Sample records for multi-layered composite structures

  1. Formation of Multi-Layer Structures in Bi3Pb7 Intermetallic Compounds under an Ultra-High Gravitational Field

    NASA Astrophysics Data System (ADS)

    Mashimo, T.; Iguchi, Y.; Bagum, R.; Sano, T.; Sakata, O.; Ono, M.; Okayasu, S.

    2008-02-01

    Ultra-high gravitational field (Mega-gravity field) can promote sedimentation of atoms (diffusion) even in solids, and is expected to form a compositionally-graded structure and/or nonequilibrium phase in multi-component condensed matter. We had achieved sedimentation of substitutional solute atoms in miscible systems (Bi-Sb, In-Pb, etc.). In this study, a mega-gravity experiment at high temperature was performed on a thin-plate sample (0.7 mm in thickness) of the intermetallic compound Bi3Pb7. A visible four-layer structure was produced, which exhibited different microscopic structures. In the lowest-gravity region layer, Bi phase appeared. In the mid layers, a compositionally-graded structure was formed, with differences observed in the powder X-ray diffraction patterns. Such a multi-layer structure is expected to exhibit unique physical properties such as superconductivity.

  2. Mass Conservation in Modeling Moisture Diffusion in Multi-Layer Carbon Composite Structures

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2009-01-01

    Moisture diffusion in multi-layer carbon composite structures is difficult to model using finite difference methods due to the discontinuity in concentrations between adjacent layers of differing materials. Applying a mass conserving approach at these boundaries proved to be effective at accurately predicting moisture uptake for a sample exposed to a fixed temperature and relative humidity. Details of the model developed are presented and compared with actual moisture uptake data gathered over 130 days from a graphite epoxy composite sandwich coupon with a Rohacell foam core.

  3. Chemical and morphological characterization of III-V strained layered heterostructures

    NASA Astrophysics Data System (ADS)

    Gray, Allen Lindsay

    This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.

  4. Multi-Shaped Ag Nanoparticles in the Plasmonic Layer of Dye-Sensitized Solar Cells for Increased Power Conversion Efficiency.

    PubMed

    Song, Da Hyun; Kim, Ho-Sub; Suh, Jung Sang; Jun, Bong-Hyun; Rho, Won-Yeop

    2017-06-04

    The use of dye-sensitized solar cells (DSSCs) is widespread owing to their high power conversion efficiency (PCE) and low cost of manufacturing. We prepared multi-shaped Ag nanoparticles (NPs) and introduced them into DSSCs to further enhance their PCE. The maximum absorption wavelength of the multi-shaped Ag NPs is 420 nm, including the shoulder with a full width at half maximum (FWHM) of 121 nm. This is a broad absorption wavelength compared to spherical Ag NPs, which have a maximum absorption wavelength of 400 nm without the shoulder of 61 nm FWHM. Therefore, when multi-shaped Ag NPs with a broader plasmon-enhanced absorption were coated on a mesoporous TiO₂ layer on a layer-by-layer structure in DSSCs, the PCE increased from 8.44% to 10.22%, equivalent to an improvement of 21.09% compared to DSSCs without a plasmonic layer. To confirm the plasmon-enhanced effect on the composite film structure in DSSCs, the PCE of DSSCs based on the composite film structure with multi-shaped Ag NPs increased from 8.58% to 10.34%, equivalent to an improvement of 20.51% compared to DSSCs without a plasmonic layer. This concept can be applied to perovskite solar cells, hybrid solar cells, and other solar cells devices.

  5. Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility

    NASA Astrophysics Data System (ADS)

    Qi, Dong; Cheng, Yongzhi; Wang, Xian; Wang, Fang; Li, Bowen; Gong, Rongzhou

    2017-12-01

    In this paper, a polytetrafluoroethylene (PTFE) top-covered multi-layer composite structure PTFE/H s/(Ge/ZnS)3 (H s represents the surface layer ZnS with various thicknesses) for spectral compatibility is proposed and investigated theoretically and experimentally. A substantial decline of glossiness from over 200 Gs to 74.2 Gs could be realized, due to high roughness and interface reflection of the 800 nm PTFE protection layer. In addition, similar to the structure of H s/(Ge/ZnS)3, the designed structure with a certain color exhibits ultra-low emissivity of average 0.196 at 8-14 µm and highly transparent performance of 96.45% in the radar frequency range of 2-18 GHz. Our design will provide an important reference for the practical applications of the spectral compatible multilayer films.

  6. Coupled multi-disciplinary simulation of composite engine structures in propulsion environment

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Singhal, Surendra N.

    1992-01-01

    A computational simulation procedure is described for the coupled response of multi-layered multi-material composite engine structural components which are subjected to simultaneous multi-disciplinary thermal, structural, vibration, and acoustic loadings including the effect of hostile environments. The simulation is based on a three dimensional finite element analysis technique in conjunction with structural mechanics codes and with acoustic analysis methods. The composite material behavior is assessed at the various composite scales, i.e., the laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization model. Sample cases exhibiting nonlinear geometrical, material, loading, and environmental behavior of aircraft engine fan blades, are presented. Results for deformed shape, vibration frequency, mode shapes, and acoustic noise emitted from the fan blade, are discussed for their coupled effect in hot and humid environments. Results such as acoustic noise for coupled composite-mechanics/heat transfer/structural/vibration/acoustic analyses demonstrate the effectiveness of coupled multi-disciplinary computational simulation and the various advantages of composite materials compared to metals.

  7. Multi-field coupled sensing network for health monitoring of composite bolted joint

    NASA Astrophysics Data System (ADS)

    Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav

    2016-04-01

    Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.

  8. Preparation and properties of the multi-layer aerogel thermal insulation composites

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Feng, Junzong; Jiang, Yonggang; Zhang, Zhongming; Feng, Jian

    2018-03-01

    Multi-layer insulation materials possess low radiation thermal conductivity, and excellent thermal insulation property in a vacuum environment. However, the spacers of the traditional multi-layer insulation materials are mostly loose fibers, which lead to more sensitive to the vacuum environmental of serviced. With the vacuum degree declining, gas phases thermal convection increase obviously, and the reflective screen will be severe oxidation, all of these make the thermal insulation property of traditional multi-layer insulation deteriorate, thus limits its application scope. In this paper, traditional multi-layer insulation material is combined with aerogel and obtain a new multi-layer aerogel thermal insulation composite, and the effects of the number, thickness and type of the reflective screens on the thermal insulation properties of the multi-layer composites are also studied. The result is that the thermal insulation property of the new type multi-layer aerogel composites is better than the pure aerogel composites and the traditional multi-layer insulation composites. When the 0.01 mm stainless steel foil as the reflective screen, and the aluminum silicate fiber and silica aerogel as the spacer layer, the layer density of composite with the best thermal insulation property is one layer per millimeter at 1000 °C.

  9. Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites.

    PubMed

    Wang, Qingtao; Wu, Weili; Gong, Zhili; Li, Wei

    2018-04-17

    The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release.

  10. A Mixed Multi-Field Finite Element Formulation for Thermopiezoelectric Composite Shells

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1999-01-01

    Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite shell structures. A new mixed multi-field laminate theory is developed which combines "single layer" assumptions for the displacements along with layerwise fields for the electric potential and temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of linear thermopiezoelectricity. The mechanics have the inherent capability to explicitly model both the active and sensory responses of piezoelectric composite shells in thermal environment. Finite element equations are derived and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered plate with an attached piezoelectric layer are com- pared with corresponding results from a commercial finite element code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric structures.

  11. Investigation of fiber tilt in paperboard

    Treesearch

    John M. Considine; David W. Vahey

    2008-01-01

    The introduction of short, tilted rods to reinforce polymer composite laminates has resulted in near doubling the strength of lap shear specimens. Paperboard is predominantly a multi-layered structure, similar to composite laminates in many ways. Improved bonding between layers should have a positive influence on mechanical performance. Tilted fibers, or z-direction...

  12. Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites

    PubMed Central

    Wu, Weili; Gong, Zhili

    2018-01-01

    The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release. PMID:29673236

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hongyi; Li, Yang; Zeng, Danielle

    Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less

  14. Process Integration and Optimization of ICME Carbon Fiber Composites for Vehicle Lightweighting: A Preliminary Development

    DOE PAGES

    Xu, Hongyi; Li, Yang; Zeng, Danielle

    2017-01-02

    Process integration and optimization is the key enabler of the Integrated Computational Materials Engineering (ICME) of carbon fiber composites. In this paper, automated workflows are developed for two types of composites: Sheet Molding Compounds (SMC) short fiber composites, and multi-layer unidirectional (UD) composites. For SMC, the proposed workflow integrates material processing simulation, microstructure representation volume element (RVE) models, material property prediction and structure preformation simulation to enable multiscale, multidisciplinary analysis and design. Processing parameters, microstructure parameters and vehicle subframe geometry parameters are defined as the design variables; the stiffness and weight of the structure are defined as the responses. Formore » multi-layer UD structure, this work focuses on the discussion of different design representation methods and their impacts on the optimization performance. Challenges in ICME process integration and optimization are also summarized and highlighted. Two case studies are conducted to demonstrate the integrated process and its application in optimization.« less

  15. Multi-Scale Analyses of Three Dimensional Woven Composite 3D Shell With a Cut Out Circle

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc Hai; Wang, Hu

    2018-06-01

    A composite material are made by combining two or more constituent materials to obtain the desired material properties of each product type. The matrix material which can be polymer and fiber is used as reinforcing material. Currently, the polymer matrix is widely used in many different fields with differently designed structures such as automotive structures and aviation, aerospace, marine, etc. because of their excellent mechanical properties; in addition, they possess the high level of hardness and durability together with a significant reduction in weight compared to traditional materials. However, during design process of structure, there will be many interruptions created for the purpose of assembling the structures together or for many other design purposes. Therefore, when this structure is subject to load-bearing, its failure occurs at these interruptions due to stress concentration. This paper proposes multi-scale modeling and optimization strategies in evaluation of the effectiveness of fiber orientation in an E-glass/Epoxy woven composite 3D shell with circular holes at the center investigated by FEA results. A multi-scale model approach was developed to predict the mechanical behavior of woven composite 3D shell with circular holes at the center with different designs of material and structural parameters. Based on the analysis result of laminae, we have found that the 3D shell with fiber direction of 450 shows the best stress and strain bearing capacity. Thus combining several layers of 450 fiber direction in a multi-layer composite 3D shell reduces the stresses concentrated on the cuts of the structures.

  16. Changes of composition and microstructure of joint interface of tungsten coated carbon by high heat flux

    NASA Astrophysics Data System (ADS)

    Tokunaga, K.; Matsubara, T.; Miyamoto, Y.; Takao, Y.; Yoshida, N.; Noda, N.; Kubota, Y.; Sogabe, T.; Kato, T.; Plöchl, L.

    2000-12-01

    Tungsten coatings of 0.5 and 1 mm thickness were successfully deposited by the vacuum plasma spraying (VPS) technique on carbon/carbon fiber composite (CFC), CX-2002U and isotropic fine grained graphite, IG-430U. High heat flux experiments by irradiation of electron beam with uniform profile were performed on the coated samples in order to prove the suitability and load limit of such coating materials. The cross-sectional composition and structure of the interface of VPS-W and carbon material samples were investigated. Compositional analyses showed that the Re/W multi-layer acts as diffusion barrier for carbon and suppresses tungsten carbide formation in the VPS-W layer at high temperature about 1300°C. Microstructure of the joint interface of the sample changed in the case of a peak temperature of about 2800°C. The multi-layer structure completely disappeared and compositional distribution was almost uniform in the interface of the sample after melting and resolidification. The diffusion barrier for carbon is not expected to act in this stage.

  17. Multi-scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell.

    PubMed

    Balani, Kantesh; Patel, Riken R; Keshri, Anup K; Lahiri, Debrupa; Agarwal, Arvind

    2011-10-01

    Carapace, the protective shell of a freshwater snapping turtle, Chelydra serpentina, shields them from ferocious attacks of their predators while maintaining light-weight and agility for a swim. The microstructure and mechanical properties of the turtle shell are very appealing to materials scientists and engineers for bio-mimicking, to obtain a multi-functional surface. In this study, we have elucidated the complex microstructure of a dry Chelydra serpentina's shell which is very similar to a multi-layered composite structure. The microstructure of a turtle shell's carapace elicits a sandwich structure of waxy top surface with a harder sub-surface layer serving as a shielding structure, followed by a lamellar carbonaceous layer serving as shock absorber, and the inner porous matrix serves as a load-bearing scaffold while acting as reservoir of retaining water and nutrients. The mechanical properties (elastic modulus and hardness) of various layers obtained via nanoindentation corroborate well with the functionality of each layer. Elastic modulus ranged between 0.47 and 22.15 GPa whereas hardness varied between 53.7 and 522.2 MPa depending on the microstructure of the carapace layer. Consequently, the modulus of each layer was represented into object oriented finite element (OOF2) modeling towards extracting the overall effective modulus of elasticity (~4.75 GPa) of a turtle's carapace. Stress distribution of complex layered structure was elicited with an applied strain of 1% in order to understand the load sharing of various composite layers in the turtle's carapace. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Achieving polydimethylsiloxane/carbon nanotube (PDMS/CNT) composites with extremely low dielectric loss and adjustable dielectric constant by sandwich structure

    NASA Astrophysics Data System (ADS)

    Fan, Benhui; Liu, Yu; He, Delong; Bai, Jinbo

    2018-01-01

    Sandwich-structured composites of polydimethylsiloxane/carbon nanotube (PDMS/CNT) bulk between two neat PDMS thin films with different thicknesses are prepared by the spin-coating method. Taking advantage of CNT's percolation behavior, the composite keeps relatively high dielectric constant (ɛ' = 40) at a low frequency (at 100 Hz). Meanwhile, due to the existence of PDMS isolated out-layers which limits the conductivity of the composite, the composite maintains an extremely low dielectric loss (tan δ = 0.01) (at 100 Hz). Moreover, the same matrix of the out-layer and bulk can achieve excellent interfacial adhesion, and the thickness of the coating layer can be controlled by a multi-cycle way. Then, based on the experimental results, the calculation combining the percolation theory and core-shell model is used to analyze the thickness effect of the coating layer on ɛ'. The obtained relationship between the ɛ' of the composite and the thickness of the coating layer can help to optimize the sandwich structure in order to obtain the adjustable ɛ' and the extremely low tan δ.

  19. Numerical simulation of multi-layered textile composite reinforcement forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P.; Hamila, N.; Boisse, P.

    2011-05-04

    One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual workmore » is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.« less

  20. Proving the viability of manufacturing of multi-layer steel/vanadium alloy/steel composite tubes by numerical simulations and experiment

    NASA Astrophysics Data System (ADS)

    Nechaykina, T.; Nikulin, S.; Rozhnov, A.; Molotnikov, A.; Zavodchikov, S.; Estrin, Y.

    2018-05-01

    Vanadium alloys are promising structural materials for fuel cladding tubes for fast-neutron reactors. However, high solubility of oxygen and nitrogen in vanadium alloys at operating temperatures of 700 °C limits their application. In this work, we present a novel composite structure consisting of vanadium alloy V-4Ti-4Cr (provides high long-term strength of the material) and stainless steel Fe-0.2C-13Cr (as a corrosion resistant protective layer). It is produced by co-extrusion of these materials forming a three-layered tube. Finite element simulations were utilised to explore the influence of the various co-extrusion parameters on manufacturability of multi-layered tubes. Experimental verification of the numerical modelling was performed using co-extrusion with the process parameters suggested by the numerical simulations. Scanning electron microscopy and microhardness measurements revealed a defect-free diffusion layer at the interfaces between both materials indicating a good quality bonding for these co-extrusion conditions.

  1. High precision position sensor based on CPA in a composite multi-layered system.

    PubMed

    Dey, Sanjeeb; Singh, Suneel; Rao, Desai Narayana

    2018-04-16

    We propose a scheme for high precision position sensing based on coherent perfect absorption (CPA) in a five-layered structure comprising three layers of metal-dielectric composites and two spacer (air) layers. Both the outermost interfaces of the five layered medium are irradiated by two identical coherent light waves at the same angle of incidence. We first investigate the occurrence of CPA in a symmetric layered structure as a function of different system parameters for oblique incidence. Thereafter, by shifting the middle layer, beginning from one end of the structure to the other, we observe the periodic occurrence of extremely narrow CPA resonances at several positions of the middle layer. Moreover this phenomenon is seen to recur even at many other wavelengths. We discuss how the position sensitivity of this phenomenon can be utilized for designing a CPA based high precision position sensing device.

  2. Multi-Dimensional Damage Detection for Surfaces and Structures

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Roberson, Luke; Medelius, Pedro; Gibson, Tracy; Parks, Steen; Snyder, Sarah

    2013-01-01

    Current designs for inflatable or semi-rigidized structures for habitats and space applications use a multiple-layer construction, alternating thin layers with thicker, stronger layers, which produces a layered composite structure that is much better at resisting damage. Even though such composite structures or layered systems are robust, they can still be susceptible to penetration damage. The ability to detect damage to surfaces of inflatable or semi-rigid habitat structures is of great interest to NASA. Damage caused by impacts of foreign objects such as micrometeorites can rupture the shell of these structures, causing loss of critical hardware and/or the life of the crew. While not all impacts will have a catastrophic result, it will be very important to identify and locate areas of the exterior shell that have been damaged by impacts so that repairs (or other provisions) can be made to reduce the probability of shell wall rupture. This disclosure describes a system that will provide real-time data regarding the health of the inflatable shell or rigidized structures, and information related to the location and depth of impact damage. The innovation described here is a method of determining the size, location, and direction of damage in a multilayered structure. In the multi-dimensional damage detection system, layers of two-dimensional thin film detection layers are used to form a layered composite, with non-detection layers separating the detection layers. The non-detection layers may be either thicker or thinner than the detection layers. The thin-film damage detection layers are thin films of materials with a conductive grid or striped pattern. The conductive pattern may be applied by several methods, including printing, plating, sputtering, photolithography, and etching, and can include as many detection layers that are necessary for the structure construction or to afford the detection detail level required. The damage is detected using a detector or sensory system, which may include a time domain reflectometer, resistivity monitoring hardware, or other resistance-based systems. To begin, a layered composite consisting of thin-film damage detection layers separated by non-damage detection layers is fabricated. The damage detection layers are attached to a detector that provides details regarding the physical health of each detection layer individually. If damage occurs to any of the detection layers, a change in the electrical properties of the detection layers damaged occurs, and a response is generated. Real-time analysis of these responses will provide details regarding the depth, location, and size estimation of the damage. Multiple damages can be detected, and the extent (depth) of the damage can be used to generate prognostic information related to the expected lifetime of the layered composite system. The detection system can be fabricated very easily using off-the-shelf equipment, and the detection algorithms can be written and updated (as needed) to provide the level of detail needed based on the system being monitored. Connecting to the thin film detection layers is very easy as well. The truly unique feature of the system is its flexibility; the system can be designed to gather as much (or as little) information as the end user feels necessary. Individual detection layers can be turned on or off as necessary, and algorithms can be used to optimize performance. The system can be used to generate both diagnostic and prognostic information related to the health of layer composite structures, which will be essential if such systems are utilized for space exploration. The technology is also applicable to other in-situ health monitoring systems for structure integrity.

  3. Influence of the composite material thermal expansion on embedded highly birefringent polymer microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    SzelÄ g, M.; Lesiak, P.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.

    2013-05-01

    Results of our research on embedded highly birefringent polymer microstructured fibers are presented. A composite material sample with fibers embedded between two layers of a multi-layer composite structure is fabricated and characterized. Temperature sensitivities of the polymer fibers are measured in a free space and compared with the fibers embedded in the composite material. It appeared that highly birefringent polymer microstructured fibers exhibit a strong increase in temperature sensitivity when embedded in the composite material, which is due to the stress-induced changes in birefringence created by thermally-induced strain.

  4. Interfacial layers evolution during annealing in Ti-Al multi-laminated composite processed using hot press and roll bonding

    NASA Astrophysics Data System (ADS)

    Assari, A. H.; Eghbali, B.

    2016-09-01

    Ti-Al multi-laminated composites have great potential in high strength and low weight structures. In the present study, tri-layer Ti-Al composite was synthesized by hot press bonding under 40 MPa at 570 °C for 1 h and subsequent hot roll bonding at about 450 °C. This process was conducted in two accumulative passes to 30% and to 67% thickness reduction in initial and final passes, respectively. Then, the final annealing treatments were done at 550, 600, 650, 700 and 750 °C for 2, 4 and 6 h. Investigations on microstructural evolution and thickening of interfacial layers were performed by scanning electron microscopes, energy dispersive spectrometer, X-ray diffraction and micro-hardness tests. The results showed that the thickening of diffusion layers corresponds to amount of deformation. In addition to thickening of the diffusion layers, the thickness of aluminum layers decreased and after annealing treatment at 750 °C for 6 h the aluminum layers were consumed entirely, which occurred because of the enhanced interdiffusion of Ti and Al elements. Scanning electron microscope equipped with energy dispersive spectrometer showed that the sequence of interfacial layers as Ti3Al-TiAl-TiAl2-TiAl3 which are believed to be the result of thermodynamic and kinetic of phase formation. Micro-hardness results presented the variation profile in accordance with the sequence of intermetallic phases and their different structures.

  5. Coupled multi-disciplinary composites behavior simulation

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.

    1993-01-01

    The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.

  6. Atom Probe Tomography Analysis of Gallium-Nitride-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Prosa, Ty J.; Olson, David; Giddings, A. Devin; Clifton, Peter H.; Larson, David J.; Lefebvre, Williams

    2014-03-01

    Thin-film light-emitting diodes (LEDs) composed of GaN/InxGa1-xN/GaN quantum well (QW) structures are integrated into modern optoelectronic devices because of the tunable InGaN band-gap enabling emission of the full visible spectrum. Atom probe tomography (APT) offers unique capabilities for 3D device characterization including compositional mapping of nano-volumes (>106 nm3) , high detection efficiency (>50%), and good sensitivity. In this study, APT is used to understand the distribution of dopants as well as Al and In alloying agents in a GaN device. Measurements using transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have also been made to improve the accuracy of the APT analysis by correlating the information content of these complimentary techniques. APT analysis reveals various QW and other optoelectronic structures including a Mg p-GaN layer, an Al-rich electron blocking layer, an In-rich multi-QW region, and an In-based super-lattice structure. The multi-QW composition shows good quantitative agreement with layer thickness and spacing extracted from a high resolution TEM image intensity analysis.

  7. Acoustic resonator and method of making same

    DOEpatents

    Kline, Gerald R.; Lakin, Kenneth M.

    1985-03-05

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  8. Acoustic resonator and method of making same

    DOEpatents

    Kline, G.R.; Lakin, K.M.

    1983-10-13

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  9. Acoustic resonator with Al electrodes on an AlN layer and using a GaAs substrate

    DOEpatents

    Kline, Gerald R.; Lakin, Kenneth M.

    1985-12-03

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  10. Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Jiao, Zheng; Bao, Jie

    2017-05-01

    A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.

  11. Reactive composite compositions and mat barriers

    DOEpatents

    Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  12. Multi-layer structures with thermal and acoustic properties for building rehabilitation

    NASA Astrophysics Data System (ADS)

    Bessa, J.; Mota, C.; Cunha, F.; Merino, F.; Fangueiro, R.

    2017-10-01

    This work compares the use of different sustainable materials in the design of multilayer structures for the rehabilitation of buildings in terms of thermal and acoustic properties. These structures were obtained by compression moulding and thermal and acoustic tests were further carried out for the quantification of the respective insulation properties of composite materials obtained. The experimental results show that the use of polyurethane (PUR) foams and jute fabric reinforcing biocomposites promotes interesting properties of thermal and acoustic insulation. A multi-layer structure composed by PUR foam on the intermediate layer revealed thermal resistances until 0.272 m2 K W-1. On the other hand, the use of jute fabric reinforcing biocomposites on exterior layer promoted a noise reduction at 500 Hz until 8.3 dB. These results allow to conclude that the use of PUR foams and jute fabric reinforcing biocomposites can be used successfully in rehabilitation of buildings, when the thermal and acoustic insulation is looked for.

  13. Influence of human fibroblasts on development and quality of multilayered composite grafts in athymic nude mice.

    PubMed

    Cedidi, C Can; Wilkens, L; Berger, A; Ingianni, G

    2007-11-05

    In patients after extensive burn injury the lack of split thickness skin graft donor sites, and consecutive delay in wound closure are critical factors of morbidity and mortality. In addition limited functional and aesthetic results after transplantation of split thickness skin grafts present a socioeconomic problem. For improved wound closure the aim of this study was the development of a one stage technique for the establishment of a multi layer composite graft, existing of a collagen-GAG-matrix with silicon layer of a two layer synthetic dermal equivalent (DE) with integrated fibroblasts, and ceratinocytes. - In 64 athymic nude mice the evaluation of the multi layer skin grafts potential to re-establish a human epidermis, and high quality dermal structure was performed. In addition to clinical investigations we measured wound contraction, and analyzed histomorphologic, immunohistologic, "in situ hybridisation", and electro microscopic data. - Our results show, that the seeding of DE with human fibroblasts and ceratinocytes as a composite skin graft reproducible enabled a wound healing with an organised human dermis and epidermis within 10 - 15 days. The histological studies of the grafted composite skin grafts in this model showed morphologically a characteristic dermal-epidermal skin structure with a cornifying epithelium, being of human origin ("in situ hybridisation"). Through the co-cultivation of fibroblasts and ceratinocytes in the DE the generation and structural morphology of collagen fibres, and inflammatory reaction in the neodermis is positively influenced, and as a consequence wound contraction significantly reduced. In regard to the early preparation of composite grafts, and the minimal requirements for donor sites - with dependable stable reconstruction of the integument - this technique may present a step forward in the treatment of patients with extensive burns.

  14. Acoustic resonator and method of making same

    DOEpatents

    Kline, G.R.; Lakin, K.M.

    1985-03-05

    A method is disclosed of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers. 4 figs.

  15. Structural, optical and compositional stability of MoS2 multi-layer flakes under high dose electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Rotunno, E.; Fabbri, F.; Cinquanta, E.; Kaplan, D.; Longo, M.; Lazzarini, L.; Molle, A.; Swaminathan, V.; Salviati, G.

    2016-06-01

    MoS2 multi-layer flakes, exfoliated from geological molybdenite, have been exposed to high dose electron irradiation showing clear evidence of crystal lattice and stoichiometry modifications. A massive surface sulfur depletion is induced together with the consequent formation of molybdenum nanoislands. It is found that a nanometric amorphous carbon layer, unwillingly deposited during the transmission electron microscope experiments, prevents the formation of the nanoislands. In the absence of the carbon layer, the formation of molybdenum grains proceeds both on the top and bottom surfaces of the flake. If carbon is present on both the surfaces then the formation of Mo grains is completely prevented.

  16. Flaw investigation in a multi-layered, multi-material composite: Using air-coupled ultrasonic resonance imaging

    NASA Astrophysics Data System (ADS)

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2012-05-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  17. Optimizing Thermal-Elastic Properties of C/C–SiC Composites Using a Hybrid Approach and PSO Algorithm

    PubMed Central

    Xu, Yingjie; Gao, Tian

    2016-01-01

    Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343

  18. Properties of Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Kang, Jin Ho; Grimsley, Brian W.; Ratcliffe, James G.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strength- and stiffness-to-weight ratios, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Carbon nanotubes (CNT) offer the potential to enhance the multi-functionality of composites with improved thermal and electrical conductivity. In this study, hybrid CNT/carbon fiber (CF) polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing. Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated.

  19. Weaving multi-layer fabrics for reinforcement of engineering components

    NASA Technical Reports Server (NTRS)

    Hill, B. J.; Mcilhagger, R.; Mclaughlin, P.

    1993-01-01

    The performance of interlinked, multi-layer fabrics and near net shape preforms for engineering applications, woven on a 48 shaft dobby loom using glass, aramid, and carbon continuous filament yarns is assessed. The interlinking was formed using the warp yarns. Two basic types of structure were used. The first used a single warp beam and hence each of the warp yarns followed a similar path to form four layer interlinked reinforcements and preforms. In the second two warp beams were used, one for the interlinking yarns which pass from the top to the bottom layer through-the-thickness of the fabric and vice versa, and the other to provide 'straight' yarns in the body of the structure to carry the axial loading. Fabrics up to 15mm in thickness were constructed with varying amounts of through-the-thickness reinforcement. Tapered T and I sections were also woven, with the shaping produced by progressive removal of ends during construction. These fabrics and preforms were impregnated with resin and cured to form composite samples for testing. Using these two basic types of construction, the influence of reinforcement construction and the proportion and type of interlinking yarn on the performance of the composite was assessed.

  20. Application of Polypyrrole Multi-Walled Carbon Nanotube Composite Layer for Detection of Mercury, Lead and Iron Ions Using Surface Plasmon Resonance Technique

    PubMed Central

    Sadrolhosseini, Amir Reza; Noor, A. S. M.; Bahrami, Afarin; Lim, H. N.; Talib, Zainal Abidin; Mahdi, Mohd. Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263

  1. Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring

    NASA Astrophysics Data System (ADS)

    Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Leandro, Luana Di; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo

    2016-03-01

    Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and ``green'' routes to 3D reduced GO-metal composite materials.Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and ``green'' routes to 3D reduced GO-metal composite materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08632a

  2. Synthesis and processing of nanostructured BN and BN/Ti composites

    NASA Astrophysics Data System (ADS)

    Horvath, Robert Steven

    Superhard materials, such as cubic-BN, are widely used in machine tools, grinding wheels, and abrasives. Low density combined with high hardness makes c-BN and its composites attractive candidate materials for personnel and vehicular armor. However, improvements in toughness, and ballistic-impact performance, are needed to meet anticipated performance requirements. To achieve such improvements, we have targeted for development nanostructured c-BN, and its composites with Ti. Current research utilizes an experimental high pressure/high temperature (HPHT) method to produce these materials on a laboratory scale. Results from this work should transfer well into the industrial arena, utilizing high-tonnage presses used in the production of synthetic diamond and c-BN. Progress has been made in: (1) HPHT synthesis of cBN powder using Mg as catalyst; (2) HPHT consolidation of cBN powder to produce nanostructured cBN; (3) reactive-HPHT consolidation of mixed cBN/Ti powder to produce nanostructured Ti- or TiB2/TiN-bonded cBN; and (4) reactive-HPHT consolidation of mixed hBN/Ti powder to produce nanostructured Ti-bonded TiB2/TiN or TiB2/TiN. Even so, much remains to be done to lay a firm scientific foundation to enable the reproducible fabrication of large-area panels for armor applications. To this end, Rutgers has formed a partnership with a major producer of hard and superhard materials. The ability to produce hard and superhard nanostructured composites by reacting cBN or hBN with Ti under high pressure also enables multi-layered structures to be developed. Such structures may be designed to satisfy impedance-mismatch requirements for high performance armor, and possibly provide a multi-hit capability. A demonstration has been made of reactive-HPHT processing of multi-layered composites, consisting of alternating layers of superhard Ti-bonded cBN and tough Ti. It is noteworthy that the pressure requirements for processing Ti-bonded cBN, Ti-bonded TiB2/TiN, and their corresponding multi-layered structures are in the 0.1-1.0 GPa range, well within the capabilities of today's hot-pressing technologies; thus scaling this new reactive-HPHT processing technology seems assured. Future research will focus on establishing mechanisms and kinetics of the various phase transformations observed during reactive-HPHT processing, with the objective of being able to optimize processing parameters to generate nanostructured cBN-based and TiB2/TiN-based composites that display superior mechanical properties, particularly under high-strain-rate conditions.

  3. Two Dimensional (2D) P-Aramid Dry Multi-Layered Woven Fabrics Deformational Behaviour for Technical Applications

    NASA Astrophysics Data System (ADS)

    Abtew, M. A.; Loghin, C.; Cristian, I.; Boussu, F.; Bruniaux, P.; Chen, Y.; Wang, L.

    2018-06-01

    In today’s scenario for the various technical applications, from composites to body armour, the material mouldability along with its mechanical property become very important. In the present study, two dimensional (2D) woven fabrics made of para-aramid high performance fibres in multi-layer dry structure were used for investigating different forming characteristics. The different layers were arranged with 0°/90° orientation for deep drawing formability test to analyse the effect of number of layers and blank-holder pressure (BHP) during the test. Specific preforming device with low speed forming process and predefined hemispherical shape of punch has been applied. Using fine photographic analysis, some important 2D multi-layer fabrics forming characteristics i.e., material drawing-in, surface shear angle etc. from the imposed deformation have been observed, measured and analysed for better understanding and co MPa rison. The result revealed that the mouldability behaviour of the multi-layered dry textile fabric preforms is directional, and closely dependent on blank-holding pressure and number of layers. This indicates both parameters should be carefully considered while material deformation to avoid the formation of wrinkling and maintain other mechanical properties on final application.

  4. MultiLayer solid electrolyte for lithium thin film batteries

    DOEpatents

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  5. Review of multi-layered magnetoelectric composite materials and devices applications

    NASA Astrophysics Data System (ADS)

    Chu, Zhaoqiang; PourhosseiniAsl, MohammadJavad; Dong, Shuxiang

    2018-06-01

    Multiferroic materials with the coexistence of at least two ferroic orders, such as ferroelectricity, ferromagnetism, or ferroelasticity, have recently attracted ever-increasing attention due to their potential for multifunctional device applications, including magnetic and current sensors, energy harvesters, magnetoelectric (ME) random access memory and logic devices, tunable microwave devices, and ME antenna. In this article, we provide a review of the recent and ongoing research efforts in the field of multi-layered ME composites. After a brief introduction to ME composites and ME coupling mechanisms, we review recent advances in multi-layered ME composites as well as their device applications based on the direct ME effect, magnetic sensors in particular. Finally, some remaining challenges and future perspective of ME composites and their engineering applications will be discussed.

  6. Mechanical Behaviour of 3D Multi-layer Braided Composites: Experimental, Numerical and Theoretical Study

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Zhou, Guangming; Ji, Le; Wang, Xiaopei

    2017-12-01

    Mechanical properties and failure mechanisms of a newly designed 3D multi-layer braided composites are evaluated by experimental, numerical and theoretical studies. The microstructure of the composites is introduced. The unit cell technique is employed to address the periodic arrangement of the structure. The volume averaging method is used in theoretical solutions while FEM with reasonable periodic boundary conditions and meshing technique in numerical simulations. Experimental studies are also conducted to verify the feasibility of the proposed models. Predicted elastic properties agree well with the experimental data, indicating the feasibility of the proposed models. Numerical evaluation is more accurate than theoretical assessment. Deformations and stress distributions of the unit cell under tension shows displacement and traction continuity, guaranteeing the rationality of the applied periodic boundary conditions. Although compression and tension modulus are close, the compressive strength only reaches 70% of the tension strength. This indicates that the composites can be weakened in compressive loading. Additionally, by analysing the micrograph of fracture faces and strain-stress curves, a brittle failure mechanism is observed both in composites under tension and compression.

  7. Fluid Structure Interaction Effects on Composites Under Low Velocity Impact

    DTIC Science & Technology

    2012-06-01

    Nanotubes ( MWCNTs ) and the second had no reinforcements at the interface layer in front of the pre-cracks. Output from both tests was recorded using...these samples were tested. The first was reinforced with Multi-Walled Carbon Nanotubes ( MWCNTs ) and the second had no reinforcements at the interface...Ethyl Ketone Peroxide MWCNT Multi-Walled Carbon Nanotube VARTM Vacuum-Assisted Resin Transfer Molding xiv THIS PAGE INTENTIONALLY LEFT BLANK

  8. 3D mechanical stratigraphy of a deformed multi-layer: Linking sedimentary architecture and strain partitioning

    NASA Astrophysics Data System (ADS)

    Cawood, Adam J.; Bond, Clare E.

    2018-01-01

    Stratigraphic influence on structural style and strain distribution in deformed sedimentary sequences is well established, in models of 2D mechanical stratigraphy. In this study we attempt to refine existing models of stratigraphic-structure interaction by examining outcrop scale 3D variations in sedimentary architecture and the effects on subsequent deformation. At Monkstone Point, Pembrokeshire, SW Wales, digital mapping and virtual scanline data from a high resolution virtual outcrop have been combined with field observations, sedimentary logs and thin section analysis. Results show that significant variation in strain partitioning is controlled by changes, at a scale of tens of metres, in sedimentary architecture within Upper Carboniferous fluvio-deltaic deposits. Coupled vs uncoupled deformation of the sequence is defined by the composition and lateral continuity of mechanical units and unit interfaces. Where the sedimentary sequence is characterized by gradational changes in composition and grain size, we find that deformation structures are best characterized by patterns of distributed strain. In contrast, distinct compositional changes vertically and in laterally equivalent deposits results in highly partitioned deformation and strain. The mechanical stratigraphy of the study area is inherently 3D in nature, due to lateral and vertical compositional variability. Consideration should be given to 3D variations in mechanical stratigraphy, such as those outlined here, when predicting subsurface deformation in multi-layers.

  9. Damage and failure modelling of hybrid three-dimensional textile composites: a mesh objective multi-scale approach

    PubMed Central

    Patel, Deepak K.

    2016-01-01

    This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391–1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre–matrix concentric cylinder model is extended to fibre and (N−1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1–48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware. Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1572). This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242294

  10. Damage and failure modelling of hybrid three-dimensional textile composites: a mesh objective multi-scale approach.

    PubMed

    Patel, Deepak K; Waas, Anthony M

    2016-07-13

    This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391-1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre-matrix concentric cylinder model is extended to fibre and (N-1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1-48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1572). This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  11. Using a compositionally step graded hole reservoir layer with hole accelerating ability for reducing efficiency droop in GaN-based LEDs

    NASA Astrophysics Data System (ADS)

    Ye, Daqian; Zhang, Dongyan; Wu, Chaoyu; Wang, Duxiang; Xu, Chenke; Zhang, Jie; Huang, Meichun

    2017-05-01

    We presented a compositionally graded hole reservoir layers(HRL) - an AlGaN/GaN super lattice hole reservoir layer with Al mole fraction multi-step gradient from high to low (GSL-HRL) in this paper. The designed LED with compositionally step graded HRL shows comparable low operating voltage and less efficiency droop. Simulation results reveal that this graded HRL could reserve the hole effectively and the hole in HRL can be energized by the strong electric field due to the polarization caused by different Al contents AlxGa1-xN layers. Such a design makes hole travel across the p-type EBL and inject into the MQWs more efficiently and smoothly. The novel structure of HRL improves the performance of the LED significantly and gives a promising application in high power GaN-based LED in the future.

  12. A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics.

    PubMed

    Askari, Ehsan; Flores, Paulo; Silva, Filipe

    2018-01-01

    The thermal residual stresses (TRSs) generated owing to the cooling down from the processing temperature in layered ceramic systems can lead to crack formation as well as influence the bending stress distribution and the strength of the structure. The purpose of this study is to minimize the thermal residual and bending stresses in dental ceramics to enhance their strength as well as to prevent the structure failure. Analytical parametric models are developed to evaluate thermal residual stresses in zirconia-porcelain multi-layered and graded discs and to simulate the piston-on-ring test. To identify optimal designs of zirconia-based dental restorations, a particle swarm optimizer is also developed. The thickness of each interlayer and compositional distribution are referred to as design variables. The effect of layers number constituting the interlayer between two based materials on the performance of graded prosthetic systems is also investigated. The developed methodology is validated against results available in literature and a finite element model constructed in the present study. Three different cases are considered to determine the optimal design of graded prosthesis based on minimizing (a) TRSs; (b) bending stresses; and (c) both TRS and bending stresses. It is demonstrated that each layer thickness and composition profile have important contributions into the resulting stress field and magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Investigation of a broadband coherent perfect absorber in a multi-layer structure by using the transfer matrix method

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Noh, Heeso

    2018-01-01

    We investigated a multi-layer structure for a broadband coherent perfect absorber (CPA). The transfer matrix method (TMM) is useful for analyzing the optical properties of structures and optimizing multi-layer structures. The broadband CPA strongly depends on the phase of the light traveling in one direction and the light reflected within the structure. The TMM simulation shows that the absorption bandwidth is increased by 95% in a multi-layer CPA compared to that in a single-layer CPA.

  14. Material optimization of multi-layered enhanced nanostructures

    NASA Astrophysics Data System (ADS)

    Strobbia, Pietro

    The employment of surface enhanced Raman scattering (SERS)-based sensing in real-world scenarios will offer numerous advantages over current optical sensors. Examples of these advantages are the intrinsic and simultaneous detection of multiple analytes, among many others. To achieve such a goal, SERS substrates with throughput and reproducibility comparable to commonly used fluorescence sensors have to be developed. To this end, our lab has discovered a multi-layer geometry, based on alternating films of a metal and a dielectric, that amplifies the SERS signal (multi-layer enhancement). The advantage of these multi-layered structures is to amplify the SERS signal exploiting layer-to-layer interactions in the volume of the structures, rather than on its surface. This strategy permits an amplification of the signal without modifying the surface characteristics of a substrate, and therefore conserving its reproducibility. Multi-layered structures can therefore be used to amplify the sensitivity and throughput of potentially any previously developed SERS sensor. In this thesis, these multi-layered structures were optimized and applied to different SERS substrates. The role of the dielectric spacer layer in the multi-layer enhancement was elucidated by fabricating spacers with different characteristics and studying their effect on the overall enhancement. Thickness, surface coverage and physical properties of the spacer were studied. Additionally, the multi-layered structures were applied to commercial SERS substrates and to isolated SERS probes. Studies on the dependence of the multi-layer enhancement on the thickness of the spacer demonstrated that the enhancement increases as a function of surface coverage at sub-monolayer thicknesses, due to the increasing multi-layer nature of the substrates. For fully coalescent spacers the enhancement decreases as a function of thickness, due to the loss of interaction between proximal metallic films. The influence of the physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.

  15. Multi-scale damage modelling in a ceramic matrix composite using a finite-element microstructure meshfree methodology

    PubMed Central

    2016-01-01

    The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308

  16. Multi-layer laminate structure and manufacturing method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenihan, James R; Cleereman, Robert J; Eurich, Gerald

    2012-04-24

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  17. Multi-layer laminate structure and manufacturing method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenihan, James R.; Cleereman, Robert J.; Eurich, Gerald

    2013-01-29

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  18. Composite sizing and ply orientation for stiffness requirements using a large finite element structural model

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.; Gentile, D. P.

    1989-01-01

    A NASTRAN bulk dataset preprocessor was developed to facilitate the integration of filamentary composite laminate properties into composite structural resizing for stiffness requirements. The NASCOMP system generates delta stiffness and delta mass matrices for input to the flutter derivative program. The flutter baseline analysis, derivative calculations, and stiffness and mass matrix updates are controlled by engineer defined processes under an operating system called CBUS. A multi-layered design variable grid system permits high fidelity resizing without excessive computer cost. The NASCOMP system uses ply layup drawings for basic input. The aeroelastic resizing for stiffness capability was used during an actual design exercise.

  19. The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate

    NASA Astrophysics Data System (ADS)

    Al-Maharma, A. Y.; Sendur, P.

    2018-05-01

    In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.

  20. Fabrication and Characterization of Functionally Graded Cathodes for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Simonet, J.; Kapelski, G.; Bouvard, D.

    2008-02-01

    Solid oxide fuel cells are multi-layered designed. The most prevalent structure is an anode supported cell with a thick porous layer of nickel oxide NiO and yttrium stabilized zirconia (YSZ) composite acting as an anode, a thin dense layer of YSZ as an electrolyte, a composite thin porous layer of lanthanum strontium manganate LSM and YSZ and a current collector layer of porous LSM. Regular operating temperature is 1000 °C. The industrial development requires designing cathodes with acceptable electrochemical and mechanical properties at a lower temperature, typically between 700 and 800 °C. A solution consists in designing composite bulk cathodes with more numerous electro-chemical reaction sites. This requirement could be met by grading the composition of the cathode in increasing the YSZ volume fraction near the electrolyte and the LSM volume fraction near the current collector layer so that the repartition of reaction sites and the interfacial adhesion between the cathode and electrolyte layers are optimal. The fabrication of graded composite cathode has been investigated using a sedimentation process that consists of preparing a suspension containing the powder mixture and allowing the particles to fall by gravity upon a substrate. Different composite cathodes with continuous composition gradient have been obtained by sedimentation of LSM and YSZ powder mixture upon a dense YSZ substrate and subsequent firing. Their compositions and microstructures have been analysed with Scanning Electron Microscope (SEM) and Electron Dispersive Spectrometry (EDS).

  1. Process for producing dispersed particulate composite materials

    DOEpatents

    Henager, Jr., Charles H.; Hirth, John P.

    1995-01-01

    This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

  2. Study of the structure of 3-D composites based on carbon nanotubes in bovine serum albumin matrix by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Ignatov, D.; Zhurbina, N.; Gerasimenko, A.

    2017-01-01

    3-D composites are widely used in tissue engineering. A comprehensive analysis by X-ray microtomography was conducted to study the structure of the 3-D composites. Comprehensive analysis of the structure of the 3-D composites consisted of scanning, image reconstruction of shadow projections, two-dimensional and three-dimensional visualization of the reconstructed images and quantitative analysis of the samples. Experimental samples of composites were formed by laser vaporization of the aqueous dispersion BSA and single-walled (SWCNTs) and multi-layer (MWCNTs) carbon nanotubes. The samples have a homogeneous structure over the entire volume, the percentage of porosity of 3-D composites based on SWCNTs and MWCNTs - 16.44%, 28.31%, respectively. An average pore diameter of 3-D composites based on SWCNTs and MWCNTs - 45 μm 93 μm. 3-D composites based on carbon nanotubes in bovine serum albumin matrix can be used in tissue engineering of bone and cartilage, providing cell proliferation and blood vessel sprouting.

  3. Elastic Response and Failure Studies of Multi-Wall Carbon Nanotube Twisted Yarns

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2007-01-01

    Experimental data on the stress-strain behavior of a polymer multiwall carbon nanotube (MWCNT) yarn composite are used to motivate an initial study in multi-scale modeling of strength and stiffness. Atomistic and continuum length scale modeling methods are outlined to illustrate the range of parameters required to accurately model behavior. The carbon nanotubes yarns are four-ply, twisted, and combined with an elastomer to form a single-layer, unidirectional composite. Due to this textile structure, the yarn is a complicated system of unique geometric relationships subjected to combined loads. Experimental data illustrate the local failure modes induced by static, tensile tests. Key structure-property relationships are highlighted at each length scale indicating opportunities for parametric studies to assist the selection of advantageous material development and manufacturing methods.

  4. Multi-Functional Sandwich Composites for Spacecraft Applications: An Initial Assessment

    NASA Technical Reports Server (NTRS)

    Adams, Daniel O.; Webb, Nicholas Jason; Yarger, Cody B.; Hunter, Abigail; Oborn, Kelli D.

    2007-01-01

    Current spacecraft implement relatively uncoupled material and structural systems to address a variety of design requirements, including structural integrity, damage tolerance, radiation protection, debris shielding and thermal insulation. This investigation provided an initial assessment of multi-functional sandwich composites to integrate these diverse requirements. The need for radiation shielding was addressed through the selection of polymeric constituents with high hydrogen content. To provide increased damage tolerance and debris shielding, manufacturing techniques were developed to incorporate transverse stitching reinforcement, internal layers, and a self-healing ionomer membrane. To assess the effects of a space environment, thermal expansion behavior of the candidate foam materials was investigated under a vacuum and increasing temperature. Finally, a thermal expansion model was developed for foam under vacuum conditions and its predictive capability assessed.

  5. Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.

    PubMed

    Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin

    2018-05-09

    Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.

  6. Analysis of Thick Sandwich Shells with Embedded Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Smith, C.; Lumban-Tobing, F.

    1996-01-01

    The Composite Armored Vehicle (CAV) is an advanced technology demonstrator of an all-composite ground combat vehicle. The CAV upper hull is made of a tough light-weight S2-glass/epoxy laminate with embedded ceramic tiles that serve as armor. The tiles are bonded to a rubber mat with a carefully selected, highly viscoelastic adhesive. The integration of armor and structure offers an efficient combination of ballistic protection and structural performance. The analysis of this anisotropic construction, with its inherent discontinuous and periodic nature, however, poses several challenges. The present paper describes a shell-based 'element-layering' technique that properly accounts for these effects and for the concentrated transverse shear flexibility in the rubber mat. One of the most important advantages of the element-layering technique over advanced higher-order elements is that it is based on conventional elements. This advantage allows the models to be portable to other structural analysis codes, a prerequisite in a program that involves the computational facilities of several manufacturers and government laboratories. The element-layering technique was implemented into an auto-layering program that automatically transforms a conventional shell model into a multi-layered model. The effects of tile layer homogenization, tile placement patterns, and tile gap size on the analysis results are described.

  7. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft

    PubMed Central

    Yaacoubi, Slah; McKeon, Peter; Ke, Weina; Declercq, Nico F.; Dahmene, Fethi

    2017-01-01

    This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW) modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement. PMID:28925961

  8. Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring.

    PubMed

    Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Di Leandro, Luana; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo

    2016-03-28

    Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the "double-faced" Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml(-1). Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and "green" routes to 3D reduced GO-metal composite materials.

  9. Multi-shape active composites by 3D printing of digital shape memory polymers

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  10. Multi-shape active composites by 3D printing of digital shape memory polymers.

