Mei, Suyu
2012-10-07
Recent years have witnessed much progress in computational modeling for protein subcellular localization. However, there are far few computational models for predicting plant protein subcellular multi-localization. In this paper, we propose a multi-label multi-kernel transfer learning model for predicting multiple subcellular locations of plant proteins (MLMK-TLM). The method proposes a multi-label confusion matrix and adapts one-against-all multi-class probabilistic outputs to multi-label learning scenario, based on which we further extend our published work MK-TLM (multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization) for plant protein subcellular multi-localization. By proper homolog knowledge transfer, MLMK-TLM is applicable to novel plant protein subcellular localization in multi-label learning scenario. The experiments on plant protein benchmark dataset show that MLMK-TLM outperforms the baseline model. Unlike the existing models, MLMK-TLM also reports its misleading tendency, which is important for comprehensive survey of model's multi-labeling performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nonlinear Deep Kernel Learning for Image Annotation.
Jiu, Mingyuan; Sahbi, Hichem
2017-02-08
Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.
Kim, Sungjin; Jinich, Adrián; Aspuru-Guzik, Alán
2017-04-24
We propose a multiple descriptor multiple kernel (MultiDK) method for efficient molecular discovery using machine learning. We show that the MultiDK method improves both the speed and accuracy of molecular property prediction. We apply the method to the discovery of electrolyte molecules for aqueous redox flow batteries. Using multiple-type-as opposed to single-type-descriptors, we obtain more relevant features for machine learning. Following the principle of "wisdom of the crowds", the combination of multiple-type descriptors significantly boosts prediction performance. Moreover, by employing multiple kernels-more than one kernel function for a set of the input descriptors-MultiDK exploits nonlinear relations between molecular structure and properties better than a linear regression approach. The multiple kernels consist of a Tanimoto similarity kernel and a linear kernel for a set of binary descriptors and a set of nonbinary descriptors, respectively. Using MultiDK, we achieve an average performance of r 2 = 0.92 with a test set of molecules for solubility prediction. We also extend MultiDK to predict pH-dependent solubility and apply it to a set of quinone molecules with different ionizable functional groups to assess their performance as flow battery electrolytes.
A multi-label learning based kernel automatic recommendation method for support vector machine.
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.
A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-06-19
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-01-01
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202
Brain tumor image segmentation using kernel dictionary learning.
Jeon Lee; Seung-Jun Kim; Rong Chen; Herskovits, Edward H
2015-08-01
Automated brain tumor image segmentation with high accuracy and reproducibility holds a big potential to enhance the current clinical practice. Dictionary learning (DL) techniques have been applied successfully to various image processing tasks recently. In this work, kernel extensions of the DL approach are adopted. Both reconstructive and discriminative versions of the kernel DL technique are considered, which can efficiently incorporate multi-modal nonlinear feature mappings based on the kernel trick. Our novel discriminative kernel DL formulation allows joint learning of a task-driven kernel-based dictionary and a linear classifier using a K-SVD-type algorithm. The proposed approaches were tested using real brain magnetic resonance (MR) images of patients with high-grade glioma. The obtained preliminary performances are competitive with the state of the art. The discriminative kernel DL approach is seen to reduce computational burden without much sacrifice in performance.
A ℓ2, 1 norm regularized multi-kernel learning for false positive reduction in Lung nodule CAD.
Cao, Peng; Liu, Xiaoli; Zhang, Jian; Li, Wei; Zhao, Dazhe; Huang, Min; Zaiane, Osmar
2017-03-01
The aim of this paper is to describe a novel algorithm for False Positive Reduction in lung nodule Computer Aided Detection(CAD). In this paper, we describes a new CT lung CAD method which aims to detect solid nodules. Specially, we proposed a multi-kernel classifier with a ℓ 2, 1 norm regularizer for heterogeneous feature fusion and selection from the feature subset level, and designed two efficient strategies to optimize the parameters of kernel weights in non-smooth ℓ 2, 1 regularized multiple kernel learning algorithm. The first optimization algorithm adapts a proximal gradient method for solving the ℓ 2, 1 norm of kernel weights, and use an accelerated method based on FISTA; the second one employs an iterative scheme based on an approximate gradient descent method. The results demonstrates that the FISTA-style accelerated proximal descent method is efficient for the ℓ 2, 1 norm formulation of multiple kernel learning with the theoretical guarantee of the convergence rate. Moreover, the experimental results demonstrate the effectiveness of the proposed methods in terms of Geometric mean (G-mean) and Area under the ROC curve (AUC), and significantly outperforms the competing methods. The proposed approach exhibits some remarkable advantages both in heterogeneous feature subsets fusion and classification phases. Compared with the fusion strategies of feature-level and decision level, the proposed ℓ 2, 1 norm multi-kernel learning algorithm is able to accurately fuse the complementary and heterogeneous feature sets, and automatically prune the irrelevant and redundant feature subsets to form a more discriminative feature set, leading a promising classification performance. Moreover, the proposed algorithm consistently outperforms the comparable classification approaches in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Inference of Spatio-Temporal Functions Over Graphs via Multikernel Kriged Kalman Filtering
NASA Astrophysics Data System (ADS)
Ioannidis, Vassilis N.; Romero, Daniel; Giannakis, Georgios B.
2018-06-01
Inference of space-time varying signals on graphs emerges naturally in a plethora of network science related applications. A frequently encountered challenge pertains to reconstructing such dynamic processes, given their values over a subset of vertices and time instants. The present paper develops a graph-aware kernel-based kriged Kalman filter that accounts for the spatio-temporal variations, and offers efficient online reconstruction, even for dynamically evolving network topologies. The kernel-based learning framework bypasses the need for statistical information by capitalizing on the smoothness that graph signals exhibit with respect to the underlying graph. To address the challenge of selecting the appropriate kernel, the proposed filter is combined with a multi-kernel selection module. Such a data-driven method selects a kernel attuned to the signal dynamics on-the-fly within the linear span of a pre-selected dictionary. The novel multi-kernel learning algorithm exploits the eigenstructure of Laplacian kernel matrices to reduce computational complexity. Numerical tests with synthetic and real data demonstrate the superior reconstruction performance of the novel approach relative to state-of-the-art alternatives.
NASA Astrophysics Data System (ADS)
Shiju, S.; Sumitra, S.
2017-12-01
In this paper, the multiple kernel learning (MKL) is formulated as a supervised classification problem. We dealt with binary classification data and hence the data modelling problem involves the computation of two decision boundaries of which one related with that of kernel learning and the other with that of input data. In our approach, they are found with the aid of a single cost function by constructing a global reproducing kernel Hilbert space (RKHS) as the direct sum of the RKHSs corresponding to the decision boundaries of kernel learning and input data and searching that function from the global RKHS, which can be represented as the direct sum of the decision boundaries under consideration. In our experimental analysis, the proposed model had shown superior performance in comparison with that of existing two stage function approximation formulation of MKL, where the decision functions of kernel learning and input data are found separately using two different cost functions. This is due to the fact that single stage representation helps the knowledge transfer between the computation procedures for finding the decision boundaries of kernel learning and input data, which inturn boosts the generalisation capacity of the model.
Kernel-aligned multi-view canonical correlation analysis for image recognition
NASA Astrophysics Data System (ADS)
Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao
2016-09-01
Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.
Multi-Target Regression via Robust Low-Rank Learning.
Zhen, Xiantong; Yu, Mengyang; He, Xiaofei; Li, Shuo
2018-02-01
Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.
Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo
2013-02-01
This paper presents a method for discriminating the location of the sound source (talker) using only a single microphone. In a previous work, the single-channel approach for discriminating the location of the sound source was discussed, where the acoustic transfer function from a user's position is estimated by using a hidden Markov model of clean speech in the cepstral domain. In this paper, each cepstral dimension of the acoustic transfer function is newly weighted, in order to obtain the cepstral dimensions having information that is useful for classifying the user's position. Then, this paper proposes a feature-weighting method for the cepstral parameter using multiple kernel learning, defining the base kernels for each cepstral dimension of the acoustic transfer function. The user's position is trained and classified by support vector machine. The effectiveness of this method has been confirmed by sound source (talker) localization experiments performed in different room environments.
Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui
2015-10-30
Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.
Multiple kernel SVR based on the MRE for remote sensing water depth fusion detection
NASA Astrophysics Data System (ADS)
Wang, Jinjin; Ma, Yi; Zhang, Jingyu
2018-03-01
Remote sensing has an important means of water depth detection in coastal shallow waters and reefs. Support vector regression (SVR) is a machine learning method which is widely used in data regression. In this paper, SVR is used to remote sensing multispectral bathymetry. Aiming at the problem that the single-kernel SVR method has a large error in shallow water depth inversion, the mean relative error (MRE) of different water depth is retrieved as a decision fusion factor with single kernel SVR method, a multi kernel SVR fusion method based on the MRE is put forward. And taking the North Island of the Xisha Islands in China as an experimentation area, the comparison experiments with the single kernel SVR method and the traditional multi-bands bathymetric method are carried out. The results show that: 1) In range of 0 to 25 meters, the mean absolute error(MAE)of the multi kernel SVR fusion method is 1.5m,the MRE is 13.2%; 2) Compared to the 4 single kernel SVR method, the MRE of the fusion method reduced 1.2% (1.9%) 3.4% (1.8%), and compared to traditional multi-bands method, the MRE reduced 1.9%; 3) In 0-5m depth section, compared to the single kernel method and the multi-bands method, the MRE of fusion method reduced 13.5% to 44.4%, and the distribution of points is more concentrated relative to y=x.
On the role of cost-sensitive learning in multi-class brain-computer interfaces.
Devlaminck, Dieter; Waegeman, Willem; Wyns, Bart; Otte, Georges; Santens, Patrick
2010-06-01
Brain-computer interfaces (BCIs) present an alternative way of communication for people with severe disabilities. One of the shortcomings in current BCI systems, recently put forward in the fourth BCI competition, is the asynchronous detection of motor imagery versus resting state. We investigated this extension to the three-class case, in which the resting state is considered virtually lying between two motor classes, resulting in a large penalty when one motor task is misclassified into the other motor class. We particularly focus on the behavior of different machine-learning techniques and on the role of multi-class cost-sensitive learning in such a context. To this end, four different kernel methods are empirically compared, namely pairwise multi-class support vector machines (SVMs), two cost-sensitive multi-class SVMs and kernel-based ordinal regression. The experimental results illustrate that ordinal regression performs better than the other three approaches when a cost-sensitive performance measure such as the mean-squared error is considered. By contrast, multi-class cost-sensitive learning enables us to control the number of large errors made between two motor tasks.
An information theoretic approach of designing sparse kernel adaptive filters.
Liu, Weifeng; Park, Il; Principe, José C
2009-12-01
This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented.
Zhang, Yanjun; Zhang, Xiangmin; Liu, Wenhui; Luo, Yuxi; Yu, Enjia; Zou, Keju; Liu, Xiaoliang
2014-01-01
This paper employed the clinical Polysomnographic (PSG) data, mainly including all-night Electroencephalogram (EEG), Electrooculogram (EOG) and Electromyogram (EMG) signals of subjects, and adopted the American Academy of Sleep Medicine (AASM) clinical staging manual as standards to realize automatic sleep staging. Authors extracted eighteen different features of EEG, EOG and EMG in time domains and frequency domains to construct the vectors according to the existing literatures as well as clinical experience. By adopting sleep samples self-learning, the linear combination of weights and parameters of multiple kernels of the fuzzy support vector machine (FSVM) were learned and the multi-kernel FSVM (MK-FSVM) was constructed. The overall agreement between the experts' scores and the results presented was 82.53%. Compared with previous results, the accuracy of N1 was improved to some extent while the accuracies of other stages were approximate, which well reflected the sleep structure. The staging algorithm proposed in this paper is transparent, and worth further investigation.
NASA Astrophysics Data System (ADS)
Hu, Ruiguang; Xiao, Liping; Zheng, Wenjuan
2015-12-01
In this paper, multi-kernel learning(MKL) is used for drug-related webpages classification. First, body text and image-label text are extracted through HTML parsing, and valid images are chosen by the FOCARSS algorithm. Second, text based BOW model is used to generate text representation, and image-based BOW model is used to generate images representation. Last, text and images representation are fused with a few methods. Experimental results demonstrate that the classification accuracy of MKL is higher than those of all other fusion methods in decision level and feature level, and much higher than the accuracy of single-modal classification.
Multi-task feature learning by using trace norm regularization
NASA Astrophysics Data System (ADS)
Jiangmei, Zhang; Binfeng, Yu; Haibo, Ji; Wang, Kunpeng
2017-11-01
Multi-task learning can extract the correlation of multiple related machine learning problems to improve performance. This paper considers applying the multi-task learning method to learn a single task. We propose a new learning approach, which employs the mixture of expert model to divide a learning task into several related sub-tasks, and then uses the trace norm regularization to extract common feature representation of these sub-tasks. A nonlinear extension of this approach by using kernel is also provided. Experiments conducted on both simulated and real data sets demonstrate the advantage of the proposed approach.
Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification.
Dai, Mengxi; Zheng, Dezhi; Liu, Shucong; Zhang, Pengju
2018-01-01
Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step before classification. The CSP method is a supervised algorithm. Therefore a lot of time-consuming training data is needed to build the model. To address this issue, one promising approach is transfer learning, which generalizes a learning model can extract discriminative information from other subjects for target classification task. To this end, we propose a transfer kernel CSP (TKCSP) approach to learn a domain-invariant kernel by directly matching distributions of source subjects and target subjects. The dataset IVa of BCI Competition III is used to demonstrate the validity by our proposed methods. In the experiment, we compare the classification performance of the TKCSP against CSP, CSP for subject-to-subject transfer (CSP SJ-to-SJ), regularizing CSP (RCSP), stationary subspace CSP (ssCSP), multitask CSP (mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. The results indicate that the superior mean classification performance of TKCSP can achieve 81.14%, especially in case of source subjects with fewer number of training samples. Comprehensive experimental evidence on the dataset verifies the effectiveness and efficiency of the proposed TKCSP approach over several state-of-the-art methods.
Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification
Dai, Mengxi; Liu, Shucong; Zhang, Pengju
2018-01-01
Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step before classification. The CSP method is a supervised algorithm. Therefore a lot of time-consuming training data is needed to build the model. To address this issue, one promising approach is transfer learning, which generalizes a learning model can extract discriminative information from other subjects for target classification task. To this end, we propose a transfer kernel CSP (TKCSP) approach to learn a domain-invariant kernel by directly matching distributions of source subjects and target subjects. The dataset IVa of BCI Competition III is used to demonstrate the validity by our proposed methods. In the experiment, we compare the classification performance of the TKCSP against CSP, CSP for subject-to-subject transfer (CSP SJ-to-SJ), regularizing CSP (RCSP), stationary subspace CSP (ssCSP), multitask CSP (mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. The results indicate that the superior mean classification performance of TKCSP can achieve 81.14%, especially in case of source subjects with fewer number of training samples. Comprehensive experimental evidence on the dataset verifies the effectiveness and efficiency of the proposed TKCSP approach over several state-of-the-art methods. PMID:29743934
Unsupervised multiple kernel learning for heterogeneous data integration.
Mariette, Jérôme; Villa-Vialaneix, Nathalie
2018-03-15
Recent high-throughput sequencing advances have expanded the breadth of available omics datasets and the integrated analysis of multiple datasets obtained on the same samples has allowed to gain important insights in a wide range of applications. However, the integration of various sources of information remains a challenge for systems biology since produced datasets are often of heterogeneous types, with the need of developing generic methods to take their different specificities into account. We propose a multiple kernel framework that allows to integrate multiple datasets of various types into a single exploratory analysis. Several solutions are provided to learn either a consensus meta-kernel or a meta-kernel that preserves the original topology of the datasets. We applied our framework to analyse two public multi-omics datasets. First, the multiple metagenomic datasets, collected during the TARA Oceans expedition, was explored to demonstrate that our method is able to retrieve previous findings in a single kernel PCA as well as to provide a new image of the sample structures when a larger number of datasets are included in the analysis. To perform this analysis, a generic procedure is also proposed to improve the interpretability of the kernel PCA in regards with the original data. Second, the multi-omics breast cancer datasets, provided by The Cancer Genome Atlas, is analysed using a kernel Self-Organizing Maps with both single and multi-omics strategies. The comparison of these two approaches demonstrates the benefit of our integration method to improve the representation of the studied biological system. Proposed methods are available in the R package mixKernel, released on CRAN. It is fully compatible with the mixOmics package and a tutorial describing the approach can be found on mixOmics web site http://mixomics.org/mixkernel/. jerome.mariette@inra.fr or nathalie.villa-vialaneix@inra.fr. Supplementary data are available at Bioinformatics online.
Prediction of anti-cancer drug response by kernelized multi-task learning.
Tan, Mehmet
2016-10-01
Chemotherapy or targeted therapy are two of the main treatment options for many types of cancer. Due to the heterogeneous nature of cancer, the success of the therapeutic agents differs among patients. In this sense, determination of chemotherapeutic response of the malign cells is essential for establishing a personalized treatment protocol and designing new drugs. With the recent technological advances in producing large amounts of pharmacogenomic data, in silico methods have become important tools to achieve this aim. Data produced by using cancer cell lines provide a test bed for machine learning algorithms that try to predict the response of cancer cells to different agents. The potential use of these algorithms in drug discovery/repositioning and personalized treatments motivated us in this study to work on predicting drug response by exploiting the recent pharmacogenomic databases. We aim to improve the prediction of drug response of cancer cell lines. We propose to use a method that employs multi-task learning to improve learning by transfer, and kernels to extract non-linear relationships to predict drug response. The method outperforms three state-of-the-art algorithms on three anti-cancer drug screen datasets. We achieved a mean squared error of 3.305 and 0.501 on two different large scale screen data sets. On a recent challenge dataset, we obtained an error of 0.556. We report the methodological comparison results as well as the performance of the proposed algorithm on each single drug. The results show that the proposed method is a strong candidate to predict drug response of cancer cell lines in silico for pre-clinical studies. The source code of the algorithm and data used can be obtained from http://mtan.etu.edu.tr/Supplementary/kMTrace/. Copyright © 2016 Elsevier B.V. All rights reserved.
Cao, Peng; Liu, Xiaoli; Yang, Jinzhu; Zhao, Dazhe; Huang, Min; Zhang, Jian; Zaiane, Osmar
2017-12-01
Alzheimer's disease (AD) has been not only a substantial financial burden to the health care system but also an emotional burden to patients and their families. Making accurate diagnosis of AD based on brain magnetic resonance imaging (MRI) is becoming more and more critical and emphasized at the earliest stages. However, the high dimensionality and imbalanced data issues are two major challenges in the study of computer aided AD diagnosis. The greatest limitations of existing dimensionality reduction and over-sampling methods are that they assume a linear relationship between the MRI features (predictor) and the disease status (response). To better capture the complicated but more flexible relationship, we propose a multi-kernel based dimensionality reduction and over-sampling approaches. We combined Marginal Fisher Analysis with ℓ 2,1 -norm based multi-kernel learning (MKMFA) to achieve the sparsity of region-of-interest (ROI), which leads to simultaneously selecting a subset of the relevant brain regions and learning a dimensionality transformation. Meanwhile, a multi-kernel over-sampling (MKOS) was developed to generate synthetic instances in the optimal kernel space induced by MKMFA, so as to compensate for the class imbalanced distribution. We comprehensively evaluate the proposed models for the diagnostic classification (binary class and multi-class classification) including all subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The experimental results not only demonstrate the proposed method has superior performance over multiple comparable methods, but also identifies relevant imaging biomarkers that are consistent with prior medical knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alexnet Feature Extraction and Multi-Kernel Learning for Objectoriented Classification
NASA Astrophysics Data System (ADS)
Ding, L.; Li, H.; Hu, C.; Zhang, W.; Wang, S.
2018-04-01
In view of the fact that the deep convolutional neural network has stronger ability of feature learning and feature expression, an exploratory research is done on feature extraction and classification for high resolution remote sensing images. Taking the Google image with 0.3 meter spatial resolution in Ludian area of Yunnan Province as an example, the image segmentation object was taken as the basic unit, and the pre-trained AlexNet deep convolution neural network model was used for feature extraction. And the spectral features, AlexNet features and GLCM texture features are combined with multi-kernel learning and SVM classifier, finally the classification results were compared and analyzed. The results show that the deep convolution neural network can extract more accurate remote sensing image features, and significantly improve the overall accuracy of classification, and provide a reference value for earthquake disaster investigation and remote sensing disaster evaluation.
Hasan, Md Al Mehedi; Ahmad, Shamim; Molla, Md Khademul Islam
2017-03-28
Predicting the subcellular locations of proteins can provide useful hints that reveal their functions, increase our understanding of the mechanisms of some diseases, and finally aid in the development of novel drugs. As the number of newly discovered proteins has been growing exponentially, which in turns, makes the subcellular localization prediction by purely laboratory tests prohibitively laborious and expensive. In this context, to tackle the challenges, computational methods are being developed as an alternative choice to aid biologists in selecting target proteins and designing related experiments. However, the success of protein subcellular localization prediction is still a complicated and challenging issue, particularly, when query proteins have multi-label characteristics, i.e., if they exist simultaneously in more than one subcellular location or if they move between two or more different subcellular locations. To date, to address this problem, several types of subcellular localization prediction methods with different levels of accuracy have been proposed. The support vector machine (SVM) has been employed to provide potential solutions to the protein subcellular localization prediction problem. However, the practicability of an SVM is affected by the challenges of selecting an appropriate kernel and selecting the parameters of the selected kernel. To address this difficulty, in this study, we aimed to develop an efficient multi-label protein subcellular localization prediction system, named as MKLoc, by introducing multiple kernel learning (MKL) based SVM. We evaluated MKLoc using a combined dataset containing 5447 single-localized proteins (originally published as part of the Höglund dataset) and 3056 multi-localized proteins (originally published as part of the DBMLoc set). Note that this dataset was used by Briesemeister et al. in their extensive comparison of multi-localization prediction systems. Finally, our experimental results indicate that MKLoc not only achieves higher accuracy than a single kernel based SVM system but also shows significantly better results than those obtained from other top systems (MDLoc, BNCs, YLoc+). Moreover, MKLoc requires less computation time to tune and train the system than that required for BNCs and single kernel based SVM.
A Fast Reduced Kernel Extreme Learning Machine.
Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua
2016-04-01
In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred. Copyright © 2015 Elsevier Ltd. All rights reserved.
SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition
Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina
2007-01-01
Background Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. Results We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at . Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach significantly improves on the standard one-vs-all method for both the superfamily and fold prediction in the remote homology setting and on the fold recognition problem. Moreover, our code weight learning algorithm strongly outperforms nearest-neighbor methods based on PSI-BLAST in terms of prediction accuracy on every structure classification problem we consider. Conclusion By combining state-of-the-art SVM kernel methods with a novel multi-class algorithm, the SVM-Fold system delivers efficient and accurate protein fold and superfamily recognition. PMID:17570145
Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki
2014-01-01
The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.
Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer's Disease.
Cheng, Bo; Liu, Mingxia; Shen, Dinggang; Li, Zuoyong; Zhang, Daoqiang
2017-04-01
Recently, transfer learning has been successfully applied in early diagnosis of Alzheimer's Disease (AD) based on multi-domain data. However, most of existing methods only use data from a single auxiliary domain, and thus cannot utilize the intrinsic useful correlation information from multiple domains. Accordingly, in this paper, we consider the joint learning of tasks in multi-auxiliary domains and the target domain, and propose a novel Multi-Domain Transfer Learning (MDTL) framework for early diagnosis of AD. Specifically, the proposed MDTL framework consists of two key components: 1) a multi-domain transfer feature selection (MDTFS) model that selects the most informative feature subset from multi-domain data, and 2) a multi-domain transfer classification (MDTC) model that can identify disease status for early AD detection. We evaluate our method on 807 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database using baseline magnetic resonance imaging (MRI) data. The experimental results show that the proposed MDTL method can effectively utilize multi-auxiliary domain data for improving the learning performance in the target domain, compared with several state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Cha, Kenny H.; Richter, Caleb D.
2017-12-01
Transfer learning in deep convolutional neural networks (DCNNs) is an important step in its application to medical imaging tasks. We propose a multi-task transfer learning DCNN with the aim of translating the ‘knowledge’ learned from non-medical images to medical diagnostic tasks through supervised training and increasing the generalization capabilities of DCNNs by simultaneously learning auxiliary tasks. We studied this approach in an important application: classification of malignant and benign breast masses. With Institutional Review Board (IRB) approval, digitized screen-film mammograms (SFMs) and digital mammograms (DMs) were collected from our patient files and additional SFMs were obtained from the Digital Database for Screening Mammography. The data set consisted of 2242 views with 2454 masses (1057 malignant, 1397 benign). In single-task transfer learning, the DCNN was trained and tested on SFMs. In multi-task transfer learning, SFMs and DMs were used to train the DCNN, which was then tested on SFMs. N-fold cross-validation with the training set was used for training and parameter optimization. On the independent test set, the multi-task transfer learning DCNN was found to have significantly (p = 0.007) higher performance compared to the single-task transfer learning DCNN. This study demonstrates that multi-task transfer learning may be an effective approach for training DCNN in medical imaging applications when training samples from a single modality are limited.
Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer’s Disease
Cheng, Bo; Liu, Mingxia; Li, Zuoyong
2017-01-01
Recently, transfer learning has been successfully applied in early diagnosis of Alzheimer’s Disease (AD) based on multi-domain data. However, most of existing methods only use data from a single auxiliary domain, and thus cannot utilize the intrinsic useful correlation information from multiple domains. Accordingly, in this paper, we consider the joint learning of tasks in multi-auxiliary domains and the target domain, and propose a novel Multi-Domain Transfer Learning (MDTL) framework for early diagnosis of AD. Specifically, the proposed MDTL framework consists of two key components: 1) a multi-domain transfer feature selection (MDTFS) model that selects the most informative feature subset from multi-domain data, and 2) a multidomain transfer classification (MDTC) model that can identify disease status for early AD detection. We evaluate our method on 807 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline magnetic resonance imaging (MRI) data. The experimental results show that the proposed MDTL method can effectively utilize multi-auxiliary domain data for improving the learning performance in the target domain, compared with several state-of-the-art methods. PMID:27928657
NASA Astrophysics Data System (ADS)
Mohan, Dhanya; Kumar, C. Santhosh
2016-03-01
Predicting the physiological condition (normal/abnormal) of a patient is highly desirable to enhance the quality of health care. Multi-parameter patient monitors (MPMs) using heart rate, arterial blood pressure, respiration rate and oxygen saturation (S pO2) as input parameters were developed to monitor the condition of patients, with minimum human resource utilization. The Support vector machine (SVM), an advanced machine learning approach popularly used for classification and regression is used for the realization of MPMs. For making MPMs cost effective, we experiment on the hardware implementation of the MPM using support vector machine classifier. The training of the system is done using the matlab environment and the detection of the alarm/noalarm condition is implemented in hardware. We used different kernels for SVM classification and note that the best performance was obtained using intersection kernel SVM (IKSVM). The intersection kernel support vector machine classifier MPM has outperformed the best known MPM using radial basis function kernel by an absoute improvement of 2.74% in accuracy, 1.86% in sensitivity and 3.01% in specificity. The hardware model was developed based on the improved performance system using Verilog Hardware Description Language and was implemented on Altera cyclone-II development board.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wu, Jianlan; Cao, Jianshu
2013-07-28
We apply a new formalism to derive the higher-order quantum kinetic expansion (QKE) for studying dissipative dynamics in a general quantum network coupled with an arbitrary thermal bath. The dynamics of system population is described by a time-convoluted kinetic equation, where the time-nonlocal rate kernel is systematically expanded of the order of off-diagonal elements of the system Hamiltonian. In the second order, the rate kernel recovers the expression of the noninteracting-blip approximation method. The higher-order corrections in the rate kernel account for the effects of the multi-site quantum coherence and the bath relaxation. In a quantum harmonic bath, the rate kernels of different orders are analytically derived. As demonstrated by four examples, the higher-order QKE can reliably predict quantum dissipative dynamics, comparing well with the hierarchic equation approach. More importantly, the higher-order rate kernels can distinguish and quantify distinct nontrivial quantum coherent effects, such as long-range energy transfer from quantum tunneling and quantum interference arising from the phase accumulation of interactions.
Li, Kan; Príncipe, José C.
2018-01-01
This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime. PMID:29666568
Li, Kan; Príncipe, José C
2018-01-01
This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime.
NASA Astrophysics Data System (ADS)
Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny
2018-02-01
We propose a cross-domain, multi-task transfer learning framework to transfer knowledge learned from non-medical images by a deep convolutional neural network (DCNN) to medical image recognition task while improving the generalization by multi-task learning of auxiliary tasks. A first stage cross-domain transfer learning was initiated from ImageNet trained DCNN to mammography trained DCNN. 19,632 regions-of-interest (ROI) from 2,454 mass lesions were collected from two imaging modalities: digitized-screen film mammography (SFM) and full-field digital mammography (DM), and split into training and test sets. In the multi-task transfer learning, the DCNN learned the mass classification task simultaneously from the training set of SFM and DM. The best transfer network for mammography was selected from three transfer networks with different number of convolutional layers frozen. The performance of single-task and multitask transfer learning on an independent SFM test set in terms of the area under the receiver operating characteristic curve (AUC) was 0.78+/-0.02 and 0.82+/-0.02, respectively. In the second stage cross-domain transfer learning, a set of 12,680 ROIs from 317 mass lesions on DBT were split into validation and independent test sets. We first studied the data requirements for the first stage mammography trained DCNN by varying the mammography training data from 1% to 100% and evaluated its learning on the DBT validation set in inference mode. We found that the entire available mammography set provided the best generalization. The DBT validation set was then used to train only the last four fully connected layers, resulting in an AUC of 0.90+/-0.04 on the independent DBT test set.
Multiple kernels learning-based biological entity relationship extraction method.
Dongliang, Xu; Jingchang, Pan; Bailing, Wang
2017-09-20
Automatic extracting protein entity interaction information from biomedical literature can help to build protein relation network and design new drugs. There are more than 20 million literature abstracts included in MEDLINE, which is the most authoritative textual database in the field of biomedicine, and follow an exponential growth over time. This frantic expansion of the biomedical literature can often be difficult to absorb or manually analyze. Thus efficient and automated search engines are necessary to efficiently explore the biomedical literature using text mining techniques. The P, R, and F value of tag graph method in Aimed corpus are 50.82, 69.76, and 58.61%, respectively. The P, R, and F value of tag graph kernel method in other four evaluation corpuses are 2-5% higher than that of all-paths graph kernel. And The P, R and F value of feature kernel and tag graph kernel fuse methods is 53.43, 71.62 and 61.30%, respectively. The P, R and F value of feature kernel and tag graph kernel fuse methods is 55.47, 70.29 and 60.37%, respectively. It indicated that the performance of the two kinds of kernel fusion methods is better than that of simple kernel. In comparison with the all-paths graph kernel method, the tag graph kernel method is superior in terms of overall performance. Experiments show that the performance of the multi-kernels method is better than that of the three separate single-kernel method and the dual-mutually fused kernel method used hereof in five corpus sets.
An introduction to kernel-based learning algorithms.
Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B
2001-01-01
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.
2013-05-28
those of the support vector machine and relevance vector machine, and the model runs more quickly than the other algorithms . When one class occurs...incremental support vector machine algorithm for online learning when fewer than 50 data points are available. (a) Papers published in peer-reviewed journals...learning environments, where data processing occurs one observation at a time and the classification algorithm improves over time with new
Real-time digital signal recovery for a multi-pole low-pass transfer function system.
Lee, Jhinhwan
2017-08-01
In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.
Ideal regularization for learning kernels from labels.
Pan, Binbin; Lai, Jianhuang; Shen, Lixin
2014-08-01
In this paper, we propose a new form of regularization that is able to utilize the label information of a data set for learning kernels. The proposed regularization, referred to as ideal regularization, is a linear function of the kernel matrix to be learned. The ideal regularization allows us to develop efficient algorithms to exploit labels. Three applications of the ideal regularization are considered. Firstly, we use the ideal regularization to incorporate the labels into a standard kernel, making the resulting kernel more appropriate for learning tasks. Next, we employ the ideal regularization to learn a data-dependent kernel matrix from an initial kernel matrix (which contains prior similarity information, geometric structures, and labels of the data). Finally, we incorporate the ideal regularization to some state-of-the-art kernel learning problems. With this regularization, these learning problems can be formulated as simpler ones which permit more efficient solvers. Empirical results show that the ideal regularization exploits the labels effectively and efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chang, Hang; Han, Ju; Zhong, Cheng; Snijders, Antoine M.; Mao, Jian-Hua
2017-01-01
The capabilities of (I) learning transferable knowledge across domains; and (II) fine-tuning the pre-learned base knowledge towards tasks with considerably smaller data scale are extremely important. Many of the existing transfer learning techniques are supervised approaches, among which deep learning has the demonstrated power of learning domain transferrable knowledge with large scale network trained on massive amounts of labeled data. However, in many biomedical tasks, both the data and the corresponding label can be very limited, where the unsupervised transfer learning capability is urgently needed. In this paper, we proposed a novel multi-scale convolutional sparse coding (MSCSC) method, that (I) automatically learns filter banks at different scales in a joint fashion with enforced scale-specificity of learned patterns; and (II) provides an unsupervised solution for learning transferable base knowledge and fine-tuning it towards target tasks. Extensive experimental evaluation of MSCSC demonstrates the effectiveness of the proposed MSCSC in both regular and transfer learning tasks in various biomedical domains. PMID:28129148
MUSIC: MUlti-Scale Initial Conditions
NASA Astrophysics Data System (ADS)
Hahn, Oliver; Abel, Tom
2013-11-01
MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10-4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.
Out-of-Sample Extensions for Non-Parametric Kernel Methods.
Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang
2017-02-01
Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.
Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems.
Grisafi, Andrea; Wilkins, David M; Csányi, Gábor; Ceriotti, Michele
2018-01-19
Statistical learning methods show great promise in providing an accurate prediction of materials and molecular properties, while minimizing the need for computationally demanding electronic structure calculations. The accuracy and transferability of these models are increased significantly by encoding into the learning procedure the fundamental symmetries of rotational and permutational invariance of scalar properties. However, the prediction of tensorial properties requires that the model respects the appropriate geometric transformations, rather than invariance, when the reference frame is rotated. We introduce a formalism that extends existing schemes and makes it possible to perform machine learning of tensorial properties of arbitrary rank, and for general molecular geometries. To demonstrate it, we derive a tensor kernel adapted to rotational symmetry, which is the natural generalization of the smooth overlap of atomic positions kernel commonly used for the prediction of scalar properties at the atomic scale. The performance and generality of the approach is demonstrated by learning the instantaneous response to an external electric field of water oligomers of increasing complexity, from the isolated molecule to the condensed phase.
Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems
NASA Astrophysics Data System (ADS)
Grisafi, Andrea; Wilkins, David M.; Csányi, Gábor; Ceriotti, Michele
2018-01-01
Statistical learning methods show great promise in providing an accurate prediction of materials and molecular properties, while minimizing the need for computationally demanding electronic structure calculations. The accuracy and transferability of these models are increased significantly by encoding into the learning procedure the fundamental symmetries of rotational and permutational invariance of scalar properties. However, the prediction of tensorial properties requires that the model respects the appropriate geometric transformations, rather than invariance, when the reference frame is rotated. We introduce a formalism that extends existing schemes and makes it possible to perform machine learning of tensorial properties of arbitrary rank, and for general molecular geometries. To demonstrate it, we derive a tensor kernel adapted to rotational symmetry, which is the natural generalization of the smooth overlap of atomic positions kernel commonly used for the prediction of scalar properties at the atomic scale. The performance and generality of the approach is demonstrated by learning the instantaneous response to an external electric field of water oligomers of increasing complexity, from the isolated molecule to the condensed phase.
Prioritizing individual genetic variants after kernel machine testing using variable selection.
He, Qianchuan; Cai, Tianxi; Liu, Yang; Zhao, Ni; Harmon, Quaker E; Almli, Lynn M; Binder, Elisabeth B; Engel, Stephanie M; Ressler, Kerry J; Conneely, Karen N; Lin, Xihong; Wu, Michael C
2016-12-01
Kernel machine learning methods, such as the SNP-set kernel association test (SKAT), have been widely used to test associations between traits and genetic polymorphisms. In contrast to traditional single-SNP analysis methods, these methods are designed to examine the joint effect of a set of related SNPs (such as a group of SNPs within a gene or a pathway) and are able to identify sets of SNPs that are associated with the trait of interest. However, as with many multi-SNP testing approaches, kernel machine testing can draw conclusion only at the SNP-set level, and does not directly inform on which one(s) of the identified SNP set is actually driving the associations. A recently proposed procedure, KerNel Iterative Feature Extraction (KNIFE), provides a general framework for incorporating variable selection into kernel machine methods. In this article, we focus on quantitative traits and relatively common SNPs, and adapt the KNIFE procedure to genetic association studies and propose an approach to identify driver SNPs after the application of SKAT to gene set analysis. Our approach accommodates several kernels that are widely used in SNP analysis, such as the linear kernel and the Identity by State (IBS) kernel. The proposed approach provides practically useful utilities to prioritize SNPs, and fills the gap between SNP set analysis and biological functional studies. Both simulation studies and real data application are used to demonstrate the proposed approach. © 2016 WILEY PERIODICALS, INC.
A Comparative Study of Pairwise Learning Methods Based on Kernel Ridge Regression.
Stock, Michiel; Pahikkala, Tapio; Airola, Antti; De Baets, Bernard; Waegeman, Willem
2018-06-12
Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction, or network inference problems. During the past decade, kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression, and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency, and spectral filtering properties. Our theoretical results provide valuable insights into assessing the advantages and limitations of existing pairwise learning methods.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2016-02-03
A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.
Co-Labeling for Multi-View Weakly Labeled Learning.
Xu, Xinxing; Li, Wen; Xu, Dong; Tsang, Ivor W
2016-06-01
It is often expensive and time consuming to collect labeled training samples in many real-world applications. To reduce human effort on annotating training samples, many machine learning techniques (e.g., semi-supervised learning (SSL), multi-instance learning (MIL), etc.) have been studied to exploit weakly labeled training samples. Meanwhile, when the training data is represented with multiple types of features, many multi-view learning methods have shown that classifiers trained on different views can help each other to better utilize the unlabeled training samples for the SSL task. In this paper, we study a new learning problem called multi-view weakly labeled learning, in which we aim to develop a unified approach to learn robust classifiers by effectively utilizing different types of weakly labeled multi-view data from a broad range of tasks including SSL, MIL and relative outlier detection (ROD). We propose an effective approach called co-labeling to solve the multi-view weakly labeled learning problem. Specifically, we model the learning problem on each view as a weakly labeled learning problem, which aims to learn an optimal classifier from a set of pseudo-label vectors generated by using the classifiers trained from other views. Unlike traditional co-training approaches using a single pseudo-label vector for training each classifier, our co-labeling approach explores different strategies to utilize the predictions from different views, biases and iterations for generating the pseudo-label vectors, making our approach more robust for real-world applications. Moreover, to further improve the weakly labeled learning on each view, we also exploit the inherent group structure in the pseudo-label vectors generated from different strategies, which leads to a new multi-layer multiple kernel learning problem. Promising results for text-based image retrieval on the NUS-WIDE dataset as well as news classification and text categorization on several real-world multi-view datasets clearly demonstrate that our proposed co-labeling approach achieves state-of-the-art performance for various multi-view weakly labeled learning problems including multi-view SSL, multi-view MIL and multi-view ROD.
Ge, Jing; Zhang, Guoping
2015-01-01
Advanced intelligent methodologies could help detect and predict diseases from the EEG signals in cases the manual analysis is inefficient available, for instance, the epileptic seizures detection and prediction. This is because the diversity and the evolution of the epileptic seizures make it very difficult in detecting and identifying the undergoing disease. Fortunately, the determinism and nonlinearity in a time series could characterize the state changes. Literature review indicates that the Delay Vector Variance (DVV) could examine the nonlinearity to gain insight into the EEG signals but very limited work has been done to address the quantitative DVV approach. Hence, the outcomes of the quantitative DVV should be evaluated to detect the epileptic seizures. To develop a new epileptic seizure detection method based on quantitative DVV. This new epileptic seizure detection method employed an improved delay vector variance (IDVV) to extract the nonlinearity value as a distinct feature. Then a multi-kernel functions strategy was proposed in the extreme learning machine (ELM) network to provide precise disease detection and prediction. The nonlinearity is more sensitive than the energy and entropy. 87.5% overall accuracy of recognition and 75.0% overall accuracy of forecasting were achieved. The proposed IDVV and multi-kernel ELM based method was feasible and effective for epileptic EEG detection. Hence, the newly proposed method has importance for practical applications.
Yang Li; Wei Liang; Yinlong Zhang; Haibo An; Jindong Tan
2016-08-01
Automatic and accurate lumbar vertebrae detection is an essential step of image-guided minimally invasive spine surgery (IG-MISS). However, traditional methods still require human intervention due to the similarity of vertebrae, abnormal pathological conditions and uncertain imaging angle. In this paper, we present a novel convolutional neural network (CNN) model to automatically detect lumbar vertebrae for C-arm X-ray images. Training data is augmented by DRR and automatic segmentation of ROI is able to reduce the computational complexity. Furthermore, a feature fusion deep learning (FFDL) model is introduced to combine two types of features of lumbar vertebrae X-ray images, which uses sobel kernel and Gabor kernel to obtain the contour and texture of lumbar vertebrae, respectively. Comprehensive qualitative and quantitative experiments demonstrate that our proposed model performs more accurate in abnormal cases with pathologies and surgical implants in multi-angle views.
NASA Astrophysics Data System (ADS)
Liu, Q.
2011-09-01
At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
A trace ratio maximization approach to multiple kernel-based dimensionality reduction.
Jiang, Wenhao; Chung, Fu-lai
2014-01-01
Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2014-05-01
Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.
Clustered Multi-Task Learning for Automatic Radar Target Recognition
Li, Cong; Bao, Weimin; Xu, Luping; Zhang, Hua
2017-01-01
Model training is a key technique for radar target recognition. Traditional model training algorithms in the framework of single task leaning ignore the relationships among multiple tasks, which degrades the recognition performance. In this paper, we propose a clustered multi-task learning, which can reveal and share the multi-task relationships for radar target recognition. To further make full use of these relationships, the latent multi-task relationships in the projection space are taken into consideration. Specifically, a constraint term in the projection space is proposed, the main idea of which is that multiple tasks within a close cluster should be close to each other in the projection space. In the proposed method, the cluster structures and multi-task relationships can be autonomously learned and utilized in both of the original and projected space. In view of the nonlinear characteristics of radar targets, the proposed method is extended to a non-linear kernel version and the corresponding non-linear multi-task solving method is proposed. Comprehensive experimental studies on simulated high-resolution range profile dataset and MSTAR SAR public database verify the superiority of the proposed method to some related algorithms. PMID:28953267
Deep multi-scale convolutional neural network for hyperspectral image classification
NASA Astrophysics Data System (ADS)
Zhang, Feng-zhe; Yang, Xia
2018-04-01
In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.
[Research on the methods for multi-class kernel CSP-based feature extraction].
Wang, Jinjia; Zhang, Lingzhi; Hu, Bei
2012-04-01
To relax the presumption of strictly linear patterns in the common spatial patterns (CSP), we studied the kernel CSP (KCSP). A new multi-class KCSP (MKCSP) approach was proposed in this paper, which combines the kernel approach with multi-class CSP technique. In this approach, we used kernel spatial patterns for each class against all others, and extracted signal components specific to one condition from EEG data sets of multiple conditions. Then we performed classification using the Logistic linear classifier. Brain computer interface (BCI) competition III_3a was used in the experiment. Through the experiment, it can be proved that this approach could decompose the raw EEG singles into spatial patterns extracted from multi-class of single trial EEG, and could obtain good classification results.
A review on machine learning principles for multi-view biological data integration.
Li, Yifeng; Wu, Fang-Xiang; Ngom, Alioune
2018-03-01
Driven by high-throughput sequencing techniques, modern genomic and clinical studies are in a strong need of integrative machine learning models for better use of vast volumes of heterogeneous information in the deep understanding of biological systems and the development of predictive models. How data from multiple sources (called multi-view data) are incorporated in a learning system is a key step for successful analysis. In this article, we provide a comprehensive review on omics and clinical data integration techniques, from a machine learning perspective, for various analyses such as prediction, clustering, dimension reduction and association. We shall show that Bayesian models are able to use prior information and model measurements with various distributions; tree-based methods can either build a tree with all features or collectively make a final decision based on trees learned from each view; kernel methods fuse the similarity matrices learned from individual views together for a final similarity matrix or learning model; network-based fusion methods are capable of inferring direct and indirect associations in a heterogeneous network; matrix factorization models have potential to learn interactions among features from different views; and a range of deep neural networks can be integrated in multi-modal learning for capturing the complex mechanism of biological systems.
NASA Astrophysics Data System (ADS)
Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M.
2014-10-01
In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.
Deep kernel learning method for SAR image target recognition
NASA Astrophysics Data System (ADS)
Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao
2017-10-01
With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.
Multi-Instance Metric Transfer Learning for Genome-Wide Protein Function Prediction.
Xu, Yonghui; Min, Huaqing; Wu, Qingyao; Song, Hengjie; Ye, Bicui
2017-02-06
Multi-Instance (MI) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with multiple instances. Many studies in this literature attempted to find an appropriate Multi-Instance Learning (MIL) method for genome-wide protein function prediction under a usual assumption, the underlying distribution from testing data (target domain, i.e., TD) is the same as that from training data (source domain, i.e., SD). However, this assumption may be violated in real practice. To tackle this problem, in this paper, we propose a Multi-Instance Metric Transfer Learning (MIMTL) approach for genome-wide protein function prediction. In MIMTL, we first transfer the source domain distribution to the target domain distribution by utilizing the bag weights. Then, we construct a distance metric learning method with the reweighted bags. At last, we develop an alternative optimization scheme for MIMTL. Comprehensive experimental evidence on seven real-world organisms verifies the effectiveness and efficiency of the proposed MIMTL approach over several state-of-the-art methods.
Hole, David J.; Smith, J. D.; Cobb, B. Greg
1989-01-01
Sectors of Zea mays cobs, with and without kernels were cultured in vitro in the presence and absence of fluridone. Cultured kernels, cob tissue, and embryos developed similarly to those grown in the field. Abscisic acid (ABA) levels in the embryos were evaluated by enzyme-linked immunosorbant assay. ABA levels in intact embryos cultured in the presence of fluridone were extremely low and indicate an inhibition of ABA synthesis. ABA levels in isolated cob tissue indicate that ABA can be produced by cob tissue. Sections containing kernels cultured in the presence of fluridone were transferred to medium containing fluridone and ABA. Dormancy was induced in more than 50% of the kernels transferred from 13 to 15 days after pollination, but all of the kernels transferred at 16 days after pollination or later were viviparous. ABA recovered from kernels that were placed in medium containing fluridone and ABA suggest that ABA can be transported through the cob tissue into developing embryos and that ABA is required for induction of dormancy in intact embryos. PMID:16666978
Dang, Yaoguo; Mao, Wenxin
2018-01-01
In view of the multi-attribute decision-making problem that the attribute values are grey multi-source heterogeneous data, a decision-making method based on kernel and greyness degree is proposed. The definitions of kernel and greyness degree of an extended grey number in a grey multi-source heterogeneous data sequence are given. On this basis, we construct the kernel vector and greyness degree vector of the sequence to whiten the multi-source heterogeneous information, then a grey relational bi-directional projection ranking method is presented. Considering the multi-attribute multi-level decision structure and the causalities between attributes in decision-making problem, the HG-DEMATEL method is proposed to determine the hierarchical attribute weights. A green supplier selection example is provided to demonstrate the rationality and validity of the proposed method. PMID:29510521
Sun, Huifang; Dang, Yaoguo; Mao, Wenxin
2018-03-03
In view of the multi-attribute decision-making problem that the attribute values are grey multi-source heterogeneous data, a decision-making method based on kernel and greyness degree is proposed. The definitions of kernel and greyness degree of an extended grey number in a grey multi-source heterogeneous data sequence are given. On this basis, we construct the kernel vector and greyness degree vector of the sequence to whiten the multi-source heterogeneous information, then a grey relational bi-directional projection ranking method is presented. Considering the multi-attribute multi-level decision structure and the causalities between attributes in decision-making problem, the HG-DEMATEL method is proposed to determine the hierarchical attribute weights. A green supplier selection example is provided to demonstrate the rationality and validity of the proposed method.
