was able to classify spectra as unknowns for those spectra that fell below the confidence level threshold. A nearest neighbor approach, included in FLIE, was used to classify the unknowns to form a visually complete image; however, the unknowns identified by FLIE can be informative because they highlight potential problems or overlooked results. In conclusion, this study validated the fuzzy logic-based approach used in our laboratory and reveald some limitations in the three techniques that were evaluated.

  8. Predicting muscle mass from anthropometry using magnetic resonance imaging as reference: a systematic review.

    PubMed

    Al-Gindan, Yasmin Y; Hankey, Catherine R; Leslie, Wilma; Govan, Lindsay; Lean, Michael E J

    2014-02-01

    Identification and management of sarcopenia are limited by lack of reliable simple approaches to assess muscle mass. The aim of this review is to identify and evaluate simple methods to quantify muscle mass/volume of adults. Using Cochrane Review methodology, Medline (1946-2012), Embase (1974-2012), Web of Science (1898-2012), PubMed, and the Cochrane Library (to 08/2012) were searched for publications that included prediction equations (from anthropometric measurements) to estimate muscle mass by magnetic resonance imaging (MRI) in adults. Of 257 papers identified from primary search terms, 12 studies met the inclusion criteria. Most studies (n = 10) assessed only regional/limb muscle mass/volume. Many studies (n = 9) assessed limb circumference adjusted for skinfold thickness, which limits their practical applications. Only two included validation in separate subject-samples, and two reported relationships between whole-body MRI-measured muscle mass and anthropometry beyond linear correlations. In conclusion, one simple prediction equation shows promise, but it has not been validated in a separate population with different investigators. Furthermore, it did not incorporate widely available trunk/limb girths, which have offered valuable prediction of body composition in other studies.

  9. Proteome-wide drug screening using mass spectrometric imaging of bead-arrays

    PubMed Central

    Zhou, Ying; Liu, Ziying; Rothschild, Kenneth J.; Lim, Mark J.

    2016-01-01

    A fundamental challenge in the drug discovery process is to develop compounds with high efficacy and minimal side-effects. We describe a new approach to proteome-wide drug screening for detection of on- and off-target binding which combines the advantages of mass spectrometry with microarray technology. The method involves matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) of agarose micro-beads randomly arrayed at high-density in custom micro-well plates. Each bead carries a unique protein target and a corresponding photocleavable mass-tag for coding (PC-Mass-Tag). Compounds bound to specific protein beads and a photo-released coding PC-Mass-Tag are detected simultaneously using MALDI-MSI. As an initial demonstration of this approach, two kinase-targeted drugs, Dasatinib and Brigatinib (AP26113), were simultaneously screened against a model 50-member kinase-bead library. A MALDI-MSI scan performed at the equivalent density of 495,000 beads in the footprint of a microscope slide yielded 100% sensitivity for detecting known strong interactions with no false positives. PMID:27194112

  10. High-Speed MALDI MS/MS Imaging Mass Spectrometry Using Continuous Raster Sampling

    PubMed Central

    Prentice, Boone M.; Chumbley, Chad W.; Caprioli, Richard M.

    2015-01-01

    A matrix-assisted laser desorption/ionization time of flight/time of flight tandem mass spectrometer (MALDI TOF/TOF) has been used for high-speed precursor/fragment ion transition image acquisition. High throughput analysis is facilitated by a Nd:YLF solid state laser capable of pulse repetition rates up to 5 kHz, a high digitizer acquisition rate (up to 50 pixels/second), and continuous laser raster sampling. MS/MS experiments are enabled through the use of a precision timed ion selector, second source acceleration, and a dedicated collision cell. Continuous raster sampling is shown here to facilitate rapid MS/MS ion image acquisition from thin tissue sections for the drug rifampicin and of a common kidney lipid, SM4s(d18:1/24:1). The ability to confirm the structural identity of an analyte as part of the MS/MS imaging experiment is an essential part of the analysis. Additionally, the increase in sensitivity and specificity afforded by an MS/MS approach is highly advantageous, especially when interrogating complex chemical environments such as those in biological tissues. Herein, we report continuous laser raster sampling TOF/TOF imaging methodologies which demonstrate 8-14 fold increases in throughput compared to existing MS/MS instrumentation, an important advantage when imaging large areas on tissues. PMID:26149115

  11. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution.

    PubMed

    Yang, Junhai; Caprioli, Richard M

    2011-07-15

    We have employed matrix deposition by sublimation for protein image analysis on tissue sections using a hydration/recrystallization process that produces high-quality MALDI mass spectra and high-spatial-resolution ion images. We systematically investigated different washing protocols, the effect of tissue section thickness, the amount of sublimated matrix per unit area, and different recrystallization conditions. The results show that an organic solvent rinse followed by ethanol/water rinses substantially increased sensitivity for the detection of proteins. Both the thickness of the tissue section and the amount of sinapinic acid sublimated per unit area have optimal ranges for maximal protein signal intensity. Ion images of mouse and rat brain sections at 50, 20, and 10 μm spatial resolution are presented and are correlated with hematoxylin and eosin (H&E)-stained optical images. For targeted analysis, histology-directed imaging can be performed using this protocol where MS analysis and H&E staining are performed on the same section.

  12. The utilization of fluorescence to identify the components of lipofuscin by imaging mass spectrometry.

    PubMed

    Ablonczy, Zsolt; Smith, Noah; Anderson, David M; Grey, Angus C; Spraggins, Jeffrey; Koutalos, Yiannis; Schey, Kevin L; Crouch, Rosalie K

    2014-04-01

    Lipofuscin, an aging marker in the retinal pigment epithelium (RPE) associated with the development of age-related macular degeneration, is primarily characterized by its fluorescence. The most abundant component of RPE lipofuscin is N-retinylidene-N-retinylethanolamine (A2E) but its exact composition is not known due to the complexity of the RPE extract. In this study, we utilized MALDI imaging to find potential molecules responsible for lipofuscin fluorescence in RPE tissue from Abca4(-/-) , Sv129, and C57Bl6/J mice aged 2 and 6 months. To assert relationships, the individual images in the MALDI imaging datasets were correlated with lipofuscin fluorescence recorded from the same tissues following proper registration. Spatial correlation information, which is usually lost in bioanalytics, pinpointed a relatively small number of potential lipofuscin components. The comparison of four samples in each condition further limited the possibility of false positives and provided various new, age- and strain-specific targets. Validating the usefulness of the fluorescence-enhanced imaging strategy, many known adducts of A2E were identified in the short list of lipofuscin components. These results provided evidence that mass spectrometric imaging can be utilized as a tool to begin to identify the molecular substructure of clinically-relevant diagnostic information.

  13. Computer-aided detection of mammographic masses based on content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Jin, Renchao; Meng, Bo; Song, Enmin; Xu, Xiangyang; Jiang, Luan

    2007-03-01

    A method for computer-aided detection (CAD) of mammographic masses is proposed and a prototype CAD system is presented. The method is based on content-based image retrieval (CBIR). A mammogram database containing 2000 mammographic regions is built in our prototype CBIR-CAD system. Every region of interested (ROI) in the database has known pathology. Specifically, there are 583 ROIs depicting biopsy-proven masses, and the rest 1417 ROIs are normal. Whenever a suspicious ROI is detected in a mammogram by a radiologist, it can be submitted as a query to this CBIRCAD system. As the query results, a series of similar ROI images together with their known pathology knowledge will be retrieved from the database and displayed in the screen in descending order of their similarities to the query ROI to help the radiologist to make the diagnosis decision. Furthermore, our CBIR-CAD system will output a decision index (DI) to quantitatively indicate the probability that the query ROI contains a mass. The DI is calculated by the query matches. In the querying process, 24 features are extracted from each ROI to form a 24-dimensional vector. Euclidean distance in the 24-dimensional feature vector space is applied to measure the similarities between ROIs. The prototype CBIR-CAD system is evaluated based on the leave-one-out sampling scheme. The experiment results showed that the system can achieve a receiver operating characteristic (ROC) area index A Z =0.84 for detection of mammographic masses, which is better than the best results achieved by the other known mass CAD systems.

  14. In situ cell-by-cell imaging and analysis of small cell populations by mass spectrometry.

    PubMed

    Shrestha, Bindesh; Patt, Joseph M; Vertes, Akos

    2011-04-15

    Molecular imaging by mass spectrometry (MS) is emerging as a tool to determine the distribution of proteins, lipids, and metabolites in tissues. The existing imaging methods, however, mostly rely on predefined rectangular grids for sampling that ignore the natural cellular organization of the tissue. Here we demonstrate that laser ablation electrospray ionization (LAESI) MS can be utilized for in situ cell-by-cell imaging of plant tissues. The cell-by-cell molecular image of the metabolite cyanidin, the ion responsible for purple pigmentation in onion (Allium cepa) epidermal cells, correlated well with the color of cells in the tissue. Chemical imaging using single-cells as voxels reflects the spatial distribution of biochemical differences within a tissue without the distortion stemming from sampling multiple cells within the laser focal spot. Microsampling by laser ablation also has the benefit of enabling the analysis of very small cell populations for biochemical heterogeneity. For example, with a ∼30 μm ablation spot we were able to analyze 3-4 achlorophyllous cells within an oil gland on a sour orange (Citrus aurantium) leaf. To explore cell-to-cell variations within and between tissues, multivariate statistical analysis on LAESI-MS data from epidermal cells of an A. cepa bulb and a C. aurantium leaf and from human buccal epithelial cell populations was performed using the method of orthogonal projections to latent structures discriminant analysis (OPLS-DA). The OPLS-DA analysis of mass spectra, containing over 300 peaks each, provided guidance in identifying a small number of metabolites most responsible for the variance between the cell populations. These metabolites can be viewed as promising candidates for biomarkers that, however, require further verification. PMID:21388149

  15. Application of Paramagnetically Tagged Molecules for Magnetic Resonance Imaging of Biofilm Mass Transport Processes▿

    PubMed Central

    Ramanan, B.; Holmes, W. M.; Sloan, W. T.; Phoenix, V. R.

    2010-01-01

    Molecules become readily visible by magnetic resonance imaging (MRI) when labeled with a paramagnetic tag. Consequently, MRI can be used to image their transport through porous media. In this study, we demonstrated that this method could be applied to image mass transport processes in biofilms. The transport of a complex of gadolinium and diethylenetriamine pentaacetic acid (Gd-DTPA), a commercially available paramagnetic molecule, was imaged both in agar (as a homogeneous test system) and in a phototrophic biofilm. The images collected were T1 weighted, where T1 is an MRI property of the biofilm and is dependent on Gd-DTPA concentration. A calibration protocol was applied to convert T1 parameter maps into concentration maps, thus revealing the spatially resolved concentrations of this tracer at different time intervals. Comparing the data obtained from the agar experiment with data from a one-dimensional diffusion model revealed that transport of Gd-DTPA in agar was purely via diffusion, with a diffusion coefficient of 7.2 × 10−10 m2 s−1. In contrast, comparison of data from the phototrophic biofilm experiment with data from a two-dimensional diffusion model revealed that transport of Gd-DTPA inside the biofilm was by both diffusion and advection, equivalent to a diffusion coefficient of 1.04 × 10−9 m2 s−1. This technology can be used to further explore mass transport processes in biofilms, either by using the wide range of commercially available paramagnetically tagged molecules and nanoparticles or by using bespoke tagged molecules. PMID:20435773

  16. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling

    PubMed Central

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-01-01

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions. PMID:27053227

  17. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling

    NASA Astrophysics Data System (ADS)

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-04-01

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions.

  18. Standard Reticle Slide To Objectively Evaluate Spatial Resolution and Instrument Performance in Imaging Mass Spectrometry.

    PubMed

    Zubair, Faizan; Prentice, Boone M; Norris, Jeremy L; Laibinis, Paul E; Caprioli, Richard M

    2016-07-19

    Spatial resolution is a key parameter in imaging mass spectrometry (IMS). Aside from being a primary determinant in overall image quality, spatial resolution has important consequences on the acquisition time of the IMS experiment and the resulting file size. Hardware and software modifications during instrumentation development can dramatically affect the spatial resolution achievable using a given imaging mass spectrometer. As such, an accurate and objective method to determine the working spatial resolution is needed to guide instrument development and ensure quality IMS results. We have used lithographic and self-assembly techniques to fabricate a pattern of crystal violet as a standard reticle slide for assessing spatial resolution in matrix-assisted laser desorption/ionization (MALDI) IMS experiments. The reticle is used to evaluate spatial resolution under user-defined instrumental conditions. Edgespread analysis measures the beam diameter for a Gaussian profile and line scans measure an "effective" spatial resolution that is a convolution of beam optics and sampling frequency. The patterned crystal violet reticle was also used to diagnose issues with IMS instrumentation such as intermittent losses of pixel data. PMID:27299987

  19. Anti-theft device staining on banknotes detected by mass spectrometry imaging.

    PubMed

    Correa, Deleon Nascimento; Zacca, Jorge Jardim; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Augusti, Rodinei; Eberlin, Marcos Nogueira; Vendramini, Pedro Henrique

    2016-03-01

    We describe the identification and limits of detection of ink staining by mass spectrometry imaging (MSI), as used in anti-theft devices (ATDs). Such ink staining is applied to banknotes during automated teller machine (ATM) explosions. Desorption electrospray ionization (DESI) coupled with high-resolution and high-accuracy orbitrap mass spectrometry (MS) and a moving stage device were applied to obtain 2D molecular images of the major dyes used for staining, that is, 1-methylaminoanthraquinone (MAAQ), rhodamine B (RB) and rhodamine 6G (R6G). MAAQ could not be detected because of its inefficient desorption by DESI from the banknote cellulose surface. By contrast, ATD staining on banknotes is perceptible by the human naked eye only at concentrations higher than 0.2 μg cm(-2), whereas both RB and R6G at concentrations 200 times lower (as low as 0.001 μg cm(-2)) could be easily detected and imaged by DESI-MSI, with selective and specific identification of each analyte and their spatial distribution on samples from suspects. This technique is non-destructive, and no sample preparation is required, which ensures sample preservation for further forensic investigations. PMID:26784008

  20. High-contrast Imaging of Intermediate-mass Giants with Long-term Radial Velocity Trends

    NASA Astrophysics Data System (ADS)

    Ryu, Tsuguru; Sato, Bun'ei; Kuzuhara, Masayuki; Narita, Norio; Takahashi, Yasuhiro H.; Uyama, Taichi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Omiya, Masashi; Harakawa, Hiroki; Abe, Lyu; Ando, Hiroyasu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Currie, Thayne; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Hełminiak, Krzysztof G.; Henning, Thomas; Hodapp, Klaus W.; Ida, Shigeru; Ishii, Miki; Itoh, Yoichi; Iye, Masanori; Izumiura, Hideyuki; Janson, Markus; Kambe, Eiji; Kandori, Ryo; Knapp, Gillian R.; Kokubo, Eiichiro; Kwon, Jungmi; Matsuo, Taro; Mayama, Satoshi; McElwain, Michael W.; Mede, Kyle; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takami, Michihiro; Takato, Naruhisa; Takeda, Yoichi; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Yoshida, Michitoshi; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2016-07-01

    A radial velocity (RV) survey for intermediate-mass giants has been in operation for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct-imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations of six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to γ Hya B ({0.61}-0.14+0.12{M}⊙ ), HD 5608 B (0.10+/- 0.01{M}⊙ ), and HD 109272 B (0.28+/- 0.06{M}⊙ ). For the remaining targets (ι Dra, 18 Del, and HD 14067), we exclude companions more massive than 30-60 M Jup at projected separations of 1″-7″. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets ι Dra b, HD 5608 b, and HD 14067 b.

  1. Polarization of Directly Imaged Young Giant Planets as a Probe of Mass, Rotation, and Clouds

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott; Sengupta, Sujan

    2012-01-01

    Young, hot gas giant planets at large separations from their primaries have been directly imaged around several nearby stars. More such planets will likely be detected by ongoing and new imaging surveys with instruments such as the Gemini Planet Imager (GPI). Efforts continue to model the spectra of these planets in order to constrain their masses, effective temperatures, composition, and cloud structure. One potential tool for analyzing these objects, which has received relatively less attention, is polarization. Linear polarization of gas giant exoplanets can arise from the combined influences of light scattering by atmospheric dust and a rotationally distorted shape. The oblateness of gas giant planet increases of course with rotation rate and for fixed rotation also rises with decreasing gravity. Thus young, lower mass gas giant planets with youthful inflated radii could easily have oblateness greater than that of Saturn s 10%. We find that polarizations of over 1% may easily be produced in the near-infrared in such cases. This magnitude of polarization may be measurable by GPI and other instruments. Thus if detected, polarization of a young Jupiter places constraints on the combination of its gravity, rotation rate, and degree of cloudiness. We will present results of our multiple scattering analysis coupled with a self-consistent dusty atmospheric models to demonstrate the range of polarizations that might be expected from resolved exoplanets and the range of parameter space that such observations may inform.

  2. High-contrast Imaging of Intermediate-mass Giants with Long-term Radial Velocity Trends

    NASA Astrophysics Data System (ADS)

    Ryu, Tsuguru; Sato, Bun’ei; Kuzuhara, Masayuki; Narita, Norio; Takahashi, Yasuhiro H.; Uyama, Taichi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Omiya, Masashi; Harakawa, Hiroki; Abe, Lyu; Ando, Hiroyasu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Currie, Thayne; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Hełminiak, Krzysztof G.; Henning, Thomas; Hodapp, Klaus W.; Ida, Shigeru; Ishii, Miki; Itoh, Yoichi; Iye, Masanori; Izumiura, Hideyuki; Janson, Markus; Kambe, Eiji; Kandori, Ryo; Knapp, Gillian R.; Kokubo, Eiichiro; Kwon, Jungmi; Matsuo, Taro; Mayama, Satoshi; McElwain, Michael W.; Mede, Kyle; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takami, Michihiro; Takato, Naruhisa; Takeda, Yoichi; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Yoshida, Michitoshi; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2016-07-01

    A radial velocity (RV) survey for intermediate-mass giants has been in operation for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct-imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations of six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to γ Hya B ({0.61}-0.14+0.12{M}ȯ ), HD 5608 B (0.10+/- 0.01{M}ȯ ), and HD 109272 B (0.28+/- 0.06{M}ȯ ). For the remaining targets (ι Dra, 18 Del, and HD 14067), we exclude companions more massive than 30–60 M Jup at projected separations of 1″–7″. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets ι Dra b, HD 5608 b, and HD 14067 b.

  3. Application of Tapping-Mode Scanning Probe Electrospray Ionization to Mass Spectrometry Imaging of Additives in Polymer Films

    PubMed Central

    Shimazu, Ryo; Yamoto, Yoshinari; Kosaka, Tomoya; Kawasaki, Hideya; Arakawa, Ryuichi

    2014-01-01

    We report the application of tapping-mode scanning probe electrospray ionization (t-SPESI) to mass spectrometry imaging of industrial materials. The t-SPESI parameters including tapping solvent composition, solvent flow rate, number of tapping at each spot, and step-size were optimized using a quadrupole mass spectrometer to improve mass spectrometry (MS) imaging of thin-layer chromatography (TLC) and additives in polymer films. Spatial resolution of approximately 100 μm was achieved by t-SPESI imaging mass spectrometry using a fused-silica capillary (50 μm i.d., 150 μm o.d.) with the flow rate set at 0.2 μL/min. This allowed us to obtain discriminable MS imaging profiles of three dyes separated by TLC and the additive stripe pattern of a PMMA model film depleted by UV irradiation. PMID:26819894

  4. Skeletal muscle fiber analysis by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometric imaging at high mass and high spatial resolution.

    PubMed

    Tsai, Yu-Hsuan; Bhandari, Dhaka Ram; Garrett, Timothy J; Carter, Christy S; Spengler, Bernhard; Yost, Richard A

    2016-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers with various fiber types. These fibers can be classified into different classes based on their different characteristics. MALDI mass spectrometric imaging (MSI) has been applied to study and visualize different metabolomics profiles of different fiber types. Here, skeletal muscles were analyzed by atmospheric pressure scanning microprobe MALDI-MSI at high spatial and high mass resolution. PMID:27198224

  5. Left ventricular dimensions and mass using magnetic resonance imaging in female endurance athletes

    NASA Technical Reports Server (NTRS)

    Riley-Hagan, M.; Peshock, R. M.; Stray-Gundersen, J.; Katz, J.; Ryschon, T. W.; Mitchell, J. H.

    1992-01-01

    Few published studies of left ventricular (LV) mass in female endurance athletes have been performed with M-mode echocardiography, which involves assumptions of LV geometry. Therefore, magnetic resonance imaging, a 3-dimensional technique, was used to examine LV mass, LV end-diastolic volume and mean wall thickness in female long distance runners (n = 13; mean age 29 years), cyclists (n = 12; mean age 26 years) and cross-country skiers (n = 11; mean age 24 years), and the findings were compared with sedentary control subjects (n = 10; mean age 27 years) matched for height and body weight. The physical characteristics for all subjects included height (mean 166 cm, and body weight (mean 56 kg). The percent body fat (mean 11.7) and maximal oxygen uptake (VO2max, mean 63 ml.kg-1.min-1) were similar (p greater than 0.05) among all athletic groups, but significantly different from the control group (body fat, mean 22.5%; VO2max, mean 35 ml.kg-1.min-1). LV mass (mean 159 kg), LV end-diastolic volume (mean 122 ml), and mean wall thickness (mean 11.5 mm) were also similar among the athletic groups and significantly larger than the following control values: LV mass (mean 115 g), LV end-diastolic volume (mean 93 ml) and mean wall thickness (mean 9.8 mm). Ratios of LV mass to lean body weight were similar among all athletic groups, although athletic groups had larger ratios (p less than 0.05) than the sedentary control subjects. LV mass/LV end-diastolic volume ratio was similar (p greater than 0.05) among all groups.(ABSTRACT TRUNCATED AT 250 WORDS).

  6. Breast mass detection in tomosynthesis projection images using information-theoretic similarity measures

    NASA Astrophysics Data System (ADS)

    Singh, Swatee; Tourassi, Georgia D.; Lo, Joseph Y.

    2007-03-01

    The purpose of this project is to study Computer Aided Detection (CADe) of breast masses for digital tomosynthesis. It is believed that tomosynthesis will show improvement over conventional mammography in detection and characterization of breast masses by removing overlapping dense fibroglandular tissue. This study used the 60 human subject cases collected as part of on-going clinical trials at Duke University. Raw projections images were used to identify suspicious regions in the algorithm's high-sensitivity, low-specificity stage using a Difference of Gaussian (DoG) filter. The filtered images were thresholded to yield initial CADe hits that were then shifted and added to yield a 3D distribution of suspicious regions. These were further summed in the depth direction to yield a flattened probability map of suspicious hits for ease of scoring. To reduce false positives, we developed an algorithm based on information theory where similarity metrics were calculated using knowledge databases consisting of tomosynthesis regions of interest (ROIs) obtained from projection images. We evaluated 5 similarity metrics to test the false positive reduction performance of our algorithm, specifically joint entropy, mutual information, Jensen difference divergence, symmetric Kullback-Liebler divergence, and conditional entropy. The best performance was achieved using the joint entropy similarity metric, resulting in ROC A z of 0.87 +/- 0.01. As a whole, the CADe system can detect breast masses in this data set with 79% sensitivity and 6.8 false positives per scan. In comparison, the original radiologists performed with only 65% sensitivity when using mammography alone, and 91% sensitivity when using tomosynthesis alone.

  7. Proteomic analysis of formalin-fixed paraffin embedded tissue by MALDI imaging mass spectrometry

    PubMed Central

    Casadonte, Rita; Caprioli, Richard M

    2012-01-01

    Archived formalin-fixed paraffin-embedded (FFPE) tissue collections represent a valuable informational resource for proteomic studies. Multiple FFPE core biopsies can be assembled in a single block to form tissue microarrays (TMAs). We describe a protocol for analyzing protein in FFPE -TMAs using matrix-assisted laser desorption/ionization (MAL DI) imaging mass spectrometry (IMS). The workflow incorporates an antigen retrieval step following deparaffinization, in situ trypsin digestion, matrix application and then mass spectrometry signal acquisition. The direct analysis of FFPE -TMA tissue using IMS allows direct analysis of multiple tissue samples in a single experiment without extraction and purification of proteins. The advantages of high speed and throughput, easy sample handling and excellent reproducibility make this technology a favorable approach for the proteomic analysis of clinical research cohorts with large sample numbers. For example, TMA analysis of 300 FFPE cores would typically require 6 h of total time through data acquisition, not including data analysis. PMID:22011652

  8. Depth profiling and imaging capabilities of an ultrashort pulse laser ablation time of flight mass spectrometer

    PubMed Central

    Cui, Yang; Moore, Jerry F.; Milasinovic, Slobodan; Liu, Yaoming; Gordon, Robert J.; Hanley, Luke

    2012-01-01

    An ultrafast laser ablation time-of-flight mass spectrometer (AToF-MS) and associated data acquisition software that permits imaging at micron-scale resolution and sub-micron-scale depth profiling are described. The ion funnel-based source of this instrument can be operated at pressures ranging from 10−8 to ∼0.3 mbar. Mass spectra may be collected and stored at a rate of 1 kHz by the data acquisition system, allowing the instrument to be coupled with standard commercial Ti:sapphire lasers. The capabilities of the AToF-MS instrument are demonstrated on metal foils and semiconductor wafers using a Ti:sapphire laser emitting 800 nm, ∼75 fs pulses at 1 kHz. Results show that elemental quantification and depth profiling are feasible with this instrument. PMID:23020378

  9. MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery.

    PubMed

    Gessel, Megan M; Norris, Jeremy L; Caprioli, Richard M

    2014-07-31

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) combines the sensitivity and selectivity of mass spectrometry with spatial analysis to provide a new dimension for histological analyses to provide unbiased visualization of the arrangement of biomolecules in tissue. As such, MALDI IMS has the capability to become a powerful new molecular technology for the biological and clinical sciences. In this review, we briefly describe several applications of MALDI IMS covering a range of molecular weights, from drugs to proteins. Current limitations and challenges are discussed along with recent developments to address these issues. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.

  10. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review).

    PubMed

    Kriegsmann, Jörg; Kriegsmann, Mark; Casadonte, Rita

    2015-03-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) is an evolving technique in cancer diagnostics and combines the advantages of mass spectrometry (proteomics), detection of numerous molecules, and spatial resolution in histological tissue sections and cytological preparations. This method allows the detection of proteins, peptides, lipids, carbohydrates or glycoconjugates and small molecules.Formalin-fixed paraffin-embedded tissue can also be investigated by IMS, thus, this method seems to be an ideal tool for cancer diagnostics and biomarker discovery. It may add information to the identification of tumor margins and tumor heterogeneity. The technique allows tumor typing, especially identification of the tumor of origin in metastatic tissue, as well as grading and may provide prognostic information. IMS is a valuable method for the identification of biomarkers and can complement histology, immunohistology and molecular pathology in various fields of histopathological diagnostics, especially with regard to identification and grading of tumors.

  11. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry.

    PubMed

    Muramoto, Shin; Forbes, Thomas P; van Asten, Arian C; Gillen, Greg

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal intensity to the amount of drug deposited on the surface were generated from inkjet-printed arrays of cocaine, methamphetamine, and heroin with a deposited-mass ranging nominally from 10 pg to 50 ng per spot. These curves were used to construct concentration maps that visualized the spatial distribution of the drugs on top of a fingerprint, as well as being able to quantify the amount of drugs in a given area within the map. For the drugs on the fingerprint on silicon, ToF-SIMS showed great success, as it was able to generate concentration maps of all three drugs. On the fingerprint on paper, only the concentration map of cocaine could be constructed using ToF-SIMS and DESI-MS, as the signals of methamphetamine and heroin were completely suppressed by matrix and substrate effects. Spatially resolved quantification of illicit drugs using imaging mass spectrometry is possible, but the choice of substrates could significantly affect the results.

  12. STABILITY OF THE DIRECTLY IMAGED MULTIPLANET SYSTEM HR 8799: RESONANCE AND MASSES

    SciTech Connect

    Fabrycky, Daniel C.; Murray-Clay, Ruth A.

    2010-02-20

    A new era of directly imaged extrasolar planets has produced a three-planet system, where the masses of the planets have been estimated by untested cooling models. We point out that the nominal circular, face-on orbits of the planets lead to a dynamical instability in {approx}10{sup 5} yr, a factor of at least 100 shorter than the estimated age of the star. Reduced planetary masses produce stability only for unreasonably small planets ({approx}<2 M{sub Jup}). Relaxing the face-on assumption, but still requiring circular orbits while fitting the observed positions, makes the instability time even shorter. A promising solution is that the inner two planets have a 2:1 commensurability between their periods, and they avoid close encounters with each other through this resonance. The fact that the inner resonance has lasted until now, in spite of the perturbations of the outer planet, leads to a limit {approx}<10 M{sub Jup} on the masses unless the outer two planets are also engaged in a 2:1 mean-motion resonance. In a double resonance, which is consistent with the current data, the system could survive until now even if the planets have masses of {approx}20 M{sub Jup}. Apsidal alignment can further enhance the stability of a mean-motion resonant system. A completely different dynamical configuration, with large eccentricities and large mutual inclinations among the planets, is possible but finely tuned.

  13. Evaluation of C60 secondary ion mass spectrometry for the chemical analysis and imaging of fingerprints.

    PubMed

    Sisco, Edward; Demoranville, Leonard T; Gillen, Greg

    2013-09-10

    The feasibility of using C60(+) cluster primary ion bombardment secondary ion mass spectrometry (C60(+) SIMS) for the analysis of the chemical composition of fingerprints is evaluated. It was found that C60(+) SIMS could be used to detect and image the spatial localization of a number of sebaceous and eccrine components in fingerprints. These analyses were also found to not be hindered by the use of common latent print powder development techniques. Finally, the ability to monitor the depth distribution of fingerprint constituents was found to be possible - a capability which has not been shown using other chemical imaging techniques. This paper illustrates a number of strengths and potential weaknesses of C60(+) SIMS as an additional or complimentary technique for the chemical analysis of fingerprints.