    PubMed

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-04-13

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  11. Multi-shape active composites by 3D printing of digital shape memory polymers

    PubMed Central

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  12. On a high-potential variable flexural stiffness device

    NASA Astrophysics Data System (ADS)

    Henke, Markus; Gerlach, Gerald

    2013-05-01

    There are great efforts in developing effective composite structures for lightweight constructions for nearly every field of engineering. This concerns for example aeronautics and spacecrafts, but also automotive industry and energy harvesting applications. Modern concepts of lightweight components try to make use of structures with properties which can be adjusted in a controllable was. However, classic composite materials can only slightly adapt to varying environmental conditions because most materials, like carbon or glass-fiber composites show properties which are time-constant and not changeable. This contribution describes the development, the potential and the limitations of novel smart, self-controlling structures which can change their mechanical properties - e.g. their flexural stiffness - by more then one order of magnitude. These structures use a multi-layer approach with a 10-layer stack of 0.75 mm thick polycarbonate. The set-up is analytically described and its mechanical behavior is predicted by finite element analysis done with ABAQUS. The layers are braided together by an array of shape memory alloy (SMA) wires, which can be activated independently. Depending on the temperature applied by the electrical current flowing through the wires and the corresponding contraction the wires can tightly clamp the layers so that they cannot slide against each other due to friction forces. In this case the multilayer acts as rigid beam with high stiffness. If the friction-induced shear stress is smaller than a certain threshold, then the layers can slide over each other and the multilayer becomes compliant under bending load. The friction forces between the layers and, hence, the stiffness of the beam is controlled by the electrical current through the wires. The more separate parts of SMA wires the structure has the larger is the number of steps of stiffness changes of the flexural beam.

  13. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics.

    PubMed

    Li, Shuang; Su, Yewang; Li, Rui

    2016-06-01

    Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics.

  14. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics

    PubMed Central

    Li, Shuang; Li, Rui

    2016-01-01

    Multi-layer structures with soft (compliant) interlayers have been widely used in flexible electronics and photonics as an effective design for reducing interactions among the hard (stiff) layers and thus avoiding the premature failure of an entire device. The analytic model for bending of such a structure has not been well established due to its complex mechanical behaviour. Here, we present a rational analytic model, without any parameter fitting, to study the bending of a multi-layer structure on a cylinder, which is often regarded as an important approach to mechanical reliability testing of flexible electronics and photonics. For the first time, our model quantitatively reveals that, as the key for accurate strain control, the splitting of the neutral mechanical plane depends not only on the relative thickness of the middle layer, but also on the length-to-thickness ratio of the multi-layer structure. The model accurately captures the key quantities, including the axial strains in the top and bottom layers, the shear strain in the middle layer and the locations of the neutral mechanical planes of the top and bottom layers. The effects of the length of the multi-layer and the thickness of the middle layer are elaborated. This work is very useful for the design of multi-layer structure-based flexible electronics and photonics. PMID:27436977

  15. Numerical Analysis of Deflections of Multi-Layered Beams

    NASA Astrophysics Data System (ADS)

    Biliński, Tadeusz; Socha, Tomasz

    2015-03-01

    The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.

  16. Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes

    NASA Astrophysics Data System (ADS)

    Roy, Sree Shankhachur; Potluri, Prasad; Soutis, Constantinos

    2017-04-01

    This paper presents the tensile response of thin-walled composite tubes with multi-axial fibre architecture. A hybrid braid-wound layup has the potential to optimise the composite tube properties, however, stacking sequence plays a role in the failure mechanism. A braid-winding method has been used to produce stacked overwound braid layup [(±45°/0°)5/90°4]T. Influence of stacking sequence on premature failure of hoop layers has been reported. Under tensile loading, a cross-ply composite tube with the alternate stacking of hoop and axial fibre show hoop plies splitting similar to the overwound braided composite tube. However, splitting has been restricted by the surrounding axial plies and contained between the adjacent axial fibre tows. This observation suggests hoop layers sandwiched between braid layers will improve structural integrity. A near net shape architecture with three fibre orientation in a triaxial braid will provide additional support to prevent extensive damage for plies loaded in off-axis. Several notable observations for relatively open braid structures such as tow scissoring, high Poisson's ratio and influence of axial tow crimp on the strain to failure have been reported. Digital Image Correlation (DIC) in conjunction with surface strain gauging has been employed to capture the strain pattern.

  17. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass.

    PubMed

    Nganga, Sara; Zhang, Di; Moritz, Niko; Vallittu, Pekka K; Hupa, Leena

    2012-11-01

    Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Heat transfer and phase transitions of water in multi-layer cryolithozone-surface systems

    NASA Astrophysics Data System (ADS)

    Khabibullin, I. L.; Nigametyanova, G. A.; Nazmutdinov, F. F.

    2018-01-01

    A mathematical model for calculating the distribution of temperature and the dynamics of the phase transfor-mations of water in multilayer systems on permafrost-zone surface is proposed. The model allows one to perform calculations in the annual cycle, taking into account the distribution of temperature on the surface in warm and cold seasons. A system involving four layers, a snow or land cover, a top layer of soil, a layer of thermal-insulation materi-al, and a mineral soil, is analyzed. The calculations by the model allow one to choose the optimal thickness and com-position of the layers which would ensure the stability of structures built on the permafrost-zone surface.

  19. Single-crystal micromachining using multiple fusion-bonded layers

    NASA Astrophysics Data System (ADS)

    Brown, Alan; O'Neill, Garry; Blackstone, Scott C.

    2000-08-01

    Multi-layer structures have been fabricated using Fusion bonding. The paper shows void free layers of between 2 and 100 microns that have been bonded to form multi-layer structures. Silicon layers have been bonded both with and without interfacial oxide layers.

  20. Sound transmission through lined, composite panel structures: Transversely isotropic poro-elastic model

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Woo

    A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a parameter study based both on the STL and free wave propagation speeds, the mass, stiffness and damping-controlled regions of the STL were identified. The structural factors that can be adjusted to improve STL performance were also identified.

  1. An implemented method of asymmetric transmission for arbitrary polarization base in multi-layered chiral meta-surface

    NASA Astrophysics Data System (ADS)

    Xiao, Zhong-yin; Zou, Huan-ling; Xu, Kai-Kai; Tang, Jing-yao

    2018-03-01

    Asymmetric transmission of linearly or circularly polarized waves is a well-established property not only for three-layered chiral structures but for multi-layered ones. Here we show a method which can simultaneously implement asymmetric transmission for arbitrary base vector polarized wave in multi-layered chiral meta-surface. We systematically study the implemented method based on a multi-layered chiral structure consisting of a y-shape, a half gammadion and an S-shape in the terahertz gap. A numerical simulation was carried out, followed by an explanation of the asymmetric transmission mechanism in these structures proposed in this work. The simulated results indicate that the multi-layered chiral structure can realize a maximum asymmetric transmission of 0.89 and 0.28 for circularly and linearly polarized waves, respectively, which exhibit magnitude improvement over previous chiral metamaterials. Specifically, the maximum asymmetric transmitted coefficient of the multi-layered chiral structure is insensitivity to the incident angles from 0° to 45° for circularly polarized components. Additionally, we also study the influence of structural parameters on the asymmetric transmission effect for both linearly and circularly polarized waves in detail.

  2. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  3. Multidisciplinary tailoring of hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Chamis, Christos C.

    1993-01-01

    A computational simulation procedure is described for multidisciplinary analysis and tailoring of layered multi-material hot composite engine structural components subjected to simultaneous multiple discipline-specific thermal, structural, vibration, and acoustic loads. The effect of aggressive environments is also simulated. The simulation is based on a three-dimensional finite element analysis technique in conjunction with structural mechanics codes, thermal/acoustic analysis methods, and tailoring procedures. The integrated multidisciplinary simulation procedure is general-purpose including the coupled effects of nonlinearities in structure geometry, material, loading, and environmental complexities. The composite material behavior is assessed at all composite scales, i.e., laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization hygro-thermo-mechanical model. Sample tailoring cases exhibiting nonlinear material/loading/environmental behavior of aircraft engine fan blades, are presented. The various multidisciplinary loads lead to different tailored designs, even those competing with each other, as in the case of minimum material cost versus minimum structure weight and in the case of minimum vibration frequency versus minimum acoustic noise.

  4. Improving the performance of AlGaN-based deep-ultraviolet light-emitting diodes using electron blocking layer with a heart-shaped graded Al composition

    NASA Astrophysics Data System (ADS)

    Kwon, M. R.; Park, T. H.; Lee, T. H.; Lee, B. R.; Kim, T. G.

    2018-04-01

    We propose a design for highly efficient AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using a heart-shaped graded Al composition electron-blocking layer (EBL). This novel structure reduced downward band bending at the interface between the last quantum barrier and the EBL and flattened the electrostatic field in the interlayer between the barriers of the multi-quantum barrier EBL. Consequently, electron leakage was significantly suppressed and hole injection efficiency was found to have improved. The parameter values of simulation were extracted from the experimental data of the reference DUV LEDs. Using the SimuLED, we compared the electrical and optical properties of three structures with different Al compositions in the active region and the EBL. The internal quantum efficiency of the proposed structure was shown to exceed those of the reference DUV LEDs by a factor of 1.9. Additionally, the output power at 20 mA was found to increase by a factor of 2.1.

  5. Bonded and Stitched Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart F. (Inventor); Dial, William B. (Inventor)

    2014-01-01

    A method of forming a composite structure can include providing a plurality of composite panels of material, each composite panel having a plurality of holes extending through the panel. An adhesive layer is applied to each composite panel and a adjoining layer is applied over the adhesive layer. The method also includes stitching the composite panels, adhesive layer, and adjoining layer together by passing a length of a flexible connecting element into the plurality of holes in the composite panels of material. At least the adhesive layer is cured to bond the composite panels together and thereby form the composite structure.

  6. Analysis of multi-layered films. [determining dye densities by applying a regression analysis to the spectral response of the composite transparency

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Voss, A. W.

    1973-01-01

    Dye densities of multi-layered films are determined by applying a regression analysis to the spectral response of the composite transparency. The amount of dye in each layer is determined by fitting the sum of the individual dye layer densities to the measured dye densities. From this, dye content constants are calculated. Methods of calculating equivalent exposures are discussed. Equivalent exposures are a constant amount of energy over a limited band-width that will give the same dye content constants as the real incident energy. Methods of using these equivalent exposures for analysis of photographic data are presented.

  7. Impact of Isolation and Immobilization Layers on the Electro-Mechanical Response of Piezoresistive Nano Cantilever Sensors.

    PubMed

    Mathew, Ribu; Sankar, A Ravi

    2018-03-01

    In the last decade, piezoresistive nano cantilever sensors have been extensively explored, especially for chemical and biological sensing applications. Piezoresistive cantilever sensors are multi-layer structures with different constituent materials. Performance of such sensors is a function of their geometry and constituent materials. For a fixed material set, the pre-requisite for optimizing the performance of a composite piezoresistive cantilever sensor is careful geometrical design of its constituent layers. Even though, treatise encompasses various designs of such sensors, typically for computational simplicity the functional layers i.e., the isolation and immobilization layers are neglected in the modeling stages. In this paper, we elucidate the impact of the functional layers on the electro-mechanical response of composite piezoresistive nano cantilever sensors. Systematic and detailed computations are performed using theoretical models and numerical simulations. Results show that both the isolation and immobilization layers play a critical role in governing the sensor performance. Simulation results depict that compared to a sensor with an isolation layer of thickness 100 nm, a sensor without isolation layer has 36.29% and 42.51% better deflection sensitivity and electrical sensitivity respectively. Furthermore, it is found that when an immobilization layer of thickness 40 nm is added atop the isolation layer, the deflection sensitivity and electrical sensitivity reduces by 12.98% and 15.83% respectively. Through our investigation it is shown that the isolation and immobilization layers not only play a vital role in determining the stability and electro-mechanical response of the sensor but their negligence in the design stages can be detrimental. Apart from investigating the impact of the immobilization layer thickness, to model the sensor closer to real time operational conditions, we have performed analysis to understand the impact of non-uniformity in the immobilization layer thickness and non-uniform surface stress loading on the electro-mechanical response of the sensor. Results and inferences obtained from this study will help NEMS engineers to optimize the performance of piezoresistive nano cantilever sensors and to design multi-layer cantilever platform structures for other transducers.

  8. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1998-01-01

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.

  9. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses

    NASA Technical Reports Server (NTRS)

    Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.

  10. Electronic structure of boron based single and multi-layer two dimensional materials

    NASA Astrophysics Data System (ADS)

    Miyazato, Itsuki; Takahashi, Keisuke

    2017-09-01

    Two dimensional nanosheets based on boron and Group VA elements are designed and characterized using first principles calculations. B-N, B-P, B-As, B-Sb, and B-Bi are found to possess honeycomb structures where formation energies indicate exothermic reactions. Contrary to B-N, the cases of B-P, B-As, B-Sb, and B-Bi nanosheets are calculated to possess narrow band gaps. In addition, calculations reveal that the electronegativity difference between B and Group VA elements in the designed materials is a good indicator to predict the charge transfer and band gap of the two dimensional materials. Hydrogen adsorption over defect-free B-Sb and B-Bi results in exothermic reactions, while defect-free B-N, B-P, and B-As result in endothermic reactions. The layerability of the designed two dimensional materials is also investigated where the electronic structure of two-layered two dimensional materials is strongly coupled with how the two dimensional materials are layered. Thus, one can consider that the properties of two dimensional materials can be controlled by the composition of two dimensional materials and the structure of layers.

  11. High energy PIXE: A tool to characterize multi-layer thick samples

    NASA Astrophysics Data System (ADS)

    Subercaze, A.; Koumeir, C.; Métivier, V.; Servagent, N.; Guertin, A.; Haddad, F.

    2018-02-01

    High energy PIXE is a useful and non-destructive tool to characterize multi-layer thick samples such as cultural heritage objects. In a previous work, we demonstrated the possibility to perform quantitative analysis of simple multi-layer samples using high energy PIXE, without any assumption on their composition. In this work an in-depth study of the parameters involved in the method previously published is proposed. Its extension to more complex samples with a repeated layer is also presented. Experiments have been performed at the ARRONAX cyclotron using 68 MeV protons. The thicknesses and sequences of a multi-layer sample including two different layers of the same element have been determined. Performances and limits of this method are presented and discussed.

  12. Analytic and Computational Perspectives of Multi-Scale Theory for Homogeneous, Laminated Composite, and Sandwich Beams and Plates

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Gherlone, Marco; Versino, Daniele; DiSciuva, Marco

    2012-01-01

    This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C(sup 0)-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite element approximations thus provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.

  13. Analytic and Computational Perspectives of Multi-Scale Theory for Homogeneous, Laminated Composite, and Sandwich Beams and Plates

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Gherlone, Marco; Versino, Daniele; Di Sciuva, Marco

    2012-01-01

    This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C0-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite elements provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.

  14. On Structural Design of a Mobile Lunar Habitat With Multi- Layered Environmental Shielding

    NASA Technical Reports Server (NTRS)

    Pruitt, J. R. (Technical Monitor); Rais-Rohani, M.

    2005-01-01

    This report presents an overview of a Mobile Lunar Habitat (MLH) structural design consisting of advanced composite materials. The habitat design is derived from the cylindrical-shaped U.S. Lab module aboard the International Space Station (ISS) and includes two lateral ports and a hatch at each end that geometrically match those of the ISS Nodes. Thus, several MLH units can be connected together to form a larger lunar outpost of various architectures. For enhanced mobility over the lunar terrain, the MLH uses six articulated insect-like robotic, retractable legs enabling the habitat to .t aboard a launch vehicle. The carbon-composite shell is sandwiched between two layers of hydrogen-rich polyethylene for enhanced radiation shielding. The pressure vessel is covered by modular double-wall panels for meteoroid impact shielding supported by externally mounted stiffeners. The habitat s structure is an assembly of multiple parts manufactured separately and bonded together. Based on the geometric complexity of a part and its material system, an appropriate fabrication process is proposed.

  15. Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films.

    PubMed

    Bolakis, C; Grbovic, D; Lavrik, N V; Karunasiri, G

    2010-07-05

    A terahertz-absorbing thin-film stack, containing a dielectric Bragg reflector and a thin chromium metal film, was fabricated on a silicon substrate for applications in bi-material terahertz (THz) sensors. The Bragg reflector is to be used for optical readout of sensor deformation under THz illumination. The THz absorption characteristics of the thin-film composite were measured using Fourier transform infrared spectroscopy. The absorption of the structure was calculated both analytically and by finite element modeling and the two approaches agreed well. Finite element modeling provides a convenient way to extract the amount of power dissipation in each layer and is used to quantify the THz absorption in the multi-layer stack. The calculation and the model were verified by experimentally characterizing the multi-layer stack in the 3-5 THz range. The measured and simulated absorption characteristics show a reasonably good agreement. It was found that the composite film absorbed about 20% of the incident THz power. The model was used to optimize the thickness of the chromium film for achieving high THz absorption and found that about 50% absorption can be achieved when film thickness is around 9 nm.

  16. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, J.P.; Friedmann, T.A.

    1998-10-13

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.

  17. Multi-Scale Simulation of Interfacial Phenomena and Nano-Particle Placement in Polymer Matrix Composites

    DTIC Science & Technology

    2012-08-01

    Molecular Dynamics Simulations Coarse-Grain Particle Dynamics Simulations Local structure; Force field parameterization Extended structure...K) C8H18 C12H26 C16H34 Adhesive forces can cause local density gradients and defects " Pronounced layering of polymer near interfaces...reactive end groups (CnH2n+1S) on Cu Gap SubPc on C60 Pentacene on a-SiO2 Cyclopentene on Au Crystalline CuPc on Al Polyimide on Si

  18. A study on structure and tribological properties of the electroerosion coating Mo-Ni-Cu, formed by the mixed method on copper

    NASA Astrophysics Data System (ADS)

    Romanov, D. A.; Goncharova, E. N.; Gromov, V. E.; Ivanov, Yu F.

    2016-09-01

    Multi-layered coating from immiscible components based on the system Mo-Ni-Cu was formed by the combined method of electro-explosive sputtering and subsequent irradiation by high-intensity pulse electron beam of submillisecond duration of influence on the surface of electrical copper contact (M00 grade of copper). The structure and phase composition studies of the applied coating as well as its mechanical and tribological properties are carried out.

  19. Attenuation of stress waves in single and multi-layered structures. [mitigation of elastic and plastic stress waves during spacecraft landing

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Tsui, C. Y.

    1972-01-01

    Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.

  20. Magnetic and electrical control of engineered materials

    DOEpatents

    Schuller, Ivan K.; de La Venta Granda, Jose; Wang, Siming; Ramirez, Gabriel; Erekhinskiy, Mikhail; Sharoni, Amos

    2016-08-16

    Methods, systems, and devices are disclosed for controlling the magnetic and electrical properties of materials. In one aspect, a multi-layer structure includes a first layer comprising a ferromagnetic or ferrimagnetic material, and a second layer positioned within the multi-layer structure such that a first surface of the first layer is in direct physical contact with a second surface of the second layer. The second layer includes a material that undergoes structural phase transitions and metal-insulator transitions upon experiencing a change in temperature. One or both of the first and second layers are structured to allow a structural phase change associated with the second layer cause a change magnetic properties of the first layer.

  1. Flaw detection in a multi-material multi-layered composite: using fem and air-coupled ut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livings, R. A.; Dayal, V.; Barnard, D. J.

    Ceramic tiles are the main ingredient of a multi-layer multi-material composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. This study is aimed at modeling the vibration modes of the tiles and the composite lay-up with finite element analysis and comparing the results with the resonance modes observed in air-coupled ultrasonic excitation of the tiles and armor samples. Defects in the tile, during manufacturing and/or after usage, are expected to change the resonance modes. The comparison of a pristine tile/lay-upmore » and a defective tile/lay-up will thus be a quantitative damage metric. The understanding of the vibration behavior of the tile, both by itself and in the composite lay-up, can provide useful guidance to the nondestructive evaluation of armor panels containing ceramic tiles.« less

  2. The importance of structural softening for the evolution and architecture of passive margins

    PubMed Central

    Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.

    2016-01-01

    Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057

  3. Electrical characterization of thin nanoscale SiOx layers grown on plasma hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Halova, E.; Kojuharova, N.; Alexandrova, S.; Szekeres, A.

    2018-03-01

    We analyzed the electrical characteristics of MOS structures with a SiOx layer grown on Si treated in plasma without heating. The hysteresis effect observed indicates the presence of traps spatially distributed into the oxide near the interface. The shift and the shape of the curves reveal a small oxide charge and low leakage currents, i.e. a high-quality dielectric layer. The generalized C-V curve was generated by applying the two-frequency methods on the C-V and G-V characteristics at frequencies in the range from 1 kHz to 300 kHz and by accounting for the series resistance and the leakage through the oxide layer. The energy spectra of the interface traps were calculated by comparing the experimental and the ideal theoretical C-V curves. The spectra showed the presence of interface traps with localized energy levels in the Si bandgap. These conclusions correlate well with the results on this oxide’s mechanical stress level, composition and Si-O ring structure, as well as on the interfacial region composition, obtained by our previous detailed multi-angle spectral ellipsometric studies. The ellipsometric data and the capacitance in strong accumulation of the C-V curves were used to calculate the thickness and the dielectric constants of the oxide layers.

  4. Fiber-optically sensorized composite wing

    NASA Astrophysics Data System (ADS)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  5. Development of Multi-Layered Floating Floor for Cabin Noise Reduction

    NASA Astrophysics Data System (ADS)

    Song, Jee-Hun; Hong, Suk-Yoon; Kwon, Hyun-Wung

    2017-12-01

    Recently, regulations pertaining to the noise and vibration environment of ship cabins have been strengthened. In this paper, a numerical model is developed for multi-layered floating floor to predict the structure-borne noise in ship cabins. The theoretical model consists of multi-panel structures lined with high-density mineral wool. The predicted results for structure-borne noise when multi-layered floating floor is used are compared to the measure-ments made of a mock-up. A comparison of the predicted results and the experimental one shows that the developed model could be an effective tool for predicting structure-borne noise in ship cabins.

  6. Molecular structure of human aortic valve by μSR- FTIR microscopy

    NASA Astrophysics Data System (ADS)

    Borkowska, Anna M.; Nowakowski, Michał; Lis, Grzegorz J.; Wehbe, Katia; Cinque, Gianfelice; Kwiatek, Wojciech M.

    2017-11-01

    Aortic valve is a part of the heart most frequently affected by pathological processes in humans what constitute a very serious health problem. Therefore, studies of morphology and molecular microstructure of the AV are needed. μSR- FTIR spectroscopy and microscopy represent unique tools to study chemical composition of the tissue and to identify spectroscopic markers characteristic for structural and functional features. Normal AV reveals a multi-layered structure and the compositional and structural changes within particular layers may trigger degenerative processes within the valve. Thus, deep insight into the structure of the valve to understand pathological processes occurring in AV is needed. In order to identify differences between three layers of human AV, tissue sections of macroscopically normal AV were studied using μSR- FTIR spectroscopy in combination with histological and histochemical stainings. Tissue sections deposited onto CaF2 substrates were mapped and representative set of IR spectra collected from fibrosa, spongiosa and ventricularis were analysed by Principal Component Analysis (PCA) in the spectral range between 1850-1000 cm-1 and 3050-2750 cm-1. PCA revealed a layered molecular structure of the valve and it was possible to identify IR bands associated to different tissue parts. Spongiosa layer was well differentiated from other two layers mainly based on IR bands characteristic for the distribution of glycosaminoglycans (GAGs) in the tissue - like 1170 cm-1 (υas(C-O-S)) and 1380 cm-1 (acetyl amino group). Additionally, it was distinguished from fibrosa and ventricularis based on 1085 cm-1 and 1240 cm-1 bands characteristic for GAGs and for carbohydrates- ν(C-O) and ν(C-O-C) respectively and nucleic acids -νsym(PO2-) and νasym(PO2-) respectively, which were less specific for this layer. The use of μSR- FTIR spectroscopy demonstrated co-localization of GAGs and lipids in spongiosa layer what may indicate their contribution in the very early phase of aortic valve calcific degeneration.

  7. Composite membrane with integral rim

    DOEpatents

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  8. Nano-structuring of multi-layer material by single x-ray vortex pulse with femtosecond duration

    NASA Astrophysics Data System (ADS)

    Kohmura, Yoshiki; Zhakhovsky, Vasily; Takei, Dai; Suzuki, Yoshio; Takeuchi, Akihisa; Inoue, Ichiro; Inubushi, Yuichi; Inogamov, Nail; Ishikawa, Tetsuya; Yabashi, Makina

    2018-03-01

    A narrow zero-intensity spot arising from an x-ray vortex has huge potential for future applications such as nanoscopy and nanofabrication. We here present an X-ray Free Electron Laser (XFEL) experiment with a focused vortex wavefront which generated high aspect ratio nanoneedles on a Cr/Au multi-layer (ML) specimen. A sharp needle with a typical width and height of 310 and 600 nm was formed with a high occurrence rate at the center of a 7.71 keV x-ray vortex on this ML specimen, respectively. The observed width exceeds the diffraction limit, and the smallest structures ever reported using an intense-XFEL ablation were fabricated. We found that the elemental composition of the nanoneedles shows a significant difference from that of the unaffected area of Cr/Au ML. All these results are well explained by the molecular dynamics simulations, leading to the elucidation of the needle formation mechanism on an ultra-fast timescale.

  9. Multi response optimization of sheet forming of Kenaf-Polypropylene composites using grey based fuzzy algorithm

    NASA Astrophysics Data System (ADS)

    Oktariani, Erfina; Istikowati, Rita; Tomo, Hendro Sat Setijo; Rizal, Rafliansyah; Pratama, Yosea

    2018-02-01

    Composites from natural fiber reinforcement are developed as the alternative sheet materials of plastic composite for small-size bodywork parts in automotive industries. Kenaf fiber is selected as the reinforcement of plastic composite. Press forming of Kenaf-Polypropylene is experimentally produced in this study. The aim of this study is to obtain the optimal factor of the process of sheet forming of Kenaf-Polypropylene. The Kenaf delignified is cut into 5 cm lengths and distributed on the surface of Polypropylene sheet for 3 and 5 ply layers. The layers of Kenaf-Polypropylene then pressed by hot press at 190 and 210°C, 40 and 50 bar, for 3 and 5 minutes. However, there are limitations in handling multi responses in design of experiments. The application of the fuzzy logic theory to the grey relational analysis may further develop its performance in solving multi-response problems for process parameter optimization. The layer of Kenaf and Polypropylene, temperature, the duration of hot press and pressure are factors that affect the process. The result of experimental investigation and as well as analysis, shows that the best combination values were 3 ply layer, 210°C, 5 minutes of hot press and 50 bar.

  10. A multi-layered Fe2O3/graphene composite with mesopores as a catalyst for rechargeable aprotic lithium-oxygen batteries.

    PubMed

    Feng, Ningning; Mu, Xiaowei; Zheng, Mingbo; Wang, Chaoqiang; Lin, Zixia; Zhang, Xueping; Shi, Yi; He, Ping; Zhou, Haoshen

    2016-09-09

    Aprotic Li-O2 batteries have attracted a huge amount of interest in the past decade owing to their extremely high energy density. However, identifying a desirable cathodic catalyst for this promising battery system is one of the biggest challenges at present. In this work, a multi-layered Fe2O3/graphene nanosheets (Fe2O3/GNS) composite with sandwich structure was synthesized using an easy thermal casting method, and served as a cathodic catalyst for aprotic Li-O2 batteries. The aprotic Li-O2 cell with the Fe2O3/GNS catalyst demonstrated a better reversibility, lower overpotential for oxygen evolution, and a higher Coulombic efficiency (close to 100%) than those of pure GNS. An excellent rate performance and good cycle stability were also confirmed. The results, characterized by ex and in situ methods, revealed that the dominant discharge product Li2O2 was decomposed below 4.35 V. This superior electrochemical performance is mainly attributed to the unique sandwich structure of the Fe2O3/GNS catalyst with mesopores, which can provide substantially more catalytic sites and prevent direct contact between carbon and Li2O2.

  11. An inference method from multi-layered structure of biomedical data.

    PubMed

    Kim, Myungjun; Nam, Yonghyun; Shin, Hyunjung

    2017-05-18

    Biological system is a multi-layered structure of omics with genome, epigenome, transcriptome, metabolome, proteome, etc., and can be further stretched to clinical/medical layers such as diseasome, drugs, and symptoms. One advantage of omics is that we can figure out an unknown component or its trait by inferring from known omics components. The component can be inferred by the ones in the same level of omics or the ones in different levels. To implement the inference process, an algorithm that can be applied to the multi-layered complex system is required. In this study, we develop a semi-supervised learning algorithm that can be applied to the multi-layered complex system. In order to verify the validity of the inference, it was applied to the prediction problem of disease co-occurrence with a two-layered network composed of symptom-layer and disease-layer. The symptom-disease layered network obtained a fairly high value of AUC, 0.74, which is regarded as noticeable improvement when comparing 0.59 AUC of single-layered disease network. If further stretched to whole layered structure of omics, the proposed method is expected to produce more promising results. This research has novelty in that it is a new integrative algorithm that incorporates the vertical structure of omics data, on contrary to other existing methods that integrate the data in parallel fashion. The results can provide enhanced guideline for disease co-occurrence prediction, thereby serve as a valuable tool for inference process of multi-layered biological system.

  12. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1999-01-01

    A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.

  13. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, J.P.; Friedmann, T.A.

    1999-08-10

    A novel field emitter device is disclosed for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials. 8 figs.

  14. Diamagnetic composite material structure for reducing undesired electromagnetic interference and eddy currents in dielectric wall accelerators and other devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caporaso, George J.; Poole, Brian R.; Hawkins, Steven A.

    2015-06-30

    The devices, systems and techniques disclosed here can be used to reduce undesired effects by magnetic field induced eddy currents based on a diamagnetic composite material structure including diamagnetic composite sheets that are separated from one another to provide a high impedance composite material structure. In some implementations, each diamagnetic composite sheet includes patterned conductor layers are separated by a dielectric material and each patterned conductor layer includes voids and conductor areas. The voids in the patterned conductor layers of each diamagnetic composite sheet are arranged to be displaced in position from one patterned conductor layer to an adjacent patternedmore » conductor layer while conductor areas of the patterned conductor layers collectively form a contiguous conductor structure in each diamagnetic composite sheet to prevent penetration by a magnetic field.« less

  15. The polarization response in InAs quantum dots: theoretical correlation between composition and electronic properties.

    PubMed

    Usman, Muhammad; Tasco, Vittorianna; Todaro, Maria Teresa; De Giorgi, Milena; O'Reilly, Eoin P; Klimeck, Gerhard; Passaseo, Adriana

    2012-04-27

    III-V growth and surface conditions strongly influence the physical structure and resulting optical properties of self-assembled quantum dots (QDs). Beyond the design of a desired active optical wavelength, the polarization response of QDs is of particular interest for optical communications and quantum information science. Previous theoretical studies based on a pure InAs QD model failed to reproduce experimentally observed polarization properties. In this work, multi-million atom simulations are performed in an effort to understand the correlation between chemical composition and polarization properties of QDs. A systematic analysis of QD structural parameters leads us to propose a two-layer composition model, mimicking In segregation and In-Ga intermixing effects. This model, consistent with mostly accepted compositional findings, allows us to accurately fit the experimental PL spectra. The detailed study of QD morphology parameters presented here serves as a tool for using growth dynamics to engineer the strain field inside and around the QD structures, allowing tuning of the polarization response.

  16. Al{sub 2}O{sub 3} multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Jeon, Heeyoung

    2014-02-21

    Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup −5} gm{sup −2} day{sup −1}, which is one order of magnitude less than WVTR for the reference single-density Al{submore » 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.« less

  17. A multi-scale and multi-field coupling nonlinear constitutive theory for the layered magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining

    2018-05-01

    The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.

  18. Compositionally modulated multilayer diamond-like carbon coatings with AlTiSi multi-doping by reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Gao, Xiang; Liu, Jingmao; Kwon, Se-Hun; Wang, Qimin

    2017-12-01

    Diamond-like carbon (DLC) coatings with AlTiSi multi-doping were prepared by a reactive high power impulse magnetron sputtering with using a gas mixture of Ar and C2H2 as precursor. The composition, microstructure, compressive stress, and mechanical property of the as-deposited DLC coatings were studied systemically by using SEM, XPS, TEM, Raman spectrum, stress-tester, and nanoindentation as a function of the Ar fraction. The results show that the doping concentrations of the Al, Ti and Si atoms increased as the Ar fraction increased. The doped Ti and Si preferred to bond with C while the doped Al mainly existed in oxidation state without bonding with C. As the doping concentrations increased, TiC carbide nanocrystals were formed in the DLC matrix. The microstructure of coatings changed from an amorphous feature dominant AlTiSi-DLC to a carbide nanocomposite AlTiSi-DLC with TiC nanoparticles embedding. In addition, the coatings exhibited the compositionally modulated multilayer consisting of alternate Al-rich layer and Al-poor layer due to the rotation of the substrate holder and the diffusion behavior of the doped Al which tended to separate from C and diffuse towards the DLC matrix surface owing to its weak interactions with C. The periodic Al-rich layer can effectively release the compressive stress of the coatings. On the other hand, the hard TiC nanoparticles were conducive to the hardness of the coatings. Consequently, the DLC coatings with relatively low residual stress and high hardness could be acquired successfully through AlTiSi multi-doping. It is believed that the AlCrSi multi-doping may be a good way for improving the comprehensive properties of the DLC coatings. In addition, we believe that the DLC coatings with Al-rich multilayered structure have a high oxidation resistance, which allows the DLC coatings application in high temperature environment.

  19. Detection of defects in multi-layered aramid composites by ultrasonic IR thermography

    NASA Astrophysics Data System (ADS)

    Pracht, Monika; Swiderski, Waldemar

    2017-10-01

    In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting multi-layered aramide composite materials will be presented.

  20. Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1999-01-01

    Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.

  1. Optical and structural characterization of Ge clusters embedded in ZrO2

    NASA Astrophysics Data System (ADS)

    Agocs, E.; Zolnai, Z.; Rossall, A. K.; van den Berg, J. A.; Fodor, B.; Lehninger, D.; Khomenkova, L.; Ponomaryov, S.; Gudymenko, O.; Yukhymchuk, V.; Kalas, B.; Heitmann, J.; Petrik, P.

    2017-11-01

    The change of optical and structural properties of Ge nanoclusters in ZrO2 matrix have been investigated by spectroscopic ellipsometry versus annealing temperatures. Radio-frequency top-down magnetron sputtering approach was used to produce the samples of different types, i.e. single-layers of pure Ge, pure ZrO2 and Ge-rich-ZrO2 as well as multi-layers stacked of 40 periods of 5-nm-Ge-rich-ZrO2 layers alternated by 5-nm-ZrO2 ones. Germanium nanoclusters in ZrO2 host were formed by rapid-thermal annealing at 600-800 °C during 30 s in nitrogen atmosphere. Reference optical properties for pure ZrO2 and pure Ge have been extracted using single-layer samples. As-deposited multi-layer structures can be perfectly modeled using the effective medium theory. However, annealed multi-layers demonstrated a significant diffusion of elements that was confirmed by medium energy ion scattering measurements. This fact prevents fitting of such annealed structure either by homogeneous or by periodic multi-layer models.

  2. Composite membranes and methods for making same

    DOEpatents

    Routkevitch, Dmitri; Polyakov, Oleg G

    2012-07-03

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  3. Constructing general partial differential equations using polynomial and neural networks.

    PubMed

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    DOEpatents

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  5. Chemical Composition and Dynamics of the Upper Troposphere and the Lower Stratosphere: Overview of the Project

    NASA Astrophysics Data System (ADS)

    Sofieva, V. F.; Liu, C.; Huang, F.; Kyrola, E.; Liu, Y.; Ialongo, I.; Hakkarainen, J.; Zhang, Y.

    2016-08-01

    The DRAGON-3 cooperation study on the upper troposphere and the lower stratosphere (UTLS) is based on new satellite data and modern atmospheric models. The objectives of the project are: (i) assessment of satellite data on chemical composition in UTLS, (ii) dynamical and chemical structures of the UTLS and its variability, (iii) multi-scale variability of stratospheric ozone, (iv) climatology of the stratospheric aerosol layer and its variability, and (v) updated ozone climatology and its relation to tropopause/multiple tropopauses.In this paper, we present the main results of the project.

  6. Physical and technological principles of designing layer-gradient multicomponent surfaces by combining the methods of ion-diffusion saturation and magnetron- and vacuum-arc deposition

    NASA Astrophysics Data System (ADS)

    Savostikov, V. M.; Potekaev, A. I.; Tabachenko, A. N.

    2011-12-01

    Using a technological system proposed by the authors, a combined process is developed for formation of stratified-gradient surface layers and multicomponent coatings. It is implemented under the conditions of a combined serial-parallel operation of a hot-cathode gas plasma generator and a duomagnetron with two targets and two electric-arc evaporators. The extended functional potential is ensured by using advanced multi-element and multi-phase cathode targets made of borides, carbides, silicides, and sulfides of metals produced by the SHS-process followed by their immediate compaction. The variations in composition, structure, and physicomechanical properties in the cross-section of the stratified-gradient surface layers and coating is provided by a predetermined alternating replacement of the sputtered cathode targets of the plasma sources, the plasma flow intensity ratios, and variation in the particle energy incident on the substrate, which is determined by the accelerating voltage on the substrate.

  7. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  8. Investigation of anodic TiO2 nanotube composition with high spatial resolution AES and ToF SIMS

    NASA Astrophysics Data System (ADS)

    Dronov, Alexey; Gavrilin, Ilya; Kirilenko, Elena; Dronova, Daria; Gavrilov, Sergey

    2018-03-01

    High resolution Scanning Auger Electron Spectroscopy (AES) and Time-of-Flight Secondary Ion Mass-Spectrometry (ToF SIMS) were used to investigate structure and elemental composition variation of both across an array of TiO2 nanotubes (NTs) and single tube of an array. The TiO2 NT array was grown by anodic oxidation of Ti foil in fluorine-containing ethylene glycol electrolyte. It was found that the studied anodic TiO2 nanotubes have a layered structure with rather sharp interfaces. The differences in AES depth profiling results of a single tube with the focused primary electron beam (point analysis) and over an area of 75 μm in diameter of a nanotube array with the defocused primary electron beam are discussed. Depth profiling by ToF SIMS was carried out over approximately the same size of a nanotube array to determine possible ionic fragments in the structure. The analysis results show that the combination of both mentioned methods is useful for a detailed analysis of nanostructures with complex morphology and multi-layered nature.

  9. Enhanced emission of fluorophores on shrink-induced wrinkled composite structures.

    PubMed

    Sharma, Himanshu; Digman, Michelle A; Felsinger, Natasha; Gratton, Enrico; Khine, Michelle

    2014-01-01

    We introduce a manufacturable and scalable method for creating tunable wrinkled ferromagnetic-metallic structures to enhance fluorescence signals. Thin layers of nickel (Ni) and gold (Au) were deposited onto a pre-stressed thermoplastic (shrink wrap film) polymer. Heating briefly forced the metal films to buckle when the thermoplastic retracted, resulting in multi-scale composite 'wrinkles'. This is the first demonstration of leveraging the plasmons in such hybrid nanostructures by metal enhanced fluorescence (MEF) in the near-infrared wavelengths. We observed more than three orders of magnitude enhancement in the fluorescence signal of a single molecule of goat anti-mouse immunoglobulin G (IgG) antibody conjugated to fluorescein isothiocyanate, FITC, (FITC-IgG) by two-photon excitation with these structures. These large enhancements in the fluorescence signal at the nanoscale gaps between the composite wrinkles corresponded to shortened lifetimes due to localized surface plasmons. To characterize these structures, we combined fluctuation correlation spectroscopy (FCS), fluorescence lifetime imaging microscopy (FLIM), and two-photon microscopy to spatially and temporally map the hot spots with high resolution.

  10. An extremely simple macroscale electronic skin realized by deep machine learning.

    PubMed

    Sohn, Kee-Sun; Chung, Jiyong; Cho, Min-Young; Timilsina, Suman; Park, Woon Bae; Pyo, Myungho; Shin, Namsoo; Sohn, Keemin; Kim, Ji Sik

    2017-09-11

    Complicated structures consisting of multi-layers with a multi-modal array of device components, i.e., so-called patterned multi-layers, and their corresponding circuit designs for signal readout and addressing are used to achieve a macroscale electronic skin (e-skin). In contrast to this common approach, we realized an extremely simple macroscale e-skin only by employing a single-layered piezoresistive MWCNT-PDMS composite film with neither nano-, micro-, nor macro-patterns. It is the deep machine learning that made it possible to let such a simple bulky material play the role of a smart sensory device. A deep neural network (DNN) enabled us to process electrical resistance change induced by applied pressure and thereby to instantaneously evaluate the pressure level and the exact position under pressure. The great potential of this revolutionary concept for the attainment of pressure-distribution sensing on a macroscale area could expand its use to not only e-skin applications but to other high-end applications such as touch panels, portable flexible keyboard, sign language interpreting globes, safety diagnosis of social infrastructures, and the diagnosis of motility and peristalsis disorders in the gastrointestinal tract.

  11. Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties

    NASA Astrophysics Data System (ADS)

    Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian

    2018-04-01

    Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.

  12. Predictive Models for Dynamic Brittle Fracture and Damage at High-velocity Impact in Multilayered Targets

    DTIC Science & Technology

    2016-11-01

    layered glass/PC systems,Functionally Graded Materials (FGMs), polycrystalline AlON, and fiber-reinforced composite (FRC) materials. For the first time we...multi-layered glass/PC systems,Functionally Graded Materials (FGMs), polycrystalline AlON, and fiber-reinforced composite (FRC) materials. For the... Composite Lamina with Peridynamics, International Journal for Multiscale Computational Engineering, (12 2011): 0. doi: Florin Bobaru, Youn Doh Ha

  13. Multi-Quantum Well Structures to Improve the Performance of Multijunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Samberg, Joshua Paul

    Current, lattice matched triple junction solar cell efficiency is approximately 44% at a solar concentration of 942x. Higher efficiency for such cells can be realized with the development of a 1eV bandgap material lattice matched to Ge. One of the more promising materials for this application is that of the InGaAs/GaAsP multi-quantum well (MQW) structure. By inserting a stress/strain-balanced InGaAs/GaAsP MQW structure into the iregion of a GaAs p-i-n diode, the absorption edge of the p-i-n diode can be red shifted with respect to that of a standard GaAs p-n diode. Compressive stress in the InGaAs wells are balanced via GaAsP barriers subjected to tensile stress. Individually, the InGaAs and GaAsP layers are grown below their critical layer thickness to prevent the formation of misfit and threading dislocations. Until recently InGaAs/GaAsP MQWs have been somewhat hindered by their usage of low phosphorus-GaAsP barriers. Presented within is the development of a high-P composition GaAsP and the merits for using such a high composition of phosphorus are discussed. It is believed that these barriers represent the highest phosphorus content to date in such a structure. By using high composition GaAsP the carriers are collected via tunneling (for barriers .30A) as opposed to thermionic emission. Thus, by utilizing thin, high content GaAsP barriers one can increase the percentage of the intrinsic region in a p-i-n structure that is comprised of the InGaAs well in addition to increasing the number of periods that can be grown for a given depletion width. However, standard MQWs of this type inherently possess undesirable compressive strain and quantum size effects (QSE) that cause the optical absorption of the InGaAs wells to blue shift. To circumvent these deleterious QSEs stress balanced, pseudomorphic InGaAs/GaAsP staggered MQWs were developed. Tunneling is still a viable mode for carrier transport in the staggered MQW structures. GaAs interfacial layers within the multi-quantum well have been found to be critical in producing quality multi-quantum well structures. The effect of the GaAs interfacial layers has been investigated. It was determined that a phosphorus carry-over had a profound effect on the absorption edge of the InGaAs wells. It was shown that the phosphorus carry-over can be prevented with sufficiently thick GaAs transition layers. Preliminary results for GaAs p-in solar cells utilizing the improved MQWs are presented. In addition to investigating the utilization of quantum wells in the i-region of a GaAs p-i-n diode to improve the efficiency of multijunction solar cells, an investigation into the effect a single GaAs:Te doped quantum well has on the performance of high bandgap InxGa1- xP:Te/Al0.6Ga 0.4As:C tunnel junctions was investigated. The insertion of 30A of GaAs:Te at the junction interface resulted in a peak current of 1000A/cm2 and a voltage drop of ~3mV for 30A/cm2 (2000x concentration). The presence of this GaAs interfacial layer also improved the uniformity across the wafer. This architecture could be used within multijunction solar cells to extend the range of usable solar concentration with minimal voltage drop.

  14. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage.

    PubMed

    Zhou, Zehang; Panatdasirisuk, Weerapha; Mathis, Tyler S; Anasori, Babak; Lu, Canhui; Zhang, Xinxing; Liao, Zhiwei; Gogotsi, Yury; Yang, Shu

    2018-03-29

    Free-standing, highly flexible and foldable supercapacitor electrodes were fabricated through the spray-coating assisted layer-by-layer assembly of Ti3C2Tx (MXene) nanoflakes together with multi-walled carbon nanotubes (MWCNTs) on electrospun polycaprolactone (PCL) fiber networks. The open structure of the PCL network and the use of MWCNTs as spacers not only limit the restacking of Ti3C2Tx flakes but also increase the accessible surface of the active materials, facilitating fast diffusion of electrolyte ions within the electrode. Composite electrodes have areal capacitance (30-50 mF cm-2) comparable to other templated electrodes reported in the literature, but showed significantly improved rate performance (14-16% capacitance retention at a scan rate of 100 V s-1). Furthermore, the composite electrodes are flexible and foldable, demonstrating good tolerance against repeated mechanical deformation, including twisting and folding. Therefore, these tens of micron thick fiber electrodes will be attractive for applications in energy storage, electroanalytical chemistry, brain electrodes, electrocatalysis and other fields, where flexible freestanding electrodes with an open and accessible surface are highly desired.

  15. Large self-biased and multi-peak magnetoelectric coupling in transducer of Pb(Zr,Ti)O3 plates and H-type magnetization-graded ferromagnetic fork

    NASA Astrophysics Data System (ADS)

    Shen, Yongchun; Ling, Zhihao; Lu, Caijiang

    2015-12-01

    This paper develops a self-biased magnetoelectric (ME) composite Metglas/H-type-FeNi/PZT (MHFP) of H-type magnetization-graded Metglas/H-type-FeNi fork and piezoelectric Pb(Zr,Ti)O3 (PZT) plate. By using the magnetization-graded magnetostrictive layer and symmetrical H-type structure, giant self-biased ME coupling and multi-peak phenomenon are observed. The zero-biased ME voltage coefficient of MHFP composite reaches ˜63.8 V/cm Oe, which is ˜37.5 times higher than that of traditional FeNi/PZT laminate. The output ME voltage has a good near linear relation with Hac and is determined to be ˜5.1 V/Oe and ˜10.6 mV/Oe at ˜65 kHz and 1 kHz, respectively. These indicate that the proposed composite show promising applications for ME transducers and high-sensitivity self-biased magnetic sensors.

  16. Layering, interface and edge effects in multi-layered composite medium

    NASA Technical Reports Server (NTRS)

    Datta, S. K.; Shah, A. H.; Karunesena, W.

    1990-01-01

    Guided waves in a cross-ply laminated plate are studied. Because of the complexity of the exact dispersion equation that governs the wave propagation in a multi-layered fiber-reinforced plate, a stiffness method that can be applied to any number of layers is presented. It is shown that, for a sufficiently large number of layers, the plate can be modeled as a homogeneous anisotropic plate. Also studied is the reflection of guided waves from the edge of a multilayered plate. These results are quite different than in the case of a single homogeneous plate.

  17. Microstructure Changes of Plasma Spraying Tungsten Coatings on Cfc after Different Temperature Annealing

    NASA Astrophysics Data System (ADS)

    Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.

    2003-06-01

    Thermal behaviors of tungsten coating of 0.5 mm thick with multi-layers interface of tungsten (W) and rhenium (Re) coated on CFC (CX-2002U) substrate by vacuum plasma spraying (VPS) technique were examined by annealing with an electron beam thermal load facility between 1200 °C and 2000 °C. Change of the microstructure was observed and its chemical composition was analyzed by EDS after annealing. It was observed that remarkable recrystallization of VPS-W occurred above 1400 °C. The structure of the multi-layers of W and Re become obscure by the mutual diffusion of W, Re and C above 1600°C and finally disappeared after annealing at 2000 °C for one hour. Very hard tungsten carbides are formed at the interface above 1600 °C and they were broadening with increasing annealing temperature and time.

  18. Parametric study using modal analysis of a bi-material plate with defects

    NASA Astrophysics Data System (ADS)

    Esola, S.; Bartoli, I.; Horner, S. E.; Zheng, J. Q.; Kontsos, A.

    2015-03-01

    Global vibrational method feasibility as a non-destructive inspection tool for multi-layered composites is evaluated using a simulated parametric study approach. A finite element model of a composite consisting of two, isotropic layers of dissimilar materials and a third, thin isotropic layer of adhesive is constructed as the representative test subject. Next, artificial damage is inserted according to systematic variations of the defect morphology parameters. A free-vibrational modal analysis simulation is executed for pristine and damaged plate conditions. Finally, resultant mode shapes and natural frequencies are extracted, compared and analyzed for trends. Though other defect types may be explored, the focus of this research is on interfacial delamination and its effects on the global, free-vibrational behavior of a composite plate. This study is part of a multi-year research effort conducted for the U.S. Army Program Executive Office - Soldier.

  19. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    PubMed Central

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships. PMID:23900554

  20. A novel method for a multi-level hierarchical composite with brick-and-mortar structure.

    PubMed

    Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  1. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    NASA Astrophysics Data System (ADS)

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-07-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  2. Multi-layer composite mechanical modeling for the inhomogeneous biofilm mechanical behavior.