Online learning control using adaptive critic designs with sparse kernel machines.
Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo
2013-05-01
In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.
Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen
2016-07-07
Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.
Kernel learning at the first level of inference.
Cawley, Gavin C; Talbot, Nicola L C
2014-05-01
Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.
Collaborative filtering on a family of biological targets.
Erhan, Dumitru; L'heureux, Pierre-Jean; Yue, Shi Yi; Bengio, Yoshua
2006-01-01
Building a QSAR model of a new biological target for which few screening data are available is a statistical challenge. However, the new target may be part of a bigger family, for which we have more screening data. Collaborative filtering or, more generally, multi-task learning, is a machine learning approach that improves the generalization performance of an algorithm by using information from related tasks as an inductive bias. We use collaborative filtering techniques for building predictive models that link multiple targets to multiple examples. The more commonalities between the targets, the better the multi-target model that can be built. We show an example of a multi-target neural network that can use family information to produce a predictive model of an undersampled target. We evaluate JRank, a kernel-based method designed for collaborative filtering. We show their performance on compound prioritization for an HTS campaign and the underlying shared representation between targets. JRank outperformed the neural network both in the single- and multi-target models.
Kernel Methods for Mining Instance Data in Ontologies
NASA Astrophysics Data System (ADS)
Bloehdorn, Stephan; Sure, York
The amount of ontologies and meta data available on the Web is constantly growing. The successful application of machine learning techniques for learning of ontologies from textual data, i.e. mining for the Semantic Web, contributes to this trend. However, no principal approaches exist so far for mining from the Semantic Web. We investigate how machine learning algorithms can be made amenable for directly taking advantage of the rich knowledge expressed in ontologies and associated instance data. Kernel methods have been successfully employed in various learning tasks and provide a clean framework for interfacing between non-vectorial data and machine learning algorithms. In this spirit, we express the problem of mining instances in ontologies as the problem of defining valid corresponding kernels. We present a principled framework for designing such kernels by means of decomposing the kernel computation into specialized kernels for selected characteristics of an ontology which can be flexibly assembled and tuned. Initial experiments on real world Semantic Web data enjoy promising results and show the usefulness of our approach.
Domain adaptation via transfer component analysis.
Pan, Sinno Jialin; Tsang, Ivor W; Kwok, James T; Yang, Qiang
2011-02-01
Domain adaptation allows knowledge from a source domain to be transferred to a different but related target domain. Intuitively, discovering a good feature representation across domains is crucial. In this paper, we first propose to find such a representation through a new learning method, transfer component analysis (TCA), for domain adaptation. TCA tries to learn some transfer components across domains in a reproducing kernel Hilbert space using maximum mean miscrepancy. In the subspace spanned by these transfer components, data properties are preserved and data distributions in different domains are close to each other. As a result, with the new representations in this subspace, we can apply standard machine learning methods to train classifiers or regression models in the source domain for use in the target domain. Furthermore, in order to uncover the knowledge hidden in the relations between the data labels from the source and target domains, we extend TCA in a semisupervised learning setting, which encodes label information into transfer components learning. We call this extension semisupervised TCA. The main contribution of our work is that we propose a novel dimensionality reduction framework for reducing the distance between domains in a latent space for domain adaptation. We propose both unsupervised and semisupervised feature extraction approaches, which can dramatically reduce the distance between domain distributions by projecting data onto the learned transfer components. Finally, our approach can handle large datasets and naturally lead to out-of-sample generalization. The effectiveness and efficiency of our approach are verified by experiments on five toy datasets and two real-world applications: cross-domain indoor WiFi localization and cross-domain text classification.
Sentiment classification technology based on Markov logic networks
NASA Astrophysics Data System (ADS)
He, Hui; Li, Zhigang; Yao, Chongchong; Zhang, Weizhe
2016-07-01
With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.
Interaction with Machine Improvisation
NASA Astrophysics Data System (ADS)
Assayag, Gerard; Bloch, George; Cont, Arshia; Dubnov, Shlomo
We describe two multi-agent architectures for an improvisation oriented musician-machine interaction systems that learn in real time from human performers. The improvisation kernel is based on sequence modeling and statistical learning. We present two frameworks of interaction with this kernel. In the first, the stylistic interaction is guided by a human operator in front of an interactive computer environment. In the second framework, the stylistic interaction is delegated to machine intelligence and therefore, knowledge propagation and decision are taken care of by the computer alone. The first framework involves a hybrid architecture using two popular composition/performance environments, Max and OpenMusic, that are put to work and communicate together, each one handling the process at a different time/memory scale. The second framework shares the same representational schemes with the first but uses an Active Learning architecture based on collaborative, competitive and memory-based learning to handle stylistic interactions. Both systems are capable of processing real-time audio/video as well as MIDI. After discussing the general cognitive background of improvisation practices, the statistical modelling tools and the concurrent agent architecture are presented. Then, an Active Learning scheme is described and considered in terms of using different improvisation regimes for improvisation planning. Finally, we provide more details about the different system implementations and describe several performances with the system.
NASA Astrophysics Data System (ADS)
Jin, Hyeongmin; Heo, Changyong; Kim, Jong Hyo
2018-02-01
Differing reconstruction kernels are known to strongly affect the variability of imaging biomarkers and thus remain as a barrier in translating the computer aided quantification techniques into clinical practice. This study presents a deep learning application to CT kernel conversion which converts a CT image of sharp kernel to that of standard kernel and evaluates its impact on variability reduction of a pulmonary imaging biomarker, the emphysema index (EI). Forty cases of low-dose chest CT exams obtained with 120kVp, 40mAs, 1mm thickness, of 2 reconstruction kernels (B30f, B50f) were selected from the low dose lung cancer screening database of our institution. A Fully convolutional network was implemented with Keras deep learning library. The model consisted of symmetric layers to capture the context and fine structure characteristics of CT images from the standard and sharp reconstruction kernels. Pairs of the full-resolution CT data set were fed to input and output nodes to train the convolutional network to learn the appropriate filter kernels for converting the CT images of sharp kernel to standard kernel with a criterion of measuring the mean squared error between the input and target images. EIs (RA950 and Perc15) were measured with a software package (ImagePrism Pulmo, Seoul, South Korea) and compared for the data sets of B50f, B30f, and the converted B50f. The effect of kernel conversion was evaluated with the mean and standard deviation of pair-wise differences in EI. The population mean of RA950 was 27.65 +/- 7.28% for B50f data set, 10.82 +/- 6.71% for the B30f data set, and 8.87 +/- 6.20% for the converted B50f data set. The mean of pair-wise absolute differences in RA950 between B30f and B50f is reduced from 16.83% to 1.95% using kernel conversion. Our study demonstrates the feasibility of applying the deep learning technique for CT kernel conversion and reducing the kernel-induced variability of EI quantification. The deep learning model has a potential to improve the reliability of imaging biomarker, especially in evaluating the longitudinal changes of EI even when the patient CT scans were performed with different kernels.
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, J.; Du, Y.; Wen, J.; Zhong, B.; Wang, K.
2011-12-01
As the remote sensing data accumulating, it is a challenge and significant issue how to generate high accurate and consistent land surface parameter product from the multi source remote observation and the radiation transfer modeling and inversion methodology are the theoretical bases. In this paper, recent research advances and unresolved issues are presented. At first, after a general overview, recent research advances on multi-scale remote sensing radiation transfer modeling are presented, including leaf spectrum model, vegetation canopy BRDF models, directional thermal infrared emission models, rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed, taking the land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is suggested and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China are introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
Enhanced Data Representation by Kernel Metric Learning for Dementia Diagnosis
Cárdenas-Peña, David; Collazos-Huertas, Diego; Castellanos-Dominguez, German
2017-01-01
Alzheimer's disease (AD) is the kind of dementia that affects the most people around the world. Therefore, an early identification supporting effective treatments is required to increase the life quality of a wide number of patients. Recently, computer-aided diagnosis tools for dementia using Magnetic Resonance Imaging scans have been successfully proposed to discriminate between patients with AD, mild cognitive impairment, and healthy controls. Most of the attention has been given to the clinical data, provided by initiatives as the ADNI, supporting reliable researches on intervention, prevention, and treatments of AD. Therefore, there is a need for improving the performance of classification machines. In this paper, we propose a kernel framework for learning metrics that enhances conventional machines and supports the diagnosis of dementia. Our framework aims at building discriminative spaces through the maximization of center kernel alignment function, aiming at improving the discrimination of the three considered neurological classes. The proposed metric learning performance is evaluated on the widely-known ADNI database using three supervised classification machines (k-nn, SVM and NNs) for multi-class and bi-class scenarios from structural MRIs. Specifically, from ADNI collection 286 AD patients, 379 MCI patients and 231 healthy controls are used for development and validation of our proposed metric learning framework. For the experimental validation, we split the data into two subsets: 30% of subjects used like a blindfolded assessment and 70% employed for parameter tuning. Then, in the preprocessing stage, each structural MRI scan a total of 310 morphological measurements are automatically extracted from by FreeSurfer software package and concatenated to build an input feature matrix. Obtained test performance results, show that including a supervised metric learning improves the compared baseline classifiers in both scenarios. In the multi-class scenario, we achieve the best performance (accuracy 60.1%) for pretrained 1-layered NN, and we obtain measures over 90% in the average for HC vs. AD task. From the machine learning point of view, our proposal enhances the classifier performance by building spaces with a better class separability. From the clinical application, our enhancement results in a more balanced performance in each class than the compared approaches from the CADDementia challenge by increasing the sensitivity of pathological groups and the specificity of healthy controls. PMID:28798659
NASA Astrophysics Data System (ADS)
Farda, N. M.
2017-12-01
Coastal wetlands provide ecosystem services essential to people and the environment. Changes in coastal wetlands, especially on land use, are important to monitor by utilizing multi-temporal imagery. The Google Earth Engine (GEE) provides many machine learning algorithms (10 algorithms) that are very useful for extracting land use from imagery. The research objective is to explore machine learning in Google Earth Engine and its accuracy for multi-temporal land use mapping of coastal wetland area. Landsat 3 MSS (1978), Landsat 5 TM (1991), Landsat 7 ETM+ (2001), and Landsat 8 OLI (2014) images located in Segara Anakan lagoon are selected to represent multi temporal images. The input for machine learning are visible and near infrared bands, PCA band, invers PCA bands, bare soil index, vegetation index, wetness index, elevation from ASTER GDEM, and GLCM (Harralick) texture, and also polygon samples in 140 locations. There are 10 machine learning algorithms applied to extract coastal wetlands land use from Landsat imagery. The algorithms are Fast Naive Bayes, CART (Classification and Regression Tree), Random Forests, GMO Max Entropy, Perceptron (Multi Class Perceptron), Winnow, Voting SVM, Margin SVM, Pegasos (Primal Estimated sub-GrAdient SOlver for Svm), IKPamir (Intersection Kernel Passive Aggressive Method for Information Retrieval, SVM). Machine learning in Google Earth Engine are very helpful in multi-temporal land use mapping, the highest accuracy for land use mapping of coastal wetland is CART with 96.98 % Overall Accuracy using K-Fold Cross Validation (K = 10). GEE is particularly useful for multi-temporal land use mapping with ready used image and classification algorithms, and also very challenging for other applications.
Missing Modality Transfer Learning via Latent Low-Rank Constraint.
Ding, Zhengming; Shao, Ming; Fu, Yun
2015-11-01
Transfer learning is usually exploited to leverage previously well-learned source domain for evaluating the unknown target domain; however, it may fail if no target data are available in the training stage. This problem arises when the data are multi-modal. For example, the target domain is in one modality, while the source domain is in another. To overcome this, we first borrow an auxiliary database with complete modalities, then consider knowledge transfer across databases and across modalities within databases simultaneously in a unified framework. The contributions are threefold: 1) a latent factor is introduced to uncover the underlying structure of the missing modality from the known data; 2) transfer learning in two directions allows the data alignment between both modalities and databases, giving rise to a very promising recovery; and 3) an efficient solution with theoretical guarantees to the proposed latent low-rank transfer learning algorithm. Comprehensive experiments on multi-modal knowledge transfer with missing target modality verify that our method can successfully inherit knowledge from both auxiliary database and source modality, and therefore significantly improve the recognition performance even when test modality is inaccessible in the training stage.
Control Transfer in Operating System Kernels
1994-05-13
microkernel system that runs less code in the kernel address space. To realize the performance benefit of allocating stacks in unmapped kseg0 memory, the...review how I modified the Mach 3.0 kernel to use continuations. Because of Mach’s message-passing microkernel structure, interprocess communication was...critical control transfer paths, deeply- nested call chains are undesirable in any case because of the function call overhead. 4.1.3 Microkernel Operating
Study of the convergence behavior of the complex kernel least mean square algorithm.
Paul, Thomas K; Ogunfunmi, Tokunbo
2013-09-01
The complex kernel least mean square (CKLMS) algorithm is recently derived and allows for online kernel adaptive learning for complex data. Kernel adaptive methods can be used in finding solutions for neural network and machine learning applications. The derivation of CKLMS involved the development of a modified Wirtinger calculus for Hilbert spaces to obtain the cost function gradient. We analyze the convergence of the CKLMS with different kernel forms for complex data. The expressions obtained enable us to generate theory-predicted mean-square error curves considering the circularity of the complex input signals and their effect on nonlinear learning. Simulations are used for verifying the analysis results.
End-use quality of soft kernel durum wheat
USDA-ARS?s Scientific Manuscript database
Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...
Kernel Temporal Differences for Neural Decoding
Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.
2015-01-01
We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504
Statistical Methods in Ai: Rare Event Learning Using Associative Rules and Higher-Order Statistics
NASA Astrophysics Data System (ADS)
Iyer, V.; Shetty, S.; Iyengar, S. S.
2015-07-01
Rare event learning has not been actively researched since lately due to the unavailability of algorithms which deal with big samples. The research addresses spatio-temporal streams from multi-resolution sensors to find actionable items from a perspective of real-time algorithms. This computing framework is independent of the number of input samples, application domain, labelled or label-less streams. A sampling overlap algorithm such as Brooks-Iyengar is used for dealing with noisy sensor streams. We extend the existing noise pre-processing algorithms using Data-Cleaning trees. Pre-processing using ensemble of trees using bagging and multi-target regression showed robustness to random noise and missing data. As spatio-temporal streams are highly statistically correlated, we prove that a temporal window based sampling from sensor data streams converges after n samples using Hoeffding bounds. Which can be used for fast prediction of new samples in real-time. The Data-cleaning tree model uses a nonparametric node splitting technique, which can be learned in an iterative way which scales linearly in memory consumption for any size input stream. The improved task based ensemble extraction is compared with non-linear computation models using various SVM kernels for speed and accuracy. We show using empirical datasets the explicit rule learning computation is linear in time and is only dependent on the number of leafs present in the tree ensemble. The use of unpruned trees (t) in our proposed ensemble always yields minimum number (m) of leafs keeping pre-processing computation to n × t log m compared to N2 for Gram Matrix. We also show that the task based feature induction yields higher Qualify of Data (QoD) in the feature space compared to kernel methods using Gram Matrix.
NASA Astrophysics Data System (ADS)
Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko
2018-04-01
Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.
Generalization Performance of Regularized Ranking With Multiscale Kernels.
Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin
2016-05-01
The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.
Design of a multiple kernel learning algorithm for LS-SVM by convex programming.
Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou
2011-06-01
As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen
2014-09-01
For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C
Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.
Semi-supervised learning for ordinal Kernel Discriminant Analysis.
Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C
2016-12-01
Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recio-Spinoso, Alberto; Fan, Yun-Hui; Ruggero, Mario A
2011-05-01
Basilar-membrane responses to white Gaussian noise were recorded using laser velocimetry at basal sites of the chinchilla cochlea with characteristic frequencies near 10 kHz and first-order Wiener kernels were computed by cross correlation of the stimuli and the responses. The presence or absence of minimum-phase behavior was explored by fitting the kernels with discrete linear filters with rational transfer functions. Excellent fits to the kernels were obtained with filters with transfer functions including zeroes located outside the unit circle, implying nonminimum-phase behavior. These filters accurately predicted basilar-membrane responses to other noise stimuli presented at the same level as the stimulus for the kernel computation. Fits with all-pole and other minimum-phase discrete filters were inferior to fits with nonminimum-phase filters. Minimum-phase functions predicted from the amplitude functions of the Wiener kernels by Hilbert transforms were different from the measured phase curves. These results, which suggest that basilar-membrane responses do not have the minimum-phase property, challenge the validity of models of cochlear processing, which incorporate minimum-phase behavior. © 2011 IEEE
Metabolite identification through multiple kernel learning on fragmentation trees.
Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho
2014-06-15
Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. © The Author 2014. Published by Oxford University Press.
Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.
Cheng, Ching-An; Huang, Han-Pang
2016-12-01
We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.
Multi-PSF fusion in image restoration of range-gated systems
NASA Astrophysics Data System (ADS)
Wang, Canjin; Sun, Tao; Wang, Tingfeng; Miao, Xikui; Wang, Rui
2018-07-01
For the task of image restoration, an accurate estimation of degrading PSF/kernel is the premise of recovering a visually superior image. The imaging process of range-gated imaging system in atmosphere associates with lots of factors, such as back scattering, background radiation, diffraction limit and the vibration of the platform. On one hand, due to the difficulty of constructing models for all factors, the kernels from physical-model based methods are not strictly accurate and practical. On the other hand, there are few strong edges in images, which brings significant errors to most of image-feature-based methods. Since different methods focus on different formation factors of the kernel, their results often complement each other. Therefore, we propose an approach which combines physical model with image features. With an fusion strategy using GCRF (Gaussian Conditional Random Fields) framework, we get a final kernel which is closer to the actual one. Aiming at the problem that ground-truth image is difficult to obtain, we then propose a semi data-driven fusion method in which different data sets are used to train fusion parameters. Finally, a semi blind restoration strategy based on EM (Expectation Maximization) and RL (Richardson-Lucy) algorithm is proposed. Our methods not only models how the lasers transfer in the atmosphere and imaging in the ICCD (Intensified CCD) plane, but also quantifies other unknown degraded factors using image-based methods, revealing how multiple kernel elements interact with each other. The experimental results demonstrate that our method achieves better performance than state-of-the-art restoration approaches.
Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.
Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao
2017-06-21
In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.
Online selective kernel-based temporal difference learning.
Chen, Xingguo; Gao, Yang; Wang, Ruili
2013-12-01
In this paper, an online selective kernel-based temporal difference (OSKTD) learning algorithm is proposed to deal with large scale and/or continuous reinforcement learning problems. OSKTD includes two online procedures: online sparsification and parameter updating for the selective kernel-based value function. A new sparsification method (i.e., a kernel distance-based online sparsification method) is proposed based on selective ensemble learning, which is computationally less complex compared with other sparsification methods. With the proposed sparsification method, the sparsified dictionary of samples is constructed online by checking if a sample needs to be added to the sparsified dictionary. In addition, based on local validity, a selective kernel-based value function is proposed to select the best samples from the sample dictionary for the selective kernel-based value function approximator. The parameters of the selective kernel-based value function are iteratively updated by using the temporal difference (TD) learning algorithm combined with the gradient descent technique. The complexity of the online sparsification procedure in the OSKTD algorithm is O(n). In addition, two typical experiments (Maze and Mountain Car) are used to compare with both traditional and up-to-date O(n) algorithms (GTD, GTD2, and TDC using the kernel-based value function), and the results demonstrate the effectiveness of our proposed algorithm. In the Maze problem, OSKTD converges to an optimal policy and converges faster than both traditional and up-to-date algorithms. In the Mountain Car problem, OSKTD converges, requires less computation time compared with other sparsification methods, gets a better local optima than the traditional algorithms, and converges much faster than the up-to-date algorithms. In addition, OSKTD can reach a competitive ultimate optima compared with the up-to-date algorithms.
Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann
2009-01-01
Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly’s halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support. PMID:20396612
Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann
2009-06-01
Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.
Deep Restricted Kernel Machines Using Conjugate Feature Duality.
Suykens, Johan A K
2017-08-01
The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.
Searching Remote Homology with Spectral Clustering with Symmetry in Neighborhood Cluster Kernels
Maulik, Ujjwal; Sarkar, Anasua
2013-01-01
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of “recent” paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. Contact: sarkar@labri.fr. PMID:23457439
Searching remote homology with spectral clustering with symmetry in neighborhood cluster kernels.
Maulik, Ujjwal; Sarkar, Anasua
2013-01-01
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of "recent" paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. sarkar@labri.fr.
Understanding Learning Transfer in Employment Preparation Programmes for Adults with Low Skills
ERIC Educational Resources Information Center
Taylor, Maurice C.; Ayala, Gabriel E.; Pinsent-Johnson, Christine
2009-01-01
This Canadian study investigated how the transfer of learning occurred in an employment preparation programme for adults with low literacy skills using a multi-site case study research design. Four different programmes involving trainees, instructors and workplace supervisors participated in the investigation. Results indicated that the transfer…
Structured Kernel Subspace Learning for Autonomous Robot Navigation.
Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai
2018-02-14
This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.
Ranking Support Vector Machine with Kernel Approximation
Dou, Yong
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256
Ranking Support Vector Machine with Kernel Approximation.
Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
Choi, Joon Yul; Yoo, Tae Keun; Seo, Jeong Gi; Kwak, Jiyong; Um, Terry Taewoong; Rim, Tyler Hyungtaek
2017-01-01
Deep learning emerges as a powerful tool for analyzing medical images. Retinal disease detection by using computer-aided diagnosis from fundus image has emerged as a new method. We applied deep learning convolutional neural network by using MatConvNet for an automated detection of multiple retinal diseases with fundus photographs involved in STructured Analysis of the REtina (STARE) database. Dataset was built by expanding data on 10 categories, including normal retina and nine retinal diseases. The optimal outcomes were acquired by using a random forest transfer learning based on VGG-19 architecture. The classification results depended greatly on the number of categories. As the number of categories increased, the performance of deep learning models was diminished. When all 10 categories were included, we obtained results with an accuracy of 30.5%, relative classifier information (RCI) of 0.052, and Cohen's kappa of 0.224. Considering three integrated normal, background diabetic retinopathy, and dry age-related macular degeneration, the multi-categorical classifier showed accuracy of 72.8%, 0.283 RCI, and 0.577 kappa. In addition, several ensemble classifiers enhanced the multi-categorical classification performance. The transfer learning incorporated with ensemble classifier of clustering and voting approach presented the best performance with accuracy of 36.7%, 0.053 RCI, and 0.225 kappa in the 10 retinal diseases classification problem. First, due to the small size of datasets, the deep learning techniques in this study were ineffective to be applied in clinics where numerous patients suffering from various types of retinal disorders visit for diagnosis and treatment. Second, we found that the transfer learning incorporated with ensemble classifiers can improve the classification performance in order to detect multi-categorical retinal diseases. Further studies should confirm the effectiveness of algorithms with large datasets obtained from hospitals.
Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction
Bandeira e Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose
2017-01-01
Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. PMID:28455415
Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.
Bandeira E Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose
2017-06-07
Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. Copyright © 2017 Bandeira e Sousa et al.
CW-SSIM kernel based random forest for image classification
NASA Astrophysics Data System (ADS)
Fan, Guangzhe; Wang, Zhou; Wang, Jiheng
2010-07-01
Complex wavelet structural similarity (CW-SSIM) index has been proposed as a powerful image similarity metric that is robust to translation, scaling and rotation of images, but how to employ it in image classification applications has not been deeply investigated. In this paper, we incorporate CW-SSIM as a kernel function into a random forest learning algorithm. This leads to a novel image classification approach that does not require a feature extraction or dimension reduction stage at the front end. We use hand-written digit recognition as an example to demonstrate our algorithm. We compare the performance of the proposed approach with random forest learning based on other kernels, including the widely adopted Gaussian and the inner product kernels. Empirical evidences show that the proposed method is superior in its classification power. We also compared our proposed approach with the direct random forest method without kernel and the popular kernel-learning method support vector machine. Our test results based on both simulated and realworld data suggest that the proposed approach works superior to traditional methods without the feature selection procedure.
Kim, Jongin; Lee, Boreom
2018-05-07
Different modalities such as structural MRI, FDG-PET, and CSF have complementary information, which is likely to be very useful for diagnosis of AD and MCI. Therefore, it is possible to develop a more effective and accurate AD/MCI automatic diagnosis method by integrating complementary information of different modalities. In this paper, we propose multi-modal sparse hierarchical extreme leaning machine (MSH-ELM). We used volume and mean intensity extracted from 93 regions of interest (ROIs) as features of MRI and FDG-PET, respectively, and used p-tau, t-tau, and Aβ42 as CSF features. In detail, high-level representation was individually extracted from each of MRI, FDG-PET, and CSF using a stacked sparse extreme learning machine auto-encoder (sELM-AE). Then, another stacked sELM-AE was devised to acquire a joint hierarchical feature representation by fusing the high-level representations obtained from each modality. Finally, we classified joint hierarchical feature representation using a kernel-based extreme learning machine (KELM). The results of MSH-ELM were compared with those of conventional ELM, single kernel support vector machine (SK-SVM), multiple kernel support vector machine (MK-SVM) and stacked auto-encoder (SAE). Performance was evaluated through 10-fold cross-validation. In the classification of AD vs. HC and MCI vs. HC problem, the proposed MSH-ELM method showed mean balanced accuracies of 96.10% and 86.46%, respectively, which is much better than those of competing methods. In summary, the proposed algorithm exhibits consistently better performance than SK-SVM, ELM, MK-SVM and SAE in the two binary classification problems (AD vs. HC and MCI vs. HC). © 2018 Wiley Periodicals, Inc.
Zu, Chen; Jie, Biao; Liu, Mingxia; Chen, Songcan
2015-01-01
Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI. PMID:26572145
Deep neural mapping support vector machines.
Li, Yujian; Zhang, Ting
2017-09-01
The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vegetation Monitoring with Gaussian Processes and Latent Force Models
NASA Astrophysics Data System (ADS)
Camps-Valls, Gustau; Svendsen, Daniel; Martino, Luca; Campos, Manuel; Luengo, David
2017-04-01
Monitoring vegetation by biophysical parameter retrieval from Earth observation data is a challenging problem, where machine learning is currently a key player. Neural networks, kernel methods, and Gaussian Process (GP) regression have excelled in parameter retrieval tasks at both local and global scales. GP regression is based on solid Bayesian statistics, yield efficient and accurate parameter estimates, and provides interesting advantages over competing machine learning approaches such as confidence intervals. However, GP models are hampered by lack of interpretability, that prevented the widespread adoption by a larger community. In this presentation we will summarize some of our latest developments to address this issue. We will review the main characteristics of GPs and their advantages in vegetation monitoring standard applications. Then, three advanced GP models will be introduced. First, we will derive sensitivity maps for the GP predictive function that allows us to obtain feature ranking from the model and to assess the influence of examples in the solution. Second, we will introduce a Joint GP (JGP) model that combines in situ measurements and simulated radiative transfer data in a single GP model. The JGP regression provides more sensible confidence intervals for the predictions, respects the physics of the underlying processes, and allows for transferability across time and space. Finally, a latent force model (LFM) for GP modeling that encodes ordinary differential equations to blend data-driven modeling and physical models of the system is presented. The LFM performs multi-output regression, adapts to the signal characteristics, is able to cope with missing data in the time series, and provides explicit latent functions that allow system analysis and evaluation. Empirical evidence of the performance of these models will be presented through illustrative examples.
Yeung, Dit-Yan; Chang, Hong; Dai, Guang
2008-11-01
In recent years, metric learning in the semisupervised setting has aroused a lot of research interest. One type of semisupervised metric learning utilizes supervisory information in the form of pairwise similarity or dissimilarity constraints. However, most methods proposed so far are either limited to linear metric learning or unable to scale well with the data set size. In this letter, we propose a nonlinear metric learning method based on the kernel approach. By applying low-rank approximation to the kernel matrix, our method can handle significantly larger data sets. Moreover, our low-rank approximation scheme can naturally lead to out-of-sample generalization. Experiments performed on both artificial and real-world data show very promising results.
Generalization Analysis of Fredholm Kernel Regularized Classifiers.
Gong, Tieliang; Xu, Zongben; Chen, Hong
2017-07-01
Recently, a new framework, Fredholm learning, was proposed for semisupervised learning problems based on solving a regularized Fredholm integral equation. It allows a natural way to incorporate unlabeled data into learning algorithms to improve their prediction performance. Despite rapid progress on implementable algorithms with theoretical guarantees, the generalization ability of Fredholm kernel learning has not been studied. In this letter, we focus on investigating the generalization performance of a family of classification algorithms, referred to as Fredholm kernel regularized classifiers. We prove that the corresponding learning rate can achieve [Formula: see text] ([Formula: see text] is the number of labeled samples) in a limiting case. In addition, a representer theorem is provided for the proposed regularized scheme, which underlies its applications.
A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm
NASA Astrophysics Data System (ADS)
Zhao, Jianing; Gao, Wanlin; Liu, Zili; Mou, Guifen; Lu, Lin; Yu, Lina
The accuracy of RS classification based on SVM which is developed from statistical learning theory is high under small number of train samples, which results in satisfaction of classification on RS using SVM methods. The traditional RS classification method combines visual interpretation with computer classification. The accuracy of the RS classification, however, is improved a lot based on SVM method, because it saves much labor and time which is used to interpret images and collect training samples. Kernel functions play an important part in the SVM algorithm. It uses improved compound kernel function and therefore has a higher accuracy of classification on RS images. Moreover, compound kernel improves the generalization and learning ability of the kernel.
Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.
Citak-Er, Fusun; Firat, Zeynep; Kovanlikaya, Ilhami; Ture, Ugur; Ozturk-Isik, Esin
2018-06-15
The objective of this study was to assess the contribution of multi-parametric (mp) magnetic resonance imaging (MRI) quantitative features in the machine learning-based grading of gliomas with a multi-region-of-interests approach. Forty-three patients who were newly diagnosed as having a glioma were included in this study. The patients were scanned prior to any therapy using a standard brain tumor magnetic resonance (MR) imaging protocol that included T1 and T2-weighted, diffusion-weighted, diffusion tensor, MR perfusion and MR spectroscopic imaging. Three different regions-of-interest were drawn for each subject to encompass tumor, immediate tumor periphery, and distant peritumoral edema/normal. The normalized mp-MRI features were used to build machine-learning models for differentiating low-grade gliomas (WHO grades I and II) from high grades (WHO grades III and IV). In order to assess the contribution of regional mp-MRI quantitative features to the classification models, a support vector machine-based recursive feature elimination method was applied prior to classification. A machine-learning model based on support vector machine algorithm with linear kernel achieved an accuracy of 93.0%, a specificity of 86.7%, and a sensitivity of 96.4% for the grading of gliomas using ten-fold cross validation based on the proposed subset of the mp-MRI features. In this study, machine-learning based on multiregional and multi-parametric MRI data has proven to be an important tool in grading glial tumors accurately even in this limited patient population. Future studies are needed to investigate the use of machine learning algorithms for brain tumor classification in a larger patient cohort. Copyright © 2018. Published by Elsevier Ltd.
Li, Lishuang; Zhang, Panpan; Zheng, Tianfu; Zhang, Hongying; Jiang, Zhenchao; Huang, Degen
2014-01-01
Protein-Protein Interaction (PPI) extraction is an important task in the biomedical information extraction. Presently, many machine learning methods for PPI extraction have achieved promising results. However, the performance is still not satisfactory. One reason is that the semantic resources were basically ignored. In this paper, we propose a multiple-kernel learning-based approach to extract PPIs, combining the feature-based kernel, tree kernel and semantic kernel. Particularly, we extend the shortest path-enclosed tree kernel (SPT) by a dynamic extended strategy to retrieve the richer syntactic information. Our semantic kernel calculates the protein-protein pair similarity and the context similarity based on two semantic resources: WordNet and Medical Subject Heading (MeSH). We evaluate our method with Support Vector Machine (SVM) and achieve an F-score of 69.40% and an AUC of 92.00%, which show that our method outperforms most of the state-of-the-art systems by integrating semantic information.
Approximate l-fold cross-validation with Least Squares SVM and Kernel Ridge Regression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Richard E; Zhang, Hao; Parker, Lynne Edwards
2013-01-01
Kernel methods have difficulties scaling to large modern data sets. The scalability issues are based on computational and memory requirements for working with a large matrix. These requirements have been addressed over the years by using low-rank kernel approximations or by improving the solvers scalability. However, Least Squares Support VectorMachines (LS-SVM), a popular SVM variant, and Kernel Ridge Regression still have several scalability issues. In particular, the O(n^3) computational complexity for solving a single model, and the overall computational complexity associated with tuning hyperparameters are still major problems. We address these problems by introducing an O(n log n) approximate l-foldmore » cross-validation method that uses a multi-level circulant matrix to approximate the kernel. In addition, we prove our algorithm s computational complexity and present empirical runtimes on data sets with approximately 1 million data points. We also validate our approximate method s effectiveness at selecting hyperparameters on real world and standard benchmark data sets. Lastly, we provide experimental results on using a multi-level circulant kernel approximation to solve LS-SVM problems with hyperparameters selected using our method.« less
ERIC Educational Resources Information Center
Lord, Vivian B.; Coston, Charisse T. M.; Blowers, Anita N.; Davis, Boyd; Johannes, Kenia S.
2012-01-01
Learning communities (LCs) have become a popular strategy for developing structured programming aimed at enhancing student success and retention. While most LCs have focused on improving the quality of education for first-year students, little attention has been placed on addressing their usefulness for enhancing the success of transfer students.…
Computational investigation of intense short-wavelength laser interaction with rare gas clusters
NASA Astrophysics Data System (ADS)
Bigaouette, Nicolas
Current Very High Temperature Reactor designs incorporate TRi-structural ISOtropic (TRISO) particle fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel by dropping a cold precursor solution into a column of hot trichloroethylene (TCE). The temperature difference drives the liquid precursor solution to precipitate the metal solution into gel spheres before reaching the bottom of a production column. Over time, gelation byproducts inhibit complete gelation and the TCE must be purified or discarded. The resulting mixed-waste stream is expensive to dispose of or recycle, and changing the forming fluid to a non-hazardous alternative could greatly improve the economics of kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacements. The physical properties of the alternatives were measured as a function of temperature between 25 °C and 80 °C. Calculated terminal velocities and heat transfer rates provided an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane were selected for further testing, and surrogate yttria-stabilized zirconia (YSZ) kernels were produced using these selected fluids. The kernels were characterized for density, geometry, composition, and crystallinity and compared to a control group of kernels produced in silicone oil. Production in 1-bromotetradecane showed positive results, producing dense (93.8 %TD) and spherical (1.03 aspect ratio) kernels, but proper gelation did not occur in the other alternative forming fluids. With many of the YSZ kernels not properly gelling within the length of the column, this project further investigated the heat transfer properties of the forming fluids and precursor solution. A sensitivity study revealed that the heat transfer properties of the precursor solution have the strongest impact on gelation time. A COMSOL heat transfer model estimated an effective thermal diffusivity range for the YSZ precursor solution as 1.13x10 -8 m2/s to 3.35x10-8 m 2/s, which is an order of magnitude smaller than the value used in previous studies. 1-bromotetradecane is recommended for further investigation with the production of uranium-based kernels.
Using the Intel Math Kernel Library on Peregrine | High-Performance
Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier
Scalable Nonparametric Low-Rank Kernel Learning Using Block Coordinate Descent.
Hu, En-Liang; Kwok, James T
2015-09-01
Nonparametric kernel learning (NPKL) is a flexible approach to learn the kernel matrix directly without assuming any parametric form. It can be naturally formulated as a semidefinite program (SDP), which, however, is not very scalable. To address this problem, we propose the combined use of low-rank approximation and block coordinate descent (BCD). Low-rank approximation avoids the expensive positive semidefinite constraint in the SDP by replacing the kernel matrix variable with V(T)V, where V is a low-rank matrix. The resultant nonlinear optimization problem is then solved by BCD, which optimizes each column of V sequentially. It can be shown that the proposed algorithm has nice convergence properties and low computational complexities. Experiments on a number of real-world data sets show that the proposed algorithm outperforms state-of-the-art NPKL solvers.
Benchmarking NWP Kernels on Multi- and Many-core Processors
NASA Astrophysics Data System (ADS)
Michalakes, J.; Vachharajani, M.
2008-12-01
Increased computing power for weather, climate, and atmospheric science has provided direct benefits for defense, agriculture, the economy, the environment, and public welfare and convenience. Today, very large clusters with many thousands of processors are allowing scientists to move forward with simulations of unprecedented size. But time-critical applications such as real-time forecasting or climate prediction need strong scaling: faster nodes and processors, not more of them. Moreover, the need for good cost- performance has never been greater, both in terms of performance per watt and per dollar. For these reasons, the new generations of multi- and many-core processors being mass produced for commercial IT and "graphical computing" (video games) are being scrutinized for their ability to exploit the abundant fine- grain parallelism in atmospheric models. We present results of our work to date identifying key computational kernels within the dynamics and physics of a large community NWP model, the Weather Research and Forecast (WRF) model. We benchmark and optimize these kernels on several different multi- and many-core processors. The goals are to (1) characterize and model performance of the kernels in terms of computational intensity, data parallelism, memory bandwidth pressure, memory footprint, etc. (2) enumerate and classify effective strategies for coding and optimizing for these new processors, (3) assess difficulties and opportunities for tool or higher-level language support, and (4) establish a continuing set of kernel benchmarks that can be used to measure and compare effectiveness of current and future designs of multi- and many-core processors for weather and climate applications.
NASA Astrophysics Data System (ADS)
Tuia, Devis; Marcos, Diego; Camps-Valls, Gustau
2016-10-01
Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corresponding band to be matched between the images. An alternative builds upon manifold alignment. Manifold alignment performs a multidimensional relative normalization of the data prior to product generation that can cope with data of different dimensionality (e.g. different number of bands) and possibly unpaired examples. Aligning data distributions is an appealing strategy, since it allows to provide data spaces that are more similar to each other, regardless of the subsequent use of the transformed data. In this paper, we study a methodology that aligns data from different domains in a nonlinear way through kernelization. We introduce the Kernel Manifold Alignment (KEMA) method, which provides a flexible and discriminative projection map, exploits only a few labeled samples (or semantic ties) in each domain, and reduces to solving a generalized eigenvalue problem. We successfully test KEMA in multi-temporal and multi-source very high resolution classification tasks, as well as on the task of making a model invariant to shadowing for hyperspectral imaging.
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network
Qu, Xiaobo; He, Yifan
2018-01-01
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods. PMID:29509666
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.
Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di
2018-03-06
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghrayeb, S. Z.; Ouisloumen, M.; Ougouag, A. M.
2012-07-01
A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied.more » (authors)« less
The Classification of Diabetes Mellitus Using Kernel k-means
NASA Astrophysics Data System (ADS)
Alamsyah, M.; Nafisah, Z.; Prayitno, E.; Afida, A. M.; Imah, E. M.
2018-01-01
Diabetes Mellitus is a metabolic disorder which is characterized by chronicle hypertensive glucose. Automatics detection of diabetes mellitus is still challenging. This study detected diabetes mellitus by using kernel k-Means algorithm. Kernel k-means is an algorithm which was developed from k-means algorithm. Kernel k-means used kernel learning that is able to handle non linear separable data; where it differs with a common k-means. The performance of kernel k-means in detecting diabetes mellitus is also compared with SOM algorithms. The experiment result shows that kernel k-means has good performance and a way much better than SOM.
Improving Block-level Efficiency with scsi-mq
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, Blake A
2015-01-01
Current generation solid-state storage devices are exposing a new bottlenecks in the SCSI and block layers of the Linux kernel, where IO throughput is limited by lock contention, inefficient interrupt handling, and poor memory locality. To address these limitations, the Linux kernel block layer underwent a major rewrite with the blk-mq project to move from a single request queue to a multi-queue model. The Linux SCSI subsystem rework to make use of this new model, known as scsi-mq, has been merged into the Linux kernel and work is underway for dm-multipath support in the upcoming Linux 4.0 kernel. These piecesmore » were necessary to make use of the multi-queue block layer in a Lustre parallel filesystem with high availability requirements. We undertook adding support of the 3.18 kernel to Lustre with scsi-mq and dm-multipath patches to evaluate the potential of these efficiency improvements. In this paper we evaluate the block-level performance of scsi-mq with backing storage hardware representative of a HPC-targerted Lustre filesystem. Our findings show that SCSI write request latency is reduced by as much as 13.6%. Additionally, when profiling the CPU usage of our prototype Lustre filesystem, we found that CPU idle time increased by a factor of 7 with Linux 3.18 and blk-mq as compared to a standard 2.6.32 Linux kernel. Our findings demonstrate increased efficiency of the multi-queue block layer even with disk-based caching storage arrays used in existing parallel filesystems.« less
Kernelized Elastic Net Regularization: Generalization Bounds, and Sparse Recovery.
Feng, Yunlong; Lv, Shao-Gao; Hang, Hanyuan; Suykens, Johan A K
2016-03-01
Kernelized elastic net regularization (KENReg) is a kernelization of the well-known elastic net regularization (Zou & Hastie, 2005). The kernel in KENReg is not required to be a Mercer kernel since it learns from a kernelized dictionary in the coefficient space. Feng, Yang, Zhao, Lv, and Suykens (2014) showed that KENReg has some nice properties including stability, sparseness, and generalization. In this letter, we continue our study on KENReg by conducting a refined learning theory analysis. This letter makes the following three main contributions. First, we present refined error analysis on the generalization performance of KENReg. The main difficulty of analyzing the generalization error of KENReg lies in characterizing the population version of its empirical target function. We overcome this by introducing a weighted Banach space associated with the elastic net regularization. We are then able to conduct elaborated learning theory analysis and obtain fast convergence rates under proper complexity and regularity assumptions. Second, we study the sparse recovery problem in KENReg with fixed design and show that the kernelization may improve the sparse recovery ability compared to the classical elastic net regularization. Finally, we discuss the interplay among different properties of KENReg that include sparseness, stability, and generalization. We show that the stability of KENReg leads to generalization, and its sparseness confidence can be derived from generalization. Moreover, KENReg is stable and can be simultaneously sparse, which makes it attractive theoretically and practically.
Yu, Yinan; Diamantaras, Konstantinos I; McKelvey, Tomas; Kung, Sun-Yuan
2018-02-01
In kernel-based classification models, given limited computational power and storage capacity, operations over the full kernel matrix becomes prohibitive. In this paper, we propose a new supervised learning framework using kernel models for sequential data processing. The framework is based on two components that both aim at enhancing the classification capability with a subset selection scheme. The first part is a subspace projection technique in the reproducing kernel Hilbert space using a CLAss-specific Subspace Kernel representation for kernel approximation. In the second part, we propose a novel structural risk minimization algorithm called the adaptive margin slack minimization to iteratively improve the classification accuracy by an adaptive data selection. We motivate each part separately, and then integrate them into learning frameworks for large scale data. We propose two such frameworks: the memory efficient sequential processing for sequential data processing and the parallelized sequential processing for distributed computing with sequential data acquisition. We test our methods on several benchmark data sets and compared with the state-of-the-art techniques to verify the validity of the proposed techniques.
Exploring microwave resonant multi-point ignition using high-speed schlieren imaging
NASA Astrophysics Data System (ADS)
Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi
2018-03-01
Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.
Exploring microwave resonant multi-point ignition using high-speed schlieren imaging.
Liu, Cheng; Zhang, Guixin; Xie, Hong; Deng, Lei; Wang, Zhi
2018-03-01
Microwave plasma offers a potential method to achieve rapid combustion in a high-speed combustor. In this paper, microwave resonant multi-point ignition and its control method have been studied via high-speed schlieren imaging. The experiment was conducted with the microwave resonant ignition system and the schlieren optical system. The microwave pulse in 2.45 GHz with 2 ms width and 3 kW peak power was employed as an ignition energy source to produce initial flame kernels in the combustion chamber. A reflective schlieren method was designed to illustrate the flame development process with a high-speed camera. The bottom of the combustion chamber was made of a quartz glass coated with indium tin oxide, which ensures sufficient microwave reflection and light penetration. Ignition experiments were conducted at 2 bars of stoichiometric methane-air mixtures. Schlieren images show that flame kernels were generated at more than one location simultaneously and flame propagated with different speeds in different flame kernels. Ignition kernels were discussed in three types according to their appearances. Pressure curves and combustion duration also show that multi-point ignition plays a significant role in accelerating combustion.
An Approximate Approach to Automatic Kernel Selection.
Ding, Lizhong; Liao, Shizhong
2016-02-02
Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.
Seo, Jeong Gi; Kwak, Jiyong; Um, Terry Taewoong; Rim, Tyler Hyungtaek
2017-01-01
Deep learning emerges as a powerful tool for analyzing medical images. Retinal disease detection by using computer-aided diagnosis from fundus image has emerged as a new method. We applied deep learning convolutional neural network by using MatConvNet for an automated detection of multiple retinal diseases with fundus photographs involved in STructured Analysis of the REtina (STARE) database. Dataset was built by expanding data on 10 categories, including normal retina and nine retinal diseases. The optimal outcomes were acquired by using a random forest transfer learning based on VGG-19 architecture. The classification results depended greatly on the number of categories. As the number of categories increased, the performance of deep learning models was diminished. When all 10 categories were included, we obtained results with an accuracy of 30.5%, relative classifier information (RCI) of 0.052, and Cohen’s kappa of 0.224. Considering three integrated normal, background diabetic retinopathy, and dry age-related macular degeneration, the multi-categorical classifier showed accuracy of 72.8%, 0.283 RCI, and 0.577 kappa. In addition, several ensemble classifiers enhanced the multi-categorical classification performance. The transfer learning incorporated with ensemble classifier of clustering and voting approach presented the best performance with accuracy of 36.7%, 0.053 RCI, and 0.225 kappa in the 10 retinal diseases classification problem. First, due to the small size of datasets, the deep learning techniques in this study were ineffective to be applied in clinics where numerous patients suffering from various types of retinal disorders visit for diagnosis and treatment. Second, we found that the transfer learning incorporated with ensemble classifiers can improve the classification performance in order to detect multi-categorical retinal diseases. Further studies should confirm the effectiveness of algorithms with large datasets obtained from hospitals. PMID:29095872
Insights from Classifying Visual Concepts with Multiple Kernel Learning
Binder, Alexander; Nakajima, Shinichi; Kloft, Marius; Müller, Christina; Samek, Wojciech; Brefeld, Ulf; Müller, Klaus-Robert; Kawanabe, Motoaki
2012-01-01
Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tu-berlin.de/image_mkl/(Accessed 2012 Jun 25). PMID:22936970
Castro, Eduardo; Martínez-Ramón, Manel; Pearlson, Godfrey; Sui, Jing; Calhoun, Vince D.
2011-01-01
Pattern classification of brain imaging data can enable the automatic detection of differences in cognitive processes of specific groups of interest. Furthermore, it can also give neuroanatomical information related to the regions of the brain that are most relevant to detect these differences by means of feature selection procedures, which are also well-suited to deal with the high dimensionality of brain imaging data. This work proposes the application of recursive feature elimination using a machine learning algorithm based on composite kernels to the classification of healthy controls and patients with schizophrenia. This framework, which evaluates nonlinear relationships between voxels, analyzes whole-brain fMRI data from an auditory task experiment that is segmented into anatomical regions and recursively eliminates the uninformative ones based on their relevance estimates, thus yielding the set of most discriminative brain areas for group classification. The collected data was processed using two analysis methods: the general linear model (GLM) and independent component analysis (ICA). GLM spatial maps as well as ICA temporal lobe and default mode component maps were then input to the classifier. A mean classification accuracy of up to 95% estimated with a leave-two-out cross-validation procedure was achieved by doing multi-source data classification. In addition, it is shown that the classification accuracy rate obtained by using multi-source data surpasses that reached by using single-source data, hence showing that this algorithm takes advantage of the complimentary nature of GLM and ICA. PMID:21723948
Classification With Truncated Distance Kernel.