  14. Molecular histology of arteries: mass spectrometry imaging as a novel ex vivo tool to investigate atherosclerosis.

    PubMed

    Martin-Lorenzo, Marta; Alvarez-Llamas, Gloria; McDonnell, Liam A; Vivanco, Fernando

    2016-01-01

    Atherosclerosis is usually the underlying cause of a fatal event such as myocardial infarction or ictus. The atherome plaque develops silently and asymptomatically within the arterial intima layer. In this context, the possibility to analyze the molecular content of arterial tissue while preserving each molecule's specific localization is of great interest as it may reveal further insights into the physiopathological changes taking place. Mass spectrometry imaging (MSI) enables the spatially resolved molecular analysis of proteins, peptides, metabolites, lipids and drugs directly in tissue, with a resolution sufficient to reveal molecular features specific to distinct arterial structures. MSI represents a novel ex vivo imaging tool still underexplored in cardiovascular diseases. This review focuses on the MSI technique applied to cardiovascular disease and covers the main contributions to date, ongoing efforts, the main challenges and current limitations of MSI.

  15. Considerations for quantification of lipids in nerve tissue using MALDI mass spectrometric imaging

    PubMed Central

    Landgraf, Rachelle R.; Garrett, Timothy J.; Prieto Conaway, Maria C.; Calcutt, Nigel A.; Stacpoole, Peter W.; Yost, Richard A.

    2013-01-01

    MALDI mass spectrometric imaging is a technique that provides the ability to identify and characterize endogenous and exogenous compounds spatially within tissue with relatively little sample preparation. While it is a proven methodology for qualitative analysis, little has been reported for its utility in quantitative measurements. In the current work, inherent challenges in MALDI quantification are addressed. Signal response is monitored over successive analyses of a single tissue section to minimize error due to variability in the laser, matrix application, and sample inhomogeneity. Methods for the application of an internal standard to tissue sections are evaluated and used to quantify endogenous lipids in nerve tissue. A precision of 5% or less standard error was achieved, illustrating that MALDI imaging offers a reliable means of in situ quantification for microgram-sized samples and requires minimal sample preparation. PMID:21953974

  16. Shotgun Approach for Quantitative Imaging of Phospholipids Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Lanekoff, Ingela T.; Thomas, Mathew; Laskin, Julia

    2014-02-04

    Mass spectrometry imaging (MSI) has been extensively used for determining spatial distributions of molecules in biological samples, and there is increasing interest in using MSI for quantification. Nanospray desorption electrospray ionization, or nano-DESI, is an ambient MSI technique where a solvent is used for localized extraction of molecules followed by nanoelectrospray ionization. Doping the nano-DESI solvent with carefully selected standards enables online quantification during MSI experiments. In this proof-of-principle study, we demonstrate this quantification approach can be extended to provide shotgun-like quantification of phospholipids in thin brain tissue sections. Specifically, two phosphatidylcholine (PC) standards were added to the nano-DESI solvent for simultaneous imaging and quantification of 22 PC species observed in nano-DESI MSI. Furthermore, by combining the quantitative data obtained in the individual pixels, we demonstrate quantification of these PC species in seven different regions of a rat brain tissue section.

  17. Identifying source and formation altitudes of nitrates in drinking water from Réunion Island, France, using a multi-isotopic approach.

    PubMed

    Rogers, Karyne M; Nicolini, Eric; Gauthier, Virginie

    2012-09-01

    Nitrate concentrations, water isotopes (δ(2)H and δ(18)O(water)) and associated nitrate isotopes (δ(15)N(nitrate) and δ(18)O(nitrate)) from 10 drinking water wells, 5 fresh water springs and the discharge from 3 wastewater treatment stations in Réunion Island, located in the Indian Ocean, were analysed. We used a multi isotopic approach to investigate the extent of nitrate contamination, nitrate formation altitude and source of nitrates in Réunion Island's principal aquifer. Water from these study sites contained between 0.1 and 85.3 mg/L nitrate. δ(15)N(nitrate) values between +6 and +14‰ suggested the main sources of contamination were animal and/or human waste, rather than inorganic (synthetic) fertilisers, infiltrating through the subsurface into the saturated zone, due to rainfall leaching of the unsaturated zone at various altitudes of precipitation. Based on δ(15)N(nitrate) values alone, it was not possible to distinguish between animal and human activities responsible for the contamination of each specific catchment. However, using a multi isotope approach (δ(18)O(water) and δ(15)N(nitrate)), it was possible to relate the average altitude of rainfall infiltration (δ(18)O(water)) associated with the nitrate contamination (δ(18)O(nitrate)). This relationship between land use, rainfall recharge altitude and isotopic composition (δ(15)N(nitrate) and δ(18)O(water)) discriminated between the influences of human waste at lower (below 600 m elevation) or animal derived contamination (at elevations between 600 and 1300 m). By further comparing the theoretical altitude of nitrate formation calculated by the δ(18)O(nitrate), it was possible to determine that only 5 out of 15 fresh water wells and springs followed the conservative nitrate formation mechanism of 2/3δ(18)O(water)+1/3δ(18)O(air), to give nitrate formation altitudes which corresponded to land use activities.

  18. Imaging Mass Spectrometry: Enabling a New Age of Discovery in Biology and Medicine Through Molecular Microscopy

    PubMed Central

    Caprioli, Richard M.

    2015-01-01

    Imaging mass spectrometry (IMS) has become a valuable tool for the production of molecular maps in samples ranging from solid inorganic materials to biologicals such as cells and tissues. The unique features of IMS are its ability to map a wide variety of different types of molecules, its superb molecular specificity, and its potential for discovery since no target specific reagents are needed. IMS has made significant contributions in biology and medicine and promises to be a next generation tool in anatomic pathology. PMID:25801587

  19. Visualizing Dermal Permeation of Sodium Channel Modulators by Mass Spectrometric Imaging

    PubMed Central

    2015-01-01

    Determining permeability of a given compound through human skin is a principal challenge owing to the highly complex nature of dermal tissue. We describe the application of an ambient mass spectrometry imaging method for visualizing skin penetration of sodium channel modulators, including novel synthetic analogs of natural neurotoxic alkaloids, topically applied ex vivo to human skin. Our simple and label-free approach enables successful mapping of the transverse and lateral diffusion of small molecules having different physicochemical properties without the need for extensive sample preparation. PMID:24708172

  20. Analysis of colorectal adenocarcinoma tissue by desorption electrospray ionization mass spectrometric imaging.

    PubMed

    Gerbig, Stefanie; Golf, Ottmar; Balog, Julia; Denes, Julia; Baranyai, Zsolt; Zarand, Attila; Raso, Erzsebet; Timar, Jozsef; Takats, Zoltan

    2012-06-01

    Negative ion desorption electrospray ionization (DESI) was used for the analysis of an ex vivo tissue sample set comprising primary colorectal adenocarcinoma samples and colorectal adenocarcinoma liver metastasis samples. Frozen sections (12 μm thick) were analyzed by means of DESI imaging mass spectrometry (IMS) with spatial resolution of 100 μm using a computer-controlled DESI imaging stage mounted on a high resolution Orbitrap mass spectrometer. DESI-IMS data were found to predominantly feature complex lipids, including phosphatidyl-inositols, phophatidyl-ethanolamines, phosphatidyl-serines, phosphatidyl-ethanolamine plasmalogens, phosphatidic acids, phosphatidyl-glycerols, ceramides, sphingolipids, and sulfatides among others. Molecular constituents were identified based on their exact mass and MS/MS fragmentation spectra. An identified set of molecules was found to be in good agreement with previously reported DESI imaging data. Different histological tissue types were found to yield characteristic mass spectrometric data in each individual section. Histological features were identified by comparison to hematoxylin-eosin stained neighboring sections. Ions specific to certain histological tissue types (connective tissue, smooth muscle, healthy mucosa, healthy liver parenchyma, and adenocarcinoma) were identified by semi-automated screening of data. While each section featured a number of tissue-specific species, no potential global biomarker was found in the full sample set for any of the tissue types. As an alternative approach, data were analyzed by principal component analysis (PCA) and linear discriminant analysis (LDA) which resulted in efficient separation of data points based on their histological types. A pixel-by-pixel tissue identification method was developed, featuring the PCA/LDA analysis of authentic data set, and localization of unknowns in the resulting 60D, histologically assigned LDA space. Novel approach was found to yield results which are

  1. Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging.

    PubMed

    Holzlechner, Matthias; Reitschmidt, Sonja; Gruber, Sabine; Zeilinger, Susanne; Marchetti-Deschmann, Martina

    2016-06-01

    Studying microbial interactions by MALDI mass spectrometry imaging (MSI) directly from growing media is a difficult task if high sensitivity is demanded. We present a quick and robust sample preparation strategy for growing fungi (Trichoderma atroviride, Rhizoctonia solani) on glass slides to establish a miniaturized confrontation assay. By this we were able to visualize metabolite distributions by MALDI MSI after matrix deposition with a home-built sublimation device and thorough recrystallization. We present for the first time MALDI MSI data for secondary metabolite release during active mycoparasitism.

  2. Mass Spectrometry Imaging of Therapeutics from Animal Models to Three-Dimensional Cell Cultures

    PubMed Central

    Liu, Xin; Hummon, Amanda B.

    2016-01-01

    Mass spectrometry imaging (MSI) is a powerful label-free technique for the investigation of the spatial distribution of molecules at complex surfaces and has been widely used in the pharmaceutical sciences to understand the distribution of different drugs and their metabolites in various biological samples, ranging from cell-based models to tissues. Here, we review the current applications of MSI for drug studies in animal models, followed by a discussion of the novel advances of MSI in three-dimensional (3D) cell cultures for accurate, efficient and high-throughput analyses to evaluate therapeutics. PMID:26084404

  3. Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging

    PubMed Central

    Holzlechner, Matthias; Reitschmidt, Sonja; Gruber, Sabine; Zeilinger, Susanne

    2016-01-01

    Studying microbial interactions by MALDI mass spectrometry imaging (MSI) directly from growing media is a difficult task if high sensitivity is demanded. We present a quick and robust sample preparation strategy for growing fungi (Trichoderma atroviride, Rhizoctonia solani) on glass slides to establish a miniaturized confrontation assay. By this we were able to visualize metabolite distributions by MALDI MSI after matrix deposition with a home‐built sublimation device and thorough recrystallization. We present for the first time MALDI MSI data for secondary metabolite release during active mycoparasitism. PMID:26959280

  4. Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging.

    PubMed

    Holzlechner, Matthias; Reitschmidt, Sonja; Gruber, Sabine; Zeilinger, Susanne; Marchetti-Deschmann, Martina

    2016-06-01

    Studying microbial interactions by MALDI mass spectrometry imaging (MSI) directly from growing media is a difficult task if high sensitivity is demanded. We present a quick and robust sample preparation strategy for growing fungi (Trichoderma atroviride, Rhizoctonia solani) on glass slides to establish a miniaturized confrontation assay. By this we were able to visualize metabolite distributions by MALDI MSI after matrix deposition with a home-built sublimation device and thorough recrystallization. We present for the first time MALDI MSI data for secondary metabolite release during active mycoparasitism. PMID:26959280

  5. Improved MALDI-TOF Microbial Mass Spectrometry Imaging by Application of a Dispersed Solid Matrix

    NASA Astrophysics Data System (ADS)

    Vergeiner, Stefan; Schafferer, Lukas; Haas, Hubertus; Müller, Thomas

    2014-08-01

    The key step in high quality microbial matrix-assisted laser desorption/ionization mass spectrometry imaging (microbial MALDI MSI) is the fabrication of a homogeneous matrix coating showing a fine-grained morphology. This application note addresses a novel method to apply solid MALDI matrices onto microbial cultures grown on thin agar media. A suspension of a mixture of 2,5-DHB and α-CHCA is sprayed onto the agar sample surface to form highly homogeneous matrix coatings. As a result, the signal intensities of metabolites secreted by the fungus Aspergillus fumigatus were found to be clearly enhanced.

  6. Applications of the Single-probe: Mass Spectrometry Imaging and Single Cell Analysis under Ambient Conditions

    PubMed Central

    Rao, Wei; Pan, Ning; Yang, Zhibo

    2016-01-01

    Mass spectrometry imaging (MSI) and in-situ single cell mass spectrometry (SCMS) analysis under ambient conditions are two emerging fields with great potential for the detailed mass spectrometry (MS) analysis of biomolecules from biological samples. The single-probe, a miniaturized device with integrated sampling and ionization capabilities, is capable of performing both ambient MSI and in-situ SCMS analysis. For ambient MSI, the single-probe uses surface micro-extraction to continually conduct MS analysis of the sample, and this technique allows the creation of MS images with high spatial resolution (8.5 µm) from biological samples such as mouse brain and kidney sections. Ambient MSI has the advantage that little to no sample preparation is needed before the analysis, which reduces the amount of potential artifacts present in data acquisition and allows a more representative analysis of the sample to be acquired. For in-situ SCMS, the single-probe tip can be directly inserted into live eukaryotic cells such as HeLa cells, due to the small sampling tip size (< 10 µm), and this technique is capable of detecting a wide range of metabolites inside individual cells at near real-time. SCMS enables a greater sensitivity and accuracy of chemical information to be acquired at the single cell level, which could improve our understanding of biological processes at a more fundamental level than previously possible. The single-probe device can be potentially coupled with a variety of mass spectrometers for broad ranges of MSI and SCMS studies. PMID:27341402

  7. Fuzzy Logic Classification of Imaging Laser Desorption Fourier Transform Mass Spectrometry Data

    SciTech Connect

    Timothy R. McJunkin; Jill R. Scott

    2008-06-01

    The fuzzy logic method is applied to classification of mass spectra obtained with an imaging internal source Fourier transform mass spectrometer (I2LD-FTMS). Traditionally, an operator uses the relative abundance of ions with specific mass-to-charge (m/z) ratios to categorize spectra. An operator does this by comparing the spectrum of m/z versus abundance of an unknown sample against a library of spectra from known samples. Automated positioning and acquisition allow the I2LD-FTMS to acquire data from very large grids, which would require classification of up to 3600 spectra per hour to keep pace with the acquisition. The tedious job of classifying numerous spectra generated in an I2LD-FTMS imaging application can be replaced by a fuzzy rule base if the cues an operator uses can be encapsulated. Appropriate methods for assigning fuzzy membership values for inputs (e.g., mass spectrum abundances) and choice of fuzzy inference operators to translate linguistic antecedent into confidence values for the consequence (or in this case the classification) is followed by using the maximum confidence and a necessary minimum threshold for making a crisp decision. This paper also describes a method for gathering statistics on ions, which are not currently used in the rule base, but which may be candidates for making the rule base more accurate and complete or to form new rule bases based on data obtained from known samples. A spatial method for classifying spectra with low membership values, based on neighboring sample classifications, is also presented.

  8. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features

    NASA Astrophysics Data System (ADS)

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis.

  9. Characterization of Bacillus subtilis Colony Biofilms via Mass Spectrometry and Fluorescence Imaging.

    PubMed

    Si, Tong; Li, Bin; Zhang, Ke; Xu, Yiran; Zhao, Huimin; Sweedler, Jonathan V

    2016-06-01

    Colony biofilms of Bacillus subtilis are a widely used model for studying cellular differentiation. Here, we applied matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to examine cellular and molecular heterogeneity in B. subtilis colony biofilms. From B. subtilis cells cultivated on a biofilm-promoting medium, we detected two cannibalistic factors not found in previous MALDI MSI studies of the same strain under different culturing conditions. Given the importance of cannibalism in matrix formation of B. subtilis biofilms, we employed a transcriptional reporter to monitor matrix-producing cell subpopulations using fluorescence imaging. These two complementary imaging approaches were used to characterize three B. subtilis strains, the wild type isolate NCIB3610, and two mutants, Δspo0A and ΔabrB, with defective and enhanced biofilm phenotypes, respectively. Upon deletion of key transcriptional factors, correlated changes were observed in biofilm morphology, signaling, cannibalistic factor distribution, and matrix-related gene expression, providing new insights on cannibalism in biofilm development. This work underscores the advantages of using multimodal imaging to compare spatial patterns of selected molecules with the associated protein expression patterns, obtaining information on cellular heterogeneity and function not obtainable when using a single method to characterize biofilm formation. PMID:27136705

  10. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Feature

    PubMed Central

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-01-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. PMID:26508443

  11. Characterization of Bacillus subtilis Colony Biofilms via Mass Spectrometry and Fluorescence Imaging

    PubMed Central

    2016-01-01

    Colony biofilms of Bacillus subtilis are a widely used model for studying cellular differentiation. Here, we applied matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to examine cellular and molecular heterogeneity in B. subtilis colony biofilms. From B. subtilis cells cultivated on a biofilm-promoting medium, we detected two cannibalistic factors not found in previous MALDI MSI studies of the same strain under different culturing conditions. Given the importance of cannibalism in matrix formation of B. subtilis biofilms, we employed a transcriptional reporter to monitor matrix-producing cell subpopulations using fluorescence imaging. These two complementary imaging approaches were used to characterize three B. subtilis strains, the wild type isolate NCIB3610, and two mutants, Δspo0A and ΔabrB, with defective and enhanced biofilm phenotypes, respectively. Upon deletion of key transcriptional factors, correlated changes were observed in biofilm morphology, signaling, cannibalistic factor distribution, and matrix-related gene expression, providing new insights on cannibalism in biofilm development. This work underscores the advantages of using multimodal imaging to compare spatial patterns of selected molecules with the associated protein expression patterns, obtaining information on cellular heterogeneity and function not obtainable when using a single method to characterize biofilm formation. PMID:27136705

  12. Ultrafast High-Resolution Mass Spectrometric Finger Pore Imaging in Latent Finger Prints

    NASA Astrophysics Data System (ADS)

    Elsner, Christian; Abel, Bernd

    2014-11-01

    Latent finger prints (LFPs) are deposits of sweat components in ridge and groove patterns, left after human fingers contact with a surface. Being important targets in biometry and forensic investigations they contain more information than topological patterns. With laser desorption mass spectrometry imaging (LD-MSI) we record `three-dimensional' finger prints with additional chemical information as the third dimension. Here we show the potential of fast finger pore imaging (FPI) in latent finger prints employing LD-MSI without a classical matrix in a high- spatial resolution mode. Thin films of gold rapidly sputtered on top of the sample are used for desorption. FPI employing an optical image for rapid spatial orientation and guiding of the desorption laser enables the rapid analysis of individual finger pores, and the chemical composition of their excretions. With this approach we rapidly detect metabolites, drugs, and characteristic excretions from the inside of the human organism by a minimally-invasive strategy, and distinguish them from chemicals in contact with fingers without any labeling. The fast finger pore imaging, analysis, and screening approach opens the door for a vast number of novel applications in such different fields as forensics, doping and medication control, therapy, as well as rapid profiling of individuals.

  13. Ultrafast High-Resolution Mass Spectrometric Finger Pore Imaging in Latent Finger Prints

    PubMed Central

    Elsner, Christian; Abel, Bernd

    2014-01-01

    Latent finger prints (LFPs) are deposits of sweat components in ridge and groove patterns, left after human fingers contact with a surface. Being important targets in biometry and forensic investigations they contain more information than topological patterns. With laser desorption mass spectrometry imaging (LD-MSI) we record ‘three-dimensional' finger prints with additional chemical information as the third dimension. Here we show the potential of fast finger pore imaging (FPI) in latent finger prints employing LD-MSI without a classical matrix in a high- spatial resolution mode. Thin films of gold rapidly sputtered on top of the sample are used for desorption. FPI employing an optical image for rapid spatial orientation and guiding of the desorption laser enables the rapid analysis of individual finger pores, and the chemical composition of their excretions. With this approach we rapidly detect metabolites, drugs, and characteristic excretions from the inside of the human organism by a minimally-invasive strategy, and distinguish them from chemicals in contact with fingers without any labeling. The fast finger pore imaging, analysis, and screening approach opens the door for a vast number of novel applications in such different fields as forensics, doping and medication control, therapy, as well as rapid profiling of individuals. PMID:25366032

  14. Automatic Detection and Tracking of Coronal Mass Ejections. II. Multiscale Filtering of Coronagraph Images

    NASA Astrophysics Data System (ADS)

    Byrne, Jason P.; Morgan, Huw; Habbal, Shadia R.; Gallagher, Peter T.

    2012-06-01

    Studying coronal mass ejections (CMEs) in coronagraph data can be challenging due to their diffuse structure and transient nature, and user-specific biases may be introduced through visual inspection of the images. The large amount of data available from the Solar and Heliospheric Observatory (SOHO), Solar TErrestrial RElations Observatory (STEREO), and future coronagraph missions also makes manual cataloging of CMEs tedious, and so a robust method of detection and analysis is required. This has led to the development of automated CME detection and cataloging packages such as CACTus, SEEDS, and ARTEMIS. Here, we present the development of a new CORIMP (coronal image processing) CME detection and tracking technique that overcomes many of the drawbacks of current catalogs. It works by first employing the dynamic CME separation technique outlined in a companion paper, and then characterizing CME structure via a multiscale edge-detection algorithm. The detections are chained through time to determine the CME kinematics and morphological changes as it propagates across the plane of sky. The effectiveness of the method is demonstrated by its application to a selection of SOHO/LASCO and STEREO/SECCHI images, as well as to synthetic coronagraph images created from a model corona with a variety of CMEs. The algorithms described in this article are being applied to the whole LASCO and SECCHI data sets, and a catalog of results will soon be available to the public.

  15. AUTOMATIC DETECTION AND TRACKING OF CORONAL MASS EJECTIONS. II. MULTISCALE FILTERING OF CORONAGRAPH IMAGES

    SciTech Connect

    Byrne, Jason P.; Morgan, Huw; Habbal, Shadia R.; Gallagher, Peter T.

    2012-06-20

    Studying coronal mass ejections (CMEs) in coronagraph data can be challenging due to their diffuse structure and transient nature, and user-specific biases may be introduced through visual inspection of the images. The large amount of data available from the Solar and Heliospheric Observatory (SOHO), Solar TErrestrial RElations Observatory (STEREO), and future coronagraph missions also makes manual cataloging of CMEs tedious, and so a robust method of detection and analysis is required. This has led to the development of automated CME detection and cataloging packages such as CACTus, SEEDS, and ARTEMIS. Here, we present the development of a new CORIMP (coronal image processing) CME detection and tracking technique that overcomes many of the drawbacks of current catalogs. It works by first employing the dynamic CME separation technique outlined in a companion paper, and then characterizing CME structure via a multiscale edge-detection algorithm. The detections are chained through time to determine the CME kinematics and morphological changes as it propagates across the plane of sky. The effectiveness of the method is demonstrated by its application to a selection of SOHO/LASCO and STEREO/SECCHI images, as well as to synthetic coronagraph images created from a model corona with a variety of CMEs. The algorithms described in this article are being applied to the whole LASCO and SECCHI data sets, and a catalog of results will soon be available to the public.

  16. Ambient mass spectrometry imaging metabolomics method provides novel insights into the action mechanism of drug candidates.

    PubMed

    He, Jingjing; Luo, Zhigang; Huang, Lan; He, Jiuming; Chen, Yi; Rong, Xianfang; Jia, Shaobo; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Zhang, Jianjun; Shi, Jiangong; Abliz, Zeper

    2015-01-01

    Elucidation of the mechanism of action for drug candidates is fundamental to drug development, and it is strongly facilitated by metabolomics. Herein, we developed an imaging metabolomics method based on air-flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) under ambient conditions. This method was subsequently applied to simultaneously profile a novel anti-insomnia drug candidate, N(6)-(4-hydroxybenzyl)-adenosine (NHBA), and various endogenous metabolites in rat whole-body tissue sections after the administration of NHBA. The principal component analysis (PCA) represented by an intuitive color-coding scheme based on hyperspectral imaging revealed in situ molecular profiling alterations in response to stimulation of NHBA, which are in a very low intensity and hidden in massive interferential peaks. We found that the abundance of six endogenous metabolites changed after drug administration. The spatiotemporal distribution indicated that five altered molecules—including neurotransmitter γ-aminobutyric acid, neurotransmitter precursors choline and glycerophosphocholine, energy metabolism-related molecules adenosine (an endogenous sleep factor), and creatine—are closely associated with insomnia or other neurological disorders. These findings not only provide insights into a deep understanding on the mechanism of action of NHBA, but also demonstrate that the AFADESI-MSI-based imaging metabolomics is a powerful technique to investigate the molecular mechanism of drug action, especially for drug candidates with multitarget or undefined target in the preclinical study stage.

  17. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features.

    PubMed

    Kaddi, Chanchala D; Bennett, Rachel V; Paine, Martin R L; Banks, Mitchel D; Weber, Arthur L; Fernández, Facundo M; Wang, May D

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. Graphical Abstract ᅟ.

  18. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Features.

    PubMed

    Kaddi, Chanchala D; Bennett, Rachel V; Paine, Martin R L; Banks, Mitchel D; Weber, Arthur L; Fernández, Facundo M; Wang, May D

    2016-02-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. Graphical Abstract ᅟ. PMID:26508443

  19. Automated ambient desorption-ionization platform for surface imaging integrated with a commercial Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Pól, Jaroslav; Vidová, Veronika; Kruppa, Gary; Kobliha, Václav; Novák, Petr; Lemr, Karel; Kotiaho, Tapio; Kostiainen, Risto; Havlícek, Vladimír; Volný, Michael

    2009-10-15

    A fully automated atmospheric pressure ionization platform has been built and coupled with a commercial high-resolution Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) instrument. The outstanding performance of this instrument allowed screening on the basis of exact masses in imaging mode. The main novel aspect was in the integration of the atmospheric pressure ionization imaging into the current software for matrix-assisted laser desorption ionization (MALDI) imaging, which allows the user of this commercial dual-source mass spectrometer to perform MALDI-MS and different ambient MS imaging from the same user interface and to utilize the same software tools. Desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) were chosen to test the ambient surface imaging capabilities of this new ionization platform. Results of DESI imaging experiments performed on brain tissue sections are in agreement with previous MS imaging reports obtained by DESI imaging, but due to the high resolution and mass accuracy of the FTICR instrument it was possible to resolve several ions at the same nominal mass in the DESI-MS spectra of brain tissue. These isobaric interferences at low resolution are due to the overlap of ions from different lipid classes with different biological relevance. It was demonstrated that with the use of high-resolution MS fast imaging screening of lipids can be achieved without any preseparation steps. DAPPI, which is a relatively new and less developed ambient ionization technique compared to DESI, was used in imaging mode for the first time ever. It showed promise in imaging of phytocompounds from plant leaves, and selective ionization of a sterol lipid was achieved by DAPPI from a brain tissue sample.

  20. Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling

    PubMed Central

    Bates, Karl T.; Manning, Phillip L.; Hodgetts, David; Sellers, William I.

    2009-01-01

    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future

  1. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.

    PubMed

    Bates, Karl T; Manning, Phillip L; Hodgetts, David; Sellers, William I

    2009-01-01

    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future

  2. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.

    PubMed

    Bates, Karl T; Manning, Phillip L; Hodgetts, David; Sellers, William I

    2009-01-01

    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future

  3. Observing the Invisible through Imaging Mass Spectrometry, a Window into the Metabolic Exchange Patterns of Microbes

    PubMed Central

    Gonzalez, David J.; Xu, Yuquan; Yang, Yu-Liang; Esquenazi, Eduardo; Liu, Wei-Ting; Edlund, Anna; Duong, Tram; Du, Liangcheng; Molnár, István; Gerwick, William H.; Jensen, Paul R.; Fischbach, Michael; Liaw, Chih-Chuang; Straight, Paul; Nizet, Victor; Dorrestein, Pieter C.

    2012-01-01

    Many microbes can be cultured as single-species communities. Often, these colonies are controlled and maintained via the secretion of metabolites. Such metabolites have been an invaluable resource for the discovery of therapeutics (e.g. penicillin, taxol, rapamycin, epothilone). In this article, written for a special issue on imaging mass spectrometry, we show that MALDI-imaging mass spectrometry can be adapted to observe, in a spatial manner, the metabolic exchange patterns of a diverse array of microbes, including thermophilic and mesophilic fungi, cyanobacteria, marine and terrestrial actinobacteria, and pathogenic bacteria. Dependent on media conditions, on average and based on manual analysis, we observed 11.3 molecules associated with each microbial IMS experiment, which was split nearly 50:50 between secreted and colony-associated molecules. The spatial distributions of these metabolic exchange factors are related to the biological and ecological functions of the organisms. This work establishes that MALDI-based IMS can be used as a general tool to study a diverse array of microbes. Furthermore the article forwards the notion of the IMS platform as a window to discover previously unreported molecules by monitoring the metabolic exchange patterns of organisms when grown on agar substrates. PMID:22641157

  4. Time-course mass spectrometry imaging for depicting drug incorporation into hair.

    PubMed

    Kamata, Tooru; Shima, Noriaki; Sasaki, Keiko; Matsuta, Shuntaro; Takei, Shiori; Katagi, Munehiro; Miki, Akihiro; Zaitsu, Kei; Nakanishi, Toyofumi; Sato, Takako; Suzuki, Koichi; Tsuchihashi, Hitoshi

    2015-06-01

    In order to investigate the incorporation of drugs into hair, matrix-assisted laser desorption/ionization-time-of-flight tandem mass spectrometry (MS/MS) imaging was performed on the longitudinal sections of single scalp hair shafts sampled from volunteers after a single oral administration of methoxyphenamine (MOP), a noncontrolled analogue of methamphetamine. Hair specimens were collected by plucking out with the roots intact, and these specimens were prepped by an optimized procedure based on freeze-sectioning to detect the drug inside the hair shaft and hair root. Time-course changes in the imaging results, with confirmatory quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for each 1-mm segment of single hair strands, revealed a substantial concentration of the drug first onto the hair bulbs after ingestion, while only a small portion appeared to be incorporated into the hair matrix, forming a 2-3 mm distinctive drug band with tailing. Comparable amount of the drug also appeared to be incorporated into the keratinized hair shaft in the upper dermis zone, forming another distinct drug band of about 2 mm, which both moved toward the distal side, following the strand's growth rate. These findings provide forensically crucial information: there are two major drug incorporation sites, at least for MOP, which cause overlap of the recordings and deteriorates its chronological resolution down to about 11 days or perhaps longer.