    PubMed

    Wang, Xiaoling; Han, Jingshi; Li, Kui; Wang, Guoqing; Hao, Mudong

    2016-08-01

    Experiments showed that bacterial biofilms are heterogeneous, for example, the density, the diffusion coefficient, and mechanical properties of the biofilm are different along the biofilm thickness. In this paper, we establish a multi-layer composite model to describe the biofilm mechanical inhomogeneity based on unified multiple-component cellular automaton (UMCCA) model. By using our model, we develop finite element simulation procedure for biofilm tension experiment. The failure limit and biofilm extension displacement obtained from our model agree well with experimental measurements. This method provides an alternative theory to study the mechanical inhomogeneity in biological materials.

  3. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2006-10-31

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  4. Buffer layer for thin film structures

    DOEpatents

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Wang, Haiyan

    2010-06-15

    A composite structure including a base substrate and a layer of a mixture of strontium titanate and strontium ruthenate is provided. A superconducting article can include a composite structure including an outermost layer of magnesium oxide, a buffer layer of strontium titanate or a mixture of strontium titanate and strontium ruthenate and a top-layer of a superconducting material such as YBCO upon the buffer layer.

  5. Recent advances in aerospace composite NDE

    NASA Astrophysics Data System (ADS)

    Georgeson, Gary E.

    2002-06-01

    As the aerospace industry continues to advance the design and use of composite structure, the NDE community faces the difficulties of trying to keep up. The challenges lie in manufacturing evaluation of the newest aerospace structures and materials and the in-service inspection and monitoring of damaged or aging composites. This paper provides examples of several promising NDI applications in the world of aerospace composites. Airborne (or non-contact) Ultrasonic Testing (UT) has been available for decades, but recently has generated new interest due to significant improvements in transducer design and low noise electronics. Boeing is developing inspection techniques for composite joints and core blankets using this technology. In-service inspection techniques for thick, multi-layer structures are also being advanced. One effective technique integrates the S-9 Sondicator, a traditional bond testing device, with Boeing's Mobile Automated Scanner (MAUS) platform. Composite patches have seen limited use on-aircraft, due, in part, to the difficulty of determining the quality of a bonded joint. A unique approach using Electronic Speckle Pattern Interferometry (ESPI) is showing promise as a bonded patch-inspection method. Other NDI techniques currently being developed for aerospace application are also briefly discussed.

  6. Study on the Mechanical Properties of Bionic Coupling Layered B4C/5083Al Composite Materials

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Liu, Qingping; Zhang, Zhihui; Yu, Zhenglei; Ren, Luquan

    2018-01-01

    Based on microstructure characteristics of Meretrix lusoria shell and Rapana venosa shell, bionic coupling layered B4C/5083Al composites with different layered structures and hard/soft combination models were fabricated via hot pressed sintering. The simplified bionic coupling models with hard and soft layers were similar to layered structure and hardness tendency of shells, guiding the bionic design and fabrication. B4C/5083Al composites with various B4C contents and pure 5083Al were treated as hard and soft layers, respectively. Hot pressed sintering maintained the designed bionic structure and enhanced high bonding strength between ceramics and matrix. Compared with B4C/5083Al composites, bionic layered composites exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The hard layers absorbed applied loads in the form of intergranular fracture. Besides connection role, soft layers restrained slabbing phenomenon and reset extension direction of cracks among layers. The coupling functions of bionic composites proved the feasibility and practicability of bionic fabrication, providing a new method for improvement of ceramic/Al composite with properties of being lightweight and high mechanical strength. PMID:29701707

  7. Fabrication and characterization of iron oxide dextran composite layers

    NASA Astrophysics Data System (ADS)

    Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.

    2018-02-01

    Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.

  8. Multi-junction solar cell device

    DOEpatents

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  9. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications

    NASA Astrophysics Data System (ADS)

    Karaaslan, Muharrem; Bağmancı, Mehmet; Ünal, Emin; Akgol, Oguzhan; Sabah, Cumali

    2017-06-01

    We propose the design of a multiband absorber based on multi-layered square split ring (MSSR) structure. The multi-layered metamaterial structure is designed to be used in the frequency bands such as WIMAX, WLAN and satellite communication region. The absorption levels of the proposed structure are higher than 90% for all resonance frequencies. In addition, the incident angle and polarization dependence of the multi-layered metamaterial absorber and harvester is also investigated and it is observed that the structure has polarization angle independent frequency response with good absorption characteristics in the entire working frequency band. The energy harvesting ratios of the structure is investigated especially for the resonance frequencies at which the maximum absorption occurs. The energy harvesting potential of the proposed MSSRs is as good as those of the structures given in the literature. Therefore, the suggested design having good absorption, polarization and angle independent characteristics with a wide bandwidth is a potential candidate for future energy harvesting applications in commonly used wireless communication bands, namely WIMAX, WLAN and satellite communication bands.

  10. Multi-layer assemblies with predetermined stress profile and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)

    2003-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.

  11. Extremely small bandgaps, engineered by controlled multi-scale ordering in InAsSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarney, W. L.; Svensson, S. P.; Lin, Y.

    2016-06-07

    The relationship between the effective bandgap and the crystalline structure in ordered InAsSb material has been studied. Modulation of the As/Sb ratio was induced along the growth direction during molecular beam epitaxy, producing a strained layer superlattice. To enable the use of concentration ratios near unity in both layers in the period, the structures were grown with negligible net strain on a virtual substrate with a lattice constant considerably larger than that of GaSb. The bandgap line-up of InAsSb layers with different compositions is such that a type II superlattice is formed, which exhibits smaller bandgaps than either of themore » two constituents. It can also be smaller than the possible minimum direct-bandgap of the alloy. From observations of CuPt ordering in bulk layers with small amounts of strain of both signs, we postulate that strain is the main driving force for atomic ordering in InAsSb. Because the modulated structures exhibit small but opposing amounts of strain, both layers in the period exhibit ordering at the atomic scale throughout the structure. Since the strain can be controlled, the ordering can be controlled and sustained for arbitrary thick layers, unlike the situation in uniform bulk layers where the residual strain eventually leads to dislocation formation. This offers a unique way of using ordering at two different scales to engineer the band-structure.« less

  12. Agent-based modeling of porous scaffold degradation and vascularization: Optimal scaffold design based on architecture and degradation dynamics.

    PubMed

    Mehdizadeh, Hamidreza; Bayrak, Elif S; Lu, Chenlin; Somo, Sami I; Akar, Banu; Brey, Eric M; Cinar, Ali

    2015-11-01

    A multi-layer agent-based model (ABM) of biomaterial scaffold vascularization is extended to consider the effects of scaffold degradation kinetics on blood vessel formation. A degradation model describing the bulk disintegration of porous hydrogels is incorporated into the ABM. The combined degradation-angiogenesis model is used to investigate growing blood vessel networks in the presence of a degradable scaffold structure. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support results in failure for the material. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as a way to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric parameters and degradation behavior of scaffolds, and enables easy refinement of the model as new knowledge about the underlying biological phenomena becomes available. This paper proposes a multi-layer agent-based model (ABM) of biomaterial scaffold vascularization integrated with a structural-kinetic model describing bulk degradation of porous hydrogels to consider the effects of scaffold degradation kinetics on blood vessel formation. This enables the assessment of scaffold characteristics and in particular the disintegration characteristics of the scaffold on angiogenesis. Simulation results indicate that higher porosity, larger mean pore size, and rapid degradation allow faster vascularization when not considering the structural support of the scaffold. However, premature loss of structural support by scaffold disintegration results in failure of the material and disruption of angiogenesis. A strategy using multi-layer scaffold with different degradation rates in each layer was investigated as away to address this issue. Vascularization was improved with the multi-layered scaffold model compared to the single-layer model. The ABM developed provides insight into the characteristics that influence the selection of optimal geometric and degradation characteristics of tissue engineering scaffolds. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Probabilistic Multi-Scale, Multi-Level, Multi-Disciplinary Analysis and Optimization of Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2000-01-01

    Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.

  14. Significantly Elevated Dielectric and Energy Storage Traits in Boron Nitride Filled Polymer Nano-composites with Topological Structure

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Li, Shichun; Peng, Cheng

    2018-03-01

    Interface induced polarization has a prominent influence on dielectric properties of 0-3 type polymer based composites containing Si-based semi-conductors. The disadvantages of composites were higher dielectric loss, lower breakdown strength and energy storage density, although higher permittivity was achieved. In this work, dielectric, conductive, breakdown and energy storage properties of four nano-composites have been researched. Based on the cooperation of fluoropolymer/alpha-SiC layer and fluoropolymer/hexagonal-BN layer, it was confirmed constructing the heterogeneous layer-by-layer composite structure rather than homogeneous mono-layer structure could significantly reduce dielectric loss, promote breakdown strength and increase energy storage density. The former worked for a larger dielectric response and the latter layer acted as a robust barrier of charge carrier transfer. The best nano-composite could possess a permittivity of 43@100 Hz ( 3.3 times of polymer), loss of 0.07@100 Hz ( 37% of polymer), discharged energy density of 2.23 J/cm3@249 kV/cm ( 10 times of polymer) and discharged energy efficiency of 54%@249 kV/cm ( 5 times of polymer). This work might enlighten a facile route to achieve the promising high energy storage composite dielectrics by constructing the layer-by-layer topological structure.

  15. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  16. Energy transfer through a multi-layer liner for shaped charges

    DOEpatents

    Skolnick, Saul; Goodman, Albert

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  17. Enhanced emission of fluorophores on shrink-induced wrinkled composite structures

    PubMed Central

    Sharma, Himanshu; Digman, Michelle A.; Felsinger, Natasha; Gratton, Enrico

    2014-01-01

    We introduce a manufacturable and scalable method for creating tunable wrinkled ferromagnetic-metallic structures to enhance fluorescence signals. Thin layers of nickel (Ni) and gold (Au) were deposited onto a pre-stressed thermoplastic (shrink wrap film) polymer. Heating briefly forced the metal films to buckle when the thermoplastic retracted, resulting in multi-scale composite ‘wrinkles’. This is the first demonstration of leveraging the plasmons in such hybrid nanostructures by metal enhanced fluorescence (MEF) in the near-infrared wavelengths. We observed more than three orders of magnitude enhancement in the fluorescence signal of a single molecule of goat anti-mouse immunoglobulin G (IgG) antibody conjugated to fluorescein isothiocyanate, FITC, (FITC-IgG) by two-photon excitation with these structures. These large enhancements in the fluorescence signal at the nanoscale gaps between the composite wrinkles corresponded to shortened lifetimes due to localized surface plasmons. To characterize these structures, we combined fluctuation correlation spectroscopy (FCS), fluorescence lifetime imaging microscopy (FLIM), and two-photon microscopy to spatially and temporally map the hot spots with high resolution. PMID:25383253

  18. Reinforcement of mono- and bi-layer poly(ethylene glycol) hydrogels with a fibrous collagen scaffold

    PubMed Central

    Kinneberg, K. R. C.; Nelson, A.; Stender, M.; Aziz, A. H.; Mozdzen, L. C.; Harley, B. A. C.; Bryant, S. J.; Ferguson, V. L.

    2015-01-01

    Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bilayer, multi-phase hydrogel interpenetrated with a fibrous collagen scaffold. ‘Soft’ 10% (w/w) and ‘stiff’ 30% (w/w) PEGDM was formed into mono- or bilayer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single- (hydrogel only) or multi-phase (hydrogel+fibrous scaffold penetrating throughout the stiff layer and extending >500μm into the soft layer). Including a fibrous scaffold into both soft and stiff single-phase hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. In multi-phase hydrogels, finite element simulations predict substantially reduced stress and strain gradients across the soft—stiff hydrogel interface. When combining two low moduli constituent material, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function – the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion. PMID:26001970

  19. Microstructure and properties of Ti-Al intermetallic/Al2O3 layers produced on Ti6Al2Mo2Cr titanium alloy by PACVD method

    NASA Astrophysics Data System (ADS)

    Sitek, R.; Bolek, T.; Mizera, J.

    2018-04-01

    The paper presents investigation of microstructure and corrosion resistance of the multi-component surface layers built of intermetallic phases of the Ti-Al system and an outer Al2O3 ceramic sub-layer. The layers were produced on a two phase (α + β) Ti6Al2Mo2Cr titanium alloy using the PACVD method with the participation of trimethylaluminum vapors. The layers are characterized by a high surface hardness and good corrosion, better than that of these materials in the starting state. In order to find the correlation between their structure and properties, the layers were subjected to examinations using optical microscopy, X-ray diffraction analysis (XRD), surface analysis by XPS, scanning electron microscopy (SEM), and analyses of the chemical composition (EDS). The properties examined included: the corrosion resistance and the hydrogen absorptiveness. Moreover growth of the Al2O3 ceramic layer and its influence on the residual stress distribution was simulated using finite element method [FEM]. The results showed that the produced layer has amorphous-nano-crystalline structure, improved corrosion resistance and reduces the permeability of hydrogen as compared with the base material of Ti6Al2Mo2Cr -titanium alloy.

  20. Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Schwarz, Casey M.; Labh, Shreya; Barker, Jayk E.; Sapia, Ryan J.; Richardson, Gerald D.; Rivero-Baleine, Clara; Gleason, Benn; Richardson, Kathleen A.; Pogrebnyakov, Alexej; Mayer, Theresa S.; Kuebler, Stephen M.

    2016-03-01

    This work reports a detailed study of the processing and photo-patterning of two chalcogenide glasses (ChGs) - arsenic trisulfide (As2S3) and a new composition of germanium-doped arsenic triselenide Ge5(As2Se3)95 - as well as their use for creating functional optical structures. ChGs are materials with excellent infrared (IR) transparency, large index of refraction, low coefficient of thermal expansion, and low change in refractive index with temperature. These features make them well suited for a wide range of commercial and industrial applications including detectors, sensors, photonics, and acousto-optics. Photo-patternable films of As2S3 and Ge5(As2Se3)95 were prepared by thermally depositing the ChGs onto silicon substrates. For some As2S3 samples, an anti-reflection layer of arsenic triselenide (As2Se3) was first added to mitigate the effects of standing-wave interference during laser patterning. The ChG films were photo-patterned by multi-photon lithography (MPL) and then chemically etched to remove the unexposed material, leaving free-standing structures that were negative-tone replicas of the photo-pattern in networked-solid ChG. The chemical composition and refractive index of the unexposed and photo-exposed materials were examined using Raman spectroscopy and near-IR ellipsometry. Nano-structured arrays were photo-patterned and the resulting nano-structure morphology and chemical composition were characterized and correlated with the film compositions, conditions of thermal deposition, patterned irradiation, and etch processing. Photo-patterned Ge5(As2Se3)95 was found to be more resistant than As2S3 toward degradation by formation of surface oxides.

  1. Novel techniques for optical sensor using single core multi-layer structures for electric field detection

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Kamel, Mohamed A.

    2017-05-01

    This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young's modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor's sensitivity; (i) Pressure force enhancement technique; and (ii) Young's modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium's dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.

  2. Hybrid Aluminum and Natural Fiber Composite Structure for Crash Safety Improvement

    NASA Astrophysics Data System (ADS)

    Helaili, S.; Chafra, M.; Chevalier, Y.

    There is a growing interest on pedestrian's protection in automotive safety standards. Pedestrians head impact is one of the most important tests. In this paper, a hybrid composite structure made from natural fiber and aluminum, which improve the head protection when impact is taken place, is presented. The structure is made from a honeycomb composite made from unidirectional and woven composites and a thin aluminum layer. A head impact model is developed. The number of hexagonal layers is fixed and the thickness of the aluminum layer of the honeycomb structure is varied. The specific absorption energy is then calculated.

  3. Multilayer composites and manufacture of same

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi

    2006-02-07

    The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.

  4. Biomimetic Structural Materials: Inspiration from Design and Assembly.

    PubMed

    Yaraghi, Nicholas A; Kisailus, David

    2018-04-20

    Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.

  5. Biomimetic Structural Materials: Inspiration from Design and Assembly

    NASA Astrophysics Data System (ADS)

    Yaraghi, Nicholas A.; Kisailus, David

    2018-04-01

    Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.

  6. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    1999-01-01

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.

  7. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  8. Hypervelocity Impact Experiments on Epoxy/Ultra-High Molecular Weight Polyethylene Composite Panels Reinforced with Nanotubes

    NASA Technical Reports Server (NTRS)

    Khatiwada, Suman; Laughman, Jay W.; Armada, Carlos A.; Christiansen, Eric L.; Barrera, Enrique V.

    2012-01-01

    Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University

  9. Ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1991-01-01

    A Planar-Buried-Heterostructure, Graded-Index, Separate-Confinement-Heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding layer 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an ion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  10. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  11. Method for sealing an ultracapacitor, and related articles

    DOEpatents

    Day, James; Shapiro, Andrew Philip; Jerabek, Elihu Calvin

    2000-08-29

    An improved process for sealing at least one ultracapacitor which includes a multi-layer structure is disclosed. The process includes the step of applying a substantial vacuum to press together an uppermost layer of the structure and a lowermost layer of the structure and to evacuate ambient gasses, wherein a sealant situated in a peripheral area between the facing surfaces of the layers forms a liquid-impermeable seal for the structure under the vacuum. In some embodiments, a press is used to apply pressure to the peripheral area on which the sealant is disposed. Usually, the ultracapacitor would be situated within an enclosable region of the press, and a collapsible membrane would be fastened over the ultracapacitor to fully enclose the region and transmit the vacuum force to the multi-layer structure. The force applied by the press itself causes the sealant to flow, thereby ensuring a complete seal upon curing of the sealant. This process can be employed to seal one ultracapacitor or a stack of at least two ultracapacitors. Another embodiment of this invention is directed to an apparatus for sealing a multi-layer ultracapacitor, comprising the elements described above.

  12. Innovative Composite Structure Design for Blast Protection

    DTIC Science & Technology

    2007-01-01

    2007-01-0483 Innovative Composite Structure Design for Blast Protection Dongying Jiang, Yuanyuan Liu MKP Structural Design Associates, Inc...protect vehicle and occupants against various explosives. The multi-level and multi-scenario blast simulation and design system integrates three major...numerical simulation of a BTR composite under a blast event. The developed blast simulation and design system will enable the prediction, design, and

  13. Fabrication and Optimization of Bilayered Nanoporous Anodic Alumina Structures as Multi-Point Interferometric Sensing Platform

    PubMed Central

    Nemati, Mahdieh; Santos, Abel

    2018-01-01

    Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA) to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time). The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA), which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS) signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT) using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA)-modified NAA (i.e., sensing element) and quercetin (i.e., analyte). BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT) to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different concentrations of quercetin. The multi-point sensing performance of BL-NAAs was determined for each pore layer, with an average sensitivity and low limit of detection of 600 nm (mg mL−1)−1 and 0.14 mg mL−1, respectively. BL-NAAs photonic structures have the capability to be used as platforms for multi-point RIfS sensing of biomolecules that can be further extended for simultaneous size-exclusion separation and multi-analyte sensing using these bilayered nanostructures. PMID:29415436

  14. Effect of hybrid layer on stress distribution in a premolar tooth restored with composite or ceramic inlay: an FEM study.

    PubMed

    Belli, Sema; Eskitaşcioglu, Gürcan; Eraslan, Oguz; Senawongse, Pisol; Tagami, Junji

    2005-08-01

    The aim of this finite elemental stress analysis study was to evaluate the effect of hybrid layer on distribution and amount of stress formed under occlusal loading in a premolar tooth restored with composite or ceramic inlay. The mandibular premolar tooth was selected as the model based on the anatomical measurements suggested by Wheeler. The analysis is performed by using a Pentium II IBM compatible computer with the SAP 2000 structural analysis program. Four different mathematical models including the following structures were evaluated: 1) composite inlay, adhesive resin, and tooth structure; 2) composite inlay, adhesive resin, hybrid layer, and tooth structure; 3) ceramic inlay, adhesive resin, and tooth structure; 4) ceramic inlay, adhesive resin, hybrid layer, and tooth structure. Loading was applied from the occlusal surface of the restoration, and shear stresses under loading were evaluated. The findings were drawn by the Saplot program, and the results were analyzed by graphical comparison method. The output indicated that the hybrid layer acts as a stress absorber in models 2 and 4. The hybrid layer has also changed mathematical values of stress on cavity floors in both restoration types. Ceramic inlay collected the stress inside the body of the material, but the composite inlay directly transferred the stress through dental tissues. As a result, it was concluded that the hybrid layer has an effect on stress distribution under loading in a premolar tooth model restored with composite or ceramic inlay. Copyright 2005 Wiley Periodicals, Inc.

  15. Large area polysilicon films with predetermined stress characteristics and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)

    2002-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.

  16. Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate

    PubMed Central

    Stan, Gheorghe; Adams, George G.

    2016-01-01

    In this work the frictionless, adhesive contact between a rigid spherical indenter and an elastic multi-layer coated half-space was investigated by means of an integral transform formulation. The indented multi-layer coats were considered as made of isotropic layers that are perfectly bonded to each other and to an isotropic substrate. The adhesive interaction between indenter and contacting surface was treated as Maugis-type adhesion to provide general applicability within the entire range of adhesive interactions. By using a transfer matrix method, the stress-strain equations of the system were reduced to two coupled integral equations for the stress distribution under the indenter and the ratio between the adhesion radius and the contact radius, respectively. These resulting integral equations were solved through a numerical collocation technique, with solutions for the load dependencies of the contact radius and indentation depth for various values of the adhesion parameter and layer composition. The method developed here can be used to calculate the force-distance response of adhesive contacts on various inhomogeneous half-spaces that can be modeled as multi-layer coated half-spaces. PMID:27574338

  17. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure.

    PubMed

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-05-11

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.

  18. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure

    PubMed Central

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-01-01

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures. PMID:28772879

  19. Homogenization-based interval analysis for structural-acoustic problem involving periodical composites and multi-scale uncertain-but-bounded parameters.

    PubMed

    Chen, Ning; Yu, Dejie; Xia, Baizhan; Liu, Jian; Ma, Zhengdong

    2017-04-01

    This paper presents a homogenization-based interval analysis method for the prediction of coupled structural-acoustic systems involving periodical composites and multi-scale uncertain-but-bounded parameters. In the structural-acoustic system, the macro plate structure is assumed to be composed of a periodically uniform microstructure. The equivalent macro material properties of the microstructure are computed using the homogenization method. By integrating the first-order Taylor expansion interval analysis method with the homogenization-based finite element method, a homogenization-based interval finite element method (HIFEM) is developed to solve a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters. The corresponding formulations of the HIFEM are deduced. A subinterval technique is also introduced into the HIFEM for higher accuracy. Numerical examples of a hexahedral box and an automobile passenger compartment are given to demonstrate the efficiency of the presented method for a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters.

  20. Do lipids retard the evaporation of the tear fluid?

    PubMed

    Rantamäki, Antti H; Javanainen, Matti; Vattulainen, Ilpo; Holopainen, Juha M

    2012-09-21

    We examined in vitro the potential evaporation-retarding effect of the tear film lipid layer (TFLL). The artificial TFLL compositions used here were based on the present knowledge of TFLL composition. A custom-built system was developed to measure evaporation rates at 35°C. Lipids were applied to an air-water interface, and the evaporation rate through the lipid layer was defined as water loss from the interface. A thick layer of olive oil and a monolayer of long-chain alcohol were used as controls. The artificial TFLLs were composed of 1 to 4 lipid species: polar phosphatidylcholine (PC), nonpolar cholesteryl ester, triglycerides, and wax ester (WE). Brewster angle microscopy (BAM) and interfacial shear rheometry (ISR) were used to assess the lateral structure and shear stress response of the lipid layers, respectively. Olive oil and long-chain alcohol decreased evaporation by 54% and 45%, respectively. The PC monolayer and the four-component mixtures did not retard evaporation. WE was the most important evaporation-retardant TFLL lipid (∼20% decrease). In PC/WE mixtures, an ∼90% proportion of WE was required for evaporation retardation. Based on BAM and ISR, WE resulted in more condensed layers than the non-retardant layers. Highly condensed, solid-like lipid layers, such as those containing high proportions of WEs, are evaporation-retardant. In multi-component lipid layers, the evaporation-retardant interactions between carbon chains decrease and, therefore, these lipid layers do not retard evaporation.

  1. Preparation of titanium dioxide films on etched aluminum foil by vacuum infiltration and anodizing

    NASA Astrophysics Data System (ADS)

    Xiang, Lian; Park, Sang-Shik

    2016-12-01

    Al2O3-TiO2 (Al-Ti) composite oxide films are a promising dielectric material for future use in capacitors. In this study, TiO2 films were prepared on etched Al foils by vacuum infiltration. TiO2 films prepared using a sol-gel process were annealed at various temperatures (450, 500, and 550 °C) for different time durations (10, 30, and 60 min) for 4 cycles, and then anodized at 100 V. The specimens were characterized using X-ray diffraction, field emission scanning electron microscopy, and field emission transmission electron microscopy. The results show that the tunnels of the specimens feature a multi-layer structure consisting of an Al2O3 outer layer, an Al-Ti composite oxide middle layer, and an aluminum hydrate inner layer. The electrical properties of the specimens, such as the withstanding voltage and specific capacitance, were also measured. Compared to specimens without TiO2 coating, the specific capacitances of the TiO2-coated specimens are increased. The specific capacitance of the anode Al foil with TiO2 coating increased by 42% compared to that of a specimen without TiO2 coating when annealed at 550 °C for 10 min. These composite oxide films could enhance the specific capacitance of anode Al foils used in dielectric materials.

  2. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2012-04-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  3. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    NASA Astrophysics Data System (ADS)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  4. Light Absorption Enhancement of Silicon-Based Photovoltaic Devices with Multiple Bandgap Structures of Porous Silicon

    PubMed Central

    Wu, Kuen-Hsien; Li, Chong-Wei

    2015-01-01

    Porous-silicon (PS) multi-layered structures with three stacked PS layers of different porosity were prepared on silicon (Si) substrates by successively tuning the electrochemical-etching parameters in an anodization process. The three PS layers have different optical bandgap energy and construct a triple-layered PS (TLPS) structure with multiple bandgap energy. Photovoltaic devices were fabricated by depositing aluminum electrodes of Schottky contacts on the surfaces of the developed TLPS structures. The TLPS-based devices exhibit broadband photoresponses within the spectrum of the solar irradiation and get high photocurrent for the incident light of a tungsten lamp. The improved spectral responses of devices are owing to the multi-bandgap structures of TLPS, which are designed with a layered configuration analog to a tandem cell for absorbing a wider energy range of the incidental sun light. The large photocurrent is mainly ascribed to an enhanced light-absorption ability as a result of applying nanoporous-Si thin films as the surface layers to absorb the short-wavelength light and to improve the Schottky contacts of devices. Experimental results reveal that the multi-bandgap PS structures produced from electrochemical-etching of Si wafers are potentially promising for development of highly efficient Si-based solar cells. PMID:28793542

  5. An Electromagnetic/Capacitive Composite Sensor for Testing of Thermal Barrier Coatings

    PubMed Central

    Ren, Yuan; Pan, Mengchun; Chen, Dixiang; Tian, Wugang

    2018-01-01

    Thermal barrier coatings (TBCs) can significantly reduce the operating temperature of the aeroengine turbine blade substrate, and their testing technology is very urgently demanded. Due to their complex multi-layer structure, it is hard to evaluate TBCs with a single function sensor. In this paper, an electromagnetic/capacitive composite sensor is proposed for the testing of thermal barrier coatings. The dielectric material is tested with planar capacitor, and the metallic material is tested with electromagnetic coils. Then, the comprehensive test and evaluation of thermal barrier coating system can be realized. The sensor is optimized by means of theoretical and simulation analysis, and the interaction between the planar capacitor and the electromagnetic coil is studied. The experimental system is built based on an impedance analyser and multiplex unit to evaluate the performance of the composite sensor. The transimpedances and capacitances are measured under different coating parameters, such as thickness and permittivity of top coating as well as bond layer conductivity. The experimental results agree with the simulation analysis, and the feasibility of the sensor is proved. PMID:29783746

  6. Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration.

    PubMed

    Petrini, Morena; Ferrante, Maurizio; Su, Bo

    2013-04-01

    Conventional dental composites with randomly dispersed inorganic particles within a polymer matrix fail to recapitulate the aligned and anisotropic structure of the dentin and enamel. The aim of the study was to produce a biomimetic composite consisting of a ceramic preform with graded and continuously aligned open pores, infiltrated with epoxy resin. The freeze casting technique was used to obtain the hierarchically structured architecture of the ceramic preforms. Optical and scanning electron microscopy (SEM) and differential thermal analysis and thermogravimetry (TG-DTA) were used to characterize the samples. Three point bending test and compression test were also performed. All analysis confirmed that the biomimetic composite was characterized by a multi-level hierarchical structure along the freezing direction. In the bottom layers close to the cooling plate (up to 2mm thick), a randomly packed ceramic with closed pores were formed, which resulted in incomplete infiltration with resin and resultant poor mechanical propertiesof the composite. Above 2mm, all ceramic samples showed an aligned structure with an increasing lamellae spacing (wavelength) and a decreasing wall thickness. Mechanical tests showed that the properties of the composites made from ceramic preforms above 2mm from cooling plate are similar to those of the dentin. The fabrication processing reported in this work offers a viable route for the fabrication of biomimetic composites, which could be potentially used in a range of dental restorations to compete with the current dental composites and ceramics. Copyright © 2012 Academy of Dental Materials. All rights reserved.

  7. First-principles many-body investigation of δ-doped titanates

    NASA Astrophysics Data System (ADS)

    Lechermann, Frank; Obermeyer, Michael

    2015-03-01

    Studying oxide heterostructures provides the possibility for exploring novel composite materials beyond nature's original conception. In this respect, the doping of Mott-insulating distorted-perovskite titanates such as LaTiO3 and GdTiO3 with a single SrO layer gives rise to a very rich correlated electronic structure. A realistic superlattice survey by means of the charge self-consistent combination of density functional theory (DFT) with dynamical mean-field theory (DMFT) reveals layer- and temperature-dependent multi-orbital metal-insulator transitions. In [001] stacking, an orbital-selective metallic layer at the interface dissolves via an orbital-polarized doped-Mott state into an orbital-ordered insulating regime beyond the two conducting TiO2 layers. We find large differences in the scattering behavior within the latter. Breaking the spin symmetry in δ-doped GdTiO3 results in blocks of ferromagnetic itinerant and ferromagnetic Mott-insulating layers which are coupled antiferromagnetically. Support from the DFG-FOR1346 is acknowledged.

  8. Dynamic characteristics of specialty composite structures with embedded damping layers

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.

    1993-01-01

    Damping mechanics for simulating the damped dynamic characteristics in specialty composite structures with compliant interlaminar damping layers are presented. Finite-element based mechanics incorporating a discrete layer (or layer-wise) laminate damping theory are utilized to represent general laminate configurations in terms of lay-up and fiber orientation angles, cross-sectional thickness, shape, and boundary conditions. Evaluations of the method with exact solutions and experimental data illustrate the accuracy of the method. Additional applications investigate the potential for significant damping enhancement in angle-ply composite laminates with cocured interlaminar damping layers.

  9. Preparation of multi-layer film consisting of hydrogen-free DLC and nitrogen-containing DLC for conductive hard coating

    NASA Astrophysics Data System (ADS)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto

    2018-01-01

    Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.

  10. Ellipsometric study of metal-organic chemically vapor deposited III-V semiconductor structures

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Sekula-Moise, Patricia A.; Sieg, Robert M.; Drotos, Mark N.; Bogner, Nancy A.

    1992-01-01

    An ellipsometric study of MOCVD-grown layers of AlGaAs and InGaAs in thick films and strained layer complex structures is presented. It is concluded that the ternary composition of thick nonstrained layers can be accurately determined to within experimental errors using numerical algorithms. In the case of complex structures, thickness of all layers and the alloy composition of nonstrained layers can be determined simultaneously, provided that the correlations between parameters is no higher than 0.9.

  11. Design of a thermal waist-pad

    NASA Astrophysics Data System (ADS)

    Kursun Bahadir, S.; Sahin, U. K.; Acikgoz Tufan, H.

    2017-10-01

    The objective of the current study is designing a thermal waist-pad for people who have backaches with a sandwich-like multi-layered structure. Two model is developed; one is three-layered and second is five-layered with waterproof woven outer layer fabric, Thermolite® knitted fabric (for five-layered structures), wool knitted, polyester nonwoven fabric, polypropylene nonwoven fabric and viscose nonwoven fabric for mid-layer. 10 different structures are designed and produced. All samples are tested for thermal comfort properties of waist-pad. Multi-layer structures were tested, and according to their thermal performance and thermal comfort criteria, all results are evaluated for identifying the best product. These three factors are examined by analysis of thermal conductivity, thermal resistance, thermal absorptivity, relative water vapour/air permeability, water absorption. Highest thermal resistance test result, 150,42 mK/Wm2, is achieved in five-layered sandwich structure with waterproof fabric, Thermolite® fabric, wool based knitted fabric, Thermolite® fabric and waterproof fabric, respectively. Thermal conductivity result of this structure is 46,2 mW/mK, which is one of the lowest results among the alternative structures. Structures with Thermolite® fabric show higher thermal comfort when compared to others.

  12. Effect of Amount of Carbon on the Reduction Efficiency of Iron Ore-Coal Composite Pellets in Multi-layer Bed Rotary Hearth Furnace (RHF)

    NASA Astrophysics Data System (ADS)

    Mishra, Srinibash; Roy, Gour Gopal

    2016-08-01

    The effect of carbon-to-hematite molar ratio has been studied on the reduction efficiency of iron ore-coal composite pellet reduced at 1523 K (1250 °C) for 20 minutes in a laboratory scale multi-layer bed rotary hearth furnace (RHF). Reduced pellets have been characterized through weight loss measurement, estimation of porosity, shrinkage, qualitative and quantitative phase analysis by XRD. Performance parameters such as the degree of reduction, metallization, carbon efficiency, productivity, and compressive strength have been calculated to compare the process efficacy at different carbon levels in the pellets. Pellets with optimum carbon-to-hematite ratio (C/Fe2O3 molar ratio = 1.66) that is much below the stoichiometric carbon required for direct reduction of hematite yielded maximum reduction, better carbon utilization, and productivity for all three layers. Top layer exhibited maximum reduction at comparatively lower carbon level (C/Fe2O3 molar ratio <2.33) in the pellet, while bottom layer exceeded top layer reduction at higher carbon level (C/Fe2O3 molar ratio >2.33). Correlation between degree of reduction and metallization indicated non-isothermal kinetics influenced by heat and mass transfer in multi-layer bed RHF. Compressive strength of the partially reduced pellet with optimum carbon content (C/Fe2O3 molar ratio = 1.66) showed that they could be potentially used as an alternate feed in a blast furnace or any other smelting reactor.

  13. Commercial production of QWIP wafers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fastenau, J. M.; Liu, W. K.; Fang, X. M.; Lubyshev, D. I.; Pelzel, R. I.; Yurasits, T. R.; Stewart, T. R.; Lee, J. H.; Li, S. S.; Tidrow, M. Z.

    2001-06-01

    As the performance of quantum well infrared photodetectors (QWIPs) and QWIP-based imaging systems continues to improve, their demand will undoubtedly grow. This points to the importance of a reliable commercial supplier of semiconductor QWIP material on three inch and, in the near future, four-inch substrates. Molecular beam epitaxy (MBE) is the preferred technique for growing the demanding QWIP structure, as tight control is required over the material composition and layer thickness. We report the current status of MBE-grown GaAs-based QWIP structures in a commercial production environment at IQE. Uniformity data and run-to-run reproducibility on both three-inch and four-inch GaAs substrates are quantified using alloy composition and QW thickness. Initial results on growth technology transfer to a multi-wafer MBE reactor are also presented. High-resolution X-ray diffraction measurements demonstrate GaAs QW thickness variations and AlGaAs barrier compositions changes to be less than 4% and 1% Al, respectively, across four-inch QWIP wafers from both single- and multiple-wafer MBE platforms.

  14. High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafari Salim, A., E-mail: ajafaris@uwaterloo.ca; Eftekharian, A.; University of Waterloo, Waterloo, Ontario N2L 3G1

    In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potentialmore » barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.« less

  15. Microbial ingrowth around single- and multi-component adhesives studied in vitro.

    PubMed

    Preussker, S; Klimm, W; Pöschmann, M; Koch, R

    2003-01-01

    The aim of this study was to compare the in vitro microbial leakage in 4 micro-hybrid composites in combination with 4 single-component dental adhesives (Scotchbond 1/Z100 MP = group 1; Syntac Single-Component/Tetric Flow = group 3; OptiBond Solo/XRV Herculite = group 5; Solobond M/Arabesk Top = group 7) and 4 multi-component dental adhesives (Scotchbond Multi-Purpose/Z100 MP = group 2; Syntac/Tetric Flow = group 4; OptiBond FL/XRV Herculite = group 6; Solobond Plus/Arabesk Top = group 8). Ninety-four mixed standardized Class V cavities of human caries-free extracted premolars were filled with eight different composite adhesive systems using a one-layer (groups 1-4) or a two-layer technique (groups 5-8). After thermocycling and incubation in a broth culture of Streptococcus mutans and Lactobacillus acidophilus, followed by decalcification and staining, the extent and the type of microbial leakage were measured histologically. The extent of microbial leakage in the composite restorations was very low in all groups and there were no significant differences between adhesives. Z100 MP in combination with single- and multi-component adhesives showed a significantly higher microbial leakage than Tetric Flow systems (U test: p=0.037). XRV Herculite adhesive systems showed significantly less extensive microbial leakage than Arabesk Top adhesive systems (U test: p<0.001). The single-component dental adhesives achieved a marginal adaptation of composites comparable to that of multi-component adhesives in vitro. Copyright 2003 S. Karger AG, Basel

  16. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode

    NASA Astrophysics Data System (ADS)

    Eom, KwangSup; Joshi, Tapesh; Bordes, Arnaud; Do, Inhwan; Fuller, Thomas F.

    2014-03-01

    In this study, a Si-graphene composite, which is composed of nano Si particles and nano-sized multi-layer graphene particles, and micro-sized multi-layer graphene plate conductor, was used as the anode for Li-ion battery. The Si-graphene electrode showed the high capacity and stable cyclability at charge/discharge rate of C/2 in half cell tests. Nickel cobalt aluminum material (NCA) was used as a cathode in the full cell to evaluate the practicality of the new Si-graphene material. Although the Si-graphene anode has more capacity than the NCA cathode in this designed full cell, the Si-graphene anode had a greater effect on the full-cell performance due to its large initial irreversible capacity loss and continuous SEI formation during cycling. When fluoro-ethylene carbonate was added to the electrolyte, the cyclability of the full cell was much improved due to less SEI formation, which was confirmed by the decreases in the 1st irreversible capacity loss, overpotential for the 1st lithiation, and the resistance of the SEI.

  17. Materials Development for Hypersonic Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dirling, Ray; Croop, Harold; Fry, Timothy J.; Frank, Geoffrey J.

    2006-01-01

    The DARPA/Air Force Falcon program is planning to flight test several hypersonic technology vehicles (HTV) in the next several years. A Materials Integrated Product Team (MIPT) was formed to lead the development of key thermal protection system (TPS) and hot structures technologies. The technologies being addressed by the MIPT are in the following areas: 1) less than 3000 F leading edges, 2) greater than 3000 F refractory composite materials, 3) high temperature multi-layer insulation, 4) acreage TPS, and 5) high temperature seals. Technologies being developed in each of these areas are discussed in this paper.

  18. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation.

    PubMed

    Zouzelka, Radek; Kusumawati, Yuly; Remzova, Monika; Rathousky, Jiri; Pauporté, Thierry

    2016-11-05

    TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Incorporation of composite defects from ultrasonic NDE into CAD and FE models

    NASA Astrophysics Data System (ADS)

    Bingol, Onur Rauf; Schiefelbein, Bryan; Grandin, Robert J.; Holland, Stephen D.; Krishnamurthy, Adarsh

    2017-02-01

    Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding in accessing the residual life of composites and make informed decisions regarding repairs. The framework can be used to generate a layer-by-layer 3D structural CAD model of the composite laminates replicating their manufacturing process. Outlines of structural defects, such as delaminations, are automatically detected from UT of the laminate and are incorporated into the CAD model between the appropriate layers. In addition, the framework allows for direct structural analysis of the resulting 3D CAD models with defects by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept for the composite model builder with capabilities of incorporating delaminations between laminate layers and automatically preparing the CAD model for structural analysis using a FEA software.

  20. Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors.

    PubMed

    Wu, Xiaodong; Han, Yangyang; Zhang, Xinxing; Lu, Canhui

    2017-07-12

    Flexible and stretchable electronics are highly desirable for next generation devices. However, stretchability and conductivity are fundamentally difficult to combine for conventional conductive composites, which restricts their widespread applications especially as stretchable electronics. Here, we innovatively develop a new class of highly stretchable and robust conductive composites via a simple and scalable structural approach. Briefly, carbon nanotubes are spray-coated onto a self-adhesive rubber film, followed by rolling up the film completely to create a spirally layered structure within the composites. This unique spirally layered structure breaks the typical trade-off between stretchability and conductivity of traditional conductive composites and, more importantly, restrains the generation and propagation of mechanical microcracks in the conductive layer under strain. Benefiting from such structure-induced advantages, the spirally layered composites exhibit high stretchability and flexibility, good conductive stability, and excellent robustness, enabling the composites to serve as highly stretchable conductors (up to 300% strain), versatile sensors for monitoring both subtle and large human activities, and functional threads for wearable electronics. This novel and efficient methodology provides a new design philosophy for manufacturing not only stretchable conductors and sensors but also other stretchable electronics, such as transistors, generators, artificial muscles, etc.

  1. Structure for HTS composite conductors and the manufacture of same

    DOEpatents

    Cotton, J.D.; Riley, G.N. Jr.

    1999-06-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.

  2. Structure for hts composite conductors and the manufacture of same

    DOEpatents

    Cotton, James D.; Riley, Jr., Gilbert Neal

    1999-01-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.

  3. Modeling of pulse-echo inspections of multi-layer panels containing delaminations

    NASA Astrophysics Data System (ADS)

    Richter, Nathaniel Lawrence

    To meet the needs of counter insurgency operations the armor of tanks need to be lighter. This is accomplished by using a combination of materials: metals, composites, and ceramics. This multi-material composite armor using any combination of the above materials will need to be inspected for manufacturing error, shipping damage, and combat damage. Nondestructive inspection, particularly ultrasonic inspection, has a long history of successfully inspecting thick composite structures. To more easily develop inspection plans for many layered composites a computational model would be of use. A model of this type would need to have the ability to account for multiple material types and flaws that are larger than the beam size. Also, as a result of armor thickness any model would need to consider attenuation and effects of focused transducers. This was accomplishing by extending the Thompson-Gray Measurement Model for use with multiple layers at normal incidence to the transducer and large planar defects parallel to the layers. Material values of the armor and the characteristics of the transducers were determined for use in the model. The model results are compared to experimentally collected data to show agreement. The model is then used to determine the requirements of a new inspection plan through varying the frequency and focal length of the transducers. The defect reflection amplitudes for 5 MHz with the focal lengths in water of 7.5, 8.5, and 9.5 inches are 0.55178, 0.75270, and 0.44836. The same for 10 MHz are 0.12474, 0.21425, and 0.10637. The 8.5 in focal length also is the equivilent thickness in water for the material leading to the defect interface. This focal length would, from theory, cause the greatest amplitude from the defect. This is supported by the results in that the highest amplitude occurs at 8.5 inches for both sets of frequencies. It is also evident that the response at 5 MHz is greater than that at 10 MHz. As such, the 5 MHz transducer with an 8.5 inch focal length is nominal for this inspection.

  4. Probing dynamic behavior of electric fields and band diagrams in complex semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Turkulets, Yury; Shalish, Ilan

    2018-01-01

    Modern bandgap engineered electronic devices are typically made of multi-semiconductor multi-layer heterostructures that pose a major challenge to silicon-era characterization methods. As a result, contemporary bandgap engineering relies mostly on simulated band structures that are hardly ever verified experimentally. Here, we present a method that experimentally evaluates bandgap, band offsets, and electric fields, in complex multi-semiconductor layered structures, and it does so simultaneously in all the layers. The method uses a modest optical photocurrent spectroscopy setup at ambient conditions. The results are analyzed using a simple model for electro-absorption. As an example, we apply the method to a typical GaN high electron mobility transistor structure. Measurements under various external electric fields allow us to experimentally construct band diagrams, not only at equilibrium but also under any other working conditions of the device. The electric fields are then used to obtain the charge carrier density and mobility in the quantum well as a function of the gate voltage over the entire range of operating conditions of the device. The principles exemplified here may serve as guidelines for the development of methods for simultaneous characterization of all the layers in complex, multi-semiconductor structures.

  5. A Multi-Scale Framework for Multi-Field Analyses of Smart Composites

    DTIC Science & Technology

    2015-01-15

    purchased from Advanced Cerametrics Incorporated, consist of PZT 5A fibers dispersed in an epoxy matrix. Kapton layers and electrode fingers are placed...tests in the longitudinal fiber direction, at different rates and temperatures: 25oC, 50oC, and 75oC. Figure 2 shows examples of PZT Positive... PZT and active fiber composites at various frequencies at temperatures 25oC and 75oC. Figure 4 Hysteretic polarization at room temperature with

  6. Graphene-copper composite with micro-layered grains and ultrahigh strength

    PubMed Central

    Wang, Lidong; Yang, Ziyue; Cui, Ye; Wei, Bing; Xu, Shichong; Sheng, Jie; Wang, Miao; Zhu, Yunpeng; Fei, Weidong

    2017-01-01

    Graphene with ultrahigh intrinsic strength and excellent thermal physical properties has the potential to be used as the reinforcement of many kinds of composites. Here, we show that very high tensile strength can be obtained in the copper matrix composite reinforced by reduced graphene oxide (RGO) when micro-layered structure is achieved. RGO-Cu powder with micro-layered structure is fabricated from the reduction of the micro-layered graphene oxide (GO) and Cu(OH)2 composite sheets, and RGO-Cu composites are sintered by spark plasma sintering process. The tensile strength of the 5 vol.% RGO-Cu composite is as high as 608 MPa, which is more than three times higher than that of the Cu matrix. The apparent strengthening efficiency of RGO in the 2.5 vol.% RGO-Cu composite is as high as 110, even higher than that of carbon nanotube, multilayer graphene, carbon nano fiber and RGO in the copper matrix composites produced by conventional MLM method. The excellent tensile and compressive strengths, high hardness and good electrical conductivity are obtained simultaneously in the RGO-Cu composites. The results shown in the present study provide an effective method to design graphene based composites with layered structure and high performance. PMID:28169306

  7. Layer Structure of a Refractory Multilayer Ti/Al Composite After Pressure Diffusion Welding

    NASA Astrophysics Data System (ADS)

    Karpov, M. I.; Korzhov, V. P.; Zheltyakova, I. S.

    2016-05-01

    A composite refractory material with layer structure obtained by the method of pressure diffusion welding of multilayer Ti/Al packets composed of Ti- and Al-foils is studied. The welding temperature of the packets does not exceed 1200 - 1250°C. A layer structure forms in the process of interdiffusion of titanium and aluminum during welding of the packets.

  8. Application of Composite Mechanics to Composites Enhanced Concrete Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Gotsis, Pascal K.

    2006-01-01

    A new and effective method is described to design composites to repair damage or enhance the overload strength of concrete infrastructures. The method is based on composite mechanics which is available in computer codes. It is used to simulate structural sections made from reinforced concrete which are typical in infrastructure as well as select reinforced concrete structures. The structural sections are represented by a number of layers through the thickness where different layers are used in concrete, and for the composite. The reinforced concrete structures are represented with finite elements where the element stiffness parameters are from the structural sections which are represented by composite mechanics. The load carrying capability of the structure is determined by progressive structural fracture. Results show up to 40 percent improvements for damage and for overload enhancement with relatively small laminate thickness for the structural sections and up to three times for the composite enhanced select structures (arches and domes).

  9. Microstructure, tribological and strength properties of the surface layer in metal-ceramic composite nano-structured by electron irradiation

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Ivanov, K. V.; Mokhovikov, A. A.

    2017-12-01

    Exemplified by metal-ceramic composite TiC-(Ni-Cr) with the ratio of components 50:50, the paper presents findings of the study on patterns of nanoscale structural-phase state formation in the surface layer of the composite under pulsed electron irradiation in inert gas plasmas with different ionization energies and atomic weights and their influence on tribological and strength properties of the surface layer.

  10. Fused filament 3D printing of ionic polymer-metal composites for soft robotics

    NASA Astrophysics Data System (ADS)

    Carrico, James D.; Leang, Kam K.

    2017-04-01

    Additive manufacturing techniques are used to create three-dimensional structures with complex shapes and features from polymer and/or metal materials. For example, fused filament three-dimensional (3D) printing utilizes non-electroactive polymers, such as acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), to build structures and components in a layer-by-layer fashion for a wide variety of applications. Presented here is a summary of recent work on a fused filament 3D-printing technique to create 3D ionic polymer-metal composite (IPMC) structures for applications in soft robotics. The 3D printing technique overcomes some of the limitations of existing manufacturing processes for creating IPMCs, such as limited shapes and sizes and time-consuming manufacturing steps. In the process described, first a precursor material (non-acid Nafion precursor resin) is extruded into a thermoplastic filament for 3D printing. Then, a custom-designed 3D printer is described that utilizes the precursor filament to manufacture custom-shaped structures. Finally, the 3D-printed samples are functionalized by hydrolyzing them in an aqueous solution of potassium hydroxide and dimethyl sulfoxide, followed by application of platinum electrodes. Presented are example 3D-printed single and multi-degree-of-freedom IPMC actuators and characterization results, as well as example soft-robotic devices to demonstrate the potential of this process.