Huang, Xiaolin; Suykens, Johan A K; Wang, Shuning; Hornegger, Joachim; Maier, Andreas
2018-05-01
This brief proposes a truncated distance (TL1) kernel, which results in a classifier that is nonlinear in the global region but is linear in each subregion. With this kernel, the subregion structure can be trained using all the training data and local linear classifiers can be established simultaneously. The TL1 kernel has good adaptiveness to nonlinearity and is suitable for problems which require different nonlinearities in different areas. Though the TL1 kernel is not positive semidefinite, some classical kernel learning methods are still applicable which means that the TL1 kernel can be directly used in standard toolboxes by replacing the kernel evaluation. In numerical experiments, the TL1 kernel with a pregiven parameter achieves similar or better performance than the radial basis function kernel with the parameter tuned by cross validation, implying the TL1 kernel a promising nonlinear kernel for classification tasks.
Chen, Tianle; Zeng, Donglin
2015-01-01
Summary Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data. PMID:26177419
Proper orthogonal decomposition-based spectral higher-order stochastic estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baars, Woutijn J., E-mail: wbaars@unimelb.edu.au; Tinney, Charles E.
A unique routine, capable of identifying both linear and higher-order coherence in multiple-input/output systems, is presented. The technique combines two well-established methods: Proper Orthogonal Decomposition (POD) and Higher-Order Spectra Analysis. The latter of these is based on known methods for characterizing nonlinear systems by way of Volterra series. In that, both linear and higher-order kernels are formed to quantify the spectral (nonlinear) transfer of energy between the system's input and output. This reduces essentially to spectral Linear Stochastic Estimation when only first-order terms are considered, and is therefore presented in the context of stochastic estimation as spectral Higher-Order Stochastic Estimationmore » (HOSE). The trade-off to seeking higher-order transfer kernels is that the increased complexity restricts the analysis to single-input/output systems. Low-dimensional (POD-based) analysis techniques are inserted to alleviate this void as POD coefficients represent the dynamics of the spatial structures (modes) of a multi-degree-of-freedom system. The mathematical framework behind this POD-based HOSE method is first described. The method is then tested in the context of jet aeroacoustics by modeling acoustically efficient large-scale instabilities as combinations of wave packets. The growth, saturation, and decay of these spatially convecting wave packets are shown to couple both linearly and nonlinearly in the near-field to produce waveforms that propagate acoustically to the far-field for different frequency combinations.« less
NASA Astrophysics Data System (ADS)
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.
Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System
2016-01-01
This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165
Reduced multiple empirical kernel learning machine.
Wang, Zhe; Lu, MingZhe; Gao, Daqi
2015-02-01
Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3) this paper adopts the Gauss Elimination, one of the on-the-shelf techniques, to generate a basis of the original feature space, which is stable and efficient.
Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin
2017-01-01
Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization. PMID:28599282
Zhang, Xin; Yan, Lin-Feng; Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin
2017-07-18
Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization.
Semisupervised kernel marginal Fisher analysis for face recognition.
Wang, Ziqiang; Sun, Xia; Sun, Lijun; Huang, Yuchun
2013-01-01
Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face recognition is proposed in this paper. SKMFA can make use of both labelled and unlabeled samples to learn the projection matrix for nonlinear dimensionality reduction. Meanwhile, it can successfully avoid the singularity problem by not calculating the matrix inverse. In addition, in order to make the nonlinear structure captured by the data-dependent kernel consistent with the intrinsic manifold structure, a manifold adaptive nonparameter kernel is incorporated into the learning process of SKMFA. Experimental results on three face image databases demonstrate the effectiveness of our proposed algorithm.
Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.
Ruan, Peiying; Hayashida, Morihiro; Akutsu, Tatsuya; Vert, Jean-Philippe
2018-02-19
Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers. In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far. We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.
Protein fold recognition using geometric kernel data fusion.
Zakeri, Pooya; Jeuris, Ben; Vandebril, Raf; Moreau, Yves
2014-07-01
Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, kernel methods are an interesting class of techniques for integrating heterogeneous data. Various methods have been proposed to fuse multiple kernels. Most techniques for multiple kernel learning focus on learning a convex linear combination of base kernels. In addition to the limitation of linear combinations, working with such approaches could cause a loss of potentially useful information. We design several techniques to combine kernel matrices by taking more involved, geometry inspired means of these matrices instead of convex linear combinations. We consider various sequence-based protein features including information extracted directly from position-specific scoring matrices and local sequence alignment. We evaluate our methods for classification on the SCOP PDB-40D benchmark dataset for protein fold recognition. The best overall accuracy on the protein fold recognition test set obtained by our methods is ∼ 86.7%. This is an improvement over the results of the best existing approach. Moreover, our computational model has been developed by incorporating the functional domain composition of proteins through a hybridization model. It is observed that by using our proposed hybridization model, the protein fold recognition accuracy is further improved to 89.30%. Furthermore, we investigate the performance of our approach on the protein remote homology detection problem by fusing multiple string kernels. The MATLAB code used for our proposed geometric kernel fusion frameworks are publicly available at http://people.cs.kuleuven.be/∼raf.vandebril/homepage/software/geomean.php?menu=5/. © The Author 2014. Published by Oxford University Press.
Moore, Lee J; Wilson, Mark R; Waine, Elizabeth; Masters, Rich S W; McGrath, John S; Vine, Samuel J
2015-03-01
Technical surgical skills are said to be acquired quicker on a robotic rather than laparoscopic platform. However, research examining this proposition is scarce. Thus, this study aimed to compare the performance and learning curves of novices acquiring skills using a robotic or laparoscopic system, and to examine if any learning advantages were maintained over time and transferred to more difficult and stressful tasks. Forty novice participants were randomly assigned to either a robotic- or laparoscopic-trained group. Following one baseline trial on a ball pick-and-drop task, participants performed 50 learning trials. Participants then completed an immediate retention trial and a transfer trial on a two-instrument rope-threading task. One month later, participants performed a delayed retention trial and a stressful multi-tasking trial. The results revealed that the robotic-trained group completed the ball pick-and-drop task more quickly and accurately than the laparoscopic-trained group across baseline, immediate retention, and delayed retention trials. Furthermore, the robotic-trained group displayed a shorter learning curve for accuracy. The robotic-trained group also performed the more complex rope-threading and stressful multi-tasking transfer trials better. Finally, in the multi-tasking trial, the robotic-trained group made fewer tone counting errors. The results highlight the benefits of using robotic technology for the acquisition of technical surgical skills.
Efficient nonparametric n -body force fields from machine learning
NASA Astrophysics Data System (ADS)
Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro
2018-05-01
We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.
On Quantile Regression in Reproducing Kernel Hilbert Spaces with Data Sparsity Constraint
Zhang, Chong; Liu, Yufeng; Wu, Yichao
2015-01-01
For spline regressions, it is well known that the choice of knots is crucial for the performance of the estimator. As a general learning framework covering the smoothing splines, learning in a Reproducing Kernel Hilbert Space (RKHS) has a similar issue. However, the selection of training data points for kernel functions in the RKHS representation has not been carefully studied in the literature. In this paper we study quantile regression as an example of learning in a RKHS. In this case, the regular squared norm penalty does not perform training data selection. We propose a data sparsity constraint that imposes thresholding on the kernel function coefficients to achieve a sparse kernel function representation. We demonstrate that the proposed data sparsity method can have competitive prediction performance for certain situations, and have comparable performance in other cases compared to that of the traditional squared norm penalty. Therefore, the data sparsity method can serve as a competitive alternative to the squared norm penalty method. Some theoretical properties of our proposed method using the data sparsity constraint are obtained. Both simulated and real data sets are used to demonstrate the usefulness of our data sparsity constraint. PMID:27134575
L1-norm locally linear representation regularization multi-source adaptation learning.
Tao, Jianwen; Wen, Shiting; Hu, Wenjun
2015-09-01
In most supervised domain adaptation learning (DAL) tasks, one has access only to a small number of labeled examples from target domain. Therefore the success of supervised DAL in this "small sample" regime needs the effective utilization of the large amounts of unlabeled data to extract information that is useful for generalization. Toward this end, we here use the geometric intuition of manifold assumption to extend the established frameworks in existing model-based DAL methods for function learning by incorporating additional information about the target geometric structure of the marginal distribution. We would like to ensure that the solution is smooth with respect to both the ambient space and the target marginal distribution. In doing this, we propose a novel L1-norm locally linear representation regularization multi-source adaptation learning framework which exploits the geometry of the probability distribution, which has two techniques. Firstly, an L1-norm locally linear representation method is presented for robust graph construction by replacing the L2-norm reconstruction measure in LLE with L1-norm one, which is termed as L1-LLR for short. Secondly, considering the robust graph regularization, we replace traditional graph Laplacian regularization with our new L1-LLR graph Laplacian regularization and therefore construct new graph-based semi-supervised learning framework with multi-source adaptation constraint, which is coined as L1-MSAL method. Moreover, to deal with the nonlinear learning problem, we also generalize the L1-MSAL method by mapping the input data points from the input space to a high-dimensional reproducing kernel Hilbert space (RKHS) via a nonlinear mapping. Promising experimental results have been obtained on several real-world datasets such as face, visual video and object. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transfer learning improves supervised image segmentation across imaging protocols.
van Opbroek, Annegreet; Ikram, M Arfan; Vernooij, Meike W; de Bruijne, Marleen
2015-05-01
The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.
A high performance parallel algorithm for 1-D FFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, R.C.; Gustavson, F.G.; Zubair, M.
1994-12-31
In this paper the authors propose a parallel high performance FFT algorithm based on a multi-dimensional formulation. They use this to solve a commonly encountered FFT based kernel on a distributed memory parallel machine, the IBM scalable parallel system, SP1. The kernel requires a forward FFT computation of an input sequence, multiplication of the transformed data by a coefficient array, and finally an inverse FFT computation of the resultant data. They show that the multi-dimensional formulation helps in reducing the communication costs and also improves the single node performance by effectively utilizing the memory system of the node. They implementedmore » this kernel on the IBM SP1 and observed a performance of 1.25 GFLOPS on a 64-node machine.« less
Protein Analysis Meets Visual Word Recognition: A Case for String Kernels in the Brain
ERIC Educational Resources Information Center
Hannagan, Thomas; Grainger, Jonathan
2012-01-01
It has been recently argued that some machine learning techniques known as Kernel methods could be relevant for capturing cognitive and neural mechanisms (Jakel, Scholkopf, & Wichmann, 2009). We point out that "String kernels," initially designed for protein function prediction and spam detection, are virtually identical to one contending proposal…
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.
Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E
2010-09-17
Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Jongin; Park, Hyeong-jun
2016-01-01
The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features (mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of imagined speech might contribute to the development of silent speech BCI systems. PMID:28097128
Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials.
Cuevas, Jaime; Granato, Italo; Fritsche-Neto, Roberto; Montesinos-Lopez, Osval A; Burgueño, Juan; Bandeira E Sousa, Massaine; Crossa, José
2018-03-28
In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multi-environment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines ([Formula: see text]) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy. Copyright © 2018 Cuevas et al.
Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials
Cuevas, Jaime; Granato, Italo; Fritsche-Neto, Roberto; Montesinos-Lopez, Osval A.; Burgueño, Juan; Bandeira e Sousa, Massaine; Crossa, José
2018-01-01
In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multi-environment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines (l) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy. PMID:29476023
Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.
Kwak, Nojun
2016-05-20
Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.
NASA Astrophysics Data System (ADS)
Vetrivel, Anand; Gerke, Markus; Kerle, Norman; Nex, Francesco; Vosselman, George
2018-06-01
Oblique aerial images offer views of both building roofs and façades, and thus have been recognized as a potential source to detect severe building damages caused by destructive disaster events such as earthquakes. Therefore, they represent an important source of information for first responders or other stakeholders involved in the post-disaster response process. Several automated methods based on supervised learning have already been demonstrated for damage detection using oblique airborne images. However, they often do not generalize well when data from new unseen sites need to be processed, hampering their practical use. Reasons for this limitation include image and scene characteristics, though the most prominent one relates to the image features being used for training the classifier. Recently features based on deep learning approaches, such as convolutional neural networks (CNNs), have been shown to be more effective than conventional hand-crafted features, and have become the state-of-the-art in many domains, including remote sensing. Moreover, often oblique images are captured with high block overlap, facilitating the generation of dense 3D point clouds - an ideal source to derive geometric characteristics. We hypothesized that the use of CNN features, either independently or in combination with 3D point cloud features, would yield improved performance in damage detection. To this end we used CNN and 3D features, both independently and in combination, using images from manned and unmanned aerial platforms over several geographic locations that vary significantly in terms of image and scene characteristics. A multiple-kernel-learning framework, an effective way for integrating features from different modalities, was used for combining the two sets of features for classification. The results are encouraging: while CNN features produced an average classification accuracy of about 91%, the integration of 3D point cloud features led to an additional improvement of about 3% (i.e. an average classification accuracy of 94%). The significance of 3D point cloud features becomes more evident in the model transferability scenario (i.e., training and testing samples from different sites that vary slightly in the aforementioned characteristics), where the integration of CNN and 3D point cloud features significantly improved the model transferability accuracy up to a maximum of 7% compared with the accuracy achieved by CNN features alone. Overall, an average accuracy of 85% was achieved for the model transferability scenario across all experiments. Our main conclusion is that such an approach qualifies for practical use.
Putting Priors in Mixture Density Mercer Kernels
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd
2004-01-01
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.
Towards Open-World Person Re-Identification by One-Shot Group-Based Verification.
Zheng, Wei-Shi; Gong, Shaogang; Xiang, Tao
2016-03-01
Solving the problem of matching people across non-overlapping multi-camera views, known as person re-identification (re-id), has received increasing interests in computer vision. In a real-world application scenario, a watch-list (gallery set) of a handful of known target people are provided with very few (in many cases only a single) image(s) (shots) per target. Existing re-id methods are largely unsuitable to address this open-world re-id challenge because they are designed for (1) a closed-world scenario where the gallery and probe sets are assumed to contain exactly the same people, (2) person-wise identification whereby the model attempts to verify exhaustively against each individual in the gallery set, and (3) learning a matching model using multi-shots. In this paper, a novel transfer local relative distance comparison (t-LRDC) model is formulated to address the open-world person re-identification problem by one-shot group-based verification. The model is designed to mine and transfer useful information from a labelled open-world non-target dataset. Extensive experiments demonstrate that the proposed approach outperforms both non-transfer learning and existing transfer learning based re-id methods.
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Efficient Multiple Kernel Learning Algorithms Using Low-Rank Representation.
Niu, Wenjia; Xia, Kewen; Zu, Baokai; Bai, Jianchuan
2017-01-01
Unlike Support Vector Machine (SVM), Multiple Kernel Learning (MKL) allows datasets to be free to choose the useful kernels based on their distribution characteristics rather than a precise one. It has been shown in the literature that MKL holds superior recognition accuracy compared with SVM, however, at the expense of time consuming computations. This creates analytical and computational difficulties in solving MKL algorithms. To overcome this issue, we first develop a novel kernel approximation approach for MKL and then propose an efficient Low-Rank MKL (LR-MKL) algorithm by using the Low-Rank Representation (LRR). It is well-acknowledged that LRR can reduce dimension while retaining the data features under a global low-rank constraint. Furthermore, we redesign the binary-class MKL as the multiclass MKL based on pairwise strategy. Finally, the recognition effect and efficiency of LR-MKL are verified on the datasets Yale, ORL, LSVT, and Digit. Experimental results show that the proposed LR-MKL algorithm is an efficient kernel weights allocation method in MKL and boosts the performance of MKL largely.
Kernel-based least squares policy iteration for reinforcement learning.
Xu, Xin; Hu, Dewen; Lu, Xicheng
2007-07-01
In this paper, we present a kernel-based least squares policy iteration (KLSPI) algorithm for reinforcement learning (RL) in large or continuous state spaces, which can be used to realize adaptive feedback control of uncertain dynamic systems. By using KLSPI, near-optimal control policies can be obtained without much a priori knowledge on dynamic models of control plants. In KLSPI, Mercer kernels are used in the policy evaluation of a policy iteration process, where a new kernel-based least squares temporal-difference algorithm called KLSTD-Q is proposed for efficient policy evaluation. To keep the sparsity and improve the generalization ability of KLSTD-Q solutions, a kernel sparsification procedure based on approximate linear dependency (ALD) is performed. Compared to the previous works on approximate RL methods, KLSPI makes two progresses to eliminate the main difficulties of existing results. One is the better convergence and (near) optimality guarantee by using the KLSTD-Q algorithm for policy evaluation with high precision. The other is the automatic feature selection using the ALD-based kernel sparsification. Therefore, the KLSPI algorithm provides a general RL method with generalization performance and convergence guarantee for large-scale Markov decision problems (MDPs). Experimental results on a typical RL task for a stochastic chain problem demonstrate that KLSPI can consistently achieve better learning efficiency and policy quality than the previous least squares policy iteration (LSPI) algorithm. Furthermore, the KLSPI method was also evaluated on two nonlinear feedback control problems, including a ship heading control problem and the swing up control of a double-link underactuated pendulum called acrobot. Simulation results illustrate that the proposed method can optimize controller performance using little a priori information of uncertain dynamic systems. It is also demonstrated that KLSPI can be applied to online learning control by incorporating an initial controller to ensure online performance.
An Ensemble Approach to Building Mercer Kernels with Prior Information
NASA Technical Reports Server (NTRS)
Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd
2005-01-01
This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly dimensional feature space. we describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using pre-defined kernels. These data adaptive kernels can encode prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. Specifically, we demonstrate the use of the algorithm in situations with extremely small samples of data. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS) and demonstrate the method's superior performance against standard methods. The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains templates for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic-algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code.
MO-G-17A-05: PET Image Deblurring Using Adaptive Dictionary Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiollahzadeh, S; Clark, J; Mawlawi, O
2014-06-15
Purpose: The aim of this work is to deblur PET images while suppressing Poisson noise effects using adaptive dictionary learning (DL) techniques. Methods: The model that relates a blurred and noisy PET image to the desired image is described as a linear transform y=Hm+n where m is the desired image, H is a blur kernel, n is Poisson noise and y is the blurred image. The approach we follow to recover m involves the sparse representation of y over a learned dictionary, since the image has lots of repeated patterns, edges, textures and smooth regions. The recovery is based onmore » an optimization of a cost function having four major terms: adaptive dictionary learning term, sparsity term, regularization term, and MLEM Poisson noise estimation term. The optimization is solved by a variable splitting method that introduces additional variables. We simulated a 128×128 Hoffman brain PET image (baseline) with varying kernel types and sizes (Gaussian 9×9, σ=5.4mm; Uniform 5×5, σ=2.9mm) with additive Poisson noise (Blurred). Image recovery was performed once when the kernel type was included in the model optimization and once with the model blinded to kernel type. The recovered image was compared to the baseline as well as another recovery algorithm PIDSPLIT+ (Setzer et. al.) by calculating PSNR (Peak SNR) and normalized average differences in pixel intensities (NADPI) of line profiles across the images. Results: For known kernel types, the PSNR of the Gaussian (Uniform) was 28.73 (25.1) and 25.18 (23.4) for DL and PIDSPLIT+ respectively. For blinded deblurring the PSNRs were 25.32 and 22.86 for DL and PIDSPLIT+ respectively. NADPI between baseline and DL, and baseline and blurred for the Gaussian kernel was 2.5 and 10.8 respectively. Conclusion: PET image deblurring using dictionary learning seems to be a good approach to restore image resolution in presence of Poisson noise. GE Health Care.« less
Online Feature Transformation Learning for Cross-Domain Object Category Recognition.
Zhang, Xuesong; Zhuang, Yan; Wang, Wei; Pedrycz, Witold
2017-06-09
In this paper, we introduce a new research problem termed online feature transformation learning in the context of multiclass object category recognition. The learning of a feature transformation is viewed as learning a global similarity metric function in an online manner. We first consider the problem of online learning a feature transformation matrix expressed in the original feature space and propose an online passive aggressive feature transformation algorithm. Then these original features are mapped to kernel space and an online single kernel feature transformation (OSKFT) algorithm is developed to learn a nonlinear feature transformation. Based on the OSKFT and the existing Hedge algorithm, a novel online multiple kernel feature transformation algorithm is also proposed, which can further improve the performance of online feature transformation learning in large-scale application. The classifier is trained with k nearest neighbor algorithm together with the learned similarity metric function. Finally, we experimentally examined the effect of setting different parameter values in the proposed algorithms and evaluate the model performance on several multiclass object recognition data sets. The experimental results demonstrate the validity and good performance of our methods on cross-domain and multiclass object recognition application.
Adaptive wiener image restoration kernel
Yuan, Ding [Henderson, NV
2007-06-05
A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models
Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A.; Burgueño, Juan; Pérez-Rodríguez, Paulino; de los Campos, Gustavo
2016-01-01
The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects (u) that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model (u) plus an extra component, f, that captures random effects between environments that were not captured by the random effects u. We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u. PMID:27793970
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.
Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A; Burgueño, Juan; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo
2017-01-05
The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]. Copyright © 2017 Cuevas et al.
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin
2015-10-01
The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.
Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance
Cruz-Bastida, Juan P.; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P.; Chen, Guang-Hong
2016-01-01
Purpose: The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. Methods: A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0–16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. Results: At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. Conclusions: The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions. PMID:27147351
Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong
2016-05-01
The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions.
Stochastic subset selection for learning with kernel machines.
Rhinelander, Jason; Liu, Xiaoping P
2012-06-01
Kernel machines have gained much popularity in applications of machine learning. Support vector machines (SVMs) are a subset of kernel machines and generalize well for classification, regression, and anomaly detection tasks. The training procedure for traditional SVMs involves solving a quadratic programming (QP) problem. The QP problem scales super linearly in computational effort with the number of training samples and is often used for the offline batch processing of data. Kernel machines operate by retaining a subset of observed data during training. The data vectors contained within this subset are referred to as support vectors (SVs). The work presented in this paper introduces a subset selection method for the use of kernel machines in online, changing environments. Our algorithm works by using a stochastic indexing technique when selecting a subset of SVs when computing the kernel expansion. The work described here is novel because it separates the selection of kernel basis functions from the training algorithm used. The subset selection algorithm presented here can be used in conjunction with any online training technique. It is important for online kernel machines to be computationally efficient due to the real-time requirements of online environments. Our algorithm is an important contribution because it scales linearly with the number of training samples and is compatible with current training techniques. Our algorithm outperforms standard techniques in terms of computational efficiency and provides increased recognition accuracy in our experiments. We provide results from experiments using both simulated and real-world data sets to verify our algorithm.
Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty
2017-12-01
Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.
Graph Kernels for Molecular Similarity.
Rupp, Matthias; Schneider, Gisbert
2010-04-12
Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scalable and Power Efficient Data Analytics for Hybrid Exascale Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Alok; Samatova, Nagiza; Wu, Kesheng
This project developed a generic and optimized set of core data analytics functions. These functions organically consolidate a broad constellation of high performance analytical pipelines. As the architectures of emerging HPC systems become inherently heterogeneous, there is a need to design algorithms for data analysis kernels accelerated on hybrid multi-node, multi-core HPC architectures comprised of a mix of CPUs, GPUs, and SSDs. Furthermore, the power-aware trend drives the advances in our performance-energy tradeoff analysis framework which enables our data analysis kernels algorithms and software to be parameterized so that users can choose the right power-performance optimizations.
NASA Astrophysics Data System (ADS)
Ma, Qian; Xia, Houping; Xu, Qiang; Zhao, Lei
2018-05-01
A new method combining Tikhonov regularization and kernel matrix optimization by multi-wavelength incidence is proposed for retrieving particle size distribution (PSD) in an independent model with improved accuracy and stability. In comparison to individual regularization or multi-wavelength least squares, the proposed method exhibited better anti-noise capability, higher accuracy and stability. While standard regularization typically makes use of the unit matrix, it is not universal for different PSDs, particularly for Junge distributions. Thus, a suitable regularization matrix was chosen by numerical simulation, with the second-order differential matrix found to be appropriate for most PSD types.
NASA Astrophysics Data System (ADS)
Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza
2017-06-01
Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.
Performance Assessment of Kernel Density Clustering for Gene Expression Profile Data
Zeng, Beiyan; Chen, Yiping P.; Smith, Oscar H.
2003-01-01
Kernel density smoothing techniques have been used in classification or supervised learning of gene expression profile (GEP) data, but their applications to clustering or unsupervised learning of those data have not been explored and assessed. Here we report a kernel density clustering method for analysing GEP data and compare its performance with the three most widely-used clustering methods: hierarchical clustering, K-means clustering, and multivariate mixture model-based clustering. Using several methods to measure agreement, between-cluster isolation, and withincluster coherence, such as the Adjusted Rand Index, the Pseudo F test, the r2 test, and the profile plot, we have assessed the effectiveness of kernel density clustering for recovering clusters, and its robustness against noise on clustering both simulated and real GEP data. Our results show that the kernel density clustering method has excellent performance in recovering clusters from simulated data and in grouping large real expression profile data sets into compact and well-isolated clusters, and that it is the most robust clustering method for analysing noisy expression profile data compared to the other three methods assessed. PMID:18629292
Intelligent Control of a Sensor-Actuator System via Kernelized Least-Squares Policy Iteration
Liu, Bo; Chen, Sanfeng; Li, Shuai; Liang, Yongsheng
2012-01-01
In this paper a new framework, called Compressive Kernelized Reinforcement Learning (CKRL), for computing near-optimal policies in sequential decision making with uncertainty is proposed via incorporating the non-adaptive data-independent Random Projections and nonparametric Kernelized Least-squares Policy Iteration (KLSPI). Random Projections are a fast, non-adaptive dimensionality reduction framework in which high-dimensionality data is projected onto a random lower-dimension subspace via spherically random rotation and coordination sampling. KLSPI introduce kernel trick into the LSPI framework for Reinforcement Learning, often achieving faster convergence and providing automatic feature selection via various kernel sparsification approaches. In this approach, policies are computed in a low-dimensional subspace generated by projecting the high-dimensional features onto a set of random basis. We first show how Random Projections constitute an efficient sparsification technique and how our method often converges faster than regular LSPI, while at lower computational costs. Theoretical foundation underlying this approach is a fast approximation of Singular Value Decomposition (SVD). Finally, simulation results are exhibited on benchmark MDP domains, which confirm gains both in computation time and in performance in large feature spaces. PMID:22736969
ℓ(p)-Norm multikernel learning approach for stock market price forecasting.
Shao, Xigao; Wu, Kun; Liao, Bifeng
2012-01-01
Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ(1)-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ(p)-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ(1)-norm multiple support vector regression model.
Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar
2017-01-01
Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems. PMID:29099838
Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar
2017-01-01
Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems.
Online Pairwise Learning Algorithms.
Ying, Yiming; Zhou, Ding-Xuan
2016-04-01
Pairwise learning usually refers to a learning task that involves a loss function depending on pairs of examples, among which the most notable ones are bipartite ranking, metric learning, and AUC maximization. In this letter we study an online algorithm for pairwise learning with a least-square loss function in an unconstrained setting of a reproducing kernel Hilbert space (RKHS) that we refer to as the Online Pairwise lEaRning Algorithm (OPERA). In contrast to existing works (Kar, Sriperumbudur, Jain, & Karnick, 2013 ; Wang, Khardon, Pechyony, & Jones, 2012 ), which require that the iterates are restricted to a bounded domain or the loss function is strongly convex, OPERA is associated with a non-strongly convex objective function and learns the target function in an unconstrained RKHS. Specifically, we establish a general theorem that guarantees the almost sure convergence for the last iterate of OPERA without any assumptions on the underlying distribution. Explicit convergence rates are derived under the condition of polynomially decaying step sizes. We also establish an interesting property for a family of widely used kernels in the setting of pairwise learning and illustrate the convergence results using such kernels. Our methodology mainly depends on the characterization of RKHSs using its associated integral operators and probability inequalities for random variables with values in a Hilbert space.
Zeng, Ling-Li; Wang, Huaning; Hu, Panpan; Yang, Bo; Pu, Weidan; Shen, Hui; Chen, Xingui; Liu, Zhening; Yin, Hong; Tan, Qingrong; Wang, Kai; Hu, Dewen
2018-04-01
A lack of a sufficiently large sample at single sites causes poor generalizability in automatic diagnosis classification of heterogeneous psychiatric disorders such as schizophrenia based on brain imaging scans. Advanced deep learning methods may be capable of learning subtle hidden patterns from high dimensional imaging data, overcome potential site-related variation, and achieve reproducible cross-site classification. However, deep learning-based cross-site transfer classification, despite less imaging site-specificity and more generalizability of diagnostic models, has not been investigated in schizophrenia. A large multi-site functional MRI sample (n = 734, including 357 schizophrenic patients from seven imaging resources) was collected, and a deep discriminant autoencoder network, aimed at learning imaging site-shared functional connectivity features, was developed to discriminate schizophrenic individuals from healthy controls. Accuracies of approximately 85·0% and 81·0% were obtained in multi-site pooling classification and leave-site-out transfer classification, respectively. The learned functional connectivity features revealed dysregulation of the cortical-striatal-cerebellar circuit in schizophrenia, and the most discriminating functional connections were primarily located within and across the default, salience, and control networks. The findings imply that dysfunctional integration of the cortical-striatal-cerebellar circuit across the default, salience, and control networks may play an important role in the "disconnectivity" model underlying the pathophysiology of schizophrenia. The proposed discriminant deep learning method may be capable of learning reliable connectome patterns and help in understanding the pathophysiology and achieving accurate prediction of schizophrenia across multiple independent imaging sites. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.
Gromski, Piotr S; Correa, Elon; Vaughan, Andrew A; Wedge, David C; Turner, Michael L; Goodacre, Royston
2014-11-01
Accurate detection of certain chemical vapours is important, as these may be diagnostic for the presence of weapons, drugs of misuse or disease. In order to achieve this, chemical sensors could be deployed remotely. However, the readout from such sensors is a multivariate pattern, and this needs to be interpreted robustly using powerful supervised learning methods. Therefore, in this study, we compared the classification accuracy of four pattern recognition algorithms which include linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), random forests (RF) and support vector machines (SVM) which employed four different kernels. For this purpose, we have used electronic nose (e-nose) sensor data (Wedge et al., Sensors Actuators B Chem 143:365-372, 2009). In order to allow direct comparison between our four different algorithms, we employed two model validation procedures based on either 10-fold cross-validation or bootstrapping. The results show that LDA (91.56% accuracy) and SVM with a polynomial kernel (91.66% accuracy) were very effective at analysing these e-nose data. These two models gave superior prediction accuracy, sensitivity and specificity in comparison to the other techniques employed. With respect to the e-nose sensor data studied here, our findings recommend that SVM with a polynomial kernel should be favoured as a classification method over the other statistical models that we assessed. SVM with non-linear kernels have the advantage that they can be used for classifying non-linear as well as linear mapping from analytical data space to multi-group classifications and would thus be a suitable algorithm for the analysis of most e-nose sensor data.
NASA Astrophysics Data System (ADS)
Dai, Jun; Zhou, Haigang; Zhao, Shaoquan
2017-01-01
This paper considers a multi-scale future hedge strategy that minimizes lower partial moments (LPM). To do this, wavelet analysis is adopted to decompose time series data into different components. Next, different parametric estimation methods with known distributions are applied to calculate the LPM of hedged portfolios, which is the key to determining multi-scale hedge ratios over different time scales. Then these parametric methods are compared with the prevailing nonparametric kernel metric method. Empirical results indicate that in the China Securities Index 300 (CSI 300) index futures and spot markets, hedge ratios and hedge efficiency estimated by the nonparametric kernel metric method are inferior to those estimated by parametric hedging model based on the features of sequence distributions. In addition, if minimum-LPM is selected as a hedge target, the hedging periods, degree of risk aversion, and target returns can affect the multi-scale hedge ratios and hedge efficiency, respectively.
Metabolic network prediction through pairwise rational kernels.
Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian
2014-09-26
Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy values have been improved, while maintaining lower construction and execution times. The power of using kernels is that almost any sort of data can be represented using kernels. Therefore, completely disparate types of data can be combined to add power to kernel-based machine learning methods. When we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.
Multiple kernel learning in protein-protein interaction extraction from biomedical literature.
Yang, Zhihao; Tang, Nan; Zhang, Xiao; Lin, Hongfei; Li, Yanpeng; Yang, Zhiwei
2011-03-01
Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. The volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database administrators, responsible for content input and maintenance to detect and manually update protein interaction information. The objective of this work is to develop an effective approach to automatic extraction of PPI information from biomedical literature. We present a weighted multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, graph and part-of-speech (POS) path. In particular, we extend the shortest path-enclosed tree (SPT) and dependency path tree to capture richer contextual information. Our experimental results show that the combination of SPT and dependency path tree extensions contributes to the improvement of performance by almost 0.7 percentage units in F-score and 2 percentage units in area under the receiver operating characteristics curve (AUC). Combining two or more appropriately weighed individual will further improve the performance. Both on the individual corpus and cross-corpus evaluation our combined kernel can achieve state-of-the-art performance with respect to comparable evaluations, with 64.41% F-score and 88.46% AUC on the AImed corpus. As different kernels calculate the similarity between two sentences from different aspects. Our combined kernel can reduce the risk of missing important features. More specifically, we use a weighted linear combination of individual kernels instead of assigning the same weight to each individual kernel, thus allowing the introduction of each kernel to incrementally contribute to the performance improvement. In addition, SPT and dependency path tree extensions can improve the performance by including richer context information. Copyright © 2010 Elsevier B.V. All rights reserved.
Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing
2017-12-28
Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system outperforms state-of-the-art plankton image classification systems in terms of accuracy and robustness. This study demonstrated automatic plankton image classification system combining multiple view features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features better so that achieve a higher classification accuracy.
Modeling adaptive kernels from probabilistic phylogenetic trees.
Nicotra, Luca; Micheli, Alessio
2009-01-01
Modeling phylogenetic interactions is an open issue in many computational biology problems. In the context of gene function prediction we introduce a class of kernels for structured data leveraging on a hierarchical probabilistic modeling of phylogeny among species. We derive three kernels belonging to this setting: a sufficient statistics kernel, a Fisher kernel, and a probability product kernel. The new kernels are used in the context of support vector machine learning. The kernels adaptivity is obtained through the estimation of the parameters of a tree structured model of evolution using as observed data phylogenetic profiles encoding the presence or absence of specific genes in a set of fully sequenced genomes. We report results obtained in the prediction of the functional class of the proteins of the budding yeast Saccharomyces cerevisae which favorably compare to a standard vector based kernel and to a non-adaptive tree kernel function. A further comparative analysis is performed in order to assess the impact of the different components of the proposed approach. We show that the key features of the proposed kernels are the adaptivity to the input domain and the ability to deal with structured data interpreted through a graphical model representation.
USDA-ARS?s Scientific Manuscript database
Rice (Oryza sativa L.) kernel fissuring increases breakage during milling and decreases the value of processed rice. This study employed molecular gene tagging methods to fine-map a fissure resistance (FR) locus in ‘Cybonnet’, a semidwarf tropical japonica cultivar, as well as transfer this trait to...
Transfer of soft kernel texture from Triticum aestivum to durum wheat, Triticum turgidum ssp. durum
USDA-ARS?s Scientific Manuscript database
Durum wheat (Triticum turgidum ssp. durum) is a leading cereal grain whose primary use is the production of semolina and then pasta. Its rich culinary relationship to humans is related, in part, to its very hard kernel texture. This very hard texture is due to the loss of the Puroindoline genes whi...
NASA Astrophysics Data System (ADS)
Kidd, J. N.; Selznick, S.; Hergenrother, C. W.
2018-04-01
From our lessons learned and SPICE expertise, we lay out the features and capabilities of a new web-based tool to provide an accessible platform to obtain context and informatics from a planetary mission's SPICE kernels.
Adaptive learning in complex reproducing kernel Hilbert spaces employing Wirtinger's subgradients.
Bouboulis, Pantelis; Slavakis, Konstantinos; Theodoridis, Sergios
2012-03-01
This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.
Parallel mutual information estimation for inferring gene regulatory networks on GPUs
2011-01-01
Background Mutual information is a measure of similarity between two variables. It has been widely used in various application domains including computational biology, machine learning, statistics, image processing, and financial computing. Previously used simple histogram based mutual information estimators lack the precision in quality compared to kernel based methods. The recently introduced B-spline function based mutual information estimation method is competitive to the kernel based methods in terms of quality but at a lower computational complexity. Results We present a new approach to accelerate the B-spline function based mutual information estimation algorithm with commodity graphics hardware. To derive an efficient mapping onto this type of architecture, we have used the Compute Unified Device Architecture (CUDA) programming model to design and implement a new parallel algorithm. Our implementation, called CUDA-MI, can achieve speedups of up to 82 using double precision on a single GPU compared to a multi-threaded implementation on a quad-core CPU for large microarray datasets. We have used the results obtained by CUDA-MI to infer gene regulatory networks (GRNs) from microarray data. The comparisons to existing methods including ARACNE and TINGe show that CUDA-MI produces GRNs of higher quality in less time. Conclusions CUDA-MI is publicly available open-source software, written in CUDA and C++ programming languages. It obtains significant speedup over sequential multi-threaded implementation by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs. PMID:21672264
Compound analysis via graph kernels incorporating chirality.
Brown, J B; Urata, Takashi; Tamura, Takeyuki; Arai, Midori A; Kawabata, Takeo; Akutsu, Tatsuya
2010-12-01
High accuracy is paramount when predicting biochemical characteristics using Quantitative Structural-Property Relationships (QSPRs). Although existing graph-theoretic kernel methods combined with machine learning techniques are efficient for QSPR model construction, they cannot distinguish topologically identical chiral compounds which often exhibit different biological characteristics. In this paper, we propose a new method that extends the recently developed tree pattern graph kernel to accommodate stereoisomers. We show that Support Vector Regression (SVR) with a chiral graph kernel is useful for target property prediction by demonstrating its application to a set of human vitamin D receptor ligands currently under consideration for their potential anti-cancer effects.
Kanbay's Global Leadership Development Program: A Case Study of Virtual Action Learning
ERIC Educational Resources Information Center
Marsh, Catherine; Johnson, Carrie
2005-01-01
This study examines action learning as a vehicle for the transfer of organizational values in a multi-cultural, virtual-team based leadership development process. A Case Study of Kanbay International's Global Leadership Development Program is used as a lens through which HRD researchers and practitioners may glimpse new possibilities for the…
ℓ p-Norm Multikernel Learning Approach for Stock Market Price Forecasting
Shao, Xigao; Wu, Kun; Liao, Bifeng
2012-01-01
Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ 1-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ p-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ 1-norm multiple support vector regression model. PMID:23365561
NASA Astrophysics Data System (ADS)
Okamura, Rintaro; Iwabuchi, Hironobu; Schmidt, K. Sebastian
2017-12-01
Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.
Collegial Activity Learning between Heterogeneous Sensors.
Feuz, Kyle D; Cook, Diane J
2017-11-01
Activity recognition algorithms have matured and become more ubiquitous in recent years. However, these algorithms are typically customized for a particular sensor platform. In this paper we introduce PECO, a Personalized activity ECOsystem, that transfers learned activity information seamlessly between sensor platforms in real time so that any available sensor can continue to track activities without requiring its own extensive labeled training data. We introduce a multi-view transfer learning algorithm that facilitates this information handoff between sensor platforms and provide theoretical performance bounds for the algorithm. In addition, we empirically evaluate PECO using datasets that utilize heterogeneous sensor platforms to perform activity recognition. These results indicate that not only can activity recognition algorithms transfer important information to new sensor platforms, but any number of platforms can work together as colleagues to boost performance.
A Novel Weighted Kernel PCA-Based Method for Optimization and Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Thimmisetty, C.; Talbot, C.; Chen, X.; Tong, C. H.
2016-12-01
It has been demonstrated that machine learning methods can be successfully applied to uncertainty quantification for geophysical systems through the use of the adjoint method coupled with kernel PCA-based optimization. In addition, it has been shown through weighted linear PCA how optimization with respect to both observation weights and feature space control variables can accelerate convergence of such methods. Linear machine learning methods, however, are inherently limited in their ability to represent features of non-Gaussian stochastic random fields, as they are based on only the first two statistical moments of the original data. Nonlinear spatial relationships and multipoint statistics leading to the tortuosity characteristic of channelized media, for example, are captured only to a limited extent by linear PCA. With the aim of coupling the kernel-based and weighted methods discussed, we present a novel mathematical formulation of kernel PCA, Weighted Kernel Principal Component Analysis (WKPCA), that both captures nonlinear relationships and incorporates the attribution of significance levels to different realizations of the stochastic random field of interest. We also demonstrate how new instantiations retaining defining characteristics of the random field can be generated using Bayesian methods. In particular, we present a novel WKPCA-based optimization method that minimizes a given objective function with respect to both feature space random variables and observation weights through which optimal snapshot significance levels and optimal features are learned. We showcase how WKPCA can be applied to nonlinear optimal control problems involving channelized media, and in particular demonstrate an application of the method to learning the spatial distribution of material parameter values in the context of linear elasticity, and discuss further extensions of the method to stochastic inversion.
Effects of Motion Cues on the Training of Multi-Axis Manual Control Skills
NASA Technical Reports Server (NTRS)
Zaal, Peter M. T.; Mobertz, Xander R. I.
2017-01-01
The study described in this paper investigated the effects of two different hexapod motion configurations on the training and transfer of training of a simultaneous roll and pitch control task. Pilots were divided between two groups which trained either under a baseline hexapod motion condition, with motion typically provided by current training simulators, or an optimized hexapod motion condition, with increased fidelity of the motion cues most relevant for the task. All pilots transferred to the same full-motion condition, representing motion experienced in flight. A cybernetic approach was used that gave insights into the development of pilots use of visual and motion cues over the course of training and after transfer. Based on the current results, neither of the hexapod motion conditions can unambiguously be chosen as providing the best motion for training and transfer of training of the used multi-axis control task. However, the optimized hexapod motion condition did allow pilots to generate less visual lead, control with higher gains, and have better disturbance-rejection performance at the end of the training session compared to the baseline hexapod motion condition. Significant adaptations in control behavior still occurred in the transfer phase under the full-motion condition for both groups. Pilots behaved less linearly compared to previous single-axis control-task experiments; however, this did not result in smaller motion or learning effects. Motion and learning effects were more pronounced in pitch compared to roll. Finally, valuable lessons were learned that allow us to improve the adopted approach for future transfer-of-training studies.
Future climate scenarios and rainfall--runoff modelling in the Upper Gallego catchment (Spain).
Bürger, C M; Kolditz, O; Fowler, H J; Blenkinsop, S
2007-08-01
Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydrologic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily gauge data. The models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system.
Qiao, Xiaojun; Jiang, Jinbao; Qi, Xiaotong; Guo, Haiqiang; Yuan, Deshuai
2017-04-01
It's well-known fungi-contaminated peanuts contain potent carcinogen. Efficiently identifying and separating the contaminated can help prevent aflatoxin entering in food chain. In this study, shortwave infrared (SWIR) hyperspectral images for identifying the prepared contaminated kernels. Feature selection method of analysis of variance (ANOVA) and feature extraction method of nonparametric weighted feature extraction (NWFE) were used to concentrate spectral information into a subspace where contaminated and healthy peanuts can have favorable separability. Then, peanut pixels were classified using SVM. Moreover, image segmentation method of region growing was applied to segment the image as kernel-scale patches and meanwhile to number the kernels. The result shows that pixel-wise classification accuracies are 99.13% for breed A, 96.72% for B and 99.73% for C in learning images, and are 96.32%, 94.2% and 97.51% in validation images. Contaminated peanuts were correctly marked as aberrant kernels in both learning images and validation images. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
Zhu, Qingxin; Niu, Xinzheng
2016-01-01
By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms. PMID:27436996
Zhang, Chunyuan; Zhu, Qingxin; Niu, Xinzheng
2016-01-01
By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms.
Oh, Jooyoung; Cho, Dongrae; Park, Jaesub; Na, Se Hee; Kim, Jongin; Heo, Jaeseok; Shin, Cheung Soo; Kim, Jae-Jin; Park, Jin Young; Lee, Boreom
2018-03-27
Delirium is an important syndrome found in patients in the intensive care unit (ICU), however, it is usually under-recognized during treatment. This study was performed to investigate whether delirious patients can be successfully distinguished from non-delirious patients by using heart rate variability (HRV) and machine learning. Electrocardiography data of 140 patients was acquired during daily ICU care, and HRV data were analyzed. Delirium, including its type, severity, and etiologies, was evaluated daily by trained psychiatrists. HRV data and various machine learning algorithms including linear support vector machine (SVM), SVM with radial basis function (RBF) kernels, linear extreme learning machine (ELM), ELM with RBF kernels, linear discriminant analysis, and quadratic discriminant analysis were utilized to distinguish delirium patients from non-delirium patients. HRV data of 4797 ECGs were included, and 39 patients had delirium at least once during their ICU stay. The maximum classification accuracy was acquired using SVM with RBF kernels. Our prediction method based on HRV with machine learning was comparable to previous delirium prediction models using massive amounts of clinical information. Our results show that autonomic alterations could be a significant feature of patients with delirium in the ICU, suggesting the potential for the automatic prediction and early detection of delirium based on HRV with machine learning.
Meinicke, Peter; Tech, Maike; Morgenstern, Burkhard; Merkl, Rainer
2004-01-01
Background Kernel-based learning algorithms are among the most advanced machine learning methods and have been successfully applied to a variety of sequence classification tasks within the field of bioinformatics. Conventional kernels utilized so far do not provide an easy interpretation of the learnt representations in terms of positional and compositional variability of the underlying biological signals. Results We propose a kernel-based approach to datamining on biological sequences. With our method it is possible to model and analyze positional variability of oligomers of any length in a natural way. On one hand this is achieved by mapping the sequences to an intuitive but high-dimensional feature space, well-suited for interpretation of the learnt models. On the other hand, by means of the kernel trick we can provide a general learning algorithm for that high-dimensional representation because all required statistics can be computed without performing an explicit feature space mapping of the sequences. By introducing a kernel parameter that controls the degree of position-dependency, our feature space representation can be tailored to the characteristics of the biological problem at hand. A regularized learning scheme enables application even to biological problems for which only small sets of example sequences are available. Our approach includes a visualization method for transparent representation of characteristic sequence features. Thereby importance of features can be measured in terms of discriminative strength with respect to classification of the underlying sequences. To demonstrate and validate our concept on a biochemically well-defined case, we analyze E. coli translation initiation sites in order to show that we can find biologically relevant signals. For that case, our results clearly show that the Shine-Dalgarno sequence is the most important signal upstream a start codon. The variability in position and composition we found for that signal is in accordance with previous biological knowledge. We also find evidence for signals downstream of the start codon, previously introduced as transcriptional enhancers. These signals are mainly characterized by occurrences of adenine in a region of about 4 nucleotides next to the start codon. Conclusions We showed that the oligo kernel can provide a valuable tool for the analysis of relevant signals in biological sequences. In the case of translation initiation sites we could clearly deduce the most discriminative motifs and their positional variation from example sequences. Attractive features of our approach are its flexibility with respect to oligomer length and position conservation. By means of these two parameters oligo kernels can easily be adapted to different biological problems. PMID:15511290
Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction
NASA Astrophysics Data System (ADS)
Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc
2018-02-01
Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.
ERIC Educational Resources Information Center
Nielsen, Louise; Heffernan, Claire; Lin, Yibo; Yu, Jun
2010-01-01
This article describes the findings from the assessment of a touch-screen, multi-media learning program on livestock health and production: "The Daktari." The program was tested on a sample of 62 livestock keepers in the Nairobi slums of Kariobangi and Kibera. The study examined prior knowledge regarding three livestock diseases (liver…
Speicher, Nora K; Pfeifer, Nico
2015-06-15
Despite ongoing cancer research, available therapies are still limited in quantity and effectiveness, and making treatment decisions for individual patients remains a hard problem. Established subtypes, which help guide these decisions, are mainly based on individual data types. However, the analysis of multidimensional patient data involving the measurements of various molecular features could reveal intrinsic characteristics of the tumor. Large-scale projects accumulate this kind of data for various cancer types, but we still lack the computational methods to reliably integrate this information in a meaningful manner. Therefore, we apply and extend current multiple kernel learning for dimensionality reduction approaches. On the one hand, we add a regularization term to avoid overfitting during the optimization procedure, and on the other hand, we show that one can even use several kernels per data type and thereby alleviate the user from having to choose the best kernel functions and kernel parameters for each data type beforehand. We have identified biologically meaningful subgroups for five different cancer types. Survival analysis has revealed significant differences between the survival times of the identified subtypes, with P values comparable or even better than state-of-the-art methods. Moreover, our resulting subtypes reflect combined patterns from the different data sources, and we demonstrate that input kernel matrices with only little information have less impact on the integrated kernel matrix. Our subtypes show different responses to specific therapies, which could eventually assist in treatment decision making. An executable is available upon request. © The Author 2015. Published by Oxford University Press.