  5. An accessible, scalable ecosystem for enabling and sharing diverse mass spectrometry imaging analyses.

    PubMed

    Fischer, Curt R; Ruebel, Oliver; Bowen, Benjamin P

    2016-01-01

    Mass spectrometry imaging (MSI) is used in an increasing number of biological applications. Typical MSI datasets contain unique, high-resolution mass spectra from tens of thousands of spatial locations, resulting in raw data sizes of tens of gigabytes per sample. In this paper, we review technical progress that is enabling new biological applications and that is driving an increase in the complexity and size of MSI data. Handling such data often requires specialized computational infrastructure, software, and expertise. OpenMSI, our recently described platform, makes it easy to explore and share MSI datasets via the web - even when larger than 50 GB. Here we describe the integration of OpenMSI with IPython notebooks for transparent, sharable, and replicable MSI research. An advantage of this approach is that users do not have to share raw data along with analyses; instead, data is retrieved via OpenMSI's web API. The IPython notebook interface provides a low-barrier entry point for data manipulation that is accessible for scientists without extensive computational training. Via these notebooks, analyses can be easily shared without requiring any data movement. We provide example notebooks for several common MSI analysis types including data normalization, plotting, clustering, and classification, and image registration.

  6. Photodissociation dynamics of ethanethiol in clusters: complementary information from velocity map imaging, mass spectrometry and calculations.

    PubMed

    Svrčková, Pavla; Pysanenko, Andriy; Lengyel, Jozef; Rubovič, Peter; Kočišek, Jaroslav; Poterya, Viktoriya; Slavíček, Petr; Fárník, Michal

    2015-10-21

    We investigate the solvent effects on photodissociation dynamics of the S-H bond in ethanethiol CH3CH2SH (EtSH). The H fragment images are recorded by velocity map imaging (VMI) at 243 nm in various expansion regimes ranging from isolated molecules to clusters of different sizes and compositions. The VMI experiment is accompanied by electron ionization mass spectrometry using a reflectron time-of-flight mass spectrometer (RTOFMS). The experimental data are interpreted using ab initio calculations. The direct S-H bond fission results in a peak of fast fragments at Ekin(H) ≈ 1.25 eV with a partly resolved structure corresponding to vibrational levels of the CH3CH2S cofragment. Clusters of different nature ranging from dimers to large (EtSH)N, N ≥ 10, clusters and to ethanethiol clusters embedded in larger argon "snowballs" are investigated. In the clusters a sharp peak of near-zero kinetic energy fragments occurs due to the caging. The dynamics of the fragment caging is pictured theoretically, using multi-reference ab initio theory for the ethanethiol dimer. The larger cluster character is revealed by the simultaneous analysis of the VMI and RTOFMS experiments; none of these tools alone can provide the complete picture. PMID:25743944

  7. Direct profiling of myelinated and demyelinated regions in mouse brain by imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ceuppens, Ruben; Dumont, Debora; van Brussel, Leen; van de Plas, Babs; Daniels, Ruth; Noben, Jean-Paul; Verhaert, Peter; van der Gucht, Estel; Robben, Johan; Clerens, Stefan; Arckens, Lutgarde

    2007-02-01

    One of the newly developed imaging mass spectrometry (IMS) technologies utilizes matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to map proteins in thin tissue sections. In this study, we evaluated the power of MALDI IMS as we developed it in our (Bruker) MALDI TOF (Reflex IV) and TOF-TOF (Ultraflex II) systems to study myelin patterns in the mouse central nervous system under normal and pathological conditions. MALDI IMS was applied to assess myelin basic protein (MBP) isoform-specific profiles in different regions throughout the mouse brain. The distribution of ions of m/z 14,144 and 18,447 displayed a striking resemblance with white matter histology and were identified as MBP isoform 8 and 5, respectively. In addition, we demonstrated a significant reduction of the MBP-8 peak intensity upon MALDI IMS analysis of focal ethidium bromide-induced demyelinated brain areas. Our MS images were validated by immunohistochemistry using MBP antibodies. This study underscores the potential of MALDI IMS to study the contribution of MBP to demyelinating diseases.

  8. THE MULTI-ISOTOPE PROCESS (MIP) MONITOR: A NEAR-REAL-TIME, NON-DESTRUCTIVE, INDICATOR OF SPENT NUCLEAR FUEL REPROCESSING CONDITIONS

    SciTech Connect

    Schwantes, Jon M.; Orton, Christopher R.; Fraga, Carlos G.; Douglas, Matthew; Christensen, Richard

    2010-05-07

    Researchers from Pacific Northwest National Laboratory and The Ohio State University are working to develop a system for monitoring spent nuclear fuel reprocessing facilities on-line, non-destructively, and in near-real-time. This method, known as the Multi-Isotope Process (MIP) Monitor, is based upon the measurement of distribution patterns of a suite of indicator (radioactive) isotopes present within product and waste streams of a nuclear reprocessing facility. Signatures from these indicator isotopes are monitored on-line by gamma spectrometry and compared, in near-real-time, to patterns representing "normal" process conditions using multivariate pattern recognition software. By targeting gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, high-resolution gamma detectors that may be easily deployed throughout an existing facility. In addition, utilization of a suite of radio-elements, including ones with multiple oxidation states, increases the likelihood that attempts to divert material via process manipulation would be detected. Proof-of-principle modeling exercises simulating changes in acid strength have been completed and the results are promising. Laboratory validation is currently under way and significant results are available. The latest experimental results, along with an overview of the method will be presented.

  9. Proof of Concept Simulations of the Multi-Isotope Process Monitor: An Online, Nondestructive, Near-Real-Time Safeguards Monitor for Nuclear Fuel Reprocessing Facilities

    SciTech Connect

    Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard; Schwantes, Jon M.

    2011-02-11

    The International Atomic Energy Agency (IAEA) will require the development of advanced technologies to effectively safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of nondestructive, near-real-time, autonomous process monitoring. This paper describes recent results from model simulations designed to test the Multi-Isotope Process (MIP) monitor, a novel approach to safeguarding reprocessing plants. The MIP monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in near-real-time. Three computer models including ORIGEN-ARP, AMUSE, and SYNTH were used in series to predict spent nuclear fuel composition, estimate element partitioning during separation, and simulate spectra from product and raffinate streams using a variety of gamma detectors, respectively. Simulations were generated for fuel with various irradiation histories and under a variety of plant operating conditions. Principal component analysis (PCA) was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup, and cooling time. Hierarchical cluster analysis (HCA) and partial least squares (PLS) were also used in the analysis. The MIP monitor was found to be sensitive to induced variations of several operating parameters including distinguishing ±2.5% variation from normal process acid concentrations. The ability of PLS to predict burnup levels from simulated spectra was also demonstrated to be within 3.5% of measured values.

  10. Identifying the African wintering grounds of hybrid flycatchers using a multi-isotope (δ2H, δ13C, δ15N) assignment approach.

    PubMed

    Veen, Thor; Hjernquist, Mårten B; Van Wilgenburg, Steven L; Hobson, Keith A; Folmer, Eelke; Font, Laura; Klaassen, Marcel

    2014-01-01

    Migratory routes and wintering grounds can have important fitness consequences, which can lead to divergent selection on populations or taxa differing in their migratory itinerary. Collared (Ficedula albicollis) and pied (F. hypoleuca) flycatchers breeding in Europe and wintering in different sub-Saharan regions have distinct migratory routes on the eastern and western sides of the Sahara desert, respectively. In an earlier paper, we showed that hybrids of the two species did not incur reduced winter survival, which would be expected if their migration strategy had been a mix of the parent species' strategies potentially resulting in an intermediate route crossing the Sahara desert to different wintering grounds. Previously, we compared isotope ratios and found no significant difference in stable-nitrogen isotope ratios (δ15N) in winter-grown feathers between the parental species and hybrids, but stable-carbon isotope ratios (δ13C) in hybrids significantly clustered only with those of pied flycatchers. We followed up on these findings and additionally analyzed the same feathers for stable-hydrogen isotope ratios (δ2H) and conducted spatially explicit multi-isotope assignment analyses. The assignment results overlapped with presumed wintering ranges of the two species, highlighting the efficacy of the method. In contrast to earlier findings, hybrids clustered with both parental species, though most strongly with pied flycatcher.

  11. MONITORING SPENT NUCLEAR FUEL REPROCESSING CONDITIONS NON-DESTRUCTIVELY AND IN NEAR-REAL-TIME USING THE MULTI-ISOTOPE PROCESS (MIP) MONITOR

    SciTech Connect

    Orton, Christopher R.; Fraga, Carlos G.; Douglas, Matthew; Christensen, Richard; Schwantes, Jon M.

    2010-05-07

    Researchers from Pacific Northwest National Laboratory and The Ohio State University are working to develop a system for monitoring spent nuclear fuel reprocessing facilities on-line, nondestructively, and in near-real-time. This method, known as the Multi-Isotope Process (MIP) Monitor, is based upon the measurement of distribution patterns of a suite of indicator (radioactive) isotopes present within product and waste streams of a nuclear reprocessing facility. Signatures from these indicator isotopes are monitored on-line by gamma spectrometry and compared, in near-real-time, to patterns representing "normal" process conditions using multivariate pattern recognition software. By targeting gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, high-resolution gamma detectors that may be easily deployed throughout an existing facility. In addition, utilization of a suite of radio-elements, including ones with multiple oxidation states, increases the likelihood that attempts to divert material via process manipulation would be detected. Proof-of-principle modeling exercises simulating changes in acid strength have been completed and the results are promising. Laboratory testing is currently under way and significant results are available. Recent experimental results, along with an overview of the method are presented.

  12. Mass balance of Mars' residual south polar cap from CTX images and other data

    NASA Astrophysics Data System (ADS)

    Thomas, P. C.; Calvin, W.; Cantor, B.; Haberle, R.; James, P. B.; Lee, S. W.

    2016-04-01

    Erosion of pits in the residual south polar cap (RSPC) of Mars concurrent with deposition and fluctuating cap boundaries raises questions about the mass balance and long term stability of the cap. Determining a mass balance by measurement of a net gain or loss of atmospheric CO2 by direct pressure measurements (Haberle, R.M. et al. [2014]. Secular climate change on Mars: An update using one Mars year of MSL pressure data. American Geophysical Union (Fall). Abstract 3947), although perhaps the most direct method, has so far given ambiguous results. Estimating volume changes from imaging data faces challenges, and has previously been attempted only in isolated areas of the cap. In this study we use 6 m/pixel Context Imager (CTX) data from Mars year 31 to map all the morphologic units of the RSPC, expand the measurement record of pit erosion rates, and use high resolution images to place limits on vertical changes in the surface of the residual cap. We find the mass balance in Mars years 9-31 to be -6 to +4 km3/♂y, or roughly -0.039% to +0.026% of the mean atmospheric CO2 mass/♂y. The indeterminate sign results chiefly from uncertainty in the amounts of deposition or erosion on the upper surfaces of deposits (as opposed to scarp retreat). Erosion and net deposition in this period appear to be controlled by summertime planetary scale dust events, the largest occurring in MY 9, another, smaller one in MY 28. The rates of erosion and the deposition observed since MY 9 appear to be consistent with the types of deposits and erosional behavior found in most of the residual cap. However, small areas (<10%) of the cap are distinguished by their greater thickness, polygonal troughs, and embayed contacts with thinner units. These deposits may require extended periods (>100 ♂y) of depositional and/or erosional conditions different from those occurring in the period since MY 9, although these environmental differences could be subtle.

  13. Pancreatic Cancer Surgical Resection Margins: Molecular Assessment by Mass Spectrometry Imaging

    PubMed Central

    Eberlin, Livia S.; Zare, Richard N.; Tibshirani, Robert; Longacre, Teri A.; Jalali, Moe; Norton, Jeffrey A.; Poultsides, George A.

    2016-01-01

    Background Surgical resection with microscopically negative margins remains the main curative option for pancreatic cancer; however, in practice intraoperative delineation of resection margins is challenging. Ambient mass spectrometry imaging has emerged as a powerful technique for chemical imaging and real-time diagnosis of tissue samples. We applied an approach combining desorption electrospray ionization mass spectrometry imaging (DESI-MSI) with the least absolute shrinkage and selection operator (Lasso) statistical method to diagnose pancreatic tissue sections and prospectively evaluate surgical resection margins from pancreatic cancer surgery. Methods and Findings Our methodology was developed and tested using 63 banked pancreatic cancer samples and 65 samples (tumor and specimen margins) collected prospectively during 32 pancreatectomies from February 27, 2013, to January 16, 2015. In total, mass spectra for 254,235 individual pixels were evaluated. When cross-validation was employed in the training set of samples, 98.1% agreement with histopathology was obtained. Using an independent set of samples, 98.6% agreement was achieved. We used a statistical approach to evaluate 177,727 mass spectra from samples with complex, mixed histology, achieving an agreement of 81%. The developed method showed agreement with frozen section evaluation of specimen margins in 24 of 32 surgical cases prospectively evaluated. In the remaining eight patients, margins were found to be positive by DESI-MSI/Lasso, but negative by frozen section analysis. The median overall survival after resection was only 10 mo for these eight patients as opposed to 26 mo for patients with negative margins by both techniques. This observation suggests that our method (as opposed to the standard method to date) was able to detect tumor involvement at the margin in patients who developed early recurrence. Nonetheless, a larger cohort of samples is needed to validate the findings described in this study

  14. Magnetic resonance imaging of mediastinal and hilar masses: comparison with CT

    SciTech Connect

    Levitt, R.G.; Glazer, H.S.; Roper, C.L.; Lee, J.K.T.; Murphy, W.A.

    1985-07-01

    Magnetic resonance imaging (MRI) was compared to computed tomography (CT) of the mediastinum and/or hila in 37 patients with bronchogenic carcinoma (35 unresectable for cure) and 11 patients with other masses. Spin-echo pulse sequences using a short pulse repetition rate (TR) and short echo delay (TE) were most helpful for detection of abnormal soft-tissue mediastinal and hilar masses. The accuracy of MRI and CT in staging bronchogenic carcinoma for curative resectability/nonresectability was comparable. Several pitfalls in MRI evaluation of the mediastinum were identified. By MRI the esophagus may be misinterpreted as an enlarged retrotracheal lymph node unless serial scans are studied. Small adjacent lymph nodes shown individually by CT may appear as a single enlarged lymph node by MRI due to partial-volume averaging. Because of the requirement for patient selection and the identified pitfalls of MRI, CT remains the radiologic procedure of choice in the staging of patients with bronchogenic carcinoma and the evaluation of other mediastinal and hilar masses at present. However, because of the ability to show blood vessels without an intravascular contrast agent, MRI is useful in evaluating patients with potential contrast allergy and solving diagnostic problems not solved by CT.

  15. Optimization and Comparison of Multiple MALDI Matrix Application Methods for Small Molecule Mass Spectrometric Imaging

    PubMed Central

    2015-01-01

    The matrix application technique is critical to the success of a matrix-assisted laser desorption/ionization (MALDI) experiment. This work presents a systematic study aiming to evaluate three different matrix application techniques for MALDI mass spectrometric imaging (MSI) of endogenous metabolites from legume plant, Medicago truncatula, root nodules. Airbrush, automatic sprayer, and sublimation matrix application methods were optimized individually for detection of metabolites in the positive ionization mode exploiting the two most widely used MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA). Analytical reproducibility and analyte diffusion were examined and compared side-by-side for each method. When using DHB, the optimized method developed for the automatic matrix sprayer system resulted in approximately double the number of metabolites detected when compared to sublimation and airbrush. The automatic sprayer method also showed more reproducible results and less analyte diffusion than the airbrush method. Sublimation matrix deposition yielded high spatial resolution and reproducibility but fewer analytes in the higher m/z range (500–1000 m/z). When the samples were placed in a humidity chamber after sublimation, there was enhanced detection of higher mass metabolites but increased analyte diffusion in the lower mass range. When using CHCA, the optimized automatic sprayer method and humidified sublimation method resulted in double the number of metabolites detected compared to standard airbrush method. PMID:25331774

  16. Computer-aided diagnosis of mammographic masses using scalable image retrieval.

    PubMed

    Jiang, Menglin; Zhang, Shaoting; Li, Hongsheng; Metaxas, Dimitris N

    2015-02-01

    Computer-aided diagnosis of masses in mammograms is important to the prevention of breast cancer. Many approaches tackle this problem through content-based image retrieval techniques. However, most of them fall short of scalability in the retrieval stage, and their diagnostic accuracy is, therefore, restricted. To overcome this drawback, we propose a scalable method for retrieval and diagnosis of mammographic masses. Specifically, for a query mammographic region of interest (ROI), scale-invariant feature transform (SIFT) features are extracted and searched in a vocabulary tree, which stores all the quantized features of previously diagnosed mammographic ROIs. In addition, to fully exert the discriminative power of SIFT features, contextual information in the vocabulary tree is employed to refine the weights of tree nodes. The retrieved ROIs are then used to determine whether the query ROI contains a mass. The presented method has excellent scalability due to the low spatial-temporal cost of vocabulary tree. Extensive experiments are conducted on a large dataset of 11 553 ROIs extracted from the digital database for screening mammography, which demonstrate the accuracy and scalability of our approach. PMID:25361497

  17. Plasma ionization source for atmospheric pressure mass spectrometry imaging using near-field optical laser ablation.

    PubMed

    Nudnova, Maryia M; Sigg, Jérôme; Wallimann, Pascal; Zenobi, Renato

    2015-01-20

    Mass spectrometry imaging (MSI) at ambient pressures with submicrometer resolution is challenging, due to the very low amount of material available for mass spectrometric analysis. In this work, we present the development and characterization of a method for MSI based on pulsed laser ablation via a scanning near-field optical microscopy (SNOM) aperture tip. SNOM allows laser ablation of material from surfaces with submicrometer spatial resolution, which can be ionized for further chemical analysis with MS. Efficient ionization is realized here with a custom-built capillary plasma ionization source. We show the applicability of this setup for mass spectrometric analysis of three common MALDI matrices, α-4-hydroxycyanocinnamic acid, 3-aminobenzoic acid, and 2,5-dihydroxybenzoic acid. Although the ultimate goal has been to optimize sensitivity for detecting material ablated from submicrometer diameter craters, the effective lateral resolution is currently limited by the sensitivity of the MS detection system. In our case, the sensitivity of the MS was about 1 fmol, which allowed us to achieve a spatial resolution of 2 μm. We also characterize the analytical figures of merit of our method. In particular, we demonstrate good reproducibility, a repetition rate in the range of only a few seconds, and we determined the amount of substance required to achieve optimal resolution and sensitivity. Moreover, the sample topography is available from SNOM scans, a parameter that is missing in common MSI methods.

  18. Queries of MALDI-imaging global datasets identifying ion mass signatures associated with tissue compartments.

    PubMed

    Fehniger, Thomas E; Suits, Frank; Végvári, Ákos; Horvatovich, Peter; Foster, Martyn; Marko-Varga, György

    2014-04-01

    Scanning MS by MALDI MS imaging (MALDI-MSI) creates large volumetric global datasets that describe the location and identity of ions registered at each sampling location. While thousands of ion peaks are recorded in a typical whole-tissue analysis, only a fraction of these measured molecules are purposefully scrutinized within a given experimental design. To address this need, we recently reported new methods to query the full volume of MALDI-MSI data that correlate all ion masses to one another. As an example of this utility, we demonstrate that specific ion peak m/z signatures can be used to localize similar histological structures within tissue samples. In this study, we use the example of ion peak masses that are associated with tissue spaces occupied by airway bronchioles in rat lung samples. The volume of raw data was preprocessed into structures of 0.1 mass unit bins containing metadata collected at each sampling position. Interactive visualization in ParaView identified ion peaks that especially showed strong association with airway bronchioles but not vascular or parenchymal tissue compartments. Further iterative statistical correlation queries provided ranked indices of all m/z values in the global dataset regarding coincident distributions at any given X, Y position in the histological spaces occupied by bronchioles The study further provides methods for extracting important information contained in global datasets that previously was unseen or inaccessible.

  19. A multi-isotope (radium, boron,strontium, sulfur, carbon, oxygen, hydrogen) investigation of fossil groundwater from the Disi Aquifer in southern Jordan: tracing water sources, water-rock interactions, and residence time (Invited)

    NASA Astrophysics Data System (ADS)

    Vengosh, A.; Rimawi, O.; Al-Zoubi, A.; Marie, A.; Ganor, J.

    2010-12-01

    The rise in population, consecutive droughts induced from climate change, and associated increased water demands in the Middle East have placed an increasing pressure on available water resources, which in turn has accelerated the rates of their depletion and contamination. In addition to desalination and recycling waste water, exploitation of non-renewable (“fossil”) groundwater has become an alternative water source. Most of the fossil groundwater in the Middle East and Northern Africa occupies confined sandstone aquifers and is typically characterized by high water quality. Recent findings have shown, however, that fossil groundwater from the Nubian Sandstone aquifers in southern Jordan and Israel has high levels of naturally occurring and carcinogenic radium isotopes that largely exceed the international drinking water standards, and poses a health risk upon long-term utilization. Here we present the results of a multi-isotope study of low-saline (TDS=250-450 mg/L) groundwater from the Cambro-Ordovician Disi-Mudawarra sandstone aquifer systems in southern Jordan. The δ18O, δ2H, and 14C variations show at least three recharge phases into the confined and unconfined zones of the aquifer. High δ11B values (34-47‰) and B/Cl ratios (>>seawater ratio) suggests that the recharge water originated from rainwater of an early stage of air mass evolution, with negligible water-rock interaction in the aquifer. This meteoric composition is consistent with 87Sr/86Sr (70804 to 0.70860) and δ34S (9-16‰) values, and infers minimum dissolution of diagenetic carbonates that could have contributed depleted 11B, high 87Sr/86Sr, and dead carbon. The uncorrected 14C ages point to three major recharge episodes to the northwestern Arabian Peninsula: (1) >30 ka (Khrein aquifer); (2) 15-29 ka (confined Disi aquifer); and (3) 8-12 ka (unconfined Disi aquifer), in which the latter coincide with the “pluvial maximum” of Early Holocene. The stable isotope composition of the

  20. Interactions between Coronal Mass Ejections Viewed in Coordinated Imaging and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian; Martinez-Oliveros, Juan C.; Bale, Stewart D.; Lin, Robert P.; Harrison, Richard A.; Temmer, Manuela; Webb, David F.; Odstrcil, Dusan

    2013-01-01

    The successive coronal mass ejections (CMEs) from 2010 July 30 - August 1 present us the first opportunity to study CME-CME interactions with unprecedented heliospheric imaging and in situ observations from multiple vantage points. We describe two cases of CME interactions: merging of two CMEs launched close in time and overtaking of a preceding CME by a shock wave. The first two CMEs on August 1 interact close to the Sun and form a merged front, which then overtakes the July 30 CME near 1 AU, as revealed by wide-angle imaging observations. Connections between imaging observations and in situ signatures at 1 AU suggest that the merged front is a shock wave, followed by two ejecta observed at Wind which seem to have already merged. In situ measurements show that the CME from July 30 is being overtaken by the shock at 1 AU and is significantly compressed, accelerated and heated. The interaction between the preceding ejecta and shock also results in variations in the shock strength and structure on a global scale, as shown by widely separated in situ measurements from Wind and STEREO B. These results indicate important implications of CME-CME interactions for shock propagation, particle acceleration and space weather forecasting.

  1. Development of an Imaging Mass Spectrometry Technique for Visualizing Localized Cellular Signaling Mediators in Tissues

    PubMed Central

    Sugiura, Yuki; Honda, Kurara; Suematsu, Makoto

    2015-01-01

    In vivo concentrations of cellular signaling mediators such as inflammatory mediators are normally maintained at very low levels due to their strong ability to induce a biological response. The production, diffusion, and decomposition of such mediators are spatio-temporally regulated. Therefore, in order to understand biochemical basis of disease progression and develop new therapeutic strategies, it is important to understand the spatiotemporal dynamics of the signaling mediators in vivo, during the progression of disorders, e.g., chronic inflammatory diseases; however, the lack of effective imaging technology has made it difficult to determine their localizations in vivo. Such characterization requires technical breakthroughs, including molecular imaging methods that are sensitive enough to detect low levels of metabolites in the heterogeneous tissue regions in diseased organs. We and other groups have attempted to fill this technical gap by developing highly sensitive imaging mass spectrometry (IMS) technologies. To date, we have established two key techniques toward this goal, including (i) a sample preparation procedure that has eliminated the problem of the postmortem degradation of labile metabolites, and (ii) on-tissue derivatization of metabolites, which can enhance analyte ionization efficiency. Here, we review recent progress in the development of these technologies as well as how the highly sensitive IMS technique has contributed to increasing understanding of the biochemical basis of disease mechanisms, discovery of new diagnostic markers, and development of new therapies. PMID:26819911

  2. Lipid imaging in the zebra finch brain with secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Amaya, Kensey R.; Monroe, Eric B.; Sweedler, Jonathan V.; Clayton, David F.

    2007-02-01

    Lipids have diverse functions in the nervous system, but the study of their anatomical distributions in the intact brain is rather difficult using conventional methodologies. Here we demonstrate the application of high resolution time-of-flight (ToF) secondary ion mass spectrometry (SIMS) to image various lipid components and cholesterol across an entire brain section prepared from an adult zebra finch (Taeniopygia guttata), with a spatial resolution of 2.3 [mu]m, resulting in the formation of 11.5 megapixel chemical images. The zebra finch is a songbird in which specific neural and developmental functions have been ascribed to discrete "song control nuclei" of the forebrain. We have observed a relative increase of palmitic acid C16:0 and oleic acid C18:1 in song control nuclei versus the surrounding tissue, while phosphate (PO3-), representative of phospholipids, was lower in these regions. Cholesterol was present at a high level only in the white matter of the optic tectum. More diffuse distributions were observed for stearic, arachidonic, linolenic, and palmitoleic acids. The presented results illustrate that SIMS imaging is a useful approach for assessing changes in lipid content during song circuit development and song learning.

  3. Analysis of protein tyrosine phosphatase interactions with microarrayed phosphopeptide substrates using imaging mass spectrometry

    PubMed Central

    McKee, Christopher J.; Hines, Harry B.; Ulrich, Robert G.

    2013-01-01

    Microarrays of peptide and recombinant protein libraries are routinely used for high-throughput studies of protein-protein interactions and enzymatic activities. Imaging mass spectrometry (IMS) is currently applied as a method to localize analytes on thin tissue sections and other surfaces. Here, we have applied IMS as a label-free means to analyze protein-peptide interactions in a microarray-based phosphatase assay. This IMS strategy visualizes the entire microarray in one composite image by collecting a pre-defined raster of MALDI-TOF MS spectra over the surface of the chip. Examining the bacterial tyrosine phosphatase YopH, we used IMS as a label-free means to visualize enzyme binding and activity with a microarrayed phosphopeptide library printed on chips coated with either gold or indium-tin oxide. Further, we demonstrate that microarray-based IMS can be coupled with surface plasmon resonance imaging to add kinetic analyses to measured binding interactions. The method described here is within the capabilities of many modern MALDI-TOF instruments and has general utility for the label-free analysis of microarray assays. PMID:23906642

  4. Mass spectrometry coupled to imaging techniques: the better the view the greater the challenge

    PubMed Central

    Barceló-Coblijn, Gwendolyn; Fernández, José A.

    2014-01-01

    These are definitively exciting times for membrane lipid researchers. Once considered just as the cell membrane building blocks, the important role these lipids play is steadily being acknowledged. The improvement occurred in mass spectrometry techniques (MS) allows the establishment of the precise lipid composition of biological extracts. However, to fully understand the biological function of each individual lipid species, we need to know its spatial distribution and dynamics. In the past 10 years, the field has experienced a profound revolution thanks to the development of MS-based techniques allowing lipid imaging (MSI). Images reveal and verify what many lipid researchers had already shown by different means, but none as convincing as an image: each cell type presents a specific lipid composition, which is highly sensitive to its physiological and pathological state. While these techniques will help to place membrane lipids in the position they deserve, they also open the black box containing all the unknown regulatory mechanisms accounting for such tailored lipid composition. Thus, these results urges to different disciplines to redefine their paradigm of study by including the complexity revealed by the MSI techniques. PMID:25657625

  5. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  6. Chemical imaging of latent fingerprints by mass spectrometry based on laser activated electron tunneling.

    PubMed

    Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Zhong, Hongying

    2015-03-01

    Identification of endogenous and exogenous chemicals contained in latent fingerprints is important for forensic science in order to acquire evidence of criminal identities and contacts with specific chemicals. Mass spectrometry has emerged as a powerful technique for such applications without any derivatization or fluorescent tags. Among these techniques, MALDI (Matrix Assisted Laser Desorption Ionization) provides small beam size but has interferences with MALDI matrix materials, which cause ion suppressions as well as limited spatial resolution resulting from uneven distribution of MALDI matrix crystals with different sizes. LAET (Laser Activated Electron Tunneling) described in this work offers capabilities for chemical imaging through electron-directed soft ionization. A special film of semiconductors has been designed for collection of fingerprints. Nanoparticles of bismuth cobalt zinc oxide were compressed on a conductive metal substrate (Al or Cu sticky tape) under 10 MPa pressure. Resultant uniform thin films provide tight and shining surfaces on which fingers are impressed. Irradiation of ultraviolet laser pulses (355 nm) on the thin film instantly generates photoelectrons that can be captured by adsorbed organic molecules and subsequently cause electron-directed ionization and fragmentation. Imaging of latent fingerprints is achieved by visualization of the spatial distribution of these molecular ions and structural information-rich fragment ions. Atomic electron emission together with finely tuned laser beam size improve spatial resolution. With the LAET technique, imaging analysis not only can identify physical shapes but also reveal endogenous metabolites present in females and males, detect contacts with prohibited substances, and resolve overlapped latent fingerprints. PMID:25647159

  7. Chemical imaging of latent fingerprints by mass spectrometry based on laser activated electron tunneling.

    PubMed

    Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Zhong, Hongying

    2015-03-01

    Identification of endogenous and exogenous chemicals contained in latent fingerprints is important for forensic science in order to acquire evidence of criminal identities and contacts with specific chemicals. Mass spectrometry has emerged as a powerful technique for such applications without any derivatization or fluorescent tags. Among these techniques, MALDI (Matrix Assisted Laser Desorption Ionization) provides small beam size but has interferences with MALDI matrix materials, which cause ion suppressions as well as limited spatial resolution resulting from uneven distribution of MALDI matrix crystals with different sizes. LAET (Laser Activated Electron Tunneling) described in this work offers capabilities for chemical imaging through electron-directed soft ionization. A special film of semiconductors has been designed for collection of fingerprints. Nanoparticles of bismuth cobalt zinc oxide were compressed on a conductive metal substrate (Al or Cu sticky tape) under 10 MPa pressure. Resultant uniform thin films provide tight and shining surfaces on which fingers are impressed. Irradiation of ultraviolet laser pulses (355 nm) on the thin film instantly generates photoelectrons that can be captured by adsorbed organic molecules and subsequently cause electron-directed ionization and fragmentation. Imaging of latent fingerprints is achieved by visualization of the spatial distribution of these molecular ions and structural information-rich fragment ions. Atomic electron emission together with finely tuned laser beam size improve spatial resolution. With the LAET technique, imaging analysis not only can identify physical shapes but also reveal endogenous metabolites present in females and males, detect contacts with prohibited substances, and resolve overlapped latent fingerprints.