  11. Bonding and structure in dense multi-component molecular mixtures

    DOE PAGES

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; ...

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH 4:NH 3:H 2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the naturemore » of these systems engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.« less

  12. Method of making an ion-implanted planar-buried-heterostructure diode laser

    DOEpatents

    Brennan, Thomas M.; Hammons, Burrell E.; Myers, David R.; Vawter, Gregory A.

    1992-01-01

    Planar-buried-heterostructure, graded-index, separate-confinement-heterostructure semiconductor diode laser 10 includes a single quantum well or multi-quantum well active stripe 12 disposed between a p-type compositionally graded Group III-V cladding lever 14 and an n-type compositionally graded Group III-V cladding layer 16. The laser 10 includes an iion implanted n-type region 28 within the p-type cladding layer 14 and further includes an ion implanted p-type region 26 within the n-type cladding layer 16. The ion implanted regions are disposed for defining a lateral extent of the active stripe.

  13. 3D printing of tissue-simulating phantoms as a traceable standard for biomedical optical measurement

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Wang, Minjie; Shen, Shuwei; Han, Yilin; Wu, Qiang; Xu, Ronald

    2016-01-01

    Optical phantoms are commonly used to validate and calibrate biomedical optical devices in order to ensure accurate measurement of optical properties in biological tissue. However, commonly used optical phantoms are based on homogenous materials that reflect neither optical properties nor multi-layer heterogeneities of biological tissue. Using these phantoms for optical calibration may result in significant bias in biological measurement. We propose to characterize and fabricate tissue simulating phantoms that simulate not only the multi-layer heterogeneities but also optical properties of biological tissue. The tissue characterization module detects tissue structural and functional properties in vivo. The phantom printing module generates 3D tissue structures at different scales by layer-by-layer deposition of phantom materials with different optical properties. The ultimate goal is to fabricate multi-layer tissue simulating phantoms as a traceable standard for optimal calibration of biomedical optical spectral devices.

  14. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  15. Wholly Aromatic Ether-Imides as n-Type Semiconductors

    NASA Technical Reports Server (NTRS)

    Weiser, Erik; St. Clair, Terry L.; Dingemans, Theo J.; Samulski, Edward T.; Irene, Gene

    2006-01-01

    Some wholly aromatic ether-imides consisting of rod-shaped, relatively-low-mass molecules that can form liquid crystals have been investigated for potential utility as electron-donor-type (ntype) organic semiconductors. It is envisioned that after further research to improve understanding of their physical and chemical properties, compounds of this type would be used to make thin film semiconductor devices (e.g., photovoltaic cells and field-effect transistors) on flexible electronic-circuit substrates. This investigation was inspired by several prior developments: Poly(ether-imides) [PEIs] are a class of engineering plastics that have been used extensively in the form of films in a variety of electronic applications, including insulating layers, circuit boards, and low-permittivity coatings. Wholly aromatic PEIs containing naphthalene and perylene moieties have been shown to be useful as electrochromic polymers. More recently, low-molecular-weight imides comprising naphthalene-based molecules with terminal fluorinated tails were shown to be useful as n-type organic semiconductors in such devices as field-effect transistors and Schottky diodes. Poly(etherimide)s as structural resins have been extensively investigated at NASA Langley Research Center for over 30 years. More recently, the need for multi-functional materials has become increasingly important. This n-type semiconductor illustrates the scope of current work towards new families of PEIs that not only can be used as structural resins for carbon-fiber reinforced composites, but also can function as sensors. Such a multi-functional material would permit so-called in-situ health monitoring of composite structures during service. The work presented here demonstrates that parts of the PEI backbone can be used as an n-type semiconductor with such materials being sensitive to damage, temperature, stress, and pressure. In the near future, multi-functional or "smart" composite structures are envisioned to be able to communicate such important parameters to the flight crew and provide vital information with respect to the operational status of their aircraft.

  16. Nano-structured polymer composites and process for preparing same

    DOEpatents

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  17. Inkjet Deposition of Layer by Layer Assembled Films

    PubMed Central

    Andres, Christine M.; Kotov, Nicholas A.

    2010-01-01

    Layer-by-layer assembly (LBL) can create advanced composites with exceptional properties unavailable by other means, but the laborious deposition process and multiple dipping cycles hamper their utilization in microtechnologies and electronics. Multiple rinse steps provide both structural control and thermodynamic stability to LBL multilayers but they significantly limit their practical applications and contribute significantly to the processing time and waste. Here we demonstrate that by employing inkjet technology one can deliver the necessary quantities of LBL components required for film build-up without excess, eliminating the need for repetitive rinsing steps. This feature differentiates this approach from all other recognized LBL modalities. Using a model system of negatively charged gold nanoparticles and positively charged poly(diallyldimethylammonium) chloride, the material stability, nanoscale control over thickness and particle coverage offered by the inkjet LBL technique are shown to be equal or better than the multilayers made with traditional dipping cycles. The opportunity for fast deposition of complex metallic patterns using a simple inkjet printer was also shown. The additive nature of LBL deposition based on the formation of insoluble nanoparticle-polyelectrolyte complexes of various compositions provides an excellent opportunity for versatile, multi-component, and non-contact patterning for the simple production of stratified patterns that are much needed in advanced devices. PMID:20863114

  18. Compositional modulated atomic layer stacking and uniaxial magnetocrystalline anisotropy of CoPt alloy sputtered films with close-packed plane orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Shin, E-mail: ssaito@ecei.tohoku.ac.jp; Nozawa, Naoki; Hinata, Shintaro

    An atomic layer stacking structure in hexagonal close packed (hcp) Co{sub 100−x}Pt{sub x} alloy films with c-plane sheet texture was directly observed by a high-angle annular dark-field imaging scanning transmission electron microscopy. The analysis of sequential and/or compositional atomic layer stacking structure and uniaxial magnetocrystalline anisotropy (K{sub u} = K{sub u1} + K{sub u2}) revealed that (1) integrated intensity of the superlattice diffraction takes the maximum at x = 20 at. % and shows broadening feature against x for the film fabricated under the substrate temperature (T{sub sub}) of 400 °C. (2) Compositional separation structure in atomic layers is formed for the films fabricated under T{sub sub} = 400 °C.more » A sequential alternative stacking of atomic layers with different compositions is hardly formed in the film with x = 50 at. %, whereas easily formed in the film with x = 20 at. %. This peculiar atomic layer stacking structure consists of in-plane-disordered Pt-rich and Pt-poor layers, which is completely different from the so-called atomic site ordered structure. (3) A face centered cubic atomic layer stacking as faults appeared in the host hcp atomic layer stacking exists in accompanies with irregularities for the periodicity of the compositional modulation atomic layers. (4) K{sub u1} takes the maximum of 1.4 × 10{sup 7 }erg/cm{sup 3} at around x = 20 at. %, whereas K{sub u2} takes the maximum of 0.7 × 10{sup 7 }erg/cm{sup 3} at around x = 40 at. %, which results in the maximum of 1.8 × 10{sup 7 }erg/cm{sup 3} of K{sub u} at x = 30 at. % and a shoulder in compositional dependence of K{sub u} in the range of x = 30–60 at. %. Not only compositional separation of atomic layers but also sequential alternative stacking of different compositional layers is quite important to improve essential uniaxial magnetocrystalline anisotropy.« less

  19. Multi-layer robot skin with embedded sensors and muscles

    NASA Astrophysics Data System (ADS)

    Tomar, Ankit; Tadesse, Yonas

    2016-04-01

    Soft artificial skin with embedded sensors and actuators is proposed for a crosscutting study of cognitive science on a facial expressive humanoid platform. This paper focuses on artificial muscles suitable for humanoid robots and prosthetic devices for safe human-robot interactions. Novel composite artificial skin consisting of sensors and twisted polymer actuators is proposed. The artificial skin is conformable to intricate geometries and includes protective layers, sensor layers, and actuation layers. Fluidic channels are included in the elastomeric skin to inject fluids in order to control actuator response time. The skin can be used to develop facially expressive humanoid robots or other soft robots. The humanoid robot can be used by computer scientists and other behavioral science personnel to test various algorithms, and to understand and develop more perfect humanoid robots with facial expression capability. The small-scale humanoid robots can also assist ongoing therapeutic treatment research with autistic children. The multilayer skin can be used for many soft robots enabling them to detect both temperature and pressure, while actuating the entire structure.

  20. Could Nano-Structured Materials Enable the Improved Pressure Vessels for Deep Atmospheric Probes?

    NASA Technical Reports Server (NTRS)

    Srivastava, D.; Fuentes, A.; Bienstock, B.; Arnold, J. O.

    2005-01-01

    A viewgraph presentation on the use of Nano-Structured Materials to enable pressure vessel structures for deep atmospheric probes is shown. The topics include: 1) High Temperature/Pressure in Key X-Environments; 2) The Case for Use of Nano-Structured Materials Pressure Vessel Design; 3) Carbon based Nanomaterials; 4) Nanotube production & purification; 5) Nanomechanics of Carbon Nanotubes; 6) CNT-composites: Example (Polymer); 7) Effect of Loading sequence on Composite with 8% by volume; 8) Models for Particulate Reinforced Composites; 9) Fullerene/Ti Composite for High Strength-Insulating Layer; 10) Fullerene/Epoxy Composite for High Strength-Insulating Layer; 11) Models for Continuous Fiber Reinforced Composites; 12) Tensile Strength for Discontinuous Fiber Composite; 13) Ti + SWNT Composites: Thermal/Mechanical; 14) Ti + SWNT Composites: Tensile Strength; and 15) Nano-structured Shell for Pressure Vessels.

  1. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com; Bandyopadhyay, Kaushik; Saha, Partha

    2014-07-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities.more » The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.« less

  2. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion.

    PubMed

    Zhu, Li; Chen, Mingliang; Dong, Yingchao; Tang, Chuyang Y; Huang, Aisheng; Li, Lingling

    2016-03-01

    Oil-in-water (O/W) emulsion is considered to be difficult to treat. In this work, a low-cost multi-layer-structured mullite-titania composite ceramic hollow fiber microfiltration membrane was fabricated and utilized to efficiently remove fine oil droplets from (O/W) emulsion. In order to reduce membrane cost, coal fly ash was effectively recycled for the first time to fabricate mullite hollow fiber with finger-like and sponge-like structures, on which a much more hydrophilic TiO2 layer was further deposited. The morphology, crystalline phase, mechanical and surface properties were characterized in details. The filtration capability of the final composite membrane was assessed by the separation of a 200 mg·L(-1) synthetic (O/W) emulsion. Even with this microfiltration membrane, a TOC removal efficiency of 97% was achieved. Dilute NaOH solution backwashing was used to effectively accomplish membrane regeneration (∼96% flux recovery efficiency). This study is expected to guide an effective way to recycle waste coal fly ash not only to solve its environmental problems but also to produce a high-valued mullite hollow fiber membrane for highly efficient separation application of O/W emulsion with potential simultaneous functions of pure water production and oil resource recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Comparison of light-transmittance in dental tissues and dental composite restorations using incremental layering build-up with varying enamel resin layer thickness

    PubMed Central

    2018-01-01

    Objectives To evaluate and compare light-transmittance in dental tissues and dental composite restorations using the incremental double-layer technique with varying layer thickness. Materials and Methods B1-colored natural teeth slabs were compared to dental restoration build-ups with A2D and B1E-colored nanofilled, supra-nanofilled, microfilled, and microhybrid composites. The enamel layer varied from 0.3, 0.5, or 1.2 mm thick, and the dentin layer was varied to provide a standardized 3.7 mm overall sample thickness (n = 10). All increments were light-cured to 16 J/cm2 with a multi-wave LED (Valo, Ultradent). Using a spectrophotometer, the samples were irradiated by an RGB laser beam. A voltmeter recorded the light output signal to calculate the light-transmittance through the specimens. The data were analyzed using 1-way analysis of variance followed by the post hoc Tukey's test (p = 0.05). Results Mean light-transmittance observed at thicker final layers of enamel were significantly lower than those observed at thinner final layers. Within 1.2 mm final enamel resin layer (FERL) thickness, all composites were similar to the dental tissues, with exception of the nanofilled composite. However, within 0.5 mm FERL thickness, only the supra-nanofilled composite showed no difference from the dental tissues. Within 0.3 mm FERL thickness, none of the composites were similar to the dental tissues. Conclusions The supra-nanofilled composite had the most similar light-transmittance pattern when compared to the natural teeth. However, for other composites, thicker FERL have a greater chance to match the light-transmittance of natural dental tissues. PMID:29765902

  4. Comparison of light-transmittance in dental tissues and dental composite restorations using incremental layering build-up with varying enamel resin layer thickness.

    PubMed

    Rocha Maia, Rodrigo; Oliveira, Dayane; D'Antonio, Tracy; Qian, Fang; Skiff, Frederick

    2018-05-01

    To evaluate and compare light-transmittance in dental tissues and dental composite restorations using the incremental double-layer technique with varying layer thickness. B1-colored natural teeth slabs were compared to dental restoration build-ups with A2D and B1E-colored nanofilled, supra-nanofilled, microfilled, and microhybrid composites. The enamel layer varied from 0.3, 0.5, or 1.2 mm thick, and the dentin layer was varied to provide a standardized 3.7 mm overall sample thickness ( n = 10). All increments were light-cured to 16 J/cm 2 with a multi-wave LED (Valo, Ultradent). Using a spectrophotometer, the samples were irradiated by an RGB laser beam. A voltmeter recorded the light output signal to calculate the light-transmittance through the specimens. The data were analyzed using 1-way analysis of variance followed by the post hoc Tukey's test ( p = 0.05). Mean light-transmittance observed at thicker final layers of enamel were significantly lower than those observed at thinner final layers. Within 1.2 mm final enamel resin layer (FERL) thickness, all composites were similar to the dental tissues, with exception of the nanofilled composite. However, within 0.5 mm FERL thickness, only the supra-nanofilled composite showed no difference from the dental tissues. Within 0.3 mm FERL thickness, none of the composites were similar to the dental tissues. The supra-nanofilled composite had the most similar light-transmittance pattern when compared to the natural teeth. However, for other composites, thicker FERL have a greater chance to match the light-transmittance of natural dental tissues.

  5. A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part II: impact modeling

    NASA Astrophysics Data System (ADS)

    Pigazzini, M. S.; Bazilevs, Y.; Ellison, A.; Kim, H.

    2017-11-01

    In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on isogeometric analysis, where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum damage mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.

  6. A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part I: basic theory and modeling of delamination and transverse shear

    NASA Astrophysics Data System (ADS)

    Bazilevs, Y.; Pigazzini, M. S.; Ellison, A.; Kim, H.

    2017-11-01

    In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on Isogeometric Analysis (IGA), where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum Damage Mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.

  7. Multi-functional layered structure having structural and radiation shielding attributes

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K. (Inventor); Barghouty, Abdulnasser Fakhri (Inventor); Penn, Benjamin G. (Inventor); Hulcher, Anthony Bruce (Inventor)

    2010-01-01

    A cosmic and solar radiation shielding structure that also has structural attributes is comprised of three layers. The first layer is 30-42 percent by volume of ultra-high molecular weight (UHMW) polyethylene fibers, 18-30 percent by volume of graphite fibers, and a remaining percent by volume of an epoxy resin matrix. The second layer is approximately 68 percent by volume of UHMW polyethylene fibers and a remaining percent by volume of a polyethylene matrix. The third layer is a ceramic material.

  8. Optimal Sensor Fusion for Structural Health Monitoring of Aircraft Composite Components

    DTIC Science & Technology

    2011-09-01

    sensor networks combine or fuse different types of sensors. Fiber Bragg Grating ( FBG ) sensors can be inserted in layers of composite structures to...consideration. This paper describes an example of optimal sensor fusion, which combines FBG sensors and PZT sensors. Optimal sensor fusion tries to find...Fiber Bragg Grating ( FBG ) sensors can be inserted in layers of composite structures to provide local damage detection, while surface mounted

  9. Modelling the backscatter from spherical cavities in a solid matrix: Can an effective medium layer model mimic the scattering response?

    NASA Astrophysics Data System (ADS)

    Pinfield, Valerie J.; Challis, Richard E.

    2011-01-01

    Industrial applications are increasingly turning to modern composite layered materials to satisfy strength requirements whilst reducing component weight. An important group of such materials are fibre/resin composites in which long fibres are laid down in layers in a resin matrix. Whilst delamination flaws, where layers separate from each other, are detectable using traditional ultrasonic techniques, the presence of porosity in any particular layer is harder to detect. The reflected signal from a layered material can already be modelled successfully by using the acoustic impedance of the layers and summing reflections from layer boundaries. However, it is not yet known how to incorporate porosity into such a model. The aim of the work reported here was to model the backscatter from randomly distributed spherical cavities within one layer, and to establish whether an effective medium, with a derived acoustic impedance, could reproduce the characteristics of that scattering. Since effective medium models are much more readily implemented in simulations of multi-layer structures than scattering per se, it was felt desirable to simplify the scattering response into an effective medium representation. A model was constructed in which spherical cavities were placed randomly in a solid continuous matrix and the system backscattering response was calculated. The scattering from the cavities was determined by using the Rayleigh partial-wave method, and taking the received signal at the transducer to be equivalent to the far field limit. It was concluded that even at relatively low porosity levels, the received signal was still "layer-like" and an effective medium model was a good approximation for the scattering behaviour.

  10. Composite of coated magnetic alloy particle

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  11. Composite of ceramic-coated magnetic alloy particles

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  12. Fracture Mechanics of Transverse Cracks and Edge Delamination in Graphite-Epoxy Composite Laminates.

    DTIC Science & Technology

    1982-03-01

    Fracture failure in multi-layer epoxy-based composite laminates seldom begins with breaking of the load-carrying reinforcing fibers. Rather, smeall...often observed sub-laminate fracture mudes in, e.g., glass-epoxy and graph- ite-epoxy composite laminates. Although these matrix-dominated crackings...the uicrostructures of any given fibrous composite , fracture analysis of sub-laminate cracks based on micro leanie [I Is almost Impossible If not

  13. SAW propagation characteristics of TeO3/3C-SiC/LiNbO3 layered structure

    NASA Astrophysics Data System (ADS)

    Soni, Namrata D.

    2018-04-01

    Surface acoustic wave (SAW) devices based on Lithium Niobate (LiNbO3) single crystal are advantageous because of its high SAW phase velocity, electromechanical coupling coefficient and cost effectiveness. In the present work a new multi-layered TeO3/3C-SiC/128° Y-X LiNbO3 SAW device has been proposed. SAW propagation properties such as phase velocity, coupling coefficient and temperature coefficient of delay (TCD) of the TeO3/SiC/128° Y-X LiNbO3 multi layered structure is examined using theoretical calculations. It is found that the integration of 0.09λ thick 3C-SiC over layer on 128° Y-X LiNbO3 increases its electromechanical coupling coefficient from 5.3% to 9.77% and SAW velocity from 3800 ms‑1 to 4394 ms‑1. The SiC/128° Y-X LiNbO3 bilayer SAW structure exhibits a high positive TCD value. A temperature stable layered SAW device could be obtained with introduction of 0.007λ TeO3 over layer on SiC/128° Y-X LiNbO3 bilayer structure without sacrificing the efficiency of the device. The proposed TeO3/3C-SiC/128° Y-X LiNbO3 multi-layered SAW structure is found to be cost effective, efficient, temperature stable and suitable for high frequency application in harsh environment.

  14. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOEpatents

    Antoniadis,; Homer, Krummacher [Mountain View, CA; Claus, Benjamin [Regensburg, DE

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  15. The cell engineering construction and function evaluation of multi-layer biochip dialyzer.

    PubMed

    Zhu, Wen; Li, Jiwei; Liu, Jianfeng

    2013-10-01

    We report the fabrication and function evaluation of multi-layer biochip dialyzer. Such device may potentially be applied to the wearable hemodialysis systems. By merging the advantages of microfluidic chip technology with cell engineering, both functions of glomerular filtration and renal tubule physiological activity are integrated in the same device. This device is designed into a laminated structure, in which the chip number of the superimposed layer can be arbitrarily tailored in accordance with the requirements of dialysis capacity. We propose that such structure can overcome the obstacles of large size and detached structure of the traditional hollow fiber dialyzer. To construct this multilayer biochips dialyzer, two types of dialyzer device with two-layered and six-layered chips are assembled, respectively. Cell adhesion and proliferation on three different dialysis membrane materials under static and dynamic conditions are investigated and compared. The filtration capability, re-absorption function and excrete ammonia function of the resulting multi-layer biochip dialyzer are evaluated. The results reveal that the constructed device can perform higher filtration efficiency and also play a role of renal tubule. This methodology may be useful in developing "scaling down" artificial kidneys that can act as wearable or even implantable hemodialysis systems.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δmore » 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.« less

  17. Structural defects in bulk GaN

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; dos Reis, R.; Mancuso, M.; Song, C. Y.; Grzegory, I.; Porowski, S.; Bockowski, M.

    2014-10-01

    Transmission Electron Microscopy (TEM) studies of undoped and Mg doped GaN layers grown on the HVPE substrates by High Nitrogen Pressure Solution (HNPS) with the multi-feed-seed (MFS) configuration are shown. The propagation of dislocations from the HVPE substrate to the layer is observed. Due to the interaction between these dislocations in the thick layers much lower density of these defects is observed in the upper part of the HNPS layers. Amorphous Ga precipitates with attached voids pointing toward the growth direction are observed in the undoped layer. This is similar to the presence of Ga precipitates in high-pressure platelets, however the shape of these precipitates is different. The Mg doped layers do not show Ga precipitates, but MgO rectangular precipitates are formed, decorating the dislocations. Results of TEM studies of HVPE layers grown on Ammonothermal substrates are also presented. These layers have superior crystal quality in comparison to the HNPS layers, as far as density of dislocation is concern. Occasionally some small inclusions can be found, but their chemical composition was not yet determined. It is expected that growth of the HNPS layers on these substrate will lead to large layer thickness obtained in a short time and with high crystal perfection needed in devices.

  18. Multi-slice nanostructured WS2@rGO with enhanced Li-ion battery performance and a comprehensive mechanistic investigation.

    PubMed

    Li, Honglin; Yu, Ke; Fu, Hao; Guo, Bangjun; Lei, Xiang; Zhu, Ziqiang

    2015-11-28

    A thin nanoslice structured WS2@reduced graphene oxide (rGO) composite was successfully fabricated by a facile hydrothermal synthesis method. The layered structure and morphology of the composite were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The WS2@rGO composite structure demonstrated significantly enhanced rate capability performance in comparison with pristine WS2 when used as an anode material for lithium-ion batteries (LIBs). The composite demonstrated a capacity of 565 mA h g(-1) after 100 cycles when cycled at 0.1 A g(-1) and it could still deliver a stable capacity of about 337 mA h g(-1) at 2 A g(-1). Electrochemical impedance spectroscopy (EIS) measurement showed that the synergistic effect between WS2 and rGO could remarkably reduce the contact resistance and improve the corresponding electrochemical performances. In order to analyze and interpret the corresponding results from a theoretically sound perspective, first principles calculations was further performed to investigate the corresponding inner mechanisms of pristine WS2 and WS2@graphene composite. The nudged elastic band (NEB) method was used to investigate the diffusion properties of Li in the different structures. Molecular dynamics (MD) simulation and Young's modulus calculation were further employed to explore the stability and mechanical properties of the two structures for the first time. These new perspectives pave the way for the design and fabrication of graphene-TMDs based composites as the next generation of LIB anode materials with high power density and cycling stability.

  19. Coupled mixed-field laminate theory and finite element for smart piezoelectric composite shell structures

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1996-01-01

    Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.

  20. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage.

    PubMed

    Li, Min; Guo, Qiangang; Nutt, Steven

    2017-04-01

    A composite phase change material (PCM) comprised of organic montmorillonite (OMMT)/paraffin/grafted multi-walled nanotube (MWNT) is synthesized via ultrasonic dispersion and liquid intercalation. The microstructure of the composite PCM has been characterized to determine the phase distribution, and thermal properties (latent heat and thermal conductivity) have been measured by differential scanning calorimetry (DSC) and a thermal constant analyzer. The results show that paraffin molecules are intercalated in the montmorillonite layers and the grafted MWNTs are dispersed in the montmorillonite layers. The latent heat is 47.1 J/g, and the thermal conductivity of the OMMT/paraffin/grafted MWNT composites is 34% higher than that of the OMMT/paraffin composites and 65% higher than that of paraffin.

  1. Simulating Carbon cycle and phenology in complex forests using a multi-layer process based ecosystem model; evaluation and use of 3D-CMCC-Forest Ecosystem Model in a deciduous and an evergreen neighboring forests, within the area of Brasschaat (Be)

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.

    2013-12-01

    3D-CMCC-Forest Ecosystem Model is a process based model formerly developed for complex forest ecosystems to estimate growth, water and carbon cycles, phenology and competition processes on a daily/monthly time scale. The Model integrates some characteristics of the functional-structural tree models with the robustness of the light use efficiency approach. It treats different heights, ages and species as discrete classes, in competition for light (vertical structure) and space (horizontal structure). The present work evaluates the results of the recently developed daily version of 3D-CMCC-FEM for two neighboring different even aged and mono specific study cases. The former is a heterogeneous Pedunculate oak forest (Quercus robur L. ), the latter a more homogeneous Scot pine forest (Pinus sylvestris L.). The multi-layer approach has been evaluated against a series of simplified versions to determine whether the improved model complexity in canopy structure definition increases its predictive ability. Results show that a more complex structure (three height layers) should be preferable to simulate heterogeneous scenarios (Pedunculate oak stand), where heights distribution within the canopy justify the distinction in dominant, dominated and sub-dominated layers. On the contrary, it seems that using a multi-layer approach for more homogeneous stands (Scot pine stand) may be disadvantageous. Forcing the structure of an homogeneous stand to a multi-layer approach may in fact increase sources of uncertainty. On the other hand forcing complex forests to a mono layer simplified model, may cause an increase in mortality and a reduction in average DBH and Height. Compared with measured CO2 flux data, model results show good ability in estimating carbon sequestration trends, on both a monthly/seasonal and daily time scales. Moreover the model simulates quite well leaf phenology and the combined effects of the two different forest stands on CO2 fluxes.

  2. Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abumeri, Galib; Abdi, Frank

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints andmore » closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relationships obtained from testing of the blade with baseline neat material were compared to the ones from analytical simulation using neat resin and using silica nanoparticles in the resin. Multi-scale PFA results for the neat material construction matched closely those from test for both load displacement and location and type of damage and failure. AlphaSTAR demonstrated that wind blade structures made from advanced composite materials can be certified with multi-scale progressive failure analysis by following building block verification approach.« less

  3. Effect of a multi-layer infection control barrier on the micro-hardness of a composite resin

    PubMed Central

    HWANG, In-Nam; HONG, Sung-Ok; LEE, Bin-Na; HWANG, Yun-Chan; OH, Won-Mann; CHANG, Hoon-Sang

    2012-01-01

    Objective The aim of this study was to evaluate the effect of multiple layers of an infection control barrier on the micro-hardness of a composite resin. Material and Methods One, two, four, and eight layers of an infection control barrier were used to cover the light guides of a high-power light emitting diode (LED) light curing unit (LCU) and a low-power halogen LCU. The composite specimens were photopolymerized with the LCUs and the barriers, and the micro-hardness of the upper and lower surfaces was measured (n=10). The hardness ratio was calculated by dividing the bottom surface hardness of the experimental groups by the irradiated surface hardness of the control groups. The data was analyzed by two-way ANOVA and Tukey's HSD test. Results The micro-hardness of the composite specimens photopolymerized with the LED LCU decreased significantly in the four- and eight-layer groups of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. The hardness ratio of the composite specimens was <80% in the eight-layer group. The micro-hardness of the composite specimens photopolymerized with the halogen LCU decreased significantly in the eight-layer group of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. However, the hardness ratios of all the composite specimens photopolymerized with barriers were <80%. Conclusions The two-layer infection control barrier could be used on high-power LCUs without decreasing the surface hardness of the composite resin. However, when using an infection control barrier on the low-power LCUs, attention should be paid so as not to sacrifice the polymerization efficiency. PMID:23138746

  4. Analysis of passive damping in thick composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.

    1993-01-01

    Computational mechanics for the prediction of damping and other dynamic characteristics in composite structures of general thicknesses and laminations are presented. Discrete layer damping mechanics that account for the representation of interlaminar shear effects in the material are summarized. Finite element based structural mechanics for the analysis of damping are described, and a specialty finite element is developed. Applications illustrate the quality of the discrete layer damping mechanics in predicting the damped dynamic characteristics of composite structures with thicker sections and/or laminate configurations that induce interlaminar shear. The results also illustrate and quantify the significance of interlaminar shear damping in such composite structures.

  5. The Behaviour of Naturally Debonded Composites Due to Bending Using a Meso-Level Model

    NASA Astrophysics Data System (ADS)

    Lord, C. E.; Rongong, J. A.; Hodzic, A.

    2012-06-01

    Numerical simulations and analytical models are increasingly being sought for the design and behaviour prediction of composite materials. The use of high-performance composite materials is growing in both civilian and defence related applications. With this growth comes the necessity to understand and predict how these new materials will behave under their exposed environments. In this study, the displacement behaviour of naturally debonded composites under out-of-plane bending conditions has been investigated. An analytical approach has been developed to predict the displacement response behaviour. The analytical model supports multi-layered composites with full and partial delaminations. The model can be used to extract bulk effective material properties in which can be represented, later, as an ESL (Equivalent Single Layer). The friction between each of the layers is included in the analytical model and is shown to have distinct behaviour for these types of composites. Acceptable agreement was observed between the model predictions, the ANSYS finite element model, and the experiments.

  6. Release strategies for making transferable semiconductor structures, devices and device components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew

    2016-05-24

    Provided are methods for making a device or device component by providing a multi layer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  7. Self-healing polymers and composites based on thermal activation

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Bolanos, Ed; Wudl, Fred; Hahn, Thomas; Kwok, Nathan

    2007-04-01

    Structural polymer composites are susceptible to premature failure in the form of microcracks in the matrix. Although benign initially when they form, these matrix cracks tend to coalesce and lead in service to critical damage modes such as ply delamination. The matrix cracks are difficult to detect and almost impossible to repair because they form inside the composite laminate. Therefore, polymers with self-healing capability would provide a promising potential to minimize maintenance costs while extending the service lifetime of composite structures. In this paper we report on a group of polymers and their composites which exhibit mendable property upon heating. The failure and healing mechanisms of the polymers involve Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions on the polymer back-bone chain, which are thermally reversible reactions requiring no catalyst. The polymers exhibited good healing property in bulk form. Composite panels were prepared by sandwiching the monomers between carbon fiber fabric layers and cured in autoclave. Microcracks were induced on the resin-rich surface of composite with Instron machine at room temperature by holding at 1% strain for 1 min. The healing ability of the composite was also demonstrated by the disappearance of microcracks after heating. In addition to the self-healing ability, the polymers and composites also exhibited shape memory property. These unique properties may provide the material multi-functional applications. Resistance heating of traditional composites and its applicability in self-healing composites is also studied to lay groundwork for a fully integrated self-healing composite.

  8. Interface-Driven Structural Distortions and Composition Segregation in Two-Dimensional Heterostructures

    DOE PAGES

    Ditto, Jeffrey; Merrill, Devin R.; Mitchson, Gavin; ...

    2017-09-06

    The discovery of emergent phenomena in 2D materials has sparked substantial research efforts in the materials community. A significant experimental challenge for this field is exerting atomistic control over the structure and composition of the constituent 2D layers and understanding how the interactions between layers drive both structure and properties. While no segregation for single bilayers was observed, segregation of Pb to the surface of three bilayer thick PbSe–SnSe alloy layers was discovered within [(Pb xSn 1–xSe) 1+δ] n(TiSe 2) 1 heterostructures using electron microscopy. This segregation is thermodynamically favored to occur when Pb xSn 1–xSe layers are interdigitated withmore » TiSe 2 monolayers. DFT calculations indicate that the observed segregation depends on what is adjacent to the Pb xSn 1–xSe layers. As a result, the interplay between interface- and volume-free energies controls both the structure and composition of the constituent layers, which can be tuned using layer thickness.« less

  9. Interface-Driven Structural Distortions and Composition Segregation in Two-Dimensional Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditto, Jeffrey; Merrill, Devin R.; Mitchson, Gavin

    The discovery of emergent phenomena in 2D materials has sparked substantial research efforts in the materials community. A significant experimental challenge for this field is exerting atomistic control over the structure and composition of the constituent 2D layers and understanding how the interactions between layers drive both structure and properties. While no segregation for single bilayers was observed, segregation of Pb to the surface of three bilayer thick PbSe–SnSe alloy layers was discovered within [(Pb xSn 1–xSe) 1+δ] n(TiSe 2) 1 heterostructures using electron microscopy. This segregation is thermodynamically favored to occur when Pb xSn 1–xSe layers are interdigitated withmore » TiSe 2 monolayers. DFT calculations indicate that the observed segregation depends on what is adjacent to the Pb xSn 1–xSe layers. As a result, the interplay between interface- and volume-free energies controls both the structure and composition of the constituent layers, which can be tuned using layer thickness.« less

  10. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries.

    PubMed

    Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo

    2014-12-05

    Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g(-1) at a high rate of 100C even after 1000 cycles.

  11. Homogeneous-oxide stack in IGZO thin-film transistors for multi-level-cell NAND memory application

    NASA Astrophysics Data System (ADS)

    Ji, Hao; Wei, Yehui; Zhang, Xinlei; Jiang, Ran

    2017-11-01

    A nonvolatile charge-trap-flash memory that is based on amorphous indium-gallium-zinc-oxide thin film transistors was fabricated with a homogeneous-oxide structure for a multi-level-cell application. All oxide layers, i.e., tunneling layer, charge trapping layer, and blocking layer, were fabricated with Al2O3 films. The fabrication condition (including temperature and deposition method) of the charge trapping layer was different from those of the other oxide layers. This device demonstrated a considerable large memory window of 4 V between the states fully erased and programmed with the operation voltage less than 14 V. This kind of device shows a good prospect for multi-level-cell memory applications.

  12. Development of multi-layer plastic fuel tanks for Nissan research vehicle-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurihara, Y.; Nakazawa, K.; Ohashi, K.

    1987-01-01

    Plastic fuel tanks are light in weight and rustproof, and have good design flexibility. For those currently in use, however, which are made of mono-layer high-density polyethylene, fuel permeability is too high to meet U.S. evaporative emission standards, which are stricter than those in Japan or the EEC. For minimize fuel permeation, the formation of a barrier layer of polyamide resin by multi-layer (three-resin five-layer) blow molding is considered more promising than sulphonation or fluorination treatment of the polyethylene resin. This paper describes the fuel permeation mechanism, then outlines the development of a multi-layer plastic fuel tank, and discusses itsmore » structural features and the development of resins.« less

  13. Development of eddy current probe for fiber orientation assessment in carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Wincheski, Russell A.; Zhao, Selina

    2018-04-01

    Measurement of the fiber orientation in a carbon fiber composite material is crucial in understanding the load carrying capability of the structure. As manufacturing conditions including resin flow and molding pressures can alter fiber orientation, verification of the as-designed fiber layup is necessary to ensure optimal performance of the structure. In this work, the development of an eddy current probe and data processing technique for analysis of fiber orientation in carbon fiber composites is presented. A proposed directional eddy current probe is modeled and its response to an anisotropic multi-layer conductor simulated. The modeling results are then used to finalize specifications of the eddy current probe. Experimental testing of the fabricated probe is presented for several samples including a truncated pyramid part with complex fiber orientation draped to the geometry for resin transfer molding. The inductively coupled single sided measurement enables fiber orientation characterization through the thickness of the part. The fast and cost-effective technique can be applied as a spot check or as a surface map of the fiber orientations across the structure. This paper will detail the results of the probe design, computer simulations, and experimental results.

  14. Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium

    PubMed Central

    Zhu, Sheng-Fa; Lu, Lei; Cai, Zhen-Bing

    2017-01-01

    The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip. PMID:28384200

  15. Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium.

    PubMed

    Wu, Yan-Ping; Li, Zheng-Yang; Zhu, Sheng-Fa; Lu, Lei; Cai, Zhen-Bing

    2017-01-01

    The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip.

  16. Optimal design of damping layers in SMA/GFRP laminated hybrid composites

    NASA Astrophysics Data System (ADS)

    Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.

    2017-10-01

    This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.

  17. Optimisation of multi-layer rotationally moulded foamed structures

    NASA Astrophysics Data System (ADS)

    Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.

    2018-05-01

    Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4%, and 16% compared with FAC.

  18. Multi-objective optimization of composite structures. A review

    NASA Astrophysics Data System (ADS)

    Teters, G. A.; Kregers, A. F.

    1996-05-01

    Studies performed on the optimization of composite structures by coworkers of the Institute of Polymers Mechanics of the Latvian Academy of Sciences in recent years are reviewed. The possibility of controlling the geometry and anisotropy of laminar composite structures will make it possible to design articles that best satisfy the requirements established for them. Conflicting requirements such as maximum bearing capacity, minimum weight and/or cost, prescribed thermal conductivity and thermal expansion, etc. usually exist for optimal design. This results in the multi-objective compromise optimization of structures. Numerical methods have been developed for solution of problems of multi-objective optimization of composite structures; parameters of the structure of the reinforcement and the geometry of the design are assigned as controlling parameters. Programs designed to run on personal computers have been compiled for multi-objective optimization of the properties of composite materials, plates, and shells. Solutions are obtained for both linear and nonlinear models. The programs make it possible to establish the Pareto compromise region and special multicriterial solutions. The problem of the multi-objective optimization of the elastic moduli of a spatially reinforced fiberglass with stochastic stiffness parameters has been solved. The region of permissible solutions and the Pareto region have been found for the elastic moduli. The dimensions of the scatter ellipse have been determined for a multidimensional Gaussian probability distribution where correlation between the composite's properties being optimized are accounted for. Two types of problems involving the optimization of a laminar rectangular composite plate are considered: the plate is considered elastic and anisotropic in the first case, and viscoelastic properties are accounted for in the second. The angle of reinforcement and the relative amount of fibers in the longitudinal direction are controlling parameters. The optimized properties are the critical stresses, thermal conductivity, and thermal expansion. The properties of a plate are determined by the properties of the components in the composite, eight of which are stochastic. The region of multi-objective compromise solutions is presented, and the parameters of the scatter ellipses of the properties are given.

  19. Multi-layer articles and methods of making same

    DOEpatents

    Fritzemeier, Leslie G.; Zhang, Wei; Palm, Walter C.; Rupich, Martin W.

    2005-05-17

    The invention relates to superconductor articles, and compositions and methods for making superconductor articles. The methods can include using a precursor solution having a relatively small concentration of total free acid. The articles can include more than one layer of superconductor material in which at least one layer of superconductor material can be formed by a solution process, such as a solution process involving the use of metalorganic precursors.

  20. Structure and chemical composition of layers adsorbed at interfaces with champagne.

    PubMed

    Aguié-Béghin, V; Adriaensen, Y; Péron, N; Valade, M; Rouxhet, P; Douillard, R

    2009-11-11

    The structure and the chemical composition of the layer adsorbed at interfaces involving champagne have been investigated using native champagne, as well as ultrafiltrate (UFch) and ultraconcentrate (UCch) obtained by ultrafiltration with a 10(4) nominal molar mass cutoff. The layer adsorbed at the air/liquid interface was examined by surface tension and ellipsometry kinetic measurements. Brewster angle microscopy demonstrated that the layer formed on polystyrene by adsorption or drop evaporation was heterogeneous, with a domain structure presenting similarities with the layer adsorbed at the air/liquid interface. The surface chemical composition of polystyrene with the adlayer was determined by X-ray photoelectron spectroscopy (XPS). The contribution of champagne constituents varied according to the liquid (native, UFch, and UCch) and to the procedure of adlayer formation (evaporation, adsorption, and adsorption + rinsing). However, their chemical composition was not significantly influenced either by ultrafiltration or by the procedure of deposition on polystyrene. Modeling this composition in terms of classes of model compounds gave approximately 35% (w/w) of proteins and 65% (w/w) of polysaccharides. In the adlayer, the carboxyl groups or esters represent about 18% of carbon due to nonpolypeptidic compounds, indicating the presence of either uronic acids in the complex structure of pectic polysaccharides or of polyphenolic esters. This structural and chemical information and its relationship with the experimental procedures indicate that proteins alone cannot be used as a realistic model for the macromolecules forming the adsorption layer of champagne. Polysaccharides, the other major macromolecular components of champagne wine, are assembled with proteins at the interfaces, in agreement with the heterogeneous character of the adsorbed layer at interfaces.

  1. Investigation into Composites Property Effect on the Forming Limits of Multi-Layer Hybrid Sheets Using Hydroforming Technology

    NASA Astrophysics Data System (ADS)

    Liu, Shichen; Lang, Lihui; Guan, Shiwei; Alexandrov, Seigei; Zeng, Yipan

    2018-04-01

    Fiber-metal laminates (FMLs) such as Kevlar reinforced aluminum laminate (ARALL), Carbon reinforced aluminum laminate (CARALL), and Glass reinforced aluminum laminate (GLARE) offer great potential for weight reduction applications in automobile and aerospace construction. In order to investigate the feasibility for utilizing such materials in the form of laminates, sheet hydroforming technology are studied under the condition of uniform blank holder force for three-layered aluminum and aluminum-composite laminates using orthogonal carbon and Kevlar as well as glass fiber in the middle. The experimental results validate the finite element results and they exhibited that the forming limit of glass fiber in the middle is the highest among the studied materials, while carbon fiber material performs the worst. Furthermore, the crack modes are different for the three kinds of fiber materials investigated in the research. This study provides fundamental guidance for the selection of multi-layer sheet materials in the future manufacturing field.

  2. Millimeter Wave Holographical Inspection of Honeycomb Composites

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Kharkovsky, S.; Zoughi, R.; Stefes, G.; Hepburn, Frank L.; Hepburn, Frank L.

    2007-01-01

    Multi-layered composite structures manufactured with honeycomb, foam or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as disbond, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz - 300 GHz with corresponding wavelengths of 10 - 1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.

  3. Millimeter Wave Holographical Inspection of Honeycomb Composites

    NASA Astrophysics Data System (ADS)

    Case, J. T.; Kharkovsky, S.; Zoughi, R.; Steffes, G.; Hepburn, F. L.

    2008-02-01

    Multi-layered composite structures manufactured with honeycomb, foam, or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites, standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as isband, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz-300 GHz with corresponding wavelengths of 10-1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.

  4. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polypyrrole composite counter electrodes prepared by electrophoresis/electrochemical polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jun; Niu, Hai-jun; Wen, Hai-lin

    2013-03-15

    Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor ofmore » electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R{sub ct} of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I{sub 3}{sup −} reduction can potentially be used as the CE in a high-performance DSSC.« less

  5. Non-destructive inspection using HTS SQUID on aluminum liner covered by CFRP

    NASA Astrophysics Data System (ADS)

    Hatsukade, Y.; Yotsugi, K.; Sakaguchi, Y.; Tanaka, S.

    2007-10-01

    An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels.

  6. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessel, Silvia; Harvey, David

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifyingmore » the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on performance/catalyst degradation. The key accomplishments of this project are: • The development of a molecular-dynamics based description of the carbon supported-Pt and ionomer system • The development of a composition-based, 1D-statistical Unit Cell Performance model • A modified and improved multi-pathway ORR model • An extension of the existing micro-structural catalyst model to transient operation • The coupling of a Pt Dissolution model to the modified ORR pathway model • The Development A Semi-empirical carbon corrosion model • The integration and release of an open-source forward predictive MEA performance and degradation model • Completion of correlations of BOT (beginning of test) and EOT (end of test) performance loss breakdown with cathode catalyst layer composition, morphology, material properties, and operational conditions • Catalyst layer durability windows and design curves • A design flow path of interactions from materials properties and catalyst layer effective properties to performance loss breakdown for virgin and degraded catalyst layers In order to ensure the best possible user experience we will perform a staged release of the software leading up to the webinar scheduled in October 2013. The release schedule will be as follows (please note that the manual will be released with the beta release as direct support is provided in Stage 1): • Stage 0 - Internal Ballard Release o Cross check of compilation and installation to ensure machine independence o Implement code on portable virtual machine to allow for non-UNIX use (pending) • Stage 1 - Alpha Release o The model code will be made available via a GIT, sourceforge, or other repository (under discussion at Ballard) for download and installation by a small pre-selected group of users o Users will be given three weeks to install, apply, and evaluate features of the code, providing feedback on issues or software bugs that require correction prior to beta release • Stage 2 - Beta Release o The model code repository is opened to the general public on a beta release concept, with a mechanism for bug tracking and feedback from a large user group o Code will be tracked and patched for any discovered bugs or relevant feedback from the user community, upon the completion of three months without a major bug submission the code will be moved to a full version release • Stage 3 - Full Version Release o Code is version to revision 1.0 and that version is frozen in development/patching« less

  7. Layered Composite Analysis Capability

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.; Cole, J. G.

    1985-01-01

    Laminated composite material construction is gaining popularity within industry as an attractive alternative to metallic designs where high strength at reduced weights is of prime consideration. This has necessitated the development of an effective analysis capability for the static, dynamic and buckling analyses of structural components constructed of layered composites. Theoretical and user aspects of layered composite analysis and its incorporation into CSA/NASTRAN are discussed. The availability of stress and strain based failure criteria is described which aids the user in reviewing the voluminous output normally produced in such analyses. Simple strategies to obtain minimum weight designs of composite structures are discussed. Several example problems are presented to demonstrate the accuracy and user convenient features of the capability.

  8. Modification of Structure and Tribological Properties of the Surface Layer of Metal-Ceramic Composite under Electron Irradiation in the Plasmas of Inert Gases

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Ivanov, K. V.; Mohovikov, A. A.; Yu, B.; Xu, Yu; Zhong, L.

    2018-01-01

    Metal-ceramic composites are the main materials for high-load parts in tribomechanical systems. Modern approaches to extend the operation life of tribomechanical systems are based on increasing the strength and tribological properties of the surface layer having 100 to 200 microns in depth. The essential improvement of the properties occurs when high dispersed structure is formed in the surface layer using high-energy processing. As a result of the dispersed structure formation the more uniform distribution of elastic stresses takes place under mechanical or thermal action, the energy of stress concentrators emergence significantly increases and the probability of internal defects formation reduces. The promising method to form the dispersed structure in the surface layer is pulse electron irradiation in the plasmas of inert gases combining electron irradiation and ion bombardment in one process. The present work reports upon the effect of pulse electron irradiation in plasmas of different inert gases with different atomic mass and ionization energy on the structure and tribological properties of the surface layer of TiC/(Ni-Cr) metal-ceramic composite with the volume ratio of the component being 50:50. It is experimentally shown that high-dispersed heterophase structure with a fraction of nanosized particles is formed during the irradiation. Electron microscopy study reveals that refining of the initial coarse TiC particles occurs via their dissolution in the molten metal binder followed by the precipitation of secondary fine particles in the interparticle layers of the binder. The depth of modified layer and the fraction of nanosized particles increase when the atomic number of the plasma gas increases and ionization energy decreases. The wear resistance of metal-ceramic composite improves in accordance to the formation of nanocrystalline structure in the surface layer.

  9. Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.

  10. Structure of electroexplosive TiC-Ni composite coatings on steel after electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Romanov, D. A.; Goncharova, E. N.; Budovskikh, E. A.; Gromov, V. E.; Ivanov, Yu. F.; Teresov, A. D.; Kazimirov, S. A.

    2016-11-01

    The phase and elemental compositions of the surface layer in Hardox 450 steel after electroexplosive spraying of a TiC-Ni composite coating and subsequent irradiation by a submillisecond high-energy electron beam are studied by the methods of modern physical metallurgy. The electron-beam treatment conditions that result in the formation of dense surface layers having high luster and a submicrocrystalline structure based on titanium carbide and nickel are found. It is shown that electron-beam treatment of an electroexplosive coating performed under melting conditions leads to the formation of a homogeneous (in structure and concentration) surface layer.

  11. Novel technique for fabrication of multi-layered microcoils in microelectromechanical systems (MEMS) applications

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Pin; Qian, Jiangyuan; Bachman, Mark; Congdon, Philip; Li, Guann-pyng

    2002-07-01

    A novel planarization technique, compressive molding planarization (CMP) is developed for implementation of a multi-layered micro coil device. Applying CMP and other micromachining techniques, a multi-layered micro coil device has been designed and fabricated, and its use in the magnetic micro actuators for hard disk drive applications has been demonstrated, showing that it can produce milli-Newton of magnetic force suitable for driving a micro actuator. The novel CMP technique can be equally applicable in other MEMS devices fabrication to ease the process integration for the complicated structure.

  12. Honeycomb-laminate composite structure

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Parker, J. A. (Inventor)

    1977-01-01

    A honeycomb-laminate composite structure was comprised of: (1) a cellular core of a polyquinoxaline foam in a honeycomb structure, and (2) a layer of a noncombustible fibrous material impregnated with a polyimide resin laminated on the cellular core. A process for producing the honeycomb-laminate composite structure and articles containing the honeycomb-laminate composite structure is described.

  13. Heterogeneous multi-layered IF steel with simultaneous high strength and good ductility

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Jiang, Xiaojuan; Wang, Yuhui; Chen, Qiang; Chen, Zhen; Zhang, Yonghong; Huang, Tianlin; Wu, Guilin

    2017-07-01

    Multi-layered IF steel samples were designed and fabricated by hot compression followed by cold forging of an alternating stack of cold-rolled and annealed IF steel sheets, with an aim to improve the strength of the material without losing much ductility. A very good combination of strength and ductility was achieved by proper annealing after deformation. Microstructural analysis by electron back-scatter diffraction revealed that the good combination of strength and ductility is related to a characteristic hierarchical structure that is characterized by layered and lamella structures with different length scales.