NASA Technical Reports Server (NTRS)
Kershaw, David S.; Prasad, Manoj K.; Beason, J. Douglas
1986-01-01
The Klein-Nishina differential cross section averaged over a relativistic Maxwellian electron distribution is analytically reduced to a single integral, which can then be rapidly evaluated in a variety of ways. A particularly fast method for numerically computing this single integral is presented. This is, to the authors' knowledge, the first correct computation of the Compton scattering kernel.
NASA Astrophysics Data System (ADS)
Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny
2018-02-01
Deep-learning models are highly parameterized, causing difficulty in inference and transfer learning. We propose a layered pathway evolution method to compress a deep convolutional neural network (DCNN) for classification of masses in DBT while maintaining the classification accuracy. Two-stage transfer learning was used to adapt the ImageNet-trained DCNN to mammography and then to DBT. In the first-stage transfer learning, transfer learning from ImageNet trained DCNN was performed using mammography data. In the second-stage transfer learning, the mammography-trained DCNN was trained on the DBT data using feature extraction from fully connected layer, recursive feature elimination and random forest classification. The layered pathway evolution encapsulates the feature extraction to the classification stages to compress the DCNN. Genetic algorithm was used in an iterative approach with tournament selection driven by count-preserving crossover and mutation to identify the necessary nodes in each convolution layer while eliminating the redundant nodes. The DCNN was reduced by 99% in the number of parameters and 95% in mathematical operations in the convolutional layers. The lesion-based area under the receiver operating characteristic curve on an independent DBT test set from the original and the compressed network resulted in 0.88+/-0.05 and 0.90+/-0.04, respectively. The difference did not reach statistical significance. We demonstrated a DCNN compression approach without additional fine-tuning or loss of performance for classification of masses in DBT. The approach can be extended to other DCNNs and transfer learning tasks. An ensemble of these smaller and focused DCNNs has the potential to be used in multi-target transfer learning.
Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam
2016-01-01
Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches. PMID:26927111
Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam
2016-02-25
Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches.
A kernel adaptive algorithm for quaternion-valued inputs.
Paul, Thomas K; Ogunfunmi, Tokunbo
2015-10-01
The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations.
NASA Astrophysics Data System (ADS)
Hellgren, Maria; Gross, E. K. U.
2013-11-01
We present a detailed study of the exact-exchange (EXX) kernel of time-dependent density-functional theory with an emphasis on its discontinuity at integer particle numbers. It was recently found that this exact property leads to sharp peaks and step features in the kernel that diverge in the dissociation limit of diatomic systems [Hellgren and Gross, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.85.022514 85, 022514 (2012)]. To further analyze the discontinuity of the kernel, we here make use of two different approximations to the EXX kernel: the Petersilka Gossmann Gross (PGG) approximation and a common energy denominator approximation (CEDA). It is demonstrated that whereas the PGG approximation neglects the discontinuity, the CEDA includes it explicitly. By studying model molecular systems it is shown that the so-called field-counteracting effect in the density-functional description of molecular chains can be viewed in terms of the discontinuity of the static kernel. The role of the frequency dependence is also investigated, highlighting its importance for long-range charge-transfer excitations as well as inner-shell excitations.
Application of kernel method in fluorescence molecular tomography
NASA Astrophysics Data System (ADS)
Zhao, Yue; Baikejiang, Reheman; Li, Changqing
2017-02-01
Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.
2013-01-01
Background Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular information that are capable of capturing complex genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel. Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite, past research has mainly used a Gaussian kernel. Results We sought to investigate the performance of a diffusion kernel, which was specifically developed to model discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the difference in performance between the diffusion and Gaussian kernels was negligible. Conclusions It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance. PMID:23763755
NASA Astrophysics Data System (ADS)
Niazmardi, S.; Safari, A.; Homayouni, S.
2017-09-01
Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.
A Distributed Learning Method for ℓ1-Regularized Kernel Machine over Wireless Sensor Networks
Ji, Xinrong; Hou, Cuiqin; Hou, Yibin; Gao, Fang; Wang, Shulong
2016-01-01
In wireless sensor networks, centralized learning methods have very high communication costs and energy consumption. These are caused by the need to transmit scattered training examples from various sensor nodes to the central fusion center where a classifier or a regression machine is trained. To reduce the communication cost, a distributed learning method for a kernel machine that incorporates ℓ1 norm regularization (ℓ1-regularized) is investigated, and a novel distributed learning algorithm for the ℓ1-regularized kernel minimum mean squared error (KMSE) machine is proposed. The proposed algorithm relies on in-network processing and a collaboration that transmits the sparse model only between single-hop neighboring nodes. This paper evaluates the proposed algorithm with respect to the prediction accuracy, the sparse rate of model, the communication cost and the number of iterations on synthetic and real datasets. The simulation results show that the proposed algorithm can obtain approximately the same prediction accuracy as that obtained by the batch learning method. Moreover, it is significantly superior in terms of the sparse rate of model and communication cost, and it can converge with fewer iterations. Finally, an experiment conducted on a wireless sensor network (WSN) test platform further shows the advantages of the proposed algorithm with respect to communication cost. PMID:27376298
Optimized extreme learning machine for urban land cover classification using hyperspectral imagery
NASA Astrophysics Data System (ADS)
Su, Hongjun; Tian, Shufang; Cai, Yue; Sheng, Yehua; Chen, Chen; Najafian, Maryam
2017-12-01
This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Gaussian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.
Hussain, Lal
2018-06-01
Epilepsy is a neurological disorder produced due to abnormal excitability of neurons in the brain. The research reveals that brain activity is monitored through electroencephalogram (EEG) of patients suffered from seizure to detect the epileptic seizure. The performance of EEG detection based epilepsy require feature extracting strategies. In this research, we have extracted varying features extracting strategies based on time and frequency domain characteristics, nonlinear, wavelet based entropy and few statistical features. A deeper study was undertaken using novel machine learning classifiers by considering multiple factors. The support vector machine kernels are evaluated based on multiclass kernel and box constraint level. Likewise, for K-nearest neighbors (KNN), we computed the different distance metrics, Neighbor weights and Neighbors. Similarly, the decision trees we tuned the paramours based on maximum splits and split criteria and ensemble classifiers are evaluated based on different ensemble methods and learning rate. For training/testing tenfold Cross validation was employed and performance was evaluated in form of TPR, NPR, PPV, accuracy and AUC. In this research, a deeper analysis approach was performed using diverse features extracting strategies using robust machine learning classifiers with more advanced optimal options. Support Vector Machine linear kernel and KNN with City block distance metric give the overall highest accuracy of 99.5% which was higher than using the default parameters for these classifiers. Moreover, highest separation (AUC = 0.9991, 0.9990) were obtained at different kernel scales using SVM. Additionally, the K-nearest neighbors with inverse squared distance weight give higher performance at different Neighbors. Moreover, to distinguish the postictal heart rate oscillations from epileptic ictal subjects, and highest performance of 100% was obtained using different machine learning classifiers.
Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.
Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong
2017-09-01
The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.
Osteoarthritis Severity Determination using Self Organizing Map Based Gabor Kernel
NASA Astrophysics Data System (ADS)
Anifah, L.; Purnomo, M. H.; Mengko, T. L. R.; Purnama, I. K. E.
2018-02-01
The number of osteoarthritis patients in Indonesia is enormous, so early action is needed in order for this disease to be handled. The aim of this paper to determine osteoarthritis severity based on x-ray image template based on gabor kernel. This research is divided into 3 stages, the first step is image processing that is using gabor kernel. The second stage is the learning stage, and the third stage is the testing phase. The image processing stage is by normalizing the image dimension to be template to 50 □ 200 image. Learning stage is done with parameters initial learning rate of 0.5 and the total number of iterations of 1000. The testing stage is performed using the weights generated at the learning stage. The testing phase has been done and the results were obtained. The result shows KL-Grade 0 has an accuracy of 36.21%, accuracy for KL-Grade 2 is 40,52%, while accuracy for KL-Grade 2 and KL-Grade 3 are 15,52%, and 25,86%. The implication of this research is expected that this research as decision support system for medical practitioners in determining KL-Grade on X-ray images of knee osteoarthritis.
Generalized multiple kernel learning with data-dependent priors.
Mao, Qi; Tsang, Ivor W; Gao, Shenghua; Wang, Li
2015-06-01
Multiple kernel learning (MKL) and classifier ensemble are two mainstream methods for solving learning problems in which some sets of features/views are more informative than others, or the features/views within a given set are inconsistent. In this paper, we first present a novel probabilistic interpretation of MKL such that maximum entropy discrimination with a noninformative prior over multiple views is equivalent to the formulation of MKL. Instead of using the noninformative prior, we introduce a novel data-dependent prior based on an ensemble of kernel predictors, which enhances the prediction performance of MKL by leveraging the merits of the classifier ensemble. With the proposed probabilistic framework of MKL, we propose a hierarchical Bayesian model to learn the proposed data-dependent prior and classification model simultaneously. The resultant problem is convex and other information (e.g., instances with either missing views or missing labels) can be seamlessly incorporated into the data-dependent priors. Furthermore, a variety of existing MKL models can be recovered under the proposed MKL framework and can be readily extended to incorporate these priors. Extensive experiments demonstrate the benefits of our proposed framework in supervised and semisupervised settings, as well as in tasks with partial correspondence among multiple views.
A framework for optimal kernel-based manifold embedding of medical image data.
Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma
2015-04-01
Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sørensen, Lauge; Nielsen, Mads
2018-05-15
The International Challenge for Automated Prediction of MCI from MRI data offered independent, standardized comparison of machine learning algorithms for multi-class classification of normal control (NC), mild cognitive impairment (MCI), converting MCI (cMCI), and Alzheimer's disease (AD) using brain imaging and general cognition. We proposed to use an ensemble of support vector machines (SVMs) that combined bagging without replacement and feature selection. SVM is the most commonly used algorithm in multivariate classification of dementia, and it was therefore valuable to evaluate the potential benefit of ensembling this type of classifier. The ensemble SVM, using either a linear or a radial basis function (RBF) kernel, achieved multi-class classification accuracies of 55.6% and 55.0% in the challenge test set (60 NC, 60 MCI, 60 cMCI, 60 AD), resulting in a third place in the challenge. Similar feature subset sizes were obtained for both kernels, and the most frequently selected MRI features were the volumes of the two hippocampal subregions left presubiculum and right subiculum. Post-challenge analysis revealed that enforcing a minimum number of selected features and increasing the number of ensemble classifiers improved classification accuracy up to 59.1%. The ensemble SVM outperformed single SVM classifications consistently in the challenge test set. Ensemble methods using bagging and feature selection can improve the performance of the commonly applied SVM classifier in dementia classification. This resulted in competitive classification accuracies in the International Challenge for Automated Prediction of MCI from MRI data. Copyright © 2018 Elsevier B.V. All rights reserved.
Nakarmi, Ukash; Wang, Yanhua; Lyu, Jingyuan; Liang, Dong; Ying, Leslie
2017-11-01
While many low rank and sparsity-based approaches have been developed for accelerated dynamic magnetic resonance imaging (dMRI), they all use low rankness or sparsity in input space, overlooking the intrinsic nonlinear correlation in most dMRI data. In this paper, we propose a kernel-based framework to allow nonlinear manifold models in reconstruction from sub-Nyquist data. Within this framework, many existing algorithms can be extended to kernel framework with nonlinear models. In particular, we have developed a novel algorithm with a kernel-based low-rank model generalizing the conventional low rank formulation. The algorithm consists of manifold learning using kernel, low rank enforcement in feature space, and preimaging with data consistency. Extensive simulation and experiment results show that the proposed method surpasses the conventional low-rank-modeled approaches for dMRI.
Tran, Truyet T.; Craven, Ashley P.; Leung, Tsz-Wing; Chat, Sandy W.; Levi, Dennis M.
2016-01-01
Neurons in the early visual cortex are finely tuned to different low-level visual features, forming a multi-channel system analysing the visual image formed on the retina in a parallel manner. However, little is known about the potential ‘cross-talk’ among these channels. Here, we systematically investigated whether stereoacuity, over a large range of target spatial frequencies, can be enhanced by perceptual learning. Using narrow-band visual stimuli, we found that practice with coarse (low spatial frequency) targets substantially improves performance, and that the improvement spreads from coarse to fine (high spatial frequency) three-dimensional perception, generalizing broadly across untrained spatial frequencies and orientations. Notably, we observed an asymmetric transfer of learning across the spatial frequency spectrum. The bandwidth of transfer was broader when training was at a high spatial frequency than at a low spatial frequency. Stereoacuity training is most beneficial when trained with fine targets. This broad transfer of stereoacuity learning contrasts with the highly specific learning reported for other basic visual functions. We also revealed strategies to boost learning outcomes ‘beyond-the-plateau’. Our investigations contribute to understanding the functional properties of the network subserving stereovision. The ability to generalize may provide a key principle for restoring impaired binocular vision in clinical situations. PMID:26909178
Zhang, Gang; Liang, Zhaohui; Yin, Jian; Fu, Wenbin; Li, Guo-Zheng
2013-01-01
Chronic neck pain is a common morbid disorder in modern society. Acupuncture has been administered for treating chronic pain as an alternative therapy for a long time, with its effectiveness supported by the latest clinical evidence. However, the potential effective difference in different syndrome types is questioned due to the limits of sample size and statistical methods. We applied machine learning methods in an attempt to solve this problem. Through a multi-objective sorting of subjective measurements, outstanding samples are selected to form the base of our kernel-oriented model. With calculation of similarities between the concerned sample and base samples, we are able to make full use of information contained in the known samples, which is especially effective in the case of a small sample set. To tackle the parameters selection problem in similarity learning, we propose an ensemble version of slightly different parameter setting to obtain stronger learning. The experimental result on a real data set shows that compared to some previous well-known methods, the proposed algorithm is capable of discovering the underlying difference among different syndrome types and is feasible for predicting the effective tendency in clinical trials of large samples.
Global magnetohydrodynamic simulations on multiple GPUs
NASA Astrophysics Data System (ADS)
Wong, Un-Hong; Wong, Hon-Cheng; Ma, Yonghui
2014-01-01
Global magnetohydrodynamic (MHD) models play the major role in investigating the solar wind-magnetosphere interaction. However, the huge computation requirement in global MHD simulations is also the main problem that needs to be solved. With the recent development of modern graphics processing units (GPUs) and the Compute Unified Device Architecture (CUDA), it is possible to perform global MHD simulations in a more efficient manner. In this paper, we present a global magnetohydrodynamic (MHD) simulator on multiple GPUs using CUDA 4.0 with GPUDirect 2.0. Our implementation is based on the modified leapfrog scheme, which is a combination of the leapfrog scheme and the two-step Lax-Wendroff scheme. GPUDirect 2.0 is used in our implementation to drive multiple GPUs. All data transferring and kernel processing are managed with CUDA 4.0 API instead of using MPI or OpenMP. Performance measurements are made on a multi-GPU system with eight NVIDIA Tesla M2050 (Fermi architecture) graphics cards. These measurements show that our multi-GPU implementation achieves a peak performance of 97.36 GFLOPS in double precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maekawa, H.; Oyama, Y.
1983-09-01
Angle-dependent neutron leakage spectra above 0.5 MeV from Li/sub 2/O slab assemblies were measured accurately by the time-of-flight method. The measured angles were 0/sup 0/, 12.2/sup 0/, 24.9/sup 0/, 41.8/sup 0/ and 66.8/sup 0/. The sizes of Li/sub 2/O assemblies were 31.4 cm in equivalent radius and 5.06, 20.24 and 40.48 cm in thickness. The data were analyzed by a new transport code ''BERMUDA-2DN''. Time-independent transport equation is solved for two-dimensional, cylindrical, multi-regional geometry using the direct integration method in a multi-group model. The group transfer kernels are accurately obtained from the double-differential cross section data without using Legendre expansion.more » The results were compared absolutely. While there exist discrepancies partially, the calculational spectra agree well with the experimental ones as a whole. The BERMUDA code was demonstrated to be useful for the analyses of the fusion neutronics and shielding.« less
Invited Review. Combustion instability in spray-guided stratified-charge engines. A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fansler, Todd D.; Reuss, D. L.; Sick, V.
2015-02-02
Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of themore » spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NO x and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.« less
Single image super-resolution based on convolutional neural networks
NASA Astrophysics Data System (ADS)
Zou, Lamei; Luo, Ming; Yang, Weidong; Li, Peng; Jin, Liujia
2018-03-01
We present a deep learning method for single image super-resolution (SISR). The proposed approach learns end-to-end mapping between low-resolution (LR) images and high-resolution (HR) images. The mapping is represented as a deep convolutional neural network which inputs the LR image and outputs the HR image. Our network uses 5 convolution layers, which kernels size include 5×5, 3×3 and 1×1. In our proposed network, we use residual-learning and combine different sizes of convolution kernels at the same layer. The experiment results show that our proposed method performs better than the existing methods in reconstructing quality index and human visual effects on benchmarked images.
Genomic prediction based on data from three layer lines using non-linear regression models.
Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L
2014-11-06
Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional occurrence of large negative accuracies when the evaluated line was not included in the training dataset. Furthermore, when using a multi-line training dataset, non-linear models provided information on the genotype data that was complementary to the linear models, which indicates that the underlying data distributions of the three studied lines were indeed heterogeneous.
Lung dynamic MRI deblurring using low-rank decomposition and dictionary learning.
Gou, Shuiping; Wang, Yueyue; Wu, Jiaolong; Lee, Percy; Sheng, Ke
2015-04-01
Lung dynamic MRI (dMRI) has emerged to be an appealing tool to quantify lung motion for both planning and treatment guidance purposes. However, this modality can result in blurry images due to intrinsically low signal-to-noise ratio in the lung and spatial/temporal interpolation. The image blurring could adversely affect the image processing that depends on the availability of fine landmarks. The purpose of this study is to reduce dMRI blurring using image postprocessing. To enhance the image quality and exploit the spatiotemporal continuity of dMRI sequences, a low-rank decomposition and dictionary learning (LDDL) method was employed to deblur lung dMRI and enhance the conspicuity of lung blood vessels. Fifty frames of continuous 2D coronal dMRI frames using a steady state free precession sequence were obtained from five subjects including two healthy volunteer and three lung cancer patients. In LDDL, the lung dMRI was decomposed into sparse and low-rank components. Dictionary learning was employed to estimate the blurring kernel based on the whole image, low-rank or sparse component of the first image in the lung MRI sequence. Deblurring was performed on the whole image sequences using deconvolution based on the estimated blur kernel. The deblurring results were quantified using an automated blood vessel extraction method based on the classification of Hessian matrix filtered images. Accuracy of automated extraction was calculated using manual segmentation of the blood vessels as the ground truth. In the pilot study, LDDL based on the blurring kernel estimated from the sparse component led to performance superior to the other ways of kernel estimation. LDDL consistently improved image contrast and fine feature conspicuity of the original MRI without introducing artifacts. The accuracy of automated blood vessel extraction was on average increased by 16% using manual segmentation as the ground truth. Image blurring in dMRI images can be effectively reduced using a low-rank decomposition and dictionary learning method using kernels estimated by the sparse component.
Makanza, R; Zaman-Allah, M; Cairns, J E; Eyre, J; Burgueño, J; Pacheco, Ángela; Diepenbrock, C; Magorokosho, C; Tarekegne, A; Olsen, M; Prasanna, B M
2018-01-01
Grain yield, ear and kernel attributes can assist to understand the performance of maize plant under different environmental conditions and can be used in the variety development process to address farmer's preferences. These parameters are however still laborious and expensive to measure. A low-cost ear digital imaging method was developed that provides estimates of ear and kernel attributes i.e., ear number and size, kernel number and size as well as kernel weight from photos of ears harvested from field trial plots. The image processing method uses a script that runs in a batch mode on ImageJ; an open source software. Kernel weight was estimated using the total kernel number derived from the number of kernels visible on the image and the average kernel size. Data showed a good agreement in terms of accuracy and precision between ground truth measurements and data generated through image processing. Broad-sense heritability of the estimated parameters was in the range or higher than that for measured grain weight. Limitation of the method for kernel weight estimation is discussed. The method developed in this work provides an opportunity to significantly reduce the cost of selection in the breeding process, especially for resource constrained crop improvement programs and can be used to learn more about the genetic bases of grain yield determinants.
Yang, Zhihao; Lin, Yuan; Wu, Jiajin; Tang, Nan; Lin, Hongfei; Li, Yanpeng
2011-10-01
Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. However, the volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database curators to detect and curate protein interaction information manually. We present a multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, and graph and combines their output with Ranking support vector machine (SVM). Experimental evaluations show that the features in individual kernels are complementary and the kernel combined with Ranking SVM achieves better performance than those of the individual kernels, equal weight combination and optimal weight combination. Our approach can achieve state-of-the-art performance with respect to the comparable evaluations, with 64.88% F-score and 88.02% AUC on the AImed corpus. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Airola, Antti; Pyysalo, Sampo; Björne, Jari; Pahikkala, Tapio; Ginter, Filip; Salakoski, Tapio
2008-11-19
Automated extraction of protein-protein interactions (PPI) is an important and widely studied task in biomedical text mining. We propose a graph kernel based approach for this task. In contrast to earlier approaches to PPI extraction, the introduced all-paths graph kernel has the capability to make use of full, general dependency graphs representing the sentence structure. We evaluate the proposed method on five publicly available PPI corpora, providing the most comprehensive evaluation done for a machine learning based PPI-extraction system. We additionally perform a detailed evaluation of the effects of training and testing on different resources, providing insight into the challenges involved in applying a system beyond the data it was trained on. Our method is shown to achieve state-of-the-art performance with respect to comparable evaluations, with 56.4 F-score and 84.8 AUC on the AImed corpus. We show that the graph kernel approach performs on state-of-the-art level in PPI extraction, and note the possible extension to the task of extracting complex interactions. Cross-corpus results provide further insight into how the learning generalizes beyond individual corpora. Further, we identify several pitfalls that can make evaluations of PPI-extraction systems incomparable, or even invalid. These include incorrect cross-validation strategies and problems related to comparing F-score results achieved on different evaluation resources. Recommendations for avoiding these pitfalls are provided.
Mapping Fire Severity Using Imaging Spectroscopy and Kernel Based Image Analysis
NASA Astrophysics Data System (ADS)
Prasad, S.; Cui, M.; Zhang, Y.; Veraverbeke, S.
2014-12-01
Improved spatial representation of within-burn heterogeneity after wildfires is paramount to effective land management decisions and more accurate fire emissions estimates. In this work, we demonstrate feasibility and efficacy of airborne imaging spectroscopy (hyperspectral imagery) for quantifying wildfire burn severity, using kernel based image analysis techniques. Two different airborne hyperspectral datasets, acquired over the 2011 Canyon and 2013 Rim fire in California using the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) sensor, were used in this study. The Rim Fire, covering parts of the Yosemite National Park started on August 17, 2013, and was the third largest fire in California's history. Canyon Fire occurred in the Tehachapi mountains, and started on September 4, 2011. In addition to post-fire data for both fires, half of the Rim fire was also covered with pre-fire images. Fire severity was measured in the field using Geo Composite Burn Index (GeoCBI). The field data was utilized to train and validate our models, wherein the trained models, in conjunction with imaging spectroscopy data were used for GeoCBI estimation wide geographical regions. This work presents an approach for using remotely sensed imagery combined with GeoCBI field data to map fire scars based on a non-linear (kernel based) epsilon-Support Vector Regression (e-SVR), which was used to learn the relationship between spectra and GeoCBI in a kernel-induced feature space. Classification of healthy vegetation versus fire-affected areas based on morphological multi-attribute profiles was also studied. The availability of pre- and post-fire imaging spectroscopy data over the Rim Fire provided a unique opportunity to evaluate the performance of bi-temporal imaging spectroscopy for assessing post-fire effects. This type of data is currently constrained because of limited airborne acquisitions before a fire, but will become widespread with future spaceborne sensors such as those on the planned NASA HyspIRI mission.
Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach
NASA Astrophysics Data System (ADS)
Kotaru, Appala Raju; Joshi, Ramesh C.
Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.
A fuzzy pattern matching method based on graph kernel for lithography hotspot detection
NASA Astrophysics Data System (ADS)
Nitta, Izumi; Kanazawa, Yuzi; Ishida, Tsutomu; Banno, Koji
2017-03-01
In advanced technology nodes, lithography hotspot detection has become one of the most significant issues in design for manufacturability. Recently, machine learning based lithography hotspot detection has been widely investigated, but it has trade-off between detection accuracy and false alarm. To apply machine learning based technique to the physical verification phase, designers require minimizing undetected hotspots to avoid yield degradation. They also need a ranking of similar known patterns with a detected hotspot to prioritize layout pattern to be corrected. To achieve high detection accuracy and to prioritize detected hotspots, we propose a novel lithography hotspot detection method using Delaunay triangulation and graph kernel based machine learning. Delaunay triangulation extracts features of hotspot patterns where polygons locate irregularly and closely one another, and graph kernel expresses inner structure of graphs. Additionally, our method provides similarity between two patterns and creates a list of similar training patterns with a detected hotspot. Experiments results on ICCAD 2012 benchmarks show that our method achieves high accuracy with allowable range of false alarm. We also show the ranking of the similar known patterns with a detected hotspot.
Learning molecular energies using localized graph kernels.
Ferré, Grégoire; Haut, Terry; Barros, Kipton
2017-03-21
Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.
Learning molecular energies using localized graph kernels
NASA Astrophysics Data System (ADS)
Ferré, Grégoire; Haut, Terry; Barros, Kipton
2017-03-01
Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.
Raihan, Mohammad Sharif; Liu, Jie; Huang, Juan; Guo, Huan; Pan, Qingchun; Yan, Jianbing
2016-08-01
Sixteen major QTLs regulating maize kernel traits were mapped in multiple environments and one of them, qKW - 9.2 , was restricted to 630 Kb, harboring 28 putative gene models. To elucidate the genetic basis of kernel traits, a quantitative trait locus (QTL) analysis was conducted in a maize recombinant inbred line population derived from a cross between two diverse parents Zheng58 and SK, evaluated across eight environments. Construction of a high-density linkage map was based on 13,703 single-nucleotide polymorphism markers, covering 1860.9 cM of the whole genome. In total, 18, 26, 23, and 19 QTLs for kernel length, width, thickness, and 100-kernel weight, respectively, were detected on the basis of a single-environment analysis, and each QTL explained 3.2-23.7 % of the phenotypic variance. Sixteen major QTLs, which could explain greater than 10 % of the phenotypic variation, were mapped in multiple environments, implying that kernel traits might be controlled by many minor and multiple major QTLs. The major QTL qKW-9.2 with physical confidence interval of 1.68 Mbp, affecting kernel width, was then selected for fine mapping using heterogeneous inbred families. At final, the location of the underlying gene was narrowed down to 630 Kb, harboring 28 putative candidate-gene models. This information will enhance molecular breeding for kernel traits and simultaneously assist the gene cloning underlying this QTL, helping to reveal the genetic basis of kernel development in maize.
Least square regularized regression in sum space.
Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu
2013-04-01
This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.
Davis, Anthony B.; Xu, Feng; Collins, William D.
2015-03-01
Atmospheric hyperspectral VNIR sensing struggles with sub-pixel variability of clouds and limited spectral resolution mixing molecular lines. Our generalized radiative transfer model addresses both issues with new propagation kernels characterized by power-law decay in space.
Boundary conditions for gas flow problems from anisotropic scattering kernels
NASA Astrophysics Data System (ADS)
To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline
2015-10-01
The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.
Deep transfer learning for automatic target classification: MWIR to LWIR
NASA Astrophysics Data System (ADS)
Ding, Zhengming; Nasrabadi, Nasser; Fu, Yun
2016-05-01
Publisher's Note: This paper, originally published on 5/12/2016, was replaced with a corrected/revised version on 5/18/2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. When dealing with sparse or no labeled data in the target domain, transfer learning shows its appealing performance by borrowing the supervised knowledge from external domains. Recently deep structure learning has been exploited in transfer learning due to its attractive power in extracting effective knowledge through multi-layer strategy, so that deep transfer learning is promising to address the cross-domain mismatch. In general, cross-domain disparity can be resulted from the difference between source and target distributions or different modalities, e.g., Midwave IR (MWIR) and Longwave IR (LWIR). In this paper, we propose a Weighted Deep Transfer Learning framework for automatic target classification through a task-driven fashion. Specifically, deep features and classifier parameters are obtained simultaneously for optimal classification performance. In this way, the proposed deep structures can extract more effective features with the guidance of the classifier performance; on the other hand, the classifier performance is further improved since it is optimized on more discriminative features. Furthermore, we build a weighted scheme to couple source and target output by assigning pseudo labels to target data, therefore we can transfer knowledge from source (i.e., MWIR) to target (i.e., LWIR). Experimental results on real databases demonstrate the superiority of the proposed algorithm by comparing with others.
NASA Astrophysics Data System (ADS)
Liu, Xiaonan; Chen, Kewei; Wu, Teresa; Weidman, David; Lure, Fleming; Li, Jing
2018-02-01
Alzheimer's Disease (AD) is the most common cause of dementia and currently has no cure. Treatments targeting early stages of AD such as Mild Cognitive Impairment (MCI) may be most effective to deaccelerate AD, thus attracting increasing attention. However, MCI has substantial heterogeneity in that it can be caused by various underlying conditions, not only AD. To detect MCI due to AD, NIA-AA published updated consensus criteria in 2011, in which the use of multi-modality images was highlighted as one of the most promising methods. It is of great interest to develop a CAD system based on automatic, quantitative analysis of multi-modality images and machine learning algorithms to help physicians more adequately diagnose MCI due to AD. The challenge, however, is that multi-modality images are not universally available for many patients due to cost, access, safety, and lack of consent. We developed a novel Missing Modality Transfer Learning (MMTL) algorithm capable of utilizing whatever imaging modalities are available for an MCI patient to diagnose the patient's likelihood of MCI due to AD. Furthermore, we integrated MMTL with radiomics steps including image processing, feature extraction, and feature screening, and a post-processing for uncertainty quantification (UQ), and developed a CAD system called "ADMultiImg" to assist clinical diagnosis of MCI due to AD using multi-modality images together with patient demographic and genetic information. Tested on ADNI date, our system can generate a diagnosis with high accuracy even for patients with only partially available image modalities (AUC=0.94), and therefore may have broad clinical utility.
An Adaptive Genetic Association Test Using Double Kernel Machines.
Zhan, Xiang; Epstein, Michael P; Ghosh, Debashis
2015-10-01
Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study.
Kernel methods for large-scale genomic data analysis
Xing, Eric P.; Schaid, Daniel J.
2015-01-01
Machine learning, particularly kernel methods, has been demonstrated as a promising new tool to tackle the challenges imposed by today’s explosive data growth in genomics. They provide a practical and principled approach to learning how a large number of genetic variants are associated with complex phenotypes, to help reveal the complexity in the relationship between the genetic markers and the outcome of interest. In this review, we highlight the potential key role it will have in modern genomic data processing, especially with regard to integration with classical methods for gene prioritizing, prediction and data fusion. PMID:25053743
Kernelized rank learning for personalized drug recommendation.
He, Xiao; Folkman, Lukas; Borgwardt, Karsten
2018-03-08
Large-scale screenings of cancer cell lines with detailed molecular profiles against libraries of pharmacological compounds are currently being performed in order to gain a better understanding of the genetic component of drug response and to enhance our ability to recommend therapies given a patient's molecular profile. These comprehensive screens differ from the clinical setting in which (1) medical records only contain the response of a patient to very few drugs, (2) drugs are recommended by doctors based on their expert judgment, and (3) selecting the most promising therapy is often more important than accurately predicting the sensitivity to all potential drugs. Current regression models for drug sensitivity prediction fail to account for these three properties. We present a machine learning approach, named Kernelized Rank Learning (KRL), that ranks drugs based on their predicted effect per cell line (patient), circumventing the difficult problem of precisely predicting the sensitivity to the given drug. Our approach outperforms several state-of-the-art predictors in drug recommendation, particularly if the training dataset is sparse, and generalizes to patient data. Our work phrases personalized drug recommendation as a new type of machine learning problem with translational potential to the clinic. The Python implementation of KRL and scripts for running our experiments are available at https://github.com/BorgwardtLab/Kernelized-Rank-Learning. xiao.he@bsse.ethz.ch, lukas.folkman@bsse.ethz.ch. Supplementary data are available at Bioinformatics online.
An Internal Data Non-hiding Type Real-time Kernel and its Application to the Mechatronics Controller
NASA Astrophysics Data System (ADS)
Yoshida, Toshio
For the mechatronics equipment controller that controls robots and machine tools, high-speed motion control processing is essential. The software system of the controller like other embedded systems is composed of three layers software such as real-time kernel layer, middleware layer, and application software layer on the dedicated hardware. The application layer in the top layer is composed of many numbers of tasks, and application function of the system is realized by the cooperation between these tasks. In this paper we propose an internal data non-hiding type real-time kernel in which customizing the task control is possible only by change in the program code of the task side without any changes in the program code of real-time kernel. It is necessary to reduce the overhead caused by the real-time kernel task control for the speed-up of the motion control of the mechatronics equipment. For this, customizing the task control function is needed. We developed internal data non-cryptic type real-time kernel ZRK to evaluate this method, and applied to the control of the multi system automatic lathe. The effect of the speed-up of the task cooperation processing was able to be confirmed by combined task control processing on the task side program code using an internal data non-hiding type real-time kernel ZRK.
Nonlinear Semi-Supervised Metric Learning Via Multiple Kernels and Local Topology.
Li, Xin; Bai, Yanqin; Peng, Yaxin; Du, Shaoyi; Ying, Shihui
2018-03-01
Changing the metric on the data may change the data distribution, hence a good distance metric can promote the performance of learning algorithm. In this paper, we address the semi-supervised distance metric learning (ML) problem to obtain the best nonlinear metric for the data. First, we describe the nonlinear metric by the multiple kernel representation. By this approach, we project the data into a high dimensional space, where the data can be well represented by linear ML. Then, we reformulate the linear ML by a minimization problem on the positive definite matrix group. Finally, we develop a two-step algorithm for solving this model and design an intrinsic steepest descent algorithm to learn the positive definite metric matrix. Experimental results validate that our proposed method is effective and outperforms several state-of-the-art ML methods.
Feature and Region Selection for Visual Learning.
Zhao, Ji; Wang, Liantao; Cabral, Ricardo; De la Torre, Fernando
2016-03-01
Visual learning problems, such as object classification and action recognition, are typically approached using extensions of the popular bag-of-words (BoWs) model. Despite its great success, it is unclear what visual features the BoW model is learning. Which regions in the image or video are used to discriminate among classes? Which are the most discriminative visual words? Answering these questions is fundamental for understanding existing BoW models and inspiring better models for visual recognition. To answer these questions, this paper presents a method for feature selection and region selection in the visual BoW model. This allows for an intermediate visualization of the features and regions that are important for visual learning. The main idea is to assign latent weights to the features or regions, and jointly optimize these latent variables with the parameters of a classifier (e.g., support vector machine). There are four main benefits of our approach: 1) our approach accommodates non-linear additive kernels, such as the popular χ(2) and intersection kernel; 2) our approach is able to handle both regions in images and spatio-temporal regions in videos in a unified way; 3) the feature selection problem is convex, and both problems can be solved using a scalable reduced gradient method; and 4) we point out strong connections with multiple kernel learning and multiple instance learning approaches. Experimental results in the PASCAL VOC 2007, MSR Action Dataset II and YouTube illustrate the benefits of our approach.
Multi-Core Processor Memory Contention Benchmark Analysis Case Study
NASA Technical Reports Server (NTRS)
Simon, Tyler; McGalliard, James
2009-01-01
Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.
Learning a peptide-protein binding affinity predictor with kernel ridge regression
2013-01-01
Background The cellular function of a vast majority of proteins is performed through physical interactions with other biomolecules, which, most of the time, are other proteins. Peptides represent templates of choice for mimicking a secondary structure in order to modulate protein-protein interaction. They are thus an interesting class of therapeutics since they also display strong activity, high selectivity, low toxicity and few drug-drug interactions. Furthermore, predicting peptides that would bind to a specific MHC alleles would be of tremendous benefit to improve vaccine based therapy and possibly generate antibodies with greater affinity. Modern computational methods have the potential to accelerate and lower the cost of drug and vaccine discovery by selecting potential compounds for testing in silico prior to biological validation. Results We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalizes eight kernels, comprised of the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it’s approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of predicting the binding affinity of any peptide to any protein with reasonable accuracy. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. Conclusion On all benchmarks, our method significantly (p-value ≤ 0.057) outperforms the current state-of-the-art methods at predicting peptide-protein binding affinities. The proposed approach is flexible and can be applied to predict any quantitative biological activity. Moreover, generating reliable peptide-protein binding affinities will also improve system biology modelling of interaction pathways. Lastly, the method should be of value to a large segment of the research community with the potential to accelerate the discovery of peptide-based drugs and facilitate vaccine development. The proposed kernel is freely available at http://graal.ift.ulaval.ca/downloads/gs-kernel/. PMID:23497081
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanft, J.M.; Jones, R.J.
This study was designed to compare the uptake and distribution of /sup 14/C among fructose, glucose, sucrose, and starch in the cob, pedicel, and endosperm tissues of maize (Zea mays L.) kernels induced to abort by high temperature with those that develop normally. Kernels cultured in vitro at 309 and 35/sup 0/C were transferred to (/sup 14/C)sucrose media 10 days after pollination. Kernels cultured at 35/sup 0/C aborted prior to the onset of linear dry matter accumulation. Significant uptake into the cob, pedicel, and endosperm of radioactivity associated with the soluble and starch fractions of the tissues was detected aftermore » 24 hours in culture on atlageled media. After 8 days in culture on (/sup 14/C)sucrose media, 48 and 40% of the radioactivity associated with the cob carbohydrates was found in the reducing sugars at 30 and 35/sup 0/C, respectively. Of the total carbohydrates, a higher percentage of label was associated with sucrose and lower percentage with fructose and glucose in pedicel tissue of kernels cultured at 35/sup 0/C compared to kernels cultured at 30/sup 0/C. These results indicate that sucrose was not cleaved to fructose and glucose as rapidly during the unloading process in the pedicel of kernels induced to abort by high temperature. Kernels cultured at 35/sup 0/C had a much lower proportion of label associated with endosperm starch (29%) than did kernels cultured at 30/sup 0/C (89%). Kernels cultured at 35/sup 0/C had a correspondingly higher proportion of /sup 14/C in endosperm fructose, glucose, and sucrose.« less
Support Vector Data Descriptions and k-Means Clustering: One Class?
Gornitz, Nico; Lima, Luiz Alberto; Muller, Klaus-Robert; Kloft, Marius; Nakajima, Shinichi
2017-09-27
We present ClusterSVDD, a methodology that unifies support vector data descriptions (SVDDs) and k-means clustering into a single formulation. This allows both methods to benefit from one another, i.e., by adding flexibility using multiple spheres for SVDDs and increasing anomaly resistance and flexibility through kernels to k-means. In particular, our approach leads to a new interpretation of k-means as a regularized mode seeking algorithm. The unifying formulation further allows for deriving new algorithms by transferring knowledge from one-class learning settings to clustering settings and vice versa. As a showcase, we derive a clustering method for structured data based on a one-class learning scenario. Additionally, our formulation can be solved via a particularly simple optimization scheme. We evaluate our approach empirically to highlight some of the proposed benefits on artificially generated data, as well as on real-world problems, and provide a Python software package comprising various implementations of primal and dual SVDD as well as our proposed ClusterSVDD.
Bruemmer, David J [Idaho Falls, ID
2009-11-17
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.
Predicting activity approach based on new atoms similarity kernel function.
Abu El-Atta, Ahmed H; Moussa, M I; Hassanien, Aboul Ella
2015-07-01
Drug design is a high cost and long term process. To reduce time and costs for drugs discoveries, new techniques are needed. Chemoinformatics field implements the informational techniques and computer science like machine learning and graph theory to discover the chemical compounds properties, such as toxicity or biological activity. This is done through analyzing their molecular structure (molecular graph). To overcome this problem there is an increasing need for algorithms to analyze and classify graph data to predict the activity of molecules. Kernels methods provide a powerful framework which combines machine learning with graph theory techniques. These kernels methods have led to impressive performance results in many several chemoinformatics problems like biological activity prediction. This paper presents a new approach based on kernel functions to solve activity prediction problem for chemical compounds. First we encode all atoms depending on their neighbors then we use these codes to find a relationship between those atoms each other. Then we use relation between different atoms to find similarity between chemical compounds. The proposed approach was compared with many other classification methods and the results show competitive accuracy with these methods. Copyright © 2015 Elsevier Inc. All rights reserved.
Oversampling the Minority Class in the Feature Space.
Perez-Ortiz, Maria; Gutierrez, Pedro Antonio; Tino, Peter; Hervas-Martinez, Cesar
2016-09-01
The imbalanced nature of some real-world data is one of the current challenges for machine learning researchers. One common approach oversamples the minority class through convex combination of its patterns. We explore the general idea of synthetic oversampling in the feature space induced by a kernel function (as opposed to input space). If the kernel function matches the underlying problem, the classes will be linearly separable and synthetically generated patterns will lie on the minority class region. Since the feature space is not directly accessible, we use the empirical feature space (EFS) (a Euclidean space isomorphic to the feature space) for oversampling purposes. The proposed method is framed in the context of support vector machines, where the imbalanced data sets can pose a serious hindrance. The idea is investigated in three scenarios: 1) oversampling in the full and reduced-rank EFSs; 2) a kernel learning technique maximizing the data class separation to study the influence of the feature space structure (implicitly defined by the kernel function); and 3) a unified framework for preferential oversampling that spans some of the previous approaches in the literature. We support our investigation with extensive experiments over 50 imbalanced data sets.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2016-10-14
A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.
Notes on a storage manager for the Clouds kernel
NASA Technical Reports Server (NTRS)
Pitts, David V.; Spafford, Eugene H.
1986-01-01
The Clouds project is research directed towards producing a reliable distributed computing system. The initial goal is to produce a kernel which provides a reliable environment with which a distributed operating system can be built. The Clouds kernal consists of a set of replicated subkernels, each of which runs on a machine in the Clouds system. Each subkernel is responsible for the management of resources on its machine; the subkernal components communicate to provide the cooperation necessary to meld the various machines into one kernel. The implementation of a kernel-level storage manager that supports reliability is documented. The storage manager is a part of each subkernel and maintains the secondary storage residing at each machine in the distributed system. In addition to providing the usual data transfer services, the storage manager ensures that data being stored survives machine and system crashes, and that the secondary storage of a failed machine is recovered (made consistent) automatically when the machine is restarted. Since the storage manager is part of the Clouds kernel, efficiency of operation is also a concern.
Bae, Seung-Hwan; Yoon, Kuk-Jin
2018-03-01
Online multi-object tracking aims at estimating the tracks of multiple objects instantly with each incoming frame and the information provided up to the moment. It still remains a difficult problem in complex scenes, because of the large ambiguity in associating multiple objects in consecutive frames and the low discriminability between objects appearances. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first define the tracklet confidence using the detectability and continuity of a tracklet, and decompose a multi-object tracking problem into small subproblems based on the tracklet confidence. We then solve the online multi-object tracking problem by associating tracklets and detections in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive association steps. For more reliable association between tracklets and detections, we also propose a deep appearance learning method to learn a discriminative appearance model from large training datasets, since the conventional appearance learning methods do not provide rich representation that can distinguish multiple objects with large appearance variations. In addition, we combine online transfer learning for improving appearance discriminability by adapting the pre-trained deep model during online tracking. Experiments with challenging public datasets show distinct performance improvement over other state-of-the-arts batch and online tracking methods, and prove the effect and usefulness of the proposed methods for online multi-object tracking.
Huang, Yue; Zheng, Han; Liu, Chi; Ding, Xinghao; Rohde, Gustavo K
2017-11-01
Epithelium-stroma classification is a necessary preprocessing step in histopathological image analysis. Current deep learning based recognition methods for histology data require collection of large volumes of labeled data in order to train a new neural network when there are changes to the image acquisition procedure. However, it is extremely expensive for pathologists to manually label sufficient volumes of data for each pathology study in a professional manner, which results in limitations in real-world applications. A very simple but effective deep learning method, that introduces the concept of unsupervised domain adaptation to a simple convolutional neural network (CNN), has been proposed in this paper. Inspired by transfer learning, our paper assumes that the training data and testing data follow different distributions, and there is an adaptation operation to more accurately estimate the kernels in CNN in feature extraction, in order to enhance performance by transferring knowledge from labeled data in source domain to unlabeled data in target domain. The model has been evaluated using three independent public epithelium-stroma datasets by cross-dataset validations. The experimental results demonstrate that for epithelium-stroma classification, the proposed framework outperforms the state-of-the-art deep neural network model, and it also achieves better performance than other existing deep domain adaptation methods. The proposed model can be considered to be a better option for real-world applications in histopathological image analysis, since there is no longer a requirement for large-scale labeled data in each specified domain.
Pattern sampling for etch model calibration
NASA Astrophysics Data System (ADS)
Weisbuch, François; Lutich, Andrey; Schatz, Jirka
2017-06-01
Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels as well as the choice of calibration patterns is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels -"internal, external, curvature, Gaussian, z_profile" - designed to capture the finest details of the resist contours and represent precisely any etch bias. By evaluating the etch kernels on various structures it is possible to map their etch signatures in a multi-dimensional space and analyze them to find an optimal sampling of structures to train an etch model. The method was specifically applied to a contact layer containing many different geometries and was used to successfully select appropriate calibration structures. The proposed kernels evaluated on these structures were combined to train an etch model significantly better than the standard one. We also illustrate the usage of the specific kernel "z_profile" which adds a third dimension to the description of the resist profile.
AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics
NASA Astrophysics Data System (ADS)
Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.
2017-05-01
We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.
Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing.
Li, Shuang; Liu, Bing; Zhang, Chen
2016-01-01
Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple kernel learning. In addition, some models might be ill-posed if the rank of matrices in their objective functions was not high enough. To address these issues, we extend the traditional graph embedding framework and propose a novel regularized embedded multiple kernel dimensionality reduction method. Different from the conventional convex relaxation technique, the proposed algorithm directly takes advantage of a binary search and an alternative optimization scheme to obtain optimal solutions efficiently. The experimental results demonstrate the effectiveness of the proposed method for supervised, unsupervised, and semisupervised scenarios.
A simple method for computing the relativistic Compton scattering kernel for radiative transfer
NASA Technical Reports Server (NTRS)
Prasad, M. K.; Kershaw, D. S.; Beason, J. D.
1986-01-01
Correct computation of the Compton scattering kernel (CSK), defined to be the Klein-Nishina differential cross section averaged over a relativistic Maxwellian electron distribution, is reported. The CSK is analytically reduced to a single integral, which can then be rapidly evaluated using a power series expansion, asymptotic series, and rational approximation for sigma(s). The CSK calculation has application to production codes that aim at understanding certain astrophysical, laser fusion, and nuclear weapons effects phenomena.
Kinetic Rate Kernels via Hierarchical Liouville-Space Projection Operator Approach.
Zhang, Hou-Dao; Yan, YiJing
2016-05-19
Kinetic rate kernels in general multisite systems are formulated on the basis of a nonperturbative quantum dissipation theory, the hierarchical equations of motion (HEOM) formalism, together with the Nakajima-Zwanzig projection operator technique. The present approach exploits the HEOM-space linear algebra. The quantum non-Markovian site-to-site transfer rate can be faithfully evaluated via projected HEOM dynamics. The developed method is exact, as evident by the comparison to the direct HEOM evaluation results on the population evolution.
An SVM-based solution for fault detection in wind turbines.
Santos, Pedro; Villa, Luisa F; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús
2015-03-09
Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.
Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures.
Bobb, Jennifer F; Valeri, Linda; Claus Henn, Birgit; Christiani, David C; Wright, Robert O; Mazumdar, Maitreyi; Godleski, John J; Coull, Brent A
2015-07-01
Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Experimental Study of the Growth of Laser Spark and Electric Spark Ignited Flame Kernels.