  8. INTERACTIONS BETWEEN CORONAL MASS EJECTIONS VIEWED IN COORDINATED IMAGING AND IN SITU OBSERVATIONS

    SciTech Connect

    Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian; Martinez-Oliveros, Juan C.; Bale, Stuart D.; Lin, Robert P.; Harrison, Richard A.; Temmer, Manuela; Webb, David F.; Odstrcil, Dusan

    2012-02-20

    The successive coronal mass ejections (CMEs) from 2010 July 30 to August 1 present us the first opportunity to study CME-CME interactions with unprecedented heliospheric imaging and in situ observations from multiple vantage points. We describe two cases of CME interactions: merging of two CMEs launched close in time and overtaking of a preceding CME by a shock wave. The first two CMEs on August 1 interact close to the Sun and form a merged front, which then overtakes the July 30 CME near 1 AU, as revealed by wide-angle imaging observations. Connections between imaging observations and in situ signatures at 1 AU suggest that the merged front is a shock wave, followed by two ejecta observed at Wind which seem to have already merged. In situ measurements show that the CME from July 30 is being overtaken by the shock at 1 AU and is significantly compressed, accelerated, and heated. The interaction between the preceding ejecta and shock also results in variations in the shock strength and structure on a global scale, as shown by widely separated in situ measurements from Wind and STEREO B. These results indicate important implications of CME-CME interactions for shock propagation, particle acceleration, and space weather forecasting.

  9. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: insight into particle origin and chemistry

    DOE PAGESBeta

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-01-14

    Knowledge of the spatially resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry and understanding particle reactivity and the potential environmental impact. Here, we demonstrate the application of nanometer-scale secondary ion mass spectrometry (CAMECA NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad range of particle sizes. We have used this technique to probe the spatially resolved composition of ambient particles collected during amore » field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth-resolved chemical imaging in ambient particle research. The particles that we examined in our study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location before the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen, and chlorine at the particle surface. We also observed the surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas–particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insight into their chemical history.« less

  10. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: insight into particle origin and chemistry

    SciTech Connect

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-01-14

    Knowledge of the spatially resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry and understanding particle reactivity and the potential environmental impact. Here, we demonstrate the application of nanometer-scale secondary ion mass spectrometry (CAMECA NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad range of particle sizes. We have used this technique to probe the spatially resolved composition of ambient particles collected during a field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth-resolved chemical imaging in ambient particle research. The particles that we examined in our study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location before the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen, and chlorine at the particle surface. We also observed the surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas–particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insight into their chemical history.

  11. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insighs into particle origin and chemistry

    SciTech Connect

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-04-21

    Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. 1 Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.

  12. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insights into particle origin and chemistry

    NASA Astrophysics Data System (ADS)

    Ghosal, S.; Weber, P. K.; Laskin, A.

    2014-12-01

    Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.

  13. Histology-Guided High-Resolution Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging.

    PubMed

    Heijs, Bram; Abdelmoula, Walid M; Lou, Sha; Briaire-de Bruijn, Inge H; Dijkstra, Jouke; Bovée, Judith V M G; McDonnell, Liam A

    2015-12-15

    Mass spectrometry imaging (MSI) is widely used for clinical research because when combined with histopathological analysis the molecular signatures of specific cells/regions can be extracted from the often-complex histologies of pathological tissues. The ability of MSI to stratify patients according to disease, prognosis, and response is directly attributable to this cellular specificity. MSI developments are increasingly focused on further improving specificity, through higher spatial resolution to better localize the signals or higher mass resolution to better resolve molecular ions. Higher spatial/mass resolution leads to increased data size and longer data acquisition times. For clinical applications, which analyze large series of patient tissues, this poses a challenge to keep data load and acquisition time manageable. Here we report a new tool to perform histology guided MSI; instead of analyzing large parts of each tissue section the histology from adjacent tissue sections is used to focus the analysis on the areas of interest, e.g., comparable cell types in different patient tissues, thereby minimizing data acquisition time and data load. The histology tissue section is annotated and then automatically registered to the MSI-prepared tissue section; the registration transformation is then applied to the annotations, enabling them to be used to define the MSI measurement regions. Using a series of formalin-fixed, paraffin-embedded human myxoid liposarcoma tissues, we demonstrate an 80% reduction of data load and acquisition time, thereby enabling high resolution (mass or spatial) to be more readily applied to clinical research. The software is freely available for download. PMID:26595321

  14. Combined Chemical and Topographic Imaging at Atmospheric Pressure via Microprobe Laser Desorption/Ionization Mass Spectrometry-Atomic Force Microscopy

    SciTech Connect

    Bradshaw, James A; Ovchinnikova, Olga S; Meyer, Kent A; Goeringer, Doug

    2009-01-01

    The operational characteristics and imaging performance are described for a new instrument comprising an atomic force microscope (AFM) coupled with a pulsed laser and a linear ion trap mass spectrometer. The AFM operating mode is used to produce topographic surface images having nanometer-scale spatial and height resolution. Spatially resolved mass spectra of ions, produced from the same surface via microprobe-mode laser desorption/ionization at atmospheric pressure, are then used to create a 100 x 100 m chemical image. The effective spatial resolution of the image (~2 m) was constrained by the limit of detection (estimated to be 109 1010 ions) rather than by the diameter of the focused laser spot or the step size of the AFM sample stage. Thus, it is expected that improvements in imaging performance can be realized by implementation of post-ionization methods.

  15. High-resolution MALDI imaging mass spectrometry allows localization of peptide distributions at cellular length scales in pituitary tissue sections

    NASA Astrophysics Data System (ADS)

    Altelaar, A. F. Maarten; Taban, Ioana M.; McDonnell, Liam A.; Verhaert, Peter D. E. M.; de Lange, Robert P. J.; Adan, Roger A. H.; Mooi, Wolter J.; Heeren, Ron M. A.; Piersma, Sander R.

    2007-02-01

    Matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) has been used to determine peptide distributions directly from rat, mouse and human pituitary tissue sections. Since these organs are small (102-103 [mu]m) the spatial resolution of IMS is a key issue in molecular imaging of pituitary tissue sections. Here we show that high-resolution IMS allows localization of neuropeptide distributions within different cell clusters of a single organ of a pituitary tissue section. The sample preparation protocol does not result in analyte redistribution and is therefore applicable to IMS experiments at cellular length scales. The stigmatic imaging mass spectrometer used in this study produces selected-ion-count images with pixel sizes of 500 nm and a resolving power of 4 [mu]m, yielding superior spatial detail compared to images obtained in microprobe imaging experiments. Furthermore, we show that with imaging mass spectrometry a distinction can be made between different mammalian tissue sections based on differences in the amino acid sequence of neuropeptides with the same function. This example demonstrates the power of IMS for label-free molecular imaging at relevant biological length scales.

  16. Mass Spectrometry Imaging as a Tool for Surgical Decision-Making

    PubMed Central

    Calligaris, David; Norton, Isaiah; Feldman, Daniel R.; Ide, Jennifer L.; Dunn, Ian F.; Eberlin, Livia S.; Cooks, R. Graham; Jolesz, Ferenc A.; Golby, Alexandra J.; Santagata, Sandro; Agar, Nathalie Y.

    2014-01-01

    Despite significant advances in image-guided therapy, surgeons are still too often left with uncertainty when deciding to remove tissue. This binary decision between removing and leaving tissue during surgery implies that the surgeon should be able to distinguish tumor from healthy tissue. In neurosurgery, current image-guidance approaches such as magnetic resonance imaging (MRI) combined with neuro-navigation offer a map as to where the tumor should be, but the only definitive method to characterize the tissue at stake is histopathology. While extremely valuable information is derived from this gold standard approach, it is limited to very few samples during surgery and is not practically used for the delineation of tumor margins. The development and implementation of faster, comprehensive and complementary approaches for tissue characterization are required to support surgical decision-making – an incremental and iterative process with tumor removed in multiple and often minute biopsies. The development of atmospheric pressure ionization sources makes it possible to analyze tissue specimens with little to no sample preparation. Here, we highlight the value of desorption electrospray ionization (DESI) as one of many available approaches for the analysis of surgical tissue. Twelve surgical samples resected from a patient during surgery were analyzed and diagnosed as glioblastoma (GBM) tumor or necrotic tissue by standard histopathology, and mass spectrometry results were further correlated to histopathology for critical validation of the approach. The use of a robust statistical approach reiterated results from the qualitative detection of potential biomarkers of these tissue types. The correlation of the MS and histopathology results to magnetic resonance images brings significant insight into tumor presentation that could not only serve to guide tumor resection, but that is worthy of more detailed studies on our understanding of tumor presentation on MRI. PMID

  17. Near-Infrared Polarimetric Imaging of Disks around Young Intermediate-mass Stars in SEEDS

    NASA Astrophysics Data System (ADS)

    Fukagawa, Misato; Hashimoto, Jun; Grady, C. A.; Momose, Munetake; Wisniewski, J. P.; Okamoto, Yoshiko; Muto, Takayuki; Kusakabe, Nobuhiko; Bonnefoy, Mickael; Kotani, Takayuki; Maruta, Yayoi; Tamura, Motohide; Seeds/Hiciao/Ao188 Collaboration,

    2013-07-01

    We present our recent results to directly image circumstellar disks around Herbig Fe/Ae/Be stars in scattered light with Subaru. Observations of such young disks are critically important to understand how disks evolve possibly under the mutual interaction with new-born planets. One of the observational approaches is direct imaging in scattered light, and the progress in this field since PPV can be found in the ability to prove inner regions of disks. This improvement largely owes to the technique of polarization differential imaging (PDI) which provides higher contrast by extracting scattered light from the disk while suppressing unpolarized stellar light. Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) is the project dedicated to exoplanet hunting and study of circumstellar disks by direct imaging. Since its beginning in 2009, thirteen Herbig Fe/Ae/Be stars have been observed primarily in H band (1.6 micron). The PDI method has been employed with adaptive optics, enabling us to look into the inner region as close as 0.2 arcsec (˜30 AU) in radius with the typical angular resolution of 0.06 arcsec (˜8 AU). As a result, the SEEDS imagery has newly uncovered rich structures such as spiral arms, inner holes, and gaps for (pre-)transitional disks while suggested the variably illuminated disks for primordial systems. The highlight is the discovery of two spiral arms each for SAO 206462 and MWC 758. The spiral feature has been uniquely found toward Herbig Fe/Aes so far, which might be due to their warmer disks producing arms loosely wound and more easily detected. The observed morphology can be interpreted by the density-wave model, and those disks are implied to harbor Jupiter-mass companions as the exciting sources of the spiral structures according to these models.

  18. Body image flexibility as a protective factor against disordered eating behavior for women with lower body mass index.

    PubMed

    Hill, Mary L; Masuda, Akihiko; Latzman, Robert D

    2013-08-01

    The purpose of the current study was to examine whether body dissatisfaction and body image flexibility would be uniquely and significantly associated with disordered eating behavior. In addition, the study examined if body mass index (BMI) moderated the relationships between each of the body image related variables and disordered eating. Two-hundred-fifty-eight female participants completed the web-based survey. Body dissatisfaction and body image flexibility were significantly related to disordered eating behavior, after controlling for ethnicity and BMI, and BMI moderated the relation between body image flexibility and disordered eating. Specifically, for those with low BMI, greater body image flexibility was associated with reduced disordered eating behavior. Body image flexibility was not associated with disordered eating behavior among those with average or high BMI. These results suggest that greater body image flexibility may serve as a protective factor against disordered eating behaviors for those with low BMI.

  19. Development of high-spatial and high-mass resolution mass spectrometric imaging (MSI) and its application to the study of small metabolites and endogenous molecules of plants

    SciTech Connect

    Jun, Ji Hyun

    2012-01-01

    High-spatial and high-mass resolution laser desorption ionization (LDI) mass spectrometric (MS) imaging technology was developed for the attainment of MS images of higher quality containing more information on the relevant cellular and molecular biology in unprecedented depth. The distribution of plant metabolites is asymmetric throughout the cells and tissues, and therefore the increase in the spatial resolution was pursued to reveal the localization of plant metabolites at the cellular level by MS imaging. For achieving high-spatial resolution, the laser beam size was reduced by utilizing an optical fiber with small core diameter (25 μm) in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer. Matrix application was greatly improved using oscillating capillary nebulizer. As a result, single cell level spatial resolution of ~ 12 μm was achieved. MS imaging at this high spatial resolution was directly applied to a whole Arabidopsis flower and the substructures of an anther and single pollen grains at the stigma and anther were successfully visualized. MS imaging of high spatial resolution was also demonstrated to the secondary roots of Arabidopsis thaliana and a high degree of localization of detected metabolites was successfully unveiled. This was the first MS imaging on the root for molecular species. MS imaging with high mass resolution was also achieved by utilizing the LTQ-Orbitrap mass spectrometer for the direct identification of the surface metabolites on the Arabidopsis stem and root and differentiation of isobaric ions having the same nominal mass with no need of tandem mass spectrometry (MS/MS). MS imaging at high-spatial and high-mass resolution was also applied to cer1 mutant of the model system Arabidopsis thaliana to demonstrate its usefulness in biological studies and reveal associated metabolite changes in terms of spatial distribution and/or abundances compared to those of wild-type. The spatial

  20. Using collective expert judgements to evaluate quality measures of mass spectrometry images

    PubMed Central

    Palmer, Andrew; Ovchinnikova, Ekaterina; Thuné, Mikael; Lavigne, Régis; Guével, Blandine; Dyatlov, Andrey; Vitek, Olga; Pineau, Charles; Borén, Mats; Alexandrov, Theodore

    2015-01-01

    Motivation: Imaging mass spectrometry (IMS) is a maturating technique of molecular imaging. Confidence in the reproducible quality of IMS data is essential for its integration into routine use. However, the predominant method for assessing quality is visual examination, a time consuming, unstandardized and non-scalable approach. So far, the problem of assessing the quality has only been marginally addressed and existing measures do not account for the spatial information of IMS data. Importantly, no approach exists for unbiased evaluation of potential quality measures. Results: We propose a novel approach for evaluating potential measures by creating a gold-standard set using collective expert judgements upon which we evaluated image-based measures. To produce a gold standard, we engaged 80 IMS experts, each to rate the relative quality between 52 pairs of ion images from MALDI-TOF IMS datasets of rat brain coronal sections. Experts’ optional feedback on their expertise, the task and the survey showed that (i) they had diverse backgrounds and sufficient expertise, (ii) the task was properly understood, and (iii) the survey was comprehensible. A moderate inter-rater agreement was achieved with Krippendorff’s alpha of 0.5. A gold-standard set of 634 pairs of images with accompanying ratings was constructed and showed a high agreement of 0.85. Eight families of potential measures with a range of parameters and statistical descriptors, giving 143 in total, were evaluated. Both signal-to-noise and spatial chaos-based measures performed highly with a correlation of 0.7 to 0.9 with the gold standard ratings. Moreover, we showed that a composite measure with the linear coefficients (trained on the gold standard with regularized least squares optimization and lasso) showed a strong linear correlation of 0.94 and an accuracy of 0.98 in predicting which image in a pair was of higher quality. Availability and implementation: The anonymized data collected from the survey

  1. Two methods for firn-area and mass-balance monitoring of Svalbard glaciers with SAR satellite images

    NASA Astrophysics Data System (ADS)

    König, Max; Winther, Jan-Gunnar; Kohler, Jack; König, Florian

    This paper presents two methods for glacier monitoring on Svalbard using synthetic aperture radar (SAR) satellite images. Both methods were developed on glaciers in the Kongsfjorden area. The first method monitors the firn area extent and the firn line over time by thresholding and filtering the SAR image. Manual detection of the threshold is preferable, but using a constant threshold for all images also gives adequate results. A retreat of the firn-line position is visible, especially on Kongsvegen, corresponding to consecutive years of negative mass balance. The second method applies a k-means classification to three clusters on the glacier surface. The areal extent of the resulting class on the upper part of the glacier correlates remarkably well with the independently measured mass balance of Kongsvegen, having a correlation coefficient of around 0.89 for the various glaciers. This is because the snow from the accumulation area influences the k-means classification. Thus, on glaciers where mass-balance values are available, new mass-balance values can be predicted solely from SAR images. For glaciers where no mass balance is available, the area change cannot be calibrated to absolute mass-balance values, but relative changes can be predicted.

  2. Review of Matrix-Assisted Laser Desorption Ionization-Imaging Mass Spectrometry for Lipid Biochemical Histopathology

    PubMed Central

    Yalcin, Emine B.

    2015-01-01

    Matrix-Assisted Laser Desorption Ionization-Imaging Mass Spectrometry (MALDI-IMS) is a rapidly evolving method used for the in situ visualization and localization of molecules such as drugs, lipids, peptides, and proteins in tissue sections. Therefore, molecules such as lipids, for which antibodies and other convenient detection reagents do not exist, can be detected, quantified, and correlated with histopathology and disease mechanisms. Furthermore, MALDI-IMS has the potential to enhance our understanding of disease pathogenesis through the use of “biochemical histopathology”. Herein, we review the underlying concepts, basic methods, and practical applications of MALDI-IMS, including post-processing steps such as data analysis and identification of molecules. The potential utility of MALDI-IMS as a companion diagnostic aid for lipid-related pathological states is discussed. PMID:26209083

  3. Development of Laser Desorption Imaging Mass Spectrometry Methods to Investigate the Molecular Composition of Latent Fingermarks

    NASA Astrophysics Data System (ADS)

    Lauzon, Nidia; Dufresne, Martin; Chauhan, Vinita; Chaurand, Pierre

    2015-06-01

    For a century, fingermark analysis has been one of the most important and common methods in forensic investigations. Modern chemical analysis technologies have added the potential to determine the molecular composition of fingermarks and possibly identify chemicals a suspect may have come into contact with. Improvements in analytical detection of the molecular composition of fingermarks is therefore of great importance. In this regard, matrix-assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI) imaging mass spectrometry (IMS) have proven to be useful technologies for fingermark analysis. In these analyses, the choice of ionizing agent and its mode of deposition are critical steps for the identification of molecular markers. Here we propose two novel and complementary IMS approaches for endogenous and exogenous substance detection in fingermarks: sublimation of 2-mercaptobenzothiazol (2-MBT) matrix and silver sputtering.

  4. Nickel and vanadium on equilibrium cracking catalysts by imaging secondary ion mass spectroscopy

    SciTech Connect

    Kugler, E.L.; Leta, D.P.

    1988-02-01

    The distribution of nickel and vanadium has been determined on refinery samples of several types of fluidized catalytic cracking catalyst. Data from imaging secondary ion mass spectrometry show that metals in catalytic cracking feedstocks initially deposit near the external surface of catalyst particles. Nickel remains in the area where it was deposited, while vanadium shows both intraparticle and interparticle mobility. Vanadium accumulates throughout catalyst particles, but shows a preference for both rare earth exchanged Y-zeolite and alumina phases in composite catalyst. By contrast, nickel shows no preference for catalyst phases and accumulates monotonically with time. The lack of mobility in deposited nickel makes it a good measure to determine the age of individual particles.

  5. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens.

    PubMed

    Bokhart, M T; Muddiman, D C

    2016-09-21

    Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) is a technique well suited for analysis of biological specimens. This tutorial review focuses on recent advancements and applications of IR-MALDESI MSI to better understand key biological questions. Through optimization of user-defined source parameters, comprehensive and quantitative MSI data can be obtained for a variety of analytes. The effect of an ice matrix layer is well defined in the context of desorption dynamics and resulting ion abundance. Optimized parameters and careful control of conditions affords quantitative MSI data which provides valuable information for targeted, label-free drug distribution studies and untargeted metabolomic datasets. Challenges and limitations of MSI using IR-MALDESI are addressed in the context of the bioimaging field. PMID:27484166

  6. Mapping pharmaceuticals in rat brain sections using MALDI imaging mass spectrometry.

    PubMed

    Hsieh, Yunsheng; Li, Fangbiao; Korfmacher, Walter A

    2010-01-01

    Matrix-assisted laser desorption/ionization-tandem mass spectrometric method (MALDI-MS/MS) has proven to be a reliable tool for direct measurement of the disposition of small molecules in animal tissue sections. As example, MALDI-MS/MS imaging system was employed for visualizing the spatial distribution of astemizole and its primary metabolite in rat brain tissues. Astemizole is a second-generation antihistamine, a block peripheral H1 receptor, which was introduced to provide comparable therapeutic benefit but was withdrawn in most countries due to toxicity risks. Astemizole was observed to be heterogeneously distributed to most parts of brain tissue slices including cortex, hippocampus, hypothalamic, thalamus, and ventricle regions while its major metabolite, desmethylastemizole, was only found around ventricle sites. We have shown that astemizole alone is likely to be responsible for the central nervous system (CNS) side effects when its exposures became elevated. PMID:20680589

  7. Measurements of the Gegenschein brightness from the Solar Mass Ejection Imager (SMEI)

    NASA Astrophysics Data System (ADS)

    Buffington, A.; Bisi, M. M.; Clover, J. M.; Hick, P.; Jackson, B. V.

    2008-12-01

    The Gegenschein is a faint diffuse component of the zodiacal light centered upon the antisolar point; this has now been viewed by the Solar Mass Ejection Imager (SMEI) for over 5 years. SMEI provides unprecedented near-full-sky photometric maps each 102-minute orbit, using data from 3 unfiltered CCD cameras. Its 0.1% photometric precision enables observation over long periods of time, of heliospheric structures having surface brightness down to several S10's (an S10 is the equivalent brightness of a 10th magnitude star spread over one square degree). When individual bright stars are removed from the maps and an empirical sidereal background subtracted, the residue is dominated by the zodiacal light. The sky coverage and duration of these measurements enables a definitive characterization. We describe the analysis method for these data, characterize the average Gegenschein brightness distribution, present empirical formulae describing its shape, and discuss its variation with time.

  8. Measurements of Zodiacal-light brightness from the Solar Mass Ejection Imager (SMEI)

    NASA Astrophysics Data System (ADS)

    Buffington, A.; Bisi, M. M.; Clover, J. M.; Hick, P. P.; Jackson, B.

    2009-12-01

    Observations from the Solar Mass Ejection Imager (SMEI), now spanning over 6 years, provide unprecedented near-full-sky photometric maps each 102-minute orbit, using data from 3 unfiltered CCD cameras. SMEI’s 0.1% photometric precision enables observation of heliospheric structures with surface brightness down to several S10’s (an S10 is the equivalent brightness of a 10th magnitude star spread over one square degree). When individual bright stars and an empirical residual sidereal background are removed from the maps, the residue is dominated by the zodiacal light (ZL). The present work combines individual SMEI sky maps to produce daily average maps, and uses the sequence of these for both an empirical characterization of the ZL and an investigation of its variation over time scales from several days to several years.

  9. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L.

    PubMed

    Beck, Sebastian; Stengel, Julia

    2016-10-01

    Ginkgo biloba L. is known to be rich in flavonoids and flavonoid glycosides. However, the distribution within specific plant organs (e.g. within leaves) is not known. By using HPLC-MS and MS/MS we have identified a number of previously known G. biloba flavonoid glycosides and biflavonoids from leaves. Namely, kaempferol, quercetin, isorhamnetin, myricetin, laricitrin/mearnsetin and apigenin glycosides were identified. Furthermore, biflavonoids like ginkgetin/isoginkgetin were also detected. The application of MALDI mass spectrometric imaging, enabled the compilation of concentration profiles of flavonoid glycosides and biflavonoids in G. biloba L. leaves. Both, flavonoid glycosides and biflavonoids show a distinct distribution in leaf thin sections of G. biloba L. PMID:27233155

  10. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L.

    PubMed

    Beck, Sebastian; Stengel, Julia

    2016-10-01

    Ginkgo biloba L. is known to be rich in flavonoids and flavonoid glycosides. However, the distribution within specific plant organs (e.g. within leaves) is not known. By using HPLC-MS and MS/MS we have identified a number of previously known G. biloba flavonoid glycosides and biflavonoids from leaves. Namely, kaempferol, quercetin, isorhamnetin, myricetin, laricitrin/mearnsetin and apigenin glycosides were identified. Furthermore, biflavonoids like ginkgetin/isoginkgetin were also detected. The application of MALDI mass spectrometric imaging, enabled the compilation of concentration profiles of flavonoid glycosides and biflavonoids in G. biloba L. leaves. Both, flavonoid glycosides and biflavonoids show a distinct distribution in leaf thin sections of G. biloba L.

  11. Memory efficient principal component analysis for the dimensionality reduction of large mass spectrometry imaging data sets.

    PubMed

    Race, Alan M; Steven, Rory T; Palmer, Andrew D; Styles, Iain B; Bunch, Josephine

    2013-03-19

    A memory efficient algorithm for the computation of principal component analysis (PCA) of large mass spectrometry imaging data sets is presented. Mass spectrometry imaging (MSI) enables two- and three-dimensional overviews of hundreds of unlabeled molecular species in complex samples such as intact tissue. PCA, in combination with data binning or other reduction algorithms, has been widely used in the unsupervised processing of MSI data and as a dimentionality reduction method prior to clustering and spatial segmentation. Standard implementations of PCA require the data to be stored in random access memory. This imposes an upper limit on the amount of data that can be processed, necessitating a compromise between the number of pixels and the number of peaks to include. With increasing interest in multivariate analysis of large 3D multislice data sets and ongoing improvements in instrumentation, the ability to retain all pixels and many more peaks is increasingly important. We present a new method which has no limitation on the number of pixels and allows an increased number of peaks to be retained. The new technique was validated against the MATLAB (The MathWorks Inc., Natick, Massachusetts) implementation of PCA (princomp) and then used to reduce, without discarding peaks or pixels, multiple serial sections acquired from a single mouse brain which was too large to be analyzed with princomp. Then, k-means clustering was performed on the reduced data set. We further demonstrate with simulated data of 83 slices, comprising 20,535 pixels per slice and equaling 44 GB of data, that the new method can be used in combination with existing tools to process an entire organ. MATLAB code implementing the memory efficient PCA algorithm is provided.

  12. Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard.