  14. Enhancement of the output emission efficiency of thin-film photoluminescence composite structures based on PbSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anisimova, N. P.; Tropina, N. E., E-mail: Mazina_ne@mail.ru; Tropin, A. N.

    2010-12-15

    The opportunity to increase the output emission efficiency of PbSe-based photoluminescence structures by depositing an antireflection layer is analyzed. A model of a three-layer thin film where the central layer is formed of a composite medium is proposed to calculate the reflectance spectra of the system. In von Bruggeman's approximation of the effective medium theory, the effective permittivity of the composite layer is calculated. The model proposed in the study is used to calculate the thickness of the arsenic chalcogenide (AsS{sub 4}) antireflection layer. The optimal AsS{sub 4} layer thickness determined experimentally is close to the results of calculation, andmore » the corresponding gain in the output photoluminescence efficiency is as high as 60%.« less

  15. Effect of additional elements on compositional modulated atomic layered structure of hexagonal Co{sub 80}Pt{sub 20} alloy films with superlattice diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinata, Shintaro; Research Fellowship Division Japan Society for the Promotion of Science; Yamane, Akira

    2016-05-15

    The effect of additional element on compositionally modulated atomic layered structure of hexagonal Co{sub 80}Pt{sub 20} alloy films with superlattice diffraction was investigated. In this study it is found that the addition of Cr or W element to Co{sub 80}Pt{sub 20} alloy film shows less deterioration of hcp stacking structure and compositionally modulated atomic layer stacking structure as compared to Si or Zr or Ti with K{sub u} of around 1.4 or 1.0 × 10{sup 7} erg/cm{sup 3} at 5 at.% addition. Furthermore, for O{sub 2} addition of O{sub 2} ≥ 5.0 × 10{sup −3} Pa to CoPt alloy, compositionallymore » modulated atomic layer stacking structure will be deteriorated with enhancement of formation of hcp stacking structure which leads higher K{sub u} of 1.0 × 10{sup 7} erg/cm{sup 3}.« less

  16. Technologies for Future Precision Strike Missile Systems - Missile Aeromechanics Technology

    DTIC Science & Technology

    2001-07-01

    structure materials, composite structure materials, hypersonic insulation materials, multi-spectral domes, and reduced parts count structure. Introduction...high control effectiveness. An inherent disadvantage of a forward swept surface is increased potential for aeroelastic instability. Composite structure...is synergistic with forward swept surfaces because the higher stiffness of composites mitigates aeroelastic instability. Composite material may also

  17. Determination of composition of non-homogeneous GaInNAs layers

    NASA Astrophysics Data System (ADS)

    Pucicki, D.; Bielak, K.; Ściana, B.; Radziewicz, D.; Latkowska-Baranowska, M.; Kováč, J.; Vincze, A.; Tłaczała, M.

    2016-01-01

    Dilute nitride GaInNAs alloys grown on GaAs have become perspective materials for so called low-cost GaAs-based devices working within the optical wavelength range up to 1.6 μm. The multilayer structures of GaInNAs/GaAs multi-quantum well (MQW) samples usually are analyzed by using high resolution X-ray diffraction (HRXRD) measurements. However, demands for precise structural characterization of the GaInNAs containing heterostructures requires taking into consideration all inhomogeneities of such structures. This paper describes some of the material challenges and progress in structural characterization of GaInNAs layers. A new algorithm for structural characterization of dilute nitrides which bounds contactless electro-reflectance (CER) or photo-reflectance (PR) measurements and HRXRD analysis results together with GaInNAs quantum well band diagram calculation is presented. The triple quantum well (3QW) GaInNAs/GaAs structures grown by atmospheric-pressure metalorganic vapor-phase epitaxy (AP-MOVPE) were investigated according to the proposed algorithm. Thanks to presented algorithm, more precise structural data including the nonuniformity in the growth direction of GaInNAs/GaAs QWs were achieved. Therefore, the proposed algorithm is mentioned as a nondestructive method for characterization of multicomponent inhomogeneous semiconductor structures with quantum wells.

  18. Design, simulation and testing of a novel radial multi-pole multi-layer magnetorheological brake

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Li, Hua; Jiang, Xuezheng; Yao, Jin

    2018-02-01

    This paper deals with design, simulation and experimental testing of a novel radial multi-pole multi-layer magnetorheological (MR) brake. This MR brake has an innovative structural design with superposition principle of two magnetic fields generated by the inner coils and the outer coils. The MR brake has several media layers of magnetorheological (MR) fluid located between the inner coils and the outer coils, and it can provide higher torque and higher torque density than conventional single-disk or multi-disk or multi-pole single-layer MR brakes can. In this paper, a brief introduction to the structure of the proposed MR brake was given first. Then, theoretical analysis of the magnetic circuit and the braking torque was conducted. In addition, a 3D electromagnetic model of the MR brake was developed to simulate and examine the magnetic flux intensity and corresponding braking torque. A prototype of the brake was fabricated and several tests were carried out to validate its torque capacity. The results show that the proposed MR brake can produce a maximum braking torque of 133 N m and achieve a high torque density of 25.0 kN m-2, a high torque range of 42 and a high torque-to-power ratio of 0.95 N m W-1.

  19. Structure and Mechanical Properties of CrTiAlN/TiAlN Composite Coatings Deposited by Multi-Arc Ion Plating

    NASA Astrophysics Data System (ADS)

    Yan, Shaojian; Tian, Canxin; Huang, Zhihong; Yang, Bing; Fu, Dejun

    2014-10-01

    CrTiAlN/TiAlN composite coatings were deposited on cemented carbide by using a home-made industrial scale multi-arc ion plating system. The samples were studied by X-ray diffraction, scanning electron microscopy (SEM), microhardness and ball-on-disk testing. The properties of the CrTiAlN/TiAlN coatings were significantly influenced by the microstructure and the deposition time ratio of TiAlN over CrTiAlN layers. With the increase of deposition time ratio, the microhardness of CrTiAlN/TiAlN increased from 28.6 GPa to 37.5 GPa, much higher than that of CrTiAlN coatings. The friction coefficients of the CrTiAlN/TiAlN coatings were higher than those of CrTiAlN coatings against a cemented carbide ball. The microhardness of the CrTiAlN/TiAlN coatings was changed after annealing at 800°C, and the friction coefficients of the annealed coatings were increased against the cemented carbide ball.

  20. Structural characterisation of parotid and whole mouth salivary pellicles adsorbed onto DPI and QCMD hydroxyapatite sensors.

    PubMed

    Ash, Anthony; Burnett, Gary R; Parker, Roger; Ridout, Mike J; Rigby, Neil M; Wilde, Peter J

    2014-04-01

    In this study we investigated the differences in the properties of pellicles formed from stimulated parotid saliva (PS), which contains little or no mucin; and stimulated whole mouth saliva (WMS), which contains mainly two types of mucin: MUC5B and MUC7. By contacting WMS and PS with quartz-crystal microbalance with dissipation monitoring (QCM-D) and dual polarisation interferometer (DPI) hydroxyapatite (the main component of enamel) coated sensors, we observed the formation and structure of the respective salivary pellicles. As this was the first time that DPI hydroxyapatite sensors have been used to measure salivary pellicle adsorption; the techniques combined allowed us to measure the hydrated mass, dry mass, thickness and viscoelastic properties of the pellicle; but also to record the density of the PS and WMS formed pellicles. Subsequently, the PS pellicle was shown to form a denser layer than WMS pellicle; which would suggest that the proteins present in PS are also responsible for forming the dense basal layer of the acquired enamel pellicle. Whereas proteins present in the WMS are more likely to help form the softer outer layer of the pellicle. The data presented help to further define the mechanisms leading to the multi-layered structure of the salivary pellicle and demonstrate that salivary composition has an important effect on the structural properties of the adsorbed pellicle. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.

    PubMed

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin

    2015-03-01

    Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.

  2. PEDOT:PSS as multi-functional composite material for enhanced Li-air-battery air electrodes.

    PubMed

    Yoon, Dae Ho; Yoon, Seon Hye; Ryu, Kwang-Sun; Park, Yong Joon

    2016-01-27

    We propose PSS as a multi-functional composite material for an enhanced Li-air-battery air electrode. The PSS layer was coated on the surface of carbon (graphene) using simple method. A electrode containing PSS-coated graphene (PEDOT electrode) could be prepared without binder (such as PVDF) because of high adhesion of PSS. PEDOT electrode presented considerable discharge and charge capacity at all current densities. These results shows that PSS acts as a redox reaction matrix and conducting binder in the air electrode. Moreover, after cycling, the accumulation of reaction products due to side reaction in the electrode was significantly reduced through the use of PSS. This implies that PSS coating layer can suppress the undesirable side reactions between the carbon and electrolyte (and/or Li2O2), which causes enhanced Li-air cell cyclic performance.

  3. Cold isopressing method

    DOEpatents

    Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi

    2003-01-01

    A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.

  4. Modelling mass diffusion for a multi-layer sphere immersed in a semi-infinite medium: application to drug delivery.

    PubMed

    Carr, Elliot J; Pontrelli, Giuseppe

    2018-04-12

    We present a general mechanistic model of mass diffusion for a composite sphere placed in a large ambient medium. The multi-layer problem is described by a system of diffusion equations coupled via interlayer boundary conditions such as those imposing a finite mass resistance at the external surface of the sphere. While the work is applicable to the generic problem of heat or mass transfer in a multi-layer sphere, the analysis and results are presented in the context of drug kinetics for desorbing and absorbing spherical microcapsules. We derive an analytical solution for the concentration in the sphere and in the surrounding medium that avoids any artificial truncation at a finite distance. The closed-form solution in each concentric layer is expressed in terms of a suitably-defined inverse Laplace transform that can be evaluated numerically. Concentration profiles and drug mass curves in the spherical layers and in the external environment are presented and the dependency of the solution on the mass transfer coefficient at the surface of the sphere analyzed. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Multi-functional carbon microspheres with double shell layers for flame retardant poly (ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Xue, Baoxia; Niu, Mei; Yang, Yongzhen; Bai, Jie; Song, Yinghao; Peng, Yun; Liu, Xuguang

    2018-03-01

    Carbon microspheres (CMSs) as a core material had been coated by two capsule walls: an inorganic material of magnesium hydroxide (MH) as inner shell layer and an organic material of poly (ethylene terephthalate) (PET) as outer shell layer. MH coating CMSs (MCMSs) were fabricated by liquid phase deposition method, then grafted 3-Aminopropyltriethoxysilane (APTS) to obtain the Si-MCMSs. Microencapsulated Si-MCMSs (PMCMSs) was prepared by in situ polymerization method. Morphology structure, dispersion, flame retardant and other properties of PMCMSs have been investigated. A series of PET blends were prepared by melt compounding. The results showed that MH and PET as two layers were coated on CMSs surface with the optimal thickness of about 70 nm. The PMCMSs owned better dispersion in PET matrix. Compared with MCMSs/PET composites, the mechanical property of PMCMSs/PET composites had significantly increased because of the strong interface binding force between PMCMSs and PET matrix. Moreover, PMCMSs was proved to be an effective flame retardant. For PMCMSs/PET with 2 wt% PMCMSs, the limiting oxygen index (LOI) value increased from 21.0% (pristine PET) to 27.2%, and the peak heat release rate (pk-HRR) decreased from 513.22 kW/m2 to 352.14 kW/m2. The decreased smoke production rate (SPR) and total smoke production (TSP) values demonstrated PMCMSs suppressed the smoke production. The increased Fire performance index (FPI) value illustrated PMCMSs significantly reduced the fire risk of PET. Overall, the two capsular walls endowed the PMCMSs/PET composites with good mechanical and flame-retardant properties.

  6. Functional morphology of the sound-generating labia in the syrinx of two songbird species.

    PubMed

    Riede, Tobias; Goller, Franz

    2010-01-01

    In songbirds, two sound sources inside the syrinx are used to produce the primary sound. Laterally positioned labia are passively set into vibration, thus interrupting a passing air stream. Together with subsyringeal pressure, the size and tension of the labia determine the spectral characteristics of the primary sound. Very little is known about how the histological composition and morphology of the labia affect their function as sound generators. Here we related the size and microstructure of the labia to their acoustic function in two songbird species with different acoustic characteristics, the white-crowned sparrow and zebra finch. Histological serial sections of the syrinx and different staining techniques were used to identify collagen, elastin and hyaluronan as extracellular matrix components. The distribution and orientation of elastic fibers indicated that the labia in white-crowned sparrows are multi-layered structures, whereas they are more uniformly structured in the zebra finch. Collagen and hyaluronan were evenly distributed in both species. A multi-layered composition could give rise to complex viscoelastic properties of each sound source. We also measured labia size. Variability was found along the dorso-ventral axis in both species. Lateral asymmetry was identified in some individuals but not consistently at the species level. Different size between the left and right sound sources could provide a morphological basis for the acoustic specialization of each sound generator, but only in some individuals. The inconsistency of its presence requires the investigation of alternative explanations, e.g. differences in viscoelastic properties of the labia of the left and right syrinx. Furthermore, we identified attachments of syringeal muscles to the labia as well as to bronchial half rings and suggest a mechanism for their biomechanical function.

  7. Functional morphology of the sound-generating labia in the syrinx of two songbird species

    PubMed Central

    Riede, Tobias; Goller, Franz

    2010-01-01

    In songbirds, two sound sources inside the syrinx are used to produce the primary sound. Laterally positioned labia are passively set into vibration, thus interrupting a passing air stream. Together with subsyringeal pressure, the size and tension of the labia determine the spectral characteristics of the primary sound. Very little is known about how the histological composition and morphology of the labia affect their function as sound generators. Here we related the size and microstructure of the labia to their acoustic function in two songbird species with different acoustic characteristics, the white-crowned sparrow and zebra finch. Histological serial sections of the syrinx and different staining techniques were used to identify collagen, elastin and hyaluronan as extracellular matrix components. The distribution and orientation of elastic fibers indicated that the labia in white-crowned sparrows are multi-layered structures, whereas they are more uniformly structured in the zebra finch. Collagen and hyaluronan were evenly distributed in both species. A multi-layered composition could give rise to complex viscoelastic properties of each sound source. We also measured labia size. Variability was found along the dorso-ventral axis in both species. Lateral asymmetry was identified in some individuals but not consistently at the species level. Different size between the left and right sound sources could provide a morphological basis for the acoustic specialization of each sound generator, but only in some individuals. The inconsistency of its presence requires the investigation of alternative explanations, e.g. differences in viscoelastic properties of the labia of the left and right syrinx. Furthermore, we identified attachments of syringeal muscles to the labia as well as to bronchial half rings and suggest a mechanism for their biomechanical function. PMID:19900184

  8. High temperature insulation barrier composite

    NASA Technical Reports Server (NTRS)

    Onstott, Joseph W. (Inventor)

    1989-01-01

    A composite material suitable for providing insulation for the nozzle structure of the Space Shuttle and other similar surfaces is disclosed. The composite layer is comprised of an outer skin layer of nickel chromium and an interleaved inner region comprising a top layer of nickel chromium foil which acts as a primary convective shield. There are at least two layers of alumina batting adjacent to the layers of silicon carbide fabric. An additional layer of nickel chromium foil is used as a secondary convective shield. The composite is particularly advantageous for use as nozzle insulation because of its ability to withstand high reentry temperatures, its flexibility, oxidation resistance, low conductivity, and light weight.

  9. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  10. Composite passive damping struts for large precision structures

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P. (Inventor)

    1993-01-01

    In the field of viscoelastic dampers, a new strut design comprises a viscoelastic material sandwiched between multiple layers, some of which layers bear and dampen load force. In one embodiment, the layers are composite plies of opposing orientation. In another embodiment, the strut utilizes a viscoelastic layer sandwiched between V-shaped composite plies. In a third embodiment, a viscoelastic layer is sandwiched between sine-shaped plies. Strut strength is equal to or greater than conventional aluminum struts due to the unique high interlaminar shear ply design.

  11. A Highly Sensitive Resistive Pressure Sensor Based on a Carbon Nanotube-Liquid Crystal-PDMS Composite.

    PubMed

    Pan, Jin; Liu, Shiyu; Yang, Yicheng; Lu, Jiangang

    2018-06-08

    Resistive pressure sensors generally employ microstructures such as pores and pyramids in the active layer or on the electrodes to reduce the Young’s modulus and improve the sensitivity. However, such pressure sensors always exhibit complex fabrication process and have difficulties in controlling the uniformity of microstructures. In this paper, we demonstrated a highly sensitive resistive pressure sensor based on a composite comprising of low-polarity liquid crystal (LPLC), multi-walled carbon nanotube (MWCNT), and polydimethylsiloxane (PDMS) elastomer. The LPLC in the PDMS forms a polymer-dispersed liquid crystal (PDLC) structure which can not only reduce the Young’s modulus but also contribute to the construction of conductive paths in the active layer. By optimizing the concentration of LC in PDMS elastomer, the resistive pressure sensor shows a high sensitivity of 5.35 kPa −1 , fast response (<150 ms), and great durability. Fabrication process is also facile and the uniformity of the microstructures can be readily controlled. The pressure sensor offers great potential for applications in emerging wearable devices and electronic skins.

  12. Development of multi-component explosive lenses for arbitrary phase velocity generation

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Huneault, Justin; Petel, Oren; Goroshin, Sam; Frost, David; Higgins, Andrew; Zhang, Fan

    2013-06-01

    The combination of explosives with different detonation velocities and lens-like geometric shaping is a well-established technique for producing structured detonation waves. This technique can be extended to produce nearly arbitrary detonation phase velocities for the purposes of sequentially imploding pressurized tubes or driving Mach disks through high-density metalized explosives. The current study presents the experimental development of accelerating, multi-component lenses designed using simple geometric optics and idealized front curvature. The fast explosive component is either Composition C4 (VOD = 8 km/s) or Primasheet 1000 (VOD = 7 km/s), while the slow component varies from heavily amine-diluted nitromethane (amine mass fraction exceeding 20%) to packed metal and glass particle beds wetted with amine-sensitized nitromethane. The applicability of the geometric optic analog to such highly heterogeneous explosives is also investigated. The multi-layered lens technique is further developed as a means of generating a directed mass and momentum flux of metal particles via Mach-disk formation and jetting in circular and oval planar lenses.

  13. Facile Fabrication of Composite Membranes with Dual Thermo- and pH-Responsive Characteristics.

    PubMed

    Ma, Bing; Ju, Xiao-Jie; Luo, Feng; Liu, Yu-Qiong; Wang, Yuan; Liu, Zhuang; Wang, Wei; Xie, Rui; Chu, Liang-Yin

    2017-04-26

    Facile fabrication of novel functional membranes with excellent dual thermo- and pH-responsive characteristics has been achieved by simply designing dual-layer composite membranes. pH-Responsive poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers and polystyrene blended with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) nanogels are respectively used to construct the top layer and bottom layer of composite membranes. The stretching/coiling conformation changes of the P4VP chains around the pK a (∼3.5-4.5) provide the composite membranes with extraordinary pH-responsive characteristics, and the volume phase transitions of PNIPAM nanogels at the pore/matrix interfaces in the bottom layer around the volume phase transition temperature (VPTT, ∼33 °C) provide the composite membranes with great thermoresponsive characteristics. The microstructures, permeability performances, and dual stimuli-responsive characteristics can be well tuned by adjusting the content of PNIPAM nanogels and the thickness of the PS-b-P4VP top layer. The water fluxes of the composite membranes can be changed in order of magnitude by changing the environment temperature and pH, and the dual thermo- and pH-responsive permeation performances of the composite membranes are satisfactorily reversible and reproducible. The membrane fabrication strategy in this work provides valuable guidance for further development of dual stimuli-responsive membranes or even multi stimuli-responsive membranes.

  14. Optimization design of wireless charging system for autonomous robots based on magnetic resonance coupling

    NASA Astrophysics Data System (ADS)

    Wang, Junhua; Hu, Meilin; Cai, Changsong; Lin, Zhongzheng; Li, Liang; Fang, Zhijian

    2018-05-01

    Wireless charging is the key technology to realize real autonomy of mobile robots. As the core part of wireless power transfer system, coupling mechanism including coupling coils and compensation topology is analyzed and optimized through simulations, to achieve stable and practical wireless charging suitable for ordinary robots. Multi-layer coil structure, especially double-layer coil is explored and selected to greatly enhance coupling performance, while shape of ferrite shielding goes through distributed optimization to guarantee coil fault tolerance and cost effectiveness. On the basis of optimized coils, primary compensation topology is analyzed to adopt composite LCL compensation, to stabilize operations of the primary side under variations of mutual inductance. Experimental results show the optimized system does make sense for wireless charging application for robots based on magnetic resonance coupling, to realize long-term autonomy of robots.

  15. Optimization of SMA layers in composite structures to enhance damping

    NASA Astrophysics Data System (ADS)

    Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.

    2016-04-01

    The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.

  16. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates.

    PubMed

    Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug

    2017-06-02

    We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

  17. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates

    NASA Astrophysics Data System (ADS)

    Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug

    2017-06-01

    We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

  18. Multi-phase back contacts for CIS solar cells

    DOEpatents

    Rockett, A.A.; Yang, L.C.

    1995-12-19

    Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe{sub 2} where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor. 15 figs.

  19. Multi-phase back contacts for CIS solar cells

    DOEpatents

    Rockett, Angus A.; Yang, Li-Chung

    1995-01-01

    Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe.sub.2 where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor.

  20. Thermodynamic and structural insights into nanocomposites engineering by comparing two materials assembly techniques for graphene.

    PubMed

    Zhu, Jian; Zhang, Huanan; Kotov, Nicholas A

    2013-06-25

    Materials assembled by layer-by-layer (LBL) assembly and vacuum-assisted flocculation (VAF) have similarities, but a systematic study of their comparative advantages and disadvantages is missing. Such a study is needed from both practical and fundamental perspectives aiming at a better understanding of structure-property relationships of nanocomposites and purposeful engineering of materials with unique properties. Layered composites from polyvinyl alcohol (PVA) and reduced graphene (RG) are made by both techniques. We comparatively evaluate their structure, mechanical, and electrical properties. LBL and VAF composites demonstrate clear differences at atomic and nanoscale structural levels but reveal similarities in micrometer and submicrometer organization. Epitaxial crystallization and suppression of phase transition temperatures are more pronounced for PVA in LBL than for VAF composites. Mechanical properties are virtually identical for both assemblies at high RG contents. We conclude that mechanical properties in layered RG assemblies are largely determined by the thermodynamic state of PVA at the polymer/nanosheet interface rather than the nanometer scale differences in RG packing. High and nearly identical values of toughness for LBL and VAF composites reaching 6.1 MJ/m(3) observed for thermodynamically optimal composition confirm this conclusion. Their toughness is the highest among all other layered assemblies from RG, cellulose, clay, etc. Electrical conductivity, however, is more than 10× higher for LBL than for VAF composites for the same RG contents. Electrical properties are largely determined by the tunneling barrier between RG sheets and therefore strongly dependent on atomic/nanoscale organization. These findings open the door for application-oriented methods of materials engineering using both types of layered assemblies.

  1. Generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures

    NASA Astrophysics Data System (ADS)

    Pan'kov, A. A.

    1997-05-01

    The feasibility of using a generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures has been examined. Using this method, the problem is reduced to solution of simpler special averaged problems for composites with single inclusions and corresponding transition layers in the medium examined. The dimensions of the transition layers are defined by correlation radii of the composite random structure of the composite, while the heterogeneous elastic properties of the transition layers take account of the probabilities for variation of the size and configuration of the inclusions using averaged special indicator functions. Results are given for a numerical calculation of the averaged indicator functions and analysis of the effect of the micropores in the matrix-fiber interface region on the effective elastic properties of unidirectional fiberglass—epoxy using the generalized self-consistent method and compared with experimental data and reported solutions.

  2. Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan

    2016-01-01

    Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827

  3. Skin aging as a mechanical phenomenon: The main weak links

    PubMed Central

    Kruglikov, Ilja L.; Scherer, Philipp E.

    2018-01-01

    From a mechanical point of view, human skin appears as a layered composite containing the stiff thin cover layer presented by the stratum corneum, below which are the more compliant layers of viable epidermis and dermis and further below the much more compliant adjacent layer of subcutaneous white adipose tissue (sWAT). Upon exposure to a strain, such a multi-layer system demonstrates structural instabilities in its stiffer layers, which in its simplest form is the wrinkling. These instabilities appear hierarchically when the mechanical strain in the skin exceeds some critical values. Their appearance is mainly dependent on the mismatch in mechanical properties between adjacent skin layers or between the skin and sWAT, on the adhesive strength and thickness ratios between the layers, on their bending and tensile stiffness as well as on the value of the stress existing in single layers. Gradual reduction of elastic fibers in aging significantly reduces the skin’s ability to bend, prompting an up to 4-fold reduction of its stability against wrinkling, thereby explaining the role of these fibers in skin aging. While chronological and extrinsic aging differently modify these parameters, they lead to the same end result, reducing the critical strain required for the onset of instabilities. Comparing of mechanical properties of the skin presented as a bi-, tri- or tetra-layer structure demonstrates the particular importance of the papillary dermis in skin aging and provides the arguments to consider the undulations on the dermal-epidermal and dermal-sWAT interfaces as the result of mechanical bifurcation, leading to structural instabilities inside of the skin. According to this model, anti-aging strategies should focus not as much on the reinforcement of the dermis, but rather aim to treat the elastic mismatch between different adjacent layers in the skin and sWAT as well as the adhesion between these layers.

  4. Complete passive vibration suppression using multi-layered piezoelectric element, inductor, and resistor

    NASA Astrophysics Data System (ADS)

    Yamada, Keisuke

    2017-01-01

    This paper describes passive technique for suppressing vibration in flexible structures using a multi-layered piezoelectric element, an inductor, and a resistor. The objective of using a multi-layered piezoelectric element is to increase its capacitance. A piezoelectric element with a large capacitance value does not require an active electrical circuit to simulate an inductor with a large inductance value. The effect of multi-layering of piezoelectric elements was theoretically analyzed through an equivalent transformation of a multi-layered piezoelectric element into a single-layered piezoelectric element. The governing equations were derived using this equivalent transformation. The effect of the resistances of the inductor and piezoelectric elements were considered because the sum of these resistances may exceed the optimum resistance. The performance of the passive vibration suppression using an LR circuit was compared to that of the method where a resistive circuit is used assuming that the sum of the resistances of the inductor and piezoelectric elements exceeds the optimum resistance. The effectiveness of the proposed method and theoretical analysis was verified through simulations and experiments.

  5. Hybrid Composite Cryogenic Tank Structure

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic temperatures, and will not crack or produce leaks. The outer layer serves as more of a high-performance structural unit for the inner layer, and can handle external environments.

  6. In situ distribution and characterization of the organic content of the oyster shell Crassostrea gigas (Mollusca, Bivalvia).

    PubMed

    Dauphin, Yannicke; Ball, Alexander D; Castillo-Michel, Hiram; Chevallard, Corinne; Cuif, Jean-Pierre; Farre, Bastien; Pouvreau, Stéphane; Salomé, Murielle

    2013-01-01

    Cultivation of commercial oysters is now facing the possible influence of global change in sea water composition, commonly referred to as "ocean acidification". In order to test the potential consequence of the predicted environmental changes, a cultivation experiment was carried out. The left and right valves of the oyster shell Crassostrea gigas differ in their structure; moreover, lenses of non compact layers are irregular. The shell layers of juvenile C. gigas are studied using a variety of highly spatially resolved techniques to establish their composition and structure. Our results confirm the presence of three different calcitic structural types. The role of the lenses of chalky layers is not yet deciplered. Despite a common mineralogy, the elemental composition of the layers differs. The sulphur aminoacids and sulphated polysaccharide contents of the intracrystalline and intercrystalline matrices differ, as well as those of the structural types. The possible different sensitivity of these structures to environmental changes is still unknown. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Investigations into the structure of PEO-layers for understanding of layer formation

    NASA Astrophysics Data System (ADS)

    Friedemann, A. E. R.; Thiel, K.; Haßlinger, U.; Ritter, M.; Gesing, Th. M.; Plagemann, P.

    2018-06-01

    Plasma electrolytic oxidation (PEO) is a type of high-voltage anodic oxidation process capable of producing a thick oxide layer with a wide variety of structural and chemical properties influenced by the electrolytic system. This process enables the combined adjustment of various characteristics, i.e. the morphology and chemical composition. The procedure facilitates the possibility of generating an individual structure as well as forming a crystalline surface in a single step. A highly porous surface with a high crystalline content consisting of titanium dioxide phases is ensured through the process of plasma electrolytic oxidizing pure titanium. In the present study plasma electrolytic oxidized TiO2-layers were investigated regarding their crystallinity through the layer thickness. The layers were prepared with a high applied voltage of 280 V to obtain a PEO-layer with highly crystalline anatase and rutile amounts. Raman spectroscopy and electron backscatter diffraction (EBSD) were selected to clarify the structure of the oxide layer with regard to its crystallinity and phase composition. The composition of the TiO2-phases is more or less irregularly distributed as a result of the higher energy input on the uppermost side of the layer. Scanning transmission electron microscopy (STEM) provided a deeper understanding of the structure and the effects of plasma discharges on the layer. It was observed that the plasma discharges have a strong influence on crystallite formation on top of the oxide layer and also at the boundary layer to the titanium substrate. Therefore, small crystallites of TiO2 could be detected in these regions. In addition, it was shown that amorphous TiO2 phases are formed around the characteristic pore structures, which allows the conclusion to be drawn that a rapid cooling from the gas phase had to take place in these areas.

  8. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  9. Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis

    NASA Astrophysics Data System (ADS)

    Zhigalina, O. M.; Doludenko, I. M.; Khmelenin, D. N.; Zagorskiy, D. L.; Bedin, S. A.; Ivanov, I. M.

    2018-05-01

    The structure of layered Cu/Ni nanowires obtained by template synthesis in 100-nm channels of track membranes has been investigated by transmission and scanning electron microscopy. The phase composition and main structural features of individual nanowires are determined. It is shown that nanowires consist of alternating Ni ( Fm3m) and Cu ( Fm3m) layers with grains up to 100 nm in size. It is found that nanowires contain also copper oxide crystallites up to 20 nm in size. The elemental composition of individual layers and their mutual arrangement are determined.

  10. Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm

    NASA Astrophysics Data System (ADS)

    Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun

    2017-10-01

    A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.

  11. Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure

    NASA Astrophysics Data System (ADS)

    Ji, Hongyu; Zhang, Bo; Wang, Guocui; Wang, Wei; Shen, Jingling

    2018-04-01

    We propose a photo-excited tunable multi-frequency metamaterial (MM) switch that can be used in the terahertz region. This metamaterial switch is composed of a polyimide substrate and a hybrid metal-semiconductor square split-ring resonator (SRR) with two gaps, with various semiconductors placed in critical regions of the metallic resonator. By changing the incident pump power, we were able to tune the conductivity of the diverse semiconductors filling the gaps of the SRR, and by using an external exciting beam, we were able to modulate the resonant absorption properties of the composite metamaterial structure. We demonstrated the tunable multi-frequency metamaterial switch by irradiating the composite metamaterial structure with a pump laser. In addition, we proposed a tunable metamaterial switch based on a circular metallic split-ring resonator.

  12. Assessing dorsal scute microchemistry for reconstruction of shortnose sturgeon life histories

    USGS Publications Warehouse

    Altenritter, Matthew E.; Kinnison, Michael T.; Zydlewski, Gayle B.; Secor, David H.; Zydlewski, Joseph D.

    2015-01-01

    The imperiled status of sturgeons worldwide places priority on the identification and protection of critical habitats. We assessed the micro-structural and micro-chemical scope for a novel calcified structure, dorsal scutes, to be used for reconstruction of past habitat use and group separation in shortnose sturgeon (Acipenser brevirostrum). Dorsal scutes contained a dual-layered structure composed of a thin multi-layered translucent zone lying dorsally above a thicker multi-layered zone. Banding in the thick multi-layered zone correlated strongly with pectoral fin spine annuli supporting the presence of chronological structuring that could contain a chemical record of past environmental exposure. Trace element profiles (Sr:Ca), collected using both wavelength dispersive electron microprobe analysis and laser ablation inductively coupled mass spectrometry, suggest scutes record elemental information useful for tracing transitions between freshwater and marine environments. Moreover, mirror-image like Sr:Ca profiles were observed across the dual-zone structuring of the scute that may indicate duplication of the microchemical profile in a single structure. Additional element:calcium ratios measured in natal regions of dorsal scutes (Ba:Ca, Mg:Ca) suggest the potential for further refinement of techniques for identification of river systems of natal origin. In combination, our results provide proof of concept that dorsal scutes possess the necessary properties to be used as structures for reconstructions of past habitat use in sturgeons. Importantly, scutes may be collected non-lethally and with less injury than current structures, like otoliths and fin spines, affording an opportunity for broader application of microchemical techniques.

  13. Non-destructive evaluation of nano-sized structure of thin film devices by using small angle neutron scattering.

    PubMed

    Shin, E J; Seong, B S; Choi, Y; Lee, J K

    2011-01-01

    Nano-sized multi-layers copper-doped SrZrO3, platinum (Pt) and silicon oxide (SiO2) on silicon substrates were prepared by dense plasma focus (DPF) device with the high purity copper anode tip and analyzed by using small angle neutron scattering (SANS) to establish a reliable method for the non-destructive evaluation of the under-layer structure. Thin film was well formed at the time-to-dip of 5 microsec with stable plasma of DPF. Several smooth intensity peaks were periodically observed when neutron beam penetrates the thin film with multi-layers perpendicularly. The platinum layer is dominant to intensity peaks, where the copper-doped SrZnO3 layer next to the platinum layer causes peak broadening. The silicon oxide layer has less effect on the SANS spectra due to its relative thick thickness. The SANS spectra shows thicknesses of platinum and copper-doped SrZnO3 layers as 53 and 25 nm, respectively, which are well agreement with microstructure observation.

  14. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers.

    PubMed

    Benea, Lidia; Celis, Jean-Pierre

    2016-04-06

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  15. Apulian crust: Top to bottom

    NASA Astrophysics Data System (ADS)

    Amato, Alessandro; Bianchi, Irene; Agostinetti, Nicola Piana

    2014-12-01

    We investigate the crustal seismic structure of the Adria plate using teleseismic receiver functions (RF) recorded at 12 broadband seismic stations in the Apulia region. Detailed models of the Apulian crust, e.g. the structure of the Apulian Multi-layer Platform (AMP), are crucial for assessing the presence of potential décollements at different depth levels that may play a role in the evolution of the Apenninic orogen. We reconstruct S-wave velocity profiles applying a trans-dimensional Monte Carlo method for the inversion of RF data. Using this method, the resolution at the different depth level is completely dictated by the data and we avoid introducing artifacts in the crustal structure. We focus our study on three different key-elements: the Moho depth, the lower crust S-velocity, and the fine-structure of the AMP. We find a well defined and relatively flat Moho discontinuity below the region at 28-32 km depth, possibly indicating that the original Moho is still preserved in the area. The lower crust appears as a generally low velocity layer (average Vs = 3.7 km/s in the 15-26 km depth interval), likely suggestive of a felsic composition, with no significant velocity discontinuities except for its upper and lower boundaries where we find layering. Finally, for the shallow structure, the comparison of RF results with deep well stratigraphic and sonic log data allowed us to constrain the structure of the AMP and the presence of underlying Permo-Triassic (P-T) sediments. We find that the AMP structure displays small-scale heterogeneities in the region, with a thickness of the carbonates layers varying between 4 and 12 km, and is underlain by a thin, discontinuous layer of P-T terrigenous sediments, that are lacking in some areas. This fact may be due to the roughness in the original topography of the continental margins or to heterogeneities in its shallow structure due to the rifting process.

  16. Damage-Survivable and Damage-Tolerant Laminated Composites with Optimally Placed Piezoelectric Layers

    DTIC Science & Technology

    1992-11-13

    AD-A269 879 Damage-Survivable j and Damage-Tolerant Laminated Composites .4.. with Optimally placed Piezoelectric Layers Final Report No. 1 S. P...Damage Surviable and Damage-Tolerant Laminated Composites With Optimally Placed Piezoelectric Layers 12. PERSONAL AUTHOR(S) S.P. Joshi, W.S. Chan ൕa...block number) The main objective of the research is to assure that the embedded sensors/actuators in a smart laminated composite structure are damage

  17. Cascade synthesis of a gold nanoparticle-network polymer composite

    DOE PAGES

    Grubjesic, Simonida; Ringstrand, Bryan Scott; Jungjohann, Katherine L.; ...

    2015-11-02

    In this paper, the multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl- and acrylate-end-derivatized PEO 117-PPO 47-PEO 117 and [AuCl 4] -. The reaction sequence begins with the auto-reduction of aqueous [AuCl 4] - by PEO 117-PPO 47-PEO 117 which leads to both the production of Au NPs and the free radical initiated polymerization and crosslinking of the acrylate endderivatized PEO 117-PPO 47-PEO 117 to yield a network polymer. Optical spectroscopy andmore » TEM monitored the reduction of [AuCl 4] -, formation of large aggregated Au NPs and oxidative etching into a final state of dispersed, spherical Au NPs. ATR/FT-IR spectroscopy and thermal analysis confirms acrylate crosslinking to yield the polymer network. X-ray scattering (SAXS and WAXS) monitored the evolution of the multilamellar structured mesophase and revealed the presence of semi-crystalline PEO confined within the water layers. The hydrogel could be reversibly swollen without loss of the well-entrained Au NPs with full recovery of composite structure. Finally, optical spectroscopy shows a notable red shift (Δλ~ 45 nm) in the surface plasmon resonance between swollen and contracted states, demonstrating solvent-mediated modulation of the internal NP packing arrangement.« less

  18. Distributed Cooperation Solution Method of Complex System Based on MAS

    NASA Astrophysics Data System (ADS)

    Weijin, Jiang; Yuhui, Xu

    To adapt the model in reconfiguring fault diagnosing to dynamic environment and the needs of solving the tasks of complex system fully, the paper introduced multi-Agent and related technology to the complicated fault diagnosis, an integrated intelligent control system is studied in this paper. Based on the thought of the structure of diagnostic decision and hierarchy in modeling, based on multi-layer decomposition strategy of diagnosis task, a multi-agent synchronous diagnosis federation integrated different knowledge expression modes and inference mechanisms are presented, the functions of management agent, diagnosis agent and decision agent are analyzed, the organization and evolution of agents in the system are proposed, and the corresponding conflict resolution algorithm in given, Layered structure of abstract agent with public attributes is build. System architecture is realized based on MAS distributed layered blackboard. The real world application shows that the proposed control structure successfully solves the fault diagnose problem of the complex plant, and the special advantage in the distributed domain.

  19. Effect of Sn-Ag-Cu on the Improvement of Electromigration Behavior in Sn-58Bi Solder Joint

    NASA Astrophysics Data System (ADS)

    Wang, Fengjiang; Zhou, Lili; Zhang, Zhijie; Wang, Jiheng; Wang, Xiaojing; Wu, Mingfang

    2017-10-01

    Reliability issues caused by the formation of a Bi-rich layer at the anode interface usually occurs in the Sn-58Bi eutectic solder joint during electromigration (EM). To improve the EM performance of a Sn-58Bi solder joint, Sn-3.0Ag-0.5Cu solder was introduced into it to produce SnBi-SnAgCu structural or compositional composite joints, and their EM behaviors were investigated with the current density of 1.0 × 104 A/cm2 for different stressing times. The structure of the compositional composite solder joint was obtained by the occurrence of partial or full mixing between Sn-Bi and Sn-Ag-Cu solder with a suitable soldering temperature. In the structural composite joint, melted Sn-Bi was partially mixed with Sn-Ag-Cu solder to produce a Cu/Sn-Bi/Sn-Ag-Cu/Sn-Bi/Cu structure. In the compositional composite joint, full melting and mixing between these two solders occurred to produce a Cu/Sn-Ag-Cu-Bi/Cu structure, in which the solder matrix was a homogeneous structure including Sn, Bi phases, Cu6Sn5 and Ag3Sn IMCs. After current stressing, the EM performance of Sn-Bi solder was obviously improved with the structural or the compositional composite joint. In Sn-58Bi joints, a thick Bi-rich layer was easily produced at the anode interface, and obviously increased with stressing time. However, after current stressing on the structural composite joints, the existence of s Sn-3.0Ag-0.5Cu interlayer between the two Sn-58Bi solders effectively acted as a diffusion barrier and significantly slowed the formation of the Bi-rich layer at the anode side and the IMC thicknesses at the interfaces.

  20. PEDOT:PSS as multi-functional composite material for enhanced Li-air-battery air electrodes

    PubMed Central

    Yoon, Dae Ho; Yoon, Seon Hye; Ryu, Kwang-Sun; Park, Yong Joon

    2016-01-01

    We propose PEDOT:PSS as a multi-functional composite material for an enhanced Li-air-battery air electrode. The PEDOT:PSS layer was coated on the surface of carbon (graphene) using simple method. A electrode containing PEDOT:PSS-coated graphene (PEDOT electrode) could be prepared without binder (such as PVDF) because of high adhesion of PEDOT:PSS. PEDOT electrode presented considerable discharge and charge capacity at all current densities. These results shows that PEDOT:PSS acts as a redox reaction matrix and conducting binder in the air electrode. Moreover, after cycling, the accumulation of reaction products due to side reaction in the electrode was significantly reduced through the use of PEDOT:PSS. This implies that PEDOT:PSS coating layer can suppress the undesirable side reactions between the carbon and electrolyte (and/or Li2O2), which causes enhanced Li-air cell cyclic performance. PMID:26813852

  1. Identifying the Community Structure of the Food-Trade International Multi-Network

    NASA Technical Reports Server (NTRS)

    Torreggiani, S.; Mangioni, G.

    2018-01-01

    Achieving international food security requires improved understanding of how international trade networks connect countries around the world through the import-export flows of food commodities. The properties of international food trade networks are still poorly documented, especially from a multi-network perspective. In particular, nothing is known about the multi-network's community structure. Here we find that the individual crop-specific layers of the multi-network have densely connected trading groups, a consistent characteristic over the period 2001-2011. Further, the multi-network is characterized by low variability over this period but with substantial heterogeneity across layers in each year. In particular, the layers are mostly assortative: more-intensively connected countries tend to import from and export to countries that are themselves more connected. We also fit econometric models to identify social, economic and geographic factors explaining the probability that any two countries are co-present in the same community. Our estimates indicate that the probability of country pairs belonging to the same food trade community depends more on geopolitical and economic factors-such as geographical proximity and trade-agreement co-membership-than on country economic size and/or income. These community-structure findings of the multi-network are especially valuable for efforts to understand past and emerging dynamics in the global food system, especially those that examine potential 'shocks' to global food trade.

  2. Identifying the community structure of the food-trade international multi-network

    NASA Astrophysics Data System (ADS)

    Torreggiani, S.; Mangioni, G.; Puma, M. J.; Fagiolo, G.

    2018-05-01

    Achieving international food security requires improved understanding of how international trade networks connect countries around the world through the import-export flows of food commodities. The properties of international food trade networks are still poorly documented, especially from a multi-network perspective. In particular, nothing is known about the multi-network’s community structure. Here we find that the individual crop-specific layers of the multi-network have densely connected trading groups, a consistent characteristic over the period 2001–2011. Further, the multi-network is characterized by low variability over this period but with substantial heterogeneity across layers in each year. In particular, the layers are mostly assortative: more-intensively connected countries tend to import from and export to countries that are themselves more connected. We also fit econometric models to identify social, economic and geographic factors explaining the probability that any two countries are co-present in the same community. Our estimates indicate that the probability of country pairs belonging to the same food trade community depends more on geopolitical and economic factors—such as geographical proximity and trade-agreement co-membership—than on country economic size and/or income. These community-structure findings of the multi-network are especially valuable for efforts to understand past and emerging dynamics in the global food system, especially those that examine potential ‘shocks’ to global food trade.

  3. Heat resistive dielectric multi-layer micro-mirror array in epitaxial lateral overgrowth gallium nitride.

    PubMed

    Huang, Chen-Yang; Ku, Hao-Min; Liao, Wei-Tsai; Chao, Chu-Li; Tsay, Jenq-Dar; Chao, Shiuh

    2009-03-30

    Ta2O5 / SiO2 dielectric multi-layer micro-mirror array (MMA) with 3mm mirror size and 6mm array period was fabricated on c-plane sapphire substrate. The MMA was subjected to 1200 degrees C high temperature annealing and remained intact with high reflectance in contrast to the continuous multi-layer for which the layers have undergone severe damage by 1200 degrees C annealing. Epitaxial lateral overgrowth (ELO) of gallium nitride (GaN) was applied to the MMA that was deposited on both sapphire and sapphire with 2:56 mm GaN template. The MMA was fully embedded in the ELO GaN and remained intact. The result implies that our MMA is compatible to the high temperature growth environment of GaN and the MMA could be incorporated into the structure of the micro-LED array as a one to one micro backlight reflector, or as the patterned structure on the large area LED for controlling the output light.

  4. Multi-Anion Intercalated Layered Double Hydroxide Nanosheet-Assembled Hollow Nanoprisms with Improved Pseudocapacitive and Electrocatalytic Properties.

    PubMed

    Li, Zhengping; Han, Fangchun; Li, Cheng; Jiao, Xiuling; Chen, Dairong

    2018-05-04

    Electrochemically active hollow nanostructured materials hold great promise in diverse energy conversion and storage applications, however, intricate synthesis steps and poor control over compositions and morphologies have limited the realization of delicate hollow structures with advanced functional properties. In this study, we demonstrate a one-step wet-chemical strategy for co-engineering the hollow nanostructure and anion intercalation of nickel cobalt layered double hydroxide (NiCo-LDH) to attain highly electrochemical active energy conversion and storage functionalities. Self-templated pseudomorphic transformation of cobalt acetate hydroxide solid nanoprisms using nickel nitrate leads to the construction of well-defined NiCo-LDH hollow nanoprisms (HNPs) with multi-anion intercalation. The unique hierarchical nanosheet-assembled hollow structure and efficiently expanded interlayer spacing offer an increased surface area and exposure of active sites, reduced mass and charge transfer resistance, and enhanced stability of the materials. This leads to a significant improvement in the pseudocapacitive and electrocatalytic properties of NiCo-LDH HNP with respect to specific capacitance, rate and cycling performance, and OER overpotential, outperforming most of the recently reported NiCo-based materials. This work establishes the potential of manipulating sacrificial template transformation for the design and fabrication of novel classes of functional materials with well-defined nanostructures for electrochemical applications and beyond. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fuselage structure using advanced technology fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Robinson, R. K.; Tomlinson, H. M. (Inventor)

    1982-01-01

    A fuselage structure is described in which the skin is comprised of layers of a matrix fiber reinforced composite, with the stringers reinforced with the same composite material. The high strength to weight ratio of the composite, particularly at elevated temperatures, and its high modulus of elasticity, makes it desirable for use in airplane structures.

  6. Fractal multi-level organisation of human groups in a virtual world.

    PubMed

    Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan

    2014-10-06

    Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology.

  7. Fractal multi-level organisation of human groups in a virtual world

    PubMed Central

    Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan

    2014-01-01

    Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology. PMID:25283998

  8. Fractal multi-level organisation of human groups in a virtual world

    NASA Astrophysics Data System (ADS)

    Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan

    2014-10-01

    Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology.

  9. Tribological Properties of AlSi12-Al₂O₃ Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy.

    PubMed

    Dolata, Anna Janina

    2017-09-06

    Alumina-Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al₂O₃ interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells.

  10. Ordering in bio-inorganic hybrid nanomaterials probed by in situ scanning transmission X-ray microscopy

    DOE PAGES

    Lee, Jonathan R. I.; Bagge-Hansen, Michael; Tunuguntla, Ramya; ...

    2015-04-15

    Here, phospholipid bilayer coated Si nanowires are one-dimensional (1D) composites that provide versatile bio-nanoelectronic functionality via incorporation of a wide variety of biomolecules into the phospholipid matrix. The physiochemical behaviour of the phospholipid bilayer is strongly dependent on its structure and, as a consequence, substantial modelling and experimental efforts have been directed at the structural characterization of supported bilayers and unsupported phospholipid vesicles; nonetheless, the experimental studies conducted to date have exclusively involved volume-averaged techniques, which do not allow for the assignment of spatially resolved structural variations that could critically impact the performance of the 1D phospholipid-Si NW composites. Inmore » this manuscript, we use scanning transmission X-ray microscopy (STXM) to probe bond orientation and bilayer thickness as a function of position with a spatial resolution of ~30 nm for Δ9-cis 1,2-dioleoyl-sn-glycero-3-phosphocholine layers prepared Si NWs. When coupled with small angle X-ray scattering measurements, the STXM data reveal structural motifs of the Si NWs that give rise to multi-bilayer formation and enable assignment of the orientation of specific bonds known to affect the order and rigidity of phospholipid bilayers.« less

  11. Origin of the biomechanical properties of wood related to the fine structure of the multi-layered cell wall.

    PubMed

    Yamamoto, H; Kojima, Y; Okuyama, T; Abasolo, W P; Gril, J

    2002-08-01

    In this study, a basic model is introduced to describe the biomechanical properties of the wood from the viewpoint of the composite structure of its cell wall. First, the mechanical interaction between the cellulose microfibril (CMF) as a bundle framework and the lignin-hemicellulose as a matrix (MT) skeleton in the secondary wall is formulated based on "the two phase approximation." Thereafter, the origins of (1) tree growth stress, (2) shrinkage or swelling anisotropy of the wood, and (3) moisture dependency of the Young's modulus of wood along the grain were simulated using the newly introduced model. Through the model formulation; (1) the behavior of the cellulose microfibril (CMF) and the matrix substance (MT) during cell wall maturation was estimated; (2) the moisture reactivity of each cell wall constituent was investigated; and (3) a realistic model of the fine composite structure of the matured cell wall was proposed. Thus, it is expected that the fine structure and internal property of each cell wall constituent can be estimated through the analyses of the macroscopic behaviors of wood based on the two phase approximation.