NASA Astrophysics Data System (ADS)
Ho, Chi Ming
1995-01-01
Better ignition sources are constantly in demand for enhancing the spark ignition in practical applications such as automotive and liquid rocket engines. In response to this practical challenge, the present experimental study was conducted with the major objective to obtain a better understanding on how spark formation and hence spark characteristics affect the flame kernel growth. Two laser sparks and one electric spark were studied in air, propane-air, propane -air-nitrogen, methane-air, and methane-oxygen mixtures that were initially at ambient pressure and temperature. The growth of the kernels was monitored by imaging the kernels with shadowgraph systems, and by imaging the planar laser -induced fluorescence of the hydroxyl radicals inside the kernels. Characteristic dimensions and kernel structures were obtained from these images. Since different energy transfer mechanisms are involved in the formation of a laser spark as compared to that of an electric spark; a laser spark is insensitive to changes in mixture ratio and mixture type, while an electric spark is sensitive to changes in both. The detailed structures of the kernels in air and propane-air mixtures primarily depend on the spark characteristics. But the combustion heat released rapidly in methane-oxygen mixtures significantly modifies the kernel structure. Uneven spark energy distribution causes remarkably asymmetric kernel structure. The breakdown energy of a spark creates a blast wave that shows good agreement with the numerical point blast solution, and a succeeding complex spark-induced flow that agrees reasonably well with a simple puff model. The transient growth rates of the propane-air, propane-air -nitrogen, and methane-air flame kernels can be interpreted in terms of spark effects, flame stretch, and preferential diffusion. For a given mixture, a spark with higher breakdown energy produces a greater and longer-lasting enhancing effect on the kernel growth rate. By comparing the growth rates of the appropriate mixtures, the positive and negative effects of preferential diffusion and flame stretch on the developing flame are clearly demonstrated.
Hanft, Jonathan M.; Jones, Robert J.
1986-01-01
This study was designed to compare the uptake and distribution of 14C among fructose, glucose, sucrose, and starch in the cob, pedicel, and endosperm tissues of maize (Zea mays L.) kernels induced to abort by high temperature with those that develop normally. Kernels cultured in vitro at 30 and 35°C were transferred to [14C]sucrose media 10 days after pollination. Kernels cultured at 35°C aborted prior to the onset of linear dry matter accumulation. Significant uptake into the cob, pedicel, and endosperm of radioactivity associated with the soluble and starch fractions of the tissues was detected after 24 hours in culture on labeled media. After 8 days in culture on [14C]sucrose media, 48 and 40% of the radioactivity associated with the cob carbohydrates was found in the reducing sugars at 30 and 35°C, respectively. This indicates that some of the sucrose taken up by the cob tissue was cleaved to fructose and glucose in the cob. Of the total carbohydrates, a higher percentage of label was associated with sucrose and a lower percentage with fructose and glucose in pedicel tissue of kernels cultured at 35°C compared to kernels cultured at 30°C. These results indicate that sucrose was not cleaved to fructose and glucose as rapidly during the unloading process in the pedicel of kernels induced to abort by high temperature. Kernels cultured at 35°C had a much lower proportion of label associated with endosperm starch (29%) than did kernels cultured at 30°C (89%). Kernels cultured at 35°C had a correspondingly higher proportion of 14C in endosperm fructose, glucose, and sucrose. These results indicate that starch synthesis in the endosperm is strongly inhibited in kernels induced to abort by high temperature even though there is an adequate supply of sugar. PMID:16664847
Online Distributed Learning Over Networks in RKH Spaces Using Random Fourier Features
NASA Astrophysics Data System (ADS)
Bouboulis, Pantelis; Chouvardas, Symeon; Theodoridis, Sergios
2018-04-01
We present a novel diffusion scheme for online kernel-based learning over networks. So far, a major drawback of any online learning algorithm, operating in a reproducing kernel Hilbert space (RKHS), is the need for updating a growing number of parameters as time iterations evolve. Besides complexity, this leads to an increased need of communication resources, in a distributed setting. In contrast, the proposed method approximates the solution as a fixed-size vector (of larger dimension than the input space) using Random Fourier Features. This paves the way to use standard linear combine-then-adapt techniques. To the best of our knowledge, this is the first time that a complete protocol for distributed online learning in RKHS is presented. Conditions for asymptotic convergence and boundness of the networkwise regret are also provided. The simulated tests illustrate the performance of the proposed scheme.
Multidisciplinary Research Program in Atmospheric Science. [remote sensing
NASA Technical Reports Server (NTRS)
Thompson, O. E.
1982-01-01
A theoretical analysis of the vertical resolving power of the High resolution Infrared Radiation Sounder (HIRS) and the Advanced Meteorological Temperature Sounder (AMTS) is carried out. The infrared transmittance weighting functions and associated radiative transfer kernels are analyzed through singular value decomposition. The AMTS was found to contain several more pieces of independent information than HIRS when the transmittances were considered, but the two instruments appeared to be much more similar when the temperature sensitive radiative transfer kernels were analyzed. The HIRS and AMTS instruments were also subjected to a thorough analysis. It was found that the two instruments should have very similar vertical resolving power below 500 mb but that AMTS should have superior resolving power above 200 mb. In the layer 200 to 500 mb the AMTS showed badly degraded spread function.
Yan, Kang K; Zhao, Hongyu; Pang, Herbert
2017-12-06
High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.
Parsimonious kernel extreme learning machine in primal via Cholesky factorization.
Zhao, Yong-Ping
2016-08-01
Recently, extreme learning machine (ELM) has become a popular topic in machine learning community. By replacing the so-called ELM feature mappings with the nonlinear mappings induced by kernel functions, two kernel ELMs, i.e., P-KELM and D-KELM, are obtained from primal and dual perspectives, respectively. Unfortunately, both P-KELM and D-KELM possess the dense solutions in direct proportion to the number of training data. To this end, a constructive algorithm for P-KELM (CCP-KELM) is first proposed by virtue of Cholesky factorization, in which the training data incurring the largest reductions on the objective function are recruited as significant vectors. To reduce its training cost further, PCCP-KELM is then obtained with the application of a probabilistic speedup scheme into CCP-KELM. Corresponding to CCP-KELM, a destructive P-KELM (CDP-KELM) is presented using a partial Cholesky factorization strategy, where the training data incurring the smallest reductions on the objective function after their removals are pruned from the current set of significant vectors. Finally, to verify the efficacy and feasibility of the proposed algorithms in this paper, experiments on both small and large benchmark data sets are investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Framework for the Ethical Practice of Action Learning
ERIC Educational Resources Information Center
Johnson, Craig
2010-01-01
By tradition the action learning community has encouraged an eclectic view of practice. This involves a number of different permutations around a kernel of nebulous ideas. However, the disadvantages of such an open philosophy have never been considered. In particular consumer protection against inauthentic action learning experiences has been…
NASA Astrophysics Data System (ADS)
Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman
2018-02-01
The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.
An improved robust blind motion de-blurring algorithm for remote sensing images
NASA Astrophysics Data System (ADS)
He, Yulong; Liu, Jin; Liang, Yonghui
2016-10-01
Shift-invariant motion blur can be modeled as a convolution of the true latent image and the blur kernel with additive noise. Blind motion de-blurring estimates a sharp image from a motion blurred image without the knowledge of the blur kernel. This paper proposes an improved edge-specific motion de-blurring algorithm which proved to be fit for processing remote sensing images. We find that an inaccurate blur kernel is the main factor to the low-quality restored images. To improve image quality, we do the following contributions. For the robust kernel estimation, first, we adapt the multi-scale scheme to make sure that the edge map could be constructed accurately; second, an effective salient edge selection method based on RTV (Relative Total Variation) is used to extract salient structure from texture; third, an alternative iterative method is introduced to perform kernel optimization, in this step, we adopt l1 and l0 norm as the priors to remove noise and ensure the continuity of blur kernel. For the final latent image reconstruction, an improved adaptive deconvolution algorithm based on TV-l2 model is used to recover the latent image; we control the regularization weight adaptively in different region according to the image local characteristics in order to preserve tiny details and eliminate noise and ringing artifacts. Some synthetic remote sensing images are used to test the proposed algorithm, and results demonstrate that the proposed algorithm obtains accurate blur kernel and achieves better de-blurring results.
An algorithm of improving speech emotional perception for hearing aid
NASA Astrophysics Data System (ADS)
Xi, Ji; Liang, Ruiyu; Fei, Xianju
2017-07-01
In this paper, a speech emotion recognition (SER) algorithm was proposed to improve the emotional perception of hearing-impaired people. The algorithm utilizes multiple kernel technology to overcome the drawback of SVM: slow training speed. Firstly, in order to improve the adaptive performance of Gaussian Radial Basis Function (RBF), the parameter determining the nonlinear mapping was optimized on the basis of Kernel target alignment. Then, the obtained Kernel Function was used as the basis kernel of Multiple Kernel Learning (MKL) with slack variable that could solve the over-fitting problem. However, the slack variable also brings the error into the result. Therefore, a soft-margin MKL was proposed to balance the margin against the error. Moreover, the relatively iterative algorithm was used to solve the combination coefficients and hyper-plane equations. Experimental results show that the proposed algorithm can acquire an accuracy of 90% for five kinds of emotions including happiness, sadness, anger, fear and neutral. Compared with KPCA+CCA and PIM-FSVM, the proposed algorithm has the highest accuracy.
Learning molecular energies using localized graph kernels
Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos
2017-03-21
We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less
Learning molecular energies using localized graph kernels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos
We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less
A linear recurrent kernel online learning algorithm with sparse updates.
Fan, Haijin; Song, Qing
2014-02-01
In this paper, we propose a recurrent kernel algorithm with selectively sparse updates for online learning. The algorithm introduces a linear recurrent term in the estimation of the current output. This makes the past information reusable for updating of the algorithm in the form of a recurrent gradient term. To ensure that the reuse of this recurrent gradient indeed accelerates the convergence speed, a novel hybrid recurrent training is proposed to switch on or off learning the recurrent information according to the magnitude of the current training error. Furthermore, the algorithm includes a data-dependent adaptive learning rate which can provide guaranteed system weight convergence at each training iteration. The learning rate is set as zero when the training violates the derived convergence conditions, which makes the algorithm updating process sparse. Theoretical analyses of the weight convergence are presented and experimental results show the good performance of the proposed algorithm in terms of convergence speed and estimation accuracy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Benchmarking GNU Radio Kernels and Multi-Processor Scheduling
2013-01-14
AMD E350 APU , comparable to Atom • ARM Cortex A8 running on a Gumstix Overo on an Ettus USRP E110 The general testing procedure consists of • Build...Intel Atom, and the AMD E350 APU . 3.2 Multi-Processor Scheduling Figure 1: GFLOPs per second through an FFT array on an Intel i7. Example output from
Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping
NASA Astrophysics Data System (ADS)
Tamiminia, H.; Homayouni, S.; Safari, A.
2015-12-01
Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.
Convolution kernels for multi-wavelength imaging
NASA Astrophysics Data System (ADS)
Boucaud, A.; Bocchio, M.; Abergel, A.; Orieux, F.; Dole, H.; Hadj-Youcef, M. A.
2016-12-01
Astrophysical images issued from different instruments and/or spectral bands often require to be processed together, either for fitting or comparison purposes. However each image is affected by an instrumental response, also known as point-spread function (PSF), that depends on the characteristics of the instrument as well as the wavelength and the observing strategy. Given the knowledge of the PSF in each band, a straightforward way of processing images is to homogenise them all to a target PSF using convolution kernels, so that they appear as if they had been acquired by the same instrument. We propose an algorithm that generates such PSF-matching kernels, based on Wiener filtering with a tunable regularisation parameter. This method ensures all anisotropic features in the PSFs to be taken into account. We compare our method to existing procedures using measured Herschel/PACS and SPIRE PSFs and simulated JWST/MIRI PSFs. Significant gains up to two orders of magnitude are obtained with respect to the use of kernels computed assuming Gaussian or circularised PSFs. A software to compute these kernels is available at
An Adaptive Genetic Association Test Using Double Kernel Machines
Zhan, Xiang; Epstein, Michael P.; Ghosh, Debashis
2014-01-01
Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study. PMID:26640602
Accelerating the Original Profile Kernel.
Hamp, Tobias; Goldberg, Tatyana; Rost, Burkhard
2013-01-01
One of the most accurate multi-class protein classification systems continues to be the profile-based SVM kernel introduced by the Leslie group. Unfortunately, its CPU requirements render it too slow for practical applications of large-scale classification tasks. Here, we introduce several software improvements that enable significant acceleration. Using various non-redundant data sets, we demonstrate that our new implementation reaches a maximal speed-up as high as 14-fold for calculating the same kernel matrix. Some predictions are over 200 times faster and render the kernel as possibly the top contender in a low ratio of speed/performance. Additionally, we explain how to parallelize various computations and provide an integrative program that reduces creating a production-quality classifier to a single program call. The new implementation is available as a Debian package under a free academic license and does not depend on commercial software. For non-Debian based distributions, the source package ships with a traditional Makefile-based installer. Download and installation instructions can be found at https://rostlab.org/owiki/index.php/Fast_Profile_Kernel. Bugs and other issues may be reported at https://rostlab.org/bugzilla3/enter_bug.cgi?product=fastprofkernel.
Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H
2016-05-01
The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.
Electron beam lithographic modeling assisted by artificial intelligence technology
NASA Astrophysics Data System (ADS)
Nakayamada, Noriaki; Nishimura, Rieko; Miura, Satoru; Nomura, Haruyuki; Kamikubo, Takashi
2017-07-01
We propose a new concept of tuning a point-spread function (a "kernel" function) in the modeling of electron beam lithography using the machine learning scheme. Normally in the work of artificial intelligence, the researchers focus on the output results from a neural network, such as success ratio in image recognition or improved production yield, etc. In this work, we put more focus on the weights connecting the nodes in a convolutional neural network, which are naturally the fractions of a point-spread function, and take out those weighted fractions after learning to be utilized as a tuned kernel. Proof-of-concept of the kernel tuning has been demonstrated using the examples of proximity effect correction with 2-layer network, and charging effect correction with 3-layer network. This type of new tuning method can be beneficial to give researchers more insights to come up with a better model, yet it might be too early to be deployed to production to give better critical dimension (CD) and positional accuracy almost instantly.
NASA Astrophysics Data System (ADS)
Pinar, Anthony; Masarik, Matthew; Havens, Timothy C.; Burns, Joseph; Thelen, Brian; Becker, John
2015-05-01
This paper explores the effectiveness of an anomaly detection algorithm for downward-looking ground penetrating radar (GPR) and electromagnetic inductance (EMI) data. Threat detection with GPR is challenged by high responses to non-target/clutter objects, leading to a large number of false alarms (FAs), and since the responses of target and clutter signatures are so similar, classifier design is not trivial. We suggest a method based on a Run Packing (RP) algorithm to fuse GPR and EMI data into a composite confidence map to improve detection as measured by the area-under-ROC (NAUC) metric. We examine the value of a multiple kernel learning (MKL) support vector machine (SVM) classifier using image features such as histogram of oriented gradients (HOG), local binary patterns (LBP), and local statistics. Experimental results on government furnished data show that use of our proposed fusion and classification methods improves the NAUC when compared with the results from individual sensors and a single kernel SVM classifier.
NASA Astrophysics Data System (ADS)
Anees, Asim; Aryal, Jagannath; O'Reilly, Małgorzata M.; Gale, Timothy J.; Wardlaw, Tim
2016-12-01
A robust non-parametric framework, based on multiple Radial Basic Function (RBF) kernels, is proposed in this study, for detecting land/forest cover changes using Landsat 7 ETM+ images. One of the widely used frameworks is to find change vectors (difference image) and use a supervised classifier to differentiate between change and no-change. The Bayesian Classifiers e.g. Maximum Likelihood Classifier (MLC), Naive Bayes (NB), are widely used probabilistic classifiers which assume parametric models, e.g. Gaussian function, for the class conditional distributions. However, their performance can be limited if the data set deviates from the assumed model. The proposed framework exploits the useful properties of Least Squares Probabilistic Classifier (LSPC) formulation i.e. non-parametric and probabilistic nature, to model class posterior probabilities of the difference image using a linear combination of a large number of Gaussian kernels. To this end, a simple technique, based on 10-fold cross-validation is also proposed for tuning model parameters automatically instead of selecting a (possibly) suboptimal combination from pre-specified lists of values. The proposed framework has been tested and compared with Support Vector Machine (SVM) and NB for detection of defoliation, caused by leaf beetles (Paropsisterna spp.) in Eucalyptus nitens and Eucalyptus globulus plantations of two test areas, in Tasmania, Australia, using raw bands and band combination indices of Landsat 7 ETM+. It was observed that due to multi-kernel non-parametric formulation and probabilistic nature, the LSPC outperforms parametric NB with Gaussian assumption in change detection framework, with Overall Accuracy (OA) ranging from 93.6% (κ = 0.87) to 97.4% (κ = 0.94) against 85.3% (κ = 0.69) to 93.4% (κ = 0.85), and is more robust to changing data distributions. Its performance was comparable to SVM, with added advantages of being probabilistic and capable of handling multi-class problems naturally with its original formulation.
Many Molecular Properties from One Kernel in Chemical Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole
We introduce property-independent kernels for machine learning modeling of arbitrarily many molecular properties. The kernels encode molecular structures for training sets of varying size, as well as similarity measures sufficiently diffuse in chemical space to sample over all training molecules. Corresponding molecular reference properties provided, they enable the instantaneous generation of ML models which can systematically be improved through the addition of more data. This idea is exemplified for single kernel based modeling of internal energy, enthalpy, free energy, heat capacity, polarizability, electronic spread, zero-point vibrational energy, energies of frontier orbitals, HOMOLUMO gap, and the highest fundamental vibrational wavenumber. Modelsmore » of these properties are trained and tested using 112 kilo organic molecules of similar size. Resulting models are discussed as well as the kernels’ use for generating and using other property models.« less
Gene function prediction with gene interaction networks: a context graph kernel approach.
Li, Xin; Chen, Hsinchun; Li, Jiexun; Zhang, Zhu
2010-01-01
Predicting gene functions is a challenge for biologists in the postgenomic era. Interactions among genes and their products compose networks that can be used to infer gene functions. Most previous studies adopt a linkage assumption, i.e., they assume that gene interactions indicate functional similarities between connected genes. In this study, we propose to use a gene's context graph, i.e., the gene interaction network associated with the focal gene, to infer its functions. In a kernel-based machine-learning framework, we design a context graph kernel to capture the information in context graphs. Our experimental study on a testbed of p53-related genes demonstrates the advantage of using indirect gene interactions and shows the empirical superiority of the proposed approach over linkage-assumption-based methods, such as the algorithm to minimize inconsistent connected genes and diffusion kernels.
Trevathan, James K; Yousefi, Ali; Park, Hyung Ook; Bartoletta, John J; Ludwig, Kip A; Lee, Kendall H; Lujan, J Luis
2017-02-15
Neurochemical changes evoked by electrical stimulation of the nervous system have been linked to both therapeutic and undesired effects of neuromodulation therapies used to treat obsessive-compulsive disorder, depression, epilepsy, Parkinson's disease, stroke, hypertension, tinnitus, and many other indications. In fact, interest in better understanding the role of neurochemical signaling in neuromodulation therapies has been a focus of recent government- and industry-sponsored programs whose ultimate goal is to usher in an era of personalized medicine by creating neuromodulation therapies that respond to real-time changes in patient status. A key element to achieving these precision therapeutic interventions is the development of mathematical modeling approaches capable of describing the nonlinear transfer function between neuromodulation parameters and evoked neurochemical changes. Here, we propose two computational modeling frameworks, based on artificial neural networks (ANNs) and Volterra kernels, that can characterize the input/output transfer functions of stimulation-evoked neurochemical release. We evaluate the ability of these modeling frameworks to characterize subject-specific neurochemical kinetics by accurately describing stimulation-evoked dopamine release across rodent (R 2 = 0.83 Volterra kernel, R 2 = 0.86 ANN), swine (R 2 = 0.90 Volterra kernel, R 2 = 0.93 ANN), and non-human primate (R 2 = 0.98 Volterra kernel, R 2 = 0.96 ANN) models of brain stimulation. Ultimately, these models will not only improve understanding of neurochemical signaling in healthy and diseased brains but also facilitate the development of neuromodulation strategies capable of controlling neurochemical release via closed-loop strategies.
Exploiting graph kernels for high performance biomedical relation extraction.
Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri
2018-01-30
Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM performed better than APG kernel for the BioInfer dataset, in the Area Under Curve (AUC) measure (74% vs 69%). However, for all the other PPI datasets, namely AIMed, HPRD50, IEPA and LLL, ASM is substantially outperformed by the APG kernel in F-score and AUC measures. We demonstrate a high performance Chemical Induced Disease relation extraction, without employing external knowledge sources or task specific heuristics. Our work shows that graph kernels are effective in extracting relations that are expressed in multiple sentences. We also show that the graph kernels, namely the ASM and APG kernels, substantially outperform the tree kernels. Among the graph kernels, we showed the ASM kernel as effective for biomedical relation extraction, with comparable performance to the APG kernel for datasets such as the CID-sentence level relation extraction and BioInfer in PPI. Overall, the APG kernel is shown to be significantly more accurate than the ASM kernel, achieving better performance on most datasets.
An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation.
Hoseini, Farnaz; Shahbahrami, Asadollah; Bayat, Peyman
2018-02-27
Image segmentation is one of the most common steps in digital image processing, classifying a digital image into different segments. The main goal of this paper is to segment brain tumors in magnetic resonance images (MRI) using deep learning. Tumors having different shapes, sizes, brightness and textures can appear anywhere in the brain. These complexities are the reasons to choose a high-capacity Deep Convolutional Neural Network (DCNN) containing more than one layer. The proposed DCNN contains two parts: architecture and learning algorithms. The architecture and the learning algorithms are used to design a network model and to optimize parameters for the network training phase, respectively. The architecture contains five convolutional layers, all using 3 × 3 kernels, and one fully connected layer. Due to the advantage of using small kernels with fold, it allows making the effect of larger kernels with smaller number of parameters and fewer computations. Using the Dice Similarity Coefficient metric, we report accuracy results on the BRATS 2016, brain tumor segmentation challenge dataset, for the complete, core, and enhancing regions as 0.90, 0.85, and 0.84 respectively. The learning algorithm includes the task-level parallelism. All the pixels of an MR image are classified using a patch-based approach for segmentation. We attain a good performance and the experimental results show that the proposed DCNN increases the segmentation accuracy compared to previous techniques.
Multi-Structural Class: What and How It Is Perceived
ERIC Educational Resources Information Center
Tamah, Siti Mina
2013-01-01
The perception of "students' learning which equals students' being given knowledge" has brought about the theatrical mode of classroom instruction which is typically characterized by whole-class presentational techniques in which teachers perform most of the talking in order to transfer the knowledge to the students. Since this mode was…
Kwon, Oh-Hyun; Crnovrsanin, Tarik; Ma, Kwan-Liu
2018-01-01
Using different methods for laying out a graph can lead to very different visual appearances, with which the viewer perceives different information. Selecting a "good" layout method is thus important for visualizing a graph. The selection can be highly subjective and dependent on the given task. A common approach to selecting a good layout is to use aesthetic criteria and visual inspection. However, fully calculating various layouts and their associated aesthetic metrics is computationally expensive. In this paper, we present a machine learning approach to large graph visualization based on computing the topological similarity of graphs using graph kernels. For a given graph, our approach can show what the graph would look like in different layouts and estimate their corresponding aesthetic metrics. An important contribution of our work is the development of a new framework to design graph kernels. Our experimental study shows that our estimation calculation is considerably faster than computing the actual layouts and their aesthetic metrics. Also, our graph kernels outperform the state-of-the-art ones in both time and accuracy. In addition, we conducted a user study to demonstrate that the topological similarity computed with our graph kernel matches perceptual similarity assessed by human users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Womeldorff, Geoffrey Alan; Payne, Joshua Estes; Bergen, Benjamin Karl
These are slides for a presentation on PARTISN Research and FleCSI Updates. The following topics are covered: SNAP vs PARTISN, Background Research, Production Code (structural design and changes, kernel design and implementation, lessons learned), NuT IMC Proxy, FleCSI Update (design and lessons learned). It can all be summarized in the following manner: Kokkos was shown to be effective in FY15 in implementing a C++ version of SNAP's kernel. This same methodology was applied to a production IC code, PARTISN. This was a much more complex endeavour than in FY15 for many reasons; a C++ kernel embedded in Fortran, overloading Fortranmore » memory allocations, general language interoperability, and a fully fleshed out production code versus a simplified proxy code. Lessons learned are Legion. In no particular order: Interoperability between Fortran and C++ was really not that hard, and a useful engineering effort. Tracking down all necessary memory allocations for a kernel in a production code is pretty hard. Modifying a production code to work for more than a handful of use cases is also pretty hard. Figuring out the toolchain that will allow a successful implementation of design decisions is quite hard, if making use of "bleeding edge" design choices. In terms of performance, production code concurrency architecture can be a virtual showstopper; being too complex to easily rewrite and test in a short period of time, or depending on tool features which do not exist yet. Ultimately, while the tools used in this work were not successful in speeding up the production code, they helped to identify how work would be done, and provide requirements to tools.« less
New numerical method for radiation heat transfer in nonhomogeneous participating media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, J.R.; Tan, Zhiqiang
A new numerical method, which solves the exact integral equations of distance-angular integration form for radiation transfer, is introduced in this paper. By constructing and prestoring the numerical integral formulas for the distance integral for appropriate kernel functions, this method eliminates the time consuming evaluations of the kernels of the space integrals in the formal computations. In addition, when the number of elements in the system is large, the resulting coefficient matrix is quite sparse. Thus, either considerable time or much storage can be saved. A weakness of the method is discussed, and some remedies are suggested. As illustrations, somemore » one-dimensional and two-dimensional problems in both homogeneous and inhomogeneous emitting, absorbing, and linear anisotropic scattering media are studied. Some results are compared with available data. 13 refs.« less
Optimal projection method determination by Logdet Divergence and perturbed von-Neumann Divergence.
Jiang, Hao; Ching, Wai-Ki; Qiu, Yushan; Cheng, Xiao-Qing
2017-12-14
Positive semi-definiteness is a critical property in kernel methods for Support Vector Machine (SVM) by which efficient solutions can be guaranteed through convex quadratic programming. However, a lot of similarity functions in applications do not produce positive semi-definite kernels. We propose projection method by constructing projection matrix on indefinite kernels. As a generalization of the spectrum method (denoising method and flipping method), the projection method shows better or comparable performance comparing to the corresponding indefinite kernel methods on a number of real world data sets. Under the Bregman matrix divergence theory, we can find suggested optimal λ in projection method using unconstrained optimization in kernel learning. In this paper we focus on optimal λ determination, in the pursuit of precise optimal λ determination method in unconstrained optimization framework. We developed a perturbed von-Neumann divergence to measure kernel relationships. We compared optimal λ determination with Logdet Divergence and perturbed von-Neumann Divergence, aiming at finding better λ in projection method. Results on a number of real world data sets show that projection method with optimal λ by Logdet divergence demonstrate near optimal performance. And the perturbed von-Neumann Divergence can help determine a relatively better optimal projection method. Projection method ia easy to use for dealing with indefinite kernels. And the parameter embedded in the method can be determined through unconstrained optimization under Bregman matrix divergence theory. This may provide a new way in kernel SVMs for varied objectives.
L2-norm multiple kernel learning and its application to biomedical data fusion
2010-01-01
Background This paper introduces the notion of optimizing different norms in the dual problem of support vector machines with multiple kernels. The selection of norms yields different extensions of multiple kernel learning (MKL) such as L∞, L1, and L2 MKL. In particular, L2 MKL is a novel method that leads to non-sparse optimal kernel coefficients, which is different from the sparse kernel coefficients optimized by the existing L∞ MKL method. In real biomedical applications, L2 MKL may have more advantages over sparse integration method for thoroughly combining complementary information in heterogeneous data sources. Results We provide a theoretical analysis of the relationship between the L2 optimization of kernels in the dual problem with the L2 coefficient regularization in the primal problem. Understanding the dual L2 problem grants a unified view on MKL and enables us to extend the L2 method to a wide range of machine learning problems. We implement L2 MKL for ranking and classification problems and compare its performance with the sparse L∞ and the averaging L1 MKL methods. The experiments are carried out on six real biomedical data sets and two large scale UCI data sets. L2 MKL yields better performance on most of the benchmark data sets. In particular, we propose a novel L2 MKL least squares support vector machine (LSSVM) algorithm, which is shown to be an efficient and promising classifier for large scale data sets processing. Conclusions This paper extends the statistical framework of genomic data fusion based on MKL. Allowing non-sparse weights on the data sources is an attractive option in settings where we believe most data sources to be relevant to the problem at hand and want to avoid a "winner-takes-all" effect seen in L∞ MKL, which can be detrimental to the performance in prospective studies. The notion of optimizing L2 kernels can be straightforwardly extended to ranking, classification, regression, and clustering algorithms. To tackle the computational burden of MKL, this paper proposes several novel LSSVM based MKL algorithms. Systematic comparison on real data sets shows that LSSVM MKL has comparable performance as the conventional SVM MKL algorithms. Moreover, large scale numerical experiments indicate that when cast as semi-infinite programming, LSSVM MKL can be solved more efficiently than SVM MKL. Availability The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/l2lssvm.html. PMID:20529363
Cross-domain question classification in community question answering via kernel mapping
NASA Astrophysics Data System (ADS)
Su, Lei; Hu, Zuoliang; Yang, Bin; Li, Yiyang; Chen, Jun
2015-10-01
An increasingly popular method for retrieving information is via the community question answering (CQA) systems such as Yahoo! Answers and Baidu Knows. In CQA, question classification plays an important role to find the answers. However, the labeled training examples for statistical question classifier are fairly expensive to obtain, as they require the experienced human efforts. Meanwhile, unlabeled data are readily available. This paper employs the method of domain adaptation via kernel mapping to solve this problem. In detail, the kernel approach is utilized to map the target-domain data and the source-domain data into a common space, where the question classifiers are trained under the closer conditional probabilities. The kernel mapping function is constructed by domain knowledge. Therefore, domain knowledge could be transferred from the labeled examples in the source domain to the unlabeled ones in the targeted domain. The statistical training model can be improved by using a large number of unlabeled data. Meanwhile, the Hadoop Platform is used to construct the mapping mechanism to reduce the time complexity. Map/Reduce enable kernel mapping for domain adaptation in parallel in the Hadoop Platform. Experimental results show that the accuracy of question classification could be improved by the method of kernel mapping. Furthermore, the parallel method in the Hadoop Platform could effective schedule the computing resources to reduce the running time.
Optimization of fixture layouts of glass laser optics using multiple kernel regression.
Su, Jianhua; Cao, Enhua; Qiao, Hong
2014-05-10
We aim to build an integrated fixturing model to describe the structural properties and thermal properties of the support frame of glass laser optics. Therefore, (a) a near global optimal set of clamps can be computed to minimize the surface shape error of the glass laser optic based on the proposed model, and (b) a desired surface shape error can be obtained by adjusting the clamping forces under various environmental temperatures based on the model. To construct the model, we develop a new multiple kernel learning method and call it multiple kernel support vector functional regression. The proposed method uses two layer regressions to group and order the data sources by the weights of the kernels and the factors of the layers. Because of that, the influences of the clamps and the temperature can be evaluated by grouping them into different layers.
Active Prior Tactile Knowledge Transfer for Learning Tactual Properties of New Objects
Feng, Di
2018-01-01
Reusing the tactile knowledge of some previously-explored objects (prior objects) helps us to easily recognize the tactual properties of new objects. In this paper, we enable a robotic arm equipped with multi-modal artificial skin, like humans, to actively transfer the prior tactile exploratory action experiences when it learns the detailed physical properties of new objects. These experiences, or prior tactile knowledge, are built by the feature observations that the robot perceives from multiple sensory modalities, when it applies the pressing, sliding, and static contact movements on objects with different action parameters. We call our method Active Prior Tactile Knowledge Transfer (APTKT), and systematically evaluated its performance by several experiments. Results show that the robot improved the discrimination accuracy by around 10% when it used only one training sample with the feature observations of prior objects. By further incorporating the predictions from the observation models of prior objects as auxiliary features, our method improved the discrimination accuracy by over 20%. The results also show that the proposed method is robust against transferring irrelevant prior tactile knowledge (negative knowledge transfer). PMID:29466300
NASA Astrophysics Data System (ADS)
Lee, Jongpil; Nam, Juhan
2017-08-01
Music auto-tagging is often handled in a similar manner to image classification by regarding the 2D audio spectrogram as image data. However, music auto-tagging is distinguished from image classification in that the tags are highly diverse and have different levels of abstractions. Considering this issue, we propose a convolutional neural networks (CNN)-based architecture that embraces multi-level and multi-scaled features. The architecture is trained in three steps. First, we conduct supervised feature learning to capture local audio features using a set of CNNs with different input sizes. Second, we extract audio features from each layer of the pre-trained convolutional networks separately and aggregate them altogether given a long audio clip. Finally, we put them into fully-connected networks and make final predictions of the tags. Our experiments show that using the combination of multi-level and multi-scale features is highly effective in music auto-tagging and the proposed method outperforms previous state-of-the-arts on the MagnaTagATune dataset and the Million Song Dataset. We further show that the proposed architecture is useful in transfer learning.
An SVM-Based Solution for Fault Detection in Wind Turbines
Santos, Pedro; Villa, Luisa F.; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús
2015-01-01
Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets. PMID:25760051
Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels
Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J.
2014-01-01
This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively “hiding” its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research. PMID:25505378
Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J
2014-01-01
This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research.
Transfer learning for bimodal biometrics recognition
NASA Astrophysics Data System (ADS)
Dan, Zhiping; Sun, Shuifa; Chen, Yanfei; Gan, Haitao
2013-10-01
Biometrics recognition aims to identify and predict new personal identities based on their existing knowledge. As the use of multiple biometric traits of the individual may enables more information to be used for recognition, it has been proved that multi-biometrics can produce higher accuracy than single biometrics. However, a common problem with traditional machine learning is that the training and test data should be in the same feature space, and have the same underlying distribution. If the distributions and features are different between training and future data, the model performance often drops. In this paper, we propose a transfer learning method for face recognition on bimodal biometrics. The training and test samples of bimodal biometric images are composed of the visible light face images and the infrared face images. Our algorithm transfers the knowledge across feature spaces, relaxing the assumption of same feature space as well as same underlying distribution by automatically learning a mapping between two different but somewhat similar face images. According to the experiments in the face images, the results show that the accuracy of face recognition has been greatly improved by the proposed method compared with the other previous methods. It demonstrates the effectiveness and robustness of our method.
ERIC Educational Resources Information Center
Kaiser, David Brian; Köhler, Thomas; Weith, Thomas
2016-01-01
This article aims to sketch a conceptual design for an information and knowledge management system in sustainability research projects. The suitable frameworks to implement knowledge transfer models constitute social communities, because the mutual exchange and learning processes among all stakeholders promote key sustainable developments through…
The Dalhousie Career Portfolio Programme: A Multi-Faceted Approach to Transition to Work.
ERIC Educational Resources Information Center
Wright, W. Alan
2001-01-01
Describes Dalhousie University's new program to prepare students for work while enhancing undergraduate education. The overall purpose of the Dalhousie Career Portfolio program is to help students understand the value and transferability of their learning, knowledge, and skills to their personal and career development. Evaluation revealed a…
Multi-Method Evaluation of College Teaching
ERIC Educational Resources Information Center
Algozzine, Bob; Beattie, John; Bray, Marty; Flowers, Claudia; Gretes, John; Mohanty, Ganesh; Spooner, Fred
2010-01-01
Student evaluation of instruction in college and university courses has been a routine and mandatory part of undergraduate and graduate education for some time. A major shortcoming of the process is that it relies exclusively on the opinions or qualitative judgments of students rather than on assessing the learning or transfer of knowledge that…
Localized Multiple Kernel Learning A Convex Approach
2016-11-22
data. All the aforementioned approaches to localized MKL are formulated in terms of non-convex optimization problems, and deep the- oretical...learning. IEEE Transactions on Neural Networks, 22(3):433–446, 2011. Jingjing Yang, Yuanning Li, Yonghong Tian, Lingyu Duan, and Wen Gao. Group-sensitive
2010-01-01
Background Discovering novel disease genes is still challenging for diseases for which no prior knowledge - such as known disease genes or disease-related pathways - is available. Performing genetic studies frequently results in large lists of candidate genes of which only few can be followed up for further investigation. We have recently developed a computational method for constitutional genetic disorders that identifies the most promising candidate genes by replacing prior knowledge by experimental data of differential gene expression between affected and healthy individuals. To improve the performance of our prioritization strategy, we have extended our previous work by applying different machine learning approaches that identify promising candidate genes by determining whether a gene is surrounded by highly differentially expressed genes in a functional association or protein-protein interaction network. Results We have proposed three strategies scoring disease candidate genes relying on network-based machine learning approaches, such as kernel ridge regression, heat kernel, and Arnoldi kernel approximation. For comparison purposes, a local measure based on the expression of the direct neighbors is also computed. We have benchmarked these strategies on 40 publicly available knockout experiments in mice, and performance was assessed against results obtained using a standard procedure in genetics that ranks candidate genes based solely on their differential expression levels (Simple Expression Ranking). Our results showed that our four strategies could outperform this standard procedure and that the best results were obtained using the Heat Kernel Diffusion Ranking leading to an average ranking position of 8 out of 100 genes, an AUC value of 92.3% and an error reduction of 52.8% relative to the standard procedure approach which ranked the knockout gene on average at position 17 with an AUC value of 83.7%. Conclusion In this study we could identify promising candidate genes using network based machine learning approaches even if no knowledge is available about the disease or phenotype. PMID:20840752
Ghorai, Santanu; Mukherjee, Anirban; Dutta, Pranab K
2010-06-01
In this brief we have proposed the multiclass data classification by computationally inexpensive discriminant analysis through vector-valued regularized kernel function approximation (VVRKFA). VVRKFA being an extension of fast regularized kernel function approximation (FRKFA), provides the vector-valued response at single step. The VVRKFA finds a linear operator and a bias vector by using a reduced kernel that maps a pattern from feature space into the low dimensional label space. The classification of patterns is carried out in this low dimensional label subspace. A test pattern is classified depending on its proximity to class centroids. The effectiveness of the proposed method is experimentally verified and compared with multiclass support vector machine (SVM) on several benchmark data sets as well as on gene microarray data for multi-category cancer classification. The results indicate the significant improvement in both training and testing time compared to that of multiclass SVM with comparable testing accuracy principally in large data sets. Experiments in this brief also serve as comparison of performance of VVRKFA with stratified random sampling and sub-sampling.
Numerical models for fluid-grains interactions: opportunities and limitations
NASA Astrophysics Data System (ADS)
Esteghamatian, Amir; Rahmani, Mona; Wachs, Anthony
2017-06-01
In the framework of a multi-scale approach, we develop numerical models for suspension flows. At the micro scale level, we perform particle-resolved numerical simulations using a Distributed Lagrange Multiplier/Fictitious Domain approach. At the meso scale level, we use a two-way Euler/Lagrange approach with a Gaussian filtering kernel to model fluid-solid momentum transfer. At both the micro and meso scale levels, particles are individually tracked in a Lagrangian way and all inter-particle collisions are computed by a Discrete Element/Soft-sphere method. The previous numerical models have been extended to handle particles of arbitrary shape (non-spherical, angular and even non-convex) as well as to treat heat and mass transfer. All simulation tools are fully-MPI parallel with standard domain decomposition and run on supercomputers with a satisfactory scalability on up to a few thousands of cores. The main asset of multi scale analysis is the ability to extend our comprehension of the dynamics of suspension flows based on the knowledge acquired from the high-fidelity micro scale simulations and to use that knowledge to improve the meso scale model. We illustrate how we can benefit from this strategy for a fluidized bed, where we introduce a stochastic drag force model derived from micro-scale simulations to recover the proper level of particle fluctuations. Conversely, we discuss the limitations of such modelling tools such as their limited ability to capture lubrication forces and boundary layers in highly inertial flows. We suggest ways to overcome these limitations in order to enhance further the capabilities of the numerical models.
Multi-pose facial correction based on Gaussian process with combined kernel function
NASA Astrophysics Data System (ADS)
Shi, Shuyan; Ji, Ruirui; Zhang, Fan
2018-04-01
In order to improve the recognition rate of various postures, this paper proposes a method of facial correction based on Gaussian Process which build a nonlinear regression model between the front and the side face with combined kernel function. The face images with horizontal angle from -45° to +45° can be properly corrected to front faces. Finally, Support Vector Machine is employed for face recognition. Experiments on CAS PEAL R1 face database show that Gaussian process can weaken the influence of pose changes and improve the accuracy of face recognition to certain extent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiner, S.; Paschal, C.B.; Galloway, R.L.
Four methods of producing maximum intensity projection (MIP) images were studied and compared. Three of the projection methods differ in the interpolation kernel used for ray tracing. The interpolation kernels include nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation. The fourth projection method is a voxel projection method that is not explicitly a ray-tracing technique. The four algorithms` performance was evaluated using a computer-generated model of a vessel and using real MR angiography data. The evaluation centered around how well an algorithm transferred an object`s width to the projection plane. The voxel projection algorithm does not suffer from artifactsmore » associated with the nearest neighbor algorithm. Also, a speed-up in the calculation of the projection is seen with the voxel projection method. Linear interpolation dramatically improves the transfer of width information from the 3D MRA data set over both nearest neighbor and voxel projection methods. Even though the cubic convolution interpolation kernel is theoretically superior to the linear kernel, it did not project widths more accurately than linear interpolation. A possible advantage to the nearest neighbor interpolation is that the size of small vessels tends to be exaggerated in the projection plane, thereby increasing their visibility. The results confirm that the way in which an MIP image is constructed has a dramatic effect on information contained in the projection. The construction method must be chosen with the knowledge that the clinical information in the 2D projections in general will be different from that contained in the original 3D data volume. 27 refs., 16 figs., 2 tabs.« less
Selective automation and skill transfer in medical robotics: a demonstration on surgical knot-tying.
Knoll, Alois; Mayer, Hermann; Staub, Christoph; Bauernschmitt, Robert
2012-12-01
Transferring non-trivial human manipulation skills to robot systems is a challenging task. There have been a number of attempts to design research systems for skill transfer, but the level of the complexity of the actual skills transferable to the robot was rather limited, and delicate operations requiring a high dexterity and long action sequences with many sub-operations were impossible to transfer. A novel approach to human-machine skill transfer for multi-arm robot systems is presented. The methodology capitalizes on the metaphor of 'scaffolded learning', which has gained widespread acceptance in psychology. The main idea is to formalize the superior knowledge of a teacher in a certain way to generate support for a trainee. In our case, the scaffolding is constituted by abstract patterns, which facilitate the structuring and segmentation of information during 'learning by demonstration'. The actual skill generalization is then based on simulating fluid dynamics. The approach has been successfully evaluated in the medical domain for the delicate task of automated knot-tying for suturing with standard surgical instruments and a realistic minimally invasive robotic surgery system. Copyright © 2012 John Wiley & Sons, Ltd.
Wang, Shijun; Yao, Jianhua; Petrick, Nicholas; Summers, Ronald M.
2010-01-01
Colon cancer is the second leading cause of cancer-related deaths in the United States. Computed tomographic colonography (CTC) combined with a computer aided detection system provides a feasible approach for improving colonic polyps detection and increasing the use of CTC for colon cancer screening. To distinguish true polyps from false positives, various features extracted from polyp candidates have been proposed. Most of these traditional features try to capture the shape information of polyp candidates or neighborhood knowledge about the surrounding structures (fold, colon wall, etc.). In this paper, we propose a new set of shape descriptors for polyp candidates based on statistical curvature information. These features called histograms of curvature features are rotation, translation and scale invariant and can be treated as complementing existing feature set. Then in order to make full use of the traditional geometric features (defined as group A) and the new statistical features (group B) which are highly heterogeneous, we employed a multiple kernel learning method based on semi-definite programming to learn an optimized classification kernel from the two groups of features. We conducted leave-one-patient-out test on a CTC dataset which contained scans from 66 patients. Experimental results show that a support vector machine (SVM) based on the combined feature set and the semi-definite optimization kernel achieved higher FROC performance compared to SVMs using the two groups of features separately. At a false positive per scan rate of 5, the sensitivity of the SVM using the combined features improved from 0.77 (Group A) and 0.73 (Group B) to 0.83 (p ≤ 0.01). PMID:20953299
KernelADASYN: Kernel Based Adaptive Synthetic Data Generation for Imbalanced Learning
2015-08-17
eases [35], Indian liver patient dataset (ILPD) [36], Parkinsons dataset [37], Vertebral Column dataset [38], breast cancer dataset [39], breast tissue...Both the data set of Breast Cancer and Breast Tissue aim to predict the patient is normal or abnormal according to the measurements. The data set SPECT...9, pp. 1263–1284, 2009. [3] M. Elter, R. Schulz-Wendtland, and T. Wittenberg, “The prediction of breast cancer biopsy outcomes using two cad
Fast metabolite identification with Input Output Kernel Regression.
Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho
2016-06-15
An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. celine.brouard@aalto.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Predicting receptor-ligand pairs through kernel learning
2011-01-01
Background Regulation of cellular events is, often, initiated via extracellular signaling. Extracellular signaling occurs when a circulating ligand interacts with one or more membrane-bound receptors. Identification of receptor-ligand pairs is thus an important and specific form of PPI prediction. Results Given a set of disparate data sources (expression data, domain content, and phylogenetic profile) we seek to predict new receptor-ligand pairs. We create a combined kernel classifier and assess its performance with respect to the Database of Ligand-Receptor Partners (DLRP) 'golden standard' as well as the method proposed by Gertz et al. Among our findings, we discover that our predictions for the tgfβ family accurately reconstruct over 76% of the supported edges (0.76 recall and 0.67 precision) of the receptor-ligand bipartite graph defined by the DLRP "golden standard". In addition, for the tgfβ family, the combined kernel classifier is able to relatively improve upon the Gertz et al. work by a factor of approximately 1.5 when considering that our method has an F-measure of 0.71 while that of Gertz et al. has a value of 0.48. Conclusions The prediction of receptor-ligand pairings is a difficult and complex task. We have demonstrated that using kernel learning on multiple data sources provides a stronger alternative to the existing method in solving this task. PMID:21834994
Fast metabolite identification with Input Output Kernel Regression
Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho
2016-01-01
Motivation: An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. Results: We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. Availability and implementation: Contact: celine.brouard@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307628
Sub-Network Kernels for Measuring Similarity of Brain Connectivity Networks in Disease Diagnosis.
Jie, Biao; Liu, Mingxia; Zhang, Daoqiang; Shen, Dinggang
2018-05-01
As a simple representation of interactions among distributed brain regions, brain networks have been widely applied to automated diagnosis of brain diseases, such as Alzheimer's disease (AD) and its early stage, i.e., mild cognitive impairment (MCI). In brain network analysis, a challenging task is how to measure the similarity between a pair of networks. Although many graph kernels (i.e., kernels defined on graphs) have been proposed for measuring the topological similarity of a pair of brain networks, most of them are defined using general graphs, thus ignoring the uniqueness of each node in brain networks. That is, each node in a brain network denotes a particular brain region, which is a specific characteristics of brain networks. Accordingly, in this paper, we construct a novel sub-network kernel for measuring the similarity between a pair of brain networks and then apply it to brain disease classification. Different from current graph kernels, our proposed sub-network kernel not only takes into account the inherent characteristic of brain networks, but also captures multi-level (from local to global) topological properties of nodes in brain networks, which are essential for defining the similarity measure of brain networks. To validate the efficacy of our method, we perform extensive experiments on subjects with baseline functional magnetic resonance imaging data obtained from the Alzheimer's disease neuroimaging initiative database. Experimental results demonstrate that the proposed method outperforms several state-of-the-art graph-based methods in MCI classification.
Detection of Splice Sites Using Support Vector Machine
NASA Astrophysics Data System (ADS)
Varadwaj, Pritish; Purohit, Neetesh; Arora, Bhumika
Automatic identification and annotation of exon and intron region of gene, from DNA sequences has been an important research area in field of computational biology. Several approaches viz. Hidden Markov Model (HMM), Artificial Intelligence (AI) based machine learning and Digital Signal Processing (DSP) techniques have extensively and independently been used by various researchers to cater this challenging task. In this work, we propose a Support Vector Machine based kernel learning approach for detection of splice sites (the exon-intron boundary) in a gene. Electron-Ion Interaction Potential (EIIP) values of nucleotides have been used for mapping character sequences to corresponding numeric sequences. Radial Basis Function (RBF) SVM kernel is trained using EIIP numeric sequences. Furthermore this was tested on test gene dataset for detection of splice site by window (of 12 residues) shifting. Optimum values of window size, various important parameters of SVM kernel have been optimized for a better accuracy. Receiver Operating Characteristic (ROC) curves have been utilized for displaying the sensitivity rate of the classifier and results showed 94.82% accuracy for splice site detection on test dataset.