    PubMed

    Pirman, David A; Reich, Richard F; Kiss, András; Heeren, Ron M A; Yost, Richard A

    2013-01-15

    Mass spectrometric imaging (MSI) is an analytical technique used to determine the distribution of individual analytes within a given sample. A wide array of analytes and samples can be investigated by MSI, including drug distribution in rats, lipid analysis from brain tissue, protein differentiation in tumors, and plant metabolite distributions. Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization technique capable of desorbing and ionizing a large range of compounds, and it is the most common ionization source used in MSI. MALDI mass spectrometry (MS) is generally considered to be a qualitative analytical technique because of significant ion-signal variability. Consequently, MSI is also thought to be a qualitative technique because of the quantitative limitations of MALDI coupled with the homogeneity of tissue sections inherent in an MSI experiment. Thus, conclusions based on MS images are often limited by the inability to correlate ion signal increases with actual concentration increases. Here, we report a quantitative MSI method for the analysis of cocaine (COC) from brain tissue using a deuterated internal standard (COC-d(3)) combined with wide-isolation MS/MS for analysis of the tissue extracts with scan-by-scan COC-to-COC-d(3) normalization. This resulted in significant improvements in signal reproducibility and calibration curve linearity. Quantitative results from the MSI experiments were compared with quantitative results from liquid chromatography (LC)-MS/MS results from brain tissue extracts. Two different quantitative MSI techniques (standard addition and external calibration) produced quantitative results comparable to LC-MS/MS data. Tissue extracts were also analyzed by MALDI wide-isolation MS/MS, and quantitative results were nearly identical to those from LC-MS/MS. These results clearly demonstrate the necessity for an internal standard for quantitative MSI experiments. PMID:23214490

  13. IMAGING GUIDED PERCUTANEAL CORE BIOPSY OF PULMONARY AND PLEURAL MASSES - TECHNIQUE AND COMPLICATIONS.

    PubMed

    Azrumelashvili, T; Mizandari, M; Dundua, T

    2016-01-01

    Paper presents the ultrasound (US) and computed tomography (CT) guided percutaneous lung core biopsy technique and procedure associated complications. 148 percutaneous biopsies of lung and peural lesions were performed in 143 patients ( in 5 (3.4%) cases the repeated procedure was needed). Procedure was guided by US in 42 cases, by CT - in 106 cases. Post-biopsy CT scan was performed and patients observed for any complications. No complications were detected after US guided procedures; No major complications were detected after CT guided biopsy procedures; minor complications (pneumothorax, hemothorax and hemophtysis) were detected in 24 (22.6%) cases. In 18 (17.0%) cases pneumothorax, in 1 (0/9%) cases - hemothorax and in 5 (4.7%) cases hemophtisis was detected on CT guided procedures. All hemothorax and hemophtisis and 13(12.3%) pneumothorax cases happened to be self-limited; in 3(2.8%) pneumothorax cases aspiration and in 2(1.9%) cases - pleural drainage was needed. Ultrasound is the most efficient for biopsy guidance if the "target" can be adequately imaged by this technique. If US guidance is impossible biopsy should be performed under CT guidance. Pneumothorax and hemothoraxs was associated with multiple needle passes, lesion diameter <2 cm and larger diameter needle use. Hemoptysis was not associated with multiple needle passes, lesioan size and larger diameter needle. No air embolism was detected on our study. The safety and biopsy procedure success high rate proves the use of imaging guided percutaneal core biopsy of pulmonary and pleural masses as a first choice procedure when the lung or pleural mass morphology is needed. PMID:26870971

  14. Optimization of OSEM parameters in myocardial perfusion imaging reconstruction as a function of body mass index: a clinical approach*

    PubMed Central

    de Barros, Pietro Paolo; Metello, Luis F.; Camozzato, Tatiane Sabriela Cagol; Vieira, Domingos Manuel da Silva

    2015-01-01

    Objective The present study is aimed at contributing to identify the most appropriate OSEM parameters to generate myocardial perfusion imaging reconstructions with the best diagnostic quality, correlating them with patients’ body mass index. Materials and Methods The present study included 28 adult patients submitted to myocardial perfusion imaging in a public hospital. The OSEM method was utilized in the images reconstruction with six different combinations of iterations and subsets numbers. The images were analyzed by nuclear cardiology specialists taking their diagnostic value into consideration and indicating the most appropriate images in terms of diagnostic quality. Results An overall scoring analysis demonstrated that the combination of four iterations and four subsets has generated the most appropriate images in terms of diagnostic quality for all the classes of body mass index; however, the role played by the combination of six iterations and four subsets is highlighted in relation to the higher body mass index classes. Conclusion The use of optimized parameters seems to play a relevant role in the generation of images with better diagnostic quality, ensuring the diagnosis and consequential appropriate and effective treatment for the patient. PMID:26543282

  15. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging

    PubMed Central

    Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu

    2016-01-01

    In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization–MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research. PMID:27026287

  16. A Vision for Better Health: Mass Spectrometry Imaging for Clinical Diagnostics

    PubMed Central

    Ye, Hui; Gemperline, Erin; Li, Lingjun

    2012-01-01

    Background Mass spectrometry imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules from small molecules to large proteins by creating detailed distribution maps of selected compounds. Its usefulness in biomarker discovery towards clinical applications has obtained success by correlating the molecular expression of tissues acquired from MSI with well-established histology. Results To date, MSI has demonstrated its versatility in clinical applications, such as biomarker diagnostics of different diseases, prognostics of disease severities and metabolic response to drug treatment, etc. These studies have provided significant insight in clinical studies over the years and current technical advances are further facilitating the improvement of this field. Although the underlying concept is simple, factors such as choice of ionization method, sample preparation, instrumentation and data analysis must be taken into account for successful applications of MSI. Herein, we briefly reviewed these key elements yet focused on the clinical applications of MSI that cannot be addressed by other means. Conclusions Challenges and future perspectives in this field are also discussed to conclude that the ever-growing applications with continuous development of this powerful analytical tool will lead to a better understanding of the biology of diseases and improvements in clinical diagnostics. PMID:23078851

  17. Liposome-based chemical barcodes for single molecule DNA detection using imaging mass spectrometry.

    PubMed

    Gunnarsson, Anders; Sjövall, Peter; Höök, Fredrik

    2010-02-10

    We report on a mass-spectrometry (time-of-flight secondary ion mass spectrometry, TOF-SIMS) based method for multiplexed DNA detection utilizing a random array, where the lipid composition of small unilamellar liposomes act as chemical barcodes to identify unique DNA target sequences down to the single molecule level. In a sandwich format, suspended target-DNA to be detected mediates the binding of capture-DNA modified liposomes to surface-immobilized probe-DNA. With the lipid composition of each liposome encoding a unique target-DNA sequence, TOF-SIMS analysis was used to determine the chemical fingerprint of the bound liposomes. Using high-resolution TOF-SIMS imaging, providing sub-200 nm spatial resolution, single DNA targets could be detected and identified via the chemical fingerprint of individual liposomes. The results also demonstrate the capability of TOF-SIMS to provide multiplexed detection of DNA targets on substrate areas in the micrometer range. Together with a high multiplexing capacity, this makes the concept an interesting alternative to existing barcode concepts based on fluorescence, Raman, or graphical codes for small-scale bioanalysis. PMID:20085369

  18. Mass Spectrometry Based Imaging Techniques for Spatially Resolved Analysis of Molecules

    PubMed Central

    Matros, Andrea; Mock, Hans-Peter

    2013-01-01

    Higher plants are composed of a multitude of tissues with specific functions, reflected by distinct profiles for transcripts, proteins, and metabolites. Comprehensive analysis of metabolites and proteins has advanced tremendously within recent years, and this progress has been driven by the rapid development of sophisticated mass spectrometric techniques. In most of the current “omics”-studies, analysis is performed on whole organ or whole plant extracts, rendering to the loss of spatial information. Mass spectrometry imaging (MSI) techniques have opened a new avenue to obtain information on the spatial distribution of metabolites and of proteins. Pioneered in the field of medicine, the approaches are now applied to study the spatial profiles of molecules in plant systems. A range of different plant organs and tissues have been successfully analyzed by MSI, and patterns of various classes of metabolites from primary and secondary metabolism could be obtained. It can be envisaged that MSI approaches will substantially contribute to build spatially resolved biochemical networks. PMID:23626593

  19. Mass spectrometric imaging of red fluorescent protein in breast tumor xenografts.

    PubMed

    Chughtai, Kamila; Jiang, Lu; Post, Harm; Winnard, Paul T; Greenwood, Tiffany R; Raman, Venu; Bhujwalla, Zaver M; Heeren, Ron M A; Glunde, Kristine

    2013-05-01

    Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters. PMID:23184411

  20. Mass Spectrometric Imaging of Red Fluorescent Protein in Breast Tumor Xenografts

    NASA Astrophysics Data System (ADS)

    Chughtai, Kamila; Jiang, Lu; Post, Harm; Winnard, Paul T.; Greenwood, Tiffany R.; Raman, Venu; Bhujwalla, Zaver M.; Heeren, Ron M. A.; Glunde, Kristine

    2013-05-01

    Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters.

  1. IR-MALDESI MASS SPECTROMETRY IMAGING OF BIOLOGICAL TISSUE SECTIONS USING ICE AS A MATRIX

    PubMed Central

    Robichaud, Guillaume; Barry, Jeremy A.; Muddiman, David C.

    2014-01-01

    Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) Mass Spectrometry imaging of biological tissue sections using a layer of deposited ice as an energy absorbing matrix was investigated. Dynamics of plume ablation were first explored using a nanosecond exposure shadowgraphy system designed to simultaneously collect pictures of the plume with a camera and collect the FT-ICR mass spectrum corresponding to that same ablation event. Ablation of fresh tissue analyzed with and without using ice as a matrix were both compared using this technique. Effect of spot-to-spot distance, number of laser shots per pixel and tissue condition (matrix) on ion abundance was also investigated for 50 µm thick tissue sections. Finally, the statistical method called design of experiments was used to compare source parameters and determine the optimal conditions for IR-MALDESI of tissue sections using deposited ice as a matrix. With a better understanding of the fundamentals of ablation dynamics and a systematic approach to explore the experimental space, it was possible to improve ion abundance by nearly one order of magnitude. PMID:24385399

  2. Molecular imaging of brain localization of liposomes in mice using MALDI mass spectrometry

    PubMed Central

    Fülöp, Annabelle; Sammour, Denis A.; Erich, Katrin; von Gerichten, Johanna; van Hoogevest, Peter; Sandhoff, Roger; Hopf, Carsten

    2016-01-01

    Phospholipids have excellent biocompatibility and are therefore often used as main components of liposomal drug carriers. In traditional bioanalytics, the in-vivo distribution of liposomal drug carriers is assessed using radiolabeled liposomal constituents. This study presents matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) as an alternative, label-free method for ex-vivo molecular imaging of liposomal drug carriers in mouse tissue. To this end, indocyanine green as cargo and two liposomal markers, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine conjugated with monodisperse polyethylene glycol (PEG36-DSPE) were incorporated into liposomal carriers and administered to mice. We used MALDI MSI of the two lipid markers in both positive and negative ion mode for visualization of liposome integrity and distribution in mouse organs. Additional MSI of hemoglobin in the same tissue slice and pixel-by-pixel computational analysis of co-occurrence of lipid markers and hemoglobin served as indicator of liposome localization either in parenchyma or in blood vessels. Our proof-of-concept study suggests that liposomal components and indocyanine green distributed into all investigated organs. PMID:27650487

  3. Nucleolin-aptamer therapy in retinoblastoma: molecular changes and mass spectrometry-based imaging.

    PubMed

    Subramanian, Nithya; Srimany, Amitava; Kanwar, Jagat R; Kanwar, Rupinder K; Akilandeswari, Balachandran; Rishi, Pukhraj; Khetan, Vikas; Vasudevan, Madavan; Pradeep, Thalappil; Krishnakumar, Subramanian

    2016-01-01

    Retinoblastoma (RB) is an intraocular childhood tumor which, if left untreated, leads to blindness and mortality. Nucleolin (NCL) protein which is differentially expressed on the tumor cell surface, binds ligands and regulates carcinogenesis and angiogenesis. We found that NCL is over expressed in RB tumor tissues and cell lines compared to normal retina. We studied the effect of nucleolin-aptamer (NCL-APT) to reduce proliferation in RB tumor cells. Aptamer treatment on the RB cell lines (Y79 and WERI-Rb1) led to significant inhibition of cell proliferation. Locked nucleic acid (LNA) modified NCL-APT administered subcutaneously (s.c.) near tumor or intraperitoneally (i.p.) in Y79 xenografted nude mice resulted in 26 and 65% of tumor growth inhibition, respectively. Downregulation of inhibitor of apoptosis proteins, tumor miRNA-18a, altered serum cytokines, and serum miRNA-18a levels were observed upon NCL-APT treatment. Desorption electrospray ionization mass spectrometry (DESI MS)-based imaging of cell lines and tumor tissues revealed changes in phosphatidylcholines levels upon treatment. Thus, our study provides proof of concept illustrating NCL-APT-based targeted therapeutic strategy and use of DESI MS-based lipid imaging in monitoring therapeutic responses in RB. PMID:27574784

  4. Rapid and widespread distribution of doxycycline in rat brain: a mass spectrometric imaging study.

    PubMed

    Munyeza, Chiedza F; Shobo, Adeola; Baijnath, Sooraj; Bratkowska, Dominika; Naiker, Suhashni; Bester, Linda A; Singh, Sanil D; Maguire, Glenn E M; Kruger, Hendrik G; Naicker, Tricia; Govender, Thavendran

    2016-01-01

    1. The penetration of tetracyclines into the brain has been widely documented. The aim of this work was to develop a matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI MSI) method for the molecular histology of doxycycline (DOX) in the healthy rat brain. 2. The time-dependent distribution was investigated after an i.p. dose of 25 mg/kg at 0, 5, 30, 120, 240, 360 and 480 min postdose. LCMS/MS was used to quantify the drug in plasma and brain homogenates and MALDI MSI was used to determine the distribution of the analyte. 3. Within the first-hour postdose, the drug showed slow accumulation into the plasma and brain tissues. DOX brain concentration gradually increased and reached a peak (Cmax) of 1034.9 ng/mL at 240 min postdose, resulting in a brain plasma ratio of 31%. The images acquired by MSI matched the quantification results and clearly showed drug distribution over the entire rat brain coronal section from 5 min and its slow elimination after 360-min postdose. 4. Our findings confirm that MALDI MSI provides an advanced, label-free and faster alternative technique for xenobiotic distribution such as DOX in tissues, making it an essential drug discovery tool for other possible neuroprotective agents. PMID:26327274

  5. Nucleolin-aptamer therapy in retinoblastoma: molecular changes and mass spectrometry–based imaging

    PubMed Central

    Subramanian, Nithya; Srimany, Amitava; Kanwar, Jagat R; Kanwar, Rupinder K; Akilandeswari, Balachandran; Rishi, Pukhraj; Khetan, Vikas; Vasudevan, Madavan; Pradeep, Thalappil; Krishnakumar, Subramanian

    2016-01-01

    Retinoblastoma (RB) is an intraocular childhood tumor which, if left untreated, leads to blindness and mortality. Nucleolin (NCL) protein which is differentially expressed on the tumor cell surface, binds ligands and regulates carcinogenesis and angiogenesis. We found that NCL is over expressed in RB tumor tissues and cell lines compared to normal retina. We studied the effect of nucleolin-aptamer (NCL-APT) to reduce proliferation in RB tumor cells. Aptamer treatment on the RB cell lines (Y79 and WERI-Rb1) led to significant inhibition of cell proliferation. Locked nucleic acid (LNA) modified NCL-APT administered subcutaneously (s.c.) near tumor or intraperitoneally (i.p.) in Y79 xenografted nude mice resulted in 26 and 65% of tumor growth inhibition, respectively. Downregulation of inhibitor of apoptosis proteins, tumor miRNA-18a, altered serum cytokines, and serum miRNA-18a levels were observed upon NCL-APT treatment. Desorption electrospray ionization mass spectrometry (DESI MS)-based imaging of cell lines and tumor tissues revealed changes in phosphatidylcholines levels upon treatment. Thus, our study provides proof of concept illustrating NCL-APT-based targeted therapeutic strategy and use of DESI MS-based lipid imaging in monitoring therapeutic responses in RB. PMID:27574784

  6. MALDI Mass Spectrometry Imaging for Visualizing In Situ Metabolism of Endogenous Metabolites and Dietary Phytochemicals

    PubMed Central

    Fujimura, Yoshinori; Miura, Daisuke

    2014-01-01

    Understanding the spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmaceutical roles. Mass spectrometry imaging (MSI) enables determination of the distribution of ionizable molecules present in tissue sections of whole-body or single heterogeneous organ samples by direct ionization and detection. This emerging technique is now widely used for in situ label-free molecular imaging of endogenous or exogenous small molecules. MSI allows the simultaneous visualization of many types of molecules including a parent molecule and its metabolites. Thus, MSI has received much attention as a potential tool for pathological analysis, understanding pharmaceutical mechanisms, and biomarker discovery. On the other hand, several issues regarding the technical limitations of MSI are as of yet still unresolved. In this review, we describe the capabilities of the latest matrix-assisted laser desorption/ionization (MALDI)-MSI technology for visualizing in situ metabolism of endogenous metabolites or dietary phytochemicals (food factors), and also discuss the technical problems and new challenges, including MALDI matrix selection and metabolite identification, that need to be addressed for effective and widespread application of MSI in the diverse fields of biological, biomedical, and nutraceutical (food functionality) research. PMID:24957029

  7. Mass image data storage system for high resolution aerial photographic survey

    NASA Astrophysics Data System (ADS)

    Zen, Luan; Tan, Jiubin; Zhao, Zhongwen

    2008-10-01

    In order to make it possible for an image data acquisition and storage system used for aerial photographic survey to have a continuous storage speed of 144 MB/s and data storage capacity of 260GB, three main problems have been solved in this paper. First, with multi-channel synchronous DMA transfer, parallel data storage of four SCSI hard disks is realized. It solved the problem of the data transfer rate too high for direct storage. Then, to increase the data transfer rate, a high speed BUS based on LVDS and a SCSI control circuit based on FAS368M were designed. It solved the problem of PCI BUS limiting the storage speed. Finally, the problem of the SCSI hard disk continuous storage speed declining led by much time interval between two DMA transfers is solved by optimizing DMA channel. The practical system test shows that the acquisition and storage system has a continuous storage speed of 150 MB/s and a data storage capacity of 280GB. Therefore, it is a new storage method for high speed and mass image data.

  8. Molecular imaging of brain localization of liposomes in mice using MALDI mass spectrometry.

    PubMed

    Fülöp, Annabelle; Sammour, Denis A; Erich, Katrin; von Gerichten, Johanna; van Hoogevest, Peter; Sandhoff, Roger; Hopf, Carsten

    2016-01-01

    Phospholipids have excellent biocompatibility and are therefore often used as main components of liposomal drug carriers. In traditional bioanalytics, the in-vivo distribution of liposomal drug carriers is assessed using radiolabeled liposomal constituents. This study presents matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) as an alternative, label-free method for ex-vivo molecular imaging of liposomal drug carriers in mouse tissue. To this end, indocyanine green as cargo and two liposomal markers, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine conjugated with monodisperse polyethylene glycol (PEG36-DSPE) were incorporated into liposomal carriers and administered to mice. We used MALDI MSI of the two lipid markers in both positive and negative ion mode for visualization of liposome integrity and distribution in mouse organs. Additional MSI of hemoglobin in the same tissue slice and pixel-by-pixel computational analysis of co-occurrence of lipid markers and hemoglobin served as indicator of liposome localization either in parenchyma or in blood vessels. Our proof-of-concept study suggests that liposomal components and indocyanine green distributed into all investigated organs. PMID:27650487

  9. Absolute Quantitative MALDI Imaging Mass Spectrometry: A Case of Rifampicin in Liver Tissues.

    PubMed

    Chumbley, Chad W; Reyzer, Michelle L; Allen, Jamie L; Marriner, Gwendolyn A; Via, Laura E; Barry, Clifton E; Caprioli, Richard M

    2016-02-16

    Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) elucidates molecular distributions in thin tissue sections. Absolute pixel-to-pixel quantitation has remained a challenge, primarily lacking validation of the appropriate analytical methods. In the present work, isotopically labeled internal standards are applied to tissue sections to maximize quantitative reproducibility and yield accurate quantitative results. We have developed a tissue model for rifampicin (RIF), an antibiotic used to treat tuberculosis, and have tested different methods of applying an isotopically labeled internal standard for MALDI IMS analysis. The application of the standard and subsequently the matrix onto tissue sections resulted in quantitation that was not statistically significantly different from results obtained using HPLC-MS/MS of tissue extracts. Quantitative IMS experiments were performed on liver tissue from an animal dosed in vivo. Each microspot in the quantitative images measures the local concentration of RIF in the thin tissue section. Lower concentrations were detected from the blood vessels and around the portal tracts. The quantitative values obtained from these measurements were comparable (>90% similarity) to HPLC-MS/MS results obtained from extracts of the same tissue.

  10. Decellularization of intact tissue enables MALDI imaging mass spectrometry analysis of the extracellular matrix.

    PubMed

    Gessel, Megan; Spraggins, Jeffrey M; Voziyan, Paul; Hudson, Billy G; Caprioli, Richard M

    2015-11-01

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful molecular mapping technology that offers unbiased visualization of the spatial arrangement of biomolecules in tissue. Although there has been a significant increase in the number of applications employing this technology, the extracellular matrix (ECM) has received little attention, likely because ECM proteins are mostly large, insoluble and heavily cross-linked. We have developed a new sample preparation approach to enable MALDI IMS analysis of ECM proteins in tissue. Prior to freezing and sectioning, intact tissues are decellularized by incubation in sodium dodecyl sulfate. Decellularization removes the highly abundant, soluble species that dominate a MALDI IMS spectrum while preserving the structural integrity of the ECM. In situ tryptic hydrolysis and imaging of tryptic peptides are then carried out to accommodate the large sizes of ECM proteins. This new approach allows the use of MALDI IMS for identification of spatially specific changes in ECM protein expression and modification in tissue.

  11. Decellularization of intact tissue enables MALDI imaging mass spectrometry analysis of the extracellular matrix.

    PubMed

    Gessel, Megan; Spraggins, Jeffrey M; Voziyan, Paul; Hudson, Billy G; Caprioli, Richard M

    2015-11-01

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful molecular mapping technology that offers unbiased visualization of the spatial arrangement of biomolecules in tissue. Although there has been a significant increase in the number of applications employing this technology, the extracellular matrix (ECM) has received little attention, likely because ECM proteins are mostly large, insoluble and heavily cross-linked. We have developed a new sample preparation approach to enable MALDI IMS analysis of ECM proteins in tissue. Prior to freezing and sectioning, intact tissues are decellularized by incubation in sodium dodecyl sulfate. Decellularization removes the highly abundant, soluble species that dominate a MALDI IMS spectrum while preserving the structural integrity of the ECM. In situ tryptic hydrolysis and imaging of tryptic peptides are then carried out to accommodate the large sizes of ECM proteins. This new approach allows the use of MALDI IMS for identification of spatially specific changes in ECM protein expression and modification in tissue. PMID:26505774

  12. THE CHARA ARRAY ANGULAR DIAMETER OF HR 8799 FAVORS PLANETARY MASSES FOR ITS IMAGED COMPANIONS

    SciTech Connect

    Baines, Ellyn K.; White, Russel J.; Jones, Jeremy; Boyajian, Tabetha; McAlister, Harold A.; Ten Brummelaar, Theo A.; Turner, Nils H.; Sturmann, Judit; Sturmann, Laszlo; Goldfinger, P. J.; Farrington, Christopher D.; Riedel, Adric R.; Huber, Daniel; Ireland, Michael; Von Braun, Kaspar; Ridgway, Stephen T.

    2012-12-10

    HR 8799 is an hF0 mA5 {gamma} Doradus-, {lambda} Bootis-, Vega-type star best known for hosting four directly imaged candidate planetary companions. Using the CHARA Array interferometer, we measure HR 8799's limb-darkened angular diameter to be 0.342 {+-} 0.008 mas (an error of only 2%). By combining our measurement with the star's parallax and photometry from the literature, we greatly improve upon previous estimates of its fundamental parameters, including stellar radius (1.44 {+-} 0.06 R{sub Sun }), effective temperature (7193 {+-} 87 K, consistent with F0), luminosity (5.05 {+-} 0.29 L{sub Sun }), and the extent of the habitable zone (HZ; 1.62-3.32 AU). These improved stellar properties permit much more precise comparisons with stellar evolutionary models, from which a mass and age can be determined, once the metallicity of the star is known. Considering the observational properties of other {lambda} Bootis stars and the indirect evidence for youth of HR 8799, we argue that the internal abundance, and what we refer to as the effective abundance, is most likely near solar. Finally, using the Yonsei-Yale evolutionary models with uniformly scaled solar-like abundances, we estimate HR 8799's mass and age considering two possibilities: 1.516{sup +0.038}{sub -0.024} M{sub Sun} and 33{sup +7}{sub -13.2} Myr if the star is contracting toward the zero-age main sequence or 1.513{sup +0.023}{sub -0.024} M{sub Sun} and 90{sup +381}{sub -50} Myr if it is expanding from it. This improved estimate of HR 8799's age with realistic uncertainties provides the best constraints to date on the masses of its orbiting companions, and strongly suggests they are indeed planets. They nevertheless all appear to orbit well outside the HZ of this young star.

  13. Proof of Concept Experiments of the Multi-Isotope Process Monitor: An Online, Nondestructive, Near Real-Time Monitor for Spent Nuclear Fuel Reprocessing Facilities

    SciTech Connect

    Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard; Schwantes, Jon M.

    2012-04-21

    Operators, national regulatory agencies and the IAEA will require the development of advanced technologies to efficiently control and safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of non-destructive, near-real-time (NRT), autonomous process monitoring. This paper describes results from proof-of-principle experiments designed to test the Multi-Isotope Process (MIP) Monitor, a novel approach to safeguarding reprocessing facilities. The MIP Monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in NRT. Commercial spent nuclear fuel of various irradiation histories was dissolved and separated using a PUREX-based batch solvent extraction. Extractions were performed at various nitric acid concentrations to mimic both normal and off-normal industrial plant operating conditions. Principal Component Analysis (PCA) was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup and cooling time. Partial Least Squares (PLS) regression was applied to attempt to quantify both the acid concentration and burnup of the dissolved spent fuel during the initial separation stage of recycle. The MIP Monitor demonstrated sensitivity to induced variations of acid concentration, including the distinction of {+-} 1.3 M variation from normal process conditions by way of PCA. Acid concentration was predicted using measurements from the organic extract and PLS resulting in predictions with <0.7 M relative error. Quantification of burnup levels from dissolved fuel spectra using PLS was demonstrated to be within 2.5% of previously measured values.

  14. Multi-Isotopic (o, H, Sr, Li) Tracing of the Fluxes Involved in the Water Status of a Peatland (la Sauvetat, Massif Central, France)

    NASA Astrophysics Data System (ADS)

    Agnès, B.; Negrel, P. J.; Millot, R.; Clotilde, B.

    2010-12-01

    The bio-diversity (vegetation and fauna) of peatlands, like all wetlands ecosystems, are strongly fragile as they are requiring very specific wet conditions. In the past 20 years, increasing efforts were engaged to restore degraded wetlands, to create new wetlands where they have been totally lost and to manage wetlands sustainably in order to assess their multiple benefits. However, engaging specific actions to restore and preserve wetlands require an important knowledge on the water cycle in such systems. In this study, we propose to use chemical and multi-isotopic approaches combined with hydrological measurements (piezometric level and stream flow measurements) to trace the fluxes of water and dissolved element involved in the “Narces de la Sauvetat” peatland (France) and for the stream draining the area. Aims are to evaluate the water status of this ecosystem as well as the origin of dissolved elements and possible anthropogenic impacts. These approaches clearly demonstrated their effectiveness to improve the knowledge on the hydrological functioning of wetlands ecosystems. Main results are (1) at least three fluxes with distinct chemical and isotopic signatures are providing water supplies to peatland (Sr and stable isotopes), (2) water flow that comes out of the peatland through the stream is certainly negligible (Li isotopes) and 3) water within the peat land exhibits Sr and Li -isotopes values consistent with carbonate amendments inputs used in local agriculture. The outcomes of this study are that peatland ecosystem water balance is poorly affected by its outlet but are strongly controlled by groundwater replenishment. This could lead to a better adjustment of decision maker choices to maintain the water balance of the peatland, which is essential for the preservation of this fragile ecosystem. This study also opens a new field for Li isotope investigations in hydro-systems and highlights the possibility of using Li isotopes as environmental tracers.

  15. Building materials as intrinsic sources of sulphate: a hidden face of salt weathering of historical monuments investigated through multi-isotope tracing (B, O, S).

    PubMed

    Kloppmann, W; Bromblet, P; Vallet, J M; Vergès-Belmin, V; Rolland, O; Guerrot, C; Gosselin, C

    2011-04-01

    Sulphate neoformation is a major factor of degradation of stone monuments. Boron, sulphur and oxygen isotope signatures were investigated for five French historical monuments (Bourges, Chartres and Marseille cathedrals, Chenonceau castle, and Versailles garden statues) to investigate the role of intrinsic sulphate sources (gypsum plasters and mortars) in stone degradation, compared to the influence of extrinsic sources such as atmospheric pollution. Gypsum plasters and gypsum-containing mortars fall systematically in the δ(34)S and δ(18)O range of Paris Basin Eocene evaporites indicating the origin of the raw materials (so-called "Paris plaster"). Black crusts show the typical S and O isotope signatures observed elsewhere in Europe that can be attributed to atmospheric pollution, together with a marine component for Marseille. Boron isotopes for black crusts indicate coal combustion as principal boron source. Mortar isotope compositions discriminate three types, one similar to gypsum plasters, one strongly depleted in (34)S, attributed to pyrite oxidation, and a third one close to atmospheric sulphates. The isotopic composition of sulphates and boron of most degraded building stones of the different monuments is well explained by the identified sulphate sources. In several cases (in particular for Chenonceau and Bourges, to some extent for Chartres), the impact of gypsum plaster as building and restoration material on the degradation of the stones in its vicinity was clearly demonstrated. The study illustrates the usefulness of multi-isotope studies to investigate stone degradation factors, as the combination of several isotope systematics increases the discriminatory power of isotope studies with respect to contaminant sources. PMID:21329964

  16. Building materials as intrinsic sources of sulphate: a hidden face of salt weathering of historical monuments investigated through multi-isotope tracing (B, O, S).

    PubMed

    Kloppmann, W; Bromblet, P; Vallet, J M; Vergès-Belmin, V; Rolland, O; Guerrot, C; Gosselin, C

    2011-04-01

    Sulphate neoformation is a major factor of degradation of stone monuments. Boron, sulphur and oxygen isotope signatures were investigated for five French historical monuments (Bourges, Chartres and Marseille cathedrals, Chenonceau castle, and Versailles garden statues) to investigate the role of intrinsic sulphate sources (gypsum plasters and mortars) in stone degradation, compared to the influence of extrinsic sources such as atmospheric pollution. Gypsum plasters and gypsum-containing mortars fall systematically in the δ(34)S and δ(18)O range of Paris Basin Eocene evaporites indicating the origin of the raw materials (so-called "Paris plaster"). Black crusts show the typical S and O isotope signatures observed elsewhere in Europe that can be attributed to atmospheric pollution, together with a marine component for Marseille. Boron isotopes for black crusts indicate coal combustion as principal boron source. Mortar isotope compositions discriminate three types, one similar to gypsum plasters, one strongly depleted in (34)S, attributed to pyrite oxidation, and a third one close to atmospheric sulphates. The isotopic composition of sulphates and boron of most degraded building stones of the different monuments is well explained by the identified sulphate sources. In several cases (in particular for Chenonceau and Bourges, to some extent for Chartres), the impact of gypsum plaster as building and restoration material on the degradation of the stones in its vicinity was clearly demonstrated. The study illustrates the usefulness of multi-isotope studies to investigate stone degradation factors, as the combination of several isotope systematics increases the discriminatory power of isotope studies with respect to contaminant sources.

  17. Mass spectrometry for the molecular imaging of angiotensin metabolism in kidney.

    PubMed

    Grobe, Nadja; Elased, Khalid M; Cool, David R; Morris, Mariana

    2012-04-15

    To better understand the tissue distribution and activity of enzymes involved in angiotensin II (Ang II) processing, we developed a novel molecular imaging method using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Mouse kidney sections (12 μm) were incubated with 10-1,000 μmol/l Ang II for 5-15 min at 37°C. The formed peptides Ang III and Ang-(1-7) were identified by MALDI-TOF/TOF. A third metabolite, Ang-(1-4), was generated from further degradation of Ang-(1-7). Enzymatic processing of Ang II was dose and time dependent and absent in heat-treated kidney sections. Distinct spatial distribution patterns (pseudocolor images) were observed for the peptides. Ang III was localized in renal medulla, whereas Ang-(1-7)/Ang-(1-4) was present in cortex. Regional specific peptide formation was confirmed using microdissected cortical and medullary biopsies. In vitro studies with recombinant enzymes confirmed activity of peptidases known to generate Ang III or Ang-(1-7) from Ang II: aminopeptidase A (APA), Ang-converting enzyme 2 (ACE2), prolyl carboxypeptidase (PCP), and prolyl endopeptidase (PEP). Renal medullary Ang III generation was blocked by APA inhibitor glutamate phosphonate. The ACE2 inhibitor MLN-4760 and PCP/PEP inhibitor Z-pro-prolinal reduced cortical Ang-(1-7) formation. Our results establish the power of MALDI imaging as a highly specific and information-rich analytical technique that will further aid our understanding of the role and site of Ang II processing in cardiovascular and renal pathologies.