  12. Probabilistic sizing of laminates with uncertainties

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Liaw, D. G.; Chamis, C. C.

    1993-01-01

    A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.

  13. Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.

    PubMed

    Valdés, Julio J; Barton, Alan J

    2007-05-01

    A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.

  14. Multi-Target Regression via Robust Low-Rank Learning.

    PubMed

    Zhen, Xiantong; Yu, Mengyang; He, Xiaofei; Li, Shuo

    2018-02-01

    Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.

  15. Application of concentrating plasmonic luminescent down-shifting layers for photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Rafiee, M.; Chandra, S.; Sethi, A.; McCormack, S. J.

    2017-02-01

    In this paper, concentrating structures of plasmonic luminescent downshifting composite layers (c-pLDS) containing lumogen yellow dye and silver nanoparticles (Ag NPs) to increase the efficiency of Photovoltaic (PV) devices were investigated. The c-pLDS structures allowed for a wider absorption range of both wavelength shifting and light concentration with a strong energy transfer that red shifts photons to wavelengths which gives greater spectral response of solar cells. The optimum dye concentration in a poly(methyl,methacrylate) polymer of a thin layer 10μm spin coated on glass substrate was established. Subsequently, plasmonic coupling with Ag NPs was introduced for the c-pLDS composite structures. Plasmonic coupling has been observed to produce fluorescence emission enhancement of up to 20% for the dye c-pLDS layer. The c-pLDS layer was modelled for CdTe mini modules (15x15 cm) and compared with a blank PMMA/GLASS and dye c-LDS structure. It has been demonstrated that the addition of c-pLDS layers containing lumogen yellow dye increases the optical efficiency and the Short circuit current (Jsc) of CdTe solar cells. An increase of 7.3% in the optical efficiency has been achieved and a 30% in the Jsc was obtained when a c-pLDS composite layer is used.

  16. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  17. An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications

    NASA Technical Reports Server (NTRS)

    Hagh, Nader; Skandan, Ganesh

    2012-01-01

    At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.

  18. The original colours of fossil beetles

    PubMed Central

    McNamara, Maria E.; Briggs, Derek E. G.; Orr, Patrick J.; Noh, Heeso; Cao, Hui

    2012-01-01

    Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas. Metallic colours in these specimens are generated by an epicuticular multi-layer reflector; the fidelity of its preservation correlates with that of other key cuticular ultrastructures. Where these other ultrastructures are well preserved in non-metallic fossil specimens, we can infer that the original cuticle lacked a multi-layer reflector; its absence in the fossil is not a preservational artefact. Reconstructions of the original colours of the fossils based on the structure of the multi-layer reflector show that the preserved colours are offset systematically to longer wavelengths; this probably reflects alteration of the refractive index of the epicuticle during fossilization. These findings will allow the former presence, and original hue, of metallic structural colours to be identified in diverse fossil insects, thus providing critical evidence of the evolution of structural colour in this group. PMID:21957131

  19. The original colours of fossil beetles.

    PubMed

    McNamara, Maria E; Briggs, Derek E G; Orr, Patrick J; Noh, Heeso; Cao, Hui

    2012-03-22

    Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas. Metallic colours in these specimens are generated by an epicuticular multi-layer reflector; the fidelity of its preservation correlates with that of other key cuticular ultrastructures. Where these other ultrastructures are well preserved in non-metallic fossil specimens, we can infer that the original cuticle lacked a multi-layer reflector; its absence in the fossil is not a preservational artefact. Reconstructions of the original colours of the fossils based on the structure of the multi-layer reflector show that the preserved colours are offset systematically to longer wavelengths; this probably reflects alteration of the refractive index of the epicuticle during fossilization. These findings will allow the former presence, and original hue, of metallic structural colours to be identified in diverse fossil insects, thus providing critical evidence of the evolution of structural colour in this group.

  20. Modeling of composite coupling technology for oil-gas pipeline section resource-saving repair

    NASA Astrophysics Data System (ADS)

    Donkova, Irina; Yakubovskiy, Yuriy; Kruglov, Mikhail

    2017-10-01

    The article presents a variant of modeling and calculation of a main pipeline repair section with a composite coupling installation. This section is presented in a shape of a composite cylindrical shell. The aim of this work is mathematical modeling and study of main pipeline reconstruction section stress-strain state (SSS). There has been given a description of a structure deformation mathematical model. Based on physical relations of elasticity, integral characteristics of rigidity for each layer of a two-layer pipe section have been obtained. With the help of the systems of forces and moments which affect the layers differential equations for the first and second layer (pipeline and coupling) have been obtained. The study of the SSS has been conducted using the statements and hypotheses of the composite structures deformation theory with consideration of interlayer joint stresses. The relations to describe the work of the joint have been stated. Boundary conditions for each layer have been formulated. To describe the deformation of the composite coupling with consideration of the composite cylindrical shells theory a mathematical model in the form of a system of differential equations in displacements and boundary conditions has been obtained. Calculation of a two-layer cylindrical shell under the action of an axisymmetric load has been accomplished.

  1. Improving quality of textile wastewater with organic materials as multi soil layering

    NASA Astrophysics Data System (ADS)

    Supriyadi; Widijanto, H.; Pranoto; Dewi, AK

    2016-02-01

    On agricultural land, fresh water is needed especially for irrigation. Alternative ways to fulfill needs of fresh water is by utilizing wastewater from industry. Wastewater that produced in the industry in Surakarta is over flowing especially textile wastewater. Wastewater that produced from industry has many pollutants that affected decreasing fresh water quality for irrigation. Multi Soil Layering (MSL) is one of method that utilize the soil ability as main media by increasing its function of soil structure to purify wastewater, so it does not contaminate the environment and reusable. This research was purposed to know affectivity of organic materials (such as rice straw, baggase, sawdust, coconut fibre, and corncob) and dosage (5%, 10% and 25%) in MSL, also get alternative purification ways with easy and cheaper price as natural adsorbent. This study using field and laboratory experiment. The result shows that MSL can be an alternative method of purification of wastewater. The appropriate composition of organic materials that can be used as adsorbent is MSL with wood sawdust 10% dosage because it can increase pH, decrease the number of Cr, ammonia, and phosphate but less effective to decrease BOD and COD.

  2. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    NASA Astrophysics Data System (ADS)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

  3. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes

    NASA Astrophysics Data System (ADS)

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude M.; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer; Turetsky, Merritt R.; McGuire, A. David; Shah, Manesh B.; Verberkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K.

    2015-05-01

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular `omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  4. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.

    PubMed

    Hultman, Jenni; Waldrop, Mark P; Mackelprang, Rachel; David, Maude M; McFarland, Jack; Blazewicz, Steven J; Harden, Jennifer; Turetsky, Merritt R; McGuire, A David; Shah, Manesh B; VerBerkmoes, Nathan C; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K

    2015-05-14

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  5. Robust optical properties of sandwiched lateral composition modulation GaInP structure grown by molecular beam epitaxy

    DOE PAGES

    Park, Kwangwook; Kang, Seokjin; Ravindran, Sooraj; ...

    2016-12-26

    Double-hetero structure lateral composition modulated (LCM) GaInP and sandwiched LCM GaInP having the same active layer thickness were grown and their optical properties were compared. Sandwiched LCM GaInP showed robust optical properties due to periodic potential nature of the LCM structure, and the periodicity was undistorted even for thickness far beyond the critical layer thickness. A thick LCM GaInP structure with undistorted potential that could preserve the properties of native LCM structure was possible by stacking thin LCM GaInP structures interspaced with strain compensating GaInP layers. Furthermore, the sandwiched structure could be beneficial in realizing the LCM structure embedded highmore » efficiency solar cells.« less

  6. Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.

    PubMed

    Bandura, A V; Evarestov, R A; Lukyanov, S I

    2014-07-28

    A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.

  7. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Young; Shim, Chun Sik; Sturtevant, Caleb; Kim, Dave (Dae-Wook); Song, Ha Cheol

    2014-09-01

    Glass Fiber Reinforced Plastic (GFRP) structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties

  8. Boundary-layer effects in composite laminates. I - Free-edge stress singularities. II - Free-edge stress solutions and basic characteristics

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1982-01-01

    The fundamental nature of the boundary-layer effect in fiber-reinforced composite laminates is formulated in terms of the theory of anisotropic elasticity. The basic structure of the boundary-layer field solution is obtained by using Lekhnitskii's stress potentials (1963). The boundary-layer stress field is found to be singular at composite laminate edges, and the exact order or strength of the boundary layer stress singularity is determined using an eigenfunction expansion method. A complete solution to the boundary-layer problem is then derived, and the convergence and accuracy of the solution are analyzed, comparing results with existing approximate numerical solutions. The solution method is demonstrated for a symmetric graphite-epoxy composite.

  9. A User''s Guide to the Zwikker-Kosten Transmission Line Code (ZKTL)

    NASA Technical Reports Server (NTRS)

    Kelly, J. J.; Abu-Khajeel, H.

    1997-01-01

    This user's guide documents updates to the Zwikker-Kosten Transmission Line Code (ZKTL). This code was developed for analyzing new liner concepts developed to provide increased sound absorption. Contiguous arrays of multi-degree-of-freedom (MDOF) liner elements serve as the model for these liner configurations, and Zwikker and Kosten's theory of sound propagation in channels is used to predict the surface impedance. Transmission matrices for the various liner elements incorporate both analytical and semi-empirical methods. This allows standard matrix techniques to be employed in the code to systematically calculate the composite impedance due to the individual liner elements. The ZKTL code consists of four independent subroutines: 1. Single channel impedance calculation - linear version (SCIC) 2. Single channel impedance calculation - nonlinear version (SCICNL) 3. Multi-channel, multi-segment, multi-layer impedance calculation - linear version (MCMSML) 4. Multi-channel, multi-segment, multi-layer impedance calculation - nonlinear version (MCMSMLNL) Detailed examples, comments, and explanations for each liner impedance computation module are included. Also contained in the guide are depictions of the interactive execution, input files and output files.

  10. Design-Optimization Of Cylindrical, Layered Composite Structures Using Efficient Laminate Parameterization

    NASA Astrophysics Data System (ADS)

    Monicke, A.; Katajisto, H.; Leroy, M.; Petermann, N.; Kere, P.; Perillo, M.

    2012-07-01

    For many years, layered composites have proven essential for the successful design of high-performance space structures, such as launchers or satellites. A generic cylindrical composite structure for a launcher application was optimized with respect to objectives and constraints typical for space applications. The studies included the structural stability, laminate load response and failure analyses. Several types of cylinders (with and without stiffeners) were considered and optimized using different lay-up parameterizations. Results for the best designs are presented and discussed. The simulation tools, ESAComp [1] and modeFRONTIER [2], employed in the optimization loop are elucidated and their value for the optimization process is explained.

  11. Synthesis and characterization of magnesium aluminate (MgAl2O4) spinel (MAS) thin films

    NASA Astrophysics Data System (ADS)

    Ahmad, Syed Muhammad; Hussain, Tousif; Ahmad, Riaz; Siddiqui, Jamil; Ali, Dilawar

    2018-01-01

    In a quest to identify more economic routes for synthesis of magnesium aluminate (MgAl2O4) spinel (MAS) thin films, dense plasma focus device was used with multiple plasma focus shots. Structural, bonding between composite films, surface morphological, compositional and hardness properties of MAS thin films were investigated by using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive x-rays (EDX) analysis and Vickers micro hardness test respectively. In XRD graph, the presence of MgAl2O4 diffraction peaks in crystallographic orientations (222), (400) and (622) pointed out the successful formation of polycrystalline thin films of MgAl2O4 with face centered cubic structure. The FTIR spectrums showed a major common transmittance band at 697.95 cm-1 which belongs to MgAl2O4. SEM micrographs illustrated a mesh type, granular and multi layers microstructures with significant melting effects. EDX spectrum confirmed the existence of magnesium, oxygen and aluminum in MAS films. A common increasing behavior in micro-hardness of composite MgAl2O4 films by increasing number of plasma focus shots was found.

  12. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding.

    PubMed

    Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen

    2017-04-15

    We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.

  13. Fabrication of nanocrystalline surface composite layer on Cu plate under ball collisions.

    PubMed

    Romankov, S; Park, Y C; Yoon, J M

    2014-10-01

    It was demonstrated that the severe plastic deformation of a surface induced by repeated ball collisions can be effectively used for fabrication of the nanocrystalline surface composite layers. The Cu disk was fixed at the top of a vibration chamber and ball treated. Al, Zr, Ni, Co and Fe were introduced into a Cu plate as contaminants from the grinding media one after the other by 15-min ball treatment. The composite structure was formed as a result of mechanical intermixing of the components. The particle size in as-fabricated layer ranged from 2 nm to 20 nm, with average values of about 7 nm. As-fabricated layer contained non-equilibrium multicomponent solid solution based on FCC Cu crystal structure, Zr-based phase, nanosized steel debris and amorphous phase. The hardness of the as-fabricated composite was almost ten times that of the initial Cu plate.

  14. Composite lamination method

    NASA Technical Reports Server (NTRS)

    Dickerson, G. E. (Inventor)

    1977-01-01

    A process was developed for preparing relatively thick composite laminate structure wherein thin layers of prepreg tapes are assembled, these thin layers are cut into strips that are partially cured, and stacked into the desired thickness with uncured prepreg disposed between each layer of strips. The formed laminate is finally cured and thereafter machined to the desired final dimensions.

  15. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2015-02-07

    The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, andmore » therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.« less

  16. Concurrent Probabilistic Simulation of High Temperature Composite Structural Response

    NASA Technical Reports Server (NTRS)

    Abdi, Frank

    1996-01-01

    A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership.

  17. Methodologies for Combined Loads Tests Using a Multi-Actuator Test Machine

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall

    2013-01-01

    The NASA Langley COmbined Loads Test System (COLTS) Facility was designed to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. Structural tests have been conducted in COLTS that address structural integrity issues of metallic and fiber reinforced composite aerospace structures in support of NASA Programs (i.e. the Aircraft Structural Integrity (ASIP) Program, High-Speed-Research program and the Supersonic Project, NASA Engineering and Safety Center (NESC) Composite Crew Module Project, and the Environmentally Responsible Aviation Program),. This paper presents experimental results for curved panels subjected to mechanical and internal pressure loads using a D-box test fixture. Also, results are presented that describe use of a checkout beam for development of testing procedures for a combined mechanical and pressure loading test of a Multi-bay box. The Multi-bay box test will be used to experimentally verify the structural performance of the Multi-bay box in support of the Environmentally Responsible Aviation Project at NASA Langley.

  18. Method of forming a dense, high temperature electronically conductive composite layer on a porous ceramic substrate

    DOEpatents

    Isenberg, A.O.

    1992-04-21

    An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO[sub 3], YCrO[sub 3] or LaMnO[sub 3] particles, on a portion of a porous ceramic substrate, (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure between the doped particles, (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles as a contact. 7 figs.

  19. Structural disorder of natural BimSen superlattices grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Springholz, G.; Wimmer, S.; Groiss, H.; Albu, M.; Hofer, F.; Caha, O.; Kriegner, D.; Stangl, J.; Bauer, G.; Holý, V.

    2018-05-01

    The structure and morphology of BimSen epitaxial layers with compositions ranging from Bi2Se3 to the Bi1Se1 grown by molecular beam epitaxy with different flux compositions are investigated by transmission electron microscopy, high-resolution x-ray diffraction, and atomic force microscopy. It is shown that the lattice structure changes significantly as a function of the beam flux composition, i.e., Se/BiSe flux ratio that determines the stoichiometry of the layers. A perfect Bi2Se3 phase is formed only with a sufficiently high additional Se flux, whereas Bi1Se1 is obtained when only a BiSe compound source without additional Se is used. For intermediate values of the excess Se flux during growth, Bi2Se3 -δ layers are obtained with the Se deficit δ varying between 0 and 1. This Se deficit is accommodated by incorporation of additional Bi-Bi double layers into the Bi2Se3 structure that otherwise exclusively consists of Se-Bi-Se-Bi-Se quintuple layers. While a periodic insertion of such Bi double layers would result in the formation of natural BimSen superlattices, we find that this Bi double-layer insertion is rather stochastic with a high degree of disorder depending on the film composition. Therefore, the structure of such epilayers is better described by a one-dimensional paracrystal model, consisting of disordered sequences of quintuple and double layers rather than by strictly periodic natural superlattices. From detailed analysis of the x-ray diffraction data, we determine the dependence of the lattice parameters a and c and distances of the individual (0001) planes dj as a function of composition, evidencing that only the in-plane lattice parameter a shows a linear dependence on composition. The simulation of the diffraction curves with the random stacking paracrystal model yields an excellent agreement with the experimental data and it brings quantitative information on the randomness of the stacking sequence, which is compared to growth modeling using Monte Carlo simulations. The analysis of transmission electron microscopy data furthermore confirms that the Bi-Bi bilayers contain a large amount of vacancies of up to 25%. Conductivity and Hall data confirm that BimSen phases containing Bi-Bi double layers exhibit a rather semimetallic behavior.

  20. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers

    PubMed Central

    Benea, Lidia; Celis, Jean-Pierre

    2016-01-01

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers. PMID:28773395

  1. Inter-layer synchronization in non-identical multi-layer networks

    NASA Astrophysics Data System (ADS)

    Leyva, I.; Sevilla-Escoboza, R.; Sendiña-Nadal, I.; Gutiérrez, R.; Buldú, J. M.; Boccaletti, S.

    2017-04-01

    Inter-layer synchronization is a dynamical process occurring in multi-layer networks composed of identical nodes. This process emerges when all layers are synchronized, while nodes in each layer do not necessarily evolve in unison. So far, the study of such inter-layer synchronization has been restricted to the case in which all layers have an identical connectivity structure. When layers are not identical, the inter-layer synchronous state is no longer a stable solution of the system. Nevertheless, when layers differ in just a few links, an approximate treatment is still feasible, and allows one to gather information on whether and how the system may wander around an inter-layer synchronous configuration. We report the details of an approximate analytical treatment for a two-layer multiplex, which results in the introduction of an extra inertial term accounting for structural differences. Numerical validation of the predictions highlights the usefulness of our approach, especially for small or moderate topological differences in the intra-layer coupling. Moreover, we identify a non-trivial relationship connecting the betweenness centrality of the missing links and the intra-layer coupling strength. Finally, by the use of multiplexed layers of electronic circuits, we study the inter-layer synchronization as a function of the removed links.

  2. Hazards protection for space suits and spacecraft

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Dawn, Frederic S. (Inventor)

    1990-01-01

    A flexible multi-layered covering article for protection against the hazards of exposure to the environment of outer space is disclosed. The covering includes an outer layer section comprising an outermost lamina of woven expanded tetrafluoroethylene yarns (Gore Tex) for protecting against abrasion and tearing, an underlying weave of meta-aramid yarns (Nomex) and para-aramid yarns (Kevlar) for particle impart protection, and electrostatic charge dissipation and control system incorporated therein, and a chemical contaminants control barrier applied as a coating. A middle section includes a succession of thermal insulating layers of polymeric thermoplastic or thermoforming material, each of which is coated with a metal deposit of high infra-red emissivity and low solar radiation absorption characteristics and separated from adjacent insulating layers by a low thermal conductance material. The covering further includes a radiation attenuating layer of a tungsten-loaded polymeric elastomer binder for protecting against bremsstrahlung radiation and an inner layer of rip-stop polyester material for abrasion protection. A chloroprene coating may be supplied the polyester-material for added micrometeroid protection. Securing means of low heat conductance material secures the multi-layers together as a laminar composite.

  3. Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.

    2005-01-01

    This document is the final report for the project entitled, "Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components," funded under the NRA entitled "Cross-Enterprise Technology Development Program" issued by the NASA Office of Space Science in 2000. The project was funded in 2001, and spanned a four year period from March, 2001 to February, 2005. Through enhancements to and synthesis of unique, state of the art structural mechanics and micromechanics analysis software, a new multi-scale tool has been developed that enables design, analysis, and sizing of advance lightweight composite and smart materials and structures from the full vehicle, to the stiffened structure, to the micro (fiber and matrix) scales. The new software tool has broad, cross-cutting value to current and future NASA missions that will rely on advanced composite and smart materials and structures.

  4. Detection of bondline delaminations in multilayer structures with lossy components

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Winfree, William P.; Smith, B. T.; Heyman, Joseph H.

    1988-01-01

    The detection of bondline delaminations in multilayer structures using ultrasonic reflection techniques is a generic problem in adhesively bonded composite structures such as the Space Shuttles's Solid Rocket Motors (SRM). Standard pulse echo ultrasonic techniques do not perform well for a composite resonator composed of a resonant layer combined with attenuating layers. Excessive ringing in the resonant layer tends to mask internal echoes emanating from the attenuating layers. The SRM is made up of a resonant steel layer backed by layers of adhesive, rubber, liner and fuel, which are ultrasonically attenuating. The structure's response is modeled as a lossy ultrasonic transmission line. The model predicts that the acoustic response of the system is sensitive to delaminations at the interior bondlines in a few narrow frequency bands. These predictions are verified by measurements on a fabricated system. Successful imaging of internal delaminations is sensitive to proper selection of the interrogating frequency. Images of fabricated bondline delaminations are presented based on these studies.

  5. Formation of thin walled ceramic solid oxide fuel cells

    DOEpatents

    Claar, Terry D.; Busch, Donald E.; Picciolo, John J.

    1989-01-01

    To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.

  6. Beyond assemblies: system convergence and multi-materiality.

    PubMed

    Wiscombe, Tom

    2012-03-01

    The architectural construction industry has become increasingly more specialized over the past 50 years, creating a culture of layer thinking over part-to-whole thinking. Building systems and technologies are often cobbled together in conflicting and uncorrelated ways, even when referred to as 'integrated', such as by way of building information modeling. True integration of building systems requires rethinking how systems and architectural morphologies can push and pull on one another, creating not only innovation in technology but in aesthetics. The revolution in composite materials, with unprecedented plasticity and performance features, opens up a huge range of possibilities for achieving this kind of convergence. Composites by nature fuse envelope and structure, but through various types of inflections, they can also be made to conduct air and fluids through cavities and de-laminations, as well as integrate lighting and energy systems. Assembly as we know it moves away from mineral materials and hardware and toward polymers and 'healing'. Further, when projected into the near-future realm of multi-materiality and 3D manufacturing, possibilities for embedding systems and creating gradients of rigidity and opacity open up, pointing to an entirely new realm of architectural thinking.

  7. Characterization of Hybrid CNT Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Kinney, Megan C.; Pressley, James; Sauti, Godfrey; Czabaj, Michael W.; Kim, Jae-Woo; Siochi, Emilie J.

    2015-01-01

    Carbon nanotubes (CNTs) have been studied extensively since their discovery and demonstrated at the nanoscale superior mechanical, electrical and thermal properties in comparison to micro and macro scale properties of conventional engineering materials. This combination of properties suggests their potential to enhance multi-functionality of composites in regions of primary structures on aerospace vehicles where lightweight materials with improved thermal and electrical conductivity are desirable. In this study, hybrid multifunctional polymer matrix composites were fabricated by interleaving layers of CNT sheets into Hexcel® IM7/8552 prepreg, a well-characterized toughened epoxy carbon fiber reinforced polymer (CFRP) composite. The resin content of these interleaved CNT sheets, as well as ply stacking location were varied to determine the effects on the electrical, thermal, and mechanical performance of the composites. The direct-current electrical conductivity of the hybrid CNT composites was characterized by in-line and Montgomery four-probe methods. For [0](sub 20) laminates containing a single layer of CNT sheet between each ply of IM7/8552, in-plane electrical conductivity of the hybrid laminate increased significantly, while in-plane thermal conductivity increased only slightly in comparison to the control IM7/8552 laminates. Photo-microscopy and short beam shear (SBS) strength tests were used to characterize the consolidation quality of the fabricated laminates. Hybrid panels fabricated without any pretreatment of the CNT sheets resulted in a SBS strength reduction of 70 percent. Aligning the tubes and pre-infusing the CNT sheets with resin significantly improved the SBS strength of the hybrid composite To determine the cause of this performance reduction, Mode I and Mode II fracture toughness of the CNT sheet to CFRP interface was characterized by double cantilever beam (DCB) and end notch flexure (ENF) testing, respectively. Results are compared to the control IM7/8552 laminate.

  8. A simple model for the prediction of the discrete stiffness states of a homogeneous electrostatically tunable multi-layer beam

    NASA Astrophysics Data System (ADS)

    Bergamini, A.; Christen, R.; Motavalli, M.

    2007-04-01

    The adaptive modification of the mechanical properties of structures has been described as a key to a number of new or enhanced technologies, ranging from prosthetics to aerospace applications. Previous work reported the electrostatic tuning of the bending stiffness of simple sandwich structures by modifying the shear stress transfer parameters at the interface between faces and the compliant core of the sandwich. For this purpose, the choice of a sandwich structure presented considerable experimental advantages, such as the ability to obtain a large increase in stiffness by activating just two interfaces between the faces and the core of the beam. The hypothesis the development of structures with tunable bending stiffness is based on, is that by applying a normal stress at the interface between two layers of a multi-layer structure it is possible to transfer shear stresses from one layer to the other by means of adhesion or friction forces. The normal stresses needed to generate adhesion or friction can be generated by an electrostatic field across a dielectric layer interposed between the layers of a structure. The shear stress in the cross section of the structure (e.g. a beam) subjected to bending forces is transferred in full, if sufficiently large normal stresses and an adequate friction coefficient at the interface are given. Considering beams with a homogeneous cross-section, in which all layers are made of the same material and have the same width, eliminates the need to consider parameters such as the shear modulus of the material and the shear stiffness of the core, thus making the modelling work easier and the results more readily understood. The goal of the present work is to describe a numerical model of a homogeneous multi-layer beam. The model is validated against analytical solutions for the extreme cases of interaction at the interface (no friction and a high level of friction allowing for full shear stress transfer). The obtained model is used to better understand the processes taking place at the interfaces between layers, demonstrate the existence of discrete stiffness states and to find guidance for the selection of suitable dielectric layers for the generation of the electrostatic normal stresses needed for the shear stress transfer at the interface.

  9. Reference Models for Multi-Layer Tissue Structures

    DTIC Science & Technology

    2016-09-01

    simulation,  finite   element  analysis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC...Physiologically realistic, fully specimen-specific, nonlinear reference models. Tasks. Finite element analysis of non-linear mechanics of cadaver...models. Tasks. Finite element analysis of non-linear mechanics of multi-layer tissue regions of human subjects. Deliverables. Partially subject- and

  10. Influence of the Compositional Grading on Concentration of Majority Charge Carriers in Near-Surface Layers of n(p)-HgCdTe Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2018-02-01

    The capacitive characteristics of metal-insulator-semiconductor (MIS) structures based on the compositionally graded Hg1-xCdxTe created by molecular beam epitaxy have been experimentally investigated in a wide temperature range (8-77 K). A program has been developed for numerical simulation of ideal capacitance-voltage (C-V) characteristics in the low-frequency and high-frequency approximations. The concentrations of the majority carriers in the near-surface semiconductor layer are determined from the values of the capacitances in the minima of low-frequency C-V curves. For MIS structures based on p-Hg1-xCdxTe, the effect of the presence of the compositionally graded layer on the hole concentration in the near-surface semiconductor layer, determined from capacitive measurements, has not been established. Perhaps this is due to the fact that the concentration of holes in the near-surface layer largely depends on the type of dielectric coating and the regimes of its application. For MIS structures based on n-Hg1-x Cd x Te (x = 0.22-0.23) without a graded-gap layer, the electron concentration determined by the proposed method is close to the average concentration determined by the Hall measurements. The electron concentration in the near-surface semiconductor layer of the compositionally graded n-Hg1-x Cd x Te (x = 0.22-0.23) found from the minimum capacitance value is much higher than the average electron concentration determined by the Hall measurements. The results are qualitatively explained by the creation of additional intrinsic donor-type defects in the near-surface compositionally graded layer of n-Hg1-x Cd x Te.

  11. Depth estimation of multi-layered impact damage in PMC using lateral thermography

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis; Kramb, Victoria; Reibel, Rick; Dierken, Josiah

    2018-04-01

    Characterization of impact damage in polymer matrix composites (PMCs) continues to be a challenge due to the complex internal structure of the material. Nondestructive characterization approaches such as normal incident immersion ultrasound and flash thermography are sensitive to delamination damage, but do not provide information regarding damage obscured by the delaminations. Characterization of material state below a delamination requires a technique which is sensitive to in-plane damage modes such as matrix cracking and fiber breakage. Previous studies of the lateral heat flow through a composite laminate showed that the diffusion time was sensitive to the depth of the simulated damage zone. The current study will further evaluate the lateral diffusion model to provide sensitivity limits for the modeled flaw dimensions. Comparisons between the model simulations and experimental data obtained using a concentrated heat source and machined targets will also be presented.

  12. Universal lab on a smartphone: a research of TiOPc thin film as a light dependence electrode

    NASA Astrophysics Data System (ADS)

    Lin, PoHan; Hsu, Y. H.; Lee, C. K.

    2014-02-01

    In this paper, we study the photoconductivity of a polymer-based TiOPc (Titanium Oxide Phthalocyanine) thin-film for the development of a multi-opto-piezoelectric-valve-array. Using a polymer-based TiOPc thin film to serve as the electrode and a structural layer of a piezoelectric polymer, P(VDF-TrFE) poly[(vinylidenefluoride-co-trifluoroethylene], an optical control valve-array could be developed for manipulating multiple microdroplets for the application of digital microfluidic. In this ongoing project, the dependency of the light intensity, thickness, and composition of spin-coated polymer-based TiOPc thin-film was studied. The experimental finding suggested that a 14 to 55 times resistivity change could be achieved by controlling the film thickness to be between 0.9 μm and 1.5 μm with TiOPc concentration of 20% and 30% w/w compositions.

  13. Capacitance-based damage detection sensing for aerospace structural composites

    NASA Astrophysics Data System (ADS)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.

  14. An atomic scale study of surface termination and digital alloy growth in InGaAs/AlAsSb multi-quantum wells.

    PubMed

    Mauger, S J C; Bozkurt, M; Koenraad, P M; Zhao, Y; Folliot, H; Bertru, N

    2016-07-20

    An atomic scale study has been performed to understand the influence of the (As,Sb) shutter sequences during interface formation on the optical properties of InGaAs/AlAsSb quantum wells. Our cross-sectional scanning tunneling microscopy results show that the onset of the Sb profile is steep in the Sb-containing layers whereas an appreciable segregation of Sb in the subsequently grown Sb free layers is observed. The steep rise of the Sb profile is due to extra Sb that is supplied to the surface prior to the growth of the Sb-containing layers. No relation is found between the (As,Sb) termination conditions of the Sb-containing layers and the resulting Sb profiles in the capping layers. Correspondingly we see that the optical properties of these quantum wells are also nearly independent on the (As,Sb) shutter sequences at the interface. Digital alloy growth in comparison to conventional molecular beam epitaxy growth was also explored. X-ray results suggest that the structural properties of the quantum well structures grown by conventional molecular beam epitaxy techniques are slightly better than those formed by digital alloy growth. However photoluminescence studies indicate that the digital alloy samples give rise to a more intense and broader photoluminescence emission. Cross-sectional scanning tunneling microscopy measurements reveal that lateral composition modulations present in the digital alloys are responsible for the enhancement of the photoluminescence intensity and inhomogeneous broadening.

  15. High-efficiency AlxGa1-xAs/GaAs cathode for photon-enhanced thermionic emission solar energy converters

    NASA Astrophysics Data System (ADS)

    Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Wang, Ziheng; Liu, Jian; Chang, Benkang; Shi, Feng; Jiao, Gangcheng

    2018-04-01

    A theoretical emission model for AlxGa1-xAs/GaAs cathode with complex structure based on photon-enhanced thermionic emission is developed by utilizing one-dimensional steady-state continuity equations. The cathode structure comprises a graded-composition AlxGa1-xAs window layer and an exponential-doping GaAs absorber layer. In the deduced model, the physical properties changing with the Al composition are taken into consideration. Simulated current-voltage characteristics are presented and some important factors affecting the conversion efficiency are also illustrated. Compared with the graded-composition and uniform-doping cathode structure, and the uniform-composition and uniform-doping cathode structure, the graded-composition and exponential-doping cathode structure can effectively improve the conversion efficiency, which is ascribed to the twofold built-in electric fields. More strikingly, this graded bandgap structure is especially suitable for photon-enhanced thermionic emission devices since a higher conversion efficiency can be achieved at a lower temperature.

  16. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 1: Electrodeposition and growth mechanism, composition, morphology, roughness and structure

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the cathodic current density. The composition, surface morphology, roughness, layers growth pattern as well as the phase structure of deposits were extensively studied via SEM, EDS, AFM and XRD analysis. Effects of bath ingredients on the electrodeposition behavior were analyzed through cathodic linear sweep voltammetry. Although the concentration of Zn2+ in bath was 13 times higher than Ni2+, the Zn-Ni deposition potential was much nearer to Ni deposition potential rather than that of Zn. Addition of NaH2PO2 to the Ni deposition bath considerably raised the current density and shifted the crystallization potential of Ni to more nobble values. Codeposition of P with Zn-Ni alloy lead to crack formation in the monolayer that was deposited in 60 mA/cm2. However, the cracks were not observed in the Zn-Ni layers of multilayers. Zn-Ni layers in CMMCs exhibited a three-dimensional pattern of growth while that of Ni-P layers was two-dimensional. Also, the Ni-P deposits tends to fill the discontinuities in Zn-Ni layers and performed leveling properties and lowered the surface roughness of Zn-Ni layers and CMMCs. Structural analysis demonstrated that Ni-P layers were amorphous and the Zn-Ni layers exhibited crystallite phase of Zn11Ni2. Thus, the Ni-P/Zn-Ni CMMCs comprised of alternate layers of amorphous Ni-P and nanocrystalline Zn Ni.

  17. Co-rotational thermo-mechanically coupled multi-field framework and finite element for the large displacement analysis of multi-layered shape memory alloy beam-like structures

    NASA Astrophysics Data System (ADS)

    Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.

    2017-06-01

    A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.

  18. Tribological Properties of AlSi12-Al2O3 Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy

    PubMed Central

    Dolata, Anna Janina

    2017-01-01

    Alumina–Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al2O3 interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells. PMID:28878162

  19. Supramolecular engineering of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Jian, Kengqing

    This thesis identifies a new and flexible route to control graphene layer structure in carbons, which is the key to carbon properties and applications, and focuses on the synthesis, structure-property relationships, and potential applications of new "supramolecular" carbon nanomaterials. This new approach begins with the studies of surface anchoring and assembly mechanisms among planar discotic liquid crystals. The results show that disk-like polyaromatics exhibit weak noncovalent interactions with most surfaces and prefer edge-on anchoring at these surfaces; only on a few surfaces such as graphite and platinum, they prefer face-on anchoring. A theory of pi-pi bond preservation has been proposed to explain the wetting, anchoring, and assembly phenomena. Based on the assembly study, a supramolecular approach was developed, which uses surfaces, flows, and confinement to create well-defined order in discotic liquid crystals, which can then be covalently captured by cross-linking and converted into a carbon material whose structure is an accurate replica of the molecular order in the precursor. This technique has been successfully applied to create innovative nanocarbons with controllable nanostructures. The new nanomaterials synthesized by supramolecular route include organic and carbon films with precise crystal structure control using surface anchoring and flow. Lithographic techniques were employed to make micro-patterned surfaces with preprogrammed molecular orientations. Fully dense and ordered carbon thin films were prepared from lytropic liquid crystals. These films exhibit surfaces rich in edge-sites and are either anisotropic unidirectional or multi-domain. In addition, four different types of high-aspect-ratio nanocarbons were synthesized and analyzed: (1) "orthogonal" carbon nanofibers with perpendicular graphene layers, (2) "concentric" C/C-composite nanofibers with graphene layers parallel to the fiber axis, (3) "inverted" nanotubes exhibiting graphene edge planes at both inner and outer surfaces, and (4) nanoribbons. Finally, a set of mesoporous carbons were synthesized with both porous structure and interfacial structure systematically controlled by liquid crystal templating. A quantitative model was developed for carbon surface area prediction. In addition to synthesis, this thesis includes extensive structural analysis and some surface characterization of these nanomaterials, and offers ideas to exploit their unique properties for applications in composites, displays, nanomedicine, and the environment.

  20. Nanomembrane structures having mixed crystalline orientations and compositions

    DOEpatents

    Lagally, Max G.; Scott, Shelley A.; Savage, Donald E.

    2014-08-12

    The present nanomembrane structures include a multilayer film comprising a single-crystalline layer of semiconductor material disposed between two other single-crystalline layers of semiconductor material. A plurality of holes extending through the nanomembrane are at least partially, and preferably entirely, filled with a filler material which is also a semiconductor, but which differs from the nanomembrane semiconductor materials in composition, crystal orientation, or both.

  1. Effect of phase inversion on microporous structure development of Al 2O 3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jeong, Hyun-Seok; Kim, Dong-Won; Jeong, Yeon Uk; Lee, Sang-Young

    To improve the thermal shrinkage of the separators that are essential to securing the electrical isolation between electrodes in lithium-ion batteries, we develop a new separator based on a ceramic composite membrane. Introduction of microporous, ceramic coating layers onto both sides of a polyethylene (PE) separator allows such a progress. The ceramic coating layers consist of nano-sized alumina (Al 2O 3) powders and polymeric binders (PVdF-HFP). The microporous structure of the ceramic coating layers is observed to be crucial to governing the thermal shrinkage as well as the ionic transport of the ceramic composite separators. This microporous structure is determined by controlling the phase inversion, more specifically, nonsolvent (water) contents in the coating solutions. To provide a theoretical basis for this approach, a pre-investigation on the phase diagram for a ternary mixture comprising PVdF-HFP, acetone, and water is conducted. On the basis of this observation, the effect of phase inversion on the morphology and air permeability (i.e. Gurley value) of ceramic coating layers is systematically discussed. In addition, to explore the application of ceramic composite separators to lithium-ion batteries, the influence of the structural change in the coating layers on the thermal shrinkage and electrochemical performance of the separators is quantitatively identified.

  2. Development of Eddy Current Techniques for Detection of Deep Fatigue Cracks in Multi-Layer Airframe Components

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.

    2008-01-01

    Thick, multi-layer aluminum structure has been widely used in aircraft design in critical wing splice areas. The multi-layer structure generally consists of three or four aluminum layers with different geometry and varying thickness, which are held together with fasteners. The detection of cracks under fasteners with ultrasonic techniques in subsurface layers away from the skin is impeded primarily by interlayer bonds and faying sealant condition. Further, assessment of such sealant condition is extremely challenging in terms of complexity of structure, limited access, and inspection cost. Although Eddy current techniques can be applied on in-service aircraft from the exterior of the skin without knowing sealant condition, the current eddy current techniques are not able to detect defects with wanted sensitivity. In this work a series of low frequency eddy current probes have been designed, fabricated and tested for this application. A probe design incorporating a shielded magnetic field sensor concentrically located in the interior of a drive coil has been employed to enable a localized deep diffusion of the electromagnetic field into the part under test. Due to the required low frequency inspections, probes have been testing using a variety of magnetic field sensors (pickup coil, giant magneto-resistive, anisotropic magneto-resistive, and spin-dependent tunneling). The probe designs as well as capabilities based upon a target inspection for sub-layer cracking in an airframe wing spar joint is presented.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neiman, Aleksei A., E-mail: nasa@ispms.tsc.ru; Lotkov, Aleksandr I.; Gudimova, Ekaterina Y.

    The paper reports on a study of regularities of formation gradient nano-, submicron and microstructural conditions in the surface layers of the samples after pulsed electron-beam melting of tantalum coating on the substrate NiTi alloy. Experimentally revealed the presence of submicron columnar structure in the upper layers of the tantalum coating. After irradiation modified NiTi surface takes on a layered structure in which each layer differs in phase composition and structural phase state.

  4. Influence of the cooling method on the structure of 55AlZn coatings

    NASA Astrophysics Data System (ADS)

    Mendala, J.

    2011-05-01

    In metallization processes, metals or metal alloys are used which have a low melting point and good anticorrosion properties. Moreover, they must form durable intermetallic compounds with iron or its alloys. The most common hot-dip metallization technology involves galvanizing, however, molten multi-component metal alloys are used as well. An addition of aluminium to the zinc bath causes an increase in corrosion resistance of the obtained coatings. The article presents results of tests of obtaining coatings by the batch hot-dip method in an 55AlZn bath. Kinetics of the coating growth in the tested alloys were determined in the changeable conditions of bath temperature, dip time and type of cooling. The structure of coatings and their phase composition were revealed. As a result of the tests performed, it has been found that an increase in total thickness of the coatings as a function of the dipping time at a constant temperature is almost of a parabolic nature, whereas an increase in the transient layer is of a linear nature. The structure was identified by the XRD analysis and the morphology of the coatings was tested by means of SEM. It has been found that the cooling process with the use of higher rates of cooling causes a size reduction of the structure in the outer layer and a reduction of thickness of both the intermediate diffusion layer and the whole coating by ca. 25 %.

  5. Two-bit multi-level phase change random access memory with a triple phase change material stack structure

    NASA Astrophysics Data System (ADS)

    Gyanathan, Ashvini; Yeo, Yee-Chia

    2012-11-01

    This work demonstrates a novel two-bit multi-level device structure comprising three phase change material (PCM) layers, separated by SiN thermal barrier layers. This triple PCM stack consisted of (from bottom to top), Ge2Sb2Te5 (GST), an ultrathin SiN barrier, nitrogen-doped GST, another ultrathin SiN barrier, and Ag0.5In0.5Sb3Te6. The PCM layers can selectively amorphize to form 4 different resistance levels ("00," "01," "10," and "11") using respective voltage pulses. Electrical characterization was extensively performed on these devices. Thermal analysis was also done to understand the physics behind the phase changing characteristics of the two-bit memory devices. The melting and crystallization temperatures of the PCMs play important roles in the power consumption of the multi-level devices. The electrical resistivities and thermal conductivities of the PCMs and the SiN thermal barrier are also crucial factors contributing to the phase changing behaviour of the PCMs in the two-bit multi-level PCRAM device.

  6. EVALUATING A COMPOSITE CARTRIDGE FOR SMALL SYSTEM DRINKING WATER TREATMENT

    EPA Science Inventory

    A multi-layer, cartridge-based system that combines physical filtration with carbon adsorption and ultraviolet (UV) light disinfection has been developed to perform as a water treatment security device to protect homes against accidental or intentional contaminant events. A seri...

  7. Optimisation of Fabric Reinforced Polymer Composites Using a Variant of Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana; Hudisteanu, Iuliana

    2017-12-01

    Fabric reinforced polymeric composites are high performance materials with a rather complex fabric geometry. Therefore, modelling this type of material is a cumbersome task, especially when an efficient use is targeted. One of the most important issue of its design process is the optimisation of the individual laminae and of the laminated structure as a whole. In order to do that, a parametric model of the material has been defined, emphasising the many geometric variables needed to be correlated in the complex process of optimisation. The input parameters involved in this work, include: widths or heights of the tows and the laminate stacking sequence, which are discrete variables, while the gaps between adjacent tows and the height of the neat matrix are continuous variables. This work is one of the first attempts of using a Genetic Algorithm ( GA) to optimise the geometrical parameters of satin reinforced multi-layer composites. Given the mixed type of the input parameters involved, an original software called SOMGA (Satin Optimisation with a Modified Genetic Algorithm) has been conceived and utilised in this work. The main goal is to find the best possible solution to the problem of designing a composite material which is able to withstand to a given set of external, in-plane, loads. The optimisation process has been performed using a fitness function which can analyse and compare mechanical behaviour of different fabric reinforced composites, the results being correlated with the ultimate strains, which demonstrate the efficiency of the composite structure.

  8. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid.

    PubMed

    Khalili, V; Khalil-Allafi, J; Frenzel, J; Eggeler, G

    2017-02-01

    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20wt% silicon, 1wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37°C. The results indicate that the compact structure of hydroxyapatite-20wt% silicon and hydroxyapatite-20wt% silicon-1wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Increased fracture toughness of graphite-epoxy composites through intermittent interlaminar bonding. [Mylar interlayer

    NASA Technical Reports Server (NTRS)

    Felbeck, D. K.; Jea, L. C.

    1980-01-01

    Intermittent interlaminar bonding, which can lead to a large increase in the fracture surface area, was achieved through the introduction of thin perforated Mylar between the layers of a multi-layer continuous-filament graphite-epoxy composite. For the best optimum condition included in this study, fracture toughness was increased from about 100 kJ/sq m for untreated specimens to an average of about 500 kJ/sq m, while tensile strength dropped from 500 MPa to 400 MPa, and elastic modulus remained the same at about 75 GPa. An approximate analysis is presented to explain the observed improvement in toughness.

  10. Enhancing sound absorption and transmission through flexible multi-layer micro-perforated structures.

    PubMed

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2013-11-01

    Theoretical and experimental results are presented into the sound absorption and transmission properties of multi-layer structures made up of thin micro-perforated panels (ML-MPPs). The objective is to improve both the absorption and insulation performances of ML-MPPs through impedance boundary optimization. A fully coupled modal formulation is introduced that predicts the effect of the structural resonances onto the normal incidence absorption coefficient and transmission loss of ML-MPPs. This model is assessed against standing wave tube measurements and simulations based on impedance translation method for two double-layer MPP configurations of relevance in building acoustics and aeronautics. Optimal impedance relationships are proposed that ensure simultaneous maximization of both the absorption and the transmission loss under normal incidence. Exhaustive optimization of the double-layer MPPs is performed to assess the absorption and/or transmission performances with respect to the impedance criterion. It is investigated how the panel volumetric resonances modify the excess dissipation that can be achieved from non-modal optimization of ML-MPPs.

  11. Formation mechanism of photo-induced nested wrinkles on siloxane-photomonomer hybrid film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kazumasa; International Laboratory of Materials Science and Nanotechnology; Laboratorio di Scienz

    Nested wrinkle structures, hierarchical surface wrinkles of different periodicities of sub-μm and tens-μm, have been fabricated on a siloxane-photomonomer hybrid film via a photo-induced surface polymerization of acrylamide. The formation mechanism of the nested wrinkle structures is examined based on a time-dependent structure observation and chemical composition analyses. In-situ observation of the evolving surface structure showed that sub-μm scale wrinkles first formed, subsequently the tens-μm scale ones did. In-situ FT-IR analysis indicated that the nested wrinkles formation took place along with the development of siloxane network of under layer. A cross sectional observation of the film revealed that the filmmore » was composed of three layers. FT-IR spectra of the film revealed that the surface and interior layers were polyacrylamide rich layer and siloxane-polymer rich layer, respectively. The intermediate layer formed as a diffusion layer by migration of acrylamide from interior to the surface. These three layers have different chemical compositions and therefore different mechanical characteristics, which allows the wrinkle formation. Shrinkage of siloxane-polymer interior layers, as a result of polycondensation of siloxane network, induced mechanical instabilities at interlayers, to form the nested wrinkle structures.« less

  12. Recent progress in photoactive organic field-effect transistors.

    PubMed

    Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok

    2014-04-01

    Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts.

  13. Transmission function properties for multi-layered structures: application to super-resolution.

    PubMed

    Mattiucci, N; D'Aguanno, G; Scalora, M; Bloemer, M J; Sibilia, C

    2009-09-28

    We discuss the properties of the transmission function in the k-space for a generic multi-layered structure. In particular we analytically demonstrate that a transmission greater than one in the evanescent spectrum (amplification of the evanescent modes) can be directly linked to the guided modes supported by the structure. Moreover we show that the slope of the phase of the transmission function in the propagating spectrum is inversely proportional to the ability of the structure to compensate the diffraction of the propagating modes. We apply these findings to discuss several examples where super-resolution is achieved thanks to the simultaneous availability of the amplification of the evanescent modes and the diffraction compensation of the propagating modes.

  14. The Effect of Buffer Types on the In0.82Ga0.18As Epitaxial Layer Grown on an InP (100) Substrate.

    PubMed

    Zhang, Min; Guo, Zuoxing; Zhao, Liang; Yang, Shen; Zhao, Lei

    2018-06-08

    In 0.82 Ga 0.18 As epitaxial layers were grown on InP (100) substrates at 530 °C by a low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique. The effects of different buffer structures, such as a single buffer layer, compositionally graded buffer layers, and superlattice buffer layers, on the crystalline quality and property were investigated. Double-crystal X-ray diffraction (DC-XRD) measurement, Raman scattering spectrum, and Hall measurements were used to evaluate the crystalline quality and electrical property. Scanning electron microscope (SEM), atomic force microscope (AFM), and transmission electron microscope (TEM) were used to characterize the surface morphology and microstructure, respectively. Compared with the In 0.82 Ga 0.18 As epitaxial layer directly grown on an InP substrate, the quality of the sample is not obviously improved by using a single In 0.82 Ga 0.18 As buffer layer. By introducing the graded In x Ga 1−x As buffer layers, it was found that the dislocation density in the epitaxial layer significantly decreased and the surface quality improved remarkably. In addition, the number of dislocations in the epitaxial layer greatly decreased under the combined action of multi-potential wells and potential barriers by the introduction of a In 0.82 Ga 0.18 As/In 0.82 Al 0.18 As superlattice buffer. However, the surface subsequently roughened, which may be explained by surface undulation.