Gong, Kuang; Cheng-Liao, Jinxiu; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi
2018-04-01
Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.
Zhang, Wei; Peng, Gaoliang; Li, Chuanhao; Chen, Yuanhang; Zhang, Zhujun
2017-01-01
Intelligent fault diagnosis techniques have replaced time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning models can improve the accuracy of intelligent fault diagnosis with the help of their multilayer nonlinear mapping ability. This paper proposes a novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN). The proposed method uses raw vibration signals as input (data augmentation is used to generate more inputs), and uses the wide kernels in the first convolutional layer for extracting features and suppressing high frequency noise. Small convolutional kernels in the preceding layers are used for multilayer nonlinear mapping. AdaBN is implemented to improve the domain adaptation ability of the model. The proposed model addresses the problem that currently, the accuracy of CNN applied to fault diagnosis is not very high. WDCNN can not only achieve 100% classification accuracy on normal signals, but also outperform the state-of-the-art DNN model which is based on frequency features under different working load and noisy environment conditions. PMID:28241451
Transductive multi-view zero-shot learning.
Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Gong, Shaogang
2015-11-01
Most existing zero-shot learning approaches exploit transfer learning via an intermediate semantic representation shared between an annotated auxiliary dataset and a target dataset with different classes and no annotation. A projection from a low-level feature space to the semantic representation space is learned from the auxiliary dataset and applied without adaptation to the target dataset. In this paper we identify two inherent limitations with these approaches. First, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. The second limitation is the prototype sparsity problem which refers to the fact that for each target class, only a single prototype is available for zero-shot learning given a semantic representation. To overcome this problem, a novel heterogeneous multi-view hypergraph label propagation method is formulated for zero-shot learning in the transductive embedding space. It effectively exploits the complementary information offered by different semantic representations and takes advantage of the manifold structures of multiple representation spaces in a coherent manner. We demonstrate through extensive experiments that the proposed approach (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) significantly outperforms existing methods for both zero-shot and N-shot recognition on three image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.
NASA Astrophysics Data System (ADS)
Xue, Di-Xiu; Zhang, Rong; Zhao, Yuan-Yuan; Xu, Jian-Ming; Wang, Ya-Lei
2017-07-01
Cancer recognition is the prerequisite to determine appropriate treatment. This paper focuses on the semantic segmentation task of microvascular morphological types on narrowband images to aid clinical examination of esophageal cancer. The most challenge for semantic segmentation is incomplete-labeling. Our key insight is to build fully convolutional networks (FCNs) with double-label to make pixel-wise predictions. The roi-label indicating ROIs (region of interest) is introduced as extra constraint to guild feature learning. Trained end-to-end, the FCN model with two target jointly optimizes both segmentation of sem-label (semantic label) and segmentation of roi-label within the framework of self-transfer learning based on multi-task learning theory. The learning representation ability of shared convolutional networks for sem-label is improved with support of roi-label via achieving a better understanding of information outside the ROIs. Our best FCN model gives satisfactory segmentation result with mean IU up to 77.8% (pixel accuracy > 90%). The results show that the proposed approach is able to assist clinical diagnosis to a certain extent.
Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale
Diao, Yuzhu; Hu, Aqin
2018-01-01
Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation. PMID:29498699
Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale.
Li, Qingsheng; Diao, Yuzhu; Gong, Zaiwu; Hu, Aqin
2018-03-02
Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation.
Omnibus Risk Assessment via Accelerated Failure Time Kernel Machine Modeling
Sinnott, Jennifer A.; Cai, Tianxi
2013-01-01
Summary Integrating genomic information with traditional clinical risk factors to improve the prediction of disease outcomes could profoundly change the practice of medicine. However, the large number of potential markers and possible complexity of the relationship between markers and disease make it difficult to construct accurate risk prediction models. Standard approaches for identifying important markers often rely on marginal associations or linearity assumptions and may not capture non-linear or interactive effects. In recent years, much work has been done to group genes into pathways and networks. Integrating such biological knowledge into statistical learning could potentially improve model interpretability and reliability. One effective approach is to employ a kernel machine (KM) framework, which can capture nonlinear effects if nonlinear kernels are used (Scholkopf and Smola, 2002; Liu et al., 2007, 2008). For survival outcomes, KM regression modeling and testing procedures have been derived under a proportional hazards (PH) assumption (Li and Luan, 2003; Cai et al., 2011). In this paper, we derive testing and prediction methods for KM regression under the accelerated failure time model, a useful alternative to the PH model. We approximate the null distribution of our test statistic using resampling procedures. When multiple kernels are of potential interest, it may be unclear in advance which kernel to use for testing and estimation. We propose a robust Omnibus Test that combines information across kernels, and an approach for selecting the best kernel for estimation. The methods are illustrated with an application in breast cancer. PMID:24328713
2014-03-27
and machine learning for a range of research including such topics as medical imaging [10] and handwriting recognition [11]. The type of feature...1989. [11] C. Bahlmann, B. Haasdonk, and H. Burkhardt, “Online handwriting recognition with support vector machines-a kernel approach,” in Eighth...International Workshop on Frontiers in Handwriting Recognition, pp. 49–54, IEEE, 2002. [12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Real-time dose computation: GPU-accelerated source modeling and superposition/convolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques, Robert; Wong, John; Taylor, Russell
Purpose: To accelerate dose calculation to interactive rates using highly parallel graphics processing units (GPUs). Methods: The authors have extended their prior work in GPU-accelerated superposition/convolution with a modern dual-source model and have enhanced performance. The primary source algorithm supports both focused leaf ends and asymmetric rounded leaf ends. The extra-focal algorithm uses a discretized, isotropic area source and models multileaf collimator leaf height effects. The spectral and attenuation effects of static beam modifiers were integrated into each source's spectral function. The authors introduce the concepts of arc superposition and delta superposition. Arc superposition utilizes separate angular sampling for themore » total energy released per unit mass (TERMA) and superposition computations to increase accuracy and performance. Delta superposition allows single beamlet changes to be computed efficiently. The authors extended their concept of multi-resolution superposition to include kernel tilting. Multi-resolution superposition approximates solid angle ray-tracing, improving performance and scalability with a minor loss in accuracy. Superposition/convolution was implemented using the inverse cumulative-cumulative kernel and exact radiological path ray-tracing. The accuracy analyses were performed using multiple kernel ray samplings, both with and without kernel tilting and multi-resolution superposition. Results: Source model performance was <9 ms (data dependent) for a high resolution (400{sup 2}) field using an NVIDIA (Santa Clara, CA) GeForce GTX 280. Computation of the physically correct multispectral TERMA attenuation was improved by a material centric approach, which increased performance by over 80%. Superposition performance was improved by {approx}24% to 0.058 and 0.94 s for 64{sup 3} and 128{sup 3} water phantoms; a speed-up of 101-144x over the highly optimized Pinnacle{sup 3} (Philips, Madison, WI) implementation. Pinnacle{sup 3} times were 8.3 and 94 s, respectively, on an AMD (Sunnyvale, CA) Opteron 254 (two cores, 2.8 GHz). Conclusions: The authors have completed a comprehensive, GPU-accelerated dose engine in order to provide a substantial performance gain over CPU based implementations. Real-time dose computation is feasible with the accuracy levels of the superposition/convolution algorithm.« less
Confidence Preserving Machine for Facial Action Unit Detection
Zeng, Jiabei; Chu, Wen-Sheng; De la Torre, Fernando; Cohn, Jeffrey F.; Xiong, Zhang
2016-01-01
Facial action unit (AU) detection from video has been a long-standing problem in automated facial expression analysis. While progress has been made, accurate detection of facial AUs remains challenging due to ubiquitous sources of errors, such as inter-personal variability, pose, and low-intensity AUs. In this paper, we refer to samples causing such errors as hard samples, and the remaining as easy samples. To address learning with the hard samples, we propose the Confidence Preserving Machine (CPM), a novel two-stage learning framework that combines multiple classifiers following an “easy-to-hard” strategy. During the training stage, CPM learns two confident classifiers. Each classifier focuses on separating easy samples of one class from all else, and thus preserves confidence on predicting each class. During the testing stage, the confident classifiers provide “virtual labels” for easy test samples. Given the virtual labels, we propose a quasi-semi-supervised (QSS) learning strategy to learn a person-specific (PS) classifier. The QSS strategy employs a spatio-temporal smoothness that encourages similar predictions for samples within a spatio-temporal neighborhood. In addition, to further improve detection performance, we introduce two CPM extensions: iCPM that iteratively augments training samples to train the confident classifiers, and kCPM that kernelizes the original CPM model to promote nonlinearity. Experiments on four spontaneous datasets GFT [15], BP4D [56], DISFA [42], and RU-FACS [3] illustrate the benefits of the proposed CPM models over baseline methods and state-of-the-art semisupervised learning and transfer learning methods. PMID:27479964
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir
2017-01-01
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2017-04-19
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.
Hussain, Lal; Ahmed, Adeel; Saeed, Sharjil; Rathore, Saima; Awan, Imtiaz Ahmed; Shah, Saeed Arif; Majid, Abdul; Idris, Adnan; Awan, Anees Ahmed
2018-02-06
Prostate is a second leading causes of cancer deaths among men. Early detection of cancer can effectively reduce the rate of mortality caused by Prostate cancer. Due to high and multiresolution of MRIs from prostate cancer require a proper diagnostic systems and tools. In the past researchers developed Computer aided diagnosis (CAD) systems that help the radiologist to detect the abnormalities. In this research paper, we have employed novel Machine learning techniques such as Bayesian approach, Support vector machine (SVM) kernels: polynomial, radial base function (RBF) and Gaussian and Decision Tree for detecting prostate cancer. Moreover, different features extracting strategies are proposed to improve the detection performance. The features extracting strategies are based on texture, morphological, scale invariant feature transform (SIFT), and elliptic Fourier descriptors (EFDs) features. The performance was evaluated based on single as well as combination of features using Machine Learning Classification techniques. The Cross validation (Jack-knife k-fold) was performed and performance was evaluated in term of receiver operating curve (ROC) and specificity, sensitivity, Positive predictive value (PPV), negative predictive value (NPV), false positive rate (FPR). Based on single features extracting strategies, SVM Gaussian Kernel gives the highest accuracy of 98.34% with AUC of 0.999. While, using combination of features extracting strategies, SVM Gaussian kernel with texture + morphological, and EFDs + morphological features give the highest accuracy of 99.71% and AUC of 1.00.
Accurate interatomic force fields via machine learning with covariant kernels
NASA Astrophysics Data System (ADS)
Glielmo, Aldo; Sollich, Peter; De Vita, Alessandro
2017-06-01
We present a novel scheme to accurately predict atomic forces as vector quantities, rather than sets of scalar components, by Gaussian process (GP) regression. This is based on matrix-valued kernel functions, on which we impose the requirements that the predicted force rotates with the target configuration and is independent of any rotations applied to the configuration database entries. We show that such covariant GP kernels can be obtained by integration over the elements of the rotation group SO (d ) for the relevant dimensionality d . Remarkably, in specific cases the integration can be carried out analytically and yields a conservative force field that can be recast into a pair interaction form. Finally, we show that restricting the integration to a summation over the elements of a finite point group relevant to the target system is sufficient to recover an accurate GP. The accuracy of our kernels in predicting quantum-mechanical forces in real materials is investigated by tests on pure and defective Ni, Fe, and Si crystalline systems.
A general CFD framework for fault-resilient simulations based on multi-resolution information fusion
NASA Astrophysics Data System (ADS)
Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em
2017-10-01
We develop a general CFD framework for multi-resolution simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy, in space-time, simulated fields. We combine approximation theory and domain decomposition together with statistical learning techniques, e.g. coKriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation (a) on a small number of spatial "patches" distributed across the domain, simulated by finite differences at fine resolution and (b) on the entire domain simulated at very low resolution, thus fusing multi-resolution models to obtain the final answer. Second, we simulate the flow in a lid-driven cavity in an analogous fashion, by fusing finite difference solutions obtained with fine and low resolution assuming gappy data sets. We investigate the influence of various parameters for this framework, including the correlation kernel, the size of a buffer employed in estimating boundary conditions, the coarseness of the resolution of auxiliary data, and the communication frequency across different patches in fusing the information at different resolution levels. In addition to its robustness and resilience, the new framework can be employed to generalize previous multiscale approaches involving heterogeneous discretizations or even fundamentally different flow descriptions, e.g. in continuum-atomistic simulations.
Rojas, David; Kapralos, Bill; Cristancho, Sayra; Collins, Karen; Hogue, Andrew; Conati, Cristina; Dubrowski, Adam
2012-01-01
Despite the benefits associated with virtual learning environments and serious games, there are open, fundamental issues regarding simulation fidelity and multi-modal cue interaction and their effect on immersion, transfer of knowledge, and retention. Here we describe the results of a study that examined the effect of ambient (background) sound on the perception of visual fidelity (defined with respect to texture resolution). Results suggest that the perception of visual fidelity is dependent on ambient sound and more specifically, white noise can have detrimental effects on our perception of high quality visuals. The results of this study will guide future studies that will ultimately aid in developing an understanding of the role that fidelity, and multi-modal interactions play with respect to knowledge transfer and retention for users of virtual simulations and serious games.
Learning Circulant Sensing Kernels
2014-03-01
Furthermore, we test learning the circulant sensing matrix/operator and the nonparametric dictionary altogether and obtain even better performance. We...scale. Furthermore, we test learning the circulant sensing matrix/operator and the nonparametric dictionary altogether and obtain even better performance...matrices, Tropp et al.[28] de - scribes a random filter for acquiring a signal x̄; Haupt et al.[12] describes a channel estimation problem to identify a
NASA Astrophysics Data System (ADS)
Abdulhameed, M.; Vieru, D.; Roslan, R.
2017-10-01
This paper investigates the electro-magneto-hydrodynamic flow of the non-Newtonian behavior of biofluids, with heat transfer, through a cylindrical microchannel. The fluid is acted by an arbitrary time-dependent pressure gradient, an external electric field and an external magnetic field. The governing equations are considered as fractional partial differential equations based on the Caputo-Fabrizio time-fractional derivatives without singular kernel. The usefulness of fractional calculus to study fluid flows or heat and mass transfer phenomena was proven. Several experimental measurements led to conclusion that, in such problems, the models described by fractional differential equations are more suitable. The most common time-fractional derivative used in Continuum Mechanics is Caputo derivative. However, two disadvantages appear when this derivative is used. First, the definition kernel is a singular function and, secondly, the analytical expressions of the problem solutions are expressed by generalized functions (Mittag-Leffler, Lorenzo-Hartley, Robotnov, etc.) which, generally, are not adequate to numerical calculations. The new time-fractional derivative Caputo-Fabrizio, without singular kernel, is more suitable to solve various theoretical and practical problems which involve fractional differential equations. Using the Caputo-Fabrizio derivative, calculations are simpler and, the obtained solutions are expressed by elementary functions. Analytical solutions of the biofluid velocity and thermal transport are obtained by means of the Laplace and finite Hankel transforms. The influence of the fractional parameter, Eckert number and Joule heating parameter on the biofluid velocity and thermal transport are numerically analyzed and graphic presented. This fact can be an important in Biochip technology, thus making it possible to use this analysis technique extremely effective to control bioliquid samples of nanovolumes in microfluidic devices used for biological analysis and medical diagnosis.
Accelerating next generation sequencing data analysis with system level optimizations.
Kathiresan, Nagarajan; Temanni, Ramzi; Almabrazi, Hakeem; Syed, Najeeb; Jithesh, Puthen V; Al-Ali, Rashid
2017-08-22
Next generation sequencing (NGS) data analysis is highly compute intensive. In-memory computing, vectorization, bulk data transfer, CPU frequency scaling are some of the hardware features in the modern computing architectures. To get the best execution time and utilize these hardware features, it is necessary to tune the system level parameters before running the application. We studied the GATK-HaplotypeCaller which is part of common NGS workflows, that consume more than 43% of the total execution time. Multiple GATK 3.x versions were benchmarked and the execution time of HaplotypeCaller was optimized by various system level parameters which included: (i) tuning the parallel garbage collection and kernel shared memory to simulate in-memory computing, (ii) architecture-specific tuning in the PairHMM library for vectorization, (iii) including Java 1.8 features through GATK source code compilation and building a runtime environment for parallel sorting and bulk data transfer (iv) the default 'on-demand' mode of CPU frequency is over-clocked by using 'performance-mode' to accelerate the Java multi-threads. As a result, the HaplotypeCaller execution time was reduced by 82.66% in GATK 3.3 and 42.61% in GATK 3.7. Overall, the execution time of NGS pipeline was reduced to 70.60% and 34.14% for GATK 3.3 and GATK 3.7 respectively.
Spectral methods in machine learning and new strategies for very large datasets
Belabbas, Mohamed-Ali; Wolfe, Patrick J.
2009-01-01
Spectral methods are of fundamental importance in statistics and machine learning, because they underlie algorithms from classical principal components analysis to more recent approaches that exploit manifold structure. In most cases, the core technical problem can be reduced to computing a low-rank approximation to a positive-definite kernel. For the growing number of applications dealing with very large or high-dimensional datasets, however, the optimal approximation afforded by an exact spectral decomposition is too costly, because its complexity scales as the cube of either the number of training examples or their dimensionality. Motivated by such applications, we present here 2 new algorithms for the approximation of positive-semidefinite kernels, together with error bounds that improve on results in the literature. We approach this problem by seeking to determine, in an efficient manner, the most informative subset of our data relative to the kernel approximation task at hand. This leads to two new strategies based on the Nyström method that are directly applicable to massive datasets. The first of these—based on sampling—leads to a randomized algorithm whereupon the kernel induces a probability distribution on its set of partitions, whereas the latter approach—based on sorting—provides for the selection of a partition in a deterministic way. We detail their numerical implementation and provide simulation results for a variety of representative problems in statistical data analysis, each of which demonstrates the improved performance of our approach relative to existing methods. PMID:19129490
NASA Astrophysics Data System (ADS)
Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang
2017-01-01
Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods.
Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang
2017-01-01
Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods. PMID:28120883
Kernel-based whole-genome prediction of complex traits: a review.
Morota, Gota; Gianola, Daniel
2014-01-01
Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.
SVM and SVM Ensembles in Breast Cancer Prediction.
Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong
2017-01-01
Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.
SVM and SVM Ensembles in Breast Cancer Prediction
Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong
2017-01-01
Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers. PMID:28060807
Learning Midlevel Auditory Codes from Natural Sound Statistics.
Młynarski, Wiktor; McDermott, Josh H
2018-03-01
Interaction with the world requires an organism to transform sensory signals into representations in which behaviorally meaningful properties of the environment are made explicit. These representations are derived through cascades of neuronal processing stages in which neurons at each stage recode the output of preceding stages. Explanations of sensory coding may thus involve understanding how low-level patterns are combined into more complex structures. To gain insight into such midlevel representations for sound, we designed a hierarchical generative model of natural sounds that learns combinations of spectrotemporal features from natural stimulus statistics. In the first layer, the model forms a sparse convolutional code of spectrograms using a dictionary of learned spectrotemporal kernels. To generalize from specific kernel activation patterns, the second layer encodes patterns of time-varying magnitude of multiple first-layer coefficients. When trained on corpora of speech and environmental sounds, some second-layer units learned to group similar spectrotemporal features. Others instantiate opponency between distinct sets of features. Such groupings might be instantiated by neurons in the auditory cortex, providing a hypothesis for midlevel neuronal computation.
Sensing Urban Land-Use Patterns by Integrating Google Tensorflow and Scene-Classification Models
NASA Astrophysics Data System (ADS)
Yao, Y.; Liang, H.; Li, X.; Zhang, J.; He, J.
2017-09-01
With the rapid progress of China's urbanization, research on the automatic detection of land-use patterns in Chinese cities is of substantial importance. Deep learning is an effective method to extract image features. To take advantage of the deep-learning method in detecting urban land-use patterns, we applied a transfer-learning-based remote-sensing image approach to extract and classify features. Using the Google Tensorflow framework, a powerful convolution neural network (CNN) library was created. First, the transferred model was previously trained on ImageNet, one of the largest object-image data sets, to fully develop the model's ability to generate feature vectors of standard remote-sensing land-cover data sets (UC Merced and WHU-SIRI). Then, a random-forest-based classifier was constructed and trained on these generated vectors to classify the actual urban land-use pattern on the scale of traffic analysis zones (TAZs). To avoid the multi-scale effect of remote-sensing imagery, a large random patch (LRP) method was used. The proposed method could efficiently obtain acceptable accuracy (OA = 0.794, Kappa = 0.737) for the study area. In addition, the results show that the proposed method can effectively overcome the multi-scale effect that occurs in urban land-use classification at the irregular land-parcel level. The proposed method can help planners monitor dynamic urban land use and evaluate the impact of urban-planning schemes.
Mexican Hat Wavelet Kernel ELM for Multiclass Classification.
Wang, Jie; Song, Yi-Fan; Ma, Tian-Lei
2017-01-01
Kernel extreme learning machine (KELM) is a novel feedforward neural network, which is widely used in classification problems. To some extent, it solves the existing problems of the invalid nodes and the large computational complexity in ELM. However, the traditional KELM classifier usually has a low test accuracy when it faces multiclass classification problems. In order to solve the above problem, a new classifier, Mexican Hat wavelet KELM classifier, is proposed in this paper. The proposed classifier successfully improves the training accuracy and reduces the training time in the multiclass classification problems. Moreover, the validity of the Mexican Hat wavelet as a kernel function of ELM is rigorously proved. Experimental results on different data sets show that the performance of the proposed classifier is significantly superior to the compared classifiers.
Discriminative graph embedding for label propagation.
Nguyen, Canh Hao; Mamitsuka, Hiroshi
2011-09-01
In many applications, the available information is encoded in graph structures. This is a common problem in biological networks, social networks, web communities and document citations. We investigate the problem of classifying nodes' labels on a similarity graph given only a graph structure on the nodes. Conventional machine learning methods usually require data to reside in some Euclidean spaces or to have a kernel representation. Applying these methods to nodes on graphs would require embedding the graphs into these spaces. By embedding and then learning the nodes on graphs, most methods are either flexible with different learning objectives or efficient enough for large scale applications. We propose a method to embed a graph into a feature space for a discriminative purpose. Our idea is to include label information into the embedding process, making the space representation tailored to the task. We design embedding objective functions that the following learning formulations become spectral transforms. We then reformulate these spectral transforms into multiple kernel learning problems. Our method, while being tailored to the discriminative tasks, is efficient and can scale to massive data sets. We show the need of discriminative embedding on some simulations. Applying to biological network problems, our method is shown to outperform baselines.
An Exemplar-Based Multi-View Domain Generalization Framework for Visual Recognition.
Niu, Li; Li, Wen; Xu, Dong; Cai, Jianfei
2018-02-01
In this paper, we propose a new exemplar-based multi-view domain generalization (EMVDG) framework for visual recognition by learning robust classifier that are able to generalize well to arbitrary target domain based on the training samples with multiple types of features (i.e., multi-view features). In this framework, we aim to address two issues simultaneously. First, the distribution of training samples (i.e., the source domain) is often considerably different from that of testing samples (i.e., the target domain), so the performance of the classifiers learnt on the source domain may drop significantly on the target domain. Moreover, the testing data are often unseen during the training procedure. Second, when the training data are associated with multi-view features, the recognition performance can be further improved by exploiting the relation among multiple types of features. To address the first issue, considering that it has been shown that fusing multiple SVM classifiers can enhance the domain generalization ability, we build our EMVDG framework upon exemplar SVMs (ESVMs), in which a set of ESVM classifiers are learnt with each one trained based on one positive training sample and all the negative training samples. When the source domain contains multiple latent domains, the learnt ESVM classifiers are expected to be grouped into multiple clusters. To address the second issue, we propose two approaches under the EMVDG framework based on the consensus principle and the complementary principle, respectively. Specifically, we propose an EMVDG_CO method by adding a co-regularizer to enforce the cluster structures of ESVM classifiers on different views to be consistent based on the consensus principle. Inspired by multiple kernel learning, we also propose another EMVDG_MK method by fusing the ESVM classifiers from different views based on the complementary principle. In addition, we further extend our EMVDG framework to exemplar-based multi-view domain adaptation (EMVDA) framework when the unlabeled target domain data are available during the training procedure. The effectiveness of our EMVDG and EMVDA frameworks for visual recognition is clearly demonstrated by comprehensive experiments on three benchmark data sets.
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Sadik, Omowunmi A.; Embrechts, Mark J.; Leibensperger, Dale; Wong, Lut; Wanekaya, Adam; Uematsu, Michiko
2003-08-01
Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. Furthermore, recent events have highlighted awareness that chemical and biological agents (CBAs) may become the preferred, cheap alternative WMD, because these agents can effectively attack large populations while leaving infrastructures intact. Despite the availability of numerous sensing devices, intelligent hybrid sensors that can detect and degrade CBAs are virtually nonexistent. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using parathion and dichlorvos as model stimulants compounds. SVMs were used for the design and evaluation of new and more accurate data extraction, preprocessing and classification. Experimental results for the paradigms developed using Structural Risk Minimization, show a significant increase in classification accuracy when compared to the existing AromaScan baseline system. Specifically, the results of this research has demonstrated that, for the Parathion versus Dichlorvos pair, when compared to the AromaScan baseline system: (1) a 23% improvement in the overall ROC Az index using the S2000 kernel, with similar improvements with the Gaussian and polynomial (of degree 2) kernels, (2) a significant 173% improvement in specificity with the S2000 kernel. This means that the number of false negative errors were reduced by 173%, while making no false positive errors, when compared to the AromaScan base line performance. (3) The Gaussian and polynomial kernels demonstrated similar specificity at 100% sensitivity. All SVM classifiers provided essentially perfect classification performance for the Dichlorvos versus Trichlorfon pair. For the most difficult classification task, the Parathion versus Paraoxon pair, the following results were achieved (using the three SVM kernels: (1) ROC Az indices from approximately 93% to greater than 99%, (2) partial Az values from ~79% to 93%, (3) specificities from 76% to ~84% at 100 and 98% sensitivity, and (4) PPVs from 73% to ~84% at 100% and 98% sensitivities. These are excellent results, considering only one atom differentiates these nerve agents.
Selection and properties of alternative forming fluids for TRISO fuel kernel production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M. P.; King, J. C.; Gorman, B. P.
2013-01-01
Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardousmore » alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.« less
A dry-inoculation method for nut kernels.
Blessington, Tyann; Theofel, Christopher G; Harris, Linda J
2013-04-01
A dry-inoculation method for almonds and walnuts was developed to eliminate the need for the postinoculation drying required for wet-inoculation methods. The survival of Salmonella enterica Enteritidis PT 30 on wet- and dry-inoculated almond and walnut kernels stored under ambient conditions (average: 23 °C; 41 or 47% RH) was then compared over 14 weeks. For wet inoculation, an aqueous Salmonella preparation was added directly to almond or walnut kernels, which were then dried under ambient conditions (3 or 7 days, respectively) to initial nut moisture levels. For the dry inoculation, liquid inoculum was mixed with sterilized sand and dried for 24 h at 40 °C. The dried inoculated sand was mixed with kernels, and the sand was removed by shaking the mixture in a sterile sieve. Mixing procedures to optimize the bacterial transfer from sand to kernel were evaluated; in general, similar levels were achieved on walnuts (4.8-5.2 log CFU/g) and almonds (4.2-5.1 log CFU/g). The decline of Salmonella Enteritidis populations was similar during ambient storage (98 days) for both wet-and dry-inoculation methods for both almonds and walnuts. The dry-inoculation method mimics some of the suspected routes of contamination for tree nuts and may be appropriate for some postharvest challenge studies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Selection and properties of alternative forming fluids for TRISO fuel kernel production
NASA Astrophysics Data System (ADS)
Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, D. W.
2013-01-01
Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ˜10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.
Encoding Dissimilarity Data for Statistical Model Building.
Wahba, Grace
2010-12-01
We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A "newbie" algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a Smoothing Spline ANOVA penalized likelihood model, a Support Vector Machine, or any model that will admit Reproducing Kernel Hilbert Space components, for nonparametric regression, supervised learning, or semi-supervised learning. Future work and open questions are discussed. The papers are: F. Lu, S. Keles, S. Wright and G. Wahba 2005. A framework for kernel regularization with application to protein clustering. Proceedings of the National Academy of Sciences 102, 12332-1233.G. Corrada Bravo, G. Wahba, K. Lee, B. Klein, R. Klein and S. Iyengar 2009. Examining the relative influence of familial, genetic and environmental covariate information in flexible risk models. Proceedings of the National Academy of Sciences 106, 8128-8133F. Lu, Y. Lin and G. Wahba. Robust manifold unfolding with kernel regularization. TR 1008, Department of Statistics, University of Wisconsin-Madison.
Explaining Support Vector Machines: A Color Based Nomogram
Van Belle, Vanya; Van Calster, Ben; Van Huffel, Sabine; Suykens, Johan A. K.; Lisboa, Paulo
2016-01-01
Problem setting Support vector machines (SVMs) are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models. Objective In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto) not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables. Results Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant). When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable. Conclusions This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method. PMID:27723811
Learning multiple relative attributes with humans in the loop.
Qian, Buyue; Wang, Xiang; Cao, Nan; Jiang, Yu-Gang; Davidson, Ian
2014-12-01
Semantic attributes have been recognized as a more spontaneous manner to describe and annotate image content. It is widely accepted that image annotation using semantic attributes is a significant improvement to the traditional binary or multiclass annotation due to its naturally continuous and relative properties. Though useful, existing approaches rely on an abundant supervision and high-quality training data, which limit their applicability. Two standard methods to overcome small amounts of guidance and low-quality training data are transfer and active learning. In the context of relative attributes, this would entail learning multiple relative attributes simultaneously and actively querying a human for additional information. This paper addresses the two main limitations in existing work: 1) it actively adds humans to the learning loop so that minimal additional guidance can be given and 2) it learns multiple relative attributes simultaneously and thereby leverages dependence amongst them. In this paper, we formulate a joint active learning to rank framework with pairwise supervision to achieve these two aims, which also has other benefits such as the ability to be kernelized. The proposed framework optimizes over a set of ranking functions (measuring the strength of the presence of attributes) simultaneously and dependently on each other. The proposed pairwise queries take the form of which one of these two pictures is more natural? These queries can be easily answered by humans. Extensive empirical study on real image data sets shows that our proposed method, compared with several state-of-the-art methods, achieves superior retrieval performance while requires significantly less human inputs.
Data-Driven Hierarchical Structure Kernel for Multiscale Part-Based Object Recognition
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Zheng, Yuan F.
2017-01-01
Detecting generic object categories in images and videos are a fundamental issue in computer vision. However, it faces the challenges from inter and intraclass diversity, as well as distortions caused by viewpoints, poses, deformations, and so on. To solve object variations, this paper constructs a structure kernel and proposes a multiscale part-based model incorporating the discriminative power of kernels. The structure kernel would measure the resemblance of part-based objects in three aspects: 1) the global similarity term to measure the resemblance of the global visual appearance of relevant objects; 2) the part similarity term to measure the resemblance of the visual appearance of distinctive parts; and 3) the spatial similarity term to measure the resemblance of the spatial layout of parts. In essence, the deformation of parts in the structure kernel is penalized in a multiscale space with respect to horizontal displacement, vertical displacement, and scale difference. Part similarities are combined with different weights, which are optimized efficiently to maximize the intraclass similarities and minimize the interclass similarities by the normalized stochastic gradient ascent algorithm. In addition, the parameters of the structure kernel are learned during the training process with regard to the distribution of the data in a more discriminative way. With flexible part sizes on scale and displacement, it can be more robust to the intraclass variations, poses, and viewpoints. Theoretical analysis and experimental evaluations demonstrate that the proposed multiscale part-based representation model with structure kernel exhibits accurate and robust performance, and outperforms state-of-the-art object classification approaches. PMID:24808345
Omnibus risk assessment via accelerated failure time kernel machine modeling.
Sinnott, Jennifer A; Cai, Tianxi
2013-12-01
Integrating genomic information with traditional clinical risk factors to improve the prediction of disease outcomes could profoundly change the practice of medicine. However, the large number of potential markers and possible complexity of the relationship between markers and disease make it difficult to construct accurate risk prediction models. Standard approaches for identifying important markers often rely on marginal associations or linearity assumptions and may not capture non-linear or interactive effects. In recent years, much work has been done to group genes into pathways and networks. Integrating such biological knowledge into statistical learning could potentially improve model interpretability and reliability. One effective approach is to employ a kernel machine (KM) framework, which can capture nonlinear effects if nonlinear kernels are used (Scholkopf and Smola, 2002; Liu et al., 2007, 2008). For survival outcomes, KM regression modeling and testing procedures have been derived under a proportional hazards (PH) assumption (Li and Luan, 2003; Cai, Tonini, and Lin, 2011). In this article, we derive testing and prediction methods for KM regression under the accelerated failure time (AFT) model, a useful alternative to the PH model. We approximate the null distribution of our test statistic using resampling procedures. When multiple kernels are of potential interest, it may be unclear in advance which kernel to use for testing and estimation. We propose a robust Omnibus Test that combines information across kernels, and an approach for selecting the best kernel for estimation. The methods are illustrated with an application in breast cancer. © 2013, The International Biometric Society.
MRI-based intelligence quotient (IQ) estimation with sparse learning.
Wang, Liye; Wee, Chong-Yaw; Suk, Heung-Il; Tang, Xiaoying; Shen, Dinggang
2015-01-01
In this paper, we propose a novel framework for IQ estimation using Magnetic Resonance Imaging (MRI) data. In particular, we devise a new feature selection method based on an extended dirty model for jointly considering both element-wise sparsity and group-wise sparsity. Meanwhile, due to the absence of large dataset with consistent scanning protocols for the IQ estimation, we integrate multiple datasets scanned from different sites with different scanning parameters and protocols. In this way, there is large variability in these different datasets. To address this issue, we design a two-step procedure for 1) first identifying the possible scanning site for each testing subject and 2) then estimating the testing subject's IQ by using a specific estimator designed for that scanning site. We perform two experiments to test the performance of our method by using the MRI data collected from 164 typically developing children between 6 and 15 years old. In the first experiment, we use a multi-kernel Support Vector Regression (SVR) for estimating IQ values, and obtain an average correlation coefficient of 0.718 and also an average root mean square error of 8.695 between the true IQs and the estimated ones. In the second experiment, we use a single-kernel SVR for IQ estimation, and achieve an average correlation coefficient of 0.684 and an average root mean square error of 9.166. All these results show the effectiveness of using imaging data for IQ prediction, which is rarely done in the field according to our knowledge.
NASA Astrophysics Data System (ADS)
He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang
2017-03-01
Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.
Probabilistic Open Set Recognition
NASA Astrophysics Data System (ADS)
Jain, Lalit Prithviraj
Real-world tasks in computer vision, pattern recognition and machine learning often touch upon the open set recognition problem: multi-class recognition with incomplete knowledge of the world and many unknown inputs. An obvious way to approach such problems is to develop a recognition system that thresholds probabilities to reject unknown classes. Traditional rejection techniques are not about the unknown; they are about the uncertain boundary and rejection around that boundary. Thus traditional techniques only represent the "known unknowns". However, a proper open set recognition algorithm is needed to reduce the risk from the "unknown unknowns". This dissertation examines this concept and finds existing probabilistic multi-class recognition approaches are ineffective for true open set recognition. We hypothesize the cause is due to weak adhoc assumptions combined with closed-world assumptions made by existing calibration techniques. Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the large set of unknown classes even under this assumption of incomplete class knowledge. For this, we formulate the problem as one of modeling positive training data by invoking statistical extreme value theory (EVT) near the decision boundary of positive data with respect to negative data. We provide a new algorithm called the PI-SVM for estimating the unnormalized posterior probability of class inclusion. This dissertation also introduces a new open set recognition model called Compact Abating Probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical EVT for score calibration with one-class and binary support vector machines. Building from the success of statistical EVT based recognition methods such as PI-SVM and W-SVM on the open set problem, we present a new general supervised learning algorithm for multi-class classification and multi-class open set recognition called the Extreme Value Local Basis (EVLB). The design of this algorithm is motivated by the observation that extrema from known negative class distributions are the closest negative points to any positive sample during training, and thus should be used to define the parameters of a probabilistic decision model. In the EVLB, the kernel distribution for each positive training sample is estimated via an EVT distribution fit over the distances to the separating hyperplane between positive training sample and closest negative samples, with a subset of the overall positive training data retained to form a probabilistic decision boundary. Using this subset as a frame of reference, the probability of a sample at test time decreases as it moves away from the positive class. Possessing this property, the EVLB is well-suited to open set recognition problems where samples from unknown or novel classes are encountered at test. Our experimental evaluation shows that the EVLB provides a substantial improvement in scalability compared to standard radial basis function kernel machines, as well as P I-SVM and W-SVM, with improved accuracy in many cases. We evaluate our algorithm on open set variations of the standard visual learning benchmarks, as well as with an open subset of classes from Caltech 256 and ImageNet. Our experiments show that PI-SVM, WSVM and EVLB provide significant advances over the previous state-of-the-art solutions for the same tasks.
Muhitch, M. J.; Felker, F. C.; Taliercio, E. W.; Chourey, P. S.
1995-01-01
The pedicel (basal maternal tissue) of maize (Zea mays L.) kernels contains a physically and kinetically unique form of glutamine synthetase (GSp1) that is involved in the conversion of transport forms of nitrogen into glutamine for uptake by the developing endosperm (M.J. Muhitch [1989] Plant Physiol 91: 868-875). A monoclonal antibody has been raised against this kernel-specific GS that does not cross-react either with a second GS isozyme found in the pedicel or with the GS isozymes from the embryo, roots, or leaves. When used as a probe for tissue printing, the antibody labeled the pedicel tissue uniformly and also labeled some of the pericarp surrounding the lower endosperm. Silver-enhanced immunogold staining of whole-kernel paraffin sections revealed the presence of GSp1 in both the vascular tissue that terminates in the pedicel and the pedicel parenchyma cells, which are located between the vascular tissue and the basal endosperm transfer cells. Light staining of the subaleurone was also noted. The tissue-specific localization of GSp1 within the pedicel is consistent with its role in the metabolism of nitrogenous transport compounds as they are unloaded from the phloem. PMID:12228400
General methodology for nonlinear modeling of neural systems with Poisson point-process inputs.
Marmarelis, V Z; Berger, T W
2005-07-01
This paper presents a general methodological framework for the practical modeling of neural systems with point-process inputs (sequences of action potentials or, more broadly, identical events) based on the Volterra and Wiener theories of functional expansions and system identification. The paper clarifies the distinctions between Volterra and Wiener kernels obtained from Poisson point-process inputs. It shows that only the Wiener kernels can be estimated via cross-correlation, but must be defined as zero along the diagonals. The Volterra kernels can be estimated far more accurately (and from shorter data-records) by use of the Laguerre expansion technique adapted to point-process inputs, and they are independent of the mean rate of stimulation (unlike their P-W counterparts that depend on it). The Volterra kernels can also be estimated for broadband point-process inputs that are not Poisson. Useful applications of this modeling approach include cases where we seek to determine (model) the transfer characteristics between one neuronal axon (a point-process 'input') and another axon (a point-process 'output') or some other measure of neuronal activity (a continuous 'output', such as population activity) with which a causal link exists.
G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph Databases.
Wang, Xiaohong; Smalter, Aaron; Huan, Jun; Lushington, Gerald H
2009-01-01
Structured data including sets, sequences, trees and graphs, pose significant challenges to fundamental aspects of data management such as efficient storage, indexing, and similarity search. With the fast accumulation of graph databases, similarity search in graph databases has emerged as an important research topic. Graph similarity search has applications in a wide range of domains including cheminformatics, bioinformatics, sensor network management, social network management, and XML documents, among others.Most of the current graph indexing methods focus on subgraph query processing, i.e. determining the set of database graphs that contains the query graph and hence do not directly support similarity search. In data mining and machine learning, various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models for supervised learning, graph kernel functions have (i) high computational complexity and (ii) non-trivial difficulty to be indexed in a graph database.Our objective is to bridge graph kernel function and similarity search in graph databases by proposing (i) a novel kernel-based similarity measurement and (ii) an efficient indexing structure for graph data management. Our method of similarity measurement builds upon local features extracted from each node and their neighboring nodes in graphs. A hash table is utilized to support efficient storage and fast search of the extracted local features. Using the hash table, a graph kernel function is defined to capture the intrinsic similarity of graphs and for fast similarity query processing. We have implemented our method, which we have named G-hash, and have demonstrated its utility on large chemical graph databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Most importantly, the new similarity measurement and the index structure is scalable to large database with smaller indexing size, faster indexing construction time, and faster query processing time as compared to state-of-the-art indexing methods such as C-tree, gIndex, and GraphGrep.
NASA Astrophysics Data System (ADS)
Hilsenbeck-Fajardo, Jacqueline L.
2009-08-01
The research described herein is a multi-dimensional attempt to measure student's abilities to recall, conceptualize, and transfer fundamental and dynamic protein structure concepts as revealed by their own diagrammatic (pictorial) representations and written self-explanations. A total of 120 participants enrolled in a 'Fundamentals of Biochemistry' course contributed to this mixed-methodological study. The population of interest consisted primarily of pre-nursing and sport and exercise science majors. This course is typically associated with a high (<30%) combined drop/failure rate, thus the course provided the researcher with an ideal context in which to apply novel transfer assessment strategies. In the past, students within this population have reported very little chemistry background. In the following study, student-generated diagrammatic representations and written explanations were coded thematically using a highly objective rubric that was designed specifically for this study. Responses provided by the students were characterized on the macroscopic, microscopic, molecular-level, and integrated scales. Recall knowledge gain (i.e., knowledge that was gained through multiple-choice questioning techniques) was quantitatively correlated to learning style preferences (i.e., high-object, low-object, and non-object). Quantitative measures revealed that participants tended toward an object (i.e., snapshot) -based visualization preference, a potentially limiting factor in their desire to consider dynamic properties of fundamental biochemical contexts such as heat-induced protein denaturation. When knowledge transfer was carefully assessed within the predefined context, numerous misconceptions pertaining to the fundamental and dynamic nature of protein structure were revealed. Misconceptions tended to increase as the transfer model shifted away from the context presented in the original learning material. Ultimately, a fundamentally new, novel, and unique measure of knowledge transfer was developed as a main result of this study. It is envisioned by the researcher that this new measure of learning is applicable specifically to physical and chemical science education-based research in the form of deep transfer on the atomic-level scale.
ASIC-based architecture for the real-time computation of 2D convolution with large kernel size
NASA Astrophysics Data System (ADS)
Shao, Rui; Zhong, Sheng; Yan, Luxin
2015-12-01
Bidimensional convolution is a low-level processing algorithm of interest in many areas, but its high computational cost constrains the size of the kernels, especially in real-time embedded systems. This paper presents a hardware architecture for the ASIC-based implementation of 2-D convolution with medium-large kernels. Aiming to improve the efficiency of storage resources on-chip, reducing off-chip bandwidth of these two issues, proposed construction of a data cache reuse. Multi-block SPRAM to cross cached images and the on-chip ping-pong operation takes full advantage of the data convolution calculation reuse, design a new ASIC data scheduling scheme and overall architecture. Experimental results show that the structure can achieve 40× 32 size of template real-time convolution operations, and improve the utilization of on-chip memory bandwidth and on-chip memory resources, the experimental results show that the structure satisfies the conditions to maximize data throughput output , reducing the need for off-chip memory bandwidth.
Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.
Lima, Clodoaldo A M; Coelho, André L V
2011-10-01
We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely, Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). Copyright © 2011 Elsevier B.V. All rights reserved.
Peng, Bo; Wang, Suhong; Zhou, Zhiyong; Liu, Yan; Tong, Baotong; Zhang, Tao; Dai, Yakang
2017-06-09
Machine learning methods have been widely used in recent years for detection of neuroimaging biomarkers in regions of interest (ROIs) and assisting diagnosis of neurodegenerative diseases. The innovation of this study is to use multilevel-ROI-features-based machine learning method to detect sensitive morphometric biomarkers in Parkinson's disease (PD). Specifically, the low-level ROI features (gray matter volume, cortical thickness, etc.) and high-level correlative features (connectivity between ROIs) are integrated to construct the multilevel ROI features. Filter- and wrapper- based feature selection method and multi-kernel support vector machine (SVM) are used in the classification algorithm. T1-weighted brain magnetic resonance (MR) images of 69 PD patients and 103 normal controls from the Parkinson's Progression Markers Initiative (PPMI) dataset are included in the study. The machine learning method performs well in classification between PD patients and normal controls with an accuracy of 85.78%, a specificity of 87.79%, and a sensitivity of 87.64%. The most sensitive biomarkers between PD patients and normal controls are mainly distributed in frontal lobe, parental lobe, limbic lobe, temporal lobe, and central region. The classification performance of our method with multilevel ROI features is significantly improved comparing with other classification methods using single-level features. The proposed method shows promising identification ability for detecting morphometric biomarkers in PD, thus confirming the potentiality of our method in assisting diagnosis of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.
An implementation of support vector machine on sentiment classification of movie reviews
NASA Astrophysics Data System (ADS)
Yulietha, I. M.; Faraby, S. A.; Adiwijaya; Widyaningtyas, W. C.
2018-03-01
With technological advances, all information about movie is available on the internet. If the information is processed properly, it will get the quality of the information. This research proposes to the classify sentiments on movie review documents. This research uses Support Vector Machine (SVM) method because it can classify high dimensional data in accordance with the data used in this research in the form of text. Support Vector Machine is a popular machine learning technique for text classification because it can classify by learning from a collection of documents that have been classified previously and can provide good result. Based on number of datasets, the 90-10 composition has the best result that is 85.6%. Based on SVM kernel, kernel linear with constant 1 has the best result that is 84.9%
NASA Astrophysics Data System (ADS)
Fiorini, Rodolfo A.; Dacquino, Gianfranco
2005-03-01
GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Invariants for n-Dimensional shape/texture optimal synthetic representation, description and learning, was presented in previous conferences elsewhere recently. Improved computational algorithms based on the computational invariant theory of finite groups in Euclidean space and a demo application is presented. Progressive model automatic generation is discussed. GEOGINE can be used as an efficient computational kernel for fast reliable application development and delivery in advanced biomedical engineering, biometric, intelligent computing, target recognition, content image retrieval, data mining technological areas mainly. Ontology can be regarded as a logical theory accounting for the intended meaning of a formal dictionary, i.e., its ontological commitment to a particular conceptualization of the world object. According to this approach, "n-D Tensor Calculus" can be considered a "Formal Language" to reliably compute optimized "n-Dimensional Tensor Invariants" as specific object "invariant parameter and attribute words" for automated n-Dimensional shape/texture optimal synthetic object description by incremental model generation. The class of those "invariant parameter and attribute words" can be thought as a specific "Formal Vocabulary" learned from a "Generalized Formal Dictionary" of the "Computational Tensor Invariants" language. Even object chromatic attributes can be effectively and reliably computed from object geometric parameters into robust colour shape invariant characteristics. As a matter of fact, any highly sophisticated application needing effective, robust object geometric/colour invariant attribute capture and parameterization features, for reliable automated object learning and discrimination can deeply benefit from GEOGINE progressive automated model generation computational kernel performance. Main operational advantages over previous, similar approaches are: 1) Progressive Automated Invariant Model Generation, 2) Invariant Minimal Complete Description Set for computational efficiency, 3) Arbitrary Model Precision for robust object description and identification.
Predicting radiotherapy outcomes using statistical learning techniques
NASA Astrophysics Data System (ADS)
El Naqa, Issam; Bradley, Jeffrey D.; Lindsay, Patricia E.; Hope, Andrew J.; Deasy, Joseph O.