  18. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging.

    PubMed

    Li, Bin; Knudsen, Camilla; Hansen, Natascha Krahl; Jørgensen, Kirsten; Kannangara, Rubini; Bak, Søren; Takos, Adam; Rook, Fred; Hansen, Steen H; Møller, Birger Lindberg; Janfelt, Christian; Bjarnholt, Nanna

    2013-06-01

    In comparison with the technology platforms developed to localize transcripts and proteins, imaging tools for visualization of metabolite distributions in plant tissues are less well developed and lack versatility. This hampers our understanding of plant metabolism and dynamics. In this study, we demonstrate that desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of tissue imprints on porous Teflon may be used to accurately image the distribution of even labile plant metabolites such as hydroxynitrile glucosides, which normally undergo enzymatic hydrolysis by specific β-glucosidases upon cell disruption. This fast and simple sample preparation resulted in no substantial differences in the distribution and ratios of all hydroxynitrile glucosides between leaves from wild-type Lotus japonicus and a β-glucosidase mutant plant that lacks the ability to hydrolyze certain hydroxynitrile glucosides. In wild-type, the enzymatic conversion of hydroxynitrile glucosides and the concomitant release of glucose were easily visualized when a restricted area of the leaf tissue was damaged prior to sample preparation. The gene encoding the first enzyme in hydroxynitrile glucoside biosynthesis in L. japonicus leaves, CYP79D3, was found to be highly expressed during the early stages of leaf development, and the hydroxynitrile glucoside distribution in mature leaves reflected this early expression pattern. The utility of direct DESI-MSI of plant tissue was demonstrated using cryo-sections of cassava (Manihot esculenta) tubers. The hydroxynitrile glucoside levels were highest in the outer cell layers, as verified by LC-MS analyses. The unexpected discovery of a hydroxynitrile-derived di-glycoside shows the potential of DESI-MSI to discover and guide investigations into new metabolic routes.

  19. Mass preserving nonrigid registration of CT lung images using cubic B-spline.

    PubMed

    Yin, Youbing; Hoffman, Eric A; Lin, Ching-Long

    2009-09-01

    The authors propose a nonrigid image registration approach to align two computed-tomography (CT)-derived lung datasets acquired during breath-holds at two inspiratory levels when the image distortion between the two volumes is large. The goal is to derive a three-dimensional warping function that can be used in association with computational fluid dynamics studies. In contrast to the sum of squared intensity difference (SSD), a new similarity criterion, the sum of squared tissue volume difference (SSTVD), is introduced to take into account changes in reconstructed Hounsfield units (scaled attenuation coefficient, HU) with inflation. This new criterion aims to minimize the local tissue volume difference within the lungs between matched regions, thus preserving the tissue mass of the lungs if the tissue density is assumed to be relatively constant. The local tissue volume difference is contributed by two factors: Change in the regional volume due to the deformation and change in the fractional tissue content in a region due to inflation. The change in the regional volume is calculated from the Jacobian value derived from the warping function and the change in the fractional tissue content is estimated from reconstructed HU based on quantitative CT measures. A composite of multilevel B-spline is adopted to deform images and a sufficient condition is imposed to ensure a one-to-one mapping even for a registration pair with large volume difference. Parameters of the transformation model are optimized by a limited-memory quasi-Newton minimization approach in a multiresolution framework. To evaluate the effectiveness of the new similarity measure, the authors performed registrations for six lung volume pairs. Over 100 annotated landmarks located at vessel bifurcations were generated using a semiautomatic system. The results show that the SSTVD method yields smaller average landmark errors than the SSD method across all six registration pairs.

  20. Automated anatomical interpretation of ion distributions in tissue: linking imaging mass spectrometry to curated atlases.

    PubMed

    Verbeeck, Nico; Yang, Junhai; De Moor, Bart; Caprioli, Richard M; Waelkens, Etienne; Van de Plas, Raf

    2014-09-16

    Imaging mass spectrometry (IMS) has become a prime tool for studying the distribution of biomolecules in tissue. Although IMS data sets can become very large, computational methods have made it practically feasible to search these experiments for relevant findings. However, these methods lack access to an important source of information that many human interpretations rely upon: anatomical insight. In this work, we address this need by (1) integrating a curated anatomical data source with an empirically acquired IMS data source, establishing an algorithm-accessible link between them and (2) demonstrating the potential of such an IMS-anatomical atlas link by applying it toward automated anatomical interpretation of ion distributions in tissue. The concept is demonstrated in mouse brain tissue, using the Allen Mouse Brain Atlas as the curated anatomical data source that is linked to MALDI-based IMS experiments. We first develop a method to spatially map the anatomical atlas to the IMS data sets using nonrigid registration techniques. Once a mapping is established, a second computational method, called correlation-based querying, gives an elementary demonstration of the link by delivering basic insight into relationships between ion images and anatomical structures. Finally, a third algorithm moves further beyond both registration and correlation by providing automated anatomical interpretation of ion images. This task is approached as an optimization problem that deconstructs ion distributions as combinations of known anatomical structures. We demonstrate that establishing a link between an IMS experiment and an anatomical atlas enables automated anatomical annotation, which can serve as an important accelerator both for human and machine-guided exploration of IMS experiments.

  1. OpenMSI: a high-performance web-based platform for mass spectrometry imaging.

    PubMed

    Rübel, Oliver; Greiner, Annette; Cholia, Shreyas; Louie, Katherine; Bethel, E Wes; Northen, Trent R; Bowen, Benjamin P

    2013-11-01

    Mass spectrometry imaging (MSI) enables researchers to directly probe endogenous molecules directly within the architecture of the biological matrix. Unfortunately, efficient access, management, and analysis of the data generated by MSI approaches remain major challenges to this rapidly developing field. Despite the availability of numerous dedicated file formats and software packages, it is a widely held viewpoint that the biggest challenge is simply opening, sharing, and analyzing a file without loss of information. Here we present OpenMSI, a software framework and platform that addresses these challenges via an advanced, high-performance, extensible file format and Web API for remote data access (http://openmsi.nersc.gov). The OpenMSI file format supports storage of raw MSI data, metadata, and derived analyses in a single, self-describing format based on HDF5 and is supported by a large range of analysis software (e.g., Matlab and R) and programming languages (e.g., C++, Fortran, and Python). Careful optimization of the storage layout of MSI data sets using chunking, compression, and data replication accelerates common, selective data access operations while minimizing data storage requirements and are critical enablers of rapid data I/O. The OpenMSI file format has shown to provide >2000-fold improvement for image access operations, enabling spectrum and image retrieval in less than 0.3 s across the Internet even for 50 GB MSI data sets. To make remote high-performance compute resources accessible for analysis and to facilitate data sharing and collaboration, we describe an easy-to-use yet powerful Web API, enabling fast and convenient access to MSI data, metadata, and derived analysis results stored remotely to facilitate high-performance data analysis and enable implementation of Web based data sharing, visualization, and analysis. PMID:24087878

  2. OpenMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging

    SciTech Connect

    Rubel, Oliver; Greiner, Annette; Cholia, Shreyas; Louie, Katherine; Bethel, E. Wes; Northen, Trent R.; Bowen, Benjamin P.

    2013-10-02

    Mass spectrometry imaging (MSI) enables researchers to directly probe endogenous molecules directly within the architecture of the biological matrix. Unfortunately, efficient access, management, and analysis of the data generated by MSI approaches remain major challenges to this rapidly developing field. Despite the availability of numerous dedicated file formats and software packages, it is a widely held viewpoint that the biggest challenge is simply opening, sharing, and analyzing a file without loss of information. Here we present OpenMSI, a software framework and platform that addresses these challenges via an advanced, high-performance, extensible file format and Web API for remote data access (http://openmsi.nersc.gov). The OpenMSI file format supports storage of raw MSI data, metadata, and derived analyses in a single, self-describing format based on HDF5 and is supported by a large range of analysis software (e.g., Matlab and R) and programming languages (e.g., C++, Fortran, and Python). Careful optimization of the storage layout of MSI data sets using chunking, compression, and data replication accelerates common, selective data access operations while minimizing data storage requirements and are critical enablers of rapid data I/O. The OpenMSI file format has shown to provide >2000-fold improvement for image access operations, enabling spectrum and image retrieval in less than 0.3 s across the Internet even for 50 GB MSI data sets. To make remote high-performance compute resources accessible for analysis and to facilitate data sharing and collaboration, we describe an easy-to-use yet powerful Web API, enabling fast and convenient access to MSI data, metadata, and derived analysis results stored remotely to facilitate high-performance data analysis and enable implementation of Web based data sharing, visualization, and analysis.

  3. Dynamical Masses of Young M Dwarfs: Masses and Orbital Parameters of GJ 3305 AB, the Wide Binary Companion to the Imaged Exoplanet Host 51 Eri

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin T.; Bowler, Brendan P.; Shkolnik, Evgenya L.; Deck, Katherine M.; Wang, Ji; Horch, Elliott P.; Liu, Michael C.; Hillenbrand, Lynne A.; Kraus, Adam L.; Charbonneau, David

    2015-11-01

    We combine new high resolution imaging and spectroscopy from Keck/NIRC2, Discovery Channel Telescope/DSSI, and Keck/HIRES with published astrometry and radial velocities to measure individual masses and orbital elements of the GJ 3305 AB system, a young (∼20 Myr) M+M binary (unresolved spectral type M0) member of the β Pictoris moving group comoving with the imaged exoplanet host 51 Eri. We measure a total system mass of 1.11 ± 0.04 {M}ȯ , a period of 29.03 ± 0.50 year, a semimajor axis of 9.78 ± 0.14 AU, and an eccentricity of 0.19 ± 0.02. The primary component has a dynamical mass of 0.67 ± 0.05 {M}ȯ and the secondary has a mass of 0.44 ± 0.05 {M}ȯ . The recently updated BHAC15 models are consistent with the masses of both stars to within 1.5σ . Given the observed masses the models predict an age of the GJ 3305 AB system of 37 ± 9 Myr. Based on the observed system architecture and our dynamical mass measurement, it is unlikely that the orbit of 51 Eri b has been significantly altered by the Kozai–Lidov mechanism. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Dynamical Masses of Young M Dwarfs: Masses and Orbital Parameters of GJ 3305 AB, the Wide Binary Companion to the Imaged Exoplanet Host 51 Eri

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin T.; Bowler, Brendan P.; Shkolnik, Evgenya L.; Deck, Katherine M.; Wang, Ji; Horch, Elliott P.; Liu, Michael C.; Hillenbrand, Lynne A.; Kraus, Adam L.; Charbonneau, David

    2015-11-01

    We combine new high resolution imaging and spectroscopy from Keck/NIRC2, Discovery Channel Telescope/DSSI, and Keck/HIRES with published astrometry and radial velocities to measure individual masses and orbital elements of the GJ 3305 AB system, a young (˜20 Myr) M+M binary (unresolved spectral type M0) member of the β Pictoris moving group comoving with the imaged exoplanet host 51 Eri. We measure a total system mass of 1.11 ± 0.04 {M}⊙ , a period of 29.03 ± 0.50 year, a semimajor axis of 9.78 ± 0.14 AU, and an eccentricity of 0.19 ± 0.02. The primary component has a dynamical mass of 0.67 ± 0.05 {M}⊙ and the secondary has a mass of 0.44 ± 0.05 {M}⊙ . The recently updated BHAC15 models are consistent with the masses of both stars to within 1.5σ . Given the observed masses the models predict an age of the GJ 3305 AB system of 37 ± 9 Myr. Based on the observed system architecture and our dynamical mass measurement, it is unlikely that the orbit of 51 Eri b has been significantly altered by the Kozai-Lidov mechanism. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    SciTech Connect

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes were used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.

  6. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE PAGESBeta

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  7. The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass

    NASA Astrophysics Data System (ADS)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafrenière, D.; Doyon, R.; Nielsen, E. L.

    2016-10-01

    Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims: We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods: We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results: The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05+2.80-0.70% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30+5.95-1.55%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions: The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works. Tables 11-15 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  8. Desorption Electrospray Ionization (DESI) Mass Spectrometric Imaging of the Distribution of Rohitukine in the Seedling of Dysoxylum binectariferum Hook. F

    PubMed Central

    Mohana Kumara, Patel; Srimany, Amitava; Arunan, Suganya; Ravikanth, Gudasalamani; Uma Shaanker, Ramanan; Pradeep, Thalappil

    2016-01-01

    Ambient ionization mass spectrometric imaging of all parts of the seedling of Dysoxylum binectariferum Hook. f (Meliaceae) was performed to reconstruct the molecular distribution of rohitukine (Rh) and related compounds. The species accumulates Rh, a prominent chromone alkaloid, in its seeds, fruits, and stem bark. Rh possesses anti-inflammatory, anti-cancer, and immuno-modulatory properties. Desorption electrospray ionization mass spectrometry imaging (DESI MSI) and electrospray ionization (ESI) tandem mass spectrometry (MS/MS) analysis detected Rh as well as its glycosylated, acetylated, oxidized, and methoxylated analogues. Rh was predominantly distributed in the main roots, collar region of the stem, and young leaves. In the stem and roots, Rh was primarily restricted to the cortex region. The identities of the metabolites were assigned based on both the fragmentation patterns and exact mass analyses. We discuss these results, with specific reference to the possible pathways of Rh biosynthesis and translocation during seedling development in D. binectariferum. PMID:27362422

  9. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    SciTech Connect

    Cha, Sangwon

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  10. Time‐of‐flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions

    PubMed Central

    Vanbellingen, Quentin P.; Elie, Nicolas; Eller, Michael J.; Della‐Negra, Serge; Touboul, David

    2015-01-01

    Rationale In Time‐of‐Flight Secondary Ion Mass Spectrometry (TOF‐SIMS), pulsed and focused primary ion beams enable mass spectrometry imaging, a method which is particularly useful to map various small molecules such as lipids at the surface of biological samples. When using TOF‐SIMS instruments, the focusing modes of the primary ion beam delivered by liquid metal ion guns can provide either a mass resolution of several thousand or a sub‐µm lateral resolution, but the combination of both is generally not possible. Methods With a TOF‐SIMS setup, a delayed extraction applied to secondary ions has been studied extensively on rat cerebellum sections in order to compensate for the effect of long primary ion bunches. Results The use of a delayed extraction has been proven to be an efficient solution leading to unique features, i.e. a mass resolution up to 10000 at m/z 385.4 combined with a lateral resolution of about 400 nm. Simulations of ion trajectories confirm the experimental determination of optimal delayed extraction and allow understanding of the behavior of ions as a function of their mass‐to‐charge ratio. Conclusions Although the use of a delayed extraction has been well known for many years and is very popular in MALDI, it is much less used in TOF‐SIMS. Its full characterization now enables secondary ion images to be recorded in a single run with a submicron spatial resolution and with a mass resolution of several thousand. This improvement is very useful when analyzing lipids on tissue sections, or rare, precious, or very small size samples. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26395603

  11. Nanostructured weathering steel for matrix-free laser desorption ionisation mass spectrometry and imaging of metabolites, drugs and complex glycans.

    PubMed

    Etxebarria, Juan; Calvo, Javier; Reichardt, Niels-Christian

    2014-06-01

    Weathering steel has been employed for the first time to prepare sample plates for matrix-free laser desorption ionisation mass spectrometry (LDI-MS) of small molecules up to a mass range of around 1500 Da. The effective UV absorption, heat conductivity and porosity of the nanostructured inner rust layer formed during passivation determine the excellent performance in LDI-MS for a broad range of different analyte classes. The inexpensive material was evaluated in a series of relevant analytical applications ranging from the matrix-free detection of serum metabolites, lactose quantification, lipid analysis in milk to the glycoprofiling of antibodies and imaging mass spectrometry of brain tissue samples. PMID:24737011

  12. 'Plug and Play' assembly of a low-temperature plasma ionization mass spectrometry imaging (LTP-MSI) system.

    PubMed

    Maldonado-Torres, Mauricio; López-Hernández, José Fabricio; Jiménez-Sandoval, Pedro; Winkler, Robert

    2014-05-01

    Mass spectrometry imaging (MSI) is of high and growing interest in life science research, but the investment for necessary equipment is often prohibitive for small research groups. Therefore, we developed a basic MSI system from low cost 'Plug and Play' components, which are connected to the Universal Serial Bus (USB) of a standard computer. Our open source software OpenMZxy (http://www.bioprocess.org/openmzxy) enables automatic and manual sampling, as well as the recording of position data. For ionization we used a low-temperature plasma probe (LTP), coupled to a quadrupole mass analyzer. The current set-up has a practical resolution of 1mm, and a sampling area of 100×100mm, resulting in up to 10,000 sampling points. Our prototype is easy and economical to adopt for different types of mass analyzers. We prove the usability of the LTP-MSI system for macroscopic samples by imaging the distribution of metabolites in the longitudinal cross-cut of a chili (Capsicum annuum, 'Jalapeño pepper') fruit. The localization of capsaicin in the placenta could be confirmed. But additionally, yet unknown low molecular weight compounds were detected in defined areas, which underline the potential of LTP-MSI for the imaging of volatile and semi-volatile metabolites and for the discovery of new natural products. Biological significance Knowledge about the spatial distribution of metabolites, proteins, or lipids in a given tissue often leads to novel findings in medicine and biology. Therefore, mass spectrometry based imaging (MSI) is becoming increasingly popular in life science research. However, the investment for necessary equipment is often prohibitive for small research groups. We built a prototype with an ambient ionization source, which is easy and economical to adopt for different types of mass analyzers. Therefore, we hope that our system contributes to a broader use of mass spectrometry imaging for answering biological questions. PMID:24642210

  13. 'Plug and Play' assembly of a low-temperature plasma ionization mass spectrometry imaging (LTP-MSI) system.

    PubMed

    Maldonado-Torres, Mauricio; López-Hernández, José Fabricio; Jiménez-Sandoval, Pedro; Winkler, Robert

    2014-05-01

    Mass spectrometry imaging (MSI) is of high and growing interest in life science research, but the investment for necessary equipment is often prohibitive for small research groups. Therefore, we developed a basic MSI system from low cost 'Plug and Play' components, which are connected to the Universal Serial Bus (USB) of a standard computer. Our open source software OpenMZxy (http://www.bioprocess.org/openmzxy) enables automatic and manual sampling, as well as the recording of position data. For ionization we used a low-temperature plasma probe (LTP), coupled to a quadrupole mass analyzer. The current set-up has a practical resolution of 1mm, and a sampling area of 100×100mm, resulting in up to 10,000 sampling points. Our prototype is easy and economical to adopt for different types of mass analyzers. We prove the usability of the LTP-MSI system for macroscopic samples by imaging the distribution of metabolites in the longitudinal cross-cut of a chili (Capsicum annuum, 'Jalapeño pepper') fruit. The localization of capsaicin in the placenta could be confirmed. But additionally, yet unknown low molecular weight compounds were detected in defined areas, which underline the potential of LTP-MSI for the imaging of volatile and semi-volatile metabolites and for the discovery of new natural products. Biological significance Knowledge about the spatial distribution of metabolites, proteins, or lipids in a given tissue often leads to novel findings in medicine and biology. Therefore, mass spectrometry based imaging (MSI) is becoming increasingly popular in life science research. However, the investment for necessary equipment is often prohibitive for small research groups. We built a prototype with an ambient ionization source, which is easy and economical to adopt for different types of mass analyzers. Therefore, we hope that our system contributes to a broader use of mass spectrometry imaging for answering biological questions.

  14. Psychophysical similarity measure based on multi-dimensional scaling for retrieval of similar images of breast masses on mammograms

    NASA Astrophysics Data System (ADS)

    Nishimura, Kohei; Muramatsu, Chisako; Oiwa, Mikinao; Shiraiwa, Misaki; Endo, Tokiko; Doi, Kunio; Fujita, Hiroshi

    2013-02-01

    For retrieving reference images which may be useful to radiologists in their diagnosis, it is necessary to determine a reliable similarity measure which would agree with radiologists' subjective impression. In this study, we propose a new similarity measure for retrieval of similar images, which may assist radiologists in the distinction between benign and malignant masses on mammograms, and investigated its usefulness. In our previous study, to take into account the subjective impression, the psychophysical similarity measure was determined by use of an artificial neural network (ANN), which was employed to learn the relationship between radiologists' subjective similarity ratings and image features. In this study, we propose a psychophysical similarity measure based on multi-dimensional scaling (MDS) in order to improve the accuracy in retrieval of similar images. Twenty-seven images of masses, 3 each from 9 different pathologic groups, were selected, and the subjective similarity ratings for all possible 351 pairs were determined by 8 expert physicians. MDS was applied using the average subjective ratings, and the relationship between each output axis and image features was modeled by the ANN. The MDS-based psychophysical measures were determined by the distance in the modeled space. With a leave-one-out test method, the conventional psychophysical similarity measure was moderately correlated with subjective similarity ratings (r=0.68), whereas the psychophysical measure based on MDS was highly correlated (r=0.81). The result indicates that a psychophysical similarity measure based on MDS would be useful in the retrieval of similar images.

  15. Imaging of a tribolayer formed from ionic liquids by laser desorption/ionization-reflectron time-of-flight mass spectrometry.

    PubMed

    Gabler, Christoph; Pittenauer, Ernst; Dörr, Nicole; Allmaier, Günter

    2012-12-18

    For the first time, imaging using laser desorption/ionization (LDI) reflectron time-of-flight (RTOF) mass spectrometry (MS) was demonstrated to be a powerful tool for an offline monitoring of tribometrical experiments directly from disc specimen applying selected ammonium-, phosphonium-, and sulfonium-based ionic liquids (IL) with bis(trifluoromethylsulfonyl)imide as counterion for lubrication. The direct measurement of IL tribolayers by LDI-MS allowed the visualization of the lubricants in the form of the distribution of their intact cations and the anion in and outside the wear scar after the tribometrical experiment with a low degree of in-source generated fragmentation. Besides, also, an oxidation product formed during a tribometrical experiment was detected and located exclusively in the wear track. Comparative data of identical wear tracks were obtained by X-ray photoelectron spectroscopy (XPS) imaging not only enabling the determination of elemental distributions of the IL across the area imaged but also corroborating the mass spectrometry imaging (MSI) data, thus generating multimodal images. Merging data from MSI and XPS imaging exhibited that areas, where iron-fluorine bonds were detected in the wear track, are corresponding to data from LDI-MS imaging showing absence of IL cations and anions.

  16. Noninvasive quantification of left ventricular mass by cardiac magnetic resonance imaging: Development of the method and experimental validation

    SciTech Connect

    Maddahi, J.; Crues, J.; Berman, D.S.; Mericle, J.; Garcia, E.V.; Becerra, A.M.; Henderson, R.; Bradley, W.

    1985-05-01

    Determination of left ventricular myocardial (LV) mass may aid evaluation of hypertrophic cardiomyopathies as well as percent viable myocardium in ischemic heart disease. The validity of cardiac NMR for determination of LV mass was evaluated in 9 dogs using a superconducting magnet operating at 0.35 Tesla. In-vivo gated spin echo pulsing sequences were used obtaining 0.7 cm thick slices of the heart, spaced by 1 cm, in three orthogonal planes. After sacrifice, the nonbeating hearts were imaged in-situ without gating. On each NMR slice, the LV surface area was planimetered and multiplied by slice spacing (1) and myocardial specific gravity (1.05) to obtain slice mass. For total LV mass, slice masses were added on coronal (Method (Meth) 1), transaxial (Meth 2), and sagittal (Meth 3) planes. Mass of the LV portions subject to partial volume effect were derived from an orthogonal plane. Excised LV weight ranged from 27 to 134 grams. The intra- and inter-observer agreement for planimetry of the NMR slices was high (r=.99 and r=.97, respectively). For in-situ imaging, r values of all methods were high (r=.99, .99, and .98); however, the slope and intercept of the regression line were closes to the line of identity with Meth 1 (y=0.94x+0.52). For in-vivo beating heart images, Meth 1 also had the best results (r=.99, y= 0.99x+8.3). Failure to correct for partial volume effect resulted in underestimation of in-situ and in-vivo LV masses as indicated by slope of <1 (r=,.98, y=0.77x+3.9; r=.98, y= 0.88x+0.98, respectively, Meth 1). Thus, cardiac NMR is a reproducible and accurate method for noninvasive determination of LV myocardial mass.

  17. Cellular Level Mass Spectrometry Imaging using Infrared Matrix Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) by Oversampling

    PubMed Central

    Nazari, Milad; Muddiman, David C.

    2014-01-01

    Mass spectrometry imaging (MSI) allows for the direct and simultaneous analysis of the spatial distribution of molecular species from sample surfaces such as tissue sections. One of the goals of MSI is monitoring the distribution of compounds at the cellular resolution in order to gain insights about the biology that occurs at this spatial level. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging of cervical tissue sections was performed using a spot-to-spot distance of 10 μm by utilizing the method of oversampling; where the target plate is moved by a distance that is less than the desorption radius of the laser. In addition to high spatial resolution, high mass accuracy (± 1 ppm) and high mass resolving power (140,000 at m/z=200) was achieved by coupling the IR-MALDESI imaging source to a hybrid quadrupole Orbitrap mass spectrometer. Ion maps of cholesterol in tissues were generated from voxels containing <1 cell, on average. Additionally, the challenges of imaging at the cellular level in terms of loss of sensitivity and longer analysis time are discussed. PMID:25486925

  18. Development of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) for plant metabolite analysis

    SciTech Connect

    Korte, Andrew R

    2014-12-01

    This thesis presents efforts to improve the methodology of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) as a method for analysis of metabolites from plant tissue samples. The first chapter consists of a general introduction to the technique of MALDI-MSI, and the sixth and final chapter provides a brief summary and an outlook on future work.

  19. Synthetic infrared images and spectral energy distributions of a young low-mass stellar cluster

    NASA Astrophysics Data System (ADS)

    Kurosawa, Ryuichi; Harries, Tim J.; Bate, Matthew R.; Symington, Neil H.

    2004-07-01

    We present three-dimensional Monte Carlo radiative-transfer models of a very young (<105 yr old) low-mass (50 Msolar) stellar cluster containing 23 stars and 27 brown dwarfs. The models use the density and the stellar mass distributions from the large-scale smoothed particle hydrodynamics (SPH) simulation of the formation of a low-mass stellar cluster by Bate, Bonnell and Bromm. Using adaptive mesh refinement, the SPH density is mapped to the radiative-transfer grid without loss of resolution. The temperature of the ISM and the circumstellar dust is computed using Lucy's Monte Carlo radiative equilibrium algorithm. Based on this temperature, we compute the spectral energy distributions of the whole cluster and the individual objects. We also compute simulated far-infrared Spitzer Space Telescope (SST) images (24-, 70-, and 160-μm bands) and construct colour-colour diagrams (near-infrared HKL and mid-infrared SST bands). The presence of accretion discs around the light sources influences the morphology of the dust temperature structure on a large scale (up to several 104 au). A considerable fraction of the interstellar dust is underheated compared with a model without the accretion discs because the radiation from the light sources is blocked/shadowed by the discs. The spectral energy distribution (SED) of the model cluster with accretion discs shows excess emission at λ= 3-30 μm and λ > 500 μm, compared with that without accretion discs. While the former excess is caused by the warm dust present in the discs, the latter is caused by the presence of the underheated (shadowed) dust. Our model with accretion discs around each object shows a similar distribution of spectral index (2.2-20 μm) values (i.e. Class 0-III sources) to that seen in the ρ Ophiuchus cloud. We confirm that the best diagnostics for identifying objects with accretion discs are mid-infrared (λ= 3-10 μm) colours (e.g. SST IRAC bands) rather than HKL colours.

  20. Transmission Geometry Laser Ablation into a Non-Contact Liquid Vortex Capture Probe for Mass Spectrometry Imaging

    SciTech Connect

    Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias; Van Berkel, Gary J

    2014-01-01

    RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the

  1. High Spatial Resolution Imaging Mass Spectrometry of Human Optic Nerve Lipids and Proteins

    NASA Astrophysics Data System (ADS)

    Anderson, David M. G.; Spraggins, Jeffrey M.; Rose, Kristie L.; Schey, Kevin L.

    2015-06-01

    The human optic nerve carries signals from the retina to the visual cortex of the brain. Each optic nerve is comprised of approximately one million nerve fibers that are organized into bundles of 800-1200 fibers surrounded by connective tissue and supportive glial cells. Damage to the optic nerve contributes to a number of blinding diseases including: glaucoma, neuromyelitis optica, optic neuritis, and neurofibromatosis; however, the molecular mechanisms of optic nerve damage and death are incompletely understood. Herein we present high spatial resolution MALDI imaging mass spectrometry (IMS) analysis of lipids and proteins to define the molecular anatomy of the human optic nerve. The localization of a number of lipids was observed in discrete anatomical regions corresponding to myelinated and unmyelinated nerve regions as well as to supporting connective tissue, glial cells, and blood vessels. A protein fragment from vimentin, a known intermediate filament marker for astrocytes, was observed surrounding nerved fiber bundles in the lamina cribrosa region. S100B was also found in supporting glial cell regions in the prelaminar region, and the hemoglobin alpha subunit was observed in blood vessel areas. The molecular anatomy of the optic nerve defined by MALDI IMS provides a firm foundation to study biochemical changes in blinding human diseases.