  15. Potential of laser-induced breakdown spectroscopy for discrimination of nano-sized carbon materials. Insights on the optical characterization of graphene

    NASA Astrophysics Data System (ADS)

    Serrano, J.; Cabalín, L. M.; Moros, J.; Laserna, J. J.

    2014-07-01

    Since its invention in 2004, graphene has attracted considerable interest worldwide. Advances in the use of graphene in materials science and engineering require important increases in the quality of the final product for integration in photonic and electronic devices. To meet this demand, which will become increasingly strict in the future, analytical techniques capable of differentiating between the starting materials and graphene need to be developed. The interest in the use of laser-induced breakdown spectroscopy (LIBS) for this application rests on the rapid progress experienced by this technology for identification of carbon-based materials of close chemical composition. The potential of LIBS has been explored here by a careful investigation of the spectral properties of both multi-layer and few-layer graphene, graphite and graphene oxide. Results reveal significant differences in the specific optical emission responses of these materials, expressly reflected on the behavior of CN and C2 molecular emissions. These differences result from the particularities of the materials, such as the number of carbon layers and the carbon hybridization in the bonding structure, together with the post-ablation evolution of the concerned plasma plume. In short, this interconnection between ablation and emission events generated from each material allows its characterization and its differentiation from other materials with highly similar chemical composition.

  16. Numerical Characterization of a Composite Bonded Wing-Box

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Lovejoy, Andrew E.; Satyanarayana, Arunkumar

    2008-01-01

    The development of composite wing structures has focused on the use of mechanical fasteners to join heavily-loaded areas, while bonded joints have been used only for select locations. The focus of this paper is the examination of the adhesive layer in a generic bonded wing box that represents a "fastenerless" or unitized structure in order to characterize the general behavior and failure mechanisms. A global/local approach was applied to study the response of the adhesive layer using a global shell model and a local shell/solid model. The wing box was analyzed under load to represent a high-g up-bending condition such that the strains in the composite sandwich face sheets are comparable to an expected design allowable. The global/local analysis indicates that at these wing load levels the strains in the adhesive layer are well within the adhesive's elastic region, such that yielding would not be expected in the adhesive layer. The global/local methodology appears to be a promising approach to evaluate the structural integrity of the adhesively bonded structures.

  17. STRESS-INDUCED ASYMMETRIC MAGNETOIMPEDANCE EFFECT IN Ni80Fe20/Cu COMPOSITE WIRES

    NASA Astrophysics Data System (ADS)

    Lv, Wenxing; Li, Xin; Xie, Wenhui; Zhao, Qiang; Zhao, Zhenjie

    The magnetoimpedance effect of Ni80Fe20/Cu composited wires was experimentally investigated by varying the Ni80Fe20 coating thickness. An asymmetric MI behavior with a tunable linear region around zero magnetic field by altering the thickness of Ni80Fe20 layer was demonstrated. And the MI behavior was governed by the different anisotropy induced by the residual local stress in the multi-layer region. In addition, our investigation also suggested that the interactions between interface phase and outer phase of coating layer decreased with thickness, resulting in the domination of the asymmetric MI characteristic. For thickness of 485nm, the sensitivity was up to 225%/Oe from -2 Oe to 2 Oe, providing a promising candidate for linear sensor application.

  18. Method of forming a dense, high temperature electronically conductive composite layer on a porous ceramic substrate

    DOEpatents

    Isenberg, Arnold O.

    1992-01-01

    An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO.sub.3, YCrO.sub.3 or LaMnO.sub.3 particles (32), on a portion of a porous ceramic substrate (30), (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure (34) between the doped particles (32), (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles (32) as a contact.

  19. Laser induced nanostructures created from Au layer on polyhydroxybutyrate

    NASA Astrophysics Data System (ADS)

    Michaljaničová, I.; Slepička, P.; Juřík, P.; Švorčík, V.

    2017-11-01

    Nanostructures as well as composite materials expand the range of materials properties and allow use of these materials in new and highly specific applications. In this paper, we described laser modification of polyhydroxybutyrate films covered with thin gold layer, which led to the formation of various composite structures. The crucial for the composite structures creation was setting of appropriate laser parameters; 15 mJ cm-2 laser fluence and 6 000 pulses were recognized as the best. The morphology of structures was determined by the thickness of the Au layer. The most interesting formations, very porous with the biggest roughness, were observed after treatment of foils covered with 10 nm of Au. The morphology was observed by atomic force microscopy. The influence on roughness and the difference between projected area and surface area was also determined.

  20. Evaluating the performance of land surface model ORCHIDEE-CAN v1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme

    NASA Astrophysics Data System (ADS)

    Chen, Yiying; Ryder, James; Bastrikov, Vladislav; McGrath, Matthew J.; Naudts, Kim; Otto, Juliane; Ottlé, Catherine; Peylin, Philippe; Polcher, Jan; Valade, Aude; Black, Andrew; Elbers, Jan A.; Moors, Eddy; Foken, Thomas; van Gorsel, Eva; Haverd, Vanessa; Heinesch, Bernard; Tiedemann, Frank; Knohl, Alexander; Launiainen, Samuli; Loustau, Denis; Ogée, Jérôme; Vessala, Timo; Luyssaert, Sebastiaan

    2016-09-01

    Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions, as it determines the energy and scalar exchanges between the land surface and the overlying air mass. In this study we evaluated the performance of a newly developed multi-layer energy budget in the ORCHIDEE-CAN v1.0 land surface model (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy), which simulates canopy structure and can be coupled to an atmospheric model using an implicit coupling procedure. We aim to provide a set of acceptable parameter values for a range of forest types. Top-canopy and sub-canopy flux observations from eight sites were collected in order to conduct this evaluation. The sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad-leaved and evergreen needle-leaved forest with a maximum leaf area index (LAI; all-sided) ranging from 3.5 to 7.0. The parametrization approach proposed in this study was based on three selected physical processes - namely the diffusion, advection, and turbulent mixing within the canopy. Short-term sub-canopy observations and long-term surface fluxes were used to calibrate the parameters in the sub-canopy radiation, turbulence, and resistance modules with an automatic tuning process. The multi-layer model was found to capture the dynamics of sub-canopy turbulence, temperature, and energy fluxes. The performance of the new multi-layer model was further compared against the existing single-layer model. Although the multi-layer model simulation results showed few or no improvements to both the nighttime energy balance and energy partitioning during winter compared with a single-layer model simulation, the increased model complexity does provide a more detailed description of the canopy micrometeorology of various forest types. The multi-layer model links to potential future environmental and ecological studies such as the assessment of in-canopy species vulnerability to climate change, the climate effects of disturbance intensities and frequencies, and the consequences of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem.

  1. Dynamic Shock Compression of Copper to Multi-Megabar Pressure

    NASA Astrophysics Data System (ADS)

    Haill, T. A.; Furnish, M. D.; Twyeffort, L. L.; Arrington, C. L.; Lemke, R. W.; Knudson, M. D.; Davis, J.-P.

    2015-11-01

    Copper is an important material for a variety of shock and high energy density applications and experiments. Copper is used as a standard reference material to determine the EOS properties of other materials. The high conductivity of copper makes it useful as an MHD driver layer in high current dynamic materials experiments on Sandia National Laboratories Z machine. Composite aluminum/copper flyer plates increase the dwell time in plate impact experiments by taking advantage of the slower wave speeds in copper. This presentation reports on recent efforts to reinstate a composite Al/Cu flyer capability on Z and to extend the range of equation-of-state shock compression data through the use of hyper-velocity composite flyers and symmetric planar impact with copper targets. We will present results from multi-dimensional ALEGRA MHD simulations, as well as experimental designs and methods of composite flyer fabrication. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Stable aqueous dispersions of functionalized multi-layer graphene by pulsed underwater plasma exfoliation of graphite

    NASA Astrophysics Data System (ADS)

    Meyer-Plath, Asmus; Beckert, Fabian; Tölle, Folke J.; Sturm, Heinz; Mülhaupt, Rolf

    2016-02-01

    A process was developed for graphite particle exfoliation in water to stably dispersed multi-layer graphene. It uses electrohydraulic shockwaves and the functionalizing effect of solution plasma discharges in water. The discharges were excited by 100 ns high voltage pulsing of graphite particle chains that bridge an electrode gap. The underwater discharges allow simultaneous exfoliation and chemical functionalization of graphite particles to partially oxidized multi-layer graphene. Exfoliation is caused by shockwaves that result from rapid evaporation of carbon and water to plasma-excited gas species. Depending on discharge energy and locus of ignition, the shockwaves cause stirring, erosion, exfoliation and/or expansion of graphite flakes. The process was optimized to produce long-term stable aqueous dispersions of multi-layer graphene from graphite in a single process step without requiring addition of intercalants, surfactants, binders or special solvents. A setup was developed that allows continuous production of aqueous dispersions of flake size-selected multi-layer graphenes. Due to the well-preserved sp2-carbon structure, thin films made from the dispersed graphene exhibited high electrical conductivity. Underwater plasma discharge processing exhibits high innovation potential for morphological and chemical modifications of carbonaceous materials and surfaces, especially for the generation of stable dispersions of two-dimensional, layered materials.

  3. MAO-derived hydroxyapatite/TiO2 nanostructured multi-layer coatings on titanium substrate

    NASA Astrophysics Data System (ADS)

    Abbasi, S.; Golestani-Fard, F.; Rezaie, H. R.; Mirhosseini, S. M. M.

    2012-11-01

    In this study, titanium substrates which previously oxidized through Micro arc oxidation method, was coated by Hydroxyapatite (HAp) coating once more by means of the same method. Morphology, topography and chemical properties as well as phase composition and thickness of layers were studied to reveal the effect of the electrolyte concentration on coating features. According to results, the obtained coatings are consisted of HAp and titania as the major phases along with minor amounts of calcium titanate and α-tri calcium phosphate. Ca and P are present on surface of obtained layers as well as predictable Ti and O based on the XPS results. Thickness profile of coatings figured out that by increasing the electrolyte concentration, especially by addition of more Calcium Acetate (CA) to electrolyte, the thickness of HAp layer would rise, consequently. However, the influence of coating time on thickness of obtained coatings would be more considerable than electrolyte concentration. High specific area coatings with nest morphology were obtained in Electrolyte containing 5 g/L β-Glycero Phosphate (β-GP) and 5 g/L CA. Increasing coating duration time in this kind of coatings would cause deduction of the nesting in their structure.

  4. High ink absorption performance of inkjet printing based on SiO2@Al13 core-shell composites

    NASA Astrophysics Data System (ADS)

    Chen, YiFan; Jiang, Bo; Liu, Li; Du, Yunzhe; Zhang, Tong; Zhao, LiWei; Huang, YuDong

    2018-04-01

    The increasing growth of the inkjet market makes the inkjet printing more necessary. A composite material based on core-shell structure has been developed and applied to prepare inkjet printing layer. In this contribution, the ink printing record layers based on SiO2@Al13 core-shell composite was elaborated. The prepared core-shell composite materials were characterized by X-ray photoelectron spectroscopy (XPS), zeta potential, X-ray diffraction (XRD), scanning electron microscopy (SEM). The results proved the presence of electrostatic adsorption between SiO2 molecules and Al13 molecules with the formation of the well-dispersed system. In addition, based on the adsorption and the liquid permeability analysis, SiO2@Al13 ink printing record layer achieved a relatively high ink uptake (2.5 gmm-1) and permeability (87%), respectively. The smoothness and glossiness of SiO2@Al13 record layers were higher than SiO2 record layers. The core-shell structure facilitated the dispersion of the silica, thereby improved its ink absorption performance and made the clear printed image. Thus, the proposed procedure based on SiO2@Al13 core-shell structure of dye particles could be applied as a promising strategy for inkjet printing.

  5. Constraints on Mercury's Core-Mantle Boundary Region

    NASA Astrophysics Data System (ADS)

    Hauck, S. A., II; Chabot, N. L.; Sun, P.; Jing, Z.; Johnson, C. L.; Margot, J. L.; Padovan, S.; Peale, S. J.; Phillips, R. J.; Solomon, S. C.

    2014-12-01

    Understanding the boundary between a planet's metallic core and silicate mantle is important for constraining processes that dominate on either side of this boundary. Geophysical measurements of the planet Mercury by the MESSENGER spacecraft have provided evidence of a core larger than earlier, less-constrained estimates. Further, these results, taken in concert with measurements of the elemental composition of the surface by MESSENGER, have led to the suggestion that the uppermost layer of the outer core may be highly enriched in sulfur, and the top of the core may consist of a solid sulfide layer. The low iron and relatively large sulfur contents of the surface indicate highly reducing conditions during planet formation, placing constraints on the potential composition of Mercury's core. Recent metal-silicate partitioning experiments have developed new limits on the amount of sulfur and silicon that may partition into the core as a function of sulfur abundance at the surface. Models for the planet's internal structure constrained by the current best estimates of the bulk density, normalized polar moment of inertia, and fraction of the polar moment of inertia of the solid layer that extends from the surface to the top of the liquid outer core provide an important view of the layering and bulk composition of Mercury. By combining the results of these internal structure models with the experimental relationship between core and mantle composition we place new limits on core composition and structure. Further, imposing measured compositional constraints on the miscibility of iron-sulfur-silicon alloys yields important limits on the presence or absence of an immiscible sulfur-rich liquid layer or a solid sulfide layer at the top of the core.

  6. Making Large Composite Vessels Without Autoclaves

    NASA Technical Reports Server (NTRS)

    Sigur, W. A.

    1989-01-01

    Method for making fiber-reinforced composite structure relies on heating and differential thermal expansion to provide temperature and pressure necessary to develop full strength, without having to place structure in large, expensive autoclave. Layers of differentially expanding material squeeze fiber-reinforce composite between them when heated. Method suitable for such cylindrical structures as pressure vessels and tanks. Used for both resin-matrix and metal-matrix composites.

  7. Influences of the residual argon gas and thermal annealing on Ta2O5 and SiO2 thin film filters

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jen; Chen, Chih-Min; Lai, Yin-Chieh

    2005-04-01

    Ion beam assisted deposition (IBAD) technique had widely used for improving stacking density and atomic mobility of thin films in many applications, especially adopted in optical film industries. Tantalum pentaoxide (Ta2O5) and silicon oxides (SiO2) optical thin films were deposited on the quartz glass substrate by using argon ion beam assisted deposition, and the influences of the residual argon gas and thermal annealing processes on the optical property, stress, compositional and microstructure evolution of the thin films were investigated in this study. Ta2O5 thin films were analyzed by XPS indicated that the ratio value of oxygen to tantalum was insufficient, at the same time, the residual argon gas in the thin films might result in film and device instabilities. Adopting oxygen-thermal annealing treatment at the temperature of 425°C, the thin films not only decreased the residual argon gas and the surface roughness, but also provided the sufficient stoichiometric ratio. Simultaneously, microstructure examination indicated few nano-crystallized structures and voids existed in Ta2O5 thin films, and possessed reasonable refractive index and lower extinction coefficient. By the way, we also suggested the IBAD system using the film compositional gas ion beam to replace the argon ion beam for assisting deposited optical films. The designed (HL)6H6LH(LH)6 multi-layers indicated higher insertion loss than the designed (HL)68H(LH)6 multi-layers. Therefore, using the high refractive index as spacer material represented lower insertion loss.

  8. Multi-responsive hydrogels for drug delivery and tissue engineering applications

    PubMed Central

    Knipe, Jennifer M.; Peppas, Nicholas A.

    2014-01-01

    Multi-responsive hydrogels, or ‘intelligent’ hydrogels that respond to more than one environmental stimulus, have demonstrated great utility as a regenerative biomaterial in recent years. They are structured biocompatible materials that provide specific and distinct responses to varied physiological or externally applied stimuli. As evidenced by a burgeoning number of investigators, multi-responsive hydrogels are endowed with tunable, controllable and even biomimetic behavior well-suited for drug delivery and tissue engineering or regenerative growth applications. This article encompasses recent developments and challenges regarding supramolecular, layer-by-layer assembled and covalently cross-linked multi-responsive hydrogel networks and their application to drug delivery and tissue engineering. PMID:26816625

  9. Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin.

    PubMed

    Hosseini, Seyed Fakhreddin; Javidi, Zahra; Rezaei, Masoud

    2016-11-01

    Multi-layer film structures of poly(lactic acid) (PLA) and fish gelatin (FG), prepared using the solvent casting technique, were studied in an effort to produce bio-based films with low oxygen (OP) and water vapor permeability (WVP). The scanning electron microscopy (SEM) images of triple-layer film showed that the outer PLA layers are being closely attached to the inner FG layer to make continuous film. The OP of multi-layer film (5.02cm 3 /m 2 daybar) decreased more than 8-fold compared with that of the PLA film, and the WVP of multi-layer film (0.125gmm/kPah m 2 ) also decreased 11-fold compared with that of the FG film. Lamination with PLA profoundly increased the water resistance of the bare gelatin film. Meanwhile, the tensile strength of the triple-layer film (25±2.13MPa) was greater than that of FG film (7.48±1.70MPa). At the same time, the resulting film maintains high optical clarity. Differential scanning calorimetry (DSC) analysis also revealed that the materials were compatible showing only one T g which decreased with FG deposition. This material exhibits an environmental-friendliness potential and a high versatility in food packaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Natural melanin composites by layer-by-layer assembly

    NASA Astrophysics Data System (ADS)

    Eom, Taesik; Shim, Bong Sub

    2015-04-01

    Melanin is an electrically conductive and biocompatible material, because their conjugated backbone structures provide conducting pathways from human skin, eyes, brain, and beyond. So there is a potential of using as materials for the neural interfaces and the implantable devices. Extracted from Sepia officinalis ink, our natural melanin was uniformly dispersed in mostly polar solvents such as water and alcohols. Then, the dispersed melanin was further fabricated to nano-thin layered composites by the layer-by-layer (LBL) assembly technique. Combined with polyvinyl alcohol (PVA), the melanin nanoparticles behave as an LBL counterpart to from finely tuned nanostructured films. The LBL process can adjust the smart performances of the composites by varying the layering conditions and sandwich thickness. We further demonstrated the melanin loading degree of stacked layers, combination nanostructures, electrical properties, and biocompatibility of the resulting composites by UV-vis spectrophotometer, scanning electron microscope (SEM), multimeter, and in-vitro cell test of PC12, respectively.

  11. Probabilistic Simulation of Multi-Scale Composite Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2012-01-01

    A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.

  12. Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion

    DOE PAGES

    Mohanty, Debasish; Li, Jianlin; Abraham, Daniel P.; ...

    2014-09-30

    Discovery of high-voltage layered lithium-and manganese-rich (LMR) composite oxide electrode has dramatically enhanced the energy density of current Li-ion energy storage systems. However, practical usage of these materials is currently not viable because of their inability to maintain a consistent voltage profile (voltage fading) during subsequent charge-discharge cycles. This report rationalizes the cause of this voltage fade by providing the evidence of layer to spinel-like (LSL) structural evolution pathways in the host Li 1.2Mn 0.55Ni 0.15Co 0.1O 2 LMR composite oxide. By employing neutron powder diffraction, and temperature dependent magnetic susceptibility, we show that LSL structural rearrangement in LMR oxidemore » occurs through a tetrahedral cation intermediate via: i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(Li Lioct →Li Litet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [Li TM oct → Li Litet]; and ii) migration of Mn from the octahedral sites of the transition metal layer to the permanent octahedral site of lithium layer via tetrahedral site of lithium layer [Mn TMoct Mn Litet Mn Lioct)]. The findings opens the door to the potential routes to mitigate this atomic restructuring in the high-voltage LMR composite oxide cathodes by manipulating the composition/structure for practical use in high-energy-density lithium-ion batteries.« less

  13. Geographical differentiation of the floristic composition and structure of the herb layer of forest permanent plots in East Germany, Poland, and Belarus

    Treesearch

    Ewa Roo-Zielinska; Jerzy Solon

    1998-01-01

    The influences of a geographical location on floristic composition, horizontal structure, and biomass of the herb layer in pine and mixed pine forest communities along climatic and pollution gradients in East Germany, Poland, and Belarus were determined. Phytosociological records were collected in permanent plots in May 1995. Each record covered an area of 400 m

  14. Role of multi-layer foam dressings with Safetac in the prevention of pressure ulcers: a review of the clinical and scientific data.

    PubMed

    Davies, Phil

    2016-01-01

    Despite the implementation of prevention strategies, pressure ulcers (PUs) continue to be a challenging health problem for patients (and their carers), clinicians and health-care providers. One area of growing interest is the use of prophylactic dressings (which were originally designed for the treatment of PUs and other wound types) as a component of standard prevention measures. Over the past few years, a large amount of scientific and clinical data relating to this subject has been published in peer-reviewed journals and presented at international meetings and conferences. A substantial proportion of these data relate to one group of dressings: multi-layer foam dressings with Safetac, which are manufactured by Mölnlycke Health Care (Gothenburg, Sweden). This evidence pool has influenced the experts involved in updating the Clinical Practice Guideline, produced by the National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel and Pan Pacific Pressure Injury Alliance, on the prevention and treatment of PUs. The updated Guideline, published in 2014, recommends that, as part of their PU prevention regimens, clinicians should consider applying prophylactic dressings to bony prominences in anatomical areas that are frequently subjected to friction and shear. A literature review was undertaken to identify clinical data from the entire evidence hierarchy, as well as scientific data from laboratory studies, on the use of multi-layer foam dressings with Safetac in the prevention of pressure ulceration. The MEDLINE (National Library of Medicine, Bethesda, US) and EMBASE (Elsevier B, Amsterdam, Netherlands) bibliographic databases were searched. In addition, abstract books and proceedings documents relating to national and international conferences were scanned in order to identify presentations (i.e. oral, e-posters and posters) of relevance to the review. Clinical and health economic experts have undertaken numerous studies, including randomised controlled trials, to assess the efficacy and cost-effectiveness of using multi-layer foam dressings with Safetac as a component of standard PU prevention strategies. The results of these studies indicate that the application of multi-layer foam dressings containing Safetac can reduce the occurrence of PUs on anatomical locations such as the sacrum and the heel, and underneath medical devices. Scientists have also developed and used laboratory methods to gain a better understanding of how prophylactic dressings work. The results of these studies indicate that the composition of foam dressings containing Safetac (i.e. their multi-layer structure) sets them apart from other dressings due to their ability to mediate the effects of physical forces (i.e. pressure, friction and shear) and control microclimate, all of which contribute to pressure ulceration. The evidence pool clearly indicates that the prophylactic use of multi-layer foam dressings with Safetac as a component of standard prevention measures is beneficial to the clinician, the health-care provider and the patient. It should be noted that the findings outlined in this review may not be transferable to other products as their makeup and components are likely to differ significantly from those of multi-layer foam dressings with Safetac. As the importance of evidence-based practice and the need for cost-effective care continues to grow, clinicians and provider should carefully consider this point when selecting prophylactic dressings for PU prevention.

  15. Structural and luminescent Properties of Bulk InAsSb

    DTIC Science & Technology

    2011-12-21

    have used compositionally graded metamorphic buffer layers to accommodate the misfit strain between InAsxSb1-x alloys and GaSb and InSb substrates in...wavelength range. The authors have used compositionally graded metamorphic buffer layers to accommodate the misfit strain between InAsxSb1x alloys...long wave IR range. We used compositionally graded GaInSb, AlGaInSb, and InAsxSb1x metamorphic buffer layers to accommodate the misfit strain between

  16. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Klotzsche, M. (Compiler)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.

  17. The role of temperature ramp-up time before barrier layer growth in optical and structural properties of InGaN/GaN multi-quantum wells

    NASA Astrophysics Data System (ADS)

    Xing, Yao; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Zhu, Jianjun; Chen, Ping; Yang, Jing; Liu, Wei; Liang, Feng; Liu, Shuangtao; Zhang, Liqun; Wang, Wenjie; Li, Mo; Zhang, Yuantao; Du, Guotong

    2018-05-01

    In InGaN/GaN multi-quantum wells (MQWs), a low temperature cap (LT-cap) layer is grown between the InGaN well layer and low temperature GaN barrier layer. During the growth, a temperature ramp-up and ramp-down process is added between LT-cap and barrier layer growth. The effect of temperature ramp-up time duration on structural and optical properties of quantum wells is studied. It is found that as the ramp-up time increases, the Indium floating layer on the top of the well layer can be diminished effectively, leading to a better interface quality between well and barrier layers, and the carrier localization effect is enhanced, thereby the internal quantum efficiency (IQE) of QWs increases surprisingly. However, if the ramp-up time is too long, the carrier localization effect is weaker, which may increase the probabilities of carriers to meet with nonradiative recombination centers. Meanwhile, more nonradiative recombination centers will be introduced into well layers due to the indium evaporation. Both of them will lead to a reduction of internal quantum efficiency (IQE) of MQWs.

  18. Superhydrophobic, carbon-infiltrated carbon nanotubes on Si and 316L stainless steel with tunable geometry

    NASA Astrophysics Data System (ADS)

    Stevens, Kimberly A.; Esplin, Christian D.; Davis, Taylor M.; Butterfield, D. Jacob; Ng, Philip S.; Bowden, Anton E.; Jensen, Brian D.; Iverson, Brian D.

    2018-05-01

    The use of carbon nanotubes to create superhydrophobic coatings has been considered due to their ability to offer a relatively uniform nanostructure. However, carbon nanotubes (CNTs) may be considered delicate with a typical diameter of tens of nanometers for a multi-walled CNT; as-grown carbon nanotubes often require the addition of a thin-film hydrophobic coating to render them superhydrophobic. Furthermore, fine control over the diameter of the as-grown CNTs or the overall nanostructure is difficult. This work demonstrates the utility of using carbon infiltration to layer amorphous carbon on multi-walled nanotubes to improve structural integrity and achieve superhydrophobic behavior with tunable geometry. These carbon-infiltrated carbon nanotube (CICNT) surfaces exhibit an increased number of contact points between neighboring tubes, resulting in a composite structure with improved mechanical stability. Additionally, the native surface can be rendered superhydrophobic with a vacuum pyrolysis treatment, with contact angles as high as 160° and contact angle hysteresis on the order of 1°. The CICNT diameter, static contact angle, sliding angle, and contact angle hysteresis were examined for varying levels of carbon-infiltration to determine the effect of infiltration on superhydrophobicity. The same superhydrophobic behavior and tunable geometry were also observed with CICNTs grown directly on stainless steel without an additional catalyst layer. The ability to tune the geometry while maintaining superhydrophobic behavior offers significant potential in condensation heat transfer, anti-icing, microfluidics, anti-microbial surfaces, and other bio-applications where control over the nanostructure is beneficial.

  19. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOEpatents

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-10-27

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  20. SMART Layer and SMART Suitcase for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.

    2001-06-01

    Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.

  1. How does the canine paw pad attenuate ground impacts? A multi-layer cushion system.

    PubMed

    Miao, Huaibin; Fu, Jun; Qian, Zhihui; Ren, Luquan; Ren, Lei

    2017-12-15

    Macroscopic mechanical properties of digitigrade paw pads, such as non-linear elastic and variable stiffness, have been investigated in previous studies; however, little is known about the micro-scale structural characteristics of digitigrade paw pads, or the relationship between these characteristics and the exceptional cushioning of the pads. The digitigrade paw pad consists of a multi-layered structure, which is mainly comprised of a stratified epithelium layer, a dermis layer and a subcutaneous layer. The stratified epithelium layer and dermal papillae constitute the epidermis layer. Finite element analyses were carried out and showed that the epidermis layer effectively attenuated the ground impact across impact velocities of 0.05-0.4 m/s, and that the von Mises stresses were uniformly distributed in this layer. The dermis layer encompassing the subcutaneous layer can be viewed as a hydrostatic system, which can store, release and dissipate impact energy. All three layers in the paw pad work as a whole to meet the biomechanical requirements of animal locomotion. These findings provide insights into the biomechanical functioning of digitigrade paw pads and could be used to facilitate bio-inspired, ground-contacting component development for robots and machines, as well as contribute to footwear design. © 2017. Published by The Company of Biologists Ltd.

  2. Gas Permeable Chemochromic Compositions for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Mohajeri, Nahid (Inventor); Muradov, Nazim (Inventor); Tabatabaie-Raissi, Ali (Inventor); Bokerman, Gary (Inventor)

    2013-01-01

    A (H2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H2 gas. The matrix material provides high H2 permeability, which permits fast permeation of H2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer.

  3. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  4. Evolution of the Structure of Local Regions of Fused Metal in Explosion-Welded Nickel-Aluminum Composites Under Heat Treatment

    NASA Astrophysics Data System (ADS)

    Shmorgun, V. G.; Bogdanov, A. I.; Gurevich, L. M.

    2016-03-01

    The methods of electron, optical, and atomic force microscopy are used to study the structure, morphology and phase composition of local regions of fused metal in an explosion-welded nickel-aluminum composite. It is shown that the diffusion zone formed due to the heat treatment repeats the contour of the fuse in the first stage and then "absorbs" it upon duration of the hold thus leveling the phase composition. ANi2Al3 Aluminide layer forms on the side of nickel and a NiAl3 layer forms on the side of aluminum.

  5. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    DOEpatents

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  6. CNNH_PSS: protein 8-class secondary structure prediction by convolutional neural network with highway.

    PubMed

    Zhou, Jiyun; Wang, Hongpeng; Zhao, Zhishan; Xu, Ruifeng; Lu, Qin

    2018-05-08

    Protein secondary structure is the three dimensional form of local segments of proteins and its prediction is an important problem in protein tertiary structure prediction. Developing computational approaches for protein secondary structure prediction is becoming increasingly urgent. We present a novel deep learning based model, referred to as CNNH_PSS, by using multi-scale CNN with highway. In CNNH_PSS, any two neighbor convolutional layers have a highway to deliver information from current layer to the output of the next one to keep local contexts. As lower layers extract local context while higher layers extract long-range interdependencies, the highways between neighbor layers allow CNNH_PSS to have ability to extract both local contexts and long-range interdependencies. We evaluate CNNH_PSS on two commonly used datasets: CB6133 and CB513. CNNH_PSS outperforms the multi-scale CNN without highway by at least 0.010 Q8 accuracy and also performs better than CNF, DeepCNF and SSpro8, which cannot extract long-range interdependencies, by at least 0.020 Q8 accuracy, demonstrating that both local contexts and long-range interdependencies are indeed useful for prediction. Furthermore, CNNH_PSS also performs better than GSM and DCRNN which need extra complex model to extract long-range interdependencies. It demonstrates that CNNH_PSS not only cost less computer resource, but also achieves better predicting performance. CNNH_PSS have ability to extracts both local contexts and long-range interdependencies by combing multi-scale CNN and highway network. The evaluations on common datasets and comparisons with state-of-the-art methods indicate that CNNH_PSS is an useful and efficient tool for protein secondary structure prediction.

  7. Diffusion-Based Design of Multi-Layered Ophthalmic Lenses for Controlled Drug Release

    PubMed Central

    Pimenta, Andreia F. R.; Serro, Ana Paula; Paradiso, Patrizia; Saramago, Benilde

    2016-01-01

    The study of ocular drug delivery systems has been one of the most covered topics in drug delivery research. One potential drug carrier solution is the use of materials that are already commercially available in ophthalmic lenses for the correction of refractive errors. In this study, we present a diffusion-based mathematical model in which the parameters can be adjusted based on experimental results obtained under controlled conditions. The model allows for the design of multi-layered therapeutic ophthalmic lenses for controlled drug delivery. We show that the proper combination of materials with adequate drug diffusion coefficients, thicknesses and interfacial transport characteristics allows for the control of the delivery of drugs from multi-layered ophthalmic lenses, such that drug bursts can be minimized, and the release time can be maximized. As far as we know, this combination of a mathematical modelling approach with experimental validation of non-constant activity source lamellar structures, made of layers of different materials, accounting for the interface resistance to the drug diffusion, is a novel approach to the design of drug loaded multi-layered contact lenses. PMID:27936138

  8. Deployable structures using bistable reeled composites

    NASA Astrophysics Data System (ADS)

    Daton-Lovett, Andrew J.; Compton-Bishop, Quentin M.; Curry, Richard G.

    2000-06-01

    This paper describes an innovative, patented use of composite materials developed by RolaTube Technology Ltd. to make smart deployable structures. Bi-stable reeled composites (BRCs) can alternate between two stable forms; that of a strong, rigid structure and that of a compact coil of flat-wound material. Bi-stability arises as a result of the manipulation of Poisson's ratio and isotropy in the various layers of the material. BRCs are made of fiber- reinforced composite materials, most often with a thermoplastic matrix. A range of fibers and polymer matrices can be used according to the requirements of the operating environment. Samples of a BRC structure were constructed using layers of unidirectional, fiber-reinforced thermoplastic sheet with the layers at different angles. The whole assembly was then consolidated under conditions of elevated temperature and pressure. The properties of the BRC are described and the result of a series of experiments performed on the sample to determine the tensile strength of the BRC structure are reported. A full analysis using finite element methods is being undertaken in collaboration with the University of Cambridge, England. The first commercial use has been to fabricate boom and drive mechanisms for the remote inspection of industrial plant.

  9. Study on the electrical behavior of MWCNTs in GF/Epoxy composites.

    PubMed

    Yan, Zhao; Lu, Yuan; Yuexin, Duan

    2010-08-01

    The multi-wall nanotubes (MWCNTs) were divisionalized equably by the fabric of glass in composites. Then the electrical properties such as permittivity, conductance and electromagnetic interference (EMI) shielding effectiveness (SE) of MWCNTs in GF/EP composite were studied. The effect of the content and dispersion of MWCNTs were researched in this work. Firstly the permittivity of MWCNTs/GF/EP composites were studied respectively by keeping layers of glass fabric and increasing content of MWCNTs or keeping content of MWCNTs and changing layers of glass fabric in electromagnetic wave band (5.85-18 GHz). Then the conductance of MWCNTs/GF/EP composites with different MWCNTs contents was tested. Furthermore, the EMI SE of composites with different MWCNTs contents in electromagnetic wave band (5.85-18 GHz) were studied. In addition, the morphologies of MWCNTs/GF/EP composites with the different MWCNTs weight percent were observed. The results show that the real part of permittivity of composites can be improved highest up to 75 and the imaginary part increase maximum up to 80. However there is no disciplinarian about effect of layers of glass fabric on dielectric property. The MWCNTs/GF/EP composite can be changed from the insulator to the semiconductor along with increasing the weight percent of MWCNTs. In electromagnetic wave band 5.85-18 GHz, the values of SE are increasing with increasing content of the MWCNTs.

  10. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: multi-parameter measurement reliability and precision studies.

    PubMed

    Zhang, Y; Melnikov, A; Mandelis, A; Halliop, B; Kherani, N P; Zhu, R

    2015-03-01

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.

  11. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: Multi-parameter measurement reliability and precision studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094; Melnikov, A.

    2015-03-15

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results weremore » studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.« less

  12. A novel method of fabricating laminated silicone stack actuators with pre-strained dielectric layers

    NASA Astrophysics Data System (ADS)

    Hinitt, Andrew D.; Conn, Andrew T.

    2014-03-01

    In recent studies, stack based Dielectric Elastomer Actuators (DEAs) have been successfully used in haptic feedback and sensing applications. However, limitations in the fabrication method, and materials used to con- struct stack actuators constrain their force and displacement output per unit volume. This paper focuses on a fabrication process enabling a stacked elastomer actuator to withstand the high tensile forces needed for high power applications, such as mimetics for mammalian muscle contraction (i.e prostheses), whilst requiring low voltage for thickness-mode contractile actuation. Spun elastomer layers are bonded together in a pre-strained state using a conductive adhesive filler, forming a Laminated Inter-Penetrating Network (L-IPN) with repeatable and uniform electrode thickness. The resulting structure utilises the stored strain energy of the dielectric elas- tomer to compress the cured electrode composite material. The method is used to fabricate an L-IPN example, which demonstrated that the bonded L-IPN has high tensile strength normal to the lamination. Additionally, the uniformity and retained dielectric layer pre-strain of the L-IPN are confirmed. The described method is envisaged to be used in a semi-automated assembly of large-scale multi-layer stacks of pre-strained dielectric layers possessing a tensile strength in the range generated by mammalian muscle.

  13. Coherent Terahertz Radiation from Multiple Electron Beams Excitation within a Plasmonic Crystal-like structure.

    PubMed

    Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang

    2017-01-23

    Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.

  14. Coherent Terahertz Radiation from Multiple Electron Beams Excitation within a Plasmonic Crystal-like structure

    PubMed Central

    Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang

    2017-01-01

    Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation. PMID:28112234

  15. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method

    NASA Astrophysics Data System (ADS)

    Gholampoor, Mahdi; Movassagh-Alanagh, Farid; Salimkhani, Hamed

    2017-02-01

    Recently, electromagnetic interference (EMI) shielding materials have absorbed a lot of attention due to a growing need for application in the area of electronic and wireless devices. In this study, a carbon-based EMI shielding composite was fabricated by electrophoretic deposition of Fe3O4 nano-particles on carbon fibers (CFs) as a 3D structure incorporated with an epoxy resin. Co-precipitation method was employed to synthesize Fe3O4 nano-particles. This as-synthesized Fe3O4 nano-powder was then successfully deposited on CFs using a modified multi-step electrophoretic deposition (EPD) method. The results of structural studies showed that the Fe3O4 nano-particles (25 nm) were successfully and uniformly deposited on CFs. The measured magnetic properties of as-synthesized Fe3O4 nano-powder and nano-Fe3O4/CFs composite showed that the saturation magnetization of bare Fe3O4 was decreased from Ms = 72.3 emu/g to Ms = 33.1 emu/g for nano-Fe3O4/CFs composite and also corecivity of Fe3O4 was increased from Hc = 4.9 Oe to Hc = 168 Oe for composite. The results of microwave absorption tests revealed that the reflection loss (RL) of an epoxy-based nano-Fe3O4/CFs composite are significantly influenced by layer thickness. The maximum RL value of -10.21 dB at 10.12 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm. It also exhibited an EMI shielding performance of -23 dB for whole the frequency range of 8.2-12.4 GHz.

  16. Advanced stitching technology

    NASA Technical Reports Server (NTRS)

    Scardino, Frank L.

    1992-01-01

    In the design of textile composites, the selection of materials and constructional techniques must be matched with product performance, productivity, and cost requirements. Constructional techniques vary. A classification of various textile composite systems is given. In general, the chopped fiber system is not suitable for structural composite applications because of fiber discontinuity, uncontrolled fiber orientation and a lack of fiber integration or entanglement. Linear filament yarn systems are acceptable for structural components which are exposed to simple tension in their applications. To qualify for more general use as structural components, filament yarn systems must be multi-directionally positioned. With the most sophisticated filament winding and laying techniques, however, the Type 2 systems have limited potential for general load-bearing applications because of a lack of filament integration or entanglement, which means vulnerability to splitting and delamination among filament layers. The laminar systems (Type 3) represented by a variety of simple fabrics (woven, knitted, braided and nonwoven) are especially suitable for load-bearing panels in flat form and for beams in a roled up to wound form. The totally integrated, advanced fabric system (Type 4) are thought to be the most reliable for general load-bearing applications because of fiber continuity and because of controlled multiaxial fiber orientation and entanglement. Consequently, the risk of splitting and delamination is minimized and practically omitted. Type 4 systems can be woven, knitted, braided or stitched through with very special equipment. Multiaxial fabric technologies are discussed.

  17. Coaxial-cable structure composite cathode material with high sulfur loading for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Zhang, Zhian; Guo, Zaiping; Zhang, Kai; Lai, Yanqing; Li, Jie

    2015-01-01

    Hollow carbon nanofiber@nitrogen-doped porous carbon (HCNF@NPC) coaxial-cable structure composite, which is carbonized from HCNF@polydopamine, is prepared as an improved high conductive carbon matrix for encapsulating sulfur as a composite cathode material for lithium-sulfur batteries. The prepared HCNF@NPC-S composite with high sulfur content of approximately 80 wt% shows an obvious coaxial-cable structure with an NPC layer coating on the surface of the linear HCNFs along the length and sulfur homogeneously distributes in the coating layer. This material exhibits much better electrochemical performance than the HCNF-S composite, delivers initial discharge capacity of 982 mAh g-1 and maintains a high capacity retention rate of 63% after 200 cycles at a high current density of 837.5 mA g-1. The significantly enhanced electrochemical performance of the HCNF@NPC-S composite is attributed to the unique coaxial-cable structure, in which the linear HCNF core provides electronic conduction pathways and works as mechanical support, and the NPC shell with nitrogen-doped and porous structure can trap sulfur/polysulfides and provide Li+ conductive pathways.

  18. Measuring Moisture Levels in Graphite Epoxy Composite Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Youngquist, Robert; Starr, Stanley

    2011-01-01

    Graphite epoxy composite (GEC) materials are used in the construction of rocket fairings, nose cones, interstage adapters, and heat shields due to their high strength and light weight. However, they absorb moisture depending on the environmental conditions they are exposed to prior to launch. Too much moisture absorption can become a problem when temperature and pressure changes experienced during launch cause the water to vaporize. The rapid state change of the water can result in structural failure of the material. In addition, heat and moisture combine to weaken GEC structures. Diffusion models that predict the total accumulated moisture content based on the environmental conditions are one accepted method of determining if the material strength has been reduced to an unacceptable level. However, there currently doesn t exist any field measurement technique to estimate the actual moisture content of a composite structure. A multi-layer diffusion model was constructed with Mathematica to predict moisture absorption and desorption from the GEC sandwich structure. This model is used in conjunction with relative humidity/temperature sensors both on the inside and outside of the material to determine the moisture levels in the structure. Because the core materials have much higher diffusivity than the face sheets, a single relative humidity measurement will accurately reflect the moisture levels in the core. When combined with an external relative humidity measurement, the model can be used to determine the moisture levels in the face sheets. Since diffusion is temperaturedependent, the temperature measurements are used to determine the diffusivity of the face sheets for the model computations.

  19. Multi-instrument data analysis for interpretation of the Martian North polar layered deposits

    NASA Astrophysics Data System (ADS)

    Mirino, Melissa; Sefton-Nash, Elliot; Witasse, Olivier; Frigeri, Alessandro

    2017-04-01

    The Martian polar caps have engendered substantial study due to their spiral morphology, layered structure and the seasonal variability in thickness of the uppermost H2O and CO2 ice layers. We demonstrate a multi-instrument study of exposed and buried north polar layers using data from ESA's Mars Express (MEx) and NASA's Mars Reconnaissance Orbiter (MRO) missions. We perform analysis of high resolution images from MRO's HiRISE, which provide textural and morphological information about surface features larger than 0.3m, with NIR hyperspectral data from MRO CRISM, which allows study of surface mineralogy at a maximum resolution of 18 m/pixel. Stereo-derived topography is provided by MEx's HRSC. Together with these surficial observations we interpret radargrams from MRO SHARAD to obtain information about layered structures at a horizontal resolution between 0.3 and 3 kilometers and a free-space vertical resolution of 15 meters (vertical resolution depends on the dielectric properties of the medium). This combination of datasets allows us to attempt to correlate polar layering, made visible by dielectric interfaces between beds, with surface mineralogies and structures outcropping at specific stratigraphic levels. We analyse two opposite areas of the north polar cap with the intention to characterise in multiple datasets each geologic unit identified in the north polar cap's stratigraphy (mapped by e.g. [1]). We selected deposits observed in Chasma Boreale and Olympia Cavi because these areas allow us to observe and map strata at opposing sides of the north polar cap. Using the CRISM Analysis Tool and spectral summary parameters [2] we map the spectral characteristics of the two areas that show H2O and CO2 ice layering exposed on polar scarps. Through spatial-registration in a GIS with HRSC topography and HiRISE imagery we assess the mineralogical and morphological characteristics of exposed layers. In order to constrain the cross section between the two selected localities we choose SHARAD radargrams that most closely align with the transect between the sites. We interpret sub-horizontal features to be due to dielectric interfaces involving the deposits analysed. Our interpretation of radargrams in the context of compositional and structural constraints, from areas where pertinent beds outcrop, illustrates how joint analysis of surface and sub-surface data can benefit geological interpretation of planetary surfaces and subsurfaces. This technique applied to Mars' north polar layered deposits may offer additional constraint on morphology of internal layering resulting from seasonal deposition/sublimation cycles over varying obliquity [3]. References: [1] Tanaka et al. (2008), Icarus, 196, p. 318-358, doi:10.1016/j.icarus.2008.01.021. [2] Viviano-Beck et al. (2014), J. Geophys. Res. Planets, 119, p. 1403-1431, doi:10.1002/2014JE004627..[3] Putzig et al. (2009), Icarus, 204, p. 443-457, doi:10.1016/j.icarus.2009.07.034.

  20. The impact of forest structure and light utilization on carbon cycling in tropical forests

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Longo, M.; Leitold, V.; Keller, M. M.

    2015-12-01

    Light competition is a fundamental organizing principle of forest ecosystems, and interactions between forest structure and light availability provide an important constraint on forest productivity. Tropical forests maintain a dense, multi-layered canopy, based in part on abundant diffuse light reaching the forest understory. Climate-driven changes in light availability, such as more direct illumination during drought conditions, therefore alter the potential productivity of forest ecosystems during such events. Here, we used multi-temporal airborne lidar data over a range of Amazon forest conditions to explore the influence of forest structure on gross primary productivity (GPP). Our analysis combined lidar-based observations of canopy illumination and turnover in the Ecosystem Demography model (ED, version 2.2). The ED model was updated to specifically account for regional differences in canopy and understory illumination using lidar-derived measures of canopy light environments. Model simulations considered the influence of forest structure on GPP over seasonal to decadal time scales, including feedbacks from differential productivity between illuminated and shaded canopy trees on mortality rates and forest composition. Finally, we constructed simple scenarios with varying diffuse and direct illumination to evaluate the potential for novel plant-climate interactions under scenarios of climate change. Collectively, the lidar observations and model simulations underscore the need to account for spatial heterogeneity in the vertical structure of tropical forests to constrain estimates of tropical forest productivity under current and future climate conditions.

  1. Multi-Layer SnSe Nanoflake Field-Effect Transistors with Low-Resistance Au Ohmic Contacts

    NASA Astrophysics Data System (ADS)

    Cho, Sang-Hyeok; Cho, Kwanghee; Park, No-Won; Park, Soonyong; Koh, Jung-Hyuk; Lee, Sang-Kwon

    2017-05-01

    We report p-type tin monoselenide (SnSe) single crystals, grown in double-sealed quartz ampoules using a modified Bridgman technique at 920 °C. X-ray powder diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) measurements clearly confirm that the grown SnSe consists of single-crystal SnSe. Electrical transport of multi-layer SnSe nanoflakes, which were prepared by exfoliation from bulk single crystals, was conducted using back-gated field-effect transistor (FET) structures with Au and Ti contacts on SiO2/Si substrates, revealing that multi-layer SnSe nanoflakes exhibit p-type semiconductor characteristics owing to the Sn vacancies on the surfaces of SnSe nanoflakes. In addition, a strong carrier screening effect was observed in 70-90-nm-thick SnSe nanoflake FETs. Furthermore, the effect of the metal contacts to multi-layer SnSe nanoflake-based FETs is also discussed with two different metals, such as Ti/Au and Au contacts.

  2. Global multi-layer network of human mobility

    PubMed Central

    Belyi, Alexander; Bojic, Iva; Sobolevsky, Stanislav; Sitko, Izabela; Hawelka, Bartosz; Rudikova, Lada; Kurbatski, Alexander; Ratti, Carlo

    2017-01-01

    ABSTRACT Recent availability of geo-localized data capturing individual human activity together with the statistical data on international migration opened up unprecedented opportunities for a study on global mobility. In this paper, we consider it from the perspective of a multi-layer complex network, built using a combination of three datasets: Twitter, Flickr and official migration data. Those datasets provide different, but equally important insights on the global mobility – while the first two highlight short-term visits of people from one country to another, the last one – migration – shows the long-term mobility perspective, when people relocate for good. The main purpose of the paper is to emphasize importance of this multi-layer approach capturing both aspects of human mobility at the same time. On the one hand, we show that although the general properties of different layers of the global mobility network are similar, there are important quantitative differences among them. On the other hand, we demonstrate that consideration of mobility from a multi-layer perspective can reveal important global spatial patterns in a way more consistent with those observed in other available relevant sources of international connections, in comparison to the spatial structure inferred from each network layer taken separately. PMID:28553155

  3. Vegetation succession among and within structural layers following wildfire in managed forests

    Treesearch

    Lori J. Kayes; Paul D. Anderson; Klaus J. Puettmann

    2010-01-01

    In severely burned plantations, dynamics of (1) shrub, herbaceous, and cryptogam richness; (2) cover; (3) topographic, overstory, and site influences were characterized on two contrasting aspects 2 to 4 years following fire. Analysis of variance was used to examine change in structural layer richness and cover over time. Non-metric multidimensional scaling, multi-...

  4. A critical review of nanotechnologies for composite aerospace structures

    NASA Astrophysics Data System (ADS)

    Kostopoulos, Vassilis; Masouras, Athanasios; Baltopoulos, Athanasios; Vavouliotis, Antonios; Sotiriadis, George; Pambaguian, Laurent

    2017-03-01

    The past decade extensive efforts have been invested in understanding the nano-scale and revealing the capabilities offered by nanotechnology products to structural materials. Integration of nano-particles into fiber composites concludes to multi-scale reinforced composites and has opened a new wide range of multi-functional materials in industry. In this direction, a variety of carbon based nano-fillers has been proposed and employed, individually or in combination in hybrid forms, to approach the desired performance. Nevertheless, a major issue faced lately more seriously due to the interest of industry is on how to incorporate these nano-species into the final composite structure through existing manufacturing processes and infrastructure. This interest originates from several industrial applications needs that request the development of new multi-functional materials which combine enhanced mechanical, electrical and thermal properties. In this work, an attempt is performed to review the most representative processes and related performances reported in literature and the experience obtained on nano-enabling technologies of fiber composite materials. This review focuses on the two main composite manufacturing technologies used by the aerospace industry; Prepreg/Autoclave and Resin Transfer technologies. It addresses several approaches for nano-enabling of composites for these two routes and reports latest achieved results focusing on performance of nano-enabled fiber reinforced composites extracted from literature. Finally, this review work identifies the gap between available nano-technology integration routes and the established industrial composite manufacturing techniques and the challenges to increase the Technology Readiness Level to reach the demands for aerospace industry applications.