2009-09-01
Radiotherapy outcomes are determined by complex interactions between treatment, anatomical and patient-related variables. A common obstacle to building maximally predictive outcome models for clinical practice is the failure to capture potential complexity of heterogeneous variable interactions and applicability beyond institutional data. We describe a statistical learning methodology that can automatically screen for nonlinear relations among prognostic variables and generalize to unseen data before. In this work, several types of linear and nonlinear kernels to generate interaction terms and approximate the treatment-response function are evaluated. Examples of institutional datasets of esophagitis, pneumonitis and xerostomia endpoints were used. Furthermore, an independent RTOG dataset was used for 'generalizabilty' validation. We formulated the discrimination between risk groups as a supervised learning problem. The distribution of patient groups was initially analyzed using principle components analysis (PCA) to uncover potential nonlinear behavior. The performance of the different methods was evaluated using bivariate correlations and actuarial analysis. Over-fitting was controlled via cross-validation resampling. Our results suggest that a modified support vector machine (SVM) kernel method provided superior performance on leave-one-out testing compared to logistic regression and neural networks in cases where the data exhibited nonlinear behavior on PCA. For instance, in prediction of esophagitis and pneumonitis endpoints, which exhibited nonlinear behavior on PCA, the method provided 21% and 60% improvements, respectively. Furthermore, evaluation on the independent pneumonitis RTOG dataset demonstrated good generalizabilty beyond institutional data in contrast with other models. This indicates that the prediction of treatment response can be improved by utilizing nonlinear kernel methods for discovering important nonlinear interactions among model variables. These models have the capacity to predict on unseen data. Part of this work was first presented at the Seventh International Conference on Machine Learning and Applications, San Diego, CA, USA, 11-13 December 2008.
Scuba: scalable kernel-based gene prioritization.
Zampieri, Guido; Tran, Dinh Van; Donini, Michele; Navarin, Nicolò; Aiolli, Fabio; Sperduti, Alessandro; Valle, Giorgio
2018-01-25
The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba .
Sepsis mortality prediction with the Quotient Basis Kernel.
Ribas Ripoll, Vicent J; Vellido, Alfredo; Romero, Enrique; Ruiz-Rodríguez, Juan Carlos
2014-05-01
This paper presents an algorithm to assess the risk of death in patients with sepsis. Sepsis is a common clinical syndrome in the intensive care unit (ICU) that can lead to severe sepsis, a severe state of septic shock or multi-organ failure. The proposed algorithm may be implemented as part of a clinical decision support system that can be used in combination with the scores deployed in the ICU to improve the accuracy, sensitivity and specificity of mortality prediction for patients with sepsis. In this paper, we used the Simplified Acute Physiology Score (SAPS) for ICU patients and the Sequential Organ Failure Assessment (SOFA) to build our kernels and algorithms. In the proposed method, we embed the available data in a suitable feature space and use algorithms based on linear algebra, geometry and statistics for inference. We present a simplified version of the Fisher kernel (practical Fisher kernel for multinomial distributions), as well as a novel kernel that we named the Quotient Basis Kernel (QBK). These kernels are used as the basis for mortality prediction using soft-margin support vector machines. The two new kernels presented are compared against other generative kernels based on the Jensen-Shannon metric (centred, exponential and inverse) and other widely used kernels (linear, polynomial and Gaussian). Clinical relevance is also evaluated by comparing these results with logistic regression and the standard clinical prediction method based on the initial SAPS score. As described in this paper, we tested the new methods via cross-validation with a cohort of 400 test patients. The results obtained using our methods compare favourably with those obtained using alternative kernels (80.18% accuracy for the QBK) and the standard clinical prediction method, which are based on the basal SAPS score or logistic regression (71.32% and 71.55%, respectively). The QBK presented a sensitivity and specificity of 79.34% and 83.24%, which outperformed the other kernels analysed, logistic regression and the standard clinical prediction method based on the basal SAPS score. Several scoring systems for patients with sepsis have been introduced and developed over the last 30 years. They allow for the assessment of the severity of disease and provide an estimate of in-hospital mortality. Physiology-based scoring systems are applied to critically ill patients and have a number of advantages over diagnosis-based systems. Severity score systems are often used to stratify critically ill patients for possible inclusion in clinical trials. In this paper, we present an effective algorithm that combines both scoring methodologies for the assessment of death in patients with sepsis that can be used to improve the sensitivity and specificity of the currently available methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Deblurring sequential ocular images from multi-spectral imaging (MSI) via mutual information.
Lian, Jian; Zheng, Yuanjie; Jiao, Wanzhen; Yan, Fang; Zhao, Bojun
2018-06-01
Multi-spectral imaging (MSI) produces a sequence of spectral images to capture the inner structure of different species, which was recently introduced into ocular disease diagnosis. However, the quality of MSI images can be significantly degraded by motion blur caused by the inevitable saccades and exposure time required for maintaining a sufficiently high signal-to-noise ratio. This degradation may confuse an ophthalmologist, reduce the examination quality, or defeat various image analysis algorithms. We propose an early work specially on deblurring sequential MSI images, which is distinguished from many of the current image deblurring techniques by resolving the blur kernel simultaneously for all the images in an MSI sequence. It is accomplished by incorporating several a priori constraints including the sharpness of the latent clear image, the spatial and temporal smoothness of the blur kernel and the similarity between temporally-neighboring images in MSI sequence. Specifically, we model the similarity between MSI images with mutual information considering the different wavelengths used for capturing different images in MSI sequence. The optimization of the proposed approach is based on a multi-scale framework and stepwise optimization strategy. Experimental results from 22 MSI sequences validate that our approach outperforms several state-of-the-art techniques in natural image deblurring.
Mohr, Johannes A; Jain, Brijnesh J; Obermayer, Klaus
2008-09-01
Quantitative structure activity relationship (QSAR) analysis is traditionally based on extracting a set of molecular descriptors and using them to build a predictive model. In this work, we propose a QSAR approach based directly on the similarity between the 3D structures of a set of molecules measured by a so-called molecule kernel, which is independent of the spatial prealignment of the compounds. Predictors can be build using the molecule kernel in conjunction with the potential support vector machine (P-SVM), a recently proposed machine learning method for dyadic data. The resulting models make direct use of the structural similarities between the compounds in the test set and a subset of the training set and do not require an explicit descriptor construction. We evaluated the predictive performance of the proposed method on one classification and four regression QSAR datasets and compared its results to the results reported in the literature for several state-of-the-art descriptor-based and 3D QSAR approaches. In this comparison, the proposed molecule kernel method performed better than the other QSAR methods.
Simultaneous multiple non-crossing quantile regression estimation using kernel constraints
Liu, Yufeng; Wu, Yichao
2011-01-01
Quantile regression (QR) is a very useful statistical tool for learning the relationship between the response variable and covariates. For many applications, one often needs to estimate multiple conditional quantile functions of the response variable given covariates. Although one can estimate multiple quantiles separately, it is of great interest to estimate them simultaneously. One advantage of simultaneous estimation is that multiple quantiles can share strength among them to gain better estimation accuracy than individually estimated quantile functions. Another important advantage of joint estimation is the feasibility of incorporating simultaneous non-crossing constraints of QR functions. In this paper, we propose a new kernel-based multiple QR estimation technique, namely simultaneous non-crossing quantile regression (SNQR). We use kernel representations for QR functions and apply constraints on the kernel coefficients to avoid crossing. Both unregularised and regularised SNQR techniques are considered. Asymptotic properties such as asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR are developed. Our numerical results demonstrate the competitive performance of our SNQR over the original individual QR estimation. PMID:22190842
NASA Astrophysics Data System (ADS)
Hadade, Ioan; di Mare, Luca
2016-08-01
Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide range of architectural features such as SIMD for data parallel execution or threads for core parallelism. The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on current and future processors. This paper presents the performance tuning of a multiblock CFD solver on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor. Code optimisations have been applied on two computational kernels exhibiting different computational patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at great length the code transformations required for achieving efficient SIMD computations for both kernels across the selected devices including SIMD shuffles and transpositions for flux stencil computations and global memory transformations. Core parallelism is expressed through threading based on a number of domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects found in multi-socket compute nodes. Results are correlated with the Roofline performance model in order to assert their efficiency for each distinct architecture. We report significant speedups for single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the multicore processors and up to 24X on the Xeon Phi manycore coprocessor.
A New Generation of Real-Time Systems in the JET Tokamak
NASA Astrophysics Data System (ADS)
Alves, Diogo; Neto, Andre C.; Valcarcel, Daniel F.; Felton, Robert; Lopez, Juan M.; Barbalace, Antonio; Boncagni, Luca; Card, Peter; De Tommasi, Gianmaria; Goodyear, Alex; Jachmich, Stefan; Lomas, Peter J.; Maviglia, Francesco; McCullen, Paul; Murari, Andrea; Rainford, Mark; Reux, Cedric; Rimini, Fernanda; Sartori, Filippo; Stephen, Adam V.; Vega, Jesus; Vitelli, Riccardo; Zabeo, Luca; Zastrow, Klaus-Dieter
2014-04-01
Recently, a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of JET's well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide real-time performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests' (IRQs) affinities together with the kernel's CPU isolation mechanism allows one to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multi-core architectures. In the past year, four new systems based on this philosophy have been installed and are now part of JET's routine operation. The focus of the present work is on the configuration aspects that enable these new systems' real-time capability. Details are given about the common real-time configuration of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronizing over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel.
Wang, Gang; Wang, Yalin
2017-02-15
In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Yudong; Dong, Zhengchao; Phillips, Preetha; Wang, Shuihua; Ji, Genlin; Yang, Jiquan; Yuan, Ti-Fei
2015-01-01
Purpose: Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. Method: First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. Results: The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing literatures. Conclusion: The eigenbrain method was effective in AD subject prediction and discriminant brain-region detection in MRI scanning. PMID:26082713
Bromuri, Stefano; Zufferey, Damien; Hennebert, Jean; Schumacher, Michael
2014-10-01
This research is motivated by the issue of classifying illnesses of chronically ill patients for decision support in clinical settings. Our main objective is to propose multi-label classification of multivariate time series contained in medical records of chronically ill patients, by means of quantization methods, such as bag of words (BoW), and multi-label classification algorithms. Our second objective is to compare supervised dimensionality reduction techniques to state-of-the-art multi-label classification algorithms. The hypothesis is that kernel methods and locality preserving projections make such algorithms good candidates to study multi-label medical time series. We combine BoW and supervised dimensionality reduction algorithms to perform multi-label classification on health records of chronically ill patients. The considered algorithms are compared with state-of-the-art multi-label classifiers in two real world datasets. Portavita dataset contains 525 diabetes type 2 (DT2) patients, with co-morbidities of DT2 such as hypertension, dyslipidemia, and microvascular or macrovascular issues. MIMIC II dataset contains 2635 patients affected by thyroid disease, diabetes mellitus, lipoid metabolism disease, fluid electrolyte disease, hypertensive disease, thrombosis, hypotension, chronic obstructive pulmonary disease (COPD), liver disease and kidney disease. The algorithms are evaluated using multi-label evaluation metrics such as hamming loss, one error, coverage, ranking loss, and average precision. Non-linear dimensionality reduction approaches behave well on medical time series quantized using the BoW algorithm, with results comparable to state-of-the-art multi-label classification algorithms. Chaining the projected features has a positive impact on the performance of the algorithm with respect to pure binary relevance approaches. The evaluation highlights the feasibility of representing medical health records using the BoW for multi-label classification tasks. The study also highlights that dimensionality reduction algorithms based on kernel methods, locality preserving projections or both are good candidates to deal with multi-label classification tasks in medical time series with many missing values and high label density. Copyright © 2014 Elsevier Inc. All rights reserved.
Predicting human protein function with multi-task deep neural networks.
Fa, Rui; Cozzetto, Domenico; Wan, Cen; Jones, David T
2018-01-01
Machine learning methods for protein function prediction are urgently needed, especially now that a substantial fraction of known sequences remains unannotated despite the extensive use of functional assignments based on sequence similarity. One major bottleneck supervised learning faces in protein function prediction is the structured, multi-label nature of the problem, because biological roles are represented by lists of terms from hierarchically organised controlled vocabularies such as the Gene Ontology. In this work, we build on recent developments in the area of deep learning and investigate the usefulness of multi-task deep neural networks (MTDNN), which consist of upstream shared layers upon which are stacked in parallel as many independent modules (additional hidden layers with their own output units) as the number of output GO terms (the tasks). MTDNN learns individual tasks partially using shared representations and partially from task-specific characteristics. When no close homologues with experimentally validated functions can be identified, MTDNN gives more accurate predictions than baseline methods based on annotation frequencies in public databases or homology transfers. More importantly, the results show that MTDNN binary classification accuracy is higher than alternative machine learning-based methods that do not exploit commonalities and differences among prediction tasks. Interestingly, compared with a single-task predictor, the performance improvement is not linearly correlated with the number of tasks in MTDNN, but medium size models provide more improvement in our case. One of advantages of MTDNN is that given a set of features, there is no requirement for MTDNN to have a bootstrap feature selection procedure as what traditional machine learning algorithms do. Overall, the results indicate that the proposed MTDNN algorithm improves the performance of protein function prediction. On the other hand, there is still large room for deep learning techniques to further enhance prediction ability.
NASA Astrophysics Data System (ADS)
Hawes, D. H.; Langley, R. S.
2018-01-01
Random excitation of mechanical systems occurs in a wide variety of structures and, in some applications, calculation of the power dissipated by such a system will be of interest. In this paper, using the Wiener series, a general methodology is developed for calculating the power dissipated by a general nonlinear multi-degree-of freedom oscillatory system excited by random Gaussian base motion of any spectrum. The Wiener series method is most commonly applied to systems with white noise inputs, but can be extended to encompass a general non-white input. From the extended series a simple expression for the power dissipated can be derived in terms of the first term, or kernel, of the series and the spectrum of the input. Calculation of the first kernel can be performed either via numerical simulations or from experimental data and a useful property of the kernel, namely that the integral over its frequency domain representation is proportional to the oscillating mass, is derived. The resulting equations offer a simple conceptual analysis of the power flow in nonlinear randomly excited systems and hence assist the design of any system where power dissipation is a consideration. The results are validated both numerically and experimentally using a base-excited cantilever beam with a nonlinear restoring force produced by magnets.
Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.
Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak
2006-06-06
To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence information. This method may yield further information about biological evolution, such as the history of horizontal transfer of each gene, by studying the detailed structure of the phylogenetic tree constructed by the kernel-based method.
Fan, Jianping; Gao, Yuli; Luo, Hangzai
2008-03-01
In this paper, we have developed a new scheme for achieving multilevel annotations of large-scale images automatically. To achieve more sufficient representation of various visual properties of the images, both the global visual features and the local visual features are extracted for image content representation. To tackle the problem of huge intraconcept visual diversity, multiple types of kernels are integrated to characterize the diverse visual similarity relationships between the images more precisely, and a multiple kernel learning algorithm is developed for SVM image classifier training. To address the problem of huge interconcept visual similarity, a novel multitask learning algorithm is developed to learn the correlated classifiers for the sibling image concepts under the same parent concept and enhance their discrimination and adaptation power significantly. To tackle the problem of huge intraconcept visual diversity for the image concepts at the higher levels of the concept ontology, a novel hierarchical boosting algorithm is developed to learn their ensemble classifiers hierarchically. In order to assist users on selecting more effective hypotheses for image classifier training, we have developed a novel hyperbolic framework for large-scale image visualization and interactive hypotheses assessment. Our experiments on large-scale image collections have also obtained very positive results.
Detecting recurrent gene mutation in interaction network context using multi-scale graph diffusion.
Babaei, Sepideh; Hulsman, Marc; Reinders, Marcel; de Ridder, Jeroen
2013-01-23
Delineating the molecular drivers of cancer, i.e. determining cancer genes and the pathways which they deregulate, is an important challenge in cancer research. In this study, we aim to identify pathways of frequently mutated genes by exploiting their network neighborhood encoded in the protein-protein interaction network. To this end, we introduce a multi-scale diffusion kernel and apply it to a large collection of murine retroviral insertional mutagenesis data. The diffusion strength plays the role of scale parameter, determining the size of the network neighborhood that is taken into account. As a result, in addition to detecting genes with frequent mutations in their genomic vicinity, we find genes that harbor frequent mutations in their interaction network context. We identify densely connected components of known and putatively novel cancer genes and demonstrate that they are strongly enriched for cancer related pathways across the diffusion scales. Moreover, the mutations in the clusters exhibit a significant pattern of mutual exclusion, supporting the conjecture that such genes are functionally linked. Using multi-scale diffusion kernel, various infrequently mutated genes are found to harbor significant numbers of mutations in their interaction network neighborhood. Many of them are well-known cancer genes. The results demonstrate the importance of defining recurrent mutations while taking into account the interaction network context. Importantly, the putative cancer genes and networks detected in this study are found to be significant at different diffusion scales, confirming the necessity of a multi-scale analysis.
Integrated model of multiple kernel learning and differential evolution for EUR/USD trading.
Deng, Shangkun; Sakurai, Akito
2014-01-01
Currency trading is an important area for individual investors, government policy decisions, and organization investments. In this study, we propose a hybrid approach referred to as MKL-DE, which combines multiple kernel learning (MKL) with differential evolution (DE) for trading a currency pair. MKL is used to learn a model that predicts changes in the target currency pair, whereas DE is used to generate the buy and sell signals for the target currency pair based on the relative strength index (RSI), while it is also combined with MKL as a trading signal. The new hybrid implementation is applied to EUR/USD trading, which is the most traded foreign exchange (FX) currency pair. MKL is essential for utilizing information from multiple information sources and DE is essential for formulating a trading rule based on a mixture of discrete structures and continuous parameters. Initially, the prediction model optimized by MKL predicts the returns based on a technical indicator called the moving average convergence and divergence. Next, a combined trading signal is optimized by DE using the inputs from the prediction model and technical indicator RSI obtained from multiple timeframes. The experimental results showed that trading using the prediction learned by MKL yielded consistent profits.
Multi-frame partially saturated images blind deconvolution
NASA Astrophysics Data System (ADS)
Ye, Pengzhao; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting
2016-12-01
When blurred images have saturated or over-exposed pixels, conventional blind deconvolution approaches often fail to estimate accurate point spread function (PSF) and will introduce local ringing artifacts. In this paper, we propose a method to deal with the problem under the modified multi-frame blind deconvolution framework. First, in the kernel estimation step, a light streak detection scheme using multi-frame blurred images is incorporated into the regularization constraint. Second, we deal with image regions affected by the saturated pixels separately by modeling a weighted matrix during each multi-frame deconvolution iteration process. Both synthetic and real-world examples show that more accurate PSFs can be estimated and restored images have richer details and less negative effects compared to state of art methods.
Bissacco, Alessandro; Chiuso, Alessandro; Soatto, Stefano
2007-11-01
We address the problem of performing decision tasks, and in particular classification and recognition, in the space of dynamical models in order to compare time series of data. Motivated by the application of recognition of human motion in image sequences, we consider a class of models that include linear dynamics, both stable and marginally stable (periodic), both minimum and non-minimum phase, driven by non-Gaussian processes. This requires extending existing learning and system identification algorithms to handle periodic modes and nonminimum phase behavior, while taking into account higher-order statistics of the data. Once a model is identified, we define a kernel-based cord distance between models that includes their dynamics, their initial conditions as well as input distribution. This is made possible by a novel kernel defined between two arbitrary (non-Gaussian) distributions, which is computed by efficiently solving an optimal transport problem. We validate our choice of models, inference algorithm, and distance on the tasks of human motion synthesis (sample paths of the learned models), and recognition (nearest-neighbor classification in the computed distance). However, our work can be applied more broadly where one needs to compare historical data while taking into account periodic trends, non-minimum phase behavior, and non-Gaussian input distributions.
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-01-01
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved. PMID:28241475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghrayeb, Shadi Z.; Ougouag, Abderrafi M.; Ouisloumen, Mohamed
2014-01-01
A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering,more » which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.« less
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-02-23
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved.
Integration of heterogeneous data for classification in hyperspectral satellite imagery
NASA Astrophysics Data System (ADS)
Benedetto, J.; Czaja, W.; Dobrosotskaya, J.; Doster, T.; Duke, K.; Gillis, D.
2012-06-01
As new remote sensing modalities emerge, it becomes increasingly important to nd more suitable algorithms for fusion and integration of dierent data types for the purposes of target/anomaly detection and classication. Typical techniques that deal with this problem are based on performing detection/classication/segmentation separately in chosen modalities, and then integrating the resulting outcomes into a more complete picture. In this paper we provide a broad analysis of a new approach, based on creating fused representations of the multi- modal data, which then can be subjected to analysis by means of the state-of-the-art classiers or detectors. In this scenario we shall consider the hyperspectral imagery combined with spatial information. Our approach involves machine learning techniques based on analysis of joint data-dependent graphs and their associated diusion kernels. Then, the signicant eigenvectors of the derived fused graph Laplace operator form the new representation, which provides integrated features from the heterogeneous input data. We compare these fused approaches with analysis of integrated outputs of spatial and spectral graph methods.
Jongin Kim; Boreom Lee
2017-07-01
The classification of neuroimaging data for the diagnosis of Alzheimer's Disease (AD) is one of the main research goals of the neuroscience and clinical fields. In this study, we performed extreme learning machine (ELM) classifier to discriminate the AD, mild cognitive impairment (MCI) from normal control (NC). We compared the performance of ELM with that of a linear kernel support vector machine (SVM) for 718 structural MRI images from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The data consisted of normal control, MCI converter (MCI-C), MCI non-converter (MCI-NC), and AD. We employed SVM-based recursive feature elimination (RFE-SVM) algorithm to find the optimal subset of features. In this study, we found that the RFE-SVM feature selection approach in combination with ELM shows the superior classification accuracy to that of linear kernel SVM for structural T1 MRI data.
Binder, Julia C; Zöllig, Jacqueline; Eschen, Anne; Mérillat, Susan; Röcke, Christina; Schoch, Sarah F; Jäncke, Lutz; Martin, Mike
2015-01-01
Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks, such as video games, leisure activities, or practicing a series of cognitive tasks, has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population's need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function, and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly.
Binder, Julia C.; Zöllig, Jacqueline; Eschen, Anne; Mérillat, Susan; Röcke, Christina; Schoch, Sarah F.; Jäncke, Lutz; Martin, Mike
2015-01-01
Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks, such as video games, leisure activities, or practicing a series of cognitive tasks, has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population's need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function, and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly. PMID:26257643
Kernel Regression Estimation of Fiber Orientation Mixtures in Diffusion MRI
Cabeen, Ryan P.; Bastin, Mark E.; Laidlaw, David H.
2016-01-01
We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based image processing technique in which representative fiber models are estimated from collections of component fiber models in model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks model, and our framework’s data-adaptive extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III. PMID:26691524
MRI-Based Intelligence Quotient (IQ) Estimation with Sparse Learning
Wang, Liye; Wee, Chong-Yaw; Suk, Heung-Il; Tang, Xiaoying; Shen, Dinggang
2015-01-01
In this paper, we propose a novel framework for IQ estimation using Magnetic Resonance Imaging (MRI) data. In particular, we devise a new feature selection method based on an extended dirty model for jointly considering both element-wise sparsity and group-wise sparsity. Meanwhile, due to the absence of large dataset with consistent scanning protocols for the IQ estimation, we integrate multiple datasets scanned from different sites with different scanning parameters and protocols. In this way, there is large variability in these different datasets. To address this issue, we design a two-step procedure for 1) first identifying the possible scanning site for each testing subject and 2) then estimating the testing subject’s IQ by using a specific estimator designed for that scanning site. We perform two experiments to test the performance of our method by using the MRI data collected from 164 typically developing children between 6 and 15 years old. In the first experiment, we use a multi-kernel Support Vector Regression (SVR) for estimating IQ values, and obtain an average correlation coefficient of 0.718 and also an average root mean square error of 8.695 between the true IQs and the estimated ones. In the second experiment, we use a single-kernel SVR for IQ estimation, and achieve an average correlation coefficient of 0.684 and an average root mean square error of 9.166. All these results show the effectiveness of using imaging data for IQ prediction, which is rarely done in the field according to our knowledge. PMID:25822851
SNPs selection using support vector regression and genetic algorithms in GWAS
2014-01-01
Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. Results The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. Conclusions The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels. PMID:25573332
Embedded Implementation of VHR Satellite Image Segmentation
Li, Chao; Balla-Arabé, Souleymane; Ginhac, Dominique; Yang, Fan
2016-01-01
Processing and analysis of Very High Resolution (VHR) satellite images provide a mass of crucial information, which can be used for urban planning, security issues or environmental monitoring. However, they are computationally expensive and, thus, time consuming, while some of the applications, such as natural disaster monitoring and prevention, require high efficiency performance. Fortunately, parallel computing techniques and embedded systems have made great progress in recent years, and a series of massively parallel image processing devices, such as digital signal processors or Field Programmable Gate Arrays (FPGAs), have been made available to engineers at a very convenient price and demonstrate significant advantages in terms of running-cost, embeddability, power consumption flexibility, etc. In this work, we designed a texture region segmentation method for very high resolution satellite images by using the level set algorithm and the multi-kernel theory in a high-abstraction C environment and realize its register-transfer level implementation with the help of a new proposed high-level synthesis-based design flow. The evaluation experiments demonstrate that the proposed design can produce high quality image segmentation with a significant running-cost advantage. PMID:27240370
Integration of Network Topological and Connectivity Properties for Neuroimaging Classification
Jie, Biao; Gao, Wei; Wang, Qian; Wee, Chong-Yaw
2014-01-01
Rapid advances in neuroimaging techniques have provided an efficient and noninvasive way for exploring the structural and functional connectivity of the human brain. Quantitative measurement of abnormality of brain connectivity in patients with neurodegenerative diseases, such as mild cognitive impairment (MCI) and Alzheimer’s disease (AD), have also been widely reported, especially at a group level. Recently, machine learning techniques have been applied to the study of AD and MCI, i.e., to identify the individuals with AD/MCI from the healthy controls (HCs). However, most existing methods focus on using only a single property of a connectivity network, although multiple network properties, such as local connectivity and global topological properties, can potentially be used. In this paper, by employing multikernel based approach, we propose a novel connectivity based framework to integrate multiple properties of connectivity network for improving the classification performance. Specifically, two different types of kernels (i.e., vector-based kernel and graph kernel) are used to quantify two different yet complementary properties of the network, i.e., local connectivity and global topological properties. Then, multikernel learning (MKL) technique is adopted to fuse these heterogeneous kernels for neuroimaging classification. We test the performance of our proposed method on two different data sets. First, we test it on the functional connectivity networks of 12 MCI and 25 HC subjects. The results show that our method achieves significant performance improvement over those using only one type of network property. Specifically, our method achieves a classification accuracy of 91.9%, which is 10.8% better than those by single network-property-based methods. Then, we test our method for gender classification on a large set of functional connectivity networks with 133 infants scanned at birth, 1 year, and 2 years, also demonstrating very promising results. PMID:24108708
NASA Astrophysics Data System (ADS)
Thimmisetty, C.; Talbot, C.; Tong, C. H.; Chen, X.
2016-12-01
The representativeness of available data poses a significant fundamental challenge to the quantification of uncertainty in geophysical systems. Furthermore, the successful application of machine learning methods to geophysical problems involving data assimilation is inherently constrained by the extent to which obtainable data represent the problem considered. We show how the adjoint method, coupled with optimization based on methods of machine learning, can facilitate the minimization of an objective function defined on a space of significantly reduced dimension. By considering uncertain parameters as constituting a stochastic process, the Karhunen-Loeve expansion and its nonlinear extensions furnish an optimal basis with respect to which optimization using L-BFGS can be carried out. In particular, we demonstrate that kernel PCA can be coupled with adjoint-based optimal control methods to successfully determine the distribution of material parameter values for problems in the context of channelized deformable media governed by the equations of linear elasticity. Since certain subsets of the original data are characterized by different features, the convergence rate of the method in part depends on, and may be limited by, the observations used to furnish the kernel principal component basis. By determining appropriate weights for realizations of the stochastic random field, then, one may accelerate the convergence of the method. To this end, we present a formulation of Weighted PCA combined with a gradient-based means using automatic differentiation to iteratively re-weight observations concurrent with the determination of an optimal reduced set control variables in the feature space. We demonstrate how improvements in the accuracy and computational efficiency of the weighted linear method can be achieved over existing unweighted kernel methods, and discuss nonlinear extensions of the algorithm.
The Latent Structure of Dictionaries.
Vincent-Lamarre, Philippe; Massé, Alexandre Blondin; Lopes, Marcos; Lord, Mélanie; Marcotte, Odile; Harnad, Stevan
2016-07-01
How many words-and which ones-are sufficient to define all other words? When dictionaries are analyzed as directed graphs with links from defining words to defined words, they reveal a latent structure. Recursively removing all words that are reachable by definition but that do not define any further words reduces the dictionary to a Kernel of about 10% of its size. This is still not the smallest number of words that can define all the rest. About 75% of the Kernel turns out to be its Core, a "Strongly Connected Subset" of words with a definitional path to and from any pair of its words and no word's definition depending on a word outside the set. But the Core cannot define all the rest of the dictionary. The 25% of the Kernel surrounding the Core consists of small strongly connected subsets of words: the Satellites. The size of the smallest set of words that can define all the rest-the graph's "minimum feedback vertex set" or MinSet-is about 1% of the dictionary, about 15% of the Kernel, and part-Core/part-Satellite. But every dictionary has a huge number of MinSets. The Core words are learned earlier, more frequent, and less concrete than the Satellites, which are in turn learned earlier, more frequent, but more concrete than the rest of the Dictionary. In principle, only one MinSet's words would need to be grounded through the sensorimotor capacity to recognize and categorize their referents. In a dual-code sensorimotor/symbolic model of the mental lexicon, the symbolic code could do all the rest through recombinatory definition. Copyright © 2016 Cognitive Science Society, Inc.
Sigala, Rodrigo; Haufe, Sebastian; Roy, Dipanjan; Dinse, Hubert R.; Ritter, Petra
2014-01-01
During the past two decades growing evidence indicates that brain oscillations in the alpha band (~10 Hz) not only reflect an “idle” state of cortical activity, but also take a more active role in the generation of complex cognitive functions. A recent study shows that more than 60% of the observed inter-subject variability in perceptual learning can be ascribed to ongoing alpha activity. This evidence indicates a significant role of alpha oscillations for perceptual learning and hence motivates to explore the potential underlying mechanisms. Hence, it is the purpose of this review to highlight existent evidence that ascribes intrinsic alpha oscillations a role in shaping our ability to learn. In the review, we disentangle the alpha rhythm into different neural signatures that control information processing within individual functional building blocks of perceptual learning. We further highlight computational studies that shed light on potential mechanisms regarding how alpha oscillations may modulate information transfer and connectivity changes relevant for learning. To enable testing of those model based hypotheses, we emphasize the need for multidisciplinary approaches combining assessment of behavior and multi-scale neuronal activity, active modulation of ongoing brain states and computational modeling to reveal the mathematical principles of the complex neuronal interactions. In particular we highlight the relevance of multi-scale modeling frameworks such as the one currently being developed by “The Virtual Brain” project. PMID:24772077
Bayesian parameter estimation for the Wnt pathway: an infinite mixture models approach.
Koutroumpas, Konstantinos; Ballarini, Paolo; Votsi, Irene; Cournède, Paul-Henry
2016-09-01
Likelihood-free methods, like Approximate Bayesian Computation (ABC), have been extensively used in model-based statistical inference with intractable likelihood functions. When combined with Sequential Monte Carlo (SMC) algorithms they constitute a powerful approach for parameter estimation and model selection of mathematical models of complex biological systems. A crucial step in the ABC-SMC algorithms, significantly affecting their performance, is the propagation of a set of parameter vectors through a sequence of intermediate distributions using Markov kernels. In this article, we employ Dirichlet process mixtures (DPMs) to design optimal transition kernels and we present an ABC-SMC algorithm with DPM kernels. We illustrate the use of the proposed methodology using real data for the canonical Wnt signaling pathway. A multi-compartment model of the pathway is developed and it is compared to an existing model. The results indicate that DPMs are more efficient in the exploration of the parameter space and can significantly improve ABC-SMC performance. In comparison to alternative sampling schemes that are commonly used, the proposed approach can bring potential benefits in the estimation of complex multimodal distributions. The method is used to estimate the parameters and the initial state of two models of the Wnt pathway and it is shown that the multi-compartment model fits better the experimental data. Python scripts for the Dirichlet Process Gaussian Mixture model and the Gibbs sampler are available at https://sites.google.com/site/kkoutroumpas/software konstantinos.koutroumpas@ecp.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Livermore Compiler Analysis Loop Suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornung, R. D.
2013-03-01
LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermoremore » Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less
NASA Astrophysics Data System (ADS)
Chmiel, Malgorzata; Roux, Philippe; Herrmann, Philippe; Rondeleux, Baptiste; Wathelet, Marc
2018-05-01
We investigated the construction of diffraction kernels for surface waves using two-point convolution and/or correlation from land active seismic data recorded in the context of exploration geophysics. The high density of controlled sources and receivers, combined with the application of the reciprocity principle, allows us to retrieve two-dimensional phase-oscillation diffraction kernels (DKs) of surface waves between any two source or receiver points in the medium at each frequency (up to 15 Hz, at least). These DKs are purely data-based as no model calculations and no synthetic data are needed. They naturally emerge from the interference patterns of the recorded wavefields projected on the dense array of sources and/or receivers. The DKs are used to obtain multi-mode dispersion relations of Rayleigh waves, from which near-surface shear velocity can be extracted. Using convolution versus correlation with a grid of active sources is an important step in understanding the physics of the retrieval of surface wave Green's functions. This provides the foundation for future studies based on noise sources or active sources with a sparse spatial distribution.
Robust kernel representation with statistical local features for face recognition.
Yang, Meng; Zhang, Lei; Shiu, Simon Chi-Keung; Zhang, David
2013-06-01
Factors such as misalignment, pose variation, and occlusion make robust face recognition a difficult problem. It is known that statistical features such as local binary pattern are effective for local feature extraction, whereas the recently proposed sparse or collaborative representation-based classification has shown interesting results in robust face recognition. In this paper, we propose a novel robust kernel representation model with statistical local features (SLF) for robust face recognition. Initially, multipartition max pooling is used to enhance the invariance of SLF to image registration error. Then, a kernel-based representation model is proposed to fully exploit the discrimination information embedded in the SLF, and robust regression is adopted to effectively handle the occlusion in face images. Extensive experiments are conducted on benchmark face databases, including extended Yale B, AR (A. Martinez and R. Benavente), multiple pose, illumination, and expression (multi-PIE), facial recognition technology (FERET), face recognition grand challenge (FRGC), and labeled faces in the wild (LFW), which have different variations of lighting, expression, pose, and occlusions, demonstrating the promising performance of the proposed method.
NASA Astrophysics Data System (ADS)
Pham, Tien-Lam; Nguyen, Nguyen-Duong; Nguyen, Van-Doan; Kino, Hiori; Miyake, Takashi; Dam, Hieu-Chi
2018-05-01
We have developed a descriptor named Orbital Field Matrix (OFM) for representing material structures in datasets of multi-element materials. The descriptor is based on the information regarding atomic valence shell electrons and their coordination. In this work, we develop an extension of OFM called OFM1. We have shown that these descriptors are highly applicable in predicting the physical properties of materials and in providing insights on the materials space by mapping into a low embedded dimensional space. Our experiments with transition metal/lanthanide metal alloys show that the local magnetic moments and formation energies can be accurately reproduced using simple nearest-neighbor regression, thus confirming the relevance of our descriptors. Using kernel ridge regressions, we could accurately reproduce formation energies and local magnetic moments calculated based on first-principles, with mean absolute errors of 0.03 μB and 0.10 eV/atom, respectively. We show that meaningful low-dimensional representations can be extracted from the original descriptor using descriptive learning algorithms. Intuitive prehension on the materials space, qualitative evaluation on the similarities in local structures or crystalline materials, and inference in the designing of new materials by element substitution can be performed effectively based on these low-dimensional representations.
Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition
Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.; ...
2017-08-31
The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less
Multi-board kernel communication using socket programming for embedded applications
NASA Astrophysics Data System (ADS)
Mishra, Ashish; Girdhar, Neha; Krishnia, Nikita
2016-03-01
It is often seen in large application projects, there is a need to communicate between two different processors or two different kernels. The aim of this paper is to communicate between two different kernels and use efficient method to do so. The TCP/IP protocol is implemented to communicate between two boards via the Ethernet port and use lwIP (lightweight IP) stack, which is a smaller independent implementation of the TCP/IP stack suitable for use in embedded systems. While retaining TCP/IP functionality, lwIP stack reduces the use of memory and even size of the code. In this process of communication we made Raspberry pi as an active client and Field programmable gate array(FPGA) board as a passive server and they are allowed to communicate via Ethernet. Three applications based on TCP/IP client-server network communication have been implemented. The Echo server application is used to communicate between two different kernels of two different boards. Socket programming is used as it is independent of platform and programming language used. TCP transmit and receive throughput test applications are used to measure maximum throughput of the transmission of data. These applications are based on communication to an open source tool called iperf. It is used to measure the throughput transmission rate by sending or receiving some constant piece of data to the client or server according to the test application.
Inter-slice Leakage Artifact Reduction Technique for Simultaneous Multi-Slice Acquisitions
Cauley, Stephen F.; Polimeni, Jonathan R.; Bhat, Himanshu; Wang, Dingxin; Wald, Lawrence L.; Setsompop, Kawin
2015-01-01
Purpose Controlled aliasing techniques for simultaneously acquired EPI slices have been shown to significantly increase the temporal efficiency for both diffusion-weighted imaging (DWI) and fMRI studies. The “slice-GRAPPA” (SG) method has been widely used to reconstruct such data. We investigate robust optimization techniques for SG to ensure image reconstruction accuracy through a reduction of leakage artifacts. Methods Split slice-GRAPPA (SP-SG) is proposed as an alternative kernel optimization method. The performance of SP-SG is compared to standard SG using data collected on a spherical phantom and in-vivo on two subjects at 3T. Slice accelerated and non-accelerated data were collected for a spin-echo diffusion weighted acquisition. Signal leakage metrics and time-series SNR were used to quantify the performance of the kernel fitting approaches. Results The SP-SG optimization strategy significantly reduces leakage artifacts for both phantom and in-vivo acquisitions. In addition, a significant boost in time-series SNR for in-vivo diffusion weighted acquisitions with in-plane 2× and slice 3× accelerations was observed with the SP-SG approach. Conclusion By minimizing the influence of leakage artifacts during the training of slice-GRAPPA kernels, we have significantly improved reconstruction accuracy. Our robust kernel fitting strategy should enable better reconstruction accuracy and higher slice-acceleration across many applications. PMID:23963964
Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.
The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less
Scoliosis curve type classification using kernel machine from 3D trunk image
NASA Astrophysics Data System (ADS)
Adankon, Mathias M.; Dansereau, Jean; Parent, Stefan; Labelle, Hubert; Cheriet, Farida
2012-03-01
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition.
Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M; Yalin, Azer P
2017-08-31
The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We perform a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution of the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.
An alternative covariance estimator to investigate genetic heterogeneity in populations.
Heslot, Nicolas; Jannink, Jean-Luc
2015-11-26
For genomic prediction and genome-wide association studies (GWAS) using mixed models, covariance between individuals is estimated using molecular markers. Based on the properties of mixed models, using available molecular data for prediction is optimal if this covariance is known. Under this assumption, adding individuals to the analysis should never be detrimental. However, some empirical studies showed that increasing training population size decreased prediction accuracy. Recently, results from theoretical models indicated that even if marker density is high and the genetic architecture of traits is controlled by many loci with small additive effects, the covariance between individuals, which depends on relationships at causal loci, is not always well estimated by the whole-genome kinship. We propose an alternative covariance estimator named K-kernel, to account for potential genetic heterogeneity between populations that is characterized by a lack of genetic correlation, and to limit the information flow between a priori unknown populations in a trait-specific manner. This is similar to a multi-trait model and parameters are estimated by REML and, in extreme cases, it can allow for an independent genetic architecture between populations. As such, K-kernel is useful to study the problem of the design of training populations. K-kernel was compared to other covariance estimators or kernels to examine its fit to the data, cross-validated accuracy and suitability for GWAS on several datasets. It provides a significantly better fit to the data than the genomic best linear unbiased prediction model and, in some cases it performs better than other kernels such as the Gaussian kernel, as shown by an empirical null distribution. In GWAS simulations, alternative kernels control type I errors as well as or better than the classical whole-genome kinship and increase statistical power. No or small gains were observed in cross-validated prediction accuracy. This alternative covariance estimator can be used to gain insight into trait-specific genetic heterogeneity by identifying relevant sub-populations that lack genetic correlation between them. Genetic correlation can be 0 between identified sub-populations by performing automatic selection of relevant sets of individuals to be included in the training population. It may also increase statistical power in GWAS.
Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion
Hamsici, Onur C.; Gotardo, Paulo F.U.; Martinez, Aleix M.
2013-01-01
Non-rigid structure from motion (NRSFM) is a classical underconstrained problem in computer vision. A common approach to make NRSFM more tractable is to constrain 3D shape deformation to be smooth over time. This constraint has been used to compress the deformation model and reduce the number of unknowns that are estimated. However, temporal smoothness cannot be enforced when the data lacks temporal ordering and its benefits are less evident when objects undergo abrupt deformations. This paper proposes a new NRSFM method that addresses these problems by considering deformations as spatial variations in shape space and then enforcing spatial, rather than temporal, smoothness. This is done by modeling each 3D shape coefficient as a function of its input 2D shape. This mapping is learned in the feature space of a rotation invariant kernel, where spatial smoothness is intrinsically defined by the mapping function. As a result, our model represents shape variations compactly using custom-built coefficient bases learned from the input data, rather than a pre-specified set such as the Discrete Cosine Transform. The resulting kernel-based mapping is a by-product of the NRSFM solution and leads to another fundamental advantage of our approach: for a newly observed 2D shape, its 3D shape is recovered by simply evaluating the learned function. PMID:23946937
Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion.
Hamsici, Onur C; Gotardo, Paulo F U; Martinez, Aleix M
2012-01-01
Non-rigid structure from motion (NRSFM) is a classical underconstrained problem in computer vision. A common approach to make NRSFM more tractable is to constrain 3D shape deformation to be smooth over time. This constraint has been used to compress the deformation model and reduce the number of unknowns that are estimated. However, temporal smoothness cannot be enforced when the data lacks temporal ordering and its benefits are less evident when objects undergo abrupt deformations. This paper proposes a new NRSFM method that addresses these problems by considering deformations as spatial variations in shape space and then enforcing spatial, rather than temporal, smoothness. This is done by modeling each 3D shape coefficient as a function of its input 2D shape. This mapping is learned in the feature space of a rotation invariant kernel, where spatial smoothness is intrinsically defined by the mapping function. As a result, our model represents shape variations compactly using custom-built coefficient bases learned from the input data, rather than a pre-specified set such as the Discrete Cosine Transform. The resulting kernel-based mapping is a by-product of the NRSFM solution and leads to another fundamental advantage of our approach: for a newly observed 2D shape, its 3D shape is recovered by simply evaluating the learned function.
Integrated Model of Multiple Kernel Learning and Differential Evolution for EUR/USD Trading
Deng, Shangkun; Sakurai, Akito
2014-01-01
Currency trading is an important area for individual investors, government policy decisions, and organization investments. In this study, we propose a hybrid approach referred to as MKL-DE, which combines multiple kernel learning (MKL) with differential evolution (DE) for trading a currency pair. MKL is used to learn a model that predicts changes in the target currency pair, whereas DE is used to generate the buy and sell signals for the target currency pair based on the relative strength index (RSI), while it is also combined with MKL as a trading signal. The new hybrid implementation is applied to EUR/USD trading, which is the most traded foreign exchange (FX) currency pair. MKL is essential for utilizing information from multiple information sources and DE is essential for formulating a trading rule based on a mixture of discrete structures and continuous parameters. Initially, the prediction model optimized by MKL predicts the returns based on a technical indicator called the moving average convergence and divergence. Next, a combined trading signal is optimized by DE using the inputs from the prediction model and technical indicator RSI obtained from multiple timeframes. The experimental results showed that trading using the prediction learned by MKL yielded consistent profits. PMID:25097891
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F.; Joules, Richard; Catani, Marco; Williams, Steve C. R.; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no “magic bullet” for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis. PMID:25076868
Pettersson-Yeo, William; Benetti, Stefania; Marquand, Andre F; Joules, Richard; Catani, Marco; Williams, Steve C R; Allen, Paul; McGuire, Philip; Mechelli, Andrea
2014-01-01
In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification accuracies must be improved for such utility to be realized. One possible solution is to integrate different data types to provide a single combined output classification; either by generating a single decision function based on an integrated kernel matrix, or, by creating an ensemble of multiple single modality classifiers and integrating their predictions. Here, we describe four integrative approaches: (1) an un-weighted sum of kernels, (2) multi-kernel learning, (3) prediction averaging, and (4) majority voting, and compare their ability to enhance classification accuracy relative to the best single-modality classification accuracy. We achieve this by integrating structural, functional, and diffusion tensor magnetic resonance imaging data, in order to compare ultra-high risk (n = 19), first episode psychosis (n = 19) and healthy control subjects (n = 23). Our results show that (i) whilst integration can enhance classification accuracy by up to 13%, the frequency of such instances may be limited, (ii) where classification can be enhanced, simple methods may yield greater increases relative to more computationally complex alternatives, and, (iii) the potential for classification enhancement is highly influenced by the specific diagnostic comparison under consideration. In conclusion, our findings suggest that for moderately sized clinical neuroimaging datasets, combining different imaging modalities in a data-driven manner is no "magic bullet" for increasing classification accuracy. However, it remains possible that this conclusion is dependent on the use of neuroimaging modalities that had little, or no, complementary information to offer one another, and that the integration of more diverse types of data would have produced greater classification enhancement. We suggest that future studies ideally examine a greater variety of data types (e.g., genetic, cognitive, and neuroimaging) in order to identify the data types and combinations optimally suited to the classification of early stage psychosis.
Exploring the Brighter-fatter Effect with the Hyper Suprime-Cam
NASA Astrophysics Data System (ADS)
Coulton, William R.; Armstrong, Robert; Smith, Kendrick M.; Lupton, Robert H.; Spergel, David N.
2018-06-01
The brighter-fatter effect has been postulated to arise due to the build up of a transverse electric field, produced as photocharges accumulate in the pixels’ potential wells. We investigate the brighter-fatter effect in the Hyper Suprime-Cam by examining flat fields and moments of stars. We observe deviations from the expected linear relation in the photon transfer curve (PTC), luminosity-dependent correlations between pixels in flat-field images, and a luminosity-dependent point-spread function (PSF) in stellar observations. Under the key assumptions of translation invariance and Maxwell’s equations in the quasi-static limit, we give a first-principles proof that the effect can be parameterized by a translationally invariant scalar kernel. We describe how this kernel can be estimated from flat fields and discuss how this kernel has been used to remove the brighter-fatter distortions in Hyper Suprime-Cam images. We find that our correction restores the expected linear relation in the PTCs and significantly reduces, but does not completely remove, the luminosity dependence of the PSF over a wide range of magnitudes.
Support vector machines for nuclear reactor state estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavaljevski, N.; Gross, K. C.
2000-02-14
Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformedmore » into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.« less
Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Zhao, Xue-Hua
2014-01-01
A novel hybrid method named SCFW-KELM, which integrates effective subtractive clustering features weighting and a fast classifier kernel-based extreme learning machine (KELM), has been introduced for the diagnosis of PD. In the proposed method, SCFW is used as a data preprocessing tool, which aims at decreasing the variance in features of the PD dataset, in order to further improve the diagnostic accuracy of the KELM classifier. The impact of the type of kernel functions on the performance of KELM has been investigated in detail. The efficiency and effectiveness of the proposed method have been rigorously evaluated against the PD dataset in terms of classification accuracy, sensitivity, specificity, area under the receiver operating characteristic (ROC) curve (AUC), f-measure, and kappa statistics value. Experimental results have demonstrated that the proposed SCFW-KELM significantly outperforms SVM-based, KNN-based, and ELM-based approaches and other methods in the literature and achieved highest classification results reported so far via 10-fold cross validation scheme, with the classification accuracy of 99.49%, the sensitivity of 100%, the specificity of 99.39%, AUC of 99.69%, the f-measure value of 0.9964, and kappa value of 0.9867. Promisingly, the proposed method might serve as a new candidate of powerful methods for the diagnosis of PD with excellent performance.
Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Zhao, Xue-Hua
2014-01-01
A novel hybrid method named SCFW-KELM, which integrates effective subtractive clustering features weighting and a fast classifier kernel-based extreme learning machine (KELM), has been introduced for the diagnosis of PD. In the proposed method, SCFW is used as a data preprocessing tool, which aims at decreasing the variance in features of the PD dataset, in order to further improve the diagnostic accuracy of the KELM classifier. The impact of the type of kernel functions on the performance of KELM has been investigated in detail. The efficiency and effectiveness of the proposed method have been rigorously evaluated against the PD dataset in terms of classification accuracy, sensitivity, specificity, area under the receiver operating characteristic (ROC) curve (AUC), f-measure, and kappa statistics value. Experimental results have demonstrated that the proposed SCFW-KELM significantly outperforms SVM-based, KNN-based, and ELM-based approaches and other methods in the literature and achieved highest classification results reported so far via 10-fold cross validation scheme, with the classification accuracy of 99.49%, the sensitivity of 100%, the specificity of 99.39%, AUC of 99.69%, the f-measure value of 0.9964, and kappa value of 0.9867. Promisingly, the proposed method might serve as a new candidate of powerful methods for the diagnosis of PD with excellent performance. PMID:25484912
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, Masaki, E-mail: mook@clg.niigata-u.ac.jp
Purpose: In lung cancer computed tomography (CT) screening, the performance of a computer-aided detection (CAD) system depends on the selection of the image reconstruction kernel. To reduce this dependence on reconstruction kernels, the authors propose a novel application of an image filtering method previously proposed by their group. Methods: The proposed filtering process uses the ratio of modulation transfer functions (MTFs) of two reconstruction kernels as a filtering function in the spatial-frequency domain. This method is referred to as MTF{sub ratio} filtering. Test image data were obtained from CT screening scans of 67 subjects who each had one nodule. Imagesmore » were reconstructed using two kernels: f{sub STD} (for standard lung imaging) and f{sub SHARP} (for sharp edge-enhancement lung imaging). The MTF{sub ratio} filtering was implemented using the MTFs measured for those kernels and was applied to the reconstructed f{sub SHARP} images to obtain images that were similar to the f{sub STD} images. A mean filter and a median filter were applied (separately) for comparison. All reconstructed and filtered images were processed using their prototype CAD system. Results: The MTF{sub ratio} filtered images showed excellent agreement with the f{sub STD} images. The standard deviation for the difference between these images was very small, ∼6.0 Hounsfield units (HU). However, the mean and median filtered images showed larger differences of ∼48.1 and ∼57.9 HU from the f{sub STD} images, respectively. The free-response receiver operating characteristic (FROC) curve for the f{sub SHARP} images indicated poorer performance compared with the FROC curve for the f{sub STD} images. The FROC curve for the MTF{sub ratio} filtered images was equivalent to the curve for the f{sub STD} images. However, this similarity was not achieved by using the mean filter or median filter. Conclusions: The accuracy of MTF{sub ratio} image filtering was verified and the method was demonstrated to be effective for reducing the kernel dependence of CAD performance.« less
Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong
2014-01-01
Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods. PMID:25061837
Liu, Yi-Hung; Wu, Chien-Te; Cheng, Wei-Teng; Hsiao, Yu-Tsung; Chen, Po-Ming; Teng, Jyh-Tong
2014-07-24
Electroencephalogram-based emotion recognition (EEG-ER) has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI). However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher's discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher's emotion pattern (KFEP), and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM) serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS) are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68%) and arousal (84.79%) among all testing methods.
A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation
Sandhu, Romeil; Dambreville, Samuel; Yezzi, Anthony; Tannenbaum, Allen
2013-01-01
In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: First, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one’s training set, we evolve the preimage obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios. PMID:20733218
Agile convolutional neural network for pulmonary nodule classification using CT images.
Zhao, Xinzhuo; Liu, Liyao; Qi, Shouliang; Teng, Yueyang; Li, Jianhua; Qian, Wei
2018-04-01
To distinguish benign from malignant pulmonary nodules using CT images is critical for their precise diagnosis and treatment. A new Agile convolutional neural network (CNN) framework is proposed to conquer the challenges of a small-scale medical image database and the small size of the nodules, and it improves the performance of pulmonary nodule classification using CT images. A hybrid CNN of LeNet and AlexNet is constructed through combining the layer settings of LeNet and the parameter settings of AlexNet. A dataset with 743 CT image nodule samples is built up based on the 1018 CT scans of LIDC to train and evaluate the Agile CNN model. Through adjusting the parameters of the kernel size, learning rate, and other factors, the effect of these parameters on the performance of the CNN model is investigated, and an optimized setting of the CNN is obtained finally. After finely optimizing the settings of the CNN, the estimation accuracy and the area under the curve can reach 0.822 and 0.877, respectively. The accuracy of the CNN is significantly dependent on the kernel size, learning rate, training batch size, dropout, and weight initializations. The best performance is achieved when the kernel size is set to [Formula: see text], the learning rate is 0.005, the batch size is 32, and dropout and Gaussian initialization are used. This competitive performance demonstrates that our proposed CNN framework and the optimization strategy of the CNN parameters are suitable for pulmonary nodule classification characterized by small medical datasets and small targets. The classification model might help diagnose and treat pulmonary nodules effectively.
Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data
Zhao, Xin; Cheung, Leo Wang-Kit
2007-01-01
Background Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and applied to the area of microarray gene expression data analysis, the majority of them are based on linear models, which however are not necessarily appropriate for the underlying connection between the target disease and its associated explanatory genes. Linear model based methods usually also bring in false positive significant features more easily. Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that is possibly singular when the number of potentially important genes is relatively large. This leads to problems of numerical instability. To overcome these limitations, a few non-linear methods have recently been introduced to the area. Many of the existing non-linear methods have a couple of critical problems, the model selection problem and the model parameter tuning problem, that remain unsolved or even untouched. In general, a unified framework that allows model parameters of both linear and non-linear models to be easily tuned is always preferred in real-world applications. Kernel-induced learning methods form a class of approaches that show promising potentials to achieve this goal. Results A hierarchical statistical model named kernel-imbedded Gaussian process (KIGP) is developed under a unified Bayesian framework for binary disease classification problems using microarray gene expression data. In particular, based on a probit regression setting, an adaptive algorithm with a cascading structure is designed to find the appropriate kernel, to discover the potentially significant genes, and to make the optimal class prediction accordingly. A Gibbs sampler is built as the core of the algorithm to make Bayesian inferences. Simulation studies showed that, even without any knowledge of the underlying generative model, the KIGP performed very close to the theoretical Bayesian bound not only in the case with a linear Bayesian classifier but also in the case with a very non-linear Bayesian classifier. This sheds light on its broader usability to microarray data analysis problems, especially to those that linear methods work awkwardly. The KIGP was also applied to four published microarray datasets, and the results showed that the KIGP performed better than or at least as well as any of the referred state-of-the-art methods did in all of these cases. Conclusion Mathematically built on the kernel-induced feature space concept under a Bayesian framework, the KIGP method presented in this paper provides a unified machine learning approach to explore both the linear and the possibly non-linear underlying relationship between the target features of a given binary disease classification problem and the related explanatory gene expression data. More importantly, it incorporates the model parameter tuning into the framework. The model selection problem is addressed in the form of selecting a proper kernel type. The KIGP method also gives Bayesian probabilistic predictions for disease classification. These properties and features are beneficial to most real-world applications. The algorithm is naturally robust in numerical computation. The simulation studies and the published data studies demonstrated that the proposed KIGP performs satisfactorily and consistently. PMID:17328811
Stable Local Volatility Calibration Using Kernel Splines
NASA Astrophysics Data System (ADS)
Coleman, Thomas F.; Li, Yuying; Wang, Cheng
2010-09-01
We propose an optimization formulation using L1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances the calibration accuracy with the model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a kernel function generating splines and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of the support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.
Multimodal manifold-regularized transfer learning for MCI conversion prediction.
Cheng, Bo; Liu, Mingxia; Suk, Heung-Il; Shen, Dinggang; Zhang, Daoqiang
2015-12-01
As the early stage of Alzheimer's disease (AD), mild cognitive impairment (MCI) has high chance to convert to AD. Effective prediction of such conversion from MCI to AD is of great importance for early diagnosis of AD and also for evaluating AD risk pre-symptomatically. Unlike most previous methods that used only the samples from a target domain to train a classifier, in this paper, we propose a novel multimodal manifold-regularized transfer learning (M2TL) method that jointly utilizes samples from another domain (e.g., AD vs. normal controls (NC)) as well as unlabeled samples to boost the performance of the MCI conversion prediction. Specifically, the proposed M2TL method includes two key components. The first one is a kernel-based maximum mean discrepancy criterion, which helps eliminate the potential negative effect induced by the distributional difference between the auxiliary domain (i.e., AD and NC) and the target domain (i.e., MCI converters (MCI-C) and MCI non-converters (MCI-NC)). The second one is a semi-supervised multimodal manifold-regularized least squares classification method, where the target-domain samples, the auxiliary-domain samples, and the unlabeled samples can be jointly used for training our classifier. Furthermore, with the integration of a group sparsity constraint into our objective function, the proposed M2TL has a capability of selecting the informative samples to build a robust classifier. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database validate the effectiveness of the proposed method by significantly improving the classification accuracy of 80.1 % for MCI conversion prediction, and also outperforming the state-of-the-art methods.
Two-item same/different discrimination in rhesus monkeys (Macaca mulatta).
Basile, Benjamin M; Moylan, Emily J; Charles, David P; Murray, Elisabeth A
2015-11-01
Almost all nonhuman animals can recognize when one item is the same as another item. It is less clear whether nonhuman animals possess abstract concepts of "same" and "different" that can be divorced from perceptual similarity. Pigeons and monkeys show inconsistent performance, and often surprising difficulty, in laboratory tests of same/different learning that involve only two items. Previous results from tests using multi-item arrays suggest that nonhumans compute sameness along a continuous scale of perceptual variability, which would explain the difficulty of making two-item same/different judgments. Here, we provide evidence that rhesus monkeys can learn a two-item same/different discrimination similar to those on which monkeys and pigeons have previously failed. Monkeys' performance transferred to novel stimuli and was not affected by perceptual variations in stimulus size, rotation, view, or luminance. Success without the use of multi-item arrays, and the lack of effect of perceptual variability, suggests a computation of sameness that is more categorical, and perhaps more abstract, than previously thought.
Shang, Qiang; Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang
2016-01-01
Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.
Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang
2016-01-01
Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust. PMID:27551829
Monitoring Hitting Load in Tennis Using Inertial Sensors and Machine Learning.
Whiteside, David; Cant, Olivia; Connolly, Molly; Reid, Machar
2017-10-01
Quantifying external workload is fundamental to training prescription in sport. In tennis, global positioning data are imprecise and fail to capture hitting loads. The current gold standard (manual notation) is time intensive and often not possible given players' heavy travel schedules. To develop an automated stroke-classification system to help quantify hitting load in tennis. Nineteen athletes wore an inertial measurement unit (IMU) on their wrist during 66 video-recorded training sessions. Video footage was manually notated such that known shot type (serve, rally forehand, slice forehand, forehand volley, rally backhand, slice backhand, backhand volley, smash, or false positive) was associated with the corresponding IMU data for 28,582 shots. Six types of machine-learning models were then constructed to classify true shot type from the IMU signals. Across 10-fold cross-validation, a cubic-kernel support vector machine classified binned shots (overhead, forehand, or backhand) with an accuracy of 97.4%. A second cubic-kernel support vector machine achieved 93.2% accuracy when classifying all 9 shot types. With a view to monitoring external load, the combination of miniature inertial sensors and machine learning offers a practical and automated method of quantifying shot counts and discriminating shot types in elite tennis players.
High-Throughput, Adaptive FFT Architecture for FPGA-Based Spaceborne Data Processors
NASA Technical Reports Server (NTRS)
NguyenKobayashi, Kayla; Zheng, Jason X.; He, Yutao; Shah, Biren N.
2011-01-01
Exponential growth in microelectronics technology such as field-programmable gate arrays (FPGAs) has enabled high-performance spaceborne instruments with increasing onboard data processing capabilities. As a commonly used digital signal processing (DSP) building block, fast Fourier transform (FFT) has been of great interest in onboard data processing applications, which needs to strike a reasonable balance between high-performance (throughput, block size, etc.) and low resource usage (power, silicon footprint, etc.). It is also desirable to be designed so that a single design can be reused and adapted into instruments with different requirements. The Multi-Pass Wide Kernel FFT (MPWK-FFT) architecture was developed, in which the high-throughput benefits of the parallel FFT structure and the low resource usage of Singleton s single butterfly method is exploited. The result is a wide-kernel, multipass, adaptive FFT architecture. The 32K-point MPWK-FFT architecture includes 32 radix-2 butterflies, 64 FIFOs to store the real inputs, 64 FIFOs to store the imaginary inputs, complex twiddle factor storage, and FIFO logic to route the outputs to the correct FIFO. The inputs are stored in sequential fashion into the FIFOs, and the outputs of each butterfly are sequentially written first into the even FIFO, then the odd FIFO. Because of the order of the outputs written into the FIFOs, the depth of the even FIFOs, which are 768 each, are 1.5 times larger than the odd FIFOs, which are 512 each. The total memory needed for data storage, assuming that each sample is 36 bits, is 2.95 Mbits. The twiddle factors are stored in internal ROM inside the FPGA for fast access time. The total memory size to store the twiddle factors is 589.9Kbits. This FFT structure combines the benefits of high throughput from the parallel FFT kernels and low resource usage from the multi-pass FFT kernels with desired adaptability. Space instrument missions that need onboard FFT capabilities such as the proposed DESDynl, SWOT (Surface Water Ocean Topography), and Europa sounding radar missions would greatly benefit from this technology with significant reductions in non-recurring cost and risk.
NASA Astrophysics Data System (ADS)
Peng, Haijun; Wang, Wei
2016-10-01
An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.
An automatic optimum kernel-size selection technique for edge enhancement
Chavez, Pat S.; Bauer, Brian P.
1982-01-01
Edge enhancement is a technique that can be considered, to a first order, a correction for the modulation transfer function of an imaging system. Digital imaging systems sample a continuous function at discrete intervals so that high-frequency information cannot be recorded at the same precision as lower frequency data. Because of this, fine detail or edge information in digital images is lost. Spatial filtering techniques can be used to enhance the fine detail information that does exist in the digital image, but the filter size is dependent on the type of area being processed. A technique has been developed by the authors that uses the horizontal first difference to automatically select the optimum kernel-size that should be used to enhance the edges that are contained in the image.
NASA Astrophysics Data System (ADS)
Christe, Steven; Inglis, A.; Aschwanden, M.; Dennis, B.
2011-05-01
On 2010 October 16th SDO/AIA observed its first flare using automatic exposure control. Coincidentally, this flare also exhibited a large number of interesting features. Firstly, a large ribbon significantly to the solar west of the flare kernel was ignited and was visible in all AIA wavelengths, posing the question as to how this energy was deposited and how it relates to the main flare site. A faint blast wave also emanates from the flare kernel, visible in AIA and observed traveling to the solar west at an estimated speed of 1000 km/s. This blast wave is associated with a weak white-light CME observed with STEREO B and a Type II radio burst observed from Green Bank Observatory (GBSRBS). One possibility is that this blast wave is responsible for the heating of the ribbon. However, closer scrutiny reveals that the flare site and the ribbon are in fact connected magnetically via coronal loops which are heated during the main energy release. These loops are distinct from the expected hot, post-flare loops present within the main flare kernel. RHESSI spectra indicate that these loops are heated to approximately 10 MK in the immediate flare aftermath. Using the multi-temperature capabilities of AIA in combination with RHESSI, and by employing the cross-correlation mapping technique, we are able to measure the loop temperatures as a function of time over several post-flare hours and hence measure the loop cooling rate. We find that the time delay between the appearance of loops in the hottest channel, 131 A, and the cool 171 A channel, is 70 minutes. Yet the causality of this event remains unclear. Is the ribbon heated via these interconnected loops or via a blast wave?
Liu, Shelley H; Bobb, Jennifer F; Lee, Kyu Ha; Gennings, Chris; Claus Henn, Birgit; Bellinger, David; Austin, Christine; Schnaas, Lourdes; Tellez-Rojo, Martha M; Hu, Howard; Wright, Robert O; Arora, Manish; Coull, Brent A
2018-07-01
The impact of neurotoxic chemical mixtures on children's health is a critical public health concern. It is well known that during early life, toxic exposures may impact cognitive function during critical time intervals of increased vulnerability, known as windows of susceptibility. Knowledge on time windows of susceptibility can help inform treatment and prevention strategies, as chemical mixtures may affect a developmental process that is operating at a specific life phase. There are several statistical challenges in estimating the health effects of time-varying exposures to multi-pollutant mixtures, such as: multi-collinearity among the exposures both within time points and across time points, and complex exposure-response relationships. To address these concerns, we develop a flexible statistical method, called lagged kernel machine regression (LKMR). LKMR identifies critical exposure windows of chemical mixtures, and accounts for complex non-linear and non-additive effects of the mixture at any given exposure window. Specifically, LKMR estimates how the effects of a mixture of exposures change with the exposure time window using a Bayesian formulation of a grouped, fused lasso penalty within a kernel machine regression (KMR) framework. A simulation study demonstrates the performance of LKMR under realistic exposure-response scenarios, and demonstrates large gains over approaches that consider each time window separately, particularly when serial correlation among the time-varying exposures is high. Furthermore, LKMR demonstrates gains over another approach that inputs all time-specific chemical concentrations together into a single KMR. We apply LKMR to estimate associations between neurodevelopment and metal mixtures in Early Life Exposures in Mexico and Neurotoxicology, a prospective cohort study of child health in Mexico City.
Transfer Learning beyond Text Classification
NASA Astrophysics Data System (ADS)
Yang, Qiang
Transfer learning is a new machine learning and data mining framework that allows the training and test data to come from different distributions or feature spaces. We can find many novel applications of machine learning and data mining where transfer learning is necessary. While much has been done in transfer learning in text classification and reinforcement learning, there has been a lack of documented success stories of novel applications of transfer learning in other areas. In this invited article, I will argue that transfer learning is in fact quite ubiquitous in many real world applications. In this article, I will illustrate this point through an overview of a broad spectrum of applications of transfer learning that range from collaborative filtering to sensor based location estimation and logical action model learning for AI planning. I will also discuss some potential future directions of transfer learning.
Building machine learning force fields for nanoclusters
NASA Astrophysics Data System (ADS)
Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro
2018-06-01
We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.
Analyzing Kernel Matrices for the Identification of Differentially Expressed Genes
Xia, Xiao-Lei; Xing, Huanlai; Liu, Xueqin
2013-01-01
One of the most important applications of microarray data is the class prediction of biological samples. For this purpose, statistical tests have often been applied to identify the differentially expressed genes (DEGs), followed by the employment of the state-of-the-art learning machines including the Support Vector Machines (SVM) in particular. The SVM is a typical sample-based classifier whose performance comes down to how discriminant samples are. However, DEGs identified by statistical tests are not guaranteed to result in a training dataset composed of discriminant samples. To tackle this problem, a novel gene ranking method namely the Kernel Matrix Gene Selection (KMGS) is proposed. The rationale of the method, which roots in the fundamental ideas of the SVM algorithm, is described. The notion of ''the separability of a sample'' which is estimated by performing -like statistics on each column of the kernel matrix, is first introduced. The separability of a classification problem is then measured, from which the significance of a specific gene is deduced. Also described is a method of Kernel Matrix Sequential Forward Selection (KMSFS) which shares the KMGS method's essential ideas but proceeds in a greedy manner. On three public microarray datasets, our proposed algorithms achieved noticeably competitive performance in terms of the B.632+ error rate. PMID:24349110
Aksu, Yaman; Miller, David J; Kesidis, George; Yang, Qing X
2010-05-01
Feature selection for classification in high-dimensional spaces can improve generalization, reduce classifier complexity, and identify important, discriminating feature "markers." For support vector machine (SVM) classification, a widely used technique is recursive feature elimination (RFE). We demonstrate that RFE is not consistent with margin maximization, central to the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE) for SVMs and demonstrate both improved margin and improved generalization, compared with RFE. Moreover, for the case of a nonlinear kernel, we show that RFE assumes that the squared weight vector 2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the Gaussian kernel and, consequently, RFE may give poor results in this case. MFE for nonlinear kernels gives better margin and generalization. We also present an extension which achieves further margin gains, by optimizing only two degrees of freedom--the hyperplane's intercept and its squared 2-norm--with the weight vector orientation fixed. We finally introduce an extension that allows margin slackness. We compare against several alternatives, including RFE and a linear programming method that embeds feature selection within the classifier design. On high-dimensional gene microarray data sets, University of California at Irvine (UCI) repository data sets, and Alzheimer's disease brain image data, MFE methods give promising results.
Benchmark of Machine Learning Methods for Classification of a SENTINEL-2 Image
NASA Astrophysics Data System (ADS)
Pirotti, F.; Sunar, F.; Piragnolo, M.
2016-06-01
Thanks to mainly ESA and USGS, a large bulk of free images of the Earth is readily available nowadays. One of the main goals of remote sensing is to label images according to a set of semantic categories, i.e. image classification. This is a very challenging issue since land cover of a specific class may present a large spatial and spectral variability and objects may appear at different scales and orientations. In this study, we report the results of benchmarking 9 machine learning algorithms tested for accuracy and speed in training and classification of land-cover classes in a Sentinel-2 dataset. The following machine learning methods (MLM) have been tested: linear discriminant analysis, k-nearest neighbour, random forests, support vector machines, multi layered perceptron, multi layered perceptron ensemble, ctree, boosting, logarithmic regression. The validation is carried out using a control dataset which consists of an independent classification in 11 land-cover classes of an area about 60 km2, obtained by manual visual interpretation of high resolution images (20 cm ground sampling distance) by experts. In this study five out of the eleven classes are used since the others have too few samples (pixels) for testing and validating subsets. The classes used are the following: (i) urban (ii) sowable areas (iii) water (iv) tree plantations (v) grasslands. Validation is carried out using three different approaches: (i) using pixels from the training dataset (train), (ii) using pixels from the training dataset and applying cross-validation with the k-fold method (kfold) and (iii) using all pixels from the control dataset. Five accuracy indices are calculated for the comparison between the values predicted with each model and control values over three sets of data: the training dataset (train), the whole control dataset (full) and with k-fold cross-validation (kfold) with ten folds. Results from validation of predictions of the whole dataset (full) show the random forests method with the highest values; kappa index ranging from 0.55 to 0.42 respectively with the most and least number pixels for training. The two neural networks (multi layered perceptron and its ensemble) and the support vector machines - with default radial basis function kernel - methods follow closely with comparable performance.
Development of flange and reticulate wall ingrowths in maize (Zea mays L.) endosperm transfer cells.
Monjardino, Paulo; Rocha, Sara; Tavares, Ana C; Fernandes, Rui; Sampaio, Paula; Salema, Roberto; da Câmara Machado, Artur
2013-04-01
Maize (Zea mays L.) endosperm transfer cells are essential for kernel growth and development so they have a significant impact on grain yield. Although structural and ultrastructural studies have been published, little is known about the development of these cells, and prior to this study, there was a general consensus that they contain only flange ingrowths. We characterized the development of maize endosperm transfer cells by bright field microscopy, transmission electron microscopy, and confocal laser scanning microscopy. The most basal endosperm transfer cells (MBETC) have flange and reticulate ingrowths, whereas inner transfer cells only have flange ingrowths. Reticulate and flange ingrowths are mostly formed in different locations of the MBETC as early as 5 days after pollination, and they are distinguishable from each other at all stages of development. Ingrowth structure and ultrastructure and cellulose microfibril compaction and orientation patterns are discussed during transfer cell development. This study provides important insights into how both types of ingrowths are formed in maize endosperm transfer cells.
ERIC Educational Resources Information Center
Badger, Elizabeth
1992-01-01
Explains a set of processes that teachers might use to structure their evaluation of students' learning and understanding. Illustrates the processes of setting goals, deciding what to assess, gathering information, and using the results through a measurement task requiring students to estimate the number of popcorn kernels in a container. (MDH)
Comparative analysis of genetic architectures for nine developmental traits of rye.
Masojć, Piotr; Milczarski, P; Kruszona, P
2017-08-01
Genetic architectures of plant height, stem thickness, spike length, awn length, heading date, thousand-kernel weight, kernel length, leaf area and chlorophyll content were aligned on the DArT-based high-density map of the 541 × Ot1-3 RILs population of rye using the genes interaction assorting by divergent selection (GIABDS) method. Complex sets of QTL for particular traits contained 1-5 loci of the epistatic D class and 10-28 loci of the hypostatic, mostly R and E classes controlling traits variation through D-E or D-R types of two-loci interactions. QTL were distributed on each of the seven rye chromosomes in unique positions or as a coinciding loci for 2-8 traits. Detection of considerable numbers of the reversed (D', E' and R') classes of QTL might be attributed to the transgression effects observed for most of the studied traits. First examples of E* and F QTL classes, defined in the model, are reported for awn length, leaf area, thousand-kernel weight and kernel length. The results of this study extend experimental data to 11 quantitative traits (together with pre-harvest sprouting and alpha-amylase activity) for which genetic architectures fit the model of mechanism underlying alleles distribution within tails of bi-parental populations. They are also a valuable starting point for map-based search of genes underlying detected QTL and for planning advanced marker-assisted multi-trait breeding strategies.
NASA Astrophysics Data System (ADS)
Miyazawa, Arata; Hong, Young-Joo; Makita, Shuichi; Kasaragod, Deepa K.; Miura, Masahiro; Yasuno, Yoshiaki
2017-02-01
Local statistics are widely utilized for quantification and image processing of OCT. For example, local mean is used to reduce speckle, local variation of polarization state (degree-of-polarization-uniformity (DOPU)) is used to visualize melanin. Conventionally, these statistics are calculated in a rectangle kernel whose size is uniform over the image. However, the fixed size and shape of the kernel result in a tradeoff between image sharpness and statistical accuracy. Superpixel is a cluster of pixels which is generated by grouping image pixels based on the spatial proximity and similarity of signal values. Superpixels have variant size and flexible shapes which preserve the tissue structure. Here we demonstrate a new superpixel method which is tailored for multifunctional Jones matrix OCT (JM-OCT). This new method forms the superpixels by clustering image pixels in a 6-dimensional (6-D) feature space (spatial two dimensions and four dimensions of optical features). All image pixels were clustered based on their spatial proximity and optical feature similarity. The optical features are scattering, OCT-A, birefringence and DOPU. The method is applied to retinal OCT. Generated superpixels preserve the tissue structures such as retinal layers, sclera, vessels, and retinal pigment epithelium. Hence, superpixel can be utilized as a local statistics kernel which would be more suitable than a uniform rectangle kernel. Superpixelized image also can be used for further image processing and analysis. Since it reduces the number of pixels to be analyzed, it reduce the computational cost of such image processing.
Peng, Hui; Lan, Chaowang; Zheng, Yi; Hutvagner, Gyorgy; Tao, Dacheng; Li, Jinyan
2017-03-24
MicroRNAs always function cooperatively in their regulation of gene expression. Dysfunctions of these co-functional microRNAs can play significant roles in disease development. We are interested in those multi-disease associated co-functional microRNAs that regulate their common dysfunctional target genes cooperatively in the development of multiple diseases. The research is potentially useful for human disease studies at the transcriptional level and for the study of multi-purpose microRNA therapeutics. We designed a computational method to detect multi-disease associated co-functional microRNA pairs and conducted cross disease analysis on a reconstructed disease-gene-microRNA (DGR) tripartite network. The construction of the DGR tripartite network is by the integration of newly predicted disease-microRNA associations with those relationships of diseases, microRNAs and genes maintained by existing databases. The prediction method uses a set of reliable negative samples of disease-microRNA association and a pre-computed kernel matrix instead of kernel functions. From this reconstructed DGR tripartite network, multi-disease associated co-functional microRNA pairs are detected together with their common dysfunctional target genes and ranked by a novel scoring method. We also conducted proof-of-concept case studies on cancer-related co-functional microRNA pairs as well as on non-cancer disease-related microRNA pairs. With the prioritization of the co-functional microRNAs that relate to a series of diseases, we found that the co-function phenomenon is not unusual. We also confirmed that the regulation of the microRNAs for the development of cancers is more complex and have more unique properties than those of non-cancer diseases.
Aune, Tore K.; Aune, Morten A.; Ingvaldsen, Rolf P.; Vereijken, Beatrix
2017-01-01
The current experiment investigated generalizability of motor learning in proximal versus distal effectors in upper extremities. Twenty-eight participants were divided into three groups: training proximal effectors, training distal effectors, and no training control group (CG). Performance was tested pre- and post-training for specific learning and three learning transfer conditions: (1) bilateral learning transfer between homologous effectors, (2) lateral learning transfer between non-homologous effectors, and (3) bilateral learning transfer between non-homologous effectors. With respect to specific learning, both training groups showed significant, similar improvement for the trained proximal and distal effectors, respectively. In addition, there was significant learning transfer to all three transfer conditions, except for bilateral learning transfer between non-homologous effectors for the distal training group. Interestingly, the proximal training group showed significantly larger learning transfer to other effectors compared to the distal training group. The CG did not show significant improvements from pre- to post-test. These results show that learning is partly effector independent and generalizable to different effectors, even though transfer is suboptimal compared to specific learning. Furthermore, there is a proximal-distal gradient in generalizability, in that learning transfer from trained proximal effectors is larger than from trained distal effectors, which is consistent with neuroanatomical differences in activation of proximal and distal muscles. PMID:28943857
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krueger, Jens; Micikevicius, Paulius; Williams, Samuel
Reverse Time Migration (RTM) is one of the main approaches in the seismic processing industry for imaging the subsurface structure of the Earth. While RTM provides qualitative advantages over its predecessors, it has a high computational cost warranting implementation on HPC architectures. We focus on three progressively more complex kernels extracted from RTM: for isotropic (ISO), vertical transverse isotropic (VTI) and tilted transverse isotropic (TTI) media. In this work, we examine performance optimization of forward wave modeling, which describes the computational kernels used in RTM, on emerging multi- and manycore processors and introduce a novel common subexpression elimination optimization formore » TTI kernels. We compare attained performance and energy efficiency in both the single-node and distributed memory environments in order to satisfy industry’s demands for fidelity, performance, and energy efficiency. Moreover, we discuss the interplay between architecture (chip and system) and optimizations (both on-node computation) highlighting the importance of NUMA-aware approaches to MPI communication. Ultimately, our results show we can improve CPU energy efficiency by more than 10× on Magny Cours nodes while acceleration via multiple GPUs can surpass the energy-efficient Intel Sandy Bridge by as much as 3.6×.« less
Machine learning with quantum relative entropy
NASA Astrophysics Data System (ADS)
Tsuda, Koji
2009-12-01
Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zuwei; Zhao, Haibo, E-mail: klinsmannzhb@163.com; Zheng, Chuguang
2015-01-15
This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule providesmore » a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are demonstrated in a physically realistic Brownian coagulation case. The computational accuracy is validated with benchmark solution of discrete-sectional method. The simulation results show that the comprehensive approach can attain very favorable improvement in cost without sacrificing computational accuracy.« less
Taylor, David; Valenza, John A; Spence, James M; Baber, Randolph H
2007-10-11
Simulation has been used for many years in dental education, but the educational context is typically a laboratory divorced from the clinical setting, which impairs the transfer of learning. Here we report on a true simulation clinic with multimedia communication from a central teaching station. Each of the 43 fully-functioning student operatories includes a thin-client networked computer with access to an Electronic Patient Record (EPR).
Learning User Preferences for Sets of Objects
NASA Technical Reports Server (NTRS)
desJardins, Marie; Eaton, Eric; Wagstaff, Kiri L.
2006-01-01
Most work on preference learning has focused on pairwise preferences or rankings over individual items. In this paper, we present a method for learning preferences over sets of items. Our learning method takes as input a collection of positive examples--that is, one or more sets that have been identified by a user as desirable. Kernel density estimation is used to estimate the value function for individual items, and the desired set diversity is estimated from the average set diversity observed in the collection. Since this is a new learning problem, we introduce a new evaluation methodology and evaluate the learning method on two data collections: synthetic blocks-world data and a new real-world music data collection that we have gathered.
2014-05-01
2001). Learning with Kernels: Support Vector Machines , Regularization, Optimization, and Beyond. The MIT Press, Cambridge, MA, 644 p. [26] Banerjee...A., Burlina, P., and Broadwater, J., (2007). A Machine Learning Approach for finding hyperspectral endmembers. Proceedings of the IEEE International... lime glass beads using hyperspectral imagery (HSI) microscopy Ronald G. Resmini1*, Robert S. Rand2, David W. Allen3, and Christopher J. Deloye1
2018-04-25
unlimited. NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so...this report, intermolecular potentials for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) are developed using machine learning techniques. Three...potentials based on support vector regression, kernel ridge regression, and a neural network are fit using symmetry-adapted perturbation theory. The
Web Image Search Re-ranking with Click-based Similarity and Typicality.
Yang, Xiaopeng; Mei, Tao; Zhang, Yong Dong; Liu, Jie; Satoh, Shin'ichi
2016-07-20
In image search re-ranking, besides the well known semantic gap, intent gap, which is the gap between the representation of users' query/demand and the real intent of the users, is becoming a major problem restricting the development of image retrieval. To reduce human effects, in this paper, we use image click-through data, which can be viewed as the "implicit feedback" from users, to help overcome the intention gap, and further improve the image search performance. Generally, the hypothesis visually similar images should be close in a ranking list and the strategy images with higher relevance should be ranked higher than others are widely accepted. To obtain satisfying search results, thus, image similarity and the level of relevance typicality are determinate factors correspondingly. However, when measuring image similarity and typicality, conventional re-ranking approaches only consider visual information and initial ranks of images, while overlooking the influence of click-through data. This paper presents a novel re-ranking approach, named spectral clustering re-ranking with click-based similarity and typicality (SCCST). First, to learn an appropriate similarity measurement, we propose click-based multi-feature similarity learning algorithm (CMSL), which conducts metric learning based on clickbased triplets selection, and integrates multiple features into a unified similarity space via multiple kernel learning. Then based on the learnt click-based image similarity measure, we conduct spectral clustering to group visually and semantically similar images into same clusters, and get the final re-rank list by calculating click-based clusters typicality and withinclusters click-based image typicality in descending order. Our experiments conducted on two real-world query-image datasets with diverse representative queries show that our proposed reranking approach can significantly improve initial search results, and outperform several existing re-ranking approaches.
Wang, Hongzhi; Yushkevich, Paul A.
2013-01-01
Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a consensus solution. Among the proposed label fusion strategies, weighted voting with spatially varying weight distributions derived from atlas-target intensity similarity is a simple and highly effective label fusion technique. However, one limitation of most weighted voting methods is that the weights are computed independently for each atlas, without taking into account the fact that different atlases may produce similar label errors. To address this problem, we recently developed the joint label fusion technique and the corrective learning technique, which won the first place of the 2012 MICCAI Multi-Atlas Labeling Challenge and was one of the top performers in 2013 MICCAI Segmentation: Algorithms, Theory and Applications (SATA) challenge. To make our techniques more accessible to the scientific research community, we describe an Insight-Toolkit based open source implementation of our label fusion methods. Our implementation extends our methods to work with multi-modality imaging data and is more suitable for segmentation problems with multiple labels. We demonstrate the usage of our tools through applying them to the 2012 MICCAI Multi-Atlas Labeling Challenge brain image dataset and the 2013 SATA challenge canine leg image dataset. We report the best results on these two datasets so far. PMID:24319427
The Transfer of Learning Process: Before, during, and after Educational Programs.
ERIC Educational Resources Information Center
Fox, Robert D.; And Others
1994-01-01
Includes "Planning Continuing Education to Foster the Transfer of Learning" (Fox); "Transfer Analysis" (Sleezer); "From the Classroom to the Real World" (Nolan); "Help Them Use What They Learn" (Cheek, Campbell); "After Educational Programs" (Kiener); "Measuring Transfer of Learning" (Swanson, Nijhof); and "Measuring Transfer of Learning or So…
Scalable Kernel Methods and Algorithms for General Sequence Analysis
ERIC Educational Resources Information Center
Kuksa, Pavel
2011-01-01
Analysis of large-scale sequential data has become an important task in machine learning and pattern recognition, inspired in part by numerous scientific and technological applications such as the document and text classification or the analysis of biological sequences. However, current computational methods for sequence comparison still lack…
Surface-from-gradients without discrete integrability enforcement: A Gaussian kernel approach.
Ng, Heung-Sun; Wu, Tai-Pang; Tang, Chi-Keung
2010-11-01
Representative surface reconstruction algorithms taking a gradient field as input enforce the integrability constraint in a discrete manner. While enforcing integrability allows the subsequent integration to produce surface heights, existing algorithms have one or more of the following disadvantages: They can only handle dense per-pixel gradient fields, smooth out sharp features in a partially integrable field, or produce severe surface distortion in the results. In this paper, we present a method which does not enforce discrete integrability and reconstructs a 3D continuous surface from a gradient or a height field, or a combination of both, which can be dense or sparse. The key to our approach is the use of kernel basis functions, which transfer the continuous surface reconstruction problem into high-dimensional space, where a closed-form solution exists. By using the Gaussian kernel, we can derive a straightforward implementation which is able to produce results better than traditional techniques. In general, an important advantage of our kernel-based method is that the method does not suffer discretization and finite approximation, both of which lead to surface distortion, which is typical of Fourier or wavelet bases widely adopted by previous representative approaches. We perform comparisons with classical and recent methods on benchmark as well as challenging data sets to demonstrate that our method produces accurate surface reconstruction that preserves salient and sharp features. The source code and executable of the system are available for downloading.
Acceleration of GPU-based Krylov solvers via data transfer reduction
Anzt, Hartwig; Tomov, Stanimire; Luszczek, Piotr; ...
2015-04-08
Krylov subspace iterative solvers are often the method of choice when solving large sparse linear systems. At the same time, hardware accelerators such as graphics processing units continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a well optimized but limited set of linear algebra operations, applications that use them often fail to reduce certain data communications, and hence fail to leverage the full potential of the accelerator. In this study, we target the acceleration of Krylov subspace iterative methods for graphicsmore » processing units, and in particular the Biconjugate Gradient Stabilized solver that significant improvement can be achieved by reformulating the method to reduce data-communications through application-specific kernels instead of using the generic BLAS kernels, e.g. as provided by NVIDIA’s cuBLAS library, and by designing a graphics processing unit specific sparse matrix-vector product kernel that is able to more efficiently use the graphics processing unit’s computing power. Furthermore, we derive a model estimating the performance improvement, and use experimental data to validate the expected runtime savings. Finally, considering that the derived implementation achieves significantly higher performance, we assert that similar optimizations addressing algorithm structure, as well as sparse matrix-vector, are crucial for the subsequent development of high-performance graphics processing units accelerated Krylov subspace iterative methods.« less
Lesion contrast and detection using sonoelastographic shear velocity imaging: preliminary results
NASA Astrophysics Data System (ADS)
Hoyt, Kenneth; Parker, Kevin J.
2007-03-01
This paper assesses lesion contrast and detection using sonoelastographic shear velocity imaging. Shear wave interference patterns, termed crawling waves, for a two phase medium were simulated assuming plane wave conditions. Shear velocity estimates were computed using a spatial autocorrelation algorithm that operates in the direction of shear wave propagation for a given kernel size. Contrast was determined by analyzing shear velocity estimate transition between mediums. Experimental results were obtained using heterogeneous phantoms with spherical inclusions (5 or 10 mm in diameter) characterized by elevated shear velocities. Two vibration sources were applied to opposing phantom edges and scanned (orthogonal to shear wave propagation) with an ultrasound scanner equipped for sonoelastography. Demodulated data was saved and transferred to an external computer for processing shear velocity images. Simulation results demonstrate shear velocity transition between contrasting mediums is governed by both estimator kernel size and source vibration frequency. Experimental results from phantoms further indicates that decreasing estimator kernel size produces corresponding decrease in shear velocity estimate transition between background and inclusion material albeit with an increase in estimator noise. Overall, results demonstrate the ability to generate high contrast shear velocity images using sonoelastographic techniques and detect millimeter-sized lesions.
Automatic Polyp Detection via A Novel Unified Bottom-up and Top-down Saliency Approach.
Yuan, Yixuan; Li, Dengwang; Meng, Max Q-H
2017-07-31
In this paper, we propose a novel automatic computer-aided method to detect polyps for colonoscopy videos. To find the perceptually and semantically meaningful salient polyp regions, we first segment images into multilevel superpixels. Each level corresponds to different sizes of superpixels. Rather than adopting hand-designed features to describe these superpixels in images, we employ sparse autoencoder (SAE) to learn discriminative features in an unsupervised way. Then a novel unified bottom-up and top-down saliency method is proposed to detect polyps. In the first stage, we propose a weak bottom-up (WBU) saliency map by fusing the contrast based saliency and object-center based saliency together. The contrast based saliency map highlights image parts that show different appearances compared with surrounding areas while the object-center based saliency map emphasizes the center of the salient object. In the second stage, a strong classifier with Multiple Kernel Boosting (MKB) is learned to calculate the strong top-down (STD) saliency map based on samples directly from the obtained multi-level WBU saliency maps. We finally integrate these two stage saliency maps from all levels together to highlight polyps. Experiment results achieve 0.818 recall for saliency calculation, validating the effectiveness of our method. Extensive experiments on public polyp datasets demonstrate that the proposed saliency algorithm performs favorably against state-of-the-art saliency methods to detect polyps.
Chimera states in multi-strain epidemic models with temporary immunity
NASA Astrophysics Data System (ADS)
Bauer, Larissa; Bassett, Jason; Hövel, Philipp; Kyrychko, Yuliya N.; Blyuss, Konstantin B.
2017-11-01
We investigate a time-delayed epidemic model for multi-strain diseases with temporary immunity. In the absence of cross-immunity between strains, dynamics of each individual strain exhibit emergence and annihilation of limit cycles due to a Hopf bifurcation of the endemic equilibrium, and a saddle-node bifurcation of limit cycles depending on the time delay associated with duration of temporary immunity. Effects of all-to-all and non-local coupling topologies are systematically investigated by means of numerical simulations, and they suggest that cross-immunity is able to induce a diverse range of complex dynamical behaviors and synchronization patterns, including discrete traveling waves, solitary states, and amplitude chimeras. Interestingly, chimera states are observed for narrower cross-immunity kernels, which can have profound implications for understanding the dynamics of multi-strain diseases.
NASA Astrophysics Data System (ADS)
Fadly Nurullah Rasedee, Ahmad; Ahmedov, Anvarjon; Sathar, Mohammad Hasan Abdul
2017-09-01
The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.
Parameterized Micro-benchmarking: An Auto-tuning Approach for Complex Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Wenjing; Krishnamoorthy, Sriram; Agrawal, Gagan
2012-05-15
Auto-tuning has emerged as an important practical method for creating highly optimized implementations of key computational kernels and applications. However, the growing complexity of architectures and applications is creating new challenges for auto-tuning. Complex applications can involve a prohibitively large search space that precludes empirical auto-tuning. Similarly, architectures are becoming increasingly complicated, making it hard to model performance. In this paper, we focus on the challenge to auto-tuning presented by applications with a large number of kernels and kernel instantiations. While these kernels may share a somewhat similar pattern, they differ considerably in problem sizes and the exact computation performed.more » We propose and evaluate a new approach to auto-tuning which we refer to as parameterized micro-benchmarking. It is an alternative to the two existing classes of approaches to auto-tuning: analytical model-based and empirical search-based. Particularly, we argue that the former may not be able to capture all the architectural features that impact performance, whereas the latter might be too expensive for an application that has several different kernels. In our approach, different expressions in the application, different possible implementations of each expression, and the key architectural features, are used to derive a simple micro-benchmark and a small parameter space. This allows us to learn the most significant features of the architecture that can impact the choice of implementation for each kernel. We have evaluated our approach in the context of GPU implementations of tensor contraction expressions encountered in excited state calculations in quantum chemistry. We have focused on two aspects of GPUs that affect tensor contraction execution: memory access patterns and kernel consolidation. Using our parameterized micro-benchmarking approach, we obtain a speedup of up to 2 over the version that used default optimizations, but no auto-tuning. We demonstrate that observations made from microbenchmarks match the behavior seen from real expressions. In the process, we make important observations about the memory hierarchy of two of the most recent NVIDIA GPUs, which can be used in other optimization frameworks as well.« less
NASA Astrophysics Data System (ADS)
Sato, Haruo; Hayakawa, Toshihiko
2014-10-01
Short-period seismograms of earthquakes are complex especially beneath volcanoes, where the S wave mean free path is short and low velocity bodies composed of melt or fluid are expected in addition to random velocity inhomogeneities as scattering sources. Resonant scattering inherent in a low velocity body shows trap and release of waves with a delay time. Focusing of the delay time phenomenon, we have to consider seriously multiple resonant scattering processes. Since wave phases are complex in such a scattering medium, the radiative transfer theory has been often used to synthesize the variation of mean square (MS) amplitude of waves; however, resonant scattering has not been well adopted in the conventional radiative transfer theory. Here, as a simple mathematical model, we study the sequence of isotropic resonant scattering of a scalar wavelet by low velocity spheres at low frequencies, where the inside velocity is supposed to be low enough. We first derive the total scattering cross-section per time for each order of scattering as the convolution kernel representing the decaying scattering response. Then, for a random and uniform distribution of such identical resonant isotropic scatterers, we build the propagator of the MS amplitude by using causality, a geometrical spreading factor and the scattering loss. Using those propagators and convolution kernels, we formulate the radiative transfer equation for a spherically impulsive radiation from a point source. The synthesized MS amplitude time trace shows a dip just after the direct arrival and a delayed swelling, and then a decaying tail at large lapse times. The delayed swelling is a prominent effect of resonant scattering. The space distribution of synthesized MS amplitude shows a swelling near the source region in space, and it becomes a bell shape like a diffusion solution at large lapse times.
Reactive Collisions and Final State Analysis in Hypersonic Flight Regime
2016-09-13
Kelvin.[7] The gas-phase, surface reactions and energy transfer at these tempera- tures are essentially uncharacterized and the experimental methodologies...high temperatures (1000 to 20000 K) and compared with results from experimentally derived thermodynamics quantities from the NASA CEA (NASA Chemical...with a reproducing kernel Hilbert space (RKHS) method[13] combined with Legendre polynomials; (2) quasi classical trajectory (QCT) calculations to study
fRMSDPred: Predicting Local RMSD Between Structural Fragments Using Sequence Information
2007-04-04
machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel
Nonlinear PET parametric image reconstruction with MRI information using kernel method
NASA Astrophysics Data System (ADS)
Gong, Kuang; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi
2017-03-01
Positron Emission Tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neurology. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information. Previously we have used kernel learning to embed MR information in static PET reconstruction and direct Patlak reconstruction. Here we extend this method to direct reconstruction of nonlinear parameters in a compartment model by using the alternating direction of multiplier method (ADMM) algorithm. Simulation studies show that the proposed method can produce superior parametric images compared with existing methods.
Infrared small target detection with kernel Fukunaga Koontz transform
NASA Astrophysics Data System (ADS)
Liu, Rui-ming; Liu, Er-qi; Yang, Jie; Zhang, Tian-hao; Wang, Fang-lin
2007-09-01
The Fukunaga-Koontz transform (FKT) has been proposed for many years. It can be used to solve two-pattern classification problems successfully. However, there are few researchers who have definitely extended FKT to kernel FKT (KFKT). In this paper, we first complete this task. Then a method based on KFKT is developed to detect infrared small targets. KFKT is a supervised learning algorithm. How to construct training sets is very important. For automatically detecting targets, the synthetic target images and real background images are used to train KFKT. Because KFKT can represent the higher order statistical properties of images, we expect better detection performance of KFKT than that of FKT. The well-devised experiments verify that KFKT outperforms FKT in detecting infrared small targets.
A Multi Agent System for Flow-Based Intrusion Detection
2013-03-01
Student t-test, as it is less likely to spuriously indicate significance because of the presence of outliers [128]. We use the MATLAB ranksum function [77...effectiveness of self-organization and “ entangled hierarchies” for accomplishing scenario objectives. One of the interesting features of SOMAS is the ability...cross-validation and automatic model selection. It has interfaces for Java, Python, R, Splus, MATLAB , Perl, Ruby, and LabVIEW. Kernels: linear