  2. Imaging Mass Spectrometry for Assessing Cutaneous Wound Healing: Analysis of Pressure Ulcers

    PubMed Central

    2015-01-01

    Imaging mass spectrometry (IMS) was employed for the analysis of frozen skin biopsies to investigate the differences between stage IV pressure ulcers that remain stalled, stagnant, and unhealed versus those exhibiting clinical and histological signs of improvement. Our data reveal a rich diversity of proteins that are dynamically modulated, and we selectively highlight a family of calcium binding proteins (S-100 molecules) including calcyclin (S100-A6), calgranulins A (S100-A8) and B (S100-A9), and calgizzarin (S100-A11). IMS allowed us to target three discrete regions of interest: the wound bed, adjacent dermis, and hypertrophic epidermis. Plots derived using unsupervised principal component analysis of the global protein signatures within these three spatial niches indicate that these data from wound signatures have potential as a prognostic tool since they appear to delineate wounds that are favorably responding to therapeutic interventions versus those that remain stagnant or intractable in their healing status. Our discovery-based approach with IMS augments current knowledge of the molecular signatures within pressure ulcers while providing a rationale for a focused examination of the role of calcium modulators within the context of impaired wound healing. PMID:25488653

  3. Chemiluminescence Imaging of Superoxide Anion Detects Beta-Cell Function and Mass

    PubMed Central

    Bronsart, Laura L.; Stokes, Christian; Contag, Christopher H.

    2016-01-01

    Superoxide anion is produced during normal cellular respiration and plays key roles in cellular physiology with its dysregulation being associated with a variety of diseases. Superoxide anion is a short-lived molecule and, therefore, its homeostatic regulation and role in biology and disease requires dynamic quantification with fine temporal resolution. Here we validated coelenterazine as a reporter of intracellular superoxide anion concentration and used it as a dynamic measure both in vitro and in vivo. Chemiluminescence was dependent upon superoxide anion levels, including those produced during cellular respiration, and concentrations varied both kinetically and temporally in response to physiologically relevant fluctuations in glucose levels. In vivo imaging with coelenterazine revealed that beta cells of the pancreas have increased levels of superoxide anion, which acted as a measure of beta-cell function and mass and could predict the susceptibility of mice to diabetes mellitus. Glucose response and regulation are key elements of cellular physiology and organismal biology, and superoxide anion appears to play a fundamental and dynamic role in both of these processes. PMID:26752052

  4. Chemiluminescence Imaging of Superoxide Anion Detects Beta-Cell Function and Mass.

    PubMed

    Bronsart, Laura L; Stokes, Christian; Contag, Christopher H

    2016-01-01

    Superoxide anion is produced during normal cellular respiration and plays key roles in cellular physiology with its dysregulation being associated with a variety of diseases. Superoxide anion is a short-lived molecule and, therefore, its homeostatic regulation and role in biology and disease requires dynamic quantification with fine temporal resolution. Here we validated coelenterazine as a reporter of intracellular superoxide anion concentration and used it as a dynamic measure both in vitro and in vivo. Chemiluminescence was dependent upon superoxide anion levels, including those produced during cellular respiration, and concentrations varied both kinetically and temporally in response to physiologically relevant fluctuations in glucose levels. In vivo imaging with coelenterazine revealed that beta cells of the pancreas have increased levels of superoxide anion, which acted as a measure of beta-cell function and mass and could predict the susceptibility of mice to diabetes mellitus. Glucose response and regulation are key elements of cellular physiology and organismal biology, and superoxide anion appears to play a fundamental and dynamic role in both of these processes. PMID:26752052

  5. Metabolic Profiling Directly from the Petri Dish Using Nanospray Desorption Electrospray Ionization Imaging Mass Spectrometry

    SciTech Connect

    Watrous, Jeramie D.; Roach, Patrick J.; Heath, Brandi S.; Alexandrov, Theodore; Laskin, Julia; Dorrestein, Pieter C.

    2013-11-05

    Understanding molecular interaction pathways in complex biological systems constitutes a treasure trove of knowledge that might facilitate the specific, chemical manipulation of the countless microbiological systems that occur throughout our world. However, there is a lack of methodologies that allow the direct investigation of chemical gradients and interactions in living biological systems, in real time. Here, we report the use of nanospray desorption electrospray ionization (nanoDESI) imaging mass spectrometry for in vivo metabolic profiling of living bacterial colonies directly from the Petri dish with absolutely no sample preparation needed. Using this technique, we investigated single colonies of Shewanella oneidensis MR-1, Bacillus subtilis 3610, and Streptomyces coelicolor A3(2) as well as a mixed biofilm of S. oneidensis MR-1 and B. subtilis 3610. Data from B. subtilis 3610 and S. coelicolor A3(2) provided a means of validation for the method while data from S. oneidensis MR-1 and the mixed biofilm showed a wide range of compounds that this bacterium uses for the dissimilatory reduction of extracellular metal oxides, including riboflavin, iron-bound heme and heme biosynthetic intermediates, and the siderophore putrebactin.

  6. Automated MALDI matrix coating system for multiple tissue samples for imaging mass spectrometry.

    PubMed

    Mounfield, William P; Garrett, Timothy J

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  7. Application of imaging mass spectrometry for the molecular diagnosis of human breast tumors.

    PubMed

    Mao, Xinxin; He, Jiuming; Li, Tiegang; Lu, Zhaohui; Sun, Jian; Meng, Yunxiao; Abliz, Zeper; Chen, Jie

    2016-01-01

    Distinguishing breast invasive ductal carcinoma (IDC) and breast ductal carcinoma in situ (DCIS) is a key step in breast surgery, especially to determine whether DCIS is associated with tumor cell micro-invasion. However, there is currently no reliable method to obtain molecular information for breast tumor analysis during surgery. Here, we present a novel air flow-assisted ionization (AFAI) mass spectrometry imaging method that can be used in ambient environments to differentiate breast cancer by analyzing lipids. In this study, we demonstrate that various subtypes and histological grades of IDC and DCIS can be discriminated using AFAI-MSI: phospholipids were more abundant in IDC than in DCIS, whereas fatty acids were more abundant in DCIS than in IDC. The classification of specimens in the subtype and grade validation sets showed 100% and 78.6% agreement with the histopathological diagnosis, respectively. Our work shows the rapid classification of breast cancer utilizing AFAI-MSI. This work suggests that this method could be developed to provide surgeons with nearly real-time information to guide surgical resections. PMID:26868906

  8. The Coronal Mass Ejection of 1998 April 20: Direct Imaging at Radio Wavelengths

    NASA Astrophysics Data System (ADS)

    Bastian, T. S.; Pick, M.; Kerdraon, A.; Maia, D.; Vourlidas, A.

    2001-09-01

    We observed the fast coronal mass ejection (CME) of 1998 April 20 with the radioheliograph at Nançay, France, between 164 and 432 MHz. Spectroscopic data were obtained between 40 and 800 MHz by the spectrometer at Tremsdorf, Germany, and between 20 kHz and 14 MHz with the WAVES instrument on board the Wind spacecraft. Energetic particle data were obtained from the Wind 3D Plasma and Energetic Particle experiment. The CME was observed in white light by the Large-Angle Spectrometric COronagraph experiment on board the Solar and Heliospheric Observatory spacecraft. For the first time, the expanding CME loops are imaged directly at radio wavelengths. We show that the radio-emitting CME loops are the result of nonthermal synchrotron emission from electrons with energies of ~0.5-5 MeV interacting with magnetic fields of ~0.1 to a few gauss. They appear nearly simultaneously with the onset of an associated type II radio burst, shock-accelerated type III radio bursts, and the initiation of a solar energetic particle event. We suggest possible sources of the energetic electrons responsible for this ``radio CME'' and point out diagnostic uses for synchrotron emission from CME loops.

  9. Histology-directed and imaging mass spectrometry: An emerging technology in ectopic calcification.

    PubMed

    Taverna, Domenico; Boraldi, Federica; De Santis, Giorgio; Caprioli, Richard M; Quaglino, Daniela

    2015-05-01

    The present study was designed to demonstrate the potential of an optimized histology directed protein identification combined with imaging mass spectrometry technology to reveal and identify molecules associated to ectopic calcification in human tissue. As a proof of concept, mineralized and non-mineralized areas were compared within the same dermal tissue obtained from a patient affected by Pseudoxanthoma elasticum, a genetic disorder characterized by calcification only at specific sites of soft connective tissues. Data have been technically validated on a contralateral dermal tissue from the same subject and compared with those from control healthy skin. Results demonstrate that this approach 1) significantly reduces the effects generated by techniques that, disrupting tissue organization, blend data from affected and unaffected areas; 2) demonstrates that, abolishing differences due to inter-individual variability, mineralized and non-mineralized areas within the same sample have a specific protein profile and have a different distribution of molecules; and 3) avoiding the bias of focusing on already known molecules, reveals a number of proteins that have been never related to the disease nor to the calcification process, thus paving the way for the selection of new molecules to be validated as pathogenic or as potential pharmacological targets.

  10. Histology-directed and imaging mass spectrometry: an emerging technology in ectopic calcification

    PubMed Central

    De Santis, Giorgio; Caprioli, Richard M; Quaglino, Daniela

    2015-01-01

    The present study was designed to demonstrate the potential of an optimized histology directed protein identification combined with imaging mass spectrometry technology to reveal and identify molecules associated to ectopic calcification in human tissue. As a proof of concept, mineralized and non-mineralized areas were compared within the same dermal tissue obtained from a patient affected by Pseudoxanthoma elasticum, a genetic disorder characterized by calcification only at specific sites of soft connective tissues. Data have been technically validated on a contralateral dermal tissue from the same subject and compared with those from control healthy skin. Results demonstrate that this approach 1) significantly reduces the effects generated by techniques that, disrupting tissue organization, blend data from affected and unaffected areas; 2) demonstrates that, abolishing differences due to inter-individual variability, mineralized and non-mineralized areas within the same sample have a specific protein profile and have a different distribution of molecules; 3) avoiding the bias of focusing on already known molecules, reveals a number of proteins that have been never related to the disease nor to the calcification process, thus paving the way for the selection of new molecules to be validated as pathogenic or as potential pharmacological targets. PMID:25595835

  11. MALDI mass spectrometry imaging analysis of pituitary adenomas for near-real-time tumor delineation

    PubMed Central

    Calligaris, David; Feldman, Daniel R.; Norton, Isaiah; Olubiyi, Olutayo; Changelian, Armen N.; Machaidze, Revaz; Vestal, Matthew L.; Laws, Edward R.; Dunn, Ian F.; Santagata, Sandro; Agar, Nathalie Y. R.

    2015-01-01

    We present a proof of concept study designed to support the clinical development of mass spectrometry imaging (MSI) for the detection of pituitary tumors during surgery. We analyzed by matrix-assisted laser desorption/ionization (MALDI) MSI six nonpathological (NP) human pituitary glands and 45 hormone secreting and nonsecreting (NS) human pituitary adenomas. We show that the distribution of pituitary hormones such as prolactin (PRL), growth hormone (GH), adrenocorticotropic hormone (ACTH), and thyroid stimulating hormone (TSH) in both normal and tumor tissues can be assessed by using this approach. The presence of most of the pituitary hormones was confirmed by using MS/MS and pseudo-MS/MS methods, and subtyping of pituitary adenomas was performed by using principal component analysis (PCA) and support vector machine (SVM). Our proof of concept study demonstrates that MALDI MSI could be used to directly detect excessive hormonal production from functional pituitary adenomas and generally classify pituitary adenomas by using statistical and machine learning analyses. The tissue characterization can be completed in fewer than 30 min and could therefore be applied for the near-real-time detection and delineation of pituitary tumors for intraoperative surgical decision-making. PMID:26216958

  12. Metabolic profiling directly from the Petri dish using nanoDESI imaging mass spectrometry

    PubMed Central

    Watrous, Jeramie; Roach, Patrick; Heath, Brandi; Alexandrov, Theodore; Laskin, Julia; Dorrestein, Pieter C.

    2014-01-01

    Understanding molecular interaction pathways in complex biological systems constitutes a treasure trove of knowledge that might facilitate the specific, chemical manipulation of the countless microbiological systems that occur throughout our world. However, there is a lack of methodologies that allow the direct investigation of chemical gradients and interactions in living biological systems, in real time. Here we report the use of nanospray desorption electrospray ionization (nanoDESI) imaging mass spectrometry for in vivo metabolic profiling of living bacterial colonies directly from the Petri dish with absolutely no sample preparation needed. Using this technique, we investigated single colonies of Shewanella oneidensis MR-1, Bacillus subtilis 3610, Streptomyces coelicolor A3(2) as well as a mixed biofilm of S. oneidensis MR-1 and B. subtilis 3610. Data from B. subtilis 3610 and S. coelicolor A3(2) provided a means of validation for the method while data from S. oneidensis MR-1 and the mixed biofilm showed a wide range of compounds that this bacterium uses for the dissimilatory reduction of extracellular metal oxides, including riboflavin, iron-bound heme and heme biosynthetic intermediates, and the siderophore putrebactin. PMID:24047514

  13. MALDI Mass Spectrometric Imaging of Lipids in Rat Brain Injury Models

    NASA Astrophysics Data System (ADS)

    Hankin, Joseph A.; Farias, Santiago E.; Barkley, Robert M.; Heidenreich, Kim; Frey, Lauren C.; Hamazaki, Kei; Kim, Hee-Yong; Murphy, Robert C.

    2011-06-01

    Matrix-assisted laser desorption ionization/ionization imaging mass spectrometry (MALDI IMS) with a time-of-flight analyzer was used to characterize the distribution of lipid molecular species in the brain of rats in two injury models. Ischemia/reperfusion injury of the rat brain after bilateral occlusion of the carotid artery altered appearance of the phospholipids present in the hippocampal region, specifically the CA1 region. These brain regions also had a large increase in the ion abundance at m/z 548.5 and collisional activation supported identification of this ion as arising from ceramide (d18:1/18:0), a lipid known to be associated with cellular apoptosis. Traumatic brain injury model in the rat was examined by MALDI IMS and the area of damage also showed an increase in ceramide (d18:1/18:0) and a remarkable loss of signal for the potassium adduct of the most abundant phosphocholine molecular species 16:0/18:1 (PC) with a corresponding increase in the sodium adduct ion. This change in PC alkali attachment ion was suggested to be a result of edema and influx of extracellular fluid likely through a loss of Na/K-ATPase caused by the injury. These studies reveal the value of MALDI IMS to examine tissues for changes in lipid biochemistry and will provide data needed to eventually understand the biochemical mechanisms relevant to tissue injury.

  14. Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry.

    PubMed

    Baluya, Dodge L; Garrett, Timothy J; Yost, Richard A

    2007-09-01

    Careful matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is critical for producing reproducible analyte ion signals. Traditional methods for matrix deposition are often considered an art rather than a science, with significant sample-to-sample variability. Here we report an automated method for matrix deposition, employing a desktop inkjet printer (<$200) with 5760 x 1440 dpi resolution and a six-channel piezoelectric head that delivers 3 pL/drop. The inkjet printer tray, designed to hold CDs and DVDs, was modified to hold microscope slides. Empty ink cartridges were filled with MALDI matrix solutions, including DHB in methanol/water (70:30) at concentrations up to 40 mg/mL. Various samples (including rat brain tissue sections and standards of small drug molecules) were prepared using three deposition methods (electrospray, airbrush, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed that matrix crystals were formed evenly across the sample. There was minimal background signal after storing the matrix in the cartridges over a 6-month period. Overall, the mass spectral images gathered from inkjet-printed tissue specimens were of better quality and more reproducible than from specimens prepared by the electrospray and airbrush methods.

  15. Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mounfield, William P.; Garrett, Timothy J.

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  16. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.

    PubMed

    Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J

    2012-06-28

    The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.

  17. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease.

    PubMed

    Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf

    2015-04-01

    Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content.

  18. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.

    PubMed

    Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J

    2012-06-28

    The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis. PMID:22739316

  19. Dual-Modal Magnetic Resonance/Fluorescent Zinc Probes for Pancreatic β-Cell Mass Imaging

    PubMed Central

    Stasiuk, Graeme J; Minuzzi, Florencia; Sae-Heng, Myra; Rivas, Charlotte; Juretschke, Hans-Paul; Piemonti, Lorenzo; Allegrini, Peter R; Laurent, Didier; Duckworth, Andrew R; Beeby, Andrew; Rutter, Guy A; Long, Nicholas J

    2015-01-01

    Despite the contribution of changes in pancreatic β-cell mass to the development of all forms of diabetes mellitus, few robust approaches currently exist to monitor these changes prospectively in vivo. Although magnetic-resonance imaging (MRI) provides a potentially useful technique, targeting MRI-active probes to the β cell has proved challenging. Zinc ions are highly concentrated in the secretory granule, but they are relatively less abundant in the exocrine pancreas and in other tissues. We have therefore developed functional dual-modal probes based on transition-metal chelates capable of binding zinc. The first of these, Gd⋅1, binds ZnII directly by means of an amidoquinoline moiety (AQA), thus causing a large ratiometric Stokes shift in the fluorescence from λem=410 to 500 nm with an increase in relaxivity from r1=4.2 up to 4.9 mM−1 s−1. The probe is efficiently accumulated into secretory granules in β-cell-derived lines and isolated islets, but more poorly by non-endocrine cells, and leads to a reduction in T1 in human islets. In vivo murine studies of Gd⋅1 have shown accumulation of the probe in the pancreas with increased signal intensity over 140 minutes. PMID:25736590

  20. Toward Direct Imaging of Low-mass Gas-Giant Planets with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Schlieder, J. E.; Beichman, C. A.; Meyer, M. R.; Greene, T.

    2016-01-01

    In preparation for observations with the James Webb Space Telescope (JWST), we have identified new members of the nearby, young M dwarf sample and compiled an up to date list of these stars. Here we summarize our efforts to identify young M dwarfs, describe the current sample, and detail its demographics in the context of direct planet imaging. We also describe our investigations of the unprecedented sensitivity of the JWST when imaging nearby, young M dwarfs. The JWST is the only near term facility capable of routinely pushing direct imaging capabilities around M dwarfs to sub-Jovian masses and will provide key insight into questions regarding low-mass gas-giant properties, frequency, formation, and architectures.

  1. Use of a multi-isotope and multi-tracer approach including organic matter isotopes for quantifying nutrient contributions from agricultural vs wastewater sources

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Silva, S. R.; Young, M. B.

    2013-12-01

    While nutrient isotopes are a well-established tool for quantifying nutrients inputs from agricultural vs wastewater treatment plant (WWTP) sources, we have found that combining nutrient isotopes with the C, N, and S isotopic compositions of dissolved and particulate organic matter, as part of a comprehensive multi-isotope and multi-tracer approach, is a much more diagnostic approach. The main reasons why organic matter C-N-S isotopes are a useful adjunct to studies of nutrient sources and biogeochemical processes are that the dissolved and particulate organic matter associated with (1) different kinds of animals (e.g., humans vs cows) often have distinctive isotopic compositions reflecting the different diets of the animals, and (2) the different processes associated with the different land uses (e.g., in the WWTP or associated with different crop types) often result in significant differences in the isotopic compositions of the organics. The analysis of the δ34S of particulate organic matter (POM) and dissolved organic matter (DOM) has been found to be especially useful for distinguishing and quantifying water, nutrient, and organic contributions from different land uses in aquatic systems where much of the organic matter is aquatic in origin. In such environments, the bacteria and algae incorporate S from sulfate and sulfide that is isotopically labeled by the different processes associated with different land uses. We have found that there is ~35 permil range in δ34S of POM along the river-estuary continuum in the San Joaquin/Sacramento River basin, with low values associated with sulfate reduction in the upstream wetlands and high values associated with tidal inputs of marine water into the estuary. Furthermore, rice agriculture results in relatively low δ34S values whereas WWTP effluent in the Sacramento River produces distinctly higher values than upstream of the WWTP, presumably because SO2 is used to treat chlorinated effluent. The fish living

  2. Using Multi-Isotope Tracer Methods to Understand the Sources of Nitrate in Aerosols, Fog and River Water in Podocarpus National Forest, Ecuador

    NASA Astrophysics Data System (ADS)

    Brothers, L. A.; Dominguez, G.; Fabian, P.; Thiemens, M. H.

    2008-12-01

    sulfate and nitrate concentrations in rain and fog water by standard methods to investigate water and nutrient pathways along with data from satellite and ground based remote sensing, observations and numerical models. We hope to pair this with a multi-isotope tracer method and NOAA Hysplit Back trajectories, and satellite imagery for information about the number of fires burning in the region to help identify sources of the high nitrate deposition.

  3. MALDI Imaging Mass Spectrometry Spatially Maps Age-Related Deamidation and Truncation of Human Lens Aquaporin-0

    PubMed Central

    Wenke, Jamie L.; Rose, Kristie L.; Spraggins, Jeffrey M.; Schey, Kevin L.

    2015-01-01

    Purpose To spatially map human lens Aquaporin-0 (AQP0) protein modifications, including lipidation, truncation, and deamidation, from birth through middle age using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Methods Human lens sections were water-washed to facilitate detection of membrane protein AQP0. We acquired MALDI images from eight human lenses ranging in age from 2 months to 63 years. In situ tryptic digestion was used to generate peptides of AQP0 and peptide images were acquired on a 15T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Peptide extracts were analyzed by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and database searched to identify peptides observed in MALDI imaging experiments. Results Unmodified, truncated, and fatty acid–acylated forms of AQP0 were detected in protein imaging experiments. Full-length AQP0 was fatty acid acylated in the core and cortex of young (2- and 4-month) lenses. Acylated and unmodified AQP0 were C-terminally truncated in older lens cores. Deamidated tryptic peptides (+0.9847 Da) were mass resolved from unmodified peptides by FTICR MS. Peptide images revealed differential localization of un-, singly-, and doubly-deamidated AQP0 C-terminal peptide (239–263). Deamidation was present at 4 months and increases with age. Liquid chromatography–MS/MS results indicated N246 undergoes deamidation more rapidly than N259. Conclusions Results indicated AQP0 fatty acid acylation and deamidation occur during early development. Progressive age-related AQP0 processing, including deamidation and truncation, was mapped in human lenses as a function of age. The localization of these modified AQP0 forms suggests where AQP0 functions may change throughout lens development and aging. PMID:26574799

  4. Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy

    SciTech Connect

    Siketić, Zdravko; Bogdanović Radović, Ivančica; Jakšić, Milko; Popović Hadžija, Marijana; Hadžija, Mirko

    2015-08-31

    In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanning transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells.

  5. An instrument for electron beam and light transmission imaging of mass distribution in paper and fibrous webs

    NASA Astrophysics Data System (ADS)

    Keller, D. Steven; Luner, Philip

    1998-06-01

    An instrument was developed for the rapid measurement of local mass density (formation) in fibrous networks and films using electron beam transmission (EBT) imaging. A transmission electron microscope (80 keV) was modified for use as a beam source for irradiating 5 cm×5 cm samples of paper or other fibrous webs. Local transmission of electrons through paper (directly proportional to the mass) was measured indirectly by video imaging of the pattern emitted by a Ca(Eu)F2 cathodoluminescing window supporting the specimen. The local optical density was also determined using a diffused electroluminescent lamp. A single CCD imaging system, with a spatial resolution of 0.1 mm, was used for both the electron and light transmission methods. EBT results were calibrated using mylar samples of known grammage. The irradiation sources and the detection system were characterized to establish the limits of operation and measurement capabilities. Electron beam flux was measured directly, and the attenuation curve for mylar correlated well with Monte Carlo estimation with an upper limit of ˜85 g/m2. For EBT imaging, procedures were established to prevent disruption of images by electrostatic discharging. Correction also was made for the back-reflected light that was a function of the reflectivity, R0, of the sample. A group of samples prepared from different pulps was imaged, and the actual grammages were compared with those determined from the instrument. The results demonstrated that, with few exceptions, good correlation existed.

  6. Associations between Chinese/Asian versus Western mass media influences and body image disturbances of young Chinese women.

    PubMed

    Jackson, Todd; Jiang, Chengcheng; Chen, Hong

    2016-06-01

    In this study, we evaluated associations of experiences with mass media imported from Western nations such as the United States versus mass media from China and other Asian countries with eating and body image disturbances of young Chinese women. Participating women (N=456) completed self-report measures of disordered eating, specific sources of appearance dissatisfaction (fatness, facial features, stature), and Western versus Chinese/Asian mass media influences. The sample was significantly more likely to report perceived pressure from, comparisons with, and preferences for physical appearance depictions in Chinese/Asian mass media than Western media. Chinese/Asian media influences also combined for more unique variance in prediction models for all disturbances except stature concerns. While experiences with Western media were related to disturbances as well, the overall impact of Chinese/Asian media influences was more prominent. PMID:27110965

  7. Associations between Chinese/Asian versus Western mass media influences and body image disturbances of young Chinese women.

    PubMed

    Jackson, Todd; Jiang, Chengcheng; Chen, Hong

    2016-06-01

    In this study, we evaluated associations of experiences with mass media imported from Western nations such as the United States versus mass media from China and other Asian countries with eating and body image disturbances of young Chinese women. Participating women (N=456) completed self-report measures of disordered eating, specific sources of appearance dissatisfaction (fatness, facial features, stature), and Western versus Chinese/Asian mass media influences. The sample was significantly more likely to report perceived pressure from, comparisons with, and preferences for physical appearance depictions in Chinese/Asian mass media than Western media. Chinese/Asian media influences also combined for more unique variance in prediction models for all disturbances except stature concerns. While experiences with Western media were related to disturbances as well, the overall impact of Chinese/Asian media influences was more prominent.

  8. A Solar Type II Radio Burst from Coronal Mass Ejection-Coronal Ray Interaction: Simultaneous Radio and Extreme Ultraviolet Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Du, Guohui; Feng, Li; Feng, Shiwei; Kong, Xiangliang; Guo, Fan; Wang, Bing; Li, Gang

    2014-05-01

    Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the three-dimensional EUV wave front (presumably the type-II-emitting shock) based on the imaging data of the two Solar TErrestrial RElations Observatory spacecraft. It is then combined with the Nançay radio imaging data to infer the three-dimensional position of the type II source. It is found that the type II source coincides with the interface between the coronal mass ejection (CME) EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.

  9. A solar type II radio burst from coronal mass ejection-coronal ray interaction: Simultaneous radio and extreme ultraviolet imaging

    SciTech Connect

    Chen, Yao; Du, Guohui; Feng, Shiwei; Kong, Xiangliang; Wang, Bing; Feng, Li; Guo, Fan; Li, Gang

    2014-05-20

    Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the three-dimensional EUV wave front (presumably the type-II-emitting shock) based on the imaging data of the two Solar TErrestrial RElations Observatory spacecraft. It is then combined with the Nançay radio imaging data to infer the three-dimensional position of the type II source. It is found that the type II source coincides with the interface between the coronal mass ejection (CME) EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.

  10. Secondary Ion Mass Spectrometry Imaging of Molecular Distributions in Cultured Neurons and their Processes: Comparative Analysis of Sample Preparation

    PubMed Central

    Tucker, Kevin R.; Li, Zhen; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2012-01-01

    Neurons often exhibit a complex chemical distribution and topography; therefore, sample preparation protocols that preserve structures ranging from relatively large cell somata to small neurites and growth cones are an important factor in secondary ion mass spectrometry (SIMS) imaging studies. Here, SIMS was used to investigate the subcellular localization of lipids and lipophilic species in neurons from Aplysia californica. Using individual neurons cultured on silicon wafers, we compared and optimized several SIMS sampling approaches. After an initial step to remove the high salt culturing media, formaldehyde, paraformaldehyde and glycerol, and various combinations thereof, were tested for their ability to achieve cell stabilization during and after the removal of extracellular media. These treatments improved the preservation of cellular morphology as visualized with SIMS imaging. For analytes >250 Da, coating the cell surface with a 3.2 nm-thick gold layer increased the ion intensity; multiple analytes previously not observed or observed at low abundance were detected, including intact cholesterol and vitamin E molecular ions. However, once a sample was coated, many of the lower molecular mass (<200 Da) analyte signals were suppressed. The optimum approach depended on the analyte being studied, and these approaches included rinsing with water and cell stabilization with glycerol and 4% paraformaldehyde. The sample preparation methods described here enhance SIMS imaging of processes of individual cultured neurons over a broad mass range with enhanced image contrast. PMID:22930440

  11. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    NASA Astrophysics Data System (ADS)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-10-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  12. Secondary Ion Mass Spectrometry Imaging of Molecular Distributions in Cultured Neurons and Their Processes: Comparative Analysis of Sample Preparation

    NASA Astrophysics Data System (ADS)

    Tucker, Kevin R.; Li, Zhen; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2012-11-01

    Neurons often exhibit a complex chemical distribution and topography; therefore, sample preparation protocols that preserve structures ranging from relatively large cell somata to small neurites and growth cones are important factors in secondary ion mass spectrometry (SIMS) imaging studies. Here, SIMS was used to investigate the subcellular localization of lipids and lipophilic species in neurons from Aplysia californica. Using individual neurons cultured on silicon wafers, we compared and optimized several SIMS sampling approaches. After an initial step to remove the high salt culturing media, formaldehyde, paraformaldehyde, and glycerol, and various combinations thereof, were tested for their ability to achieve cell stabilization during and after the removal of extracellular media. These treatments improved the preservation of cellular morphology as visualized with SIMS imaging. For analytes >250 Da, coating the cell surface with a 3.2 nm-thick gold layer increased the ion intensity; multiple analytes previously not observed or observed at low abundance were detected, including intact cholesterol and vitamin E molecular ions. However, once a sample was coated, many of the lower molecular mass (<200 Da) analyte signals were suppressed. The optimum approach depended on the analyte being studied; the approaches evaluated included rinsing with water and cell stabilization with glycerol and 4 % paraformaldehyde. The sample preparation methods described here enhance SIMS imaging of processes of individual cultured neurons over a broad mass range with enhanced image contrast.

  13. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform

    DOE PAGESBeta

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; Van Berkel, Gary J.; Kertesz, Vilmos

    2016-02-18

    This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.

  14. The LEECH Exoplanet Imaging Survey: Orbit and Component Masses of the Intermediate-Age, Late-Type Binary NO UMa

    NASA Astrophysics Data System (ADS)

    Schlieder, Joshua E.; Skemer, Andrew J.; Maire, Anne-Lise; Desidera, Silvano; Hinz, Philip; Skrutskie, Michael F.; Leisenring, Jarron; Bailey, Vanessa; Defrère, Denis; Esposito, Simone; Strassmeier, Klaus G.; Weber, Michael; Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Close, Laird M.; Crepp, Justin R.; Eisner, Josh A.; Hofmann, Karl-Heinz; Henning, Thomas; Morzinski, Katie M.; Schertl, Dieter; Weigelt, Gerd; Woodward, Charles E.

    2016-02-01

    We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBT Interferometer Exozodi Exoplanet Common Hunt exoplanet imaging survey. Our H-, Ks-, and L‧-band observations resolve the system at angular separations <0.″09. The components exhibit significant orbital motion over a span of ∼7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0 ± 0.5 primary and K6.5 ± 0.5 secondary are 0.83 ± 0.02 M⊙ and 0.64 ± 0.02 M⊙, respectively. We also derive a system distance of d = 25.87 ± 0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ∼500 Myr old Ursa Major moving group, and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC.

  15. The LEECH Exoplanet Imaging Survey: Orbit and Component Masses of the Intermediate-age, Late-type Binary NO UMa

    NASA Astrophysics Data System (ADS)

    Schlieder, Joshua E.; Skemer, Andrew J.; Maire, Anne-Lise; Desidera, Silvano; Hinz, Philip; Skrutskie, Michael F.; Leisenring, Jarron; Bailey, Vanessa; Defrère, Denis; Esposito, Simone; Strassmeier, Klaus G.; Weber, Michael; Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Close, Laird M.; Crepp, Justin R.; Eisner, Josh A.; Hofmann, Karl-Heinz; Henning, Thomas; Morzinski, Katie M.; Schertl, Dieter; Weigelt, Gerd; Woodward, Charles E.

    2016-02-01

    We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBT Interferometer Exozodi Exoplanet Common Hunt exoplanet imaging survey. Our H-, Ks-, and L‧-band observations resolve the system at angular separations <0.″09. The components exhibit significant orbital motion over a span of ∼7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0 ± 0.5 primary and K6.5 ± 0.5 secondary are 0.83 ± 0.02 M⊙ and 0.64 ± 0.02 M⊙, respectively. We also derive a system distance of d = 25.87 ± 0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ∼500 Myr old Ursa Major moving group, and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC.

  16. Future technology insight: mass spectrometry imaging as a tool in drug research and development

    PubMed Central

    Cobice, D F; Goodwin, R J A; Andren, P E; Nilsson, A; Mackay, C L; Andrew, R

    2015-01-01

    In pharmaceutical research, understanding the biodistribution, accumulation and metabolism of drugs in tissue plays a key role during drug discovery and development. In particular, information regarding pharmacokinetics, pharmacodynamics and transport properties of compounds in tissues is crucial during early screening. Historically, the abundance and distribution of drugs have been assessed by well-established techniques such as quantitative whole-body autoradiography (WBA) or tissue homogenization with LC/MS analysis. However, WBA does not distinguish active drug from its metabolites and LC/MS, while highly sensitive, does not report spatial distribution. Mass spectrometry imaging (MSI) can discriminate drug and its metabolites and endogenous compounds, while simultaneously reporting their distribution. MSI data are influencing drug development and currently used in investigational studies in areas such as compound toxicity. In in vivo studies MSI results may soon be used to support new drug regulatory applications, although clinical trial MSI data will take longer to be validated for incorporation into submissions. We review the current and future applications of MSI, focussing on applications for drug discovery and development, with examples to highlight the impact of this promising technique in early drug screening. Recent sample preparation and analysis methods that enable effective MSI, including quantitative analysis of drugs from tissue sections will be summarized and key aspects of methodological protocols to increase the effectiveness of MSI analysis for previously undetectable targets addressed. These examples highlight how MSI has become a powerful tool in drug research and development and offers great potential in streamlining the drug discovery process. PMID:25766375

  17. THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS

    SciTech Connect

    Walsh, Jonelle L.; Barth, Aaron J.; Ho, Luis C.; Sarzi, Marc

    2013-06-20

    The supermassive black hole of M87 is one of the most massive black holes known and has been the subject of several stellar and gas-dynamical mass measurements; however, the most recent revision to the stellar-dynamical black hole mass measurement is a factor of about two larger than the previous gas-dynamical determinations. Here, we apply comprehensive gas-dynamical models that include the propagation of emission-line profiles through the telescope and spectrograph optics to new Space Telescope Imaging Spectrograph observations from the Hubble Space Telescope. Unlike the previous gas-dynamical studies of M87, we map out the complete kinematic structure of the emission-line disk within {approx}40 pc from the nucleus, and find that a small amount of velocity dispersion internal to the gas disk is required to match the observed line widths. We examine a scenario in which the intrinsic velocity dispersion provides dynamical support to the disk, and determine that the inferred black hole mass increases by only 6%. Incorporating this effect into the error budget, we ultimately measure a mass of M{sub BH}= (3.5{sup +0.9}{sub -0.7}) Multiplication-Sign 10{sup 9} M{sub sun} (68% confidence). Our gas-dynamical black hole mass continues to differ from the most recent stellar-dynamical mass by a factor of two, underscoring the need for carrying out more cross-checks between the two main black hole mass measurement methods.

  18. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform.

    PubMed

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; Van Berkel, Gary J; Kertesz, Vilmos

    2016-03-01

    In this paper, the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry. The infrared chemical imaging component of the system utilized photothermal expansion of the sample at the tip of the atomic force microscopy probe recorded at infrared wave numbers specific to the different surface constituents. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for thermolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. The basic instrumental setup, operation, and image correlation procedures are discussed, and the multimodal imaging capability and utility are demonstrated using a phase separated poly(2-vinylpyridine)/poly(methyl methacrylate) polymer thin film. The topography and both the infrared and mass spectral chemical images showed that the valley regions of the thin film surface were comprised primarily of poly(2-vinylpyridine) and hill or plateau regions were primarily poly(methyl methacrylate). The spatial resolution of the mass spectral chemical images was estimated to be 1.6 μm based on the ability to distinguish surface features in those images that were also observed in the topography and infrared images of the same surface.

  19. Vacuum compatible sample positioning device for matrix assisted laser desorption∕ionization Fourier transform ion cyclotron resonance mass spectrometry imaging.

    PubMed

    Aizikov, Konstantin; Smith, Donald F; Chargin, David A; Ivanov, Sergei; Lin, Tzu-Yung; Heeren, Ron M A; O'Connor, Peter B

    2011-05-01

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in ∼1 × 10(-8) mbar vacuum. The range of motion is set to 100 mm × 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption∕ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The "oversampling" MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter.

  20. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    SciTech Connect

    Aizikov, Konstantin; Lin, Tzu-Yung; Smith, Donald F.; Heeren, Ron M. A.; Chargin, David A.; Ivanov, Sergei; O'Connor, Peter B.

    2011-05-15

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in {approx}1 x 10{sup -8} mbar vacuum. The range of motion is set to 100 mm x 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The ''oversampling'' MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter.

  1. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    PubMed Central

    Aizikov, Konstantin; Smith, Donald F.; Chargin, David A.; Ivanov, Sergei; Lin, Tzu-Yung; Heeren, Ron M. A.; O’Connor, Peter B.

    2011-01-01

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in ∼1 × 10–8 mbar vacuum. The range of motion is set to 100 mm × 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The “oversampling” MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter. PMID:21639522

  2. Visibility of microcalcification clusters and masses in breast tomosynthesis image volumes and digital mammography: A 4AFC human observer study

    SciTech Connect

    Timberg, P.; Baath, M.; Andersson, I.; Mattsson, S.; Tingberg, A.; Ruschin, M.

    2012-05-15

    Purpose: To investigate the visibility of simulated lesions in digital breast tomosynthesis (BT) image volumes compared with 2D digital mammography (DM). Methods: Simulated lesions (masses and microcalcifications) were added to images of the same women acquired on a DM system (Mammomat Novation, Siemens) and a BT prototype. The same beam quality was used for the DM and BT acquisitions. The total absorbed dose resulting from a 25-projection BT acquisition and reconstruction (BT{sub 25}) was approximately twice that of a single DM view. By excluding every other projection image from the reconstruction (BT{sub 13}), approximately the same dose as in DM was effected. Simulated microcalcifications were digitally added with varying contrast to the DM and BT images. Simulated masses with 8 mm diameter were also added to BT images. A series of 4-alternative forced choice (4AFC) human observer experiments were conducted. Four medical physicists participated in all experiments, each consisting of 60 trials per experimental condition. The observers interpreted the BT image volumes in cine-mode at a fixed image sequence speed. The required threshold contrast (S{sub t}) to achieve a detectability index (d') of 2.5 (i.e., 92.5% correct decisions) was determined. Results: The S{sub t} for mass detection in DM was approximately a factor of 2 higher than required in BT indicating that the detection of masses was improved under BT conditions compared to DM. S{sub t} for microcalcification detection was higher for BT than for DM at both BT dose levels (BT{sub 25} and BT{sub 13}), with a statistically significant difference in S{sub t} between DM and BT{sub 13}. These results indicate a dose-dependent decrease in detection performance in BT for detection of microcalcifications. Conclusions: In agreement with previous investigations, masses of size 8 mm can be detected with less contrast in BT than in DM indicating improved detection performance for BT. However, for the investigated

  3. Imaging of N-Linked Glycans from Formalin-Fixed Paraffin-Embedded Tissue Sections Using MALDI Mass Spectrometry

    PubMed Central

    2015-01-01

    Aberrant glycosylation is associated with most of the diseases. Direct imaging and profiling of N-glycans on tissue sections can reveal tissue-specific and/or disease-associated N-glycans, which not only could serve as molecular signatures for diagnosis but also shed light on the functional roles of these biomolecules. Mass spectrometry imaging (MSI) is a powerful tool that has been used to correlate peptides, proteins, lipids, and metabolites with their underlying histopathology in tissue sections. Here, we report an MSI technique for direct analysis of N-glycans from formalin-fixed paraffin-embedded (FFPE) tissues. This technique consists of sectioning FFPE tissues, deparaffinization, and rehydration of the sections, denaturing tissue proteins, releasing N-linked glycans from proteins by printing peptide-N-glycosidase F over the sections, spray-coating the tissue with matrix, and analyzing N-glycans by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Brain sections from a C57BL/6 mouse were imaged using this technique at a resolution of 100 μm. Forty-two N-glycans were analyzed from the mouse brain section. The mass spectrometry images were used to study the relative abundance of oligomannose, nonfucosylated, and fucosylated complex N-glycans in different brain areas including isocortex, hippocampal formation, and brainstem and specific glycans associated with different areas of the brain were identified. Furthermore, glioblastoma tumor xenografts in a NOD/SCID mouse were imaged. Several glycans with differential expression in tumor versus normal brain tissues were identified. The MSI technique allows for imaging of N-glycans directly from FFPE sections. This method can potentially identify tissue-specific and/or disease-associated glycans coexpressed with other molecular signatures or within certain histological structures. PMID:25029481

  4. OGLE-2012-BLG-0563Lb: A Saturn-mass Planet around an M Dwarf with the Mass Constrained by Subaru AO Imaging

    NASA Astrophysics Data System (ADS)

    Fukui, A.; Gould, A.; Sumi, T.; Bennett, D. P.; Bond, I. A.; Han, C.; Suzuki, D.; Beaulieu, J.-P.; Batista, V.; Udalski, A.; Street, R. A.; Tsapras, Y.; Hundertmark, M.; Abe, F.; Bhattacharya, A.; Freeman, M.; Itow, Y.; Ling, C. H.; Koshimoto, N.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Ohnishi, K.; Philpott, L. C.; Rattenbury, N.; Saito, T.; Sullivan, D. J.; Tristram, P. J.; Yonehara, A.; MOA Collaboration; Choi, J.-Y.; Christie, G. W.; DePoy, D. L.; Dong, Subo; Drummond, J.; Gaudi, B. S.; Hwang, K.-H.; Kavka, A.; Lee, C.-U.; McCormick, J.; Natusch, T.; Ngan, H.; Park, H.; Pogge, R. W.; Shin, I.-G.; Tan, T.-G.; Yee, J. C.; μFUN Collaboration; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Poleski, R.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Wyrzykowski, Ł.; OGLE Collaboration; Bramich, D. M.; Browne, P.; Dominik, M.; Horne, K.; Ipatov, S.; Kains, N.; Snodgrass, C.; Steele, I. A.; RoboNet Collaboration

    2015-08-01

    We report the discovery of a microlensing exoplanet OGLE-2012-BLG-0563Lb with the planet-star mass ratio of ˜ 1× {10}-3. Intensive photometric observations of a high-magnification microlensing event allow us to detect a clear signal of the planet. Although no parallax signal is detected in the light curve, we instead succeed at detecting the flux from the host star in high-resolution JHK‧-band images obtained by the Subaru/AO188 and Infrared Camera and Spectrograph instruments, allowing us to constrain the absolute physical parameters of the planetary system. With the help of spectroscopic information about the source star obtained during the high-magnification state by Bensby et al., we find that the lens system is located at 1.3{}-0.8+0.6 kpc from us, and consists of an M dwarf (0.34 {}-0.20+0.12M{}⊙ ) orbited by a Saturn-mass planet (0.39 {}-0.23+0.14MJup) at the projected separation of 0.74{}-0.42+0.26 AU (close model) or 4.3{}-2.5+1.5 AU (wide model). The probability of contamination in the host star’s flux, which would reduce the masses by a factor of up to three, is estimated to be 17%. This possibility can be tested by future high-resolution imaging. We also estimate the (J-{K}{{s}}) and (H-{K}{{s}}) colors of the host star, which are marginally consistent with a low metallicity mid-to-early M dwarf, although further observations are required for the metallicity to be conclusive. This is the fifth sub-Jupiter-mass (0.2\\lt {m}{{p}}/{M}{Jup}\\lt 1) microlensing planet around an M dwarf with the mass well constrained. The relatively rich harvest of sub-Jupiters around M dwarfs is contrasted with a possible paucity of ˜1-2 Jupiter-mass planets around the same type of star, which can be explained by the planetary formation process in the core-accretion scheme.

  5. Tryptic peptide reference data sets for MALDI imaging mass spectrometry on formalin-fixed ovarian cancer tissues.

    PubMed

    Meding, Stephan; Martin, Karina; Gustafsson, Ove J R; Eddes, James S; Hack, Sandra; Oehler, Martin K; Hoffmann, Peter

    2013-01-01

    MALDI imaging mass spectrometry is a powerful tool for morphology-based proteomic tissue analysis. However, peptide identification is still a major challenge due to low S/N ratios, low mass accuracy and difficulties in correlating observed m/z species with peptide identities. To address this, we have analyzed tryptic digests of formalin-fixed paraffin-embedded tissue microarray cores, from 31 ovarian cancer patients, by LC-MS/MS. The sample preparation closely resembled the MALDI imaging workflow in order to create representative reference data sets containing peptides also observable in MALDI imaging experiments. This resulted in 3844 distinct peptide sequences, at a false discovery rate of 1%, for the entire cohort and an average of 982 distinct peptide sequences per sample. From this, a total of 840 proteins and, on average, 297 proteins per sample could be inferred. To support the efforts of the Chromosome-centric Human Proteome Project Consortium, we have annotated these proteins with their respective chromosome location. In the presented work, the benefit of using a large cohort of data sets was exemplified by correct identification of several m/z species observed in a MALDI imaging experiment. The tryptic peptide data sets generated will facilitate peptide identification in future MALDI imaging studies on ovarian cancer.

  6. DISCOVERY OF A PROBABLE 4-5 JUPITER-MASS EXOPLANET TO HD 95086 BY DIRECT IMAGING

    SciTech Connect

    Rameau, J.; Chauvin, G.; Lagrange, A.-M.; Delorme, P.; Quanz, S. P.; Bonnefoy, M.; Klahr, H.; Mordasini, C.; Girard, J. H.; Dumas, C.; Desidera, S.; Bonavita, M.

    2013-08-01

    Direct imaging has only begun to inventory the population of gas giant planets on wide orbits around young stars in the solar neighborhood. Following this approach, we carried out a deep imaging survey in the near-infrared using VLT/NaCo to search for substellar companions. Here we report the discovery of a probable companion orbiting the young (10-17 Myr), dusty, early-type (A8) star HD 95086 at 56 AU in L' (3.8 {mu}m) images. This discovery is based on observations with more than a year time lapse. Our first epoch clearly revealed the source at {approx_equal} 10{sigma}, while our second epoch lacks good observing conditions, yielding a {approx_equal} 3{sigma} detection. Various tests were thus made to rule out possible artifacts. This recovery is consistent with the signal at the first epoch but requires cleaner confirmation. Nevertheless, our astrometric precision suggests that the companion is comoving with the star with a 3{sigma} confidence level. The planetary nature of the source is reinforced by a non-detection in the Ks-band (2.18 {mu}m) images according to its possible extremely red Ks-L' color. Conversely, background contamination is rejected with good confidence level. The luminosity yields a predicted mass of about 4-5 M{sub Jup} (at 10-17 Myr) using ''hot-start'' evolutionary models, making HD 95086 b the exoplanet with the lowest mass ever imaged around a star.

  7. msIQuant--Quantitation Software for Mass Spectrometry Imaging Enabling Fast Access, Visualization, and Analysis of Large Data Sets.

    PubMed

    Källback, Patrik; Nilsson, Anna; Shariatgorji, Mohammadreza; Andrén, Per E

    2016-04-19

    This paper presents msIQuant, a novel instrument- and manufacturer-independent quantitative mass spectrometry imaging software suite that uses the standardized open access data format imzML. Its data processing structure enables rapid image display and the analysis of very large data sets (>50 GB) without any data reduction. In addition, msIQuant provides many tools for image visualization including multiple interpolation methods, low intensity transparency display, and image fusion. It also has a quantitation function that automatically generates calibration standard curves from series of standards that can be used to determine the concentrations of specific analytes. Regions-of-interest in a tissue section can be analyzed based on a number of quantities including the number of pixels, average intensity, standard deviation of intensity, and median and quartile intensities. Moreover, the suite's export functions enable simplified postprocessing of data and report creation. We demonstrate its potential through several applications including the quantitation of small molecules such as drugs and neurotransmitters. The msIQuant suite is a powerful tool for accessing and evaluating very large data sets, quantifying drugs and endogenous compounds in tissue areas of interest, and for processing mass spectra and images.

  8. [Screening and identification of forensic molecular markers of injury using MALDI-TOF-MS imaging mass spectrometry].

    PubMed

    Liu, Ning-Guo; Chen, Yi-Jiu

    2014-10-01

    There are many deficiencies in forensic traumatic molecular markers detected by the techniques of traditional immunohistology and molecular biology, because these markers are isolated and obscure of the mechanism of interaction. The imaging mass spectrometry (IMS) is more suitable for the forensic molecular markers using function of screening, analysis and graphical representation. In this paper, the techniques and the latest research in screening and identification of typical molecular markers by IMS based on matrix-assisted laser adsorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) are reviewed. And its application values in forensic injury are discussed.

  9. Dead-time correction for time-of-flight secondary-ion mass spectral images: a critical issue in multivariate image analysis.

    PubMed

    Tyler, Bonnie J; Peterson, Richard E

    2013-01-01

    Dead-time effects result in a non-linear detector response in the common time-of-flight secondary-ion mass spectrometry instruments. This can result in image artifacts that can often be misinterpreted. Although the Poisson correction procedure has been shown to effectively eliminate this non-linearity in spectra, applying the correction to images presents difficulties because the low number of counts per pixel can create large statistical errors. The efficacy of three approaches to dead-time correction in images has been explored. These approaches include: pixel binning, image segmentation and a binomial statistical correction. When few pixels are fully saturated, all three approaches work satisfactorily. When a large number of pixels are fully saturated, the statistical approach fails to remove the dead-time artifacts revealed by multivariate analysis. Pixel binning is accurate at higher levels of saturation so long as the bin size is much smaller than the feature size. The segmentation approach works well independent of feature size or the number of fully saturated pixels but requires an accurate segmentation algorithm. It is recommended that images be collected under conditions that minimize the number of fully saturated pixels. When this is impractical and small features are present in the image, segmentation can provide an accurate way to correct for the detector saturation effect. PMID:24707067

  10. Affinity imaging mass spectrometry (AIMS): high-throughput screening for specific small molecule interactions with frozen tissue sections.

    PubMed

    Yoshimi, T; Kawabata, S; Taira, S; Okuno, A; Mikawa, R; Murayama, S; Tanaka, K; Takikawa, O

    2015-11-01

    A novel screening system, using affinity imaging mass spectrometry (AIMS), has been developed to identify protein aggregates or organ structures in unfixed human tissue. Frozen tissue sections are positioned on small (millimetre-scale) stainless steel chips and incubated with an extensive library of small molecules. Candidate molecules showing specific affinity for the tissue section are identified by imaging mass spectrometry (IMS). As an example application, we screened over a thousand compounds against Alzheimer's disease (AD) brain tissue and identified several compounds with high affinity for AD brain sections containing tau deposits compared to age-matched controls. It should also be possible to use AIMS to isolate chemical compounds with affinity for tissue structures or components that have been extensively modified by events such as oxidation, phosphorylation, acetylation, aggregation, racemization or truncation, for example, due to aging. It may also be applicable to biomarker screening programs. PMID:26365298

  11. Live-cell imaging of actin dynamics reveals mechanisms of stereocilia length regulation in the inner ear

    PubMed Central

    Drummond, Meghan C.; Barzik, Melanie; Bird, Jonathan E.; Zhang, Duan-Sun; Lechene, Claude P.; Corey, David P.; Cunningham, Lisa L.; Friedman, Thomas B.

    2015-01-01

    The maintenance of sensory hair cell stereocilia is critical for lifelong hearing; however, mechanisms of structural homeostasis remain poorly understood. Conflicting models propose that stereocilia F-actin cores are either continually renewed every 24–48 h via a treadmill or are stable, exceptionally long-lived structures. Here to distinguish between these models, we perform an unbiased survey of stereocilia actin dynamics in more than 500 utricle hair cells. Live-imaging EGFP-β-actin or dendra2-β-actin reveal stable F-actin cores with turnover and elongation restricted to stereocilia tips. Fixed-cell microscopy of wild-type and mutant β-actin demonstrates that incorporation of actin monomers into filaments is required for localization to stereocilia tips. Multi-isotope imaging mass spectrometry and live imaging of single differentiating hair cells capture stereociliogenesis and explain uniform incorporation of 15N-labelled protein and EGFP-β-actin into nascent stereocilia. Collectively, our analyses support a model in which stereocilia actin cores are stable structures that incorporate new F-actin only at the distal tips. PMID:25898120

  12. A Search for Early Optical Emission at Gamma-Ray Burst Locations by the Solar Mass Ejection Imager (SMEI)

    NASA Technical Reports Server (NTRS)

    Band, David L.; Buffington, Andrew; Jackson, Bernard V.; Hick, P. Paul; Smith, Aaron C.

    2005-01-01

    The Solar Mass Ejection Imager (SMEI) views nearly every point on the sky once every 102 minutes and can detect point sources as faint as R approx. 10th magnitude. Therefore, SMEI can detect or provide upper limits for the optical afterglow from gamma-ray bursts in the tens of minutes after the burst when different shocked regions may emit optically. Here we provide upper limits for 58 bursts between 2003 February and 2005 April.

  13. Molecule-Specific Imaging Analysis of Carcinogens in Breast Cancer Cells Using Time-of-Flight Secondary Ion Mass Spectrometry

    SciTech Connect

    Quong, J N; Knize, M G; Kulp, K S; Wu, K J

    2003-08-19

    Imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to study the localization of heterocyclic amines in MCF7 line of human breast cancer cells. The detection sensitivities of a model rodent mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were determined. Following an established criteria for the determination of status of freeze-fracture cells, the distribution of PhIP in the MCF7 cells are reported.

  14. Observation of Accumulated Metal Cation Distribution in Fish by Novel Stigmatic Imaging Time-of-Flight Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Aoki, Jun; Ikeda, Shinichiro; Toyoda, Michisato

    2014-02-01

    The accumulation of radioactive substances in biological organisms is a matter of great concern since the incident at the nuclear power plant in Fukushima, Japan. We have developed a novel technique for observing the distribution of accumulated metal cations in fish that employs a new imaging mass spectrometer, MULTUM-IMG2. Distributions of 133Cs and 88Sr in a sliced section of medaka (Oryzias latipes) are obtained with spatial resolution of µm-scale.

  15. Combined Use of GIS, Hydrostratigraphic, Geochemical, and Multi-Isotope Analysis for Groundwater Preservation and Development in a Complex Karst Setting

    NASA Astrophysics Data System (ADS)

    Murgulet, D.; Cook, M. R.

    2011-12-01

    The complex stratigraphy and geologic structure characteristic to fractured karst aquifers underlying an urban part of the north-central Alabama Valley and Ridge Setting make the development and protection of groundwater sources difficult. In this area, population growth accompanied by increased impervious surfaces, storm water runoff, contaminants, subsidence, and pumping rates have rendered the groundwater resource. The potential for aquifer recharge and flow conditions were evaluated in order to determine the current and future alternative water sources available in this area. Geochemical and multi-isotope techniques were coupled with hydrostratigraphic and geomorphic spatial (GIS) analyses to determine the primary mechanisms controlling recharge and flow and evaluate seasonal impacts on groundwater resources and recharge environments. Groundwater samples, collected in summer and fall (2010) from wells developed in the Bangor Limestone and Tuscumbia Fort Payne aquifers (north-central Alabama), were analyzed for major ions, stable isotopes of oxygen (δ^18O), hydrogen (δD), and carbon (δ^13C), and anthropogenic isotopes such as chlorofluorocarbon (CFCs) and sulphur hexafluoride (SF_6). Stable isotope investigations suggest that recharge occurs under relatively closed conditions, with fast percolation rates in short periods (characteristic to karst aquifers) and low evaporation rates during the colder seasons. The average δ^13C value (-11.4±2% PDB, n=9) lies near the combined average δ^13C values of soil CO_2 and the carbonate. Therefore, groundwater δ^13C signature is mainly controlled by two factors: soil CO_2 and carbonate dissolution. Static water levels decrease over the summer causing drawdowns (2 to 5.2 meters) in all the production wells and a slight shift of the δ^18O and δD values towards a more positive member (summer range--δ^18O: -5.1±0.1 to -5.7±0.1% VSMOW, n=11; δD: -25.0±1 to -30.6±1% VSMOW, n=11 and fall range--δ^18O: -4.8±0.1 to

  16. MIPS Infrared Imaging of AGB Dustshells (MIRIAD): tracing mass-loss histories in the extremely large shells around evolved stars

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Elitzur, Moshe; Gehrz, Robert; Herwig, Falk; Izumiura, Hideyuki; Latter, William; Matsuura, Mikako; Meixner, Margaret; Steffen, Matthias; Stencel, Robert; Szczerba, Ryszard; Ueta, Toshiya; Zijlstra, Albert

    2005-06-01

    Evolved intermediate mass stars are major contributors to the interstellar medium. However, the mechanisms by which they do this are not well understood. The circumstellar shells of evolved stars (AGB and post-AGB stars) contain the fossil record of their mass loss, and therefore have the potential to verify many aspects of stellar evolution. IRAS and ISO data indicate that huge dust shells exist around many such objects, extending several parsecs from the central star. Furthermore, these large dust shells show evidence for mass-loss variations that correlate with evolutionary changes in the star itself. Previous observations lacked the sensitivity and spatial resolution to investigate the full extent and detailed structure of these large dust shells. Using Spitzer/MIPS's unique sensitivity and mapping capabilities, we propose to produce far-IR images of the parsec-sized dust shells around four carefully selected evolved stars in order to determine the distribution of material in these circumstellar envelopes. These maps will be the deepest yet (sensitivity 1MJy/sr) and have the most complete spatial coverage to date. Crucially, mapping in this level of detail will allow us to: (a) constrain the masses of the progenitor stars; (b) test theories of stellar evolution and mass-loss mechanisms; (c) determine the effect of dust chemistry on mass loss (and therefore on stellar evolution); (d) determine when the aspherical structures so prevalent in planetary nebulae actually develop and thus constrain the cause.

  17. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    SciTech Connect

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  18. Saturn's inner satellites: Orbits, masses, and the chaotic motion of atlas from new Cassini imaging observations

    SciTech Connect

    Cooper, N. J.; Murray, C. D.; Renner, S.; Evans, M. W.

    2015-01-01

    We present numerically derived orbits and mass estimates for the inner Saturnian satellites, Atlas, Prometheus, Pandora, Janus, and Epimetheus from a fit to 2580 new Cassini Imaging Science Subsystem astrometric observations spanning 2004 February to 2013 August. The observations are provided as machine-readable and Virtual Observatory tables. We estimate GM{sub Atlas} = (0.384 ± 0.001) × 10{sup −3} km{sup 3} s{sup −2}, a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. We also find GM{sub Prometheus} = (10.677 ± 0.006) × 10{sup −3} km{sup 3} s{sup −2}, GM{sub Pandora} = (9.133 ± 0.009) × 10{sup −3} km{sup 3} s{sup −2}, GM{sub Janus} = (126.51 ± 0.03) × 10{sup −3} km{sup 3} s{sup −2}, and GM{sub Epimetheus} = (35.110 ± 0.009) × 10{sup −3} km{sup 3} s{sup −2}, consistent with previously published values, but also with significant reductions in uncertainties. We show that Atlas is currently librating in both the 54:53 co-rotation-eccentricity resonance (CER) and the 54:53 inner Lindblad (ILR) resonance with Prometheus, making it the latest example of a coupled CER-ILR system, in common with the Saturnian satellites Anthe, Aegaeon, and Methone, and possibly Neptune's ring arcs. We further demonstrate that Atlas's orbit is chaotic, with a Lyapunov time of ∼10 years, and show that its chaotic behavior is a direct consequence of the coupled resonant interaction with Prometheus, rather than being an indirect effect of the known chaotic interaction between Prometheus and Pandora. We provide an updated analysis of the second-order resonant perturbations involving Prometheus, Pandora, and Epimetheus based on the new observations, showing that these resonant arguments are librating only when Epimetheus is the innermost of the co-orbital pair, Janus and Epimetheus. We also find evidence that the known chaotic changes in the orbits of Prometheus and Pandora are not confined to

  19. Fluorinated colloidal gold immunolabels for imaging select proteins in parallel with lipids using high-resolution secondary ion mass spectrometry

    PubMed Central

    Wilson