  5. InGaP-based quantum well solar cells: Growth, structural design, and photovoltaic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashem, Islam E.; Zachary Carlin, C.; Hagar, Brandon G.

    2016-03-07

    Raising the efficiency ceiling of multi-junction solar cells (MJSCs) through the use of more optimal band gap configurations of next-generation MJSC is crucial for concentrator and space systems. Towards this goal, we propose two strain balanced multiple quantum well (SBMQW) structures to tune the bandgap of InGaP-based solar cells. These structures are based on In{sub x}Ga{sub 1−x}As{sub 1−z}P{sub z}/In{sub y}Ga{sub 1−y}P (x > y) and In{sub x}Ga{sub 1−x}P/In{sub y}Ga{sub 1−y}P (x > y) well/barrier combinations, lattice matched to GaAs in a p-i-n solar cell device. The bandgap of In{sub x}Ga{sub 1−x}As{sub 1−z}P{sub z}/In{sub y}Ga{sub 1−y}P can be tuned from 1.82 to 1.65 eV by adjustingmore » the well composition and thickness, which promotes its use as an efficient subcell for next generation five and six junction photovoltaic devices. The thicknesses of wells and barriers are adjusted using a zero net stress balance model to prevent the formation of defects. Thin layers of InGaAsP wells have been grown thermodynamically stable with compositions within the miscibility gap for the bulk alloy. The growth conditions of the two SBMQWs and the individual layers are reported. The structures are characterized and analyzed by optical microscopy, X-ray diffraction, photoluminescence, current-voltage characteristics, and spectral response (external quantum efficiency). The effect of the well number on the excitonic absorption of InGaAsP/InGaP SBMQWs is discussed and analyzed.« less

  6. Characterization of a compliant multi-layer system for tactile sensing with enhanced sensitivity and range

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yu, Miao; Bruck, Hugh A.; Smela, Elisabeth

    2018-06-01

    To allow robots to interact with humans via touch, new sensing concepts are needed that can detect a wide range of potential interactions and cover the body of a robot. In this paper, a skin-inspired multi-layer tactile sensing architecture is presented and characterized. The structure consists of stretchable piezoresistive strain-sensing layers over foam layers of different stiffness, allowing for both sufficient sensitivity and pressure range for human contacts. Strip-shaped sensors were used in this architecture to produce a deformation response proportional to pressure. The roles of the foam layers were elucidated by changing their stiffness and thickness, allowing the development of a geometric model to account for indenter interactions with the structure. The advantage of this architecture over other approaches is the ability to easily tune performance by adjusting the stiffness or thickness of the foams to tailor the response for different applications. Since viscoelastic materials were used, the temporal effects were also investigated.

  7. Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Tong, Guoquan

    2015-10-01

    Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.

  8. Combining multi-layered bitmap files using network specific hardware

    DOEpatents

    DuBois, David H [Los Alamos, NM; DuBois, Andrew J [Santa Fe, NM; Davenport, Carolyn Connor [Los Alamos, NM

    2012-02-28

    Images and video can be produced by compositing or alpha blending a group of image layers or video layers. Increasing resolution or the number of layers results in increased computational demands. As such, the available computational resources limit the images and videos that can be produced. A computational architecture in which the image layers are packetized and streamed through processors can be easily scaled so to handle many image layers and high resolutions. The image layers are packetized to produce packet streams. The packets in the streams are received, placed in queues, and processed. For alpha blending, ingress queues receive the packetized image layers which are then z sorted and sent to egress queues. The egress queue packets are alpha blended to produce an output image or video.

  9. Experimental and finite element analyses of multifunctional skins for morphing wing applications

    NASA Astrophysics Data System (ADS)

    Geier, Sebastian; Kintscher, Markus; Mahrholz, Thorsten; Wierach, Peter; Monner, Hans-Peter; Wiedemann, Martin

    2016-04-01

    As a consequence of operational efficiency because of rising energy costs, future transport systems need to be mission-adaptive. Especially in aircraft design the limits of lightweight construction, reduced aerodynamic drag and optimized propulsion are pushed further and further. The first two aspects can be addressed by using a morphing leading edge. Great economic advantages can be expected as a result of gapless surfaces which feature longer areas of laminar flow. Instead of focusing on the kinematics, which are already published in a great number of varieties, this paper emphasizes as major challenge, the qualification of a multi-material layup which meets the compromise of needed stiffness, flexibility and essential functions to match the flight worthiness requirements, such as erosion shielding, impact safety, lighting protection and de-icing. It is the aim to develop an gapless leading edge device and to prepare the path for higher technology readiness levels resulting in an airborne application. During several national and European projects the DLR developed a gapless smart droop nose concept, which functionality was successfully demonstrated using a two-dimensional 5 m in span prototype in low speed (up to 50 m/s) wind tunnel tests. The basic structure is made of commercially available and certified glass-fiber reinforced plastics (GFRP, Hexcel Hexply 913). This paper presents 4-point bending tests to characterize the composite with its integrated functions. The integrity and aging/fatigue issues of different material combinations are analyzed by experiments. It can be demonstrated that only by adding functional layers the mentioned requirements such as erosion-shielding or de-icing can be satisfied. The total thickness of the composite skin increases by more than 100 % when required functions are integrated as additional layers. This fact has a tremendous impact on the maximum strain of the outer surface if it features a complete monolithic build-up. Based on experimental results a numerical model can be set up for further structural optimizaton of the multi-functional laminate.

  10. Load Distribution Factors for Composite Multicell Box Girder Bridges

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjay; Bhargava, Pradeep

    2017-12-01

    Cellular steel section composite with a concrete deck is one of the most suitable superstructures in resisting torsional and warping effects induced by highway loading. This type of structure has inherently created new design problems for engineers in estimating its load distribution when subjected to moving vehicles. Indian Codes of Practice does not provide any specific guidelines for the design of straight composite concrete deck-steel multi-cell bridges. To meet the practical requirements arising during the design process, a simple design method is needed for straight composite multi-cell bridges in the form of load distribution factors for moment and shear. This work presents load distribution characteristics of straight composite multi-cell box girder bridges under IRC trains of loads.

  11. An International Symposium and Exhibition on Active Materials and Adaptive Structures.

    DTIC Science & Technology

    1991-11-08

    into Tubular Composite Structures Using Embedded Constraining Layers 232 S. Sattinger, Z. Sanjana, Westinghouse Science and Technology Center...struts, constrained layers , and tuned mass dampers. The most effective damping treatment was selected for each mode depending on its modal...paper) the passive damping component* in the structure will be deserth^ These »dude constrained layer viscoelastic struts« viscous DStrlJi . .^ of

  12. Structural building principles of complex face-centered cubic intermetallics.

    PubMed

    Dshemuchadse, Julia; Jung, Daniel Y; Steurer, Walter

    2011-08-01

    Fundamental structural building principles are discussed for all 56 known intermetallic phases with approximately 400 or more atoms per unit cell and space-group symmetry F43m, Fd3m, Fd3, Fm3m or Fm3c. Despite fundamental differences in chemical composition, bonding and electronic band structure, their complex crystal structures show striking similarities indicating common building principles. We demonstrate that the structure-determining elements are flat and puckered atomic {110} layers stacked with periodicities 2p. The atoms on this set of layers, which intersect each other, form pentagon face-sharing endohedral fullerene-like clusters arranged in a face-centered cubic packing (f.c.c.). Due to their topological layer structure, all these crystal structures can be described as (p × p × p) = p(3)-fold superstructures of a common basic structure of the double-diamond type. The parameter p, with p = 3, 4, 7 or 11, is determined by the number of layers per repeat unit and the type of cluster packing, which in turn are controlled by chemical composition.

  13. Few layered MoO3 nano sheets-SWCNT composite thin film as supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Dutta, Shibsankar; Akther, Jasim; De, Sukanta

    2017-05-01

    The increasing demands for clean and renewable energy, the advantages of high power density, long lasting and high efficiency have made Supercapacitor as one of the major emerging energy storage device.The 2D layered metal oxide nanocomposite with SWCNT is the promising candidate for energy storage and conversion. In this work we exfoliate the crystalline bulk MoO3 by simple liquid phase exfoliation to give multi-layer MoO3 dispersed in a suitable solvent. As the electrical conductivity of MoO3 is very low so, the dispersion was used to make hybrid material with SWCNT dispersion by vacuum filtration. The SWCNT-MoO3 composite showed an areal capacitance value of 1290 µF/cm2 at 10 mV/s in PVA-H2 SO4 solid gel electrolyte. This composite based electrode provides an energy density of 0.092 µWh/cm2 and a power density of 9.54 µW/cm2 at 0.01 mA/cm2

  14. Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces

    NASA Astrophysics Data System (ADS)

    Rahmatabadi, Davood; Tayyebi, Moslem; Hashemi, Ramin; Faraji, Ghader

    2018-05-01

    In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding (ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.

  15. Strained multilayer structures with pseudomorphic GeSiSn layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, V. A., E-mail: Vyacheslav.t@isp.nsc.ru; Nikiforov, A. I.; Tuktamyshev, A. R.

    2016-12-15

    The temperature and composition dependences of the critical thickness of the 2D–3D transition for a GeSiSn film on Si(100) have been studied. The regularities of the formation of multilayer structures with pseudomorphic GeSiSn layers directly on a Si substrate, without relaxed buffer layers, were investigated for the first time. The possibility of forming multilayer structures based on pseudomorphic GeSiSn layers has been shown and the lattice parameters have been determined using transmission electron microscopy. The grown structures demonstrate photoluminescence for Sn contents from 3.5 to 5% in GeSiSn layers.

  16. Simulation of reduction of iron-oxide-carbon composite pellets in a rotary hearth furnace

    NASA Astrophysics Data System (ADS)

    Halder, Sabuj

    The primary motivation of this work is to evaluate a new alternative ironmaking process which involves the combination of a Rotary Hearth Furnace (RHF) with an iron bath smelter. This work is concerned primarily, with the productivity of the RHF. It is known that the reduction in the RHF is controlled by chemical kinetics of the carbon oxidation and wustite reduction reactions as well as by heat transfer to the pellet surface and within the pellet. It is heat transfer to the pellet which limits the number of layers of pellets in the pellet bed in the RHF and thus, the overall productivity. Different types of carbon like graphite, coal-char and wood charcoal were examined. Part of the research was to investigate the chemical kinetics by de-coupling it from the influence of heat and mass transfer. This was accomplished by carrying out reduction experiments using small iron-oxide-carbon powder composite mixtures. The reaction rate constants were determined by fitting the experimental mass loss with a mixed reaction model. This model accounts for the carbon oxidation by CO2 and wustite reduction by CO, which are the primary rate controlling surface-chemical reactions in the composite system. The reaction rate constants have been obtained using wustite-coal-char powder mixtures and wustite-wood-charcoal mixtures. The wustite for these mixtures was obtained from two iron-oxide sources: artificial porous analytical hematite (PAH) and hematite ore tailings. In the next phase of this study, larger scale experiments were conducted in a RHF simulator using spherical composite pellets. Measurement of the reaction rates was accomplished using off-gas analysis. Different combinations of raw materials for the pellets were investigated. These included artificial ferric oxide as well as naturally existing hematite and taconite ores. Graphite, coal-char and wood-charcoal were the reductants. Experiments were conducted using a single layer, a double layer and a triple layer of composite pellets to look into the different aspects associated with multi-layer reduction in the RHF. The reduced pellets were examined for morphology and phase distribution using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. Efforts were made to interpret the differences in the observed rates from one kind of pellet to the other on the grounds of chemical kinetics of the carbon oxidation and wustite reduction reactions and the issues of external and internal heat transport to and within the pellets. It was concluded from the experiments that in the ore containing pellets, wood-charcoal appeared to be a faster reductant than coal-char. However, in the PAH containing pellets, the reverse was found to be true. This is because of the internal heat transport limitations imposed by two factors (a) lower thermal conductivity of wood-charcoal in comparison to coal-char and (b) swelling of the PAH-Wood-Charcoal pellets during the initial heat-up stage. For the same type of reductant, hematite containing pellets were observed to reduce faster than taconite containing pellets. This is in accordance with the higher reducibility of hematite because of development of internal porosity due to cracking and fissure formation during the Fe2O3 to Fe 3O4 transformation stage. This is however, absent during the reduction of taconite, which is primarily Fe3O4. The PAH-Wood-Charcoal pellets were found to undergo significant amounts of swelling under low temperature conditions. This behavior of the PAH-Wood-Charcoal pellets of a certain layer impeded the external heat transport to the lower layer and consequently, resulted in a relatively lower reduction rate for a multi-layer bed. The volume change phenomena associated with the reduction of composites were also studied. Volume changes influence the external heat transport, especially to the lower layers of a multi-layer bed. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. Empirical correlations were developed associating the volume shrinkage to the fractional mass loss of the pellets. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multi-layer bed was obtained by conducting heat transport tests using inert low carbon steel spheres. The experimental temperature data for the spheres of different layers was interpreted using a simple mathematical model. It was found through this exercise, that if the spheres of the top layer of the bed shrink by 30%, the external heat transfer to the second layer increases by almost 6 times. This is because of the decrease in the shielded area of the second layer due to the decreasing size of the top layer spheres. If the average degree of reduction targeted in a RHF is reduced from 95% to about 70% by coupling the RHF with a bath smelter, the productivity of the RHF can be enhanced by 1.5 to 2 times. The use of a 2 or 3 layer bed was found to be far superior to that of a single layer for higher productivities under the current experimental conditions. Sometimes, a 2 layer bed is more advantageous than a 3 layer bed, as was found to be the case with hematite-wood-charcoal pellets. The choice of the optimal number of layers depends upon several factors like pellet size, kind of pellet and shrinking characteristics of the pellet.

  17. Preparation and characterization of multi-layer biodegradable nanofibers by coaxial electrospinning and their potential for tissue engineering

    NASA Astrophysics Data System (ADS)

    Liu, Wenwen

    As an evolution of conventional electrospinning, coaxial electrospinning became popular soon after its debut as a novel way to develop nanofibers with special structures, such as core-shell and hollow interior. In recent years, there has been an increasing interest in a modified coaxial electrospinning, tri-layer coaxial electrospinning, to develop more complex structures, such as multi-layer and nanowire-in-microtube. Previous studies have primarily concentrated on the fabrication of tri-layered inorganic fibers while studies on tri-layered coaxial polymeric fibers has not been reported until very recently. Our research focuses on the fabrication of core-shell and tri-layer structured biodegradable polymeric nanofibers with coaxial electrospinning. Different characterization methods have been applied to observe the internal structure in single nanofibers and the potential application of tri-layer coaxial electrospinning has been discussed. The material system consists of biodegradable natural polymer gelatin, synthetic polymers poly (epsilon-caprolactone) (PCL) and poly (lactic-co-glycolic acid) (PLGA). A uniquely designed three-needle concentric spinneret is developed to perform tri-layer coaxial electrospinning. Different kinds of core-shell structured nanofibers, including gelatin/PCL, PCL/gelatin, gelatin/PLGA and PCL/PLGA, have been fabricated with a customized coaxial electrospinning apparatus. Two kinds of tri-layer coaxial nanofibers, two-component ABA structured gelatin/PCL/gelatin biodegradable nanofibers and tri-component ABC structured gelatin/PCL/PLGA biodegradable nanofibers, have been developed with the customized three needle coaxial electrospinning setup. The core-shell and tri-layered structures of electrospun nanofibers have been characterized by several commonly used techniques, such as laser scanning confocal microscopy (LSCM) and transmission electron microscopy (TEM). Besides the conventional methods, other newer techniques, including focused ion beam-scanning electron microscopy (FIB-SEM), super-resolution structured illumination microscopy (SR-SIM) and nanoscale-infrared spectroscopy (nano-IR), have been explored to investigate the internal structure in singles fibers. Additionally, the potential application of coaxial electrospinning in the fabrication of bioactive scaffolds for tissue engineering has been studied. Different kinds of coaxial nanofibers were fabricated and studied to determine the potential for BSA and growth factor release and some preliminary results were obtained.

  18. Erosion characteristics of ethylene propylene diene monomer composite insulation by high-temperature dense particles

    NASA Astrophysics Data System (ADS)

    Li, Jiang; Guo, Meng-fei; Lv, Xiang; Liu, Yang; Xi, Kun; Guan, Yi-wen

    2018-04-01

    In this study, a dense particles erosion test motor which can simulate the erosion state of a solid rocket motor under high acceleration was developed. Subsequently, erosion experiments were carried out for the ethylene propylene diene monomer composite insulation and the microstructure of the char layer analysed. A turning point effect was found from the influence of the particle impact velocity on the ablation rate, and three erosion modes were determined according to the micro-morphology of the char layer. A reasonable explanation for the different structures of the char layer in the three modes was presented based on the formation mechanism of the compact/loose structure of the char layer.

  19. Structural stability and sustained release of protein from a multilayer nanofiber/nanoparticle composite.

    PubMed

    Vakilian, Saeid; Mashayekhan, Shohreh; Shabani, Iman; Khorashadizadeh, Mohsen; Fallah, Ali; Soleimani, Masoud

    2015-04-01

    The cellular microenvironment can be engineered through the utilization of various nano-patterns and matrix-loaded bioactive molecules. In this study, a multilayer system of electrospun scaffold containing chitosan nanoparticles was introduced to overcome the common problems of instability and burst release of proteins from nanofibrous scaffolds. Bovine serum albumin (BSA)-loaded chitosan nanoparticles was fabricated based on ionic gelation interaction between chitosan and sodium tripolyphosphate. Suspension electrospinning was employed to fabricate poly-ɛ-caprolacton (PCL) containing protein-loaded chitosan nanoparticles with a core-shell structure. To obtain the desired scaffold mechanical properties with enough elasticity for expansion and contraction, a hybrid mono and multilayer electrospun scaffold was fabricated using PCL containing protein-loaded chitosan nanoparticles and poly-L-lactic acid (PLLA). According to the BSA release profile, the multi-layered structure of nanofibers with two barrier layers provided a programmable release pattern of the loaded protein. Moreover, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and circular dichroism spectra results showed that the electrospinning process had no significant effect on the primary and secondary structure of the protein. The results indicated a desirable biocompatibility and mechanical cues of the multilayer nanofibrous scaffolds supporting structural stability and controlled release of the protein, which can offer diverse applications in hollow organ tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A robust multi-frequency mixing algorithm for suppression of rivet signal in GMR inspection of riveted structures

    NASA Astrophysics Data System (ADS)

    Safdernejad, Morteza S.; Karpenko, Oleksii; Ye, Chaofeng; Udpa, Lalita; Udpa, Satish

    2016-02-01

    The advent of Giant Magneto-Resistive (GMR) technology permits development of novel highly sensitive array probes for Eddy Current (EC) inspection of multi-layer riveted structures. Multi-frequency GMR measurements with different EC pene-tration depths show promise for detection of bottom layer notches at fastener sites. However, the distortion of the induced magnetic field due to flaws is dominated by the strong fastener signal, which makes defect detection and classification a challenging prob-lem. This issue is more pronounced for ferromagnetic fasteners that concentrate most of the magnetic flux. In the present work, a novel multi-frequency mixing algorithm is proposed to suppress rivet signal response and enhance defect detection capability of the GMR array probe. The algorithm is baseline-free and does not require any assumptions about the sample geometry being inspected. Fastener signal suppression is based upon the random sample consensus (RANSAC) method, which iteratively estimates parameters of a mathematical model from a set of observed data with outliers. Bottom layer defects at fastener site are simulated as EDM notches of different length. Performance of the proposed multi-frequency mixing approach is evaluated on finite element data and experimental GMR measurements obtained with unidirectional planar current excitation. Initial results are promising demonstrating the feasibility of the approach.

  1. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering.

    PubMed

    Wu, Tong; Zhang, Jialing; Wang, Yuanfei; Li, Dandan; Sun, Binbin; El-Hamshary, Hany; Yin, Meng; Mo, Xiumei

    2018-01-01

    Designing a biomimetic and functional tissue-engineered vascular graft has been urgently needed for repairing and regenerating defected vascular tissues. Utilizing a multi-layered vascular scaffold is commonly considered an effective way, because multi-layered scaffolds can easily simulate the structure and function of natural blood vessels. Herein, we developed a novel tri-layer tubular graft consisted of Poly(L-lactide-co-caprolactone)/collagen (PLCL/COL) fibers and Poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) yarns via a three-step electrospinning method. The tri-layer vascular graft consisted of PLCL/COL aligned fibers in inner layer, PLGA/SF yarns in middle layer, and PLCL/COL random fibers in outer layer. Each layer possessed tensile mechanical strength and elongation, and the entire tubular structure provided tensile and compressive supports. Furthermore, the human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) proliferated well on the materials. Fluorescence staining images demonstrated that the axially aligned PLCL/COL fibers prearranged endothelium morphology in lumen and the circumferential oriented PLGA/SF yarns regulated SMCs organization along the single yarns. The outside PLCL/COL random fibers performed as the fixed layer to hold the entire tubular structure. The in vivo results showed that the tri-layer vascular graft supported cell infiltration, scaffold biodegradation and abundant collagen production after subcutaneous implantation for 10weeks, revealing the optimal biocompatibility and tissue regenerative capability of the tri-layer graft. Therefore, the specially designed tri-layer vascular graft will be beneficial to vascular reconstruction. Copyright © 2017. Published by Elsevier B.V.

  2. Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2017-08-01

    In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.

  3. Reconfigurable and non-volatile vertical magnetic logic gates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, J., E-mail: jbutl001@ucr.edu; Lee, B.; Shachar, M.

    2014-04-28

    In this paper, we discuss the concept and prototype fabrication of reconfigurable and non-volatile vertical magnetic logic gates. These gates consist of two input layers and a RESET layer. The RESET layer allows the structure to be used as either an AND or an OR gate, depending on its magnetization state. To prove this concept, the gates were fabricated using a multi-layered patterned magnetic media, in which three magnetic layers are stacked and exchange-decoupled via non-magnetic interlayers. We demonstrate the functionality of these logic gates by conducting atomic force microscopy and magnetic force microscopy (MFM) analysis of the multi-layered patternedmore » magnetic media. The logic gates operation mechanism and fabrication feasibility are both validated by the MFM imaging results.« less

  4. Broadband integrated polarization rotator using three-layer metallic grating structures

    DOE PAGES

    Fan, Ren -Hao; Liu, Dong; Peng, Ru -Wen; ...

    2018-01-05

    In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. As a result, we anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.

  5. Broadband integrated polarization rotator using three-layer metallic grating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren -Hao; Liu, Dong; Peng, Ru -Wen

    In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. As a result, we anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.

  6. Formation of structure, phase composition and properties of electro explosion resistant coatings using electron-beam processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, Denis A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Sosnin, Kirill V., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Budovskikh, Evgenij A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru

    2014-11-14

    For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoCu, MoCCu, WCu, WCCu and TiB{sub 2}Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beammore » processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times.« less

  7. Efficient thermoelectric device

    NASA Technical Reports Server (NTRS)

    Ila, Daryush (Inventor)

    2010-01-01

    A high efficiency thermo electric device comprising a multi nanolayer structure of alternating insulator and insulator/metal material that is irradiated across the plane of the layer structure with ionizing radiation. The ionizing radiation produces nanocrystals in the layered structure that increase the electrical conductivity and decrease the thermal conductivity thereby increasing the thermoelectric figure of merit. Figures of merit as high as 2.5 have been achieved using layers of co-deposited gold and silicon dioxide interspersed with layers of silicon dioxide. The gold to silicon dioxide ratio was 0.04. 5 MeV silicon ions were used to irradiate the structure. Other metals and insulators may be substituted. Other ionizing radiation sources may be used. The structure tolerates a wide range of metal to insulator ratio.

  8. Progress in cold roll bonding of metals

    PubMed Central

    Li, Long; Nagai, Kotobu; Yin, Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for bcc structure metals to bond compared with fcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. PMID:27877949

  9. The Layer of Kevlar Angle-interlock Woven Fabric Effect on the Tensile Properties of Composite Materials

    NASA Astrophysics Data System (ADS)

    Xie, Wan-Chen; Guo, Xu-Yi; Yan, Tao; Zhang, Shang-Yong

    2017-09-01

    This article is based on the structure of three-dimensional angle-interlock longitudinal.The 3-layer, 5-layer, 7-layer and 9-layer of angle-interlock 3D fabrics are woven on sample weaving machine respectively with the 1500D Kevlar fiber twist filament produced by United States DuPont. At the same time, Kevlar plain weave fabric is woven, and three, five, seven and nine layers’ fabric are to be compared. In the process of VARTM composite technology, epoxy resin is matrix material, acetone is diluent, triethylene tetramine is curing agent and the five different fabrics are the reinforced materials respectively. Finally, eight different three-dimensional woven fabric composites were prepared. In this paper, the tensile properties of eight kinds of three-dimensional woven fabric composites were tested respectively.Finally, it is concluded that the five-layer angle-interlock woven fabric prepared by Kevlar fiber shows the best tensile property.

  10. Influence of the Size and Structural Factors on the Magnetism of Multilayer Films Based on 3 d and 4 f Metals

    NASA Astrophysics Data System (ADS)

    Svalov, A. V.; Vas'kovskiy, V. O.; Kurlyandskaya, G. V.

    2017-12-01

    This work has presented some data on the layer structuring of films of 3 d and 4 f metals and their alloys, which have potential for practical use in magnetic sensors. The decrease in the thickness of magnetic layers with this structuring entails natural worsening of the crystallinity and leads to a degradation of magnetic ordering. However, the manifestation of these tendencies depends to a great extent on the conditions of preparation, the composition, and the sequence of the deposition of the contacting layers in the multilayer structures. The combination of these factors makes it possible to realize an optimum composition and optimum structural states of the films, which in a number of cases lead to the appearance of new combinations of functional properties.

  11. Production and crosslinking of multi-layer tubes (PE & metal) by E-beam

    NASA Astrophysics Data System (ADS)

    Zyball, Alfred

    2000-03-01

    Irradiation crosslinking of PE-tubes has been used for heating floors for about 25 years. Such tubes are also used today for drinking water supply. A further development has been the coating of such tubes with Ethylene-Vinyl-Alcohol-Copolymers (EVAL), in order to prevent oxygen diffusion into the water through the PE tube. For about 15 years composite tubes made of PE and aluminum have been available. These tubes are crosslinked with electron beams. The energy of the accelerated electrons must be adjusted for the particular tube configuration, so that the inner PE-layer will be crosslinked. This paper will concern itself with the manufacture and the crosslinking of composite tubes.

  12. Layer-by-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine

    NASA Astrophysics Data System (ADS)

    de Lucena, Nathalia C.; Miyazaki, Celina M.; Shimizu, Flávio M.; Constantino, Carlos J. L.; Ferreira, Marystela

    2018-04-01

    Dopamine (DA) abnormal levels are related to diseases which makes important the development of fast, reliable, low-cost and sensitive devices for diagnosis and pharmaceutical controls. Nanostructured film composite of sodium montmorillonite clay (Na+MMT) and nickel phthalocyanine (NiTsPc) was self-assembled by layer-by-layer (LbL) technique and applied as electrochemical sensor for DA in the presence of common natural interferents as ascorbic acid (AA) and uric acid (UA). Three different LbL architecture films were investigated: LbL films of clay (PEI/Na+MMT) and phthalocyanine (PEI/NiTsPc) in a bilayer structure with a conventional polyelectrolyte (PEI) and a composite film formed by both materials to verify the synergistic effect in the LbL film in a quadri-layer assembly (PEI/Na+MMT/PEI/NiTsPc). Structural characterization indicated molecular level interactions between the layers forming the LbL films. The ITO/(PEI/Na+MMT/PEI/NiTsPc)10 electrode exhibited a LOD of 1.0 μmol L-1 and linear range 5-150 μmol L-1.

  13. Robust Real-Time Music Transcription with a Compositional Hierarchical Model.

    PubMed

    Pesek, Matevž; Leonardis, Aleš; Marolt, Matija

    2017-01-01

    The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.

  14. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene

    NASA Astrophysics Data System (ADS)

    Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan

    2018-07-01

    Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g‑1 at a current density of 100 mA g‑1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.

  15. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene.

    PubMed

    Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan

    2018-07-27

    Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS 2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g -1 at a current density of 100 mA g -1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.

  16. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.

    2009-03-15

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that largemore » particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.« less

  17. Novel Swelling-Resistant Sodium Alginate Membrane Branching Modified by Glycogen for Highly Aqueous Ethanol Solution Pervaporation.

    PubMed

    Ji, Chen-Hao; Xue, Shuang-Mei; Xu, Zhen-Liang

    2016-10-12

    A novel carbohydrate chain cross-linking method of sodium alginate (SA) is proposed in which glycogen with the branched-chain structure is utilized to cross-link with SA matrix by the bridging of glutaraldehyde (GA). The active layer of SA composite ceramic membrane modified by glycogen and GA for pervaporation (PV) demonstrates great advantages. The branched structure increases the chain density of the active layer, which compresses the free volume between the carbohydrate chains of SA. Large amounts of hydroxyl groups are consumed during the reaction with GA, which reduces the hydrogen bond formation between water molecules and the polysaccharide matrix. The two factors benefit the active layer with great improvement in swelling resistance, promoting the potential of the active layer for the dehydration of an ethanol-water solution containing high water content. Meanwhile, the modified active layer is loaded on the rigid α-Al 2 O 3 ceramic membrane by dip-coating method with the enhancement of anti-deformation and controllable thickness of the active layer. Characterization techniques such as SEM, AFM, XRD, FTIR, XPS, and water contact angle are utilized to observe the composite structure and surface morphology of the composite membrane, to probe the free volume variation, and to determine the chemical composition and hydrophilicity difference of the active layer caused by the different glycogen additive amounts. The membrane containing 3% glycogen in the selective layer demonstrates the flux at 1250 g m -2 h -1 coupled with the separation factor of 187 in the 25 wt % water content feed solution at the operating temperature of 75 °C, reflecting superior pervaporation processing capacity compared with the general organic PV membranes in the same condition.

  18. A study of fullerene-quantum dot composite structure on substrates with a transparent electrode layer

    NASA Astrophysics Data System (ADS)

    Pavlov, S. I.; Kirilenko, D. A.; Nashchekin, A. V.; Sokolov, R. V.; Konnikov, S. G.

    2015-02-01

    We have studied the structure of films consisting of fullerene clusters and a related fullerene-based composite with incorporated quantum dots. The films were obtained by electrophoretic deposition from solution onto glass substrates with a transparent indium-doped tin oxide (ITO) electrode layer. The average cluster size, as measured by electron microscopy, amounts to 300 nm in pure fullerene films and 800 nm in the composite material. Electron diffraction measurements showed that pure fullerene clusters had an fcc lattice, while the introduction of quantum dots rendered the fullerene matrix predominantly amorphous.

  19. Multi-layer imager design for mega-voltage spectral imaging

    NASA Astrophysics Data System (ADS)

    Myronakis, Marios; Hu, Yue-Houng; Fueglistaller, Rony; Wang, Adam; Baturin, Paul; Huber, Pascal; Morf, Daniel; Star-Lack, Josh; Berbeco, Ross

    2018-05-01

    The architecture of multi-layer imagers (MLIs) can be exploited to provide megavoltage spectral imaging (MVSPI) for specific imaging tasks. In the current work, we investigated bone suppression and gold fiducial contrast enhancement as two clinical tasks which could be improved with spectral imaging. A method based on analytical calculations that enables rapid investigation of MLI component materials and thicknesses was developed and validated against Monte Carlo computations. The figure of merit for task-specific imaging performance was the contrast-to-noise ratio (CNR) of the gold fiducial when the CNR of bone was equal to zero after a weighted subtraction of the signals obtained from each MLI layer. Results demonstrated a sharp increase in the CNR of gold when the build-up component or scintillation materials and thicknesses were modified. The potential for low-cost, prompt implementation of specific modifications (e.g. composition of the build-up component) could accelerate clinical translation of MVSPI.

  20. Mechanical Behavior of Fabric-Film Laminates

    NASA Technical Reports Server (NTRS)

    Said, Magdi S.

    1999-01-01

    Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of materials made of laminating thin homogenous films to lightweight fabrics are being considered us structura1 gas envelops. The emerging composite materials are a result of recent advances in the manufacturing cf 1ightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barrier film results in wide range of materials suitable for various loading and environmental conditions. Polyester - based woven fabrics laminated to thin homogeneus film of polyester (Maylar) is an example of this class. This fabric/ film laminate is being considered for the development a material suitable for building large gas envelopes for use in the NASA Ultra Long Duration Balloon Program (ULDB). Compared to commercial homogeneus films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation. The purpose of this papers is to introduce the mechanical behavior of this class of multi-layers composite and to highlight some of the concerns observed during the characterization of these laminate composites.

  1. Mono vs multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes.

    PubMed

    Gossart, Audrey; Battiston, Kyle G; Gand, Adeline; Pauthe, Emmanuel; Santerre, J Paul

    2018-01-15

    Monocyte interactions with materials that are biofunctionalized with fibronectin (Fn) are of interest because of the documented literature which associates this protein with white blood cell function at implant sites. A degradable-polar hydrophobic ionic polyurethane (D-PHI), has been reported to promote an anti-inflammatory response from human monocytes. The aim of the current work was to study the influence of intrinsic D-PHI material chemistry on Fn adsorption (mono and multi-layer structures), and to investigate the influence of such chemistry on the structural state of the Fn, as well as the latter's influence on the activity of human monocytes on the protein coated substrates. Significant differences in Fn adsorption, surface hydrophobicity and the availability of defined peptide sequences (N terminal, C terminal or Cell Binding Domain) for the Fn in mono vs multilayer structures were observed as a function of the changes in intrinsic material chemistry. A D-PHI-formulated polyurethane substrate with subtle changes in anionic and hydrophobic domain content relative to the polar non-ionic urethane/carbonate groups within the polymer matrix promoted the lowest activation of monocytes, in the presence of multi-layer Fn constructs. These results highlight the importance of chemical heterogeneity as a design parameter for biomaterial surfaces, and establishes a desired strategy for controlling human monocyte activity at the surface of devices, when these are coated with multi-layer Fn structures. The latter is an important step towards functionalizing the materials with multi-layer protein drug carriers as interventional therapeutic agents. The control of the behavior of monocytes, especially migration and activation, is of crucial interest to modulate the inflammatory response at the site of implanted biomaterial. Several studies report the influence of adsorbed serum proteins on the behavior of monocytes on biomaterials. However, few studies show the influence of surface chemical group distribution on the controlled adsorption and the subsequent induced conformation- of mono versus multi-layer assembled structures generated from specific proteins implicated in wound repair. The current research considered the role of Fn adsorption and conformation in thin films while interacting with the intrinsic chemistry of segmented block polyurethanes; and the influence of the former on modulation and activation of human monocytes. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R., E-mail: Andrew.watt@materials.ox.ac.uk

    2015-09-07

    Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less

  3. Multi-Tasking Non-Destructive Laser Technology in Conservation Diagnostic Procedures

    NASA Astrophysics Data System (ADS)

    Tornari, V.; Tsiranidou, E.; Orphanos, Y.; Falldorf, C.; Klattenhof, R.; Esposito, E.; Agnani, A.; Dabu, R.; Stratan, A.; Anastassopoulos, A.; Schipper, D.; Hasperhoven, J.; Stefanaggi, M.; Bonnici, H.; Ursu, D.

    Laser metrology provides techniques that have been successfully applied in industrial structural diagnostic fields but have not yet been refined and optimised for the special investigative requirements found in cultural heritage applications. A major impediment is the partial applicability of various optical coherent techniques, each one narrowing its use down to a specific application. This characteristic is not well suited for a field that encounters a great variety of diagnostic problems ranging from movable, multiple-composition museum objects, to immovable multi-layered wall paintings, statues and wood carvings, to monumental constructions and outdoor cultural heritage sites. Various diagnostic techniques have been suggested and are uniquely suited for each of the mentioned problems but it is this fragmented suitability that obstructs the technology transfer. Since optical coherent techniques for metrology are based on fundamental principles and take advantage of similar procedures for generation of informative signals for data collection, then the imposed limits elevate our aim to identify complementary capabilities to accomplish the needed functionality.

  4. Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc

    2013-12-01

    We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS-) and perchlorate (ClO4-) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO4) electrodes was 401 ± 18 mF cm-2, which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes.

  5. Layered Metal Nanoparticle Structures on Electrodes for Sensing, Switchable Controlled Uptake/Release, and Photo-electrochemical Applications.

    PubMed

    Tel-Vered, Ran; Kahn, Jason S; Willner, Itamar

    2016-01-06

    Layered metal nanoparticle (NP) assemblies provide highly porous and conductive composites of unique electrical and optical (plasmonic) properties. Two methods to construct layered metal NP matrices are described, and these include the layer-by-layer deposition of NPs, or the electropolymerization of monolayer-functionalized NPs, specifically thioaniline-modified metal NPs. The layered NP composites are used as sensing matrices through the use of electrochemistry or surface plasmon resonance (SPR) as transduction signals. The crosslinking of the metal NP composites with molecular receptors, or the imprinting of molecular recognition sites into the electropolymerized NP matrices lead to selective and chiroselective sensing interfaces. Furthermore, the electrosynthesis of redox-active, imprinted, bis-aniline bridged Au NP composites yields electrochemically triggered "sponges" for the switchable uptake and release of electron-acceptor substrates, and results in conductive surfaces of electrochemically controlled wettability. Also, photosensitizer-relay-crosslinked Au NP composites, or electrochemically polymerized layered semiconductor quantum dot/metal NP matrices on electrodes, are demonstrated as functional nanostructures for photoelectrochemical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Impact of swelling characteristics on the permselective properties of multi-layer composite membranes for water removal from alcohols.

    EPA Science Inventory

    The removal of water from organic solvents and biofuels, including lower alcohols (i.e., methanol, ethanol, propanol, and butanol), is necessary for the production, blending, and reuse of those organic compounds. Water forms an azeotrope with many hydrophilic solvents, complicati...

  7. Improving the Strength of the ZrC-SiC and TC4 Brazed Joint Through Fabricating Graded Double-Layered Composite Structure on TC4 Surface

    NASA Astrophysics Data System (ADS)

    Shi, J. M.; Zhang, L. X.; Chang, Q.; Sun, Z.; Feng, J. C.; Ma, N.

    2018-06-01

    In order to improve the ZrC-SiC ceramic and TC4 brazed joint property, graded double-layered SiC particles (SiCp)-reinforced TC4-based composite structure (named as GLS for convenience) was designed to relieve the residual stress in the joint. The GLS was successfully fabricated on TC4 substrate by double-layered laser deposition technology before the brazing process. The investigation of the GLS shows that the volume fraction of SiCp in the two composite layers was graded (20 and 39 vol pct, respectively). Ti5Si3 and TiC phases formed in the GLS due to the reaction of SiCp and TC4. The laser power-II (the laser power for the second deposition layer) affected the microstructure of the GLS significantly. Increasing the laser power-II would promote the reaction between the SiCp and TC4. But the high laser power-II made the layer I remelt completely and the two layers became homogeneous rather than graded structure. In the ZrC-SiC and TC4 brazed joint, the CTE (coefficient of thermal expansion) was graded from the TC4 to the ZrC-SiC due to the GLS, and the strength of the joint with the GLS (91 MPa) was higher than that without the GLS (43 MPa).

  8. Design and construction of a multi-layer CsI(Tl) telescope for high-energy reaction studies

    NASA Astrophysics Data System (ADS)

    Yan, D.; Sun, Z. Y.; Yue, K.; Wang, S. T.; Zhang, X. H.; Yu, Y. H.; Chen, J. L.; Tang, S. W.; Fang, F.; Zhou, Y.; Sun, Y.; Wang, Z. M.; Sun, Y. Z.

    2017-01-01

    A prototype of a new CsI(Tl) telescope, which will be used in the reaction studies of light isotopes with energy of several hundred AMeV, was constructed and tested at the Institute of Modern Physics, Chinese Academy of Sciences. The telescope has a multi-layer structure, and the range information was obtained to improve the particle identification performance. This prototype has seven layers of different thickness. An energy resolution of 5.0% (FWHM) was obtained for one of the layers in a beam test experiment. Positive improvement for the identification of 14O and 15O isotopes was achieved using the range information.

  9. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doe, Robert E.; Downie, Craig M.; Fischer, Christopher

    2016-01-19

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less

  10. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher

    2016-07-26

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less

  11. A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Yongguang; Zhao, Yan; Bakenov, Zhumabay

    2014-03-01

    A novel sulfur/graphene nanosheet (S/GNS) composite was prepared via a simple ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. High-resolution transmission and scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting of graphene with uniform sulfur coating on its surface. The electrochemical properties of the resulting composite cathode were investigated in a lithium cell with a gel polymer electrolyte (GPE) prepared by trapping 1 mol dm-3 solution of lithium bistrifluoromethanesulfonamide in tetraethylene glycol dimethyl ether in a polymer matrix composed of poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/silicon dioxide (PVDF-HFP/PMMA/SiO2). The GPE battery delivered reversible discharge capacities of 809 and 413 mAh g-1 at the 1st and 50th cycles at 0.2C, respectively, along with a high coulombic efficiency over 50 cycles. This performance enhancement of the cell was attributed to the suppression of the polysulfide shuttle effect by a collective effect of S/GNS composite cathode and GPE, providing a higher sulfur utilization. PACS: 82.47.Aa; 82.45.Gj; 62.23.Kn

  12. Bio-inspired heterogeneous composites for broadband vibration mitigation.

    PubMed

    Chen, Yanyu; Wang, Lifeng

    2015-12-08

    Structural biological materials have developed heterogeneous and hierarchical architectures that are responsible for the outstanding performance to provide protection against environmental threats including static and dynamic loading. Inspired by this observation, this research aims to develop new material and structural concepts for broadband vibration mitigation. The proposed composite materials possess a two-layered heterogeneous architecture where both layers consist of high-volume platelet-shape reinforcements and low-volume matrix, similar to the well-known "brick and mortar" microstructure of biological composites. Using finite element method, we numerically demonstrated that broadband wave attenuation zones can be achieved by tailoring the geometric features of the heterogeneous architecture. We reveal that the resulting broadband attenuation zones are gained by directly superimposing the attenuation zones in each constituent layer. This mechanism is further confirmed by the investigation into the phonon dispersion relation of each layer. Importantly, the broadband wave attenuation capability will be maintained when the mineral platelet orientation is locally manipulated, yet a contrast between the mineral platelet concentrations of the two constituent layers is essential. The findings of this work will provide new opportunities to design heterogeneous composites for broadband vibration mitigation and impact resistance under mechanically challenging environmental conditions.

  13. Bio-inspired heterogeneous composites for broadband vibration mitigation

    NASA Astrophysics Data System (ADS)

    Chen, Yanyu; Wang, Lifeng

    2015-12-01

    Structural biological materials have developed heterogeneous and hierarchical architectures that are responsible for the outstanding performance to provide protection against environmental threats including static and dynamic loading. Inspired by this observation, this research aims to develop new material and structural concepts for broadband vibration mitigation. The proposed composite materials possess a two-layered heterogeneous architecture where both layers consist of high-volume platelet-shape reinforcements and low-volume matrix, similar to the well-known “brick and mortar” microstructure of biological composites. Using finite element method, we numerically demonstrated that broadband wave attenuation zones can be achieved by tailoring the geometric features of the heterogeneous architecture. We reveal that the resulting broadband attenuation zones are gained by directly superimposing the attenuation zones in each constituent layer. This mechanism is further confirmed by the investigation into the phonon dispersion relation of each layer. Importantly, the broadband wave attenuation capability will be maintained when the mineral platelet orientation is locally manipulated, yet a contrast between the mineral platelet concentrations of the two constituent layers is essential. The findings of this work will provide new opportunities to design heterogeneous composites for broadband vibration mitigation and impact resistance under mechanically challenging environmental conditions.

  14. Creep prediction of a layered fiberglass plastic

    NASA Astrophysics Data System (ADS)

    Aniskevich, K.; Korsgaard, J.; Mālmeisters, A.; Jansons, J.

    1998-05-01

    The results of short-term creep tests of a layered glass fiber/polyester resin plastic in tension at angles of 90, 70, and 45° to the direction of the principal fiber orientation are presented. The applicability of the principle of time-temperature analogy for the prediction of long-term creep of the composite and its structural components is revealed. The possibility of evaluating the viscoelastic properties of the composite from the properties of structural components is shown.

  15. Mechanical exfoliation of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping

    2018-06-01

    Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.

  16. Laser light-section sensor automating the production of textile-reinforced composites

    NASA Astrophysics Data System (ADS)

    Schmitt, R.; Niggemann, C.; Mersmann, C.

    2009-05-01

    Due to their advanced weight-specific mechanical properties, the application of fibre-reinforced plastics (FRP) has been established as a key technology in several engineering areas. Textile-based reinforcement structures (Preform) in particular achieve a high structural integrity due to the multi-dimensional build-up of dry-fibre layers combined with 3D-sewing and further textile processes. The final composite parts provide enhanced damage tolerances through excellent crash-energy absorbing characteristics. For these reasons, structural parts (e.g. frame) will be integrated in next generation airplanes. However, many manufacturing processes for FRP are still involving manual production steps without integrated quality control. The non-automated production implies considerable process dispersion and a high rework rate. Before the final inspection there is no reliable information about the production status. This work sets metrology as the key to automation and thus an economically feasible production, applying a laser light-section sensor system (LLSS) to measure process quality and feed back the results to close control loops of the production system. The developed method derives 3D-measurements from height profiles acquired by the LLSS. To assure the textile's quality a full surface scan is conducted, detecting defects or misalignment by comparing the measurement results with a CAD model of the lay-up. The method focuses on signal processing of the height profiles to ensure a sub-pixel accuracy using a novel algorithm based on a non-linear least-square fitting to a set of sigmoid functions. To compare the measured surface points to the CAD model, material characteristics are incorporated into the method. This ensures that only the fibre layer of the textile's surface is included and gaps between the fibres or overlaying seams are neglected. Finally, determining the uncertainty in measurement according to the GUM-standard proofed the sensor system's accuracy. First tests under industrial conditions showed that applying this sensor after the drapery of each textile layer reduces the scrap quota by approximately 30%.

  17. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.

    2015-04-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d33 and d31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d33 coefficient of the composite to the achieved d33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d33 of 3.2 pC N-1. Moreover, the Young’s modulus of the composite structure has been characterized.

  18. Buckling Analysis of Single and Multi Delamination In Composite Beam Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Simanjorang, Hans Charles; Syamsudin, Hendri; Giri Suada, Muhammad

    2018-04-01

    Delamination is one type of imperfection in structure which found usually in the composite structure. Delamination may exist due to some factors namely in-service condition where the foreign objects hit the composite structure and creates inner defect and poor manufacturing that causes the initial imperfections. Composite structure is susceptible to the compressive loading. Compressive loading leads the instability phenomenon in the composite structure called buckling. The existence of delamination inside of the structure will cause reduction in buckling strength. This paper will explain the effect of delamination location to the buckling strength. The analysis will use the one-dimensional modelling approach using two- dimensional finite element method.

  19. Vibroacoustic Tailoring of a Rod-Stiffened Composite Fuselage Panel with Multidisciplinary Considerations

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Przekop, Adam

    2015-01-01

    An efficient multi-objective design tailoring procedure seeking to improve the vibroacoustic performance of a fuselage panel while maintaining or reducing weight is presented. The structure considered is the pultruded rod stitched efficient unitized structure, a highly integrated composite structure concept designed for a noncylindrical, next-generation flight vehicle fuselage. Modifications to a baseline design are evaluated within a six-parameter design space including spacing, flange width, and web height for both frame and stringer substructure components. The change in sound power radiation attributed to a design change is predicted using finite-element models sized and meshed for analyses in the 500 Hz, 1 kHz, and 2 kHz octave bands. Three design studies are carried out in parallel while considering a diffuse acoustic field excitation and two types of turbulent boundary-layer excitation. Kriging surrogate models are used to reduce the computational costs of resolving the vibroacoustic and weight objective Pareto fronts. The resulting Pareto optimal designs are then evaluated under a static pressurization ultimate load to assess structural strength and stability. Results suggest that choosing alternative configurations within the considered design space can reduce weight and improve vibroacoustic performance without compromising strength and stability of the structure under the static load condition considered, but the tradeoffs are significantly influenced by the spatial characteristics of the assumed excitation field.

  20. A 3D THz image processing methodology for a fully integrated, semi-automatic and near real-time operational system

    NASA Astrophysics Data System (ADS)

    Brook, A.; Cristofani, E.; Vandewal, M.; Matheis, C.; Jonuscheit, J.; Beigang, R.

    2012-05-01

    The present study proposes a fully integrated, semi-automatic and near real-time mode-operated image processing methodology developed for Frequency-Modulated Continuous-Wave (FMCW) THz images with the center frequencies around: 100 GHz and 300 GHz. The quality control of aeronautics composite multi-layered materials and structures using Non-Destructive Testing is the main focus of this work. Image processing is applied on the 3-D images to extract useful information. The data is processed by extracting areas of interest. The detected areas are subjected to image analysis for more particular investigation managed by a spatial model. Finally, the post-processing stage examines and evaluates the spatial accuracy of the extracted information.

